X86ISelLowering.cpp revision 98819c9d1e3b929e9ebab0e8cd3edb31aad21bd8
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
66                                   SelectionDAG &DAG, DebugLoc dl) {
67  EVT VT = Vec.getValueType();
68  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
69  EVT ElVT = VT.getVectorElementType();
70  unsigned Factor = VT.getSizeInBits()/128;
71  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
72                                  VT.getVectorNumElements()/Factor);
73
74  // Extract from UNDEF is UNDEF.
75  if (Vec.getOpcode() == ISD::UNDEF)
76    return DAG.getUNDEF(ResultVT);
77
78  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
79  // we can match to VEXTRACTF128.
80  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
81
82  // This is the index of the first element of the 128-bit chunk
83  // we want.
84  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
85                               * ElemsPerChunk);
86
87  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
88  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
89                               VecIdx);
90
91  return Result;
92}
93
94/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
95/// sets things up to match to an AVX VINSERTF128 instruction or a
96/// simple superregister reference.  Idx is an index in the 128 bits
97/// we want.  It need not be aligned to a 128-bit bounday.  That makes
98/// lowering INSERT_VECTOR_ELT operations easier.
99static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
100                                  unsigned IdxVal, SelectionDAG &DAG,
101                                  DebugLoc dl) {
102  // Inserting UNDEF is Result
103  if (Vec.getOpcode() == ISD::UNDEF)
104    return Result;
105
106  EVT VT = Vec.getValueType();
107  assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
108
109  EVT ElVT = VT.getVectorElementType();
110  EVT ResultVT = Result.getValueType();
111
112  // Insert the relevant 128 bits.
113  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
114
115  // This is the index of the first element of the 128-bit chunk
116  // we want.
117  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
118                               * ElemsPerChunk);
119
120  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
121  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
122                     VecIdx);
123}
124
125/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
126/// instructions. This is used because creating CONCAT_VECTOR nodes of
127/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
128/// large BUILD_VECTORS.
129static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
130                                   unsigned NumElems, SelectionDAG &DAG,
131                                   DebugLoc dl) {
132  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
133  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
134}
135
136static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
137  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
138  bool is64Bit = Subtarget->is64Bit();
139
140  if (Subtarget->isTargetEnvMacho()) {
141    if (is64Bit)
142      return new X86_64MachoTargetObjectFile();
143    return new TargetLoweringObjectFileMachO();
144  }
145
146  if (Subtarget->isTargetLinux())
147    return new X86LinuxTargetObjectFile();
148  if (Subtarget->isTargetELF())
149    return new TargetLoweringObjectFileELF();
150  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
151    return new TargetLoweringObjectFileCOFF();
152  llvm_unreachable("unknown subtarget type");
153}
154
155X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
156  : TargetLowering(TM, createTLOF(TM)) {
157  Subtarget = &TM.getSubtarget<X86Subtarget>();
158  X86ScalarSSEf64 = Subtarget->hasSSE2();
159  X86ScalarSSEf32 = Subtarget->hasSSE1();
160  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
161
162  RegInfo = TM.getRegisterInfo();
163  TD = getTargetData();
164
165  // Set up the TargetLowering object.
166  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
167
168  // X86 is weird, it always uses i8 for shift amounts and setcc results.
169  setBooleanContents(ZeroOrOneBooleanContent);
170  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
171  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
172
173  // For 64-bit since we have so many registers use the ILP scheduler, for
174  // 32-bit code use the register pressure specific scheduling.
175  // For Atom, always use ILP scheduling.
176  if (Subtarget->isAtom())
177    setSchedulingPreference(Sched::ILP);
178  else if (Subtarget->is64Bit())
179    setSchedulingPreference(Sched::ILP);
180  else
181    setSchedulingPreference(Sched::RegPressure);
182  setStackPointerRegisterToSaveRestore(X86StackPtr);
183
184  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
185    // Setup Windows compiler runtime calls.
186    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
187    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
188    setLibcallName(RTLIB::SREM_I64, "_allrem");
189    setLibcallName(RTLIB::UREM_I64, "_aullrem");
190    setLibcallName(RTLIB::MUL_I64, "_allmul");
191    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
192    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
195    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
196
197    // The _ftol2 runtime function has an unusual calling conv, which
198    // is modeled by a special pseudo-instruction.
199    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
200    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
201    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
202    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
203  }
204
205  if (Subtarget->isTargetDarwin()) {
206    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
207    setUseUnderscoreSetJmp(false);
208    setUseUnderscoreLongJmp(false);
209  } else if (Subtarget->isTargetMingw()) {
210    // MS runtime is weird: it exports _setjmp, but longjmp!
211    setUseUnderscoreSetJmp(true);
212    setUseUnderscoreLongJmp(false);
213  } else {
214    setUseUnderscoreSetJmp(true);
215    setUseUnderscoreLongJmp(true);
216  }
217
218  // Set up the register classes.
219  addRegisterClass(MVT::i8, &X86::GR8RegClass);
220  addRegisterClass(MVT::i16, &X86::GR16RegClass);
221  addRegisterClass(MVT::i32, &X86::GR32RegClass);
222  if (Subtarget->is64Bit())
223    addRegisterClass(MVT::i64, &X86::GR64RegClass);
224
225  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
226
227  // We don't accept any truncstore of integer registers.
228  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
230  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
231  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
232  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
233  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
234
235  // SETOEQ and SETUNE require checking two conditions.
236  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
238  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
241  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
242
243  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
244  // operation.
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
247  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
248
249  if (Subtarget->is64Bit()) {
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
251    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
252  } else if (!TM.Options.UseSoftFloat) {
253    // We have an algorithm for SSE2->double, and we turn this into a
254    // 64-bit FILD followed by conditional FADD for other targets.
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
256    // We have an algorithm for SSE2, and we turn this into a 64-bit
257    // FILD for other targets.
258    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
259  }
260
261  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
262  // this operation.
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
264  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
265
266  if (!TM.Options.UseSoftFloat) {
267    // SSE has no i16 to fp conversion, only i32
268    if (X86ScalarSSEf32) {
269      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
270      // f32 and f64 cases are Legal, f80 case is not
271      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
272    } else {
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
275    }
276  } else {
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
279  }
280
281  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
282  // are Legal, f80 is custom lowered.
283  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
284  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
285
286  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
287  // this operation.
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
289  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
290
291  if (X86ScalarSSEf32) {
292    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
293    // f32 and f64 cases are Legal, f80 case is not
294    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
295  } else {
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
298  }
299
300  // Handle FP_TO_UINT by promoting the destination to a larger signed
301  // conversion.
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
304  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
305
306  if (Subtarget->is64Bit()) {
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
308    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
309  } else if (!TM.Options.UseSoftFloat) {
310    // Since AVX is a superset of SSE3, only check for SSE here.
311    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
312      // Expand FP_TO_UINT into a select.
313      // FIXME: We would like to use a Custom expander here eventually to do
314      // the optimal thing for SSE vs. the default expansion in the legalizer.
315      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
316    else
317      // With SSE3 we can use fisttpll to convert to a signed i64; without
318      // SSE, we're stuck with a fistpll.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
320  }
321
322  if (isTargetFTOL()) {
323    // Use the _ftol2 runtime function, which has a pseudo-instruction
324    // to handle its weird calling convention.
325    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
326  }
327
328  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
329  if (!X86ScalarSSEf64) {
330    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
331    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
332    if (Subtarget->is64Bit()) {
333      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
334      // Without SSE, i64->f64 goes through memory.
335      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
336    }
337  }
338
339  // Scalar integer divide and remainder are lowered to use operations that
340  // produce two results, to match the available instructions. This exposes
341  // the two-result form to trivial CSE, which is able to combine x/y and x%y
342  // into a single instruction.
343  //
344  // Scalar integer multiply-high is also lowered to use two-result
345  // operations, to match the available instructions. However, plain multiply
346  // (low) operations are left as Legal, as there are single-result
347  // instructions for this in x86. Using the two-result multiply instructions
348  // when both high and low results are needed must be arranged by dagcombine.
349  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
350    MVT VT = IntVTs[i];
351    setOperationAction(ISD::MULHS, VT, Expand);
352    setOperationAction(ISD::MULHU, VT, Expand);
353    setOperationAction(ISD::SDIV, VT, Expand);
354    setOperationAction(ISD::UDIV, VT, Expand);
355    setOperationAction(ISD::SREM, VT, Expand);
356    setOperationAction(ISD::UREM, VT, Expand);
357
358    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
359    setOperationAction(ISD::ADDC, VT, Custom);
360    setOperationAction(ISD::ADDE, VT, Custom);
361    setOperationAction(ISD::SUBC, VT, Custom);
362    setOperationAction(ISD::SUBE, VT, Custom);
363  }
364
365  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
366  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
367  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
368  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
369  if (Subtarget->is64Bit())
370    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
374  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
378  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
379
380  // Promote the i8 variants and force them on up to i32 which has a shorter
381  // encoding.
382  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
383  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
384  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
385  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
386  if (Subtarget->hasBMI()) {
387    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
388    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
389    if (Subtarget->is64Bit())
390      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
391  } else {
392    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
393    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
394    if (Subtarget->is64Bit())
395      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
396  }
397
398  if (Subtarget->hasLZCNT()) {
399    // When promoting the i8 variants, force them to i32 for a shorter
400    // encoding.
401    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
402    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
403    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
404    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
406    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
407    if (Subtarget->is64Bit())
408      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
409  } else {
410    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
411    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
412    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
415    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
416    if (Subtarget->is64Bit()) {
417      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
418      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
419    }
420  }
421
422  if (Subtarget->hasPOPCNT()) {
423    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
424  } else {
425    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
426    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
427    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
428    if (Subtarget->is64Bit())
429      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
430  }
431
432  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
433  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
434
435  // These should be promoted to a larger select which is supported.
436  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
437  // X86 wants to expand cmov itself.
438  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
439  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
450  if (Subtarget->is64Bit()) {
451    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
452    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
453  }
454  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
455
456  // Darwin ABI issue.
457  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
458  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
459  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
460  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
461  if (Subtarget->is64Bit())
462    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
463  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
464  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
465  if (Subtarget->is64Bit()) {
466    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
467    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
468    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
469    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
470    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
471  }
472  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
473  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
474  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
475  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
476  if (Subtarget->is64Bit()) {
477    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
478    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
479    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
480  }
481
482  if (Subtarget->hasSSE1())
483    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
484
485  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
486  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
487
488  // On X86 and X86-64, atomic operations are lowered to locked instructions.
489  // Locked instructions, in turn, have implicit fence semantics (all memory
490  // operations are flushed before issuing the locked instruction, and they
491  // are not buffered), so we can fold away the common pattern of
492  // fence-atomic-fence.
493  setShouldFoldAtomicFences(true);
494
495  // Expand certain atomics
496  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
497    MVT VT = IntVTs[i];
498    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
499    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
500    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
501  }
502
503  if (!Subtarget->is64Bit()) {
504    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
512  }
513
514  if (Subtarget->hasCmpxchg16b()) {
515    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
516  }
517
518  // FIXME - use subtarget debug flags
519  if (!Subtarget->isTargetDarwin() &&
520      !Subtarget->isTargetELF() &&
521      !Subtarget->isTargetCygMing()) {
522    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
523  }
524
525  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
526  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
527  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
528  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
529  if (Subtarget->is64Bit()) {
530    setExceptionPointerRegister(X86::RAX);
531    setExceptionSelectorRegister(X86::RDX);
532  } else {
533    setExceptionPointerRegister(X86::EAX);
534    setExceptionSelectorRegister(X86::EDX);
535  }
536  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
537  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
538
539  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
540  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
541
542  setOperationAction(ISD::TRAP, MVT::Other, Legal);
543
544  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
545  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
546  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
547  if (Subtarget->is64Bit()) {
548    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
549    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
550  } else {
551    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
552    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
553  }
554
555  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
556  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
557
558  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
559    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
560                       MVT::i64 : MVT::i32, Custom);
561  else if (TM.Options.EnableSegmentedStacks)
562    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
563                       MVT::i64 : MVT::i32, Custom);
564  else
565    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
566                       MVT::i64 : MVT::i32, Expand);
567
568  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
569    // f32 and f64 use SSE.
570    // Set up the FP register classes.
571    addRegisterClass(MVT::f32, &X86::FR32RegClass);
572    addRegisterClass(MVT::f64, &X86::FR64RegClass);
573
574    // Use ANDPD to simulate FABS.
575    setOperationAction(ISD::FABS , MVT::f64, Custom);
576    setOperationAction(ISD::FABS , MVT::f32, Custom);
577
578    // Use XORP to simulate FNEG.
579    setOperationAction(ISD::FNEG , MVT::f64, Custom);
580    setOperationAction(ISD::FNEG , MVT::f32, Custom);
581
582    // Use ANDPD and ORPD to simulate FCOPYSIGN.
583    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
584    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
585
586    // Lower this to FGETSIGNx86 plus an AND.
587    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
588    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
589
590    // We don't support sin/cos/fmod
591    setOperationAction(ISD::FSIN , MVT::f64, Expand);
592    setOperationAction(ISD::FCOS , MVT::f64, Expand);
593    setOperationAction(ISD::FSIN , MVT::f32, Expand);
594    setOperationAction(ISD::FCOS , MVT::f32, Expand);
595
596    // Expand FP immediates into loads from the stack, except for the special
597    // cases we handle.
598    addLegalFPImmediate(APFloat(+0.0)); // xorpd
599    addLegalFPImmediate(APFloat(+0.0f)); // xorps
600  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
601    // Use SSE for f32, x87 for f64.
602    // Set up the FP register classes.
603    addRegisterClass(MVT::f32, &X86::FR32RegClass);
604    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
605
606    // Use ANDPS to simulate FABS.
607    setOperationAction(ISD::FABS , MVT::f32, Custom);
608
609    // Use XORP to simulate FNEG.
610    setOperationAction(ISD::FNEG , MVT::f32, Custom);
611
612    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
613
614    // Use ANDPS and ORPS to simulate FCOPYSIGN.
615    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
616    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
617
618    // We don't support sin/cos/fmod
619    setOperationAction(ISD::FSIN , MVT::f32, Expand);
620    setOperationAction(ISD::FCOS , MVT::f32, Expand);
621
622    // Special cases we handle for FP constants.
623    addLegalFPImmediate(APFloat(+0.0f)); // xorps
624    addLegalFPImmediate(APFloat(+0.0)); // FLD0
625    addLegalFPImmediate(APFloat(+1.0)); // FLD1
626    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
627    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
628
629    if (!TM.Options.UnsafeFPMath) {
630      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
631      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
632    }
633  } else if (!TM.Options.UseSoftFloat) {
634    // f32 and f64 in x87.
635    // Set up the FP register classes.
636    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
637    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
638
639    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
640    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
641    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
642    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
643
644    if (!TM.Options.UnsafeFPMath) {
645      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
646      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
647    }
648    addLegalFPImmediate(APFloat(+0.0)); // FLD0
649    addLegalFPImmediate(APFloat(+1.0)); // FLD1
650    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
651    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
652    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
653    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
654    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
655    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
656  }
657
658  // We don't support FMA.
659  setOperationAction(ISD::FMA, MVT::f64, Expand);
660  setOperationAction(ISD::FMA, MVT::f32, Expand);
661
662  // Long double always uses X87.
663  if (!TM.Options.UseSoftFloat) {
664    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
665    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
666    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
667    {
668      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
669      addLegalFPImmediate(TmpFlt);  // FLD0
670      TmpFlt.changeSign();
671      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
672
673      bool ignored;
674      APFloat TmpFlt2(+1.0);
675      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
676                      &ignored);
677      addLegalFPImmediate(TmpFlt2);  // FLD1
678      TmpFlt2.changeSign();
679      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
680    }
681
682    if (!TM.Options.UnsafeFPMath) {
683      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
684      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
685    }
686
687    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
688    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
689    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
690    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
691    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
692    setOperationAction(ISD::FMA, MVT::f80, Expand);
693  }
694
695  // Always use a library call for pow.
696  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
697  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
698  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
699
700  setOperationAction(ISD::FLOG, MVT::f80, Expand);
701  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
702  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
703  setOperationAction(ISD::FEXP, MVT::f80, Expand);
704  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
705
706  // First set operation action for all vector types to either promote
707  // (for widening) or expand (for scalarization). Then we will selectively
708  // turn on ones that can be effectively codegen'd.
709  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
710           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
711    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
726    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
729    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
763    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
768    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
769             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
770      setTruncStoreAction((MVT::SimpleValueType)VT,
771                          (MVT::SimpleValueType)InnerVT, Expand);
772    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
773    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
774    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
775  }
776
777  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
778  // with -msoft-float, disable use of MMX as well.
779  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
780    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
781    // No operations on x86mmx supported, everything uses intrinsics.
782  }
783
784  // MMX-sized vectors (other than x86mmx) are expected to be expanded
785  // into smaller operations.
786  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
787  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
788  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
789  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
790  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
791  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
792  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
793  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
794  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
795  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
796  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
797  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
798  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
799  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
800  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
801  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
802  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
805  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
806  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
807  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
808  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
810  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
811  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
814  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
815
816  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
817    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
818
819    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
820    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
823    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
824    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
825    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
826    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
827    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
828    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
829    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
830    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
831  }
832
833  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
834    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
835
836    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
837    // registers cannot be used even for integer operations.
838    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
839    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
840    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
841    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
842
843    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
844    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
845    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
846    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
847    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
848    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
849    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
850    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
851    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
852    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
853    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
854    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
857    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
858    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
859
860    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
861    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
863    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
864
865    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
866    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
867    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
869    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
870
871    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
875    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
876
877    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
878    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
879      EVT VT = (MVT::SimpleValueType)i;
880      // Do not attempt to custom lower non-power-of-2 vectors
881      if (!isPowerOf2_32(VT.getVectorNumElements()))
882        continue;
883      // Do not attempt to custom lower non-128-bit vectors
884      if (!VT.is128BitVector())
885        continue;
886      setOperationAction(ISD::BUILD_VECTOR,
887                         VT.getSimpleVT().SimpleTy, Custom);
888      setOperationAction(ISD::VECTOR_SHUFFLE,
889                         VT.getSimpleVT().SimpleTy, Custom);
890      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
891                         VT.getSimpleVT().SimpleTy, Custom);
892    }
893
894    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
895    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
896    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
897    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
898    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
899    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
900
901    if (Subtarget->is64Bit()) {
902      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
903      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
904    }
905
906    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
907    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
908      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
909      EVT VT = SVT;
910
911      // Do not attempt to promote non-128-bit vectors
912      if (!VT.is128BitVector())
913        continue;
914
915      setOperationAction(ISD::AND,    SVT, Promote);
916      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
917      setOperationAction(ISD::OR,     SVT, Promote);
918      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
919      setOperationAction(ISD::XOR,    SVT, Promote);
920      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
921      setOperationAction(ISD::LOAD,   SVT, Promote);
922      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
923      setOperationAction(ISD::SELECT, SVT, Promote);
924      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
925    }
926
927    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
928
929    // Custom lower v2i64 and v2f64 selects.
930    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
931    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
932    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
933    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
934
935    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
936    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
937  }
938
939  if (Subtarget->hasSSE41()) {
940    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
941    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
942    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
943    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
944    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
945    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
946    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
947    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
948    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
949    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
950
951    // FIXME: Do we need to handle scalar-to-vector here?
952    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
953
954    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
955    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
958    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
959
960    // i8 and i16 vectors are custom , because the source register and source
961    // source memory operand types are not the same width.  f32 vectors are
962    // custom since the immediate controlling the insert encodes additional
963    // information.
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
967    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
968
969    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
972    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
973
974    // FIXME: these should be Legal but thats only for the case where
975    // the index is constant.  For now custom expand to deal with that.
976    if (Subtarget->is64Bit()) {
977      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
978      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
979    }
980  }
981
982  if (Subtarget->hasSSE2()) {
983    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
984    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
985
986    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
987    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
988
989    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
990    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
991
992    if (Subtarget->hasAVX2()) {
993      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
994      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
995
996      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
997      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
998
999      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
1000    } else {
1001      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1002      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1003
1004      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1005      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1006
1007      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1008    }
1009  }
1010
1011  if (Subtarget->hasSSE42())
1012    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1013
1014  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1015    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1016    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1017    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1018    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1019    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1020    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1021
1022    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1024    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1025
1026    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1030    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1031    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1032
1033    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1034    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1037    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1038    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1039
1040    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1041    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1042    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1043
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1049    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1050
1051    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1052    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1053
1054    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1055    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1056
1057    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1058    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1059
1060    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1063    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1064
1065    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1066    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1067    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1068
1069    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1072    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1073
1074    if (Subtarget->hasAVX2()) {
1075      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1076      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1078      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1079
1080      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1081      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1083      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1084
1085      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1086      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1087      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1088      // Don't lower v32i8 because there is no 128-bit byte mul
1089
1090      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1091
1092      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1093      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1094
1095      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1096      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1097
1098      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1099    } else {
1100      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1101      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1103      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1104
1105      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1108      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1109
1110      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1111      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1112      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1113      // Don't lower v32i8 because there is no 128-bit byte mul
1114
1115      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1116      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1117
1118      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1119      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1120
1121      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1122    }
1123
1124    // Custom lower several nodes for 256-bit types.
1125    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1126             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1127      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1128      EVT VT = SVT;
1129
1130      // Extract subvector is special because the value type
1131      // (result) is 128-bit but the source is 256-bit wide.
1132      if (VT.is128BitVector())
1133        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1134
1135      // Do not attempt to custom lower other non-256-bit vectors
1136      if (!VT.is256BitVector())
1137        continue;
1138
1139      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1140      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1141      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1142      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1143      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1144      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1145    }
1146
1147    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1148    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1149      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1150      EVT VT = SVT;
1151
1152      // Do not attempt to promote non-256-bit vectors
1153      if (!VT.is256BitVector())
1154        continue;
1155
1156      setOperationAction(ISD::AND,    SVT, Promote);
1157      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1158      setOperationAction(ISD::OR,     SVT, Promote);
1159      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1160      setOperationAction(ISD::XOR,    SVT, Promote);
1161      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1162      setOperationAction(ISD::LOAD,   SVT, Promote);
1163      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1164      setOperationAction(ISD::SELECT, SVT, Promote);
1165      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1166    }
1167  }
1168
1169  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1170  // of this type with custom code.
1171  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1172           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1173    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1174                       Custom);
1175  }
1176
1177  // We want to custom lower some of our intrinsics.
1178  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1179  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1180
1181
1182  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1183  // handle type legalization for these operations here.
1184  //
1185  // FIXME: We really should do custom legalization for addition and
1186  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1187  // than generic legalization for 64-bit multiplication-with-overflow, though.
1188  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1189    // Add/Sub/Mul with overflow operations are custom lowered.
1190    MVT VT = IntVTs[i];
1191    setOperationAction(ISD::SADDO, VT, Custom);
1192    setOperationAction(ISD::UADDO, VT, Custom);
1193    setOperationAction(ISD::SSUBO, VT, Custom);
1194    setOperationAction(ISD::USUBO, VT, Custom);
1195    setOperationAction(ISD::SMULO, VT, Custom);
1196    setOperationAction(ISD::UMULO, VT, Custom);
1197  }
1198
1199  // There are no 8-bit 3-address imul/mul instructions
1200  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1201  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1202
1203  if (!Subtarget->is64Bit()) {
1204    // These libcalls are not available in 32-bit.
1205    setLibcallName(RTLIB::SHL_I128, 0);
1206    setLibcallName(RTLIB::SRL_I128, 0);
1207    setLibcallName(RTLIB::SRA_I128, 0);
1208  }
1209
1210  // We have target-specific dag combine patterns for the following nodes:
1211  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1212  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1213  setTargetDAGCombine(ISD::VSELECT);
1214  setTargetDAGCombine(ISD::SELECT);
1215  setTargetDAGCombine(ISD::SHL);
1216  setTargetDAGCombine(ISD::SRA);
1217  setTargetDAGCombine(ISD::SRL);
1218  setTargetDAGCombine(ISD::OR);
1219  setTargetDAGCombine(ISD::AND);
1220  setTargetDAGCombine(ISD::ADD);
1221  setTargetDAGCombine(ISD::FADD);
1222  setTargetDAGCombine(ISD::FSUB);
1223  setTargetDAGCombine(ISD::SUB);
1224  setTargetDAGCombine(ISD::LOAD);
1225  setTargetDAGCombine(ISD::STORE);
1226  setTargetDAGCombine(ISD::ZERO_EXTEND);
1227  setTargetDAGCombine(ISD::ANY_EXTEND);
1228  setTargetDAGCombine(ISD::SIGN_EXTEND);
1229  setTargetDAGCombine(ISD::TRUNCATE);
1230  setTargetDAGCombine(ISD::UINT_TO_FP);
1231  setTargetDAGCombine(ISD::SINT_TO_FP);
1232  setTargetDAGCombine(ISD::SETCC);
1233  setTargetDAGCombine(ISD::FP_TO_SINT);
1234  if (Subtarget->is64Bit())
1235    setTargetDAGCombine(ISD::MUL);
1236  setTargetDAGCombine(ISD::XOR);
1237
1238  computeRegisterProperties();
1239
1240  // On Darwin, -Os means optimize for size without hurting performance,
1241  // do not reduce the limit.
1242  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1243  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1244  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1245  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1246  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1247  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1248  setPrefLoopAlignment(4); // 2^4 bytes.
1249  benefitFromCodePlacementOpt = true;
1250
1251  // Predictable cmov don't hurt on atom because it's in-order.
1252  predictableSelectIsExpensive = !Subtarget->isAtom();
1253
1254  setPrefFunctionAlignment(4); // 2^4 bytes.
1255}
1256
1257
1258EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1259  if (!VT.isVector()) return MVT::i8;
1260  return VT.changeVectorElementTypeToInteger();
1261}
1262
1263
1264/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1265/// the desired ByVal argument alignment.
1266static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1267  if (MaxAlign == 16)
1268    return;
1269  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1270    if (VTy->getBitWidth() == 128)
1271      MaxAlign = 16;
1272  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1273    unsigned EltAlign = 0;
1274    getMaxByValAlign(ATy->getElementType(), EltAlign);
1275    if (EltAlign > MaxAlign)
1276      MaxAlign = EltAlign;
1277  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1278    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1279      unsigned EltAlign = 0;
1280      getMaxByValAlign(STy->getElementType(i), EltAlign);
1281      if (EltAlign > MaxAlign)
1282        MaxAlign = EltAlign;
1283      if (MaxAlign == 16)
1284        break;
1285    }
1286  }
1287}
1288
1289/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1290/// function arguments in the caller parameter area. For X86, aggregates
1291/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1292/// are at 4-byte boundaries.
1293unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1294  if (Subtarget->is64Bit()) {
1295    // Max of 8 and alignment of type.
1296    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1297    if (TyAlign > 8)
1298      return TyAlign;
1299    return 8;
1300  }
1301
1302  unsigned Align = 4;
1303  if (Subtarget->hasSSE1())
1304    getMaxByValAlign(Ty, Align);
1305  return Align;
1306}
1307
1308/// getOptimalMemOpType - Returns the target specific optimal type for load
1309/// and store operations as a result of memset, memcpy, and memmove
1310/// lowering. If DstAlign is zero that means it's safe to destination
1311/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1312/// means there isn't a need to check it against alignment requirement,
1313/// probably because the source does not need to be loaded. If
1314/// 'IsZeroVal' is true, that means it's safe to return a
1315/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1316/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1317/// constant so it does not need to be loaded.
1318/// It returns EVT::Other if the type should be determined using generic
1319/// target-independent logic.
1320EVT
1321X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1322                                       unsigned DstAlign, unsigned SrcAlign,
1323                                       bool IsZeroVal,
1324                                       bool MemcpyStrSrc,
1325                                       MachineFunction &MF) const {
1326  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1327  // linux.  This is because the stack realignment code can't handle certain
1328  // cases like PR2962.  This should be removed when PR2962 is fixed.
1329  const Function *F = MF.getFunction();
1330  if (IsZeroVal &&
1331      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1332    if (Size >= 16 &&
1333        (Subtarget->isUnalignedMemAccessFast() ||
1334         ((DstAlign == 0 || DstAlign >= 16) &&
1335          (SrcAlign == 0 || SrcAlign >= 16))) &&
1336        Subtarget->getStackAlignment() >= 16) {
1337      if (Subtarget->getStackAlignment() >= 32) {
1338        if (Subtarget->hasAVX2())
1339          return MVT::v8i32;
1340        if (Subtarget->hasAVX())
1341          return MVT::v8f32;
1342      }
1343      if (Subtarget->hasSSE2())
1344        return MVT::v4i32;
1345      if (Subtarget->hasSSE1())
1346        return MVT::v4f32;
1347    } else if (!MemcpyStrSrc && Size >= 8 &&
1348               !Subtarget->is64Bit() &&
1349               Subtarget->getStackAlignment() >= 8 &&
1350               Subtarget->hasSSE2()) {
1351      // Do not use f64 to lower memcpy if source is string constant. It's
1352      // better to use i32 to avoid the loads.
1353      return MVT::f64;
1354    }
1355  }
1356  if (Subtarget->is64Bit() && Size >= 8)
1357    return MVT::i64;
1358  return MVT::i32;
1359}
1360
1361/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1362/// current function.  The returned value is a member of the
1363/// MachineJumpTableInfo::JTEntryKind enum.
1364unsigned X86TargetLowering::getJumpTableEncoding() const {
1365  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1366  // symbol.
1367  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1368      Subtarget->isPICStyleGOT())
1369    return MachineJumpTableInfo::EK_Custom32;
1370
1371  // Otherwise, use the normal jump table encoding heuristics.
1372  return TargetLowering::getJumpTableEncoding();
1373}
1374
1375const MCExpr *
1376X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1377                                             const MachineBasicBlock *MBB,
1378                                             unsigned uid,MCContext &Ctx) const{
1379  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1380         Subtarget->isPICStyleGOT());
1381  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1382  // entries.
1383  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1384                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1385}
1386
1387/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1388/// jumptable.
1389SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1390                                                    SelectionDAG &DAG) const {
1391  if (!Subtarget->is64Bit())
1392    // This doesn't have DebugLoc associated with it, but is not really the
1393    // same as a Register.
1394    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1395  return Table;
1396}
1397
1398/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1399/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1400/// MCExpr.
1401const MCExpr *X86TargetLowering::
1402getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1403                             MCContext &Ctx) const {
1404  // X86-64 uses RIP relative addressing based on the jump table label.
1405  if (Subtarget->isPICStyleRIPRel())
1406    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1407
1408  // Otherwise, the reference is relative to the PIC base.
1409  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1410}
1411
1412// FIXME: Why this routine is here? Move to RegInfo!
1413std::pair<const TargetRegisterClass*, uint8_t>
1414X86TargetLowering::findRepresentativeClass(EVT VT) const{
1415  const TargetRegisterClass *RRC = 0;
1416  uint8_t Cost = 1;
1417  switch (VT.getSimpleVT().SimpleTy) {
1418  default:
1419    return TargetLowering::findRepresentativeClass(VT);
1420  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1421    RRC = Subtarget->is64Bit() ?
1422      (const TargetRegisterClass*)&X86::GR64RegClass :
1423      (const TargetRegisterClass*)&X86::GR32RegClass;
1424    break;
1425  case MVT::x86mmx:
1426    RRC = &X86::VR64RegClass;
1427    break;
1428  case MVT::f32: case MVT::f64:
1429  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1430  case MVT::v4f32: case MVT::v2f64:
1431  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1432  case MVT::v4f64:
1433    RRC = &X86::VR128RegClass;
1434    break;
1435  }
1436  return std::make_pair(RRC, Cost);
1437}
1438
1439bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1440                                               unsigned &Offset) const {
1441  if (!Subtarget->isTargetLinux())
1442    return false;
1443
1444  if (Subtarget->is64Bit()) {
1445    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1446    Offset = 0x28;
1447    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1448      AddressSpace = 256;
1449    else
1450      AddressSpace = 257;
1451  } else {
1452    // %gs:0x14 on i386
1453    Offset = 0x14;
1454    AddressSpace = 256;
1455  }
1456  return true;
1457}
1458
1459
1460//===----------------------------------------------------------------------===//
1461//               Return Value Calling Convention Implementation
1462//===----------------------------------------------------------------------===//
1463
1464#include "X86GenCallingConv.inc"
1465
1466bool
1467X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1468                                  MachineFunction &MF, bool isVarArg,
1469                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1470                        LLVMContext &Context) const {
1471  SmallVector<CCValAssign, 16> RVLocs;
1472  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1473                 RVLocs, Context);
1474  return CCInfo.CheckReturn(Outs, RetCC_X86);
1475}
1476
1477SDValue
1478X86TargetLowering::LowerReturn(SDValue Chain,
1479                               CallingConv::ID CallConv, bool isVarArg,
1480                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1481                               const SmallVectorImpl<SDValue> &OutVals,
1482                               DebugLoc dl, SelectionDAG &DAG) const {
1483  MachineFunction &MF = DAG.getMachineFunction();
1484  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1485
1486  SmallVector<CCValAssign, 16> RVLocs;
1487  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1488                 RVLocs, *DAG.getContext());
1489  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1490
1491  // Add the regs to the liveout set for the function.
1492  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1493  for (unsigned i = 0; i != RVLocs.size(); ++i)
1494    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1495      MRI.addLiveOut(RVLocs[i].getLocReg());
1496
1497  SDValue Flag;
1498
1499  SmallVector<SDValue, 6> RetOps;
1500  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1501  // Operand #1 = Bytes To Pop
1502  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1503                   MVT::i16));
1504
1505  // Copy the result values into the output registers.
1506  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1507    CCValAssign &VA = RVLocs[i];
1508    assert(VA.isRegLoc() && "Can only return in registers!");
1509    SDValue ValToCopy = OutVals[i];
1510    EVT ValVT = ValToCopy.getValueType();
1511
1512    // Promote values to the appropriate types
1513    if (VA.getLocInfo() == CCValAssign::SExt)
1514      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1515    else if (VA.getLocInfo() == CCValAssign::ZExt)
1516      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1517    else if (VA.getLocInfo() == CCValAssign::AExt)
1518      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1519    else if (VA.getLocInfo() == CCValAssign::BCvt)
1520      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1521
1522    // If this is x86-64, and we disabled SSE, we can't return FP values,
1523    // or SSE or MMX vectors.
1524    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1525         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1526          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1527      report_fatal_error("SSE register return with SSE disabled");
1528    }
1529    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1530    // llvm-gcc has never done it right and no one has noticed, so this
1531    // should be OK for now.
1532    if (ValVT == MVT::f64 &&
1533        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1534      report_fatal_error("SSE2 register return with SSE2 disabled");
1535
1536    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1537    // the RET instruction and handled by the FP Stackifier.
1538    if (VA.getLocReg() == X86::ST0 ||
1539        VA.getLocReg() == X86::ST1) {
1540      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1541      // change the value to the FP stack register class.
1542      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1543        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1544      RetOps.push_back(ValToCopy);
1545      // Don't emit a copytoreg.
1546      continue;
1547    }
1548
1549    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1550    // which is returned in RAX / RDX.
1551    if (Subtarget->is64Bit()) {
1552      if (ValVT == MVT::x86mmx) {
1553        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1554          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1555          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1556                                  ValToCopy);
1557          // If we don't have SSE2 available, convert to v4f32 so the generated
1558          // register is legal.
1559          if (!Subtarget->hasSSE2())
1560            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1561        }
1562      }
1563    }
1564
1565    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1566    Flag = Chain.getValue(1);
1567  }
1568
1569  // The x86-64 ABI for returning structs by value requires that we copy
1570  // the sret argument into %rax for the return. We saved the argument into
1571  // a virtual register in the entry block, so now we copy the value out
1572  // and into %rax.
1573  if (Subtarget->is64Bit() &&
1574      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1575    MachineFunction &MF = DAG.getMachineFunction();
1576    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1577    unsigned Reg = FuncInfo->getSRetReturnReg();
1578    assert(Reg &&
1579           "SRetReturnReg should have been set in LowerFormalArguments().");
1580    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1581
1582    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1583    Flag = Chain.getValue(1);
1584
1585    // RAX now acts like a return value.
1586    MRI.addLiveOut(X86::RAX);
1587  }
1588
1589  RetOps[0] = Chain;  // Update chain.
1590
1591  // Add the flag if we have it.
1592  if (Flag.getNode())
1593    RetOps.push_back(Flag);
1594
1595  return DAG.getNode(X86ISD::RET_FLAG, dl,
1596                     MVT::Other, &RetOps[0], RetOps.size());
1597}
1598
1599bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1600  if (N->getNumValues() != 1)
1601    return false;
1602  if (!N->hasNUsesOfValue(1, 0))
1603    return false;
1604
1605  SDValue TCChain = Chain;
1606  SDNode *Copy = *N->use_begin();
1607  if (Copy->getOpcode() == ISD::CopyToReg) {
1608    // If the copy has a glue operand, we conservatively assume it isn't safe to
1609    // perform a tail call.
1610    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1611      return false;
1612    TCChain = Copy->getOperand(0);
1613  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1614    return false;
1615
1616  bool HasRet = false;
1617  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1618       UI != UE; ++UI) {
1619    if (UI->getOpcode() != X86ISD::RET_FLAG)
1620      return false;
1621    HasRet = true;
1622  }
1623
1624  if (!HasRet)
1625    return false;
1626
1627  Chain = TCChain;
1628  return true;
1629}
1630
1631EVT
1632X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1633                                            ISD::NodeType ExtendKind) const {
1634  MVT ReturnMVT;
1635  // TODO: Is this also valid on 32-bit?
1636  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1637    ReturnMVT = MVT::i8;
1638  else
1639    ReturnMVT = MVT::i32;
1640
1641  EVT MinVT = getRegisterType(Context, ReturnMVT);
1642  return VT.bitsLT(MinVT) ? MinVT : VT;
1643}
1644
1645/// LowerCallResult - Lower the result values of a call into the
1646/// appropriate copies out of appropriate physical registers.
1647///
1648SDValue
1649X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1650                                   CallingConv::ID CallConv, bool isVarArg,
1651                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1652                                   DebugLoc dl, SelectionDAG &DAG,
1653                                   SmallVectorImpl<SDValue> &InVals) const {
1654
1655  // Assign locations to each value returned by this call.
1656  SmallVector<CCValAssign, 16> RVLocs;
1657  bool Is64Bit = Subtarget->is64Bit();
1658  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1659                 getTargetMachine(), RVLocs, *DAG.getContext());
1660  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1661
1662  // Copy all of the result registers out of their specified physreg.
1663  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1664    CCValAssign &VA = RVLocs[i];
1665    EVT CopyVT = VA.getValVT();
1666
1667    // If this is x86-64, and we disabled SSE, we can't return FP values
1668    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1669        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1670      report_fatal_error("SSE register return with SSE disabled");
1671    }
1672
1673    SDValue Val;
1674
1675    // If this is a call to a function that returns an fp value on the floating
1676    // point stack, we must guarantee the the value is popped from the stack, so
1677    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1678    // if the return value is not used. We use the FpPOP_RETVAL instruction
1679    // instead.
1680    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1681      // If we prefer to use the value in xmm registers, copy it out as f80 and
1682      // use a truncate to move it from fp stack reg to xmm reg.
1683      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1684      SDValue Ops[] = { Chain, InFlag };
1685      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1686                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1687      Val = Chain.getValue(0);
1688
1689      // Round the f80 to the right size, which also moves it to the appropriate
1690      // xmm register.
1691      if (CopyVT != VA.getValVT())
1692        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1693                          // This truncation won't change the value.
1694                          DAG.getIntPtrConstant(1));
1695    } else {
1696      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1697                                 CopyVT, InFlag).getValue(1);
1698      Val = Chain.getValue(0);
1699    }
1700    InFlag = Chain.getValue(2);
1701    InVals.push_back(Val);
1702  }
1703
1704  return Chain;
1705}
1706
1707
1708//===----------------------------------------------------------------------===//
1709//                C & StdCall & Fast Calling Convention implementation
1710//===----------------------------------------------------------------------===//
1711//  StdCall calling convention seems to be standard for many Windows' API
1712//  routines and around. It differs from C calling convention just a little:
1713//  callee should clean up the stack, not caller. Symbols should be also
1714//  decorated in some fancy way :) It doesn't support any vector arguments.
1715//  For info on fast calling convention see Fast Calling Convention (tail call)
1716//  implementation LowerX86_32FastCCCallTo.
1717
1718/// CallIsStructReturn - Determines whether a call uses struct return
1719/// semantics.
1720static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1721  if (Outs.empty())
1722    return false;
1723
1724  return Outs[0].Flags.isSRet();
1725}
1726
1727/// ArgsAreStructReturn - Determines whether a function uses struct
1728/// return semantics.
1729static bool
1730ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1731  if (Ins.empty())
1732    return false;
1733
1734  return Ins[0].Flags.isSRet();
1735}
1736
1737/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1738/// by "Src" to address "Dst" with size and alignment information specified by
1739/// the specific parameter attribute. The copy will be passed as a byval
1740/// function parameter.
1741static SDValue
1742CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1743                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1744                          DebugLoc dl) {
1745  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1746
1747  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1748                       /*isVolatile*/false, /*AlwaysInline=*/true,
1749                       MachinePointerInfo(), MachinePointerInfo());
1750}
1751
1752/// IsTailCallConvention - Return true if the calling convention is one that
1753/// supports tail call optimization.
1754static bool IsTailCallConvention(CallingConv::ID CC) {
1755  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1756}
1757
1758bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1759  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1760    return false;
1761
1762  CallSite CS(CI);
1763  CallingConv::ID CalleeCC = CS.getCallingConv();
1764  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1765    return false;
1766
1767  return true;
1768}
1769
1770/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1771/// a tailcall target by changing its ABI.
1772static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1773                                   bool GuaranteedTailCallOpt) {
1774  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1775}
1776
1777SDValue
1778X86TargetLowering::LowerMemArgument(SDValue Chain,
1779                                    CallingConv::ID CallConv,
1780                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1781                                    DebugLoc dl, SelectionDAG &DAG,
1782                                    const CCValAssign &VA,
1783                                    MachineFrameInfo *MFI,
1784                                    unsigned i) const {
1785  // Create the nodes corresponding to a load from this parameter slot.
1786  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1787  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1788                              getTargetMachine().Options.GuaranteedTailCallOpt);
1789  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1790  EVT ValVT;
1791
1792  // If value is passed by pointer we have address passed instead of the value
1793  // itself.
1794  if (VA.getLocInfo() == CCValAssign::Indirect)
1795    ValVT = VA.getLocVT();
1796  else
1797    ValVT = VA.getValVT();
1798
1799  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1800  // changed with more analysis.
1801  // In case of tail call optimization mark all arguments mutable. Since they
1802  // could be overwritten by lowering of arguments in case of a tail call.
1803  if (Flags.isByVal()) {
1804    unsigned Bytes = Flags.getByValSize();
1805    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1806    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1807    return DAG.getFrameIndex(FI, getPointerTy());
1808  } else {
1809    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1810                                    VA.getLocMemOffset(), isImmutable);
1811    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1812    return DAG.getLoad(ValVT, dl, Chain, FIN,
1813                       MachinePointerInfo::getFixedStack(FI),
1814                       false, false, false, 0);
1815  }
1816}
1817
1818SDValue
1819X86TargetLowering::LowerFormalArguments(SDValue Chain,
1820                                        CallingConv::ID CallConv,
1821                                        bool isVarArg,
1822                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1823                                        DebugLoc dl,
1824                                        SelectionDAG &DAG,
1825                                        SmallVectorImpl<SDValue> &InVals)
1826                                          const {
1827  MachineFunction &MF = DAG.getMachineFunction();
1828  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1829
1830  const Function* Fn = MF.getFunction();
1831  if (Fn->hasExternalLinkage() &&
1832      Subtarget->isTargetCygMing() &&
1833      Fn->getName() == "main")
1834    FuncInfo->setForceFramePointer(true);
1835
1836  MachineFrameInfo *MFI = MF.getFrameInfo();
1837  bool Is64Bit = Subtarget->is64Bit();
1838  bool IsWindows = Subtarget->isTargetWindows();
1839  bool IsWin64 = Subtarget->isTargetWin64();
1840
1841  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1842         "Var args not supported with calling convention fastcc or ghc");
1843
1844  // Assign locations to all of the incoming arguments.
1845  SmallVector<CCValAssign, 16> ArgLocs;
1846  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1847                 ArgLocs, *DAG.getContext());
1848
1849  // Allocate shadow area for Win64
1850  if (IsWin64) {
1851    CCInfo.AllocateStack(32, 8);
1852  }
1853
1854  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1855
1856  unsigned LastVal = ~0U;
1857  SDValue ArgValue;
1858  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1859    CCValAssign &VA = ArgLocs[i];
1860    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1861    // places.
1862    assert(VA.getValNo() != LastVal &&
1863           "Don't support value assigned to multiple locs yet");
1864    (void)LastVal;
1865    LastVal = VA.getValNo();
1866
1867    if (VA.isRegLoc()) {
1868      EVT RegVT = VA.getLocVT();
1869      const TargetRegisterClass *RC;
1870      if (RegVT == MVT::i32)
1871        RC = &X86::GR32RegClass;
1872      else if (Is64Bit && RegVT == MVT::i64)
1873        RC = &X86::GR64RegClass;
1874      else if (RegVT == MVT::f32)
1875        RC = &X86::FR32RegClass;
1876      else if (RegVT == MVT::f64)
1877        RC = &X86::FR64RegClass;
1878      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1879        RC = &X86::VR256RegClass;
1880      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1881        RC = &X86::VR128RegClass;
1882      else if (RegVT == MVT::x86mmx)
1883        RC = &X86::VR64RegClass;
1884      else
1885        llvm_unreachable("Unknown argument type!");
1886
1887      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1888      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1889
1890      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1891      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1892      // right size.
1893      if (VA.getLocInfo() == CCValAssign::SExt)
1894        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1895                               DAG.getValueType(VA.getValVT()));
1896      else if (VA.getLocInfo() == CCValAssign::ZExt)
1897        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1898                               DAG.getValueType(VA.getValVT()));
1899      else if (VA.getLocInfo() == CCValAssign::BCvt)
1900        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1901
1902      if (VA.isExtInLoc()) {
1903        // Handle MMX values passed in XMM regs.
1904        if (RegVT.isVector()) {
1905          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1906                                 ArgValue);
1907        } else
1908          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1909      }
1910    } else {
1911      assert(VA.isMemLoc());
1912      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1913    }
1914
1915    // If value is passed via pointer - do a load.
1916    if (VA.getLocInfo() == CCValAssign::Indirect)
1917      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1918                             MachinePointerInfo(), false, false, false, 0);
1919
1920    InVals.push_back(ArgValue);
1921  }
1922
1923  // The x86-64 ABI for returning structs by value requires that we copy
1924  // the sret argument into %rax for the return. Save the argument into
1925  // a virtual register so that we can access it from the return points.
1926  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1927    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1928    unsigned Reg = FuncInfo->getSRetReturnReg();
1929    if (!Reg) {
1930      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1931      FuncInfo->setSRetReturnReg(Reg);
1932    }
1933    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1934    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1935  }
1936
1937  unsigned StackSize = CCInfo.getNextStackOffset();
1938  // Align stack specially for tail calls.
1939  if (FuncIsMadeTailCallSafe(CallConv,
1940                             MF.getTarget().Options.GuaranteedTailCallOpt))
1941    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1942
1943  // If the function takes variable number of arguments, make a frame index for
1944  // the start of the first vararg value... for expansion of llvm.va_start.
1945  if (isVarArg) {
1946    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1947                    CallConv != CallingConv::X86_ThisCall)) {
1948      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1949    }
1950    if (Is64Bit) {
1951      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1952
1953      // FIXME: We should really autogenerate these arrays
1954      static const uint16_t GPR64ArgRegsWin64[] = {
1955        X86::RCX, X86::RDX, X86::R8,  X86::R9
1956      };
1957      static const uint16_t GPR64ArgRegs64Bit[] = {
1958        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1959      };
1960      static const uint16_t XMMArgRegs64Bit[] = {
1961        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1962        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1963      };
1964      const uint16_t *GPR64ArgRegs;
1965      unsigned NumXMMRegs = 0;
1966
1967      if (IsWin64) {
1968        // The XMM registers which might contain var arg parameters are shadowed
1969        // in their paired GPR.  So we only need to save the GPR to their home
1970        // slots.
1971        TotalNumIntRegs = 4;
1972        GPR64ArgRegs = GPR64ArgRegsWin64;
1973      } else {
1974        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1975        GPR64ArgRegs = GPR64ArgRegs64Bit;
1976
1977        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1978                                                TotalNumXMMRegs);
1979      }
1980      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1981                                                       TotalNumIntRegs);
1982
1983      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1984      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1985             "SSE register cannot be used when SSE is disabled!");
1986      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1987               NoImplicitFloatOps) &&
1988             "SSE register cannot be used when SSE is disabled!");
1989      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1990          !Subtarget->hasSSE1())
1991        // Kernel mode asks for SSE to be disabled, so don't push them
1992        // on the stack.
1993        TotalNumXMMRegs = 0;
1994
1995      if (IsWin64) {
1996        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1997        // Get to the caller-allocated home save location.  Add 8 to account
1998        // for the return address.
1999        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2000        FuncInfo->setRegSaveFrameIndex(
2001          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2002        // Fixup to set vararg frame on shadow area (4 x i64).
2003        if (NumIntRegs < 4)
2004          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2005      } else {
2006        // For X86-64, if there are vararg parameters that are passed via
2007        // registers, then we must store them to their spots on the stack so
2008        // they may be loaded by deferencing the result of va_next.
2009        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2010        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2011        FuncInfo->setRegSaveFrameIndex(
2012          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2013                               false));
2014      }
2015
2016      // Store the integer parameter registers.
2017      SmallVector<SDValue, 8> MemOps;
2018      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2019                                        getPointerTy());
2020      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2021      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2022        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2023                                  DAG.getIntPtrConstant(Offset));
2024        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2025                                     &X86::GR64RegClass);
2026        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2027        SDValue Store =
2028          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2029                       MachinePointerInfo::getFixedStack(
2030                         FuncInfo->getRegSaveFrameIndex(), Offset),
2031                       false, false, 0);
2032        MemOps.push_back(Store);
2033        Offset += 8;
2034      }
2035
2036      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2037        // Now store the XMM (fp + vector) parameter registers.
2038        SmallVector<SDValue, 11> SaveXMMOps;
2039        SaveXMMOps.push_back(Chain);
2040
2041        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2042        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2043        SaveXMMOps.push_back(ALVal);
2044
2045        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2046                               FuncInfo->getRegSaveFrameIndex()));
2047        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2048                               FuncInfo->getVarArgsFPOffset()));
2049
2050        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2051          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2052                                       &X86::VR128RegClass);
2053          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2054          SaveXMMOps.push_back(Val);
2055        }
2056        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2057                                     MVT::Other,
2058                                     &SaveXMMOps[0], SaveXMMOps.size()));
2059      }
2060
2061      if (!MemOps.empty())
2062        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2063                            &MemOps[0], MemOps.size());
2064    }
2065  }
2066
2067  // Some CCs need callee pop.
2068  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2069                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2070    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2071  } else {
2072    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2073    // If this is an sret function, the return should pop the hidden pointer.
2074    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2075        ArgsAreStructReturn(Ins))
2076      FuncInfo->setBytesToPopOnReturn(4);
2077  }
2078
2079  if (!Is64Bit) {
2080    // RegSaveFrameIndex is X86-64 only.
2081    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2082    if (CallConv == CallingConv::X86_FastCall ||
2083        CallConv == CallingConv::X86_ThisCall)
2084      // fastcc functions can't have varargs.
2085      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2086  }
2087
2088  FuncInfo->setArgumentStackSize(StackSize);
2089
2090  return Chain;
2091}
2092
2093SDValue
2094X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2095                                    SDValue StackPtr, SDValue Arg,
2096                                    DebugLoc dl, SelectionDAG &DAG,
2097                                    const CCValAssign &VA,
2098                                    ISD::ArgFlagsTy Flags) const {
2099  unsigned LocMemOffset = VA.getLocMemOffset();
2100  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2101  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2102  if (Flags.isByVal())
2103    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2104
2105  return DAG.getStore(Chain, dl, Arg, PtrOff,
2106                      MachinePointerInfo::getStack(LocMemOffset),
2107                      false, false, 0);
2108}
2109
2110/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2111/// optimization is performed and it is required.
2112SDValue
2113X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2114                                           SDValue &OutRetAddr, SDValue Chain,
2115                                           bool IsTailCall, bool Is64Bit,
2116                                           int FPDiff, DebugLoc dl) const {
2117  // Adjust the Return address stack slot.
2118  EVT VT = getPointerTy();
2119  OutRetAddr = getReturnAddressFrameIndex(DAG);
2120
2121  // Load the "old" Return address.
2122  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2123                           false, false, false, 0);
2124  return SDValue(OutRetAddr.getNode(), 1);
2125}
2126
2127/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2128/// optimization is performed and it is required (FPDiff!=0).
2129static SDValue
2130EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2131                         SDValue Chain, SDValue RetAddrFrIdx,
2132                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2133  // Store the return address to the appropriate stack slot.
2134  if (!FPDiff) return Chain;
2135  // Calculate the new stack slot for the return address.
2136  int SlotSize = Is64Bit ? 8 : 4;
2137  int NewReturnAddrFI =
2138    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2139  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2140  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2141  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2142                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2143                       false, false, 0);
2144  return Chain;
2145}
2146
2147SDValue
2148X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2149                             SmallVectorImpl<SDValue> &InVals) const {
2150  SelectionDAG &DAG                     = CLI.DAG;
2151  DebugLoc &dl                          = CLI.DL;
2152  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2153  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2154  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2155  SDValue Chain                         = CLI.Chain;
2156  SDValue Callee                        = CLI.Callee;
2157  CallingConv::ID CallConv              = CLI.CallConv;
2158  bool &isTailCall                      = CLI.IsTailCall;
2159  bool isVarArg                         = CLI.IsVarArg;
2160
2161  MachineFunction &MF = DAG.getMachineFunction();
2162  bool Is64Bit        = Subtarget->is64Bit();
2163  bool IsWin64        = Subtarget->isTargetWin64();
2164  bool IsWindows      = Subtarget->isTargetWindows();
2165  bool IsStructRet    = CallIsStructReturn(Outs);
2166  bool IsSibcall      = false;
2167
2168  if (MF.getTarget().Options.DisableTailCalls)
2169    isTailCall = false;
2170
2171  if (isTailCall) {
2172    // Check if it's really possible to do a tail call.
2173    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2174                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2175                                                   Outs, OutVals, Ins, DAG);
2176
2177    // Sibcalls are automatically detected tailcalls which do not require
2178    // ABI changes.
2179    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2180      IsSibcall = true;
2181
2182    if (isTailCall)
2183      ++NumTailCalls;
2184  }
2185
2186  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2187         "Var args not supported with calling convention fastcc or ghc");
2188
2189  // Analyze operands of the call, assigning locations to each operand.
2190  SmallVector<CCValAssign, 16> ArgLocs;
2191  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2192                 ArgLocs, *DAG.getContext());
2193
2194  // Allocate shadow area for Win64
2195  if (IsWin64) {
2196    CCInfo.AllocateStack(32, 8);
2197  }
2198
2199  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2200
2201  // Get a count of how many bytes are to be pushed on the stack.
2202  unsigned NumBytes = CCInfo.getNextStackOffset();
2203  if (IsSibcall)
2204    // This is a sibcall. The memory operands are available in caller's
2205    // own caller's stack.
2206    NumBytes = 0;
2207  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2208           IsTailCallConvention(CallConv))
2209    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2210
2211  int FPDiff = 0;
2212  if (isTailCall && !IsSibcall) {
2213    // Lower arguments at fp - stackoffset + fpdiff.
2214    unsigned NumBytesCallerPushed =
2215      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2216    FPDiff = NumBytesCallerPushed - NumBytes;
2217
2218    // Set the delta of movement of the returnaddr stackslot.
2219    // But only set if delta is greater than previous delta.
2220    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2221      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2222  }
2223
2224  if (!IsSibcall)
2225    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2226
2227  SDValue RetAddrFrIdx;
2228  // Load return address for tail calls.
2229  if (isTailCall && FPDiff)
2230    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2231                                    Is64Bit, FPDiff, dl);
2232
2233  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2234  SmallVector<SDValue, 8> MemOpChains;
2235  SDValue StackPtr;
2236
2237  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2238  // of tail call optimization arguments are handle later.
2239  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2240    CCValAssign &VA = ArgLocs[i];
2241    EVT RegVT = VA.getLocVT();
2242    SDValue Arg = OutVals[i];
2243    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2244    bool isByVal = Flags.isByVal();
2245
2246    // Promote the value if needed.
2247    switch (VA.getLocInfo()) {
2248    default: llvm_unreachable("Unknown loc info!");
2249    case CCValAssign::Full: break;
2250    case CCValAssign::SExt:
2251      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2252      break;
2253    case CCValAssign::ZExt:
2254      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2255      break;
2256    case CCValAssign::AExt:
2257      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2258        // Special case: passing MMX values in XMM registers.
2259        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2260        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2261        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2262      } else
2263        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2264      break;
2265    case CCValAssign::BCvt:
2266      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2267      break;
2268    case CCValAssign::Indirect: {
2269      // Store the argument.
2270      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2271      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2272      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2273                           MachinePointerInfo::getFixedStack(FI),
2274                           false, false, 0);
2275      Arg = SpillSlot;
2276      break;
2277    }
2278    }
2279
2280    if (VA.isRegLoc()) {
2281      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2282      if (isVarArg && IsWin64) {
2283        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2284        // shadow reg if callee is a varargs function.
2285        unsigned ShadowReg = 0;
2286        switch (VA.getLocReg()) {
2287        case X86::XMM0: ShadowReg = X86::RCX; break;
2288        case X86::XMM1: ShadowReg = X86::RDX; break;
2289        case X86::XMM2: ShadowReg = X86::R8; break;
2290        case X86::XMM3: ShadowReg = X86::R9; break;
2291        }
2292        if (ShadowReg)
2293          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2294      }
2295    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2296      assert(VA.isMemLoc());
2297      if (StackPtr.getNode() == 0)
2298        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2299      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2300                                             dl, DAG, VA, Flags));
2301    }
2302  }
2303
2304  if (!MemOpChains.empty())
2305    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2306                        &MemOpChains[0], MemOpChains.size());
2307
2308  if (Subtarget->isPICStyleGOT()) {
2309    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2310    // GOT pointer.
2311    if (!isTailCall) {
2312      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2313               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2314    } else {
2315      // If we are tail calling and generating PIC/GOT style code load the
2316      // address of the callee into ECX. The value in ecx is used as target of
2317      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2318      // for tail calls on PIC/GOT architectures. Normally we would just put the
2319      // address of GOT into ebx and then call target@PLT. But for tail calls
2320      // ebx would be restored (since ebx is callee saved) before jumping to the
2321      // target@PLT.
2322
2323      // Note: The actual moving to ECX is done further down.
2324      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2325      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2326          !G->getGlobal()->hasProtectedVisibility())
2327        Callee = LowerGlobalAddress(Callee, DAG);
2328      else if (isa<ExternalSymbolSDNode>(Callee))
2329        Callee = LowerExternalSymbol(Callee, DAG);
2330    }
2331  }
2332
2333  if (Is64Bit && isVarArg && !IsWin64) {
2334    // From AMD64 ABI document:
2335    // For calls that may call functions that use varargs or stdargs
2336    // (prototype-less calls or calls to functions containing ellipsis (...) in
2337    // the declaration) %al is used as hidden argument to specify the number
2338    // of SSE registers used. The contents of %al do not need to match exactly
2339    // the number of registers, but must be an ubound on the number of SSE
2340    // registers used and is in the range 0 - 8 inclusive.
2341
2342    // Count the number of XMM registers allocated.
2343    static const uint16_t XMMArgRegs[] = {
2344      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2345      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2346    };
2347    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2348    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2349           && "SSE registers cannot be used when SSE is disabled");
2350
2351    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2352                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2353  }
2354
2355  // For tail calls lower the arguments to the 'real' stack slot.
2356  if (isTailCall) {
2357    // Force all the incoming stack arguments to be loaded from the stack
2358    // before any new outgoing arguments are stored to the stack, because the
2359    // outgoing stack slots may alias the incoming argument stack slots, and
2360    // the alias isn't otherwise explicit. This is slightly more conservative
2361    // than necessary, because it means that each store effectively depends
2362    // on every argument instead of just those arguments it would clobber.
2363    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2364
2365    SmallVector<SDValue, 8> MemOpChains2;
2366    SDValue FIN;
2367    int FI = 0;
2368    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2369      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2370        CCValAssign &VA = ArgLocs[i];
2371        if (VA.isRegLoc())
2372          continue;
2373        assert(VA.isMemLoc());
2374        SDValue Arg = OutVals[i];
2375        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2376        // Create frame index.
2377        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2378        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2379        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2380        FIN = DAG.getFrameIndex(FI, getPointerTy());
2381
2382        if (Flags.isByVal()) {
2383          // Copy relative to framepointer.
2384          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2385          if (StackPtr.getNode() == 0)
2386            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2387                                          getPointerTy());
2388          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2389
2390          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2391                                                           ArgChain,
2392                                                           Flags, DAG, dl));
2393        } else {
2394          // Store relative to framepointer.
2395          MemOpChains2.push_back(
2396            DAG.getStore(ArgChain, dl, Arg, FIN,
2397                         MachinePointerInfo::getFixedStack(FI),
2398                         false, false, 0));
2399        }
2400      }
2401    }
2402
2403    if (!MemOpChains2.empty())
2404      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2405                          &MemOpChains2[0], MemOpChains2.size());
2406
2407    // Store the return address to the appropriate stack slot.
2408    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2409                                     FPDiff, dl);
2410  }
2411
2412  // Build a sequence of copy-to-reg nodes chained together with token chain
2413  // and flag operands which copy the outgoing args into registers.
2414  SDValue InFlag;
2415  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2416    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2417                             RegsToPass[i].second, InFlag);
2418    InFlag = Chain.getValue(1);
2419  }
2420
2421  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2422    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2423    // In the 64-bit large code model, we have to make all calls
2424    // through a register, since the call instruction's 32-bit
2425    // pc-relative offset may not be large enough to hold the whole
2426    // address.
2427  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2428    // If the callee is a GlobalAddress node (quite common, every direct call
2429    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2430    // it.
2431
2432    // We should use extra load for direct calls to dllimported functions in
2433    // non-JIT mode.
2434    const GlobalValue *GV = G->getGlobal();
2435    if (!GV->hasDLLImportLinkage()) {
2436      unsigned char OpFlags = 0;
2437      bool ExtraLoad = false;
2438      unsigned WrapperKind = ISD::DELETED_NODE;
2439
2440      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2441      // external symbols most go through the PLT in PIC mode.  If the symbol
2442      // has hidden or protected visibility, or if it is static or local, then
2443      // we don't need to use the PLT - we can directly call it.
2444      if (Subtarget->isTargetELF() &&
2445          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2446          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2447        OpFlags = X86II::MO_PLT;
2448      } else if (Subtarget->isPICStyleStubAny() &&
2449                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2450                 (!Subtarget->getTargetTriple().isMacOSX() ||
2451                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2452        // PC-relative references to external symbols should go through $stub,
2453        // unless we're building with the leopard linker or later, which
2454        // automatically synthesizes these stubs.
2455        OpFlags = X86II::MO_DARWIN_STUB;
2456      } else if (Subtarget->isPICStyleRIPRel() &&
2457                 isa<Function>(GV) &&
2458                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2459        // If the function is marked as non-lazy, generate an indirect call
2460        // which loads from the GOT directly. This avoids runtime overhead
2461        // at the cost of eager binding (and one extra byte of encoding).
2462        OpFlags = X86II::MO_GOTPCREL;
2463        WrapperKind = X86ISD::WrapperRIP;
2464        ExtraLoad = true;
2465      }
2466
2467      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2468                                          G->getOffset(), OpFlags);
2469
2470      // Add a wrapper if needed.
2471      if (WrapperKind != ISD::DELETED_NODE)
2472        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2473      // Add extra indirection if needed.
2474      if (ExtraLoad)
2475        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2476                             MachinePointerInfo::getGOT(),
2477                             false, false, false, 0);
2478    }
2479  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2480    unsigned char OpFlags = 0;
2481
2482    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2483    // external symbols should go through the PLT.
2484    if (Subtarget->isTargetELF() &&
2485        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2486      OpFlags = X86II::MO_PLT;
2487    } else if (Subtarget->isPICStyleStubAny() &&
2488               (!Subtarget->getTargetTriple().isMacOSX() ||
2489                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2490      // PC-relative references to external symbols should go through $stub,
2491      // unless we're building with the leopard linker or later, which
2492      // automatically synthesizes these stubs.
2493      OpFlags = X86II::MO_DARWIN_STUB;
2494    }
2495
2496    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2497                                         OpFlags);
2498  }
2499
2500  // Returns a chain & a flag for retval copy to use.
2501  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2502  SmallVector<SDValue, 8> Ops;
2503
2504  if (!IsSibcall && isTailCall) {
2505    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2506                           DAG.getIntPtrConstant(0, true), InFlag);
2507    InFlag = Chain.getValue(1);
2508  }
2509
2510  Ops.push_back(Chain);
2511  Ops.push_back(Callee);
2512
2513  if (isTailCall)
2514    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2515
2516  // Add argument registers to the end of the list so that they are known live
2517  // into the call.
2518  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2519    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2520                                  RegsToPass[i].second.getValueType()));
2521
2522  // Add a register mask operand representing the call-preserved registers.
2523  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2524  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2525  assert(Mask && "Missing call preserved mask for calling convention");
2526  Ops.push_back(DAG.getRegisterMask(Mask));
2527
2528  if (InFlag.getNode())
2529    Ops.push_back(InFlag);
2530
2531  if (isTailCall) {
2532    // We used to do:
2533    //// If this is the first return lowered for this function, add the regs
2534    //// to the liveout set for the function.
2535    // This isn't right, although it's probably harmless on x86; liveouts
2536    // should be computed from returns not tail calls.  Consider a void
2537    // function making a tail call to a function returning int.
2538    return DAG.getNode(X86ISD::TC_RETURN, dl,
2539                       NodeTys, &Ops[0], Ops.size());
2540  }
2541
2542  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2543  InFlag = Chain.getValue(1);
2544
2545  // Create the CALLSEQ_END node.
2546  unsigned NumBytesForCalleeToPush;
2547  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2548                       getTargetMachine().Options.GuaranteedTailCallOpt))
2549    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2550  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2551           IsStructRet)
2552    // If this is a call to a struct-return function, the callee
2553    // pops the hidden struct pointer, so we have to push it back.
2554    // This is common for Darwin/X86, Linux & Mingw32 targets.
2555    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2556    NumBytesForCalleeToPush = 4;
2557  else
2558    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2559
2560  // Returns a flag for retval copy to use.
2561  if (!IsSibcall) {
2562    Chain = DAG.getCALLSEQ_END(Chain,
2563                               DAG.getIntPtrConstant(NumBytes, true),
2564                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2565                                                     true),
2566                               InFlag);
2567    InFlag = Chain.getValue(1);
2568  }
2569
2570  // Handle result values, copying them out of physregs into vregs that we
2571  // return.
2572  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2573                         Ins, dl, DAG, InVals);
2574}
2575
2576
2577//===----------------------------------------------------------------------===//
2578//                Fast Calling Convention (tail call) implementation
2579//===----------------------------------------------------------------------===//
2580
2581//  Like std call, callee cleans arguments, convention except that ECX is
2582//  reserved for storing the tail called function address. Only 2 registers are
2583//  free for argument passing (inreg). Tail call optimization is performed
2584//  provided:
2585//                * tailcallopt is enabled
2586//                * caller/callee are fastcc
2587//  On X86_64 architecture with GOT-style position independent code only local
2588//  (within module) calls are supported at the moment.
2589//  To keep the stack aligned according to platform abi the function
2590//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2591//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2592//  If a tail called function callee has more arguments than the caller the
2593//  caller needs to make sure that there is room to move the RETADDR to. This is
2594//  achieved by reserving an area the size of the argument delta right after the
2595//  original REtADDR, but before the saved framepointer or the spilled registers
2596//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2597//  stack layout:
2598//    arg1
2599//    arg2
2600//    RETADDR
2601//    [ new RETADDR
2602//      move area ]
2603//    (possible EBP)
2604//    ESI
2605//    EDI
2606//    local1 ..
2607
2608/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2609/// for a 16 byte align requirement.
2610unsigned
2611X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2612                                               SelectionDAG& DAG) const {
2613  MachineFunction &MF = DAG.getMachineFunction();
2614  const TargetMachine &TM = MF.getTarget();
2615  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2616  unsigned StackAlignment = TFI.getStackAlignment();
2617  uint64_t AlignMask = StackAlignment - 1;
2618  int64_t Offset = StackSize;
2619  uint64_t SlotSize = TD->getPointerSize();
2620  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2621    // Number smaller than 12 so just add the difference.
2622    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2623  } else {
2624    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2625    Offset = ((~AlignMask) & Offset) + StackAlignment +
2626      (StackAlignment-SlotSize);
2627  }
2628  return Offset;
2629}
2630
2631/// MatchingStackOffset - Return true if the given stack call argument is
2632/// already available in the same position (relatively) of the caller's
2633/// incoming argument stack.
2634static
2635bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2636                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2637                         const X86InstrInfo *TII) {
2638  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2639  int FI = INT_MAX;
2640  if (Arg.getOpcode() == ISD::CopyFromReg) {
2641    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2642    if (!TargetRegisterInfo::isVirtualRegister(VR))
2643      return false;
2644    MachineInstr *Def = MRI->getVRegDef(VR);
2645    if (!Def)
2646      return false;
2647    if (!Flags.isByVal()) {
2648      if (!TII->isLoadFromStackSlot(Def, FI))
2649        return false;
2650    } else {
2651      unsigned Opcode = Def->getOpcode();
2652      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2653          Def->getOperand(1).isFI()) {
2654        FI = Def->getOperand(1).getIndex();
2655        Bytes = Flags.getByValSize();
2656      } else
2657        return false;
2658    }
2659  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2660    if (Flags.isByVal())
2661      // ByVal argument is passed in as a pointer but it's now being
2662      // dereferenced. e.g.
2663      // define @foo(%struct.X* %A) {
2664      //   tail call @bar(%struct.X* byval %A)
2665      // }
2666      return false;
2667    SDValue Ptr = Ld->getBasePtr();
2668    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2669    if (!FINode)
2670      return false;
2671    FI = FINode->getIndex();
2672  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2673    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2674    FI = FINode->getIndex();
2675    Bytes = Flags.getByValSize();
2676  } else
2677    return false;
2678
2679  assert(FI != INT_MAX);
2680  if (!MFI->isFixedObjectIndex(FI))
2681    return false;
2682  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2683}
2684
2685/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2686/// for tail call optimization. Targets which want to do tail call
2687/// optimization should implement this function.
2688bool
2689X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2690                                                     CallingConv::ID CalleeCC,
2691                                                     bool isVarArg,
2692                                                     bool isCalleeStructRet,
2693                                                     bool isCallerStructRet,
2694                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2695                                    const SmallVectorImpl<SDValue> &OutVals,
2696                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2697                                                     SelectionDAG& DAG) const {
2698  if (!IsTailCallConvention(CalleeCC) &&
2699      CalleeCC != CallingConv::C)
2700    return false;
2701
2702  // If -tailcallopt is specified, make fastcc functions tail-callable.
2703  const MachineFunction &MF = DAG.getMachineFunction();
2704  const Function *CallerF = DAG.getMachineFunction().getFunction();
2705  CallingConv::ID CallerCC = CallerF->getCallingConv();
2706  bool CCMatch = CallerCC == CalleeCC;
2707
2708  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2709    if (IsTailCallConvention(CalleeCC) && CCMatch)
2710      return true;
2711    return false;
2712  }
2713
2714  // Look for obvious safe cases to perform tail call optimization that do not
2715  // require ABI changes. This is what gcc calls sibcall.
2716
2717  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2718  // emit a special epilogue.
2719  if (RegInfo->needsStackRealignment(MF))
2720    return false;
2721
2722  // Also avoid sibcall optimization if either caller or callee uses struct
2723  // return semantics.
2724  if (isCalleeStructRet || isCallerStructRet)
2725    return false;
2726
2727  // An stdcall caller is expected to clean up its arguments; the callee
2728  // isn't going to do that.
2729  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2730    return false;
2731
2732  // Do not sibcall optimize vararg calls unless all arguments are passed via
2733  // registers.
2734  if (isVarArg && !Outs.empty()) {
2735
2736    // Optimizing for varargs on Win64 is unlikely to be safe without
2737    // additional testing.
2738    if (Subtarget->isTargetWin64())
2739      return false;
2740
2741    SmallVector<CCValAssign, 16> ArgLocs;
2742    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2743                   getTargetMachine(), ArgLocs, *DAG.getContext());
2744
2745    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2746    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2747      if (!ArgLocs[i].isRegLoc())
2748        return false;
2749  }
2750
2751  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2752  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2753  // this into a sibcall.
2754  bool Unused = false;
2755  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2756    if (!Ins[i].Used) {
2757      Unused = true;
2758      break;
2759    }
2760  }
2761  if (Unused) {
2762    SmallVector<CCValAssign, 16> RVLocs;
2763    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2764                   getTargetMachine(), RVLocs, *DAG.getContext());
2765    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2766    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2767      CCValAssign &VA = RVLocs[i];
2768      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2769        return false;
2770    }
2771  }
2772
2773  // If the calling conventions do not match, then we'd better make sure the
2774  // results are returned in the same way as what the caller expects.
2775  if (!CCMatch) {
2776    SmallVector<CCValAssign, 16> RVLocs1;
2777    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2778                    getTargetMachine(), RVLocs1, *DAG.getContext());
2779    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2780
2781    SmallVector<CCValAssign, 16> RVLocs2;
2782    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2783                    getTargetMachine(), RVLocs2, *DAG.getContext());
2784    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2785
2786    if (RVLocs1.size() != RVLocs2.size())
2787      return false;
2788    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2789      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2790        return false;
2791      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2792        return false;
2793      if (RVLocs1[i].isRegLoc()) {
2794        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2795          return false;
2796      } else {
2797        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2798          return false;
2799      }
2800    }
2801  }
2802
2803  // If the callee takes no arguments then go on to check the results of the
2804  // call.
2805  if (!Outs.empty()) {
2806    // Check if stack adjustment is needed. For now, do not do this if any
2807    // argument is passed on the stack.
2808    SmallVector<CCValAssign, 16> ArgLocs;
2809    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2810                   getTargetMachine(), ArgLocs, *DAG.getContext());
2811
2812    // Allocate shadow area for Win64
2813    if (Subtarget->isTargetWin64()) {
2814      CCInfo.AllocateStack(32, 8);
2815    }
2816
2817    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2818    if (CCInfo.getNextStackOffset()) {
2819      MachineFunction &MF = DAG.getMachineFunction();
2820      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2821        return false;
2822
2823      // Check if the arguments are already laid out in the right way as
2824      // the caller's fixed stack objects.
2825      MachineFrameInfo *MFI = MF.getFrameInfo();
2826      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2827      const X86InstrInfo *TII =
2828        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2829      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2830        CCValAssign &VA = ArgLocs[i];
2831        SDValue Arg = OutVals[i];
2832        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2833        if (VA.getLocInfo() == CCValAssign::Indirect)
2834          return false;
2835        if (!VA.isRegLoc()) {
2836          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2837                                   MFI, MRI, TII))
2838            return false;
2839        }
2840      }
2841    }
2842
2843    // If the tailcall address may be in a register, then make sure it's
2844    // possible to register allocate for it. In 32-bit, the call address can
2845    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2846    // callee-saved registers are restored. These happen to be the same
2847    // registers used to pass 'inreg' arguments so watch out for those.
2848    if (!Subtarget->is64Bit() &&
2849        !isa<GlobalAddressSDNode>(Callee) &&
2850        !isa<ExternalSymbolSDNode>(Callee)) {
2851      unsigned NumInRegs = 0;
2852      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2853        CCValAssign &VA = ArgLocs[i];
2854        if (!VA.isRegLoc())
2855          continue;
2856        unsigned Reg = VA.getLocReg();
2857        switch (Reg) {
2858        default: break;
2859        case X86::EAX: case X86::EDX: case X86::ECX:
2860          if (++NumInRegs == 3)
2861            return false;
2862          break;
2863        }
2864      }
2865    }
2866  }
2867
2868  return true;
2869}
2870
2871FastISel *
2872X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2873  return X86::createFastISel(funcInfo);
2874}
2875
2876
2877//===----------------------------------------------------------------------===//
2878//                           Other Lowering Hooks
2879//===----------------------------------------------------------------------===//
2880
2881static bool MayFoldLoad(SDValue Op) {
2882  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2883}
2884
2885static bool MayFoldIntoStore(SDValue Op) {
2886  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2887}
2888
2889static bool isTargetShuffle(unsigned Opcode) {
2890  switch(Opcode) {
2891  default: return false;
2892  case X86ISD::PSHUFD:
2893  case X86ISD::PSHUFHW:
2894  case X86ISD::PSHUFLW:
2895  case X86ISD::SHUFP:
2896  case X86ISD::PALIGN:
2897  case X86ISD::MOVLHPS:
2898  case X86ISD::MOVLHPD:
2899  case X86ISD::MOVHLPS:
2900  case X86ISD::MOVLPS:
2901  case X86ISD::MOVLPD:
2902  case X86ISD::MOVSHDUP:
2903  case X86ISD::MOVSLDUP:
2904  case X86ISD::MOVDDUP:
2905  case X86ISD::MOVSS:
2906  case X86ISD::MOVSD:
2907  case X86ISD::UNPCKL:
2908  case X86ISD::UNPCKH:
2909  case X86ISD::VPERMILP:
2910  case X86ISD::VPERM2X128:
2911  case X86ISD::VPERMI:
2912    return true;
2913  }
2914}
2915
2916static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2917                                    SDValue V1, SelectionDAG &DAG) {
2918  switch(Opc) {
2919  default: llvm_unreachable("Unknown x86 shuffle node");
2920  case X86ISD::MOVSHDUP:
2921  case X86ISD::MOVSLDUP:
2922  case X86ISD::MOVDDUP:
2923    return DAG.getNode(Opc, dl, VT, V1);
2924  }
2925}
2926
2927static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2928                                    SDValue V1, unsigned TargetMask,
2929                                    SelectionDAG &DAG) {
2930  switch(Opc) {
2931  default: llvm_unreachable("Unknown x86 shuffle node");
2932  case X86ISD::PSHUFD:
2933  case X86ISD::PSHUFHW:
2934  case X86ISD::PSHUFLW:
2935  case X86ISD::VPERMILP:
2936  case X86ISD::VPERMI:
2937    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2938  }
2939}
2940
2941static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2942                                    SDValue V1, SDValue V2, unsigned TargetMask,
2943                                    SelectionDAG &DAG) {
2944  switch(Opc) {
2945  default: llvm_unreachable("Unknown x86 shuffle node");
2946  case X86ISD::PALIGN:
2947  case X86ISD::SHUFP:
2948  case X86ISD::VPERM2X128:
2949    return DAG.getNode(Opc, dl, VT, V1, V2,
2950                       DAG.getConstant(TargetMask, MVT::i8));
2951  }
2952}
2953
2954static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2955                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2956  switch(Opc) {
2957  default: llvm_unreachable("Unknown x86 shuffle node");
2958  case X86ISD::MOVLHPS:
2959  case X86ISD::MOVLHPD:
2960  case X86ISD::MOVHLPS:
2961  case X86ISD::MOVLPS:
2962  case X86ISD::MOVLPD:
2963  case X86ISD::MOVSS:
2964  case X86ISD::MOVSD:
2965  case X86ISD::UNPCKL:
2966  case X86ISD::UNPCKH:
2967    return DAG.getNode(Opc, dl, VT, V1, V2);
2968  }
2969}
2970
2971SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2972  MachineFunction &MF = DAG.getMachineFunction();
2973  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2974  int ReturnAddrIndex = FuncInfo->getRAIndex();
2975
2976  if (ReturnAddrIndex == 0) {
2977    // Set up a frame object for the return address.
2978    uint64_t SlotSize = TD->getPointerSize();
2979    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2980                                                           false);
2981    FuncInfo->setRAIndex(ReturnAddrIndex);
2982  }
2983
2984  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2985}
2986
2987
2988bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2989                                       bool hasSymbolicDisplacement) {
2990  // Offset should fit into 32 bit immediate field.
2991  if (!isInt<32>(Offset))
2992    return false;
2993
2994  // If we don't have a symbolic displacement - we don't have any extra
2995  // restrictions.
2996  if (!hasSymbolicDisplacement)
2997    return true;
2998
2999  // FIXME: Some tweaks might be needed for medium code model.
3000  if (M != CodeModel::Small && M != CodeModel::Kernel)
3001    return false;
3002
3003  // For small code model we assume that latest object is 16MB before end of 31
3004  // bits boundary. We may also accept pretty large negative constants knowing
3005  // that all objects are in the positive half of address space.
3006  if (M == CodeModel::Small && Offset < 16*1024*1024)
3007    return true;
3008
3009  // For kernel code model we know that all object resist in the negative half
3010  // of 32bits address space. We may not accept negative offsets, since they may
3011  // be just off and we may accept pretty large positive ones.
3012  if (M == CodeModel::Kernel && Offset > 0)
3013    return true;
3014
3015  return false;
3016}
3017
3018/// isCalleePop - Determines whether the callee is required to pop its
3019/// own arguments. Callee pop is necessary to support tail calls.
3020bool X86::isCalleePop(CallingConv::ID CallingConv,
3021                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3022  if (IsVarArg)
3023    return false;
3024
3025  switch (CallingConv) {
3026  default:
3027    return false;
3028  case CallingConv::X86_StdCall:
3029    return !is64Bit;
3030  case CallingConv::X86_FastCall:
3031    return !is64Bit;
3032  case CallingConv::X86_ThisCall:
3033    return !is64Bit;
3034  case CallingConv::Fast:
3035    return TailCallOpt;
3036  case CallingConv::GHC:
3037    return TailCallOpt;
3038  }
3039}
3040
3041/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3042/// specific condition code, returning the condition code and the LHS/RHS of the
3043/// comparison to make.
3044static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3045                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3046  if (!isFP) {
3047    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3048      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3049        // X > -1   -> X == 0, jump !sign.
3050        RHS = DAG.getConstant(0, RHS.getValueType());
3051        return X86::COND_NS;
3052      }
3053      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3054        // X < 0   -> X == 0, jump on sign.
3055        return X86::COND_S;
3056      }
3057      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3058        // X < 1   -> X <= 0
3059        RHS = DAG.getConstant(0, RHS.getValueType());
3060        return X86::COND_LE;
3061      }
3062      if (SetCCOpcode == ISD::SETULT || SetCCOpcode == ISD::SETUGE) {
3063        unsigned TrailZeros = RHSC->getAPIntValue().countTrailingZeros();
3064        if (TrailZeros >= 32) {
3065          // The constant doesn't fit in cmp immediate field. Right shift LHS by
3066          // the # of trailing zeros and truncate it to 32-bit. Then compare
3067          // against shifted RHS.
3068          assert(LHS.getValueType() == MVT::i64 && "Expecting a 64-bit cmp!");
3069          DebugLoc dl = LHS.getDebugLoc();
3070          LHS = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
3071                            DAG.getNode(ISD::SRL, dl, MVT::i64, LHS,
3072                                        DAG.getConstant(TrailZeros, MVT::i8)));
3073          uint64_t C = RHSC->getZExtValue() >> TrailZeros;
3074
3075          if (SetCCOpcode == ISD::SETULT) {
3076            // X < 0x300000000 -> (X >> 32) < 3
3077            // X < 0x100000000 -> (X >> 32) == 0
3078            // X < 0x200000000 -> (X >> 33) == 0
3079            if (C == 1) {
3080              RHS = DAG.getConstant(0, MVT::i32);
3081              return X86::COND_E;
3082            }
3083            RHS = DAG.getConstant(C, MVT::i32);
3084            return X86::COND_B;
3085          } else /* SetCCOpcode == ISD::SETUGE */ {
3086            // X >= 0x100000000 -> (X >> 32) >= 1
3087            RHS = DAG.getConstant(C, MVT::i32);
3088            return X86::COND_AE;
3089          }
3090        }
3091      }
3092      if (SetCCOpcode == ISD::SETUGT) {
3093        unsigned TrailOnes = RHSC->getAPIntValue().countTrailingOnes();
3094        if (TrailOnes >= 32 && !RHSC->isAllOnesValue()) {
3095          assert(LHS.getValueType() == MVT::i64 && "Expecting a 64-bit cmp!");
3096          DebugLoc dl = LHS.getDebugLoc();
3097          LHS = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
3098                            DAG.getNode(ISD::SRL, dl, MVT::i64, LHS,
3099                                        DAG.getConstant(TrailOnes, MVT::i8)));
3100          uint64_t C = (RHSC->getZExtValue()+1) >> TrailOnes;
3101          // X >  0x0ffffffff -> (X >> 32) >= 1
3102          RHS = DAG.getConstant(C, MVT::i32);
3103          return X86::COND_AE;
3104        }
3105      }
3106    }
3107
3108    switch (SetCCOpcode) {
3109    default: llvm_unreachable("Invalid integer condition!");
3110    case ISD::SETEQ:  return X86::COND_E;
3111    case ISD::SETGT:  return X86::COND_G;
3112    case ISD::SETGE:  return X86::COND_GE;
3113    case ISD::SETLT:  return X86::COND_L;
3114    case ISD::SETLE:  return X86::COND_LE;
3115    case ISD::SETNE:  return X86::COND_NE;
3116    case ISD::SETULT: return X86::COND_B;
3117    case ISD::SETUGT: return X86::COND_A;
3118    case ISD::SETULE: return X86::COND_BE;
3119    case ISD::SETUGE: return X86::COND_AE;
3120    }
3121  }
3122
3123  // First determine if it is required or is profitable to flip the operands.
3124
3125  // If LHS is a foldable load, but RHS is not, flip the condition.
3126  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3127      !ISD::isNON_EXTLoad(RHS.getNode())) {
3128    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3129    std::swap(LHS, RHS);
3130  }
3131
3132  switch (SetCCOpcode) {
3133  default: break;
3134  case ISD::SETOLT:
3135  case ISD::SETOLE:
3136  case ISD::SETUGT:
3137  case ISD::SETUGE:
3138    std::swap(LHS, RHS);
3139    break;
3140  }
3141
3142  // On a floating point condition, the flags are set as follows:
3143  // ZF  PF  CF   op
3144  //  0 | 0 | 0 | X > Y
3145  //  0 | 0 | 1 | X < Y
3146  //  1 | 0 | 0 | X == Y
3147  //  1 | 1 | 1 | unordered
3148  switch (SetCCOpcode) {
3149  default: llvm_unreachable("Condcode should be pre-legalized away");
3150  case ISD::SETUEQ:
3151  case ISD::SETEQ:   return X86::COND_E;
3152  case ISD::SETOLT:              // flipped
3153  case ISD::SETOGT:
3154  case ISD::SETGT:   return X86::COND_A;
3155  case ISD::SETOLE:              // flipped
3156  case ISD::SETOGE:
3157  case ISD::SETGE:   return X86::COND_AE;
3158  case ISD::SETUGT:              // flipped
3159  case ISD::SETULT:
3160  case ISD::SETLT:   return X86::COND_B;
3161  case ISD::SETUGE:              // flipped
3162  case ISD::SETULE:
3163  case ISD::SETLE:   return X86::COND_BE;
3164  case ISD::SETONE:
3165  case ISD::SETNE:   return X86::COND_NE;
3166  case ISD::SETUO:   return X86::COND_P;
3167  case ISD::SETO:    return X86::COND_NP;
3168  case ISD::SETOEQ:
3169  case ISD::SETUNE:  return X86::COND_INVALID;
3170  }
3171}
3172
3173/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3174/// code. Current x86 isa includes the following FP cmov instructions:
3175/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3176static bool hasFPCMov(unsigned X86CC) {
3177  switch (X86CC) {
3178  default:
3179    return false;
3180  case X86::COND_B:
3181  case X86::COND_BE:
3182  case X86::COND_E:
3183  case X86::COND_P:
3184  case X86::COND_A:
3185  case X86::COND_AE:
3186  case X86::COND_NE:
3187  case X86::COND_NP:
3188    return true;
3189  }
3190}
3191
3192/// isFPImmLegal - Returns true if the target can instruction select the
3193/// specified FP immediate natively. If false, the legalizer will
3194/// materialize the FP immediate as a load from a constant pool.
3195bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3196  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3197    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3198      return true;
3199  }
3200  return false;
3201}
3202
3203/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3204/// the specified range (L, H].
3205static bool isUndefOrInRange(int Val, int Low, int Hi) {
3206  return (Val < 0) || (Val >= Low && Val < Hi);
3207}
3208
3209/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3210/// specified value.
3211static bool isUndefOrEqual(int Val, int CmpVal) {
3212  if (Val < 0 || Val == CmpVal)
3213    return true;
3214  return false;
3215}
3216
3217/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3218/// from position Pos and ending in Pos+Size, falls within the specified
3219/// sequential range (L, L+Pos]. or is undef.
3220static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3221                                       unsigned Pos, unsigned Size, int Low) {
3222  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3223    if (!isUndefOrEqual(Mask[i], Low))
3224      return false;
3225  return true;
3226}
3227
3228/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3229/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3230/// the second operand.
3231static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3232  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3233    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3234  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3235    return (Mask[0] < 2 && Mask[1] < 2);
3236  return false;
3237}
3238
3239/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3240/// is suitable for input to PSHUFHW.
3241static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3242  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3243    return false;
3244
3245  // Lower quadword copied in order or undef.
3246  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3247    return false;
3248
3249  // Upper quadword shuffled.
3250  for (unsigned i = 4; i != 8; ++i)
3251    if (!isUndefOrInRange(Mask[i], 4, 8))
3252      return false;
3253
3254  if (VT == MVT::v16i16) {
3255    // Lower quadword copied in order or undef.
3256    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3257      return false;
3258
3259    // Upper quadword shuffled.
3260    for (unsigned i = 12; i != 16; ++i)
3261      if (!isUndefOrInRange(Mask[i], 12, 16))
3262        return false;
3263  }
3264
3265  return true;
3266}
3267
3268/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3269/// is suitable for input to PSHUFLW.
3270static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3271  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3272    return false;
3273
3274  // Upper quadword copied in order.
3275  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3276    return false;
3277
3278  // Lower quadword shuffled.
3279  for (unsigned i = 0; i != 4; ++i)
3280    if (!isUndefOrInRange(Mask[i], 0, 4))
3281      return false;
3282
3283  if (VT == MVT::v16i16) {
3284    // Upper quadword copied in order.
3285    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3286      return false;
3287
3288    // Lower quadword shuffled.
3289    for (unsigned i = 8; i != 12; ++i)
3290      if (!isUndefOrInRange(Mask[i], 8, 12))
3291        return false;
3292  }
3293
3294  return true;
3295}
3296
3297/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3298/// is suitable for input to PALIGNR.
3299static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3300                          const X86Subtarget *Subtarget) {
3301  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3302      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3303    return false;
3304
3305  unsigned NumElts = VT.getVectorNumElements();
3306  unsigned NumLanes = VT.getSizeInBits()/128;
3307  unsigned NumLaneElts = NumElts/NumLanes;
3308
3309  // Do not handle 64-bit element shuffles with palignr.
3310  if (NumLaneElts == 2)
3311    return false;
3312
3313  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3314    unsigned i;
3315    for (i = 0; i != NumLaneElts; ++i) {
3316      if (Mask[i+l] >= 0)
3317        break;
3318    }
3319
3320    // Lane is all undef, go to next lane
3321    if (i == NumLaneElts)
3322      continue;
3323
3324    int Start = Mask[i+l];
3325
3326    // Make sure its in this lane in one of the sources
3327    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3328        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3329      return false;
3330
3331    // If not lane 0, then we must match lane 0
3332    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3333      return false;
3334
3335    // Correct second source to be contiguous with first source
3336    if (Start >= (int)NumElts)
3337      Start -= NumElts - NumLaneElts;
3338
3339    // Make sure we're shifting in the right direction.
3340    if (Start <= (int)(i+l))
3341      return false;
3342
3343    Start -= i;
3344
3345    // Check the rest of the elements to see if they are consecutive.
3346    for (++i; i != NumLaneElts; ++i) {
3347      int Idx = Mask[i+l];
3348
3349      // Make sure its in this lane
3350      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3351          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3352        return false;
3353
3354      // If not lane 0, then we must match lane 0
3355      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3356        return false;
3357
3358      if (Idx >= (int)NumElts)
3359        Idx -= NumElts - NumLaneElts;
3360
3361      if (!isUndefOrEqual(Idx, Start+i))
3362        return false;
3363
3364    }
3365  }
3366
3367  return true;
3368}
3369
3370/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3371/// the two vector operands have swapped position.
3372static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3373                                     unsigned NumElems) {
3374  for (unsigned i = 0; i != NumElems; ++i) {
3375    int idx = Mask[i];
3376    if (idx < 0)
3377      continue;
3378    else if (idx < (int)NumElems)
3379      Mask[i] = idx + NumElems;
3380    else
3381      Mask[i] = idx - NumElems;
3382  }
3383}
3384
3385/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3386/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3387/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3388/// reverse of what x86 shuffles want.
3389static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3390                        bool Commuted = false) {
3391  if (!HasAVX && VT.getSizeInBits() == 256)
3392    return false;
3393
3394  unsigned NumElems = VT.getVectorNumElements();
3395  unsigned NumLanes = VT.getSizeInBits()/128;
3396  unsigned NumLaneElems = NumElems/NumLanes;
3397
3398  if (NumLaneElems != 2 && NumLaneElems != 4)
3399    return false;
3400
3401  // VSHUFPSY divides the resulting vector into 4 chunks.
3402  // The sources are also splitted into 4 chunks, and each destination
3403  // chunk must come from a different source chunk.
3404  //
3405  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3406  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3407  //
3408  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3409  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3410  //
3411  // VSHUFPDY divides the resulting vector into 4 chunks.
3412  // The sources are also splitted into 4 chunks, and each destination
3413  // chunk must come from a different source chunk.
3414  //
3415  //  SRC1 =>      X3       X2       X1       X0
3416  //  SRC2 =>      Y3       Y2       Y1       Y0
3417  //
3418  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3419  //
3420  unsigned HalfLaneElems = NumLaneElems/2;
3421  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3422    for (unsigned i = 0; i != NumLaneElems; ++i) {
3423      int Idx = Mask[i+l];
3424      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3425      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3426        return false;
3427      // For VSHUFPSY, the mask of the second half must be the same as the
3428      // first but with the appropriate offsets. This works in the same way as
3429      // VPERMILPS works with masks.
3430      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3431        continue;
3432      if (!isUndefOrEqual(Idx, Mask[i]+l))
3433        return false;
3434    }
3435  }
3436
3437  return true;
3438}
3439
3440/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3441/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3442static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3443  unsigned NumElems = VT.getVectorNumElements();
3444
3445  if (VT.getSizeInBits() != 128)
3446    return false;
3447
3448  if (NumElems != 4)
3449    return false;
3450
3451  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3452  return isUndefOrEqual(Mask[0], 6) &&
3453         isUndefOrEqual(Mask[1], 7) &&
3454         isUndefOrEqual(Mask[2], 2) &&
3455         isUndefOrEqual(Mask[3], 3);
3456}
3457
3458/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3459/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3460/// <2, 3, 2, 3>
3461static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3462  unsigned NumElems = VT.getVectorNumElements();
3463
3464  if (VT.getSizeInBits() != 128)
3465    return false;
3466
3467  if (NumElems != 4)
3468    return false;
3469
3470  return isUndefOrEqual(Mask[0], 2) &&
3471         isUndefOrEqual(Mask[1], 3) &&
3472         isUndefOrEqual(Mask[2], 2) &&
3473         isUndefOrEqual(Mask[3], 3);
3474}
3475
3476/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3477/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3478static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3479  if (VT.getSizeInBits() != 128)
3480    return false;
3481
3482  unsigned NumElems = VT.getVectorNumElements();
3483
3484  if (NumElems != 2 && NumElems != 4)
3485    return false;
3486
3487  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3488    if (!isUndefOrEqual(Mask[i], i + NumElems))
3489      return false;
3490
3491  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3492    if (!isUndefOrEqual(Mask[i], i))
3493      return false;
3494
3495  return true;
3496}
3497
3498/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3499/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3500static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3501  unsigned NumElems = VT.getVectorNumElements();
3502
3503  if ((NumElems != 2 && NumElems != 4)
3504      || VT.getSizeInBits() > 128)
3505    return false;
3506
3507  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3508    if (!isUndefOrEqual(Mask[i], i))
3509      return false;
3510
3511  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3512    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3513      return false;
3514
3515  return true;
3516}
3517
3518//
3519// Some special combinations that can be optimized.
3520//
3521static
3522SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3523                               SelectionDAG &DAG) {
3524  EVT VT = SVOp->getValueType(0);
3525  DebugLoc dl = SVOp->getDebugLoc();
3526
3527  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3528    return SDValue();
3529
3530  ArrayRef<int> Mask = SVOp->getMask();
3531
3532  // These are the special masks that may be optimized.
3533  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3534  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3535  bool MatchEvenMask = true;
3536  bool MatchOddMask  = true;
3537  for (int i=0; i<8; ++i) {
3538    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3539      MatchEvenMask = false;
3540    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3541      MatchOddMask = false;
3542  }
3543  static const int CompactionMaskEven[] = {0, 2, -1, -1, 4, 6, -1, -1};
3544  static const int CompactionMaskOdd [] = {1, 3, -1, -1, 5, 7, -1, -1};
3545
3546  const int *CompactionMask;
3547  if (MatchEvenMask)
3548    CompactionMask = CompactionMaskEven;
3549  else if (MatchOddMask)
3550    CompactionMask = CompactionMaskOdd;
3551  else
3552    return SDValue();
3553
3554  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3555
3556  SDValue Op0 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(0),
3557                                     UndefNode, CompactionMask);
3558  SDValue Op1 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(1),
3559                                     UndefNode, CompactionMask);
3560  static const int UnpackMask[] = {0, 8, 1, 9, 4, 12, 5, 13};
3561  return DAG.getVectorShuffle(VT, dl, Op0, Op1, UnpackMask);
3562}
3563
3564/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3565/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3566static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3567                         bool HasAVX2, bool V2IsSplat = false) {
3568  unsigned NumElts = VT.getVectorNumElements();
3569
3570  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3571         "Unsupported vector type for unpckh");
3572
3573  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3574      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3575    return false;
3576
3577  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3578  // independently on 128-bit lanes.
3579  unsigned NumLanes = VT.getSizeInBits()/128;
3580  unsigned NumLaneElts = NumElts/NumLanes;
3581
3582  for (unsigned l = 0; l != NumLanes; ++l) {
3583    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3584         i != (l+1)*NumLaneElts;
3585         i += 2, ++j) {
3586      int BitI  = Mask[i];
3587      int BitI1 = Mask[i+1];
3588      if (!isUndefOrEqual(BitI, j))
3589        return false;
3590      if (V2IsSplat) {
3591        if (!isUndefOrEqual(BitI1, NumElts))
3592          return false;
3593      } else {
3594        if (!isUndefOrEqual(BitI1, j + NumElts))
3595          return false;
3596      }
3597    }
3598  }
3599
3600  return true;
3601}
3602
3603/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3604/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3605static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3606                         bool HasAVX2, bool V2IsSplat = false) {
3607  unsigned NumElts = VT.getVectorNumElements();
3608
3609  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3610         "Unsupported vector type for unpckh");
3611
3612  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3613      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3614    return false;
3615
3616  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3617  // independently on 128-bit lanes.
3618  unsigned NumLanes = VT.getSizeInBits()/128;
3619  unsigned NumLaneElts = NumElts/NumLanes;
3620
3621  for (unsigned l = 0; l != NumLanes; ++l) {
3622    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3623         i != (l+1)*NumLaneElts; i += 2, ++j) {
3624      int BitI  = Mask[i];
3625      int BitI1 = Mask[i+1];
3626      if (!isUndefOrEqual(BitI, j))
3627        return false;
3628      if (V2IsSplat) {
3629        if (isUndefOrEqual(BitI1, NumElts))
3630          return false;
3631      } else {
3632        if (!isUndefOrEqual(BitI1, j+NumElts))
3633          return false;
3634      }
3635    }
3636  }
3637  return true;
3638}
3639
3640/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3641/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3642/// <0, 0, 1, 1>
3643static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3644                                  bool HasAVX2) {
3645  unsigned NumElts = VT.getVectorNumElements();
3646
3647  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3648         "Unsupported vector type for unpckh");
3649
3650  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3651      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3652    return false;
3653
3654  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3655  // FIXME: Need a better way to get rid of this, there's no latency difference
3656  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3657  // the former later. We should also remove the "_undef" special mask.
3658  if (NumElts == 4 && VT.getSizeInBits() == 256)
3659    return false;
3660
3661  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3662  // independently on 128-bit lanes.
3663  unsigned NumLanes = VT.getSizeInBits()/128;
3664  unsigned NumLaneElts = NumElts/NumLanes;
3665
3666  for (unsigned l = 0; l != NumLanes; ++l) {
3667    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3668         i != (l+1)*NumLaneElts;
3669         i += 2, ++j) {
3670      int BitI  = Mask[i];
3671      int BitI1 = Mask[i+1];
3672
3673      if (!isUndefOrEqual(BitI, j))
3674        return false;
3675      if (!isUndefOrEqual(BitI1, j))
3676        return false;
3677    }
3678  }
3679
3680  return true;
3681}
3682
3683/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3684/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3685/// <2, 2, 3, 3>
3686static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3687  unsigned NumElts = VT.getVectorNumElements();
3688
3689  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3690         "Unsupported vector type for unpckh");
3691
3692  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3693      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3694    return false;
3695
3696  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3697  // independently on 128-bit lanes.
3698  unsigned NumLanes = VT.getSizeInBits()/128;
3699  unsigned NumLaneElts = NumElts/NumLanes;
3700
3701  for (unsigned l = 0; l != NumLanes; ++l) {
3702    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3703         i != (l+1)*NumLaneElts; i += 2, ++j) {
3704      int BitI  = Mask[i];
3705      int BitI1 = Mask[i+1];
3706      if (!isUndefOrEqual(BitI, j))
3707        return false;
3708      if (!isUndefOrEqual(BitI1, j))
3709        return false;
3710    }
3711  }
3712  return true;
3713}
3714
3715/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3716/// specifies a shuffle of elements that is suitable for input to MOVSS,
3717/// MOVSD, and MOVD, i.e. setting the lowest element.
3718static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3719  if (VT.getVectorElementType().getSizeInBits() < 32)
3720    return false;
3721  if (VT.getSizeInBits() == 256)
3722    return false;
3723
3724  unsigned NumElts = VT.getVectorNumElements();
3725
3726  if (!isUndefOrEqual(Mask[0], NumElts))
3727    return false;
3728
3729  for (unsigned i = 1; i != NumElts; ++i)
3730    if (!isUndefOrEqual(Mask[i], i))
3731      return false;
3732
3733  return true;
3734}
3735
3736/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3737/// as permutations between 128-bit chunks or halves. As an example: this
3738/// shuffle bellow:
3739///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3740/// The first half comes from the second half of V1 and the second half from the
3741/// the second half of V2.
3742static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3743  if (!HasAVX || VT.getSizeInBits() != 256)
3744    return false;
3745
3746  // The shuffle result is divided into half A and half B. In total the two
3747  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3748  // B must come from C, D, E or F.
3749  unsigned HalfSize = VT.getVectorNumElements()/2;
3750  bool MatchA = false, MatchB = false;
3751
3752  // Check if A comes from one of C, D, E, F.
3753  for (unsigned Half = 0; Half != 4; ++Half) {
3754    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3755      MatchA = true;
3756      break;
3757    }
3758  }
3759
3760  // Check if B comes from one of C, D, E, F.
3761  for (unsigned Half = 0; Half != 4; ++Half) {
3762    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3763      MatchB = true;
3764      break;
3765    }
3766  }
3767
3768  return MatchA && MatchB;
3769}
3770
3771/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3772/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3773static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3774  EVT VT = SVOp->getValueType(0);
3775
3776  unsigned HalfSize = VT.getVectorNumElements()/2;
3777
3778  unsigned FstHalf = 0, SndHalf = 0;
3779  for (unsigned i = 0; i < HalfSize; ++i) {
3780    if (SVOp->getMaskElt(i) > 0) {
3781      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3782      break;
3783    }
3784  }
3785  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3786    if (SVOp->getMaskElt(i) > 0) {
3787      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3788      break;
3789    }
3790  }
3791
3792  return (FstHalf | (SndHalf << 4));
3793}
3794
3795/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3796/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3797/// Note that VPERMIL mask matching is different depending whether theunderlying
3798/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3799/// to the same elements of the low, but to the higher half of the source.
3800/// In VPERMILPD the two lanes could be shuffled independently of each other
3801/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3802static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3803  if (!HasAVX)
3804    return false;
3805
3806  unsigned NumElts = VT.getVectorNumElements();
3807  // Only match 256-bit with 32/64-bit types
3808  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3809    return false;
3810
3811  unsigned NumLanes = VT.getSizeInBits()/128;
3812  unsigned LaneSize = NumElts/NumLanes;
3813  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3814    for (unsigned i = 0; i != LaneSize; ++i) {
3815      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3816        return false;
3817      if (NumElts != 8 || l == 0)
3818        continue;
3819      // VPERMILPS handling
3820      if (Mask[i] < 0)
3821        continue;
3822      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3823        return false;
3824    }
3825  }
3826
3827  return true;
3828}
3829
3830/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3831/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3832/// element of vector 2 and the other elements to come from vector 1 in order.
3833static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3834                               bool V2IsSplat = false, bool V2IsUndef = false) {
3835  unsigned NumOps = VT.getVectorNumElements();
3836  if (VT.getSizeInBits() == 256)
3837    return false;
3838  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3839    return false;
3840
3841  if (!isUndefOrEqual(Mask[0], 0))
3842    return false;
3843
3844  for (unsigned i = 1; i != NumOps; ++i)
3845    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3846          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3847          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3848      return false;
3849
3850  return true;
3851}
3852
3853/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3854/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3855/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3856static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3857                           const X86Subtarget *Subtarget) {
3858  if (!Subtarget->hasSSE3())
3859    return false;
3860
3861  unsigned NumElems = VT.getVectorNumElements();
3862
3863  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3864      (VT.getSizeInBits() == 256 && NumElems != 8))
3865    return false;
3866
3867  // "i+1" is the value the indexed mask element must have
3868  for (unsigned i = 0; i != NumElems; i += 2)
3869    if (!isUndefOrEqual(Mask[i], i+1) ||
3870        !isUndefOrEqual(Mask[i+1], i+1))
3871      return false;
3872
3873  return true;
3874}
3875
3876/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3877/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3878/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3879static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3880                           const X86Subtarget *Subtarget) {
3881  if (!Subtarget->hasSSE3())
3882    return false;
3883
3884  unsigned NumElems = VT.getVectorNumElements();
3885
3886  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3887      (VT.getSizeInBits() == 256 && NumElems != 8))
3888    return false;
3889
3890  // "i" is the value the indexed mask element must have
3891  for (unsigned i = 0; i != NumElems; i += 2)
3892    if (!isUndefOrEqual(Mask[i], i) ||
3893        !isUndefOrEqual(Mask[i+1], i))
3894      return false;
3895
3896  return true;
3897}
3898
3899/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3900/// specifies a shuffle of elements that is suitable for input to 256-bit
3901/// version of MOVDDUP.
3902static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3903  unsigned NumElts = VT.getVectorNumElements();
3904
3905  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3906    return false;
3907
3908  for (unsigned i = 0; i != NumElts/2; ++i)
3909    if (!isUndefOrEqual(Mask[i], 0))
3910      return false;
3911  for (unsigned i = NumElts/2; i != NumElts; ++i)
3912    if (!isUndefOrEqual(Mask[i], NumElts/2))
3913      return false;
3914  return true;
3915}
3916
3917/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3918/// specifies a shuffle of elements that is suitable for input to 128-bit
3919/// version of MOVDDUP.
3920static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3921  if (VT.getSizeInBits() != 128)
3922    return false;
3923
3924  unsigned e = VT.getVectorNumElements() / 2;
3925  for (unsigned i = 0; i != e; ++i)
3926    if (!isUndefOrEqual(Mask[i], i))
3927      return false;
3928  for (unsigned i = 0; i != e; ++i)
3929    if (!isUndefOrEqual(Mask[e+i], i))
3930      return false;
3931  return true;
3932}
3933
3934/// isVEXTRACTF128Index - Return true if the specified
3935/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3936/// suitable for input to VEXTRACTF128.
3937bool X86::isVEXTRACTF128Index(SDNode *N) {
3938  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3939    return false;
3940
3941  // The index should be aligned on a 128-bit boundary.
3942  uint64_t Index =
3943    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3944
3945  unsigned VL = N->getValueType(0).getVectorNumElements();
3946  unsigned VBits = N->getValueType(0).getSizeInBits();
3947  unsigned ElSize = VBits / VL;
3948  bool Result = (Index * ElSize) % 128 == 0;
3949
3950  return Result;
3951}
3952
3953/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3954/// operand specifies a subvector insert that is suitable for input to
3955/// VINSERTF128.
3956bool X86::isVINSERTF128Index(SDNode *N) {
3957  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3958    return false;
3959
3960  // The index should be aligned on a 128-bit boundary.
3961  uint64_t Index =
3962    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3963
3964  unsigned VL = N->getValueType(0).getVectorNumElements();
3965  unsigned VBits = N->getValueType(0).getSizeInBits();
3966  unsigned ElSize = VBits / VL;
3967  bool Result = (Index * ElSize) % 128 == 0;
3968
3969  return Result;
3970}
3971
3972/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3973/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3974/// Handles 128-bit and 256-bit.
3975static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3976  EVT VT = N->getValueType(0);
3977
3978  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3979         "Unsupported vector type for PSHUF/SHUFP");
3980
3981  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3982  // independently on 128-bit lanes.
3983  unsigned NumElts = VT.getVectorNumElements();
3984  unsigned NumLanes = VT.getSizeInBits()/128;
3985  unsigned NumLaneElts = NumElts/NumLanes;
3986
3987  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3988         "Only supports 2 or 4 elements per lane");
3989
3990  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3991  unsigned Mask = 0;
3992  for (unsigned i = 0; i != NumElts; ++i) {
3993    int Elt = N->getMaskElt(i);
3994    if (Elt < 0) continue;
3995    Elt &= NumLaneElts - 1;
3996    unsigned ShAmt = (i << Shift) % 8;
3997    Mask |= Elt << ShAmt;
3998  }
3999
4000  return Mask;
4001}
4002
4003/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4004/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
4005static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
4006  EVT VT = N->getValueType(0);
4007
4008  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4009         "Unsupported vector type for PSHUFHW");
4010
4011  unsigned NumElts = VT.getVectorNumElements();
4012
4013  unsigned Mask = 0;
4014  for (unsigned l = 0; l != NumElts; l += 8) {
4015    // 8 nodes per lane, but we only care about the last 4.
4016    for (unsigned i = 0; i < 4; ++i) {
4017      int Elt = N->getMaskElt(l+i+4);
4018      if (Elt < 0) continue;
4019      Elt &= 0x3; // only 2-bits.
4020      Mask |= Elt << (i * 2);
4021    }
4022  }
4023
4024  return Mask;
4025}
4026
4027/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4028/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
4029static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
4030  EVT VT = N->getValueType(0);
4031
4032  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4033         "Unsupported vector type for PSHUFHW");
4034
4035  unsigned NumElts = VT.getVectorNumElements();
4036
4037  unsigned Mask = 0;
4038  for (unsigned l = 0; l != NumElts; l += 8) {
4039    // 8 nodes per lane, but we only care about the first 4.
4040    for (unsigned i = 0; i < 4; ++i) {
4041      int Elt = N->getMaskElt(l+i);
4042      if (Elt < 0) continue;
4043      Elt &= 0x3; // only 2-bits
4044      Mask |= Elt << (i * 2);
4045    }
4046  }
4047
4048  return Mask;
4049}
4050
4051/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4052/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4053static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4054  EVT VT = SVOp->getValueType(0);
4055  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4056
4057  unsigned NumElts = VT.getVectorNumElements();
4058  unsigned NumLanes = VT.getSizeInBits()/128;
4059  unsigned NumLaneElts = NumElts/NumLanes;
4060
4061  int Val = 0;
4062  unsigned i;
4063  for (i = 0; i != NumElts; ++i) {
4064    Val = SVOp->getMaskElt(i);
4065    if (Val >= 0)
4066      break;
4067  }
4068  if (Val >= (int)NumElts)
4069    Val -= NumElts - NumLaneElts;
4070
4071  assert(Val - i > 0 && "PALIGNR imm should be positive");
4072  return (Val - i) * EltSize;
4073}
4074
4075/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4076/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4077/// instructions.
4078unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4079  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4080    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4081
4082  uint64_t Index =
4083    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4084
4085  EVT VecVT = N->getOperand(0).getValueType();
4086  EVT ElVT = VecVT.getVectorElementType();
4087
4088  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4089  return Index / NumElemsPerChunk;
4090}
4091
4092/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4093/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4094/// instructions.
4095unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4096  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4097    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4098
4099  uint64_t Index =
4100    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4101
4102  EVT VecVT = N->getValueType(0);
4103  EVT ElVT = VecVT.getVectorElementType();
4104
4105  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4106  return Index / NumElemsPerChunk;
4107}
4108
4109/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4110/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4111/// Handles 256-bit.
4112static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4113  EVT VT = N->getValueType(0);
4114
4115  unsigned NumElts = VT.getVectorNumElements();
4116
4117  assert((VT.is256BitVector() && NumElts == 4) &&
4118         "Unsupported vector type for VPERMQ/VPERMPD");
4119
4120  unsigned Mask = 0;
4121  for (unsigned i = 0; i != NumElts; ++i) {
4122    int Elt = N->getMaskElt(i);
4123    if (Elt < 0)
4124      continue;
4125    Mask |= Elt << (i*2);
4126  }
4127
4128  return Mask;
4129}
4130/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4131/// constant +0.0.
4132bool X86::isZeroNode(SDValue Elt) {
4133  return ((isa<ConstantSDNode>(Elt) &&
4134           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4135          (isa<ConstantFPSDNode>(Elt) &&
4136           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4137}
4138
4139/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4140/// their permute mask.
4141static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4142                                    SelectionDAG &DAG) {
4143  EVT VT = SVOp->getValueType(0);
4144  unsigned NumElems = VT.getVectorNumElements();
4145  SmallVector<int, 8> MaskVec;
4146
4147  for (unsigned i = 0; i != NumElems; ++i) {
4148    int Idx = SVOp->getMaskElt(i);
4149    if (Idx >= 0) {
4150      if (Idx < (int)NumElems)
4151        Idx += NumElems;
4152      else
4153        Idx -= NumElems;
4154    }
4155    MaskVec.push_back(Idx);
4156  }
4157  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4158                              SVOp->getOperand(0), &MaskVec[0]);
4159}
4160
4161/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4162/// match movhlps. The lower half elements should come from upper half of
4163/// V1 (and in order), and the upper half elements should come from the upper
4164/// half of V2 (and in order).
4165static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4166  if (VT.getSizeInBits() != 128)
4167    return false;
4168  if (VT.getVectorNumElements() != 4)
4169    return false;
4170  for (unsigned i = 0, e = 2; i != e; ++i)
4171    if (!isUndefOrEqual(Mask[i], i+2))
4172      return false;
4173  for (unsigned i = 2; i != 4; ++i)
4174    if (!isUndefOrEqual(Mask[i], i+4))
4175      return false;
4176  return true;
4177}
4178
4179/// isScalarLoadToVector - Returns true if the node is a scalar load that
4180/// is promoted to a vector. It also returns the LoadSDNode by reference if
4181/// required.
4182static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4183  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4184    return false;
4185  N = N->getOperand(0).getNode();
4186  if (!ISD::isNON_EXTLoad(N))
4187    return false;
4188  if (LD)
4189    *LD = cast<LoadSDNode>(N);
4190  return true;
4191}
4192
4193// Test whether the given value is a vector value which will be legalized
4194// into a load.
4195static bool WillBeConstantPoolLoad(SDNode *N) {
4196  if (N->getOpcode() != ISD::BUILD_VECTOR)
4197    return false;
4198
4199  // Check for any non-constant elements.
4200  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4201    switch (N->getOperand(i).getNode()->getOpcode()) {
4202    case ISD::UNDEF:
4203    case ISD::ConstantFP:
4204    case ISD::Constant:
4205      break;
4206    default:
4207      return false;
4208    }
4209
4210  // Vectors of all-zeros and all-ones are materialized with special
4211  // instructions rather than being loaded.
4212  return !ISD::isBuildVectorAllZeros(N) &&
4213         !ISD::isBuildVectorAllOnes(N);
4214}
4215
4216/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4217/// match movlp{s|d}. The lower half elements should come from lower half of
4218/// V1 (and in order), and the upper half elements should come from the upper
4219/// half of V2 (and in order). And since V1 will become the source of the
4220/// MOVLP, it must be either a vector load or a scalar load to vector.
4221static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4222                               ArrayRef<int> Mask, EVT VT) {
4223  if (VT.getSizeInBits() != 128)
4224    return false;
4225
4226  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4227    return false;
4228  // Is V2 is a vector load, don't do this transformation. We will try to use
4229  // load folding shufps op.
4230  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4231    return false;
4232
4233  unsigned NumElems = VT.getVectorNumElements();
4234
4235  if (NumElems != 2 && NumElems != 4)
4236    return false;
4237  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4238    if (!isUndefOrEqual(Mask[i], i))
4239      return false;
4240  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4241    if (!isUndefOrEqual(Mask[i], i+NumElems))
4242      return false;
4243  return true;
4244}
4245
4246/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4247/// all the same.
4248static bool isSplatVector(SDNode *N) {
4249  if (N->getOpcode() != ISD::BUILD_VECTOR)
4250    return false;
4251
4252  SDValue SplatValue = N->getOperand(0);
4253  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4254    if (N->getOperand(i) != SplatValue)
4255      return false;
4256  return true;
4257}
4258
4259/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4260/// to an zero vector.
4261/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4262static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4263  SDValue V1 = N->getOperand(0);
4264  SDValue V2 = N->getOperand(1);
4265  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4266  for (unsigned i = 0; i != NumElems; ++i) {
4267    int Idx = N->getMaskElt(i);
4268    if (Idx >= (int)NumElems) {
4269      unsigned Opc = V2.getOpcode();
4270      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4271        continue;
4272      if (Opc != ISD::BUILD_VECTOR ||
4273          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4274        return false;
4275    } else if (Idx >= 0) {
4276      unsigned Opc = V1.getOpcode();
4277      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4278        continue;
4279      if (Opc != ISD::BUILD_VECTOR ||
4280          !X86::isZeroNode(V1.getOperand(Idx)))
4281        return false;
4282    }
4283  }
4284  return true;
4285}
4286
4287/// getZeroVector - Returns a vector of specified type with all zero elements.
4288///
4289static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4290                             SelectionDAG &DAG, DebugLoc dl) {
4291  assert(VT.isVector() && "Expected a vector type");
4292  unsigned Size = VT.getSizeInBits();
4293
4294  // Always build SSE zero vectors as <4 x i32> bitcasted
4295  // to their dest type. This ensures they get CSE'd.
4296  SDValue Vec;
4297  if (Size == 128) {  // SSE
4298    if (Subtarget->hasSSE2()) {  // SSE2
4299      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4300      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4301    } else { // SSE1
4302      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4303      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4304    }
4305  } else if (Size == 256) { // AVX
4306    if (Subtarget->hasAVX2()) { // AVX2
4307      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4308      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4309      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4310    } else {
4311      // 256-bit logic and arithmetic instructions in AVX are all
4312      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4313      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4314      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4315      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4316    }
4317  } else
4318    llvm_unreachable("Unexpected vector type");
4319
4320  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4321}
4322
4323/// getOnesVector - Returns a vector of specified type with all bits set.
4324/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4325/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4326/// Then bitcast to their original type, ensuring they get CSE'd.
4327static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4328                             DebugLoc dl) {
4329  assert(VT.isVector() && "Expected a vector type");
4330  unsigned Size = VT.getSizeInBits();
4331
4332  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4333  SDValue Vec;
4334  if (Size == 256) {
4335    if (HasAVX2) { // AVX2
4336      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4337      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4338    } else { // AVX
4339      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4340      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4341    }
4342  } else if (Size == 128) {
4343    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4344  } else
4345    llvm_unreachable("Unexpected vector type");
4346
4347  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4348}
4349
4350/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4351/// that point to V2 points to its first element.
4352static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4353  for (unsigned i = 0; i != NumElems; ++i) {
4354    if (Mask[i] > (int)NumElems) {
4355      Mask[i] = NumElems;
4356    }
4357  }
4358}
4359
4360/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4361/// operation of specified width.
4362static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4363                       SDValue V2) {
4364  unsigned NumElems = VT.getVectorNumElements();
4365  SmallVector<int, 8> Mask;
4366  Mask.push_back(NumElems);
4367  for (unsigned i = 1; i != NumElems; ++i)
4368    Mask.push_back(i);
4369  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4370}
4371
4372/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4373static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4374                          SDValue V2) {
4375  unsigned NumElems = VT.getVectorNumElements();
4376  SmallVector<int, 8> Mask;
4377  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4378    Mask.push_back(i);
4379    Mask.push_back(i + NumElems);
4380  }
4381  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4382}
4383
4384/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4385static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4386                          SDValue V2) {
4387  unsigned NumElems = VT.getVectorNumElements();
4388  SmallVector<int, 8> Mask;
4389  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4390    Mask.push_back(i + Half);
4391    Mask.push_back(i + NumElems + Half);
4392  }
4393  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4394}
4395
4396// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4397// a generic shuffle instruction because the target has no such instructions.
4398// Generate shuffles which repeat i16 and i8 several times until they can be
4399// represented by v4f32 and then be manipulated by target suported shuffles.
4400static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4401  EVT VT = V.getValueType();
4402  int NumElems = VT.getVectorNumElements();
4403  DebugLoc dl = V.getDebugLoc();
4404
4405  while (NumElems > 4) {
4406    if (EltNo < NumElems/2) {
4407      V = getUnpackl(DAG, dl, VT, V, V);
4408    } else {
4409      V = getUnpackh(DAG, dl, VT, V, V);
4410      EltNo -= NumElems/2;
4411    }
4412    NumElems >>= 1;
4413  }
4414  return V;
4415}
4416
4417/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4418static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4419  EVT VT = V.getValueType();
4420  DebugLoc dl = V.getDebugLoc();
4421  unsigned Size = VT.getSizeInBits();
4422
4423  if (Size == 128) {
4424    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4425    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4426    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4427                             &SplatMask[0]);
4428  } else if (Size == 256) {
4429    // To use VPERMILPS to splat scalars, the second half of indicies must
4430    // refer to the higher part, which is a duplication of the lower one,
4431    // because VPERMILPS can only handle in-lane permutations.
4432    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4433                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4434
4435    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4436    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4437                             &SplatMask[0]);
4438  } else
4439    llvm_unreachable("Vector size not supported");
4440
4441  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4442}
4443
4444/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4445static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4446  EVT SrcVT = SV->getValueType(0);
4447  SDValue V1 = SV->getOperand(0);
4448  DebugLoc dl = SV->getDebugLoc();
4449
4450  int EltNo = SV->getSplatIndex();
4451  int NumElems = SrcVT.getVectorNumElements();
4452  unsigned Size = SrcVT.getSizeInBits();
4453
4454  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4455          "Unknown how to promote splat for type");
4456
4457  // Extract the 128-bit part containing the splat element and update
4458  // the splat element index when it refers to the higher register.
4459  if (Size == 256) {
4460    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4461    if (EltNo >= NumElems/2)
4462      EltNo -= NumElems/2;
4463  }
4464
4465  // All i16 and i8 vector types can't be used directly by a generic shuffle
4466  // instruction because the target has no such instruction. Generate shuffles
4467  // which repeat i16 and i8 several times until they fit in i32, and then can
4468  // be manipulated by target suported shuffles.
4469  EVT EltVT = SrcVT.getVectorElementType();
4470  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4471    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4472
4473  // Recreate the 256-bit vector and place the same 128-bit vector
4474  // into the low and high part. This is necessary because we want
4475  // to use VPERM* to shuffle the vectors
4476  if (Size == 256) {
4477    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4478  }
4479
4480  return getLegalSplat(DAG, V1, EltNo);
4481}
4482
4483/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4484/// vector of zero or undef vector.  This produces a shuffle where the low
4485/// element of V2 is swizzled into the zero/undef vector, landing at element
4486/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4487static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4488                                           bool IsZero,
4489                                           const X86Subtarget *Subtarget,
4490                                           SelectionDAG &DAG) {
4491  EVT VT = V2.getValueType();
4492  SDValue V1 = IsZero
4493    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4494  unsigned NumElems = VT.getVectorNumElements();
4495  SmallVector<int, 16> MaskVec;
4496  for (unsigned i = 0; i != NumElems; ++i)
4497    // If this is the insertion idx, put the low elt of V2 here.
4498    MaskVec.push_back(i == Idx ? NumElems : i);
4499  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4500}
4501
4502/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4503/// target specific opcode. Returns true if the Mask could be calculated.
4504/// Sets IsUnary to true if only uses one source.
4505static bool getTargetShuffleMask(SDNode *N, MVT VT,
4506                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4507  unsigned NumElems = VT.getVectorNumElements();
4508  SDValue ImmN;
4509
4510  IsUnary = false;
4511  switch(N->getOpcode()) {
4512  case X86ISD::SHUFP:
4513    ImmN = N->getOperand(N->getNumOperands()-1);
4514    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4515    break;
4516  case X86ISD::UNPCKH:
4517    DecodeUNPCKHMask(VT, Mask);
4518    break;
4519  case X86ISD::UNPCKL:
4520    DecodeUNPCKLMask(VT, Mask);
4521    break;
4522  case X86ISD::MOVHLPS:
4523    DecodeMOVHLPSMask(NumElems, Mask);
4524    break;
4525  case X86ISD::MOVLHPS:
4526    DecodeMOVLHPSMask(NumElems, Mask);
4527    break;
4528  case X86ISD::PSHUFD:
4529  case X86ISD::VPERMILP:
4530    ImmN = N->getOperand(N->getNumOperands()-1);
4531    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4532    IsUnary = true;
4533    break;
4534  case X86ISD::PSHUFHW:
4535    ImmN = N->getOperand(N->getNumOperands()-1);
4536    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4537    IsUnary = true;
4538    break;
4539  case X86ISD::PSHUFLW:
4540    ImmN = N->getOperand(N->getNumOperands()-1);
4541    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4542    IsUnary = true;
4543    break;
4544  case X86ISD::VPERMI:
4545    ImmN = N->getOperand(N->getNumOperands()-1);
4546    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4547    IsUnary = true;
4548    break;
4549  case X86ISD::MOVSS:
4550  case X86ISD::MOVSD: {
4551    // The index 0 always comes from the first element of the second source,
4552    // this is why MOVSS and MOVSD are used in the first place. The other
4553    // elements come from the other positions of the first source vector
4554    Mask.push_back(NumElems);
4555    for (unsigned i = 1; i != NumElems; ++i) {
4556      Mask.push_back(i);
4557    }
4558    break;
4559  }
4560  case X86ISD::VPERM2X128:
4561    ImmN = N->getOperand(N->getNumOperands()-1);
4562    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4563    if (Mask.empty()) return false;
4564    break;
4565  case X86ISD::MOVDDUP:
4566  case X86ISD::MOVLHPD:
4567  case X86ISD::MOVLPD:
4568  case X86ISD::MOVLPS:
4569  case X86ISD::MOVSHDUP:
4570  case X86ISD::MOVSLDUP:
4571  case X86ISD::PALIGN:
4572    // Not yet implemented
4573    return false;
4574  default: llvm_unreachable("unknown target shuffle node");
4575  }
4576
4577  return true;
4578}
4579
4580/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4581/// element of the result of the vector shuffle.
4582static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4583                                   unsigned Depth) {
4584  if (Depth == 6)
4585    return SDValue();  // Limit search depth.
4586
4587  SDValue V = SDValue(N, 0);
4588  EVT VT = V.getValueType();
4589  unsigned Opcode = V.getOpcode();
4590
4591  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4592  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4593    int Elt = SV->getMaskElt(Index);
4594
4595    if (Elt < 0)
4596      return DAG.getUNDEF(VT.getVectorElementType());
4597
4598    unsigned NumElems = VT.getVectorNumElements();
4599    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4600                                         : SV->getOperand(1);
4601    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4602  }
4603
4604  // Recurse into target specific vector shuffles to find scalars.
4605  if (isTargetShuffle(Opcode)) {
4606    MVT ShufVT = V.getValueType().getSimpleVT();
4607    unsigned NumElems = ShufVT.getVectorNumElements();
4608    SmallVector<int, 16> ShuffleMask;
4609    SDValue ImmN;
4610    bool IsUnary;
4611
4612    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4613      return SDValue();
4614
4615    int Elt = ShuffleMask[Index];
4616    if (Elt < 0)
4617      return DAG.getUNDEF(ShufVT.getVectorElementType());
4618
4619    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4620                                         : N->getOperand(1);
4621    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4622                               Depth+1);
4623  }
4624
4625  // Actual nodes that may contain scalar elements
4626  if (Opcode == ISD::BITCAST) {
4627    V = V.getOperand(0);
4628    EVT SrcVT = V.getValueType();
4629    unsigned NumElems = VT.getVectorNumElements();
4630
4631    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4632      return SDValue();
4633  }
4634
4635  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4636    return (Index == 0) ? V.getOperand(0)
4637                        : DAG.getUNDEF(VT.getVectorElementType());
4638
4639  if (V.getOpcode() == ISD::BUILD_VECTOR)
4640    return V.getOperand(Index);
4641
4642  return SDValue();
4643}
4644
4645/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4646/// shuffle operation which come from a consecutively from a zero. The
4647/// search can start in two different directions, from left or right.
4648static
4649unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4650                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4651  unsigned i;
4652  for (i = 0; i != NumElems; ++i) {
4653    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4654    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4655    if (!(Elt.getNode() &&
4656         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4657      break;
4658  }
4659
4660  return i;
4661}
4662
4663/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4664/// correspond consecutively to elements from one of the vector operands,
4665/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4666static
4667bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4668                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4669                              unsigned NumElems, unsigned &OpNum) {
4670  bool SeenV1 = false;
4671  bool SeenV2 = false;
4672
4673  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4674    int Idx = SVOp->getMaskElt(i);
4675    // Ignore undef indicies
4676    if (Idx < 0)
4677      continue;
4678
4679    if (Idx < (int)NumElems)
4680      SeenV1 = true;
4681    else
4682      SeenV2 = true;
4683
4684    // Only accept consecutive elements from the same vector
4685    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4686      return false;
4687  }
4688
4689  OpNum = SeenV1 ? 0 : 1;
4690  return true;
4691}
4692
4693/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4694/// logical left shift of a vector.
4695static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4696                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4697  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4698  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4699              false /* check zeros from right */, DAG);
4700  unsigned OpSrc;
4701
4702  if (!NumZeros)
4703    return false;
4704
4705  // Considering the elements in the mask that are not consecutive zeros,
4706  // check if they consecutively come from only one of the source vectors.
4707  //
4708  //               V1 = {X, A, B, C}     0
4709  //                         \  \  \    /
4710  //   vector_shuffle V1, V2 <1, 2, 3, X>
4711  //
4712  if (!isShuffleMaskConsecutive(SVOp,
4713            0,                   // Mask Start Index
4714            NumElems-NumZeros,   // Mask End Index(exclusive)
4715            NumZeros,            // Where to start looking in the src vector
4716            NumElems,            // Number of elements in vector
4717            OpSrc))              // Which source operand ?
4718    return false;
4719
4720  isLeft = false;
4721  ShAmt = NumZeros;
4722  ShVal = SVOp->getOperand(OpSrc);
4723  return true;
4724}
4725
4726/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4727/// logical left shift of a vector.
4728static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4729                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4730  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4731  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4732              true /* check zeros from left */, DAG);
4733  unsigned OpSrc;
4734
4735  if (!NumZeros)
4736    return false;
4737
4738  // Considering the elements in the mask that are not consecutive zeros,
4739  // check if they consecutively come from only one of the source vectors.
4740  //
4741  //                           0    { A, B, X, X } = V2
4742  //                          / \    /  /
4743  //   vector_shuffle V1, V2 <X, X, 4, 5>
4744  //
4745  if (!isShuffleMaskConsecutive(SVOp,
4746            NumZeros,     // Mask Start Index
4747            NumElems,     // Mask End Index(exclusive)
4748            0,            // Where to start looking in the src vector
4749            NumElems,     // Number of elements in vector
4750            OpSrc))       // Which source operand ?
4751    return false;
4752
4753  isLeft = true;
4754  ShAmt = NumZeros;
4755  ShVal = SVOp->getOperand(OpSrc);
4756  return true;
4757}
4758
4759/// isVectorShift - Returns true if the shuffle can be implemented as a
4760/// logical left or right shift of a vector.
4761static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4762                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4763  // Although the logic below support any bitwidth size, there are no
4764  // shift instructions which handle more than 128-bit vectors.
4765  if (SVOp->getValueType(0).getSizeInBits() > 128)
4766    return false;
4767
4768  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4769      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4770    return true;
4771
4772  return false;
4773}
4774
4775/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4776///
4777static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4778                                       unsigned NumNonZero, unsigned NumZero,
4779                                       SelectionDAG &DAG,
4780                                       const X86Subtarget* Subtarget,
4781                                       const TargetLowering &TLI) {
4782  if (NumNonZero > 8)
4783    return SDValue();
4784
4785  DebugLoc dl = Op.getDebugLoc();
4786  SDValue V(0, 0);
4787  bool First = true;
4788  for (unsigned i = 0; i < 16; ++i) {
4789    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4790    if (ThisIsNonZero && First) {
4791      if (NumZero)
4792        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4793      else
4794        V = DAG.getUNDEF(MVT::v8i16);
4795      First = false;
4796    }
4797
4798    if ((i & 1) != 0) {
4799      SDValue ThisElt(0, 0), LastElt(0, 0);
4800      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4801      if (LastIsNonZero) {
4802        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4803                              MVT::i16, Op.getOperand(i-1));
4804      }
4805      if (ThisIsNonZero) {
4806        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4807        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4808                              ThisElt, DAG.getConstant(8, MVT::i8));
4809        if (LastIsNonZero)
4810          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4811      } else
4812        ThisElt = LastElt;
4813
4814      if (ThisElt.getNode())
4815        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4816                        DAG.getIntPtrConstant(i/2));
4817    }
4818  }
4819
4820  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4821}
4822
4823/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4824///
4825static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4826                                     unsigned NumNonZero, unsigned NumZero,
4827                                     SelectionDAG &DAG,
4828                                     const X86Subtarget* Subtarget,
4829                                     const TargetLowering &TLI) {
4830  if (NumNonZero > 4)
4831    return SDValue();
4832
4833  DebugLoc dl = Op.getDebugLoc();
4834  SDValue V(0, 0);
4835  bool First = true;
4836  for (unsigned i = 0; i < 8; ++i) {
4837    bool isNonZero = (NonZeros & (1 << i)) != 0;
4838    if (isNonZero) {
4839      if (First) {
4840        if (NumZero)
4841          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4842        else
4843          V = DAG.getUNDEF(MVT::v8i16);
4844        First = false;
4845      }
4846      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4847                      MVT::v8i16, V, Op.getOperand(i),
4848                      DAG.getIntPtrConstant(i));
4849    }
4850  }
4851
4852  return V;
4853}
4854
4855/// getVShift - Return a vector logical shift node.
4856///
4857static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4858                         unsigned NumBits, SelectionDAG &DAG,
4859                         const TargetLowering &TLI, DebugLoc dl) {
4860  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4861  EVT ShVT = MVT::v2i64;
4862  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4863  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4864  return DAG.getNode(ISD::BITCAST, dl, VT,
4865                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4866                             DAG.getConstant(NumBits,
4867                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4868}
4869
4870SDValue
4871X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4872                                          SelectionDAG &DAG) const {
4873
4874  // Check if the scalar load can be widened into a vector load. And if
4875  // the address is "base + cst" see if the cst can be "absorbed" into
4876  // the shuffle mask.
4877  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4878    SDValue Ptr = LD->getBasePtr();
4879    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4880      return SDValue();
4881    EVT PVT = LD->getValueType(0);
4882    if (PVT != MVT::i32 && PVT != MVT::f32)
4883      return SDValue();
4884
4885    int FI = -1;
4886    int64_t Offset = 0;
4887    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4888      FI = FINode->getIndex();
4889      Offset = 0;
4890    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4891               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4892      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4893      Offset = Ptr.getConstantOperandVal(1);
4894      Ptr = Ptr.getOperand(0);
4895    } else {
4896      return SDValue();
4897    }
4898
4899    // FIXME: 256-bit vector instructions don't require a strict alignment,
4900    // improve this code to support it better.
4901    unsigned RequiredAlign = VT.getSizeInBits()/8;
4902    SDValue Chain = LD->getChain();
4903    // Make sure the stack object alignment is at least 16 or 32.
4904    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4905    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4906      if (MFI->isFixedObjectIndex(FI)) {
4907        // Can't change the alignment. FIXME: It's possible to compute
4908        // the exact stack offset and reference FI + adjust offset instead.
4909        // If someone *really* cares about this. That's the way to implement it.
4910        return SDValue();
4911      } else {
4912        MFI->setObjectAlignment(FI, RequiredAlign);
4913      }
4914    }
4915
4916    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4917    // Ptr + (Offset & ~15).
4918    if (Offset < 0)
4919      return SDValue();
4920    if ((Offset % RequiredAlign) & 3)
4921      return SDValue();
4922    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4923    if (StartOffset)
4924      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4925                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4926
4927    int EltNo = (Offset - StartOffset) >> 2;
4928    unsigned NumElems = VT.getVectorNumElements();
4929
4930    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4931    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4932                             LD->getPointerInfo().getWithOffset(StartOffset),
4933                             false, false, false, 0);
4934
4935    SmallVector<int, 8> Mask;
4936    for (unsigned i = 0; i != NumElems; ++i)
4937      Mask.push_back(EltNo);
4938
4939    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4940  }
4941
4942  return SDValue();
4943}
4944
4945/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4946/// vector of type 'VT', see if the elements can be replaced by a single large
4947/// load which has the same value as a build_vector whose operands are 'elts'.
4948///
4949/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4950///
4951/// FIXME: we'd also like to handle the case where the last elements are zero
4952/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4953/// There's even a handy isZeroNode for that purpose.
4954static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4955                                        DebugLoc &DL, SelectionDAG &DAG) {
4956  EVT EltVT = VT.getVectorElementType();
4957  unsigned NumElems = Elts.size();
4958
4959  LoadSDNode *LDBase = NULL;
4960  unsigned LastLoadedElt = -1U;
4961
4962  // For each element in the initializer, see if we've found a load or an undef.
4963  // If we don't find an initial load element, or later load elements are
4964  // non-consecutive, bail out.
4965  for (unsigned i = 0; i < NumElems; ++i) {
4966    SDValue Elt = Elts[i];
4967
4968    if (!Elt.getNode() ||
4969        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4970      return SDValue();
4971    if (!LDBase) {
4972      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4973        return SDValue();
4974      LDBase = cast<LoadSDNode>(Elt.getNode());
4975      LastLoadedElt = i;
4976      continue;
4977    }
4978    if (Elt.getOpcode() == ISD::UNDEF)
4979      continue;
4980
4981    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4982    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4983      return SDValue();
4984    LastLoadedElt = i;
4985  }
4986
4987  // If we have found an entire vector of loads and undefs, then return a large
4988  // load of the entire vector width starting at the base pointer.  If we found
4989  // consecutive loads for the low half, generate a vzext_load node.
4990  if (LastLoadedElt == NumElems - 1) {
4991    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4992      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4993                         LDBase->getPointerInfo(),
4994                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4995                         LDBase->isInvariant(), 0);
4996    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4997                       LDBase->getPointerInfo(),
4998                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4999                       LDBase->isInvariant(), LDBase->getAlignment());
5000  }
5001  if (NumElems == 4 && LastLoadedElt == 1 &&
5002      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5003    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5004    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5005    SDValue ResNode =
5006        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5007                                LDBase->getPointerInfo(),
5008                                LDBase->getAlignment(),
5009                                false/*isVolatile*/, true/*ReadMem*/,
5010                                false/*WriteMem*/);
5011    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5012  }
5013  return SDValue();
5014}
5015
5016/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
5017/// to generate a splat value for the following cases:
5018/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
5019/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
5020/// a scalar load, or a constant.
5021/// The VBROADCAST node is returned when a pattern is found,
5022/// or SDValue() otherwise.
5023SDValue
5024X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
5025  if (!Subtarget->hasAVX())
5026    return SDValue();
5027
5028  EVT VT = Op.getValueType();
5029  DebugLoc dl = Op.getDebugLoc();
5030
5031  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5032         "Unsupported vector type for broadcast.");
5033
5034  SDValue Ld;
5035  bool ConstSplatVal;
5036
5037  switch (Op.getOpcode()) {
5038    default:
5039      // Unknown pattern found.
5040      return SDValue();
5041
5042    case ISD::BUILD_VECTOR: {
5043      // The BUILD_VECTOR node must be a splat.
5044      if (!isSplatVector(Op.getNode()))
5045        return SDValue();
5046
5047      Ld = Op.getOperand(0);
5048      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5049                     Ld.getOpcode() == ISD::ConstantFP);
5050
5051      // The suspected load node has several users. Make sure that all
5052      // of its users are from the BUILD_VECTOR node.
5053      // Constants may have multiple users.
5054      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5055        return SDValue();
5056      break;
5057    }
5058
5059    case ISD::VECTOR_SHUFFLE: {
5060      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5061
5062      // Shuffles must have a splat mask where the first element is
5063      // broadcasted.
5064      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5065        return SDValue();
5066
5067      SDValue Sc = Op.getOperand(0);
5068      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5069          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5070
5071        if (!Subtarget->hasAVX2())
5072          return SDValue();
5073
5074        // Use the register form of the broadcast instruction available on AVX2.
5075        if (VT.is256BitVector())
5076          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5077        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5078      }
5079
5080      Ld = Sc.getOperand(0);
5081      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5082                       Ld.getOpcode() == ISD::ConstantFP);
5083
5084      // The scalar_to_vector node and the suspected
5085      // load node must have exactly one user.
5086      // Constants may have multiple users.
5087      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5088        return SDValue();
5089      break;
5090    }
5091  }
5092
5093  bool Is256 = VT.getSizeInBits() == 256;
5094
5095  // Handle the broadcasting a single constant scalar from the constant pool
5096  // into a vector. On Sandybridge it is still better to load a constant vector
5097  // from the constant pool and not to broadcast it from a scalar.
5098  if (ConstSplatVal && Subtarget->hasAVX2()) {
5099    EVT CVT = Ld.getValueType();
5100    assert(!CVT.isVector() && "Must not broadcast a vector type");
5101    unsigned ScalarSize = CVT.getSizeInBits();
5102
5103    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5104      const Constant *C = 0;
5105      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5106        C = CI->getConstantIntValue();
5107      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5108        C = CF->getConstantFPValue();
5109
5110      assert(C && "Invalid constant type");
5111
5112      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5113      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5114      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5115                       MachinePointerInfo::getConstantPool(),
5116                       false, false, false, Alignment);
5117
5118      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5119    }
5120  }
5121
5122  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5123  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5124
5125  // Handle AVX2 in-register broadcasts.
5126  if (!IsLoad && Subtarget->hasAVX2() &&
5127      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5128    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5129
5130  // The scalar source must be a normal load.
5131  if (!IsLoad)
5132    return SDValue();
5133
5134  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5135    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5136
5137  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5138  // double since there is no vbroadcastsd xmm
5139  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5140    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5141      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5142  }
5143
5144  // Unsupported broadcast.
5145  return SDValue();
5146}
5147
5148SDValue
5149X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5150  DebugLoc dl = Op.getDebugLoc();
5151
5152  EVT VT = Op.getValueType();
5153  EVT ExtVT = VT.getVectorElementType();
5154  unsigned NumElems = Op.getNumOperands();
5155
5156  // Vectors containing all zeros can be matched by pxor and xorps later
5157  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5158    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5159    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5160    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5161      return Op;
5162
5163    return getZeroVector(VT, Subtarget, DAG, dl);
5164  }
5165
5166  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5167  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5168  // vpcmpeqd on 256-bit vectors.
5169  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5170    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5171      return Op;
5172
5173    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5174  }
5175
5176  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5177  if (Broadcast.getNode())
5178    return Broadcast;
5179
5180  unsigned EVTBits = ExtVT.getSizeInBits();
5181
5182  unsigned NumZero  = 0;
5183  unsigned NumNonZero = 0;
5184  unsigned NonZeros = 0;
5185  bool IsAllConstants = true;
5186  SmallSet<SDValue, 8> Values;
5187  for (unsigned i = 0; i < NumElems; ++i) {
5188    SDValue Elt = Op.getOperand(i);
5189    if (Elt.getOpcode() == ISD::UNDEF)
5190      continue;
5191    Values.insert(Elt);
5192    if (Elt.getOpcode() != ISD::Constant &&
5193        Elt.getOpcode() != ISD::ConstantFP)
5194      IsAllConstants = false;
5195    if (X86::isZeroNode(Elt))
5196      NumZero++;
5197    else {
5198      NonZeros |= (1 << i);
5199      NumNonZero++;
5200    }
5201  }
5202
5203  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5204  if (NumNonZero == 0)
5205    return DAG.getUNDEF(VT);
5206
5207  // Special case for single non-zero, non-undef, element.
5208  if (NumNonZero == 1) {
5209    unsigned Idx = CountTrailingZeros_32(NonZeros);
5210    SDValue Item = Op.getOperand(Idx);
5211
5212    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5213    // the value are obviously zero, truncate the value to i32 and do the
5214    // insertion that way.  Only do this if the value is non-constant or if the
5215    // value is a constant being inserted into element 0.  It is cheaper to do
5216    // a constant pool load than it is to do a movd + shuffle.
5217    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5218        (!IsAllConstants || Idx == 0)) {
5219      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5220        // Handle SSE only.
5221        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5222        EVT VecVT = MVT::v4i32;
5223        unsigned VecElts = 4;
5224
5225        // Truncate the value (which may itself be a constant) to i32, and
5226        // convert it to a vector with movd (S2V+shuffle to zero extend).
5227        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5228        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5229        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5230
5231        // Now we have our 32-bit value zero extended in the low element of
5232        // a vector.  If Idx != 0, swizzle it into place.
5233        if (Idx != 0) {
5234          SmallVector<int, 4> Mask;
5235          Mask.push_back(Idx);
5236          for (unsigned i = 1; i != VecElts; ++i)
5237            Mask.push_back(i);
5238          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5239                                      &Mask[0]);
5240        }
5241        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5242      }
5243    }
5244
5245    // If we have a constant or non-constant insertion into the low element of
5246    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5247    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5248    // depending on what the source datatype is.
5249    if (Idx == 0) {
5250      if (NumZero == 0)
5251        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5252
5253      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5254          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5255        if (VT.getSizeInBits() == 256) {
5256          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5257          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5258                             Item, DAG.getIntPtrConstant(0));
5259        }
5260        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5261        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5262        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5263        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5264      }
5265
5266      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5267        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5268        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5269        if (VT.getSizeInBits() == 256) {
5270          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5271          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5272        } else {
5273          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5274          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5275        }
5276        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5277      }
5278    }
5279
5280    // Is it a vector logical left shift?
5281    if (NumElems == 2 && Idx == 1 &&
5282        X86::isZeroNode(Op.getOperand(0)) &&
5283        !X86::isZeroNode(Op.getOperand(1))) {
5284      unsigned NumBits = VT.getSizeInBits();
5285      return getVShift(true, VT,
5286                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5287                                   VT, Op.getOperand(1)),
5288                       NumBits/2, DAG, *this, dl);
5289    }
5290
5291    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5292      return SDValue();
5293
5294    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5295    // is a non-constant being inserted into an element other than the low one,
5296    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5297    // movd/movss) to move this into the low element, then shuffle it into
5298    // place.
5299    if (EVTBits == 32) {
5300      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5301
5302      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5303      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5304      SmallVector<int, 8> MaskVec;
5305      for (unsigned i = 0; i != NumElems; ++i)
5306        MaskVec.push_back(i == Idx ? 0 : 1);
5307      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5308    }
5309  }
5310
5311  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5312  if (Values.size() == 1) {
5313    if (EVTBits == 32) {
5314      // Instead of a shuffle like this:
5315      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5316      // Check if it's possible to issue this instead.
5317      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5318      unsigned Idx = CountTrailingZeros_32(NonZeros);
5319      SDValue Item = Op.getOperand(Idx);
5320      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5321        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5322    }
5323    return SDValue();
5324  }
5325
5326  // A vector full of immediates; various special cases are already
5327  // handled, so this is best done with a single constant-pool load.
5328  if (IsAllConstants)
5329    return SDValue();
5330
5331  // For AVX-length vectors, build the individual 128-bit pieces and use
5332  // shuffles to put them in place.
5333  if (VT.getSizeInBits() == 256) {
5334    SmallVector<SDValue, 32> V;
5335    for (unsigned i = 0; i != NumElems; ++i)
5336      V.push_back(Op.getOperand(i));
5337
5338    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5339
5340    // Build both the lower and upper subvector.
5341    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5342    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5343                                NumElems/2);
5344
5345    // Recreate the wider vector with the lower and upper part.
5346    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5347  }
5348
5349  // Let legalizer expand 2-wide build_vectors.
5350  if (EVTBits == 64) {
5351    if (NumNonZero == 1) {
5352      // One half is zero or undef.
5353      unsigned Idx = CountTrailingZeros_32(NonZeros);
5354      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5355                                 Op.getOperand(Idx));
5356      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5357    }
5358    return SDValue();
5359  }
5360
5361  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5362  if (EVTBits == 8 && NumElems == 16) {
5363    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5364                                        Subtarget, *this);
5365    if (V.getNode()) return V;
5366  }
5367
5368  if (EVTBits == 16 && NumElems == 8) {
5369    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5370                                      Subtarget, *this);
5371    if (V.getNode()) return V;
5372  }
5373
5374  // If element VT is == 32 bits, turn it into a number of shuffles.
5375  SmallVector<SDValue, 8> V(NumElems);
5376  if (NumElems == 4 && NumZero > 0) {
5377    for (unsigned i = 0; i < 4; ++i) {
5378      bool isZero = !(NonZeros & (1 << i));
5379      if (isZero)
5380        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5381      else
5382        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5383    }
5384
5385    for (unsigned i = 0; i < 2; ++i) {
5386      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5387        default: break;
5388        case 0:
5389          V[i] = V[i*2];  // Must be a zero vector.
5390          break;
5391        case 1:
5392          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5393          break;
5394        case 2:
5395          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5396          break;
5397        case 3:
5398          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5399          break;
5400      }
5401    }
5402
5403    bool Reverse1 = (NonZeros & 0x3) == 2;
5404    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5405    int MaskVec[] = {
5406      Reverse1 ? 1 : 0,
5407      Reverse1 ? 0 : 1,
5408      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5409      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5410    };
5411    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5412  }
5413
5414  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5415    // Check for a build vector of consecutive loads.
5416    for (unsigned i = 0; i < NumElems; ++i)
5417      V[i] = Op.getOperand(i);
5418
5419    // Check for elements which are consecutive loads.
5420    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5421    if (LD.getNode())
5422      return LD;
5423
5424    // For SSE 4.1, use insertps to put the high elements into the low element.
5425    if (getSubtarget()->hasSSE41()) {
5426      SDValue Result;
5427      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5428        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5429      else
5430        Result = DAG.getUNDEF(VT);
5431
5432      for (unsigned i = 1; i < NumElems; ++i) {
5433        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5434        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5435                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5436      }
5437      return Result;
5438    }
5439
5440    // Otherwise, expand into a number of unpckl*, start by extending each of
5441    // our (non-undef) elements to the full vector width with the element in the
5442    // bottom slot of the vector (which generates no code for SSE).
5443    for (unsigned i = 0; i < NumElems; ++i) {
5444      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5445        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5446      else
5447        V[i] = DAG.getUNDEF(VT);
5448    }
5449
5450    // Next, we iteratively mix elements, e.g. for v4f32:
5451    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5452    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5453    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5454    unsigned EltStride = NumElems >> 1;
5455    while (EltStride != 0) {
5456      for (unsigned i = 0; i < EltStride; ++i) {
5457        // If V[i+EltStride] is undef and this is the first round of mixing,
5458        // then it is safe to just drop this shuffle: V[i] is already in the
5459        // right place, the one element (since it's the first round) being
5460        // inserted as undef can be dropped.  This isn't safe for successive
5461        // rounds because they will permute elements within both vectors.
5462        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5463            EltStride == NumElems/2)
5464          continue;
5465
5466        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5467      }
5468      EltStride >>= 1;
5469    }
5470    return V[0];
5471  }
5472  return SDValue();
5473}
5474
5475// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5476// them in a MMX register.  This is better than doing a stack convert.
5477static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5478  DebugLoc dl = Op.getDebugLoc();
5479  EVT ResVT = Op.getValueType();
5480
5481  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5482         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5483  int Mask[2];
5484  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5485  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5486  InVec = Op.getOperand(1);
5487  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5488    unsigned NumElts = ResVT.getVectorNumElements();
5489    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5490    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5491                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5492  } else {
5493    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5494    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5495    Mask[0] = 0; Mask[1] = 2;
5496    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5497  }
5498  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5499}
5500
5501// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5502// to create 256-bit vectors from two other 128-bit ones.
5503static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5504  DebugLoc dl = Op.getDebugLoc();
5505  EVT ResVT = Op.getValueType();
5506
5507  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5508
5509  SDValue V1 = Op.getOperand(0);
5510  SDValue V2 = Op.getOperand(1);
5511  unsigned NumElems = ResVT.getVectorNumElements();
5512
5513  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5514}
5515
5516SDValue
5517X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5518  EVT ResVT = Op.getValueType();
5519
5520  assert(Op.getNumOperands() == 2);
5521  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5522         "Unsupported CONCAT_VECTORS for value type");
5523
5524  // We support concatenate two MMX registers and place them in a MMX register.
5525  // This is better than doing a stack convert.
5526  if (ResVT.is128BitVector())
5527    return LowerMMXCONCAT_VECTORS(Op, DAG);
5528
5529  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5530  // from two other 128-bit ones.
5531  return LowerAVXCONCAT_VECTORS(Op, DAG);
5532}
5533
5534// Try to lower a shuffle node into a simple blend instruction.
5535static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5536                                          const X86Subtarget *Subtarget,
5537                                          SelectionDAG &DAG) {
5538  SDValue V1 = SVOp->getOperand(0);
5539  SDValue V2 = SVOp->getOperand(1);
5540  DebugLoc dl = SVOp->getDebugLoc();
5541  MVT VT = SVOp->getValueType(0).getSimpleVT();
5542  unsigned NumElems = VT.getVectorNumElements();
5543
5544  if (!Subtarget->hasSSE41())
5545    return SDValue();
5546
5547  unsigned ISDNo = 0;
5548  MVT OpTy;
5549
5550  switch (VT.SimpleTy) {
5551  default: return SDValue();
5552  case MVT::v8i16:
5553    ISDNo = X86ISD::BLENDPW;
5554    OpTy = MVT::v8i16;
5555    break;
5556  case MVT::v4i32:
5557  case MVT::v4f32:
5558    ISDNo = X86ISD::BLENDPS;
5559    OpTy = MVT::v4f32;
5560    break;
5561  case MVT::v2i64:
5562  case MVT::v2f64:
5563    ISDNo = X86ISD::BLENDPD;
5564    OpTy = MVT::v2f64;
5565    break;
5566  case MVT::v8i32:
5567  case MVT::v8f32:
5568    if (!Subtarget->hasAVX())
5569      return SDValue();
5570    ISDNo = X86ISD::BLENDPS;
5571    OpTy = MVT::v8f32;
5572    break;
5573  case MVT::v4i64:
5574  case MVT::v4f64:
5575    if (!Subtarget->hasAVX())
5576      return SDValue();
5577    ISDNo = X86ISD::BLENDPD;
5578    OpTy = MVT::v4f64;
5579    break;
5580  }
5581  assert(ISDNo && "Invalid Op Number");
5582
5583  unsigned MaskVals = 0;
5584
5585  for (unsigned i = 0; i != NumElems; ++i) {
5586    int EltIdx = SVOp->getMaskElt(i);
5587    if (EltIdx == (int)i || EltIdx < 0)
5588      MaskVals |= (1<<i);
5589    else if (EltIdx == (int)(i + NumElems))
5590      continue; // Bit is set to zero;
5591    else
5592      return SDValue();
5593  }
5594
5595  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5596  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5597  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5598                             DAG.getConstant(MaskVals, MVT::i32));
5599  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5600}
5601
5602// v8i16 shuffles - Prefer shuffles in the following order:
5603// 1. [all]   pshuflw, pshufhw, optional move
5604// 2. [ssse3] 1 x pshufb
5605// 3. [ssse3] 2 x pshufb + 1 x por
5606// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5607SDValue
5608X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5609                                            SelectionDAG &DAG) const {
5610  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5611  SDValue V1 = SVOp->getOperand(0);
5612  SDValue V2 = SVOp->getOperand(1);
5613  DebugLoc dl = SVOp->getDebugLoc();
5614  SmallVector<int, 8> MaskVals;
5615
5616  // Determine if more than 1 of the words in each of the low and high quadwords
5617  // of the result come from the same quadword of one of the two inputs.  Undef
5618  // mask values count as coming from any quadword, for better codegen.
5619  unsigned LoQuad[] = { 0, 0, 0, 0 };
5620  unsigned HiQuad[] = { 0, 0, 0, 0 };
5621  std::bitset<4> InputQuads;
5622  for (unsigned i = 0; i < 8; ++i) {
5623    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5624    int EltIdx = SVOp->getMaskElt(i);
5625    MaskVals.push_back(EltIdx);
5626    if (EltIdx < 0) {
5627      ++Quad[0];
5628      ++Quad[1];
5629      ++Quad[2];
5630      ++Quad[3];
5631      continue;
5632    }
5633    ++Quad[EltIdx / 4];
5634    InputQuads.set(EltIdx / 4);
5635  }
5636
5637  int BestLoQuad = -1;
5638  unsigned MaxQuad = 1;
5639  for (unsigned i = 0; i < 4; ++i) {
5640    if (LoQuad[i] > MaxQuad) {
5641      BestLoQuad = i;
5642      MaxQuad = LoQuad[i];
5643    }
5644  }
5645
5646  int BestHiQuad = -1;
5647  MaxQuad = 1;
5648  for (unsigned i = 0; i < 4; ++i) {
5649    if (HiQuad[i] > MaxQuad) {
5650      BestHiQuad = i;
5651      MaxQuad = HiQuad[i];
5652    }
5653  }
5654
5655  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5656  // of the two input vectors, shuffle them into one input vector so only a
5657  // single pshufb instruction is necessary. If There are more than 2 input
5658  // quads, disable the next transformation since it does not help SSSE3.
5659  bool V1Used = InputQuads[0] || InputQuads[1];
5660  bool V2Used = InputQuads[2] || InputQuads[3];
5661  if (Subtarget->hasSSSE3()) {
5662    if (InputQuads.count() == 2 && V1Used && V2Used) {
5663      BestLoQuad = InputQuads[0] ? 0 : 1;
5664      BestHiQuad = InputQuads[2] ? 2 : 3;
5665    }
5666    if (InputQuads.count() > 2) {
5667      BestLoQuad = -1;
5668      BestHiQuad = -1;
5669    }
5670  }
5671
5672  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5673  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5674  // words from all 4 input quadwords.
5675  SDValue NewV;
5676  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5677    int MaskV[] = {
5678      BestLoQuad < 0 ? 0 : BestLoQuad,
5679      BestHiQuad < 0 ? 1 : BestHiQuad
5680    };
5681    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5682                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5683                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5684    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5685
5686    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5687    // source words for the shuffle, to aid later transformations.
5688    bool AllWordsInNewV = true;
5689    bool InOrder[2] = { true, true };
5690    for (unsigned i = 0; i != 8; ++i) {
5691      int idx = MaskVals[i];
5692      if (idx != (int)i)
5693        InOrder[i/4] = false;
5694      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5695        continue;
5696      AllWordsInNewV = false;
5697      break;
5698    }
5699
5700    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5701    if (AllWordsInNewV) {
5702      for (int i = 0; i != 8; ++i) {
5703        int idx = MaskVals[i];
5704        if (idx < 0)
5705          continue;
5706        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5707        if ((idx != i) && idx < 4)
5708          pshufhw = false;
5709        if ((idx != i) && idx > 3)
5710          pshuflw = false;
5711      }
5712      V1 = NewV;
5713      V2Used = false;
5714      BestLoQuad = 0;
5715      BestHiQuad = 1;
5716    }
5717
5718    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5719    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5720    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5721      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5722      unsigned TargetMask = 0;
5723      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5724                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5725      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5726      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5727                             getShufflePSHUFLWImmediate(SVOp);
5728      V1 = NewV.getOperand(0);
5729      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5730    }
5731  }
5732
5733  // If we have SSSE3, and all words of the result are from 1 input vector,
5734  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5735  // is present, fall back to case 4.
5736  if (Subtarget->hasSSSE3()) {
5737    SmallVector<SDValue,16> pshufbMask;
5738
5739    // If we have elements from both input vectors, set the high bit of the
5740    // shuffle mask element to zero out elements that come from V2 in the V1
5741    // mask, and elements that come from V1 in the V2 mask, so that the two
5742    // results can be OR'd together.
5743    bool TwoInputs = V1Used && V2Used;
5744    for (unsigned i = 0; i != 8; ++i) {
5745      int EltIdx = MaskVals[i] * 2;
5746      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5747      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5748      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5749      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5750    }
5751    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5752    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5753                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5754                                 MVT::v16i8, &pshufbMask[0], 16));
5755    if (!TwoInputs)
5756      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5757
5758    // Calculate the shuffle mask for the second input, shuffle it, and
5759    // OR it with the first shuffled input.
5760    pshufbMask.clear();
5761    for (unsigned i = 0; i != 8; ++i) {
5762      int EltIdx = MaskVals[i] * 2;
5763      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5764      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5765      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5766      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5767    }
5768    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5769    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5770                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5771                                 MVT::v16i8, &pshufbMask[0], 16));
5772    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5773    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5774  }
5775
5776  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5777  // and update MaskVals with new element order.
5778  std::bitset<8> InOrder;
5779  if (BestLoQuad >= 0) {
5780    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5781    for (int i = 0; i != 4; ++i) {
5782      int idx = MaskVals[i];
5783      if (idx < 0) {
5784        InOrder.set(i);
5785      } else if ((idx / 4) == BestLoQuad) {
5786        MaskV[i] = idx & 3;
5787        InOrder.set(i);
5788      }
5789    }
5790    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5791                                &MaskV[0]);
5792
5793    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5794      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5795      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5796                                  NewV.getOperand(0),
5797                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5798    }
5799  }
5800
5801  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5802  // and update MaskVals with the new element order.
5803  if (BestHiQuad >= 0) {
5804    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5805    for (unsigned i = 4; i != 8; ++i) {
5806      int idx = MaskVals[i];
5807      if (idx < 0) {
5808        InOrder.set(i);
5809      } else if ((idx / 4) == BestHiQuad) {
5810        MaskV[i] = (idx & 3) + 4;
5811        InOrder.set(i);
5812      }
5813    }
5814    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5815                                &MaskV[0]);
5816
5817    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5818      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5819      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5820                                  NewV.getOperand(0),
5821                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5822    }
5823  }
5824
5825  // In case BestHi & BestLo were both -1, which means each quadword has a word
5826  // from each of the four input quadwords, calculate the InOrder bitvector now
5827  // before falling through to the insert/extract cleanup.
5828  if (BestLoQuad == -1 && BestHiQuad == -1) {
5829    NewV = V1;
5830    for (int i = 0; i != 8; ++i)
5831      if (MaskVals[i] < 0 || MaskVals[i] == i)
5832        InOrder.set(i);
5833  }
5834
5835  // The other elements are put in the right place using pextrw and pinsrw.
5836  for (unsigned i = 0; i != 8; ++i) {
5837    if (InOrder[i])
5838      continue;
5839    int EltIdx = MaskVals[i];
5840    if (EltIdx < 0)
5841      continue;
5842    SDValue ExtOp = (EltIdx < 8) ?
5843      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5844                  DAG.getIntPtrConstant(EltIdx)) :
5845      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5846                  DAG.getIntPtrConstant(EltIdx - 8));
5847    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5848                       DAG.getIntPtrConstant(i));
5849  }
5850  return NewV;
5851}
5852
5853// v16i8 shuffles - Prefer shuffles in the following order:
5854// 1. [ssse3] 1 x pshufb
5855// 2. [ssse3] 2 x pshufb + 1 x por
5856// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5857static
5858SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5859                                 SelectionDAG &DAG,
5860                                 const X86TargetLowering &TLI) {
5861  SDValue V1 = SVOp->getOperand(0);
5862  SDValue V2 = SVOp->getOperand(1);
5863  DebugLoc dl = SVOp->getDebugLoc();
5864  ArrayRef<int> MaskVals = SVOp->getMask();
5865
5866  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5867
5868  // If we have SSSE3, case 1 is generated when all result bytes come from
5869  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5870  // present, fall back to case 3.
5871
5872  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5873  if (TLI.getSubtarget()->hasSSSE3()) {
5874    SmallVector<SDValue,16> pshufbMask;
5875
5876    // If all result elements are from one input vector, then only translate
5877    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5878    //
5879    // Otherwise, we have elements from both input vectors, and must zero out
5880    // elements that come from V2 in the first mask, and V1 in the second mask
5881    // so that we can OR them together.
5882    for (unsigned i = 0; i != 16; ++i) {
5883      int EltIdx = MaskVals[i];
5884      if (EltIdx < 0 || EltIdx >= 16)
5885        EltIdx = 0x80;
5886      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5887    }
5888    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5889                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5890                                 MVT::v16i8, &pshufbMask[0], 16));
5891    if (V2IsUndef)
5892      return V1;
5893
5894    // Calculate the shuffle mask for the second input, shuffle it, and
5895    // OR it with the first shuffled input.
5896    pshufbMask.clear();
5897    for (unsigned i = 0; i != 16; ++i) {
5898      int EltIdx = MaskVals[i];
5899      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5900      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5901    }
5902    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5903                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5904                                 MVT::v16i8, &pshufbMask[0], 16));
5905    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5906  }
5907
5908  // No SSSE3 - Calculate in place words and then fix all out of place words
5909  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5910  // the 16 different words that comprise the two doublequadword input vectors.
5911  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5912  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5913  SDValue NewV = V1;
5914  for (int i = 0; i != 8; ++i) {
5915    int Elt0 = MaskVals[i*2];
5916    int Elt1 = MaskVals[i*2+1];
5917
5918    // This word of the result is all undef, skip it.
5919    if (Elt0 < 0 && Elt1 < 0)
5920      continue;
5921
5922    // This word of the result is already in the correct place, skip it.
5923    if ((Elt0 == i*2) && (Elt1 == i*2+1))
5924      continue;
5925
5926    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5927    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5928    SDValue InsElt;
5929
5930    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5931    // using a single extract together, load it and store it.
5932    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5933      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5934                           DAG.getIntPtrConstant(Elt1 / 2));
5935      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5936                        DAG.getIntPtrConstant(i));
5937      continue;
5938    }
5939
5940    // If Elt1 is defined, extract it from the appropriate source.  If the
5941    // source byte is not also odd, shift the extracted word left 8 bits
5942    // otherwise clear the bottom 8 bits if we need to do an or.
5943    if (Elt1 >= 0) {
5944      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5945                           DAG.getIntPtrConstant(Elt1 / 2));
5946      if ((Elt1 & 1) == 0)
5947        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5948                             DAG.getConstant(8,
5949                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5950      else if (Elt0 >= 0)
5951        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5952                             DAG.getConstant(0xFF00, MVT::i16));
5953    }
5954    // If Elt0 is defined, extract it from the appropriate source.  If the
5955    // source byte is not also even, shift the extracted word right 8 bits. If
5956    // Elt1 was also defined, OR the extracted values together before
5957    // inserting them in the result.
5958    if (Elt0 >= 0) {
5959      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5960                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5961      if ((Elt0 & 1) != 0)
5962        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5963                              DAG.getConstant(8,
5964                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5965      else if (Elt1 >= 0)
5966        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5967                             DAG.getConstant(0x00FF, MVT::i16));
5968      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5969                         : InsElt0;
5970    }
5971    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5972                       DAG.getIntPtrConstant(i));
5973  }
5974  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5975}
5976
5977/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5978/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5979/// done when every pair / quad of shuffle mask elements point to elements in
5980/// the right sequence. e.g.
5981/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5982static
5983SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5984                                 SelectionDAG &DAG, DebugLoc dl) {
5985  MVT VT = SVOp->getValueType(0).getSimpleVT();
5986  unsigned NumElems = VT.getVectorNumElements();
5987  MVT NewVT;
5988  unsigned Scale;
5989  switch (VT.SimpleTy) {
5990  default: llvm_unreachable("Unexpected!");
5991  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
5992  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
5993  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
5994  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
5995  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
5996  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
5997  }
5998
5999  SmallVector<int, 8> MaskVec;
6000  for (unsigned i = 0; i != NumElems; i += Scale) {
6001    int StartIdx = -1;
6002    for (unsigned j = 0; j != Scale; ++j) {
6003      int EltIdx = SVOp->getMaskElt(i+j);
6004      if (EltIdx < 0)
6005        continue;
6006      if (StartIdx < 0)
6007        StartIdx = (EltIdx / Scale);
6008      if (EltIdx != (int)(StartIdx*Scale + j))
6009        return SDValue();
6010    }
6011    MaskVec.push_back(StartIdx);
6012  }
6013
6014  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6015  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6016  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6017}
6018
6019/// getVZextMovL - Return a zero-extending vector move low node.
6020///
6021static SDValue getVZextMovL(EVT VT, EVT OpVT,
6022                            SDValue SrcOp, SelectionDAG &DAG,
6023                            const X86Subtarget *Subtarget, DebugLoc dl) {
6024  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6025    LoadSDNode *LD = NULL;
6026    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6027      LD = dyn_cast<LoadSDNode>(SrcOp);
6028    if (!LD) {
6029      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6030      // instead.
6031      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6032      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6033          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6034          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6035          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6036        // PR2108
6037        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6038        return DAG.getNode(ISD::BITCAST, dl, VT,
6039                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6040                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6041                                                   OpVT,
6042                                                   SrcOp.getOperand(0)
6043                                                          .getOperand(0))));
6044      }
6045    }
6046  }
6047
6048  return DAG.getNode(ISD::BITCAST, dl, VT,
6049                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6050                                 DAG.getNode(ISD::BITCAST, dl,
6051                                             OpVT, SrcOp)));
6052}
6053
6054/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6055/// which could not be matched by any known target speficic shuffle
6056static SDValue
6057LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6058
6059  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6060  if (NewOp.getNode())
6061    return NewOp;
6062
6063  EVT VT = SVOp->getValueType(0);
6064
6065  unsigned NumElems = VT.getVectorNumElements();
6066  unsigned NumLaneElems = NumElems / 2;
6067
6068  DebugLoc dl = SVOp->getDebugLoc();
6069  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6070  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6071  SDValue Output[2];
6072
6073  SmallVector<int, 16> Mask;
6074  for (unsigned l = 0; l < 2; ++l) {
6075    // Build a shuffle mask for the output, discovering on the fly which
6076    // input vectors to use as shuffle operands (recorded in InputUsed).
6077    // If building a suitable shuffle vector proves too hard, then bail
6078    // out with UseBuildVector set.
6079    bool UseBuildVector = false;
6080    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6081    unsigned LaneStart = l * NumLaneElems;
6082    for (unsigned i = 0; i != NumLaneElems; ++i) {
6083      // The mask element.  This indexes into the input.
6084      int Idx = SVOp->getMaskElt(i+LaneStart);
6085      if (Idx < 0) {
6086        // the mask element does not index into any input vector.
6087        Mask.push_back(-1);
6088        continue;
6089      }
6090
6091      // The input vector this mask element indexes into.
6092      int Input = Idx / NumLaneElems;
6093
6094      // Turn the index into an offset from the start of the input vector.
6095      Idx -= Input * NumLaneElems;
6096
6097      // Find or create a shuffle vector operand to hold this input.
6098      unsigned OpNo;
6099      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6100        if (InputUsed[OpNo] == Input)
6101          // This input vector is already an operand.
6102          break;
6103        if (InputUsed[OpNo] < 0) {
6104          // Create a new operand for this input vector.
6105          InputUsed[OpNo] = Input;
6106          break;
6107        }
6108      }
6109
6110      if (OpNo >= array_lengthof(InputUsed)) {
6111        // More than two input vectors used!  Give up on trying to create a
6112        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6113        UseBuildVector = true;
6114        break;
6115      }
6116
6117      // Add the mask index for the new shuffle vector.
6118      Mask.push_back(Idx + OpNo * NumLaneElems);
6119    }
6120
6121    if (UseBuildVector) {
6122      SmallVector<SDValue, 16> SVOps;
6123      for (unsigned i = 0; i != NumLaneElems; ++i) {
6124        // The mask element.  This indexes into the input.
6125        int Idx = SVOp->getMaskElt(i+LaneStart);
6126        if (Idx < 0) {
6127          SVOps.push_back(DAG.getUNDEF(EltVT));
6128          continue;
6129        }
6130
6131        // The input vector this mask element indexes into.
6132        int Input = Idx / NumElems;
6133
6134        // Turn the index into an offset from the start of the input vector.
6135        Idx -= Input * NumElems;
6136
6137        // Extract the vector element by hand.
6138        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6139                                    SVOp->getOperand(Input),
6140                                    DAG.getIntPtrConstant(Idx)));
6141      }
6142
6143      // Construct the output using a BUILD_VECTOR.
6144      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6145                              SVOps.size());
6146    } else if (InputUsed[0] < 0) {
6147      // No input vectors were used! The result is undefined.
6148      Output[l] = DAG.getUNDEF(NVT);
6149    } else {
6150      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6151                                        (InputUsed[0] % 2) * NumLaneElems,
6152                                        DAG, dl);
6153      // If only one input was used, use an undefined vector for the other.
6154      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6155        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6156                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6157      // At least one input vector was used. Create a new shuffle vector.
6158      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6159    }
6160
6161    Mask.clear();
6162  }
6163
6164  // Concatenate the result back
6165  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6166}
6167
6168/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6169/// 4 elements, and match them with several different shuffle types.
6170static SDValue
6171LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6172  SDValue V1 = SVOp->getOperand(0);
6173  SDValue V2 = SVOp->getOperand(1);
6174  DebugLoc dl = SVOp->getDebugLoc();
6175  EVT VT = SVOp->getValueType(0);
6176
6177  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6178
6179  std::pair<int, int> Locs[4];
6180  int Mask1[] = { -1, -1, -1, -1 };
6181  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6182
6183  unsigned NumHi = 0;
6184  unsigned NumLo = 0;
6185  for (unsigned i = 0; i != 4; ++i) {
6186    int Idx = PermMask[i];
6187    if (Idx < 0) {
6188      Locs[i] = std::make_pair(-1, -1);
6189    } else {
6190      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6191      if (Idx < 4) {
6192        Locs[i] = std::make_pair(0, NumLo);
6193        Mask1[NumLo] = Idx;
6194        NumLo++;
6195      } else {
6196        Locs[i] = std::make_pair(1, NumHi);
6197        if (2+NumHi < 4)
6198          Mask1[2+NumHi] = Idx;
6199        NumHi++;
6200      }
6201    }
6202  }
6203
6204  if (NumLo <= 2 && NumHi <= 2) {
6205    // If no more than two elements come from either vector. This can be
6206    // implemented with two shuffles. First shuffle gather the elements.
6207    // The second shuffle, which takes the first shuffle as both of its
6208    // vector operands, put the elements into the right order.
6209    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6210
6211    int Mask2[] = { -1, -1, -1, -1 };
6212
6213    for (unsigned i = 0; i != 4; ++i)
6214      if (Locs[i].first != -1) {
6215        unsigned Idx = (i < 2) ? 0 : 4;
6216        Idx += Locs[i].first * 2 + Locs[i].second;
6217        Mask2[i] = Idx;
6218      }
6219
6220    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6221  }
6222
6223  if (NumLo == 3 || NumHi == 3) {
6224    // Otherwise, we must have three elements from one vector, call it X, and
6225    // one element from the other, call it Y.  First, use a shufps to build an
6226    // intermediate vector with the one element from Y and the element from X
6227    // that will be in the same half in the final destination (the indexes don't
6228    // matter). Then, use a shufps to build the final vector, taking the half
6229    // containing the element from Y from the intermediate, and the other half
6230    // from X.
6231    if (NumHi == 3) {
6232      // Normalize it so the 3 elements come from V1.
6233      CommuteVectorShuffleMask(PermMask, 4);
6234      std::swap(V1, V2);
6235    }
6236
6237    // Find the element from V2.
6238    unsigned HiIndex;
6239    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6240      int Val = PermMask[HiIndex];
6241      if (Val < 0)
6242        continue;
6243      if (Val >= 4)
6244        break;
6245    }
6246
6247    Mask1[0] = PermMask[HiIndex];
6248    Mask1[1] = -1;
6249    Mask1[2] = PermMask[HiIndex^1];
6250    Mask1[3] = -1;
6251    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6252
6253    if (HiIndex >= 2) {
6254      Mask1[0] = PermMask[0];
6255      Mask1[1] = PermMask[1];
6256      Mask1[2] = HiIndex & 1 ? 6 : 4;
6257      Mask1[3] = HiIndex & 1 ? 4 : 6;
6258      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6259    }
6260
6261    Mask1[0] = HiIndex & 1 ? 2 : 0;
6262    Mask1[1] = HiIndex & 1 ? 0 : 2;
6263    Mask1[2] = PermMask[2];
6264    Mask1[3] = PermMask[3];
6265    if (Mask1[2] >= 0)
6266      Mask1[2] += 4;
6267    if (Mask1[3] >= 0)
6268      Mask1[3] += 4;
6269    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6270  }
6271
6272  // Break it into (shuffle shuffle_hi, shuffle_lo).
6273  int LoMask[] = { -1, -1, -1, -1 };
6274  int HiMask[] = { -1, -1, -1, -1 };
6275
6276  int *MaskPtr = LoMask;
6277  unsigned MaskIdx = 0;
6278  unsigned LoIdx = 0;
6279  unsigned HiIdx = 2;
6280  for (unsigned i = 0; i != 4; ++i) {
6281    if (i == 2) {
6282      MaskPtr = HiMask;
6283      MaskIdx = 1;
6284      LoIdx = 0;
6285      HiIdx = 2;
6286    }
6287    int Idx = PermMask[i];
6288    if (Idx < 0) {
6289      Locs[i] = std::make_pair(-1, -1);
6290    } else if (Idx < 4) {
6291      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6292      MaskPtr[LoIdx] = Idx;
6293      LoIdx++;
6294    } else {
6295      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6296      MaskPtr[HiIdx] = Idx;
6297      HiIdx++;
6298    }
6299  }
6300
6301  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6302  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6303  int MaskOps[] = { -1, -1, -1, -1 };
6304  for (unsigned i = 0; i != 4; ++i)
6305    if (Locs[i].first != -1)
6306      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6307  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6308}
6309
6310static bool MayFoldVectorLoad(SDValue V) {
6311  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6312    V = V.getOperand(0);
6313  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6314    V = V.getOperand(0);
6315  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6316      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6317    // BUILD_VECTOR (load), undef
6318    V = V.getOperand(0);
6319  if (MayFoldLoad(V))
6320    return true;
6321  return false;
6322}
6323
6324// FIXME: the version above should always be used. Since there's
6325// a bug where several vector shuffles can't be folded because the
6326// DAG is not updated during lowering and a node claims to have two
6327// uses while it only has one, use this version, and let isel match
6328// another instruction if the load really happens to have more than
6329// one use. Remove this version after this bug get fixed.
6330// rdar://8434668, PR8156
6331static bool RelaxedMayFoldVectorLoad(SDValue V) {
6332  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6333    V = V.getOperand(0);
6334  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6335    V = V.getOperand(0);
6336  if (ISD::isNormalLoad(V.getNode()))
6337    return true;
6338  return false;
6339}
6340
6341static
6342SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6343  EVT VT = Op.getValueType();
6344
6345  // Canonizalize to v2f64.
6346  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6347  return DAG.getNode(ISD::BITCAST, dl, VT,
6348                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6349                                          V1, DAG));
6350}
6351
6352static
6353SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6354                        bool HasSSE2) {
6355  SDValue V1 = Op.getOperand(0);
6356  SDValue V2 = Op.getOperand(1);
6357  EVT VT = Op.getValueType();
6358
6359  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6360
6361  if (HasSSE2 && VT == MVT::v2f64)
6362    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6363
6364  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6365  return DAG.getNode(ISD::BITCAST, dl, VT,
6366                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6367                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6368                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6369}
6370
6371static
6372SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6373  SDValue V1 = Op.getOperand(0);
6374  SDValue V2 = Op.getOperand(1);
6375  EVT VT = Op.getValueType();
6376
6377  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6378         "unsupported shuffle type");
6379
6380  if (V2.getOpcode() == ISD::UNDEF)
6381    V2 = V1;
6382
6383  // v4i32 or v4f32
6384  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6385}
6386
6387static
6388SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6389  SDValue V1 = Op.getOperand(0);
6390  SDValue V2 = Op.getOperand(1);
6391  EVT VT = Op.getValueType();
6392  unsigned NumElems = VT.getVectorNumElements();
6393
6394  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6395  // operand of these instructions is only memory, so check if there's a
6396  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6397  // same masks.
6398  bool CanFoldLoad = false;
6399
6400  // Trivial case, when V2 comes from a load.
6401  if (MayFoldVectorLoad(V2))
6402    CanFoldLoad = true;
6403
6404  // When V1 is a load, it can be folded later into a store in isel, example:
6405  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6406  //    turns into:
6407  //  (MOVLPSmr addr:$src1, VR128:$src2)
6408  // So, recognize this potential and also use MOVLPS or MOVLPD
6409  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6410    CanFoldLoad = true;
6411
6412  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6413  if (CanFoldLoad) {
6414    if (HasSSE2 && NumElems == 2)
6415      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6416
6417    if (NumElems == 4)
6418      // If we don't care about the second element, proceed to use movss.
6419      if (SVOp->getMaskElt(1) != -1)
6420        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6421  }
6422
6423  // movl and movlp will both match v2i64, but v2i64 is never matched by
6424  // movl earlier because we make it strict to avoid messing with the movlp load
6425  // folding logic (see the code above getMOVLP call). Match it here then,
6426  // this is horrible, but will stay like this until we move all shuffle
6427  // matching to x86 specific nodes. Note that for the 1st condition all
6428  // types are matched with movsd.
6429  if (HasSSE2) {
6430    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6431    // as to remove this logic from here, as much as possible
6432    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6433      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6434    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6435  }
6436
6437  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6438
6439  // Invert the operand order and use SHUFPS to match it.
6440  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6441                              getShuffleSHUFImmediate(SVOp), DAG);
6442}
6443
6444SDValue
6445X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6446  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6447  EVT VT = Op.getValueType();
6448  DebugLoc dl = Op.getDebugLoc();
6449  SDValue V1 = Op.getOperand(0);
6450  SDValue V2 = Op.getOperand(1);
6451
6452  if (isZeroShuffle(SVOp))
6453    return getZeroVector(VT, Subtarget, DAG, dl);
6454
6455  // Handle splat operations
6456  if (SVOp->isSplat()) {
6457    unsigned NumElem = VT.getVectorNumElements();
6458    int Size = VT.getSizeInBits();
6459
6460    // Use vbroadcast whenever the splat comes from a foldable load
6461    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6462    if (Broadcast.getNode())
6463      return Broadcast;
6464
6465    // Handle splats by matching through known shuffle masks
6466    if ((Size == 128 && NumElem <= 4) ||
6467        (Size == 256 && NumElem < 8))
6468      return SDValue();
6469
6470    // All remaning splats are promoted to target supported vector shuffles.
6471    return PromoteSplat(SVOp, DAG);
6472  }
6473
6474  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6475  // do it!
6476  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6477      VT == MVT::v16i16 || VT == MVT::v32i8) {
6478    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6479    if (NewOp.getNode())
6480      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6481  } else if ((VT == MVT::v4i32 ||
6482             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6483    // FIXME: Figure out a cleaner way to do this.
6484    // Try to make use of movq to zero out the top part.
6485    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6486      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6487      if (NewOp.getNode()) {
6488        EVT NewVT = NewOp.getValueType();
6489        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6490                               NewVT, true, false))
6491          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6492                              DAG, Subtarget, dl);
6493      }
6494    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6495      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6496      if (NewOp.getNode()) {
6497        EVT NewVT = NewOp.getValueType();
6498        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6499          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6500                              DAG, Subtarget, dl);
6501      }
6502    }
6503  }
6504  return SDValue();
6505}
6506
6507SDValue
6508X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6509  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6510  SDValue V1 = Op.getOperand(0);
6511  SDValue V2 = Op.getOperand(1);
6512  EVT VT = Op.getValueType();
6513  DebugLoc dl = Op.getDebugLoc();
6514  unsigned NumElems = VT.getVectorNumElements();
6515  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6516  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6517  bool V1IsSplat = false;
6518  bool V2IsSplat = false;
6519  bool HasSSE2 = Subtarget->hasSSE2();
6520  bool HasAVX    = Subtarget->hasAVX();
6521  bool HasAVX2   = Subtarget->hasAVX2();
6522  MachineFunction &MF = DAG.getMachineFunction();
6523  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6524
6525  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6526
6527  if (V1IsUndef && V2IsUndef)
6528    return DAG.getUNDEF(VT);
6529
6530  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6531
6532  // Vector shuffle lowering takes 3 steps:
6533  //
6534  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6535  //    narrowing and commutation of operands should be handled.
6536  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6537  //    shuffle nodes.
6538  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6539  //    so the shuffle can be broken into other shuffles and the legalizer can
6540  //    try the lowering again.
6541  //
6542  // The general idea is that no vector_shuffle operation should be left to
6543  // be matched during isel, all of them must be converted to a target specific
6544  // node here.
6545
6546  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6547  // narrowing and commutation of operands should be handled. The actual code
6548  // doesn't include all of those, work in progress...
6549  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6550  if (NewOp.getNode())
6551    return NewOp;
6552
6553  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6554
6555  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6556  // unpckh_undef). Only use pshufd if speed is more important than size.
6557  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6558    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6559  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6560    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6561
6562  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6563      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6564    return getMOVDDup(Op, dl, V1, DAG);
6565
6566  if (isMOVHLPS_v_undef_Mask(M, VT))
6567    return getMOVHighToLow(Op, dl, DAG);
6568
6569  // Use to match splats
6570  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6571      (VT == MVT::v2f64 || VT == MVT::v2i64))
6572    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6573
6574  if (isPSHUFDMask(M, VT)) {
6575    // The actual implementation will match the mask in the if above and then
6576    // during isel it can match several different instructions, not only pshufd
6577    // as its name says, sad but true, emulate the behavior for now...
6578    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6579      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6580
6581    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6582
6583    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6584      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6585
6586    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6587      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6588
6589    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6590                                TargetMask, DAG);
6591  }
6592
6593  // Check if this can be converted into a logical shift.
6594  bool isLeft = false;
6595  unsigned ShAmt = 0;
6596  SDValue ShVal;
6597  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6598  if (isShift && ShVal.hasOneUse()) {
6599    // If the shifted value has multiple uses, it may be cheaper to use
6600    // v_set0 + movlhps or movhlps, etc.
6601    EVT EltVT = VT.getVectorElementType();
6602    ShAmt *= EltVT.getSizeInBits();
6603    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6604  }
6605
6606  if (isMOVLMask(M, VT)) {
6607    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6608      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6609    if (!isMOVLPMask(M, VT)) {
6610      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6611        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6612
6613      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6614        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6615    }
6616  }
6617
6618  // FIXME: fold these into legal mask.
6619  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6620    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6621
6622  if (isMOVHLPSMask(M, VT))
6623    return getMOVHighToLow(Op, dl, DAG);
6624
6625  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6626    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6627
6628  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6629    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6630
6631  if (isMOVLPMask(M, VT))
6632    return getMOVLP(Op, dl, DAG, HasSSE2);
6633
6634  if (ShouldXformToMOVHLPS(M, VT) ||
6635      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6636    return CommuteVectorShuffle(SVOp, DAG);
6637
6638  if (isShift) {
6639    // No better options. Use a vshldq / vsrldq.
6640    EVT EltVT = VT.getVectorElementType();
6641    ShAmt *= EltVT.getSizeInBits();
6642    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6643  }
6644
6645  bool Commuted = false;
6646  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6647  // 1,1,1,1 -> v8i16 though.
6648  V1IsSplat = isSplatVector(V1.getNode());
6649  V2IsSplat = isSplatVector(V2.getNode());
6650
6651  // Canonicalize the splat or undef, if present, to be on the RHS.
6652  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6653    CommuteVectorShuffleMask(M, NumElems);
6654    std::swap(V1, V2);
6655    std::swap(V1IsSplat, V2IsSplat);
6656    Commuted = true;
6657  }
6658
6659  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6660    // Shuffling low element of v1 into undef, just return v1.
6661    if (V2IsUndef)
6662      return V1;
6663    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6664    // the instruction selector will not match, so get a canonical MOVL with
6665    // swapped operands to undo the commute.
6666    return getMOVL(DAG, dl, VT, V2, V1);
6667  }
6668
6669  if (isUNPCKLMask(M, VT, HasAVX2))
6670    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6671
6672  if (isUNPCKHMask(M, VT, HasAVX2))
6673    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6674
6675  if (V2IsSplat) {
6676    // Normalize mask so all entries that point to V2 points to its first
6677    // element then try to match unpck{h|l} again. If match, return a
6678    // new vector_shuffle with the corrected mask.p
6679    SmallVector<int, 8> NewMask(M.begin(), M.end());
6680    NormalizeMask(NewMask, NumElems);
6681    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6682      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6683    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6684      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6685  }
6686
6687  if (Commuted) {
6688    // Commute is back and try unpck* again.
6689    // FIXME: this seems wrong.
6690    CommuteVectorShuffleMask(M, NumElems);
6691    std::swap(V1, V2);
6692    std::swap(V1IsSplat, V2IsSplat);
6693    Commuted = false;
6694
6695    if (isUNPCKLMask(M, VT, HasAVX2))
6696      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6697
6698    if (isUNPCKHMask(M, VT, HasAVX2))
6699      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6700  }
6701
6702  // Normalize the node to match x86 shuffle ops if needed
6703  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6704    return CommuteVectorShuffle(SVOp, DAG);
6705
6706  // The checks below are all present in isShuffleMaskLegal, but they are
6707  // inlined here right now to enable us to directly emit target specific
6708  // nodes, and remove one by one until they don't return Op anymore.
6709
6710  if (isPALIGNRMask(M, VT, Subtarget))
6711    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6712                                getShufflePALIGNRImmediate(SVOp),
6713                                DAG);
6714
6715  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6716      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6717    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6718      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6719  }
6720
6721  if (isPSHUFHWMask(M, VT, HasAVX2))
6722    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6723                                getShufflePSHUFHWImmediate(SVOp),
6724                                DAG);
6725
6726  if (isPSHUFLWMask(M, VT, HasAVX2))
6727    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6728                                getShufflePSHUFLWImmediate(SVOp),
6729                                DAG);
6730
6731  if (isSHUFPMask(M, VT, HasAVX))
6732    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6733                                getShuffleSHUFImmediate(SVOp), DAG);
6734
6735  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6736    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6737  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6738    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6739
6740  //===--------------------------------------------------------------------===//
6741  // Generate target specific nodes for 128 or 256-bit shuffles only
6742  // supported in the AVX instruction set.
6743  //
6744
6745  // Handle VMOVDDUPY permutations
6746  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6747    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6748
6749  // Handle VPERMILPS/D* permutations
6750  if (isVPERMILPMask(M, VT, HasAVX)) {
6751    if (HasAVX2 && VT == MVT::v8i32)
6752      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6753                                  getShuffleSHUFImmediate(SVOp), DAG);
6754    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6755                                getShuffleSHUFImmediate(SVOp), DAG);
6756  }
6757
6758  // Handle VPERM2F128/VPERM2I128 permutations
6759  if (isVPERM2X128Mask(M, VT, HasAVX))
6760    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6761                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6762
6763  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6764  if (BlendOp.getNode())
6765    return BlendOp;
6766
6767  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6768    SmallVector<SDValue, 8> permclMask;
6769    for (unsigned i = 0; i != 8; ++i) {
6770      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6771    }
6772    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6773                               &permclMask[0], 8);
6774    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6775    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6776                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6777  }
6778
6779  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6780    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6781                                getShuffleCLImmediate(SVOp), DAG);
6782
6783
6784  //===--------------------------------------------------------------------===//
6785  // Since no target specific shuffle was selected for this generic one,
6786  // lower it into other known shuffles. FIXME: this isn't true yet, but
6787  // this is the plan.
6788  //
6789
6790  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6791  if (VT == MVT::v8i16) {
6792    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6793    if (NewOp.getNode())
6794      return NewOp;
6795  }
6796
6797  if (VT == MVT::v16i8) {
6798    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6799    if (NewOp.getNode())
6800      return NewOp;
6801  }
6802
6803  // Handle all 128-bit wide vectors with 4 elements, and match them with
6804  // several different shuffle types.
6805  if (NumElems == 4 && VT.getSizeInBits() == 128)
6806    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6807
6808  // Handle general 256-bit shuffles
6809  if (VT.is256BitVector())
6810    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6811
6812  return SDValue();
6813}
6814
6815SDValue
6816X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6817                                                SelectionDAG &DAG) const {
6818  EVT VT = Op.getValueType();
6819  DebugLoc dl = Op.getDebugLoc();
6820
6821  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6822    return SDValue();
6823
6824  if (VT.getSizeInBits() == 8) {
6825    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6826                                    Op.getOperand(0), Op.getOperand(1));
6827    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6828                                    DAG.getValueType(VT));
6829    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6830  }
6831
6832  if (VT.getSizeInBits() == 16) {
6833    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6834    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6835    if (Idx == 0)
6836      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6837                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6838                                     DAG.getNode(ISD::BITCAST, dl,
6839                                                 MVT::v4i32,
6840                                                 Op.getOperand(0)),
6841                                     Op.getOperand(1)));
6842    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6843                                    Op.getOperand(0), Op.getOperand(1));
6844    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6845                                    DAG.getValueType(VT));
6846    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6847  }
6848
6849  if (VT == MVT::f32) {
6850    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6851    // the result back to FR32 register. It's only worth matching if the
6852    // result has a single use which is a store or a bitcast to i32.  And in
6853    // the case of a store, it's not worth it if the index is a constant 0,
6854    // because a MOVSSmr can be used instead, which is smaller and faster.
6855    if (!Op.hasOneUse())
6856      return SDValue();
6857    SDNode *User = *Op.getNode()->use_begin();
6858    if ((User->getOpcode() != ISD::STORE ||
6859         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6860          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6861        (User->getOpcode() != ISD::BITCAST ||
6862         User->getValueType(0) != MVT::i32))
6863      return SDValue();
6864    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6865                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6866                                              Op.getOperand(0)),
6867                                              Op.getOperand(1));
6868    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6869  }
6870
6871  if (VT == MVT::i32 || VT == MVT::i64) {
6872    // ExtractPS/pextrq works with constant index.
6873    if (isa<ConstantSDNode>(Op.getOperand(1)))
6874      return Op;
6875  }
6876  return SDValue();
6877}
6878
6879
6880SDValue
6881X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6882                                           SelectionDAG &DAG) const {
6883  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6884    return SDValue();
6885
6886  SDValue Vec = Op.getOperand(0);
6887  EVT VecVT = Vec.getValueType();
6888
6889  // If this is a 256-bit vector result, first extract the 128-bit vector and
6890  // then extract the element from the 128-bit vector.
6891  if (VecVT.getSizeInBits() == 256) {
6892    DebugLoc dl = Op.getNode()->getDebugLoc();
6893    unsigned NumElems = VecVT.getVectorNumElements();
6894    SDValue Idx = Op.getOperand(1);
6895    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6896
6897    // Get the 128-bit vector.
6898    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
6899
6900    if (IdxVal >= NumElems/2)
6901      IdxVal -= NumElems/2;
6902    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6903                       DAG.getConstant(IdxVal, MVT::i32));
6904  }
6905
6906  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6907
6908  if (Subtarget->hasSSE41()) {
6909    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6910    if (Res.getNode())
6911      return Res;
6912  }
6913
6914  EVT VT = Op.getValueType();
6915  DebugLoc dl = Op.getDebugLoc();
6916  // TODO: handle v16i8.
6917  if (VT.getSizeInBits() == 16) {
6918    SDValue Vec = Op.getOperand(0);
6919    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6920    if (Idx == 0)
6921      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6922                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6923                                     DAG.getNode(ISD::BITCAST, dl,
6924                                                 MVT::v4i32, Vec),
6925                                     Op.getOperand(1)));
6926    // Transform it so it match pextrw which produces a 32-bit result.
6927    EVT EltVT = MVT::i32;
6928    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6929                                    Op.getOperand(0), Op.getOperand(1));
6930    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6931                                    DAG.getValueType(VT));
6932    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6933  }
6934
6935  if (VT.getSizeInBits() == 32) {
6936    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6937    if (Idx == 0)
6938      return Op;
6939
6940    // SHUFPS the element to the lowest double word, then movss.
6941    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6942    EVT VVT = Op.getOperand(0).getValueType();
6943    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6944                                       DAG.getUNDEF(VVT), Mask);
6945    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6946                       DAG.getIntPtrConstant(0));
6947  }
6948
6949  if (VT.getSizeInBits() == 64) {
6950    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6951    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6952    //        to match extract_elt for f64.
6953    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6954    if (Idx == 0)
6955      return Op;
6956
6957    // UNPCKHPD the element to the lowest double word, then movsd.
6958    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6959    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6960    int Mask[2] = { 1, -1 };
6961    EVT VVT = Op.getOperand(0).getValueType();
6962    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6963                                       DAG.getUNDEF(VVT), Mask);
6964    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6965                       DAG.getIntPtrConstant(0));
6966  }
6967
6968  return SDValue();
6969}
6970
6971SDValue
6972X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6973                                               SelectionDAG &DAG) const {
6974  EVT VT = Op.getValueType();
6975  EVT EltVT = VT.getVectorElementType();
6976  DebugLoc dl = Op.getDebugLoc();
6977
6978  SDValue N0 = Op.getOperand(0);
6979  SDValue N1 = Op.getOperand(1);
6980  SDValue N2 = Op.getOperand(2);
6981
6982  if (VT.getSizeInBits() == 256)
6983    return SDValue();
6984
6985  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6986      isa<ConstantSDNode>(N2)) {
6987    unsigned Opc;
6988    if (VT == MVT::v8i16)
6989      Opc = X86ISD::PINSRW;
6990    else if (VT == MVT::v16i8)
6991      Opc = X86ISD::PINSRB;
6992    else
6993      Opc = X86ISD::PINSRB;
6994
6995    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6996    // argument.
6997    if (N1.getValueType() != MVT::i32)
6998      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6999    if (N2.getValueType() != MVT::i32)
7000      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7001    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7002  }
7003
7004  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7005    // Bits [7:6] of the constant are the source select.  This will always be
7006    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7007    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7008    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7009    // Bits [5:4] of the constant are the destination select.  This is the
7010    //  value of the incoming immediate.
7011    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7012    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7013    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7014    // Create this as a scalar to vector..
7015    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7016    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7017  }
7018
7019  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7020    // PINSR* works with constant index.
7021    return Op;
7022  }
7023  return SDValue();
7024}
7025
7026SDValue
7027X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7028  EVT VT = Op.getValueType();
7029  EVT EltVT = VT.getVectorElementType();
7030
7031  DebugLoc dl = Op.getDebugLoc();
7032  SDValue N0 = Op.getOperand(0);
7033  SDValue N1 = Op.getOperand(1);
7034  SDValue N2 = Op.getOperand(2);
7035
7036  // If this is a 256-bit vector result, first extract the 128-bit vector,
7037  // insert the element into the extracted half and then place it back.
7038  if (VT.getSizeInBits() == 256) {
7039    if (!isa<ConstantSDNode>(N2))
7040      return SDValue();
7041
7042    // Get the desired 128-bit vector half.
7043    unsigned NumElems = VT.getVectorNumElements();
7044    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7045    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7046
7047    // Insert the element into the desired half.
7048    bool Upper = IdxVal >= NumElems/2;
7049    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7050                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7051
7052    // Insert the changed part back to the 256-bit vector
7053    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7054  }
7055
7056  if (Subtarget->hasSSE41())
7057    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7058
7059  if (EltVT == MVT::i8)
7060    return SDValue();
7061
7062  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7063    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7064    // as its second argument.
7065    if (N1.getValueType() != MVT::i32)
7066      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7067    if (N2.getValueType() != MVT::i32)
7068      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7069    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7070  }
7071  return SDValue();
7072}
7073
7074SDValue
7075X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7076  LLVMContext *Context = DAG.getContext();
7077  DebugLoc dl = Op.getDebugLoc();
7078  EVT OpVT = Op.getValueType();
7079
7080  // If this is a 256-bit vector result, first insert into a 128-bit
7081  // vector and then insert into the 256-bit vector.
7082  if (OpVT.getSizeInBits() > 128) {
7083    // Insert into a 128-bit vector.
7084    EVT VT128 = EVT::getVectorVT(*Context,
7085                                 OpVT.getVectorElementType(),
7086                                 OpVT.getVectorNumElements() / 2);
7087
7088    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7089
7090    // Insert the 128-bit vector.
7091    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7092  }
7093
7094  if (OpVT == MVT::v1i64 &&
7095      Op.getOperand(0).getValueType() == MVT::i64)
7096    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7097
7098  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7099  assert(OpVT.getSizeInBits() == 128 && "Expected an SSE type!");
7100  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7101                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7102}
7103
7104// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7105// a simple subregister reference or explicit instructions to grab
7106// upper bits of a vector.
7107SDValue
7108X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7109  if (Subtarget->hasAVX()) {
7110    DebugLoc dl = Op.getNode()->getDebugLoc();
7111    SDValue Vec = Op.getNode()->getOperand(0);
7112    SDValue Idx = Op.getNode()->getOperand(1);
7113
7114    if (Op.getNode()->getValueType(0).getSizeInBits() == 128 &&
7115        Vec.getNode()->getValueType(0).getSizeInBits() == 256 &&
7116        isa<ConstantSDNode>(Idx)) {
7117      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7118      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7119    }
7120  }
7121  return SDValue();
7122}
7123
7124// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7125// simple superregister reference or explicit instructions to insert
7126// the upper bits of a vector.
7127SDValue
7128X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7129  if (Subtarget->hasAVX()) {
7130    DebugLoc dl = Op.getNode()->getDebugLoc();
7131    SDValue Vec = Op.getNode()->getOperand(0);
7132    SDValue SubVec = Op.getNode()->getOperand(1);
7133    SDValue Idx = Op.getNode()->getOperand(2);
7134
7135    if (Op.getNode()->getValueType(0).getSizeInBits() == 256 &&
7136        SubVec.getNode()->getValueType(0).getSizeInBits() == 128 &&
7137        isa<ConstantSDNode>(Idx)) {
7138      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7139      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7140    }
7141  }
7142  return SDValue();
7143}
7144
7145// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7146// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7147// one of the above mentioned nodes. It has to be wrapped because otherwise
7148// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7149// be used to form addressing mode. These wrapped nodes will be selected
7150// into MOV32ri.
7151SDValue
7152X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7153  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7154
7155  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7156  // global base reg.
7157  unsigned char OpFlag = 0;
7158  unsigned WrapperKind = X86ISD::Wrapper;
7159  CodeModel::Model M = getTargetMachine().getCodeModel();
7160
7161  if (Subtarget->isPICStyleRIPRel() &&
7162      (M == CodeModel::Small || M == CodeModel::Kernel))
7163    WrapperKind = X86ISD::WrapperRIP;
7164  else if (Subtarget->isPICStyleGOT())
7165    OpFlag = X86II::MO_GOTOFF;
7166  else if (Subtarget->isPICStyleStubPIC())
7167    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7168
7169  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7170                                             CP->getAlignment(),
7171                                             CP->getOffset(), OpFlag);
7172  DebugLoc DL = CP->getDebugLoc();
7173  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7174  // With PIC, the address is actually $g + Offset.
7175  if (OpFlag) {
7176    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7177                         DAG.getNode(X86ISD::GlobalBaseReg,
7178                                     DebugLoc(), getPointerTy()),
7179                         Result);
7180  }
7181
7182  return Result;
7183}
7184
7185SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7186  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7187
7188  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7189  // global base reg.
7190  unsigned char OpFlag = 0;
7191  unsigned WrapperKind = X86ISD::Wrapper;
7192  CodeModel::Model M = getTargetMachine().getCodeModel();
7193
7194  if (Subtarget->isPICStyleRIPRel() &&
7195      (M == CodeModel::Small || M == CodeModel::Kernel))
7196    WrapperKind = X86ISD::WrapperRIP;
7197  else if (Subtarget->isPICStyleGOT())
7198    OpFlag = X86II::MO_GOTOFF;
7199  else if (Subtarget->isPICStyleStubPIC())
7200    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7201
7202  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7203                                          OpFlag);
7204  DebugLoc DL = JT->getDebugLoc();
7205  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7206
7207  // With PIC, the address is actually $g + Offset.
7208  if (OpFlag)
7209    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7210                         DAG.getNode(X86ISD::GlobalBaseReg,
7211                                     DebugLoc(), getPointerTy()),
7212                         Result);
7213
7214  return Result;
7215}
7216
7217SDValue
7218X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7219  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7220
7221  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7222  // global base reg.
7223  unsigned char OpFlag = 0;
7224  unsigned WrapperKind = X86ISD::Wrapper;
7225  CodeModel::Model M = getTargetMachine().getCodeModel();
7226
7227  if (Subtarget->isPICStyleRIPRel() &&
7228      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7229    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7230      OpFlag = X86II::MO_GOTPCREL;
7231    WrapperKind = X86ISD::WrapperRIP;
7232  } else if (Subtarget->isPICStyleGOT()) {
7233    OpFlag = X86II::MO_GOT;
7234  } else if (Subtarget->isPICStyleStubPIC()) {
7235    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7236  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7237    OpFlag = X86II::MO_DARWIN_NONLAZY;
7238  }
7239
7240  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7241
7242  DebugLoc DL = Op.getDebugLoc();
7243  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7244
7245
7246  // With PIC, the address is actually $g + Offset.
7247  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7248      !Subtarget->is64Bit()) {
7249    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7250                         DAG.getNode(X86ISD::GlobalBaseReg,
7251                                     DebugLoc(), getPointerTy()),
7252                         Result);
7253  }
7254
7255  // For symbols that require a load from a stub to get the address, emit the
7256  // load.
7257  if (isGlobalStubReference(OpFlag))
7258    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7259                         MachinePointerInfo::getGOT(), false, false, false, 0);
7260
7261  return Result;
7262}
7263
7264SDValue
7265X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7266  // Create the TargetBlockAddressAddress node.
7267  unsigned char OpFlags =
7268    Subtarget->ClassifyBlockAddressReference();
7269  CodeModel::Model M = getTargetMachine().getCodeModel();
7270  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7271  DebugLoc dl = Op.getDebugLoc();
7272  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7273                                       /*isTarget=*/true, OpFlags);
7274
7275  if (Subtarget->isPICStyleRIPRel() &&
7276      (M == CodeModel::Small || M == CodeModel::Kernel))
7277    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7278  else
7279    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7280
7281  // With PIC, the address is actually $g + Offset.
7282  if (isGlobalRelativeToPICBase(OpFlags)) {
7283    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7284                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7285                         Result);
7286  }
7287
7288  return Result;
7289}
7290
7291SDValue
7292X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7293                                      int64_t Offset,
7294                                      SelectionDAG &DAG) const {
7295  // Create the TargetGlobalAddress node, folding in the constant
7296  // offset if it is legal.
7297  unsigned char OpFlags =
7298    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7299  CodeModel::Model M = getTargetMachine().getCodeModel();
7300  SDValue Result;
7301  if (OpFlags == X86II::MO_NO_FLAG &&
7302      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7303    // A direct static reference to a global.
7304    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7305    Offset = 0;
7306  } else {
7307    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7308  }
7309
7310  if (Subtarget->isPICStyleRIPRel() &&
7311      (M == CodeModel::Small || M == CodeModel::Kernel))
7312    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7313  else
7314    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7315
7316  // With PIC, the address is actually $g + Offset.
7317  if (isGlobalRelativeToPICBase(OpFlags)) {
7318    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7319                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7320                         Result);
7321  }
7322
7323  // For globals that require a load from a stub to get the address, emit the
7324  // load.
7325  if (isGlobalStubReference(OpFlags))
7326    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7327                         MachinePointerInfo::getGOT(), false, false, false, 0);
7328
7329  // If there was a non-zero offset that we didn't fold, create an explicit
7330  // addition for it.
7331  if (Offset != 0)
7332    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7333                         DAG.getConstant(Offset, getPointerTy()));
7334
7335  return Result;
7336}
7337
7338SDValue
7339X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7340  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7341  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7342  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7343}
7344
7345static SDValue
7346GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7347           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7348           unsigned char OperandFlags, bool LocalDynamic = false) {
7349  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7350  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7351  DebugLoc dl = GA->getDebugLoc();
7352  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7353                                           GA->getValueType(0),
7354                                           GA->getOffset(),
7355                                           OperandFlags);
7356
7357  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7358                                           : X86ISD::TLSADDR;
7359
7360  if (InFlag) {
7361    SDValue Ops[] = { Chain,  TGA, *InFlag };
7362    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7363  } else {
7364    SDValue Ops[]  = { Chain, TGA };
7365    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7366  }
7367
7368  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7369  MFI->setAdjustsStack(true);
7370
7371  SDValue Flag = Chain.getValue(1);
7372  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7373}
7374
7375// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7376static SDValue
7377LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7378                                const EVT PtrVT) {
7379  SDValue InFlag;
7380  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7381  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7382                                     DAG.getNode(X86ISD::GlobalBaseReg,
7383                                                 DebugLoc(), PtrVT), InFlag);
7384  InFlag = Chain.getValue(1);
7385
7386  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7387}
7388
7389// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7390static SDValue
7391LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7392                                const EVT PtrVT) {
7393  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7394                    X86::RAX, X86II::MO_TLSGD);
7395}
7396
7397static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7398                                           SelectionDAG &DAG,
7399                                           const EVT PtrVT,
7400                                           bool is64Bit) {
7401  DebugLoc dl = GA->getDebugLoc();
7402
7403  // Get the start address of the TLS block for this module.
7404  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7405      .getInfo<X86MachineFunctionInfo>();
7406  MFI->incNumLocalDynamicTLSAccesses();
7407
7408  SDValue Base;
7409  if (is64Bit) {
7410    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7411                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7412  } else {
7413    SDValue InFlag;
7414    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7415        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7416    InFlag = Chain.getValue(1);
7417    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7418                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7419  }
7420
7421  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7422  // of Base.
7423
7424  // Build x@dtpoff.
7425  unsigned char OperandFlags = X86II::MO_DTPOFF;
7426  unsigned WrapperKind = X86ISD::Wrapper;
7427  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7428                                           GA->getValueType(0),
7429                                           GA->getOffset(), OperandFlags);
7430  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7431
7432  // Add x@dtpoff with the base.
7433  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7434}
7435
7436// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7437static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7438                                   const EVT PtrVT, TLSModel::Model model,
7439                                   bool is64Bit, bool isPIC) {
7440  DebugLoc dl = GA->getDebugLoc();
7441
7442  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7443  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7444                                                         is64Bit ? 257 : 256));
7445
7446  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7447                                      DAG.getIntPtrConstant(0),
7448                                      MachinePointerInfo(Ptr),
7449                                      false, false, false, 0);
7450
7451  unsigned char OperandFlags = 0;
7452  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7453  // initialexec.
7454  unsigned WrapperKind = X86ISD::Wrapper;
7455  if (model == TLSModel::LocalExec) {
7456    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7457  } else if (model == TLSModel::InitialExec) {
7458    if (is64Bit) {
7459      OperandFlags = X86II::MO_GOTTPOFF;
7460      WrapperKind = X86ISD::WrapperRIP;
7461    } else {
7462      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7463    }
7464  } else {
7465    llvm_unreachable("Unexpected model");
7466  }
7467
7468  // emit "addl x@ntpoff,%eax" (local exec)
7469  // or "addl x@indntpoff,%eax" (initial exec)
7470  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7471  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7472                                           GA->getValueType(0),
7473                                           GA->getOffset(), OperandFlags);
7474  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7475
7476  if (model == TLSModel::InitialExec) {
7477    if (isPIC && !is64Bit) {
7478      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7479                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7480                           Offset);
7481    }
7482
7483    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7484                         MachinePointerInfo::getGOT(), false, false, false,
7485                         0);
7486  }
7487
7488  // The address of the thread local variable is the add of the thread
7489  // pointer with the offset of the variable.
7490  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7491}
7492
7493SDValue
7494X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7495
7496  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7497  const GlobalValue *GV = GA->getGlobal();
7498
7499  if (Subtarget->isTargetELF()) {
7500    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7501
7502    switch (model) {
7503      case TLSModel::GeneralDynamic:
7504        if (Subtarget->is64Bit())
7505          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7506        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7507      case TLSModel::LocalDynamic:
7508        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7509                                           Subtarget->is64Bit());
7510      case TLSModel::InitialExec:
7511      case TLSModel::LocalExec:
7512        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7513                                   Subtarget->is64Bit(),
7514                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7515    }
7516    llvm_unreachable("Unknown TLS model.");
7517  }
7518
7519  if (Subtarget->isTargetDarwin()) {
7520    // Darwin only has one model of TLS.  Lower to that.
7521    unsigned char OpFlag = 0;
7522    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7523                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7524
7525    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7526    // global base reg.
7527    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7528                  !Subtarget->is64Bit();
7529    if (PIC32)
7530      OpFlag = X86II::MO_TLVP_PIC_BASE;
7531    else
7532      OpFlag = X86II::MO_TLVP;
7533    DebugLoc DL = Op.getDebugLoc();
7534    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7535                                                GA->getValueType(0),
7536                                                GA->getOffset(), OpFlag);
7537    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7538
7539    // With PIC32, the address is actually $g + Offset.
7540    if (PIC32)
7541      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7542                           DAG.getNode(X86ISD::GlobalBaseReg,
7543                                       DebugLoc(), getPointerTy()),
7544                           Offset);
7545
7546    // Lowering the machine isd will make sure everything is in the right
7547    // location.
7548    SDValue Chain = DAG.getEntryNode();
7549    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7550    SDValue Args[] = { Chain, Offset };
7551    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7552
7553    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7554    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7555    MFI->setAdjustsStack(true);
7556
7557    // And our return value (tls address) is in the standard call return value
7558    // location.
7559    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7560    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7561                              Chain.getValue(1));
7562  }
7563
7564  if (Subtarget->isTargetWindows()) {
7565    // Just use the implicit TLS architecture
7566    // Need to generate someting similar to:
7567    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7568    //                                  ; from TEB
7569    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7570    //   mov     rcx, qword [rdx+rcx*8]
7571    //   mov     eax, .tls$:tlsvar
7572    //   [rax+rcx] contains the address
7573    // Windows 64bit: gs:0x58
7574    // Windows 32bit: fs:__tls_array
7575
7576    // If GV is an alias then use the aliasee for determining
7577    // thread-localness.
7578    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7579      GV = GA->resolveAliasedGlobal(false);
7580    DebugLoc dl = GA->getDebugLoc();
7581    SDValue Chain = DAG.getEntryNode();
7582
7583    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7584    // %gs:0x58 (64-bit).
7585    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7586                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7587                                                             256)
7588                                        : Type::getInt32PtrTy(*DAG.getContext(),
7589                                                              257));
7590
7591    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7592                                        Subtarget->is64Bit()
7593                                        ? DAG.getIntPtrConstant(0x58)
7594                                        : DAG.getExternalSymbol("_tls_array",
7595                                                                getPointerTy()),
7596                                        MachinePointerInfo(Ptr),
7597                                        false, false, false, 0);
7598
7599    // Load the _tls_index variable
7600    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7601    if (Subtarget->is64Bit())
7602      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7603                           IDX, MachinePointerInfo(), MVT::i32,
7604                           false, false, 0);
7605    else
7606      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7607                        false, false, false, 0);
7608
7609    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7610                                    getPointerTy());
7611    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7612
7613    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7614    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7615                      false, false, false, 0);
7616
7617    // Get the offset of start of .tls section
7618    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7619                                             GA->getValueType(0),
7620                                             GA->getOffset(), X86II::MO_SECREL);
7621    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7622
7623    // The address of the thread local variable is the add of the thread
7624    // pointer with the offset of the variable.
7625    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7626  }
7627
7628  llvm_unreachable("TLS not implemented for this target.");
7629}
7630
7631
7632/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7633/// and take a 2 x i32 value to shift plus a shift amount.
7634SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7635  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7636  EVT VT = Op.getValueType();
7637  unsigned VTBits = VT.getSizeInBits();
7638  DebugLoc dl = Op.getDebugLoc();
7639  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7640  SDValue ShOpLo = Op.getOperand(0);
7641  SDValue ShOpHi = Op.getOperand(1);
7642  SDValue ShAmt  = Op.getOperand(2);
7643  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7644                                     DAG.getConstant(VTBits - 1, MVT::i8))
7645                       : DAG.getConstant(0, VT);
7646
7647  SDValue Tmp2, Tmp3;
7648  if (Op.getOpcode() == ISD::SHL_PARTS) {
7649    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7650    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7651  } else {
7652    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7653    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7654  }
7655
7656  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7657                                DAG.getConstant(VTBits, MVT::i8));
7658  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7659                             AndNode, DAG.getConstant(0, MVT::i8));
7660
7661  SDValue Hi, Lo;
7662  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7663  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7664  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7665
7666  if (Op.getOpcode() == ISD::SHL_PARTS) {
7667    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7668    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7669  } else {
7670    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7671    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7672  }
7673
7674  SDValue Ops[2] = { Lo, Hi };
7675  return DAG.getMergeValues(Ops, 2, dl);
7676}
7677
7678SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7679                                           SelectionDAG &DAG) const {
7680  EVT SrcVT = Op.getOperand(0).getValueType();
7681
7682  if (SrcVT.isVector())
7683    return SDValue();
7684
7685  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7686         "Unknown SINT_TO_FP to lower!");
7687
7688  // These are really Legal; return the operand so the caller accepts it as
7689  // Legal.
7690  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7691    return Op;
7692  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7693      Subtarget->is64Bit()) {
7694    return Op;
7695  }
7696
7697  DebugLoc dl = Op.getDebugLoc();
7698  unsigned Size = SrcVT.getSizeInBits()/8;
7699  MachineFunction &MF = DAG.getMachineFunction();
7700  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7701  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7702  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7703                               StackSlot,
7704                               MachinePointerInfo::getFixedStack(SSFI),
7705                               false, false, 0);
7706  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7707}
7708
7709SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7710                                     SDValue StackSlot,
7711                                     SelectionDAG &DAG) const {
7712  // Build the FILD
7713  DebugLoc DL = Op.getDebugLoc();
7714  SDVTList Tys;
7715  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7716  if (useSSE)
7717    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7718  else
7719    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7720
7721  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7722
7723  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7724  MachineMemOperand *MMO;
7725  if (FI) {
7726    int SSFI = FI->getIndex();
7727    MMO =
7728      DAG.getMachineFunction()
7729      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7730                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7731  } else {
7732    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7733    StackSlot = StackSlot.getOperand(1);
7734  }
7735  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7736  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7737                                           X86ISD::FILD, DL,
7738                                           Tys, Ops, array_lengthof(Ops),
7739                                           SrcVT, MMO);
7740
7741  if (useSSE) {
7742    Chain = Result.getValue(1);
7743    SDValue InFlag = Result.getValue(2);
7744
7745    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7746    // shouldn't be necessary except that RFP cannot be live across
7747    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7748    MachineFunction &MF = DAG.getMachineFunction();
7749    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7750    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7751    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7752    Tys = DAG.getVTList(MVT::Other);
7753    SDValue Ops[] = {
7754      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7755    };
7756    MachineMemOperand *MMO =
7757      DAG.getMachineFunction()
7758      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7759                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7760
7761    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7762                                    Ops, array_lengthof(Ops),
7763                                    Op.getValueType(), MMO);
7764    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7765                         MachinePointerInfo::getFixedStack(SSFI),
7766                         false, false, false, 0);
7767  }
7768
7769  return Result;
7770}
7771
7772// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7773SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7774                                               SelectionDAG &DAG) const {
7775  // This algorithm is not obvious. Here it is what we're trying to output:
7776  /*
7777     movq       %rax,  %xmm0
7778     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7779     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7780     #ifdef __SSE3__
7781       haddpd   %xmm0, %xmm0
7782     #else
7783       pshufd   $0x4e, %xmm0, %xmm1
7784       addpd    %xmm1, %xmm0
7785     #endif
7786  */
7787
7788  DebugLoc dl = Op.getDebugLoc();
7789  LLVMContext *Context = DAG.getContext();
7790
7791  // Build some magic constants.
7792  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7793  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7794  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7795
7796  SmallVector<Constant*,2> CV1;
7797  CV1.push_back(
7798        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7799  CV1.push_back(
7800        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7801  Constant *C1 = ConstantVector::get(CV1);
7802  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7803
7804  // Load the 64-bit value into an XMM register.
7805  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7806                            Op.getOperand(0));
7807  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7808                              MachinePointerInfo::getConstantPool(),
7809                              false, false, false, 16);
7810  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7811                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7812                              CLod0);
7813
7814  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7815                              MachinePointerInfo::getConstantPool(),
7816                              false, false, false, 16);
7817  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7818  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7819  SDValue Result;
7820
7821  if (Subtarget->hasSSE3()) {
7822    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7823    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7824  } else {
7825    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7826    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7827                                           S2F, 0x4E, DAG);
7828    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7829                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7830                         Sub);
7831  }
7832
7833  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7834                     DAG.getIntPtrConstant(0));
7835}
7836
7837// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7838SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7839                                               SelectionDAG &DAG) const {
7840  DebugLoc dl = Op.getDebugLoc();
7841  // FP constant to bias correct the final result.
7842  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7843                                   MVT::f64);
7844
7845  // Load the 32-bit value into an XMM register.
7846  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7847                             Op.getOperand(0));
7848
7849  // Zero out the upper parts of the register.
7850  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7851
7852  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7853                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7854                     DAG.getIntPtrConstant(0));
7855
7856  // Or the load with the bias.
7857  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7858                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7859                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7860                                                   MVT::v2f64, Load)),
7861                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7862                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7863                                                   MVT::v2f64, Bias)));
7864  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7865                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7866                   DAG.getIntPtrConstant(0));
7867
7868  // Subtract the bias.
7869  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7870
7871  // Handle final rounding.
7872  EVT DestVT = Op.getValueType();
7873
7874  if (DestVT.bitsLT(MVT::f64))
7875    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7876                       DAG.getIntPtrConstant(0));
7877  if (DestVT.bitsGT(MVT::f64))
7878    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7879
7880  // Handle final rounding.
7881  return Sub;
7882}
7883
7884SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7885                                           SelectionDAG &DAG) const {
7886  SDValue N0 = Op.getOperand(0);
7887  DebugLoc dl = Op.getDebugLoc();
7888
7889  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7890  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7891  // the optimization here.
7892  if (DAG.SignBitIsZero(N0))
7893    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7894
7895  EVT SrcVT = N0.getValueType();
7896  EVT DstVT = Op.getValueType();
7897  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7898    return LowerUINT_TO_FP_i64(Op, DAG);
7899  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7900    return LowerUINT_TO_FP_i32(Op, DAG);
7901  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
7902    return SDValue();
7903
7904  // Make a 64-bit buffer, and use it to build an FILD.
7905  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7906  if (SrcVT == MVT::i32) {
7907    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7908    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7909                                     getPointerTy(), StackSlot, WordOff);
7910    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7911                                  StackSlot, MachinePointerInfo(),
7912                                  false, false, 0);
7913    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7914                                  OffsetSlot, MachinePointerInfo(),
7915                                  false, false, 0);
7916    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7917    return Fild;
7918  }
7919
7920  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7921  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7922                               StackSlot, MachinePointerInfo(),
7923                               false, false, 0);
7924  // For i64 source, we need to add the appropriate power of 2 if the input
7925  // was negative.  This is the same as the optimization in
7926  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7927  // we must be careful to do the computation in x87 extended precision, not
7928  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7929  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7930  MachineMemOperand *MMO =
7931    DAG.getMachineFunction()
7932    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7933                          MachineMemOperand::MOLoad, 8, 8);
7934
7935  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7936  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7937  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7938                                         MVT::i64, MMO);
7939
7940  APInt FF(32, 0x5F800000ULL);
7941
7942  // Check whether the sign bit is set.
7943  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7944                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7945                                 ISD::SETLT);
7946
7947  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7948  SDValue FudgePtr = DAG.getConstantPool(
7949                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7950                                         getPointerTy());
7951
7952  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7953  SDValue Zero = DAG.getIntPtrConstant(0);
7954  SDValue Four = DAG.getIntPtrConstant(4);
7955  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7956                               Zero, Four);
7957  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7958
7959  // Load the value out, extending it from f32 to f80.
7960  // FIXME: Avoid the extend by constructing the right constant pool?
7961  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7962                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7963                                 MVT::f32, false, false, 4);
7964  // Extend everything to 80 bits to force it to be done on x87.
7965  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7966  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7967}
7968
7969std::pair<SDValue,SDValue> X86TargetLowering::
7970FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7971  DebugLoc DL = Op.getDebugLoc();
7972
7973  EVT DstTy = Op.getValueType();
7974
7975  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7976    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7977    DstTy = MVT::i64;
7978  }
7979
7980  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7981         DstTy.getSimpleVT() >= MVT::i16 &&
7982         "Unknown FP_TO_INT to lower!");
7983
7984  // These are really Legal.
7985  if (DstTy == MVT::i32 &&
7986      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7987    return std::make_pair(SDValue(), SDValue());
7988  if (Subtarget->is64Bit() &&
7989      DstTy == MVT::i64 &&
7990      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7991    return std::make_pair(SDValue(), SDValue());
7992
7993  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7994  // stack slot, or into the FTOL runtime function.
7995  MachineFunction &MF = DAG.getMachineFunction();
7996  unsigned MemSize = DstTy.getSizeInBits()/8;
7997  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7998  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7999
8000  unsigned Opc;
8001  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8002    Opc = X86ISD::WIN_FTOL;
8003  else
8004    switch (DstTy.getSimpleVT().SimpleTy) {
8005    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8006    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8007    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8008    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8009    }
8010
8011  SDValue Chain = DAG.getEntryNode();
8012  SDValue Value = Op.getOperand(0);
8013  EVT TheVT = Op.getOperand(0).getValueType();
8014  // FIXME This causes a redundant load/store if the SSE-class value is already
8015  // in memory, such as if it is on the callstack.
8016  if (isScalarFPTypeInSSEReg(TheVT)) {
8017    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8018    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8019                         MachinePointerInfo::getFixedStack(SSFI),
8020                         false, false, 0);
8021    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8022    SDValue Ops[] = {
8023      Chain, StackSlot, DAG.getValueType(TheVT)
8024    };
8025
8026    MachineMemOperand *MMO =
8027      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8028                              MachineMemOperand::MOLoad, MemSize, MemSize);
8029    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8030                                    DstTy, MMO);
8031    Chain = Value.getValue(1);
8032    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8033    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8034  }
8035
8036  MachineMemOperand *MMO =
8037    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8038                            MachineMemOperand::MOStore, MemSize, MemSize);
8039
8040  if (Opc != X86ISD::WIN_FTOL) {
8041    // Build the FP_TO_INT*_IN_MEM
8042    SDValue Ops[] = { Chain, Value, StackSlot };
8043    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8044                                           Ops, 3, DstTy, MMO);
8045    return std::make_pair(FIST, StackSlot);
8046  } else {
8047    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8048      DAG.getVTList(MVT::Other, MVT::Glue),
8049      Chain, Value);
8050    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8051      MVT::i32, ftol.getValue(1));
8052    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8053      MVT::i32, eax.getValue(2));
8054    SDValue Ops[] = { eax, edx };
8055    SDValue pair = IsReplace
8056      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8057      : DAG.getMergeValues(Ops, 2, DL);
8058    return std::make_pair(pair, SDValue());
8059  }
8060}
8061
8062SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8063                                           SelectionDAG &DAG) const {
8064  if (Op.getValueType().isVector())
8065    return SDValue();
8066
8067  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8068    /*IsSigned=*/ true, /*IsReplace=*/ false);
8069  SDValue FIST = Vals.first, StackSlot = Vals.second;
8070  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8071  if (FIST.getNode() == 0) return Op;
8072
8073  if (StackSlot.getNode())
8074    // Load the result.
8075    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8076                       FIST, StackSlot, MachinePointerInfo(),
8077                       false, false, false, 0);
8078
8079  // The node is the result.
8080  return FIST;
8081}
8082
8083SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8084                                           SelectionDAG &DAG) const {
8085  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8086    /*IsSigned=*/ false, /*IsReplace=*/ false);
8087  SDValue FIST = Vals.first, StackSlot = Vals.second;
8088  assert(FIST.getNode() && "Unexpected failure");
8089
8090  if (StackSlot.getNode())
8091    // Load the result.
8092    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8093                       FIST, StackSlot, MachinePointerInfo(),
8094                       false, false, false, 0);
8095
8096  // The node is the result.
8097  return FIST;
8098}
8099
8100SDValue X86TargetLowering::LowerFABS(SDValue Op,
8101                                     SelectionDAG &DAG) const {
8102  LLVMContext *Context = DAG.getContext();
8103  DebugLoc dl = Op.getDebugLoc();
8104  EVT VT = Op.getValueType();
8105  EVT EltVT = VT;
8106  if (VT.isVector())
8107    EltVT = VT.getVectorElementType();
8108  Constant *C;
8109  if (EltVT == MVT::f64) {
8110    C = ConstantVector::getSplat(2,
8111                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8112  } else {
8113    C = ConstantVector::getSplat(4,
8114               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8115  }
8116  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8117  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8118                             MachinePointerInfo::getConstantPool(),
8119                             false, false, false, 16);
8120  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8121}
8122
8123SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8124  LLVMContext *Context = DAG.getContext();
8125  DebugLoc dl = Op.getDebugLoc();
8126  EVT VT = Op.getValueType();
8127  EVT EltVT = VT;
8128  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8129  if (VT.isVector()) {
8130    EltVT = VT.getVectorElementType();
8131    NumElts = VT.getVectorNumElements();
8132  }
8133  Constant *C;
8134  if (EltVT == MVT::f64)
8135    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8136  else
8137    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8138  C = ConstantVector::getSplat(NumElts, C);
8139  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8140  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8141                             MachinePointerInfo::getConstantPool(),
8142                             false, false, false, 16);
8143  if (VT.isVector()) {
8144    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
8145    return DAG.getNode(ISD::BITCAST, dl, VT,
8146                       DAG.getNode(ISD::XOR, dl, XORVT,
8147                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8148                                               Op.getOperand(0)),
8149                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8150  }
8151
8152  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8153}
8154
8155SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8156  LLVMContext *Context = DAG.getContext();
8157  SDValue Op0 = Op.getOperand(0);
8158  SDValue Op1 = Op.getOperand(1);
8159  DebugLoc dl = Op.getDebugLoc();
8160  EVT VT = Op.getValueType();
8161  EVT SrcVT = Op1.getValueType();
8162
8163  // If second operand is smaller, extend it first.
8164  if (SrcVT.bitsLT(VT)) {
8165    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8166    SrcVT = VT;
8167  }
8168  // And if it is bigger, shrink it first.
8169  if (SrcVT.bitsGT(VT)) {
8170    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8171    SrcVT = VT;
8172  }
8173
8174  // At this point the operands and the result should have the same
8175  // type, and that won't be f80 since that is not custom lowered.
8176
8177  // First get the sign bit of second operand.
8178  SmallVector<Constant*,4> CV;
8179  if (SrcVT == MVT::f64) {
8180    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8181    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8182  } else {
8183    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8184    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8185    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8186    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8187  }
8188  Constant *C = ConstantVector::get(CV);
8189  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8190  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8191                              MachinePointerInfo::getConstantPool(),
8192                              false, false, false, 16);
8193  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8194
8195  // Shift sign bit right or left if the two operands have different types.
8196  if (SrcVT.bitsGT(VT)) {
8197    // Op0 is MVT::f32, Op1 is MVT::f64.
8198    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8199    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8200                          DAG.getConstant(32, MVT::i32));
8201    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8202    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8203                          DAG.getIntPtrConstant(0));
8204  }
8205
8206  // Clear first operand sign bit.
8207  CV.clear();
8208  if (VT == MVT::f64) {
8209    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8210    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8211  } else {
8212    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8213    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8214    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8215    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8216  }
8217  C = ConstantVector::get(CV);
8218  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8219  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8220                              MachinePointerInfo::getConstantPool(),
8221                              false, false, false, 16);
8222  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8223
8224  // Or the value with the sign bit.
8225  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8226}
8227
8228SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8229  SDValue N0 = Op.getOperand(0);
8230  DebugLoc dl = Op.getDebugLoc();
8231  EVT VT = Op.getValueType();
8232
8233  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8234  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8235                                  DAG.getConstant(1, VT));
8236  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8237}
8238
8239/// Emit nodes that will be selected as "test Op0,Op0", or something
8240/// equivalent.
8241SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8242                                    SelectionDAG &DAG) const {
8243  DebugLoc dl = Op.getDebugLoc();
8244
8245  // CF and OF aren't always set the way we want. Determine which
8246  // of these we need.
8247  bool NeedCF = false;
8248  bool NeedOF = false;
8249  switch (X86CC) {
8250  default: break;
8251  case X86::COND_A: case X86::COND_AE:
8252  case X86::COND_B: case X86::COND_BE:
8253    NeedCF = true;
8254    break;
8255  case X86::COND_G: case X86::COND_GE:
8256  case X86::COND_L: case X86::COND_LE:
8257  case X86::COND_O: case X86::COND_NO:
8258    NeedOF = true;
8259    break;
8260  }
8261
8262  // See if we can use the EFLAGS value from the operand instead of
8263  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8264  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8265  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8266    // Emit a CMP with 0, which is the TEST pattern.
8267    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8268                       DAG.getConstant(0, Op.getValueType()));
8269
8270  unsigned Opcode = 0;
8271  unsigned NumOperands = 0;
8272  switch (Op.getNode()->getOpcode()) {
8273  case ISD::ADD:
8274    // Due to an isel shortcoming, be conservative if this add is likely to be
8275    // selected as part of a load-modify-store instruction. When the root node
8276    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8277    // uses of other nodes in the match, such as the ADD in this case. This
8278    // leads to the ADD being left around and reselected, with the result being
8279    // two adds in the output.  Alas, even if none our users are stores, that
8280    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8281    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8282    // climbing the DAG back to the root, and it doesn't seem to be worth the
8283    // effort.
8284    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8285         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8286      if (UI->getOpcode() != ISD::CopyToReg &&
8287          UI->getOpcode() != ISD::SETCC &&
8288          UI->getOpcode() != ISD::STORE)
8289        goto default_case;
8290
8291    if (ConstantSDNode *C =
8292        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8293      // An add of one will be selected as an INC.
8294      if (C->getAPIntValue() == 1) {
8295        Opcode = X86ISD::INC;
8296        NumOperands = 1;
8297        break;
8298      }
8299
8300      // An add of negative one (subtract of one) will be selected as a DEC.
8301      if (C->getAPIntValue().isAllOnesValue()) {
8302        Opcode = X86ISD::DEC;
8303        NumOperands = 1;
8304        break;
8305      }
8306    }
8307
8308    // Otherwise use a regular EFLAGS-setting add.
8309    Opcode = X86ISD::ADD;
8310    NumOperands = 2;
8311    break;
8312  case ISD::AND: {
8313    // If the primary and result isn't used, don't bother using X86ISD::AND,
8314    // because a TEST instruction will be better.
8315    bool NonFlagUse = false;
8316    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8317           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8318      SDNode *User = *UI;
8319      unsigned UOpNo = UI.getOperandNo();
8320      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8321        // Look pass truncate.
8322        UOpNo = User->use_begin().getOperandNo();
8323        User = *User->use_begin();
8324      }
8325
8326      if (User->getOpcode() != ISD::BRCOND &&
8327          User->getOpcode() != ISD::SETCC &&
8328          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8329        NonFlagUse = true;
8330        break;
8331      }
8332    }
8333
8334    if (!NonFlagUse)
8335      break;
8336  }
8337    // FALL THROUGH
8338  case ISD::SUB:
8339  case ISD::OR:
8340  case ISD::XOR:
8341    // Due to the ISEL shortcoming noted above, be conservative if this op is
8342    // likely to be selected as part of a load-modify-store instruction.
8343    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8344           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8345      if (UI->getOpcode() == ISD::STORE)
8346        goto default_case;
8347
8348    // Otherwise use a regular EFLAGS-setting instruction.
8349    switch (Op.getNode()->getOpcode()) {
8350    default: llvm_unreachable("unexpected operator!");
8351    case ISD::SUB:
8352      // If the only use of SUB is EFLAGS, use CMP instead.
8353      if (Op.hasOneUse())
8354        Opcode = X86ISD::CMP;
8355      else
8356        Opcode = X86ISD::SUB;
8357      break;
8358    case ISD::OR:  Opcode = X86ISD::OR;  break;
8359    case ISD::XOR: Opcode = X86ISD::XOR; break;
8360    case ISD::AND: Opcode = X86ISD::AND; break;
8361    }
8362
8363    NumOperands = 2;
8364    break;
8365  case X86ISD::ADD:
8366  case X86ISD::SUB:
8367  case X86ISD::INC:
8368  case X86ISD::DEC:
8369  case X86ISD::OR:
8370  case X86ISD::XOR:
8371  case X86ISD::AND:
8372    return SDValue(Op.getNode(), 1);
8373  default:
8374  default_case:
8375    break;
8376  }
8377
8378  if (Opcode == 0)
8379    // Emit a CMP with 0, which is the TEST pattern.
8380    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8381                       DAG.getConstant(0, Op.getValueType()));
8382
8383  if (Opcode == X86ISD::CMP) {
8384    SDValue New = DAG.getNode(Opcode, dl, MVT::i32, Op.getOperand(0),
8385                              Op.getOperand(1));
8386    // We can't replace usage of SUB with CMP.
8387    // The SUB node will be removed later because there is no use of it.
8388    return SDValue(New.getNode(), 0);
8389  }
8390
8391  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8392  SmallVector<SDValue, 4> Ops;
8393  for (unsigned i = 0; i != NumOperands; ++i)
8394    Ops.push_back(Op.getOperand(i));
8395
8396  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8397  DAG.ReplaceAllUsesWith(Op, New);
8398  return SDValue(New.getNode(), 1);
8399}
8400
8401/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8402/// equivalent.
8403SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8404                                   SelectionDAG &DAG) const {
8405  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8406    if (C->getAPIntValue() == 0)
8407      return EmitTest(Op0, X86CC, DAG);
8408
8409  DebugLoc dl = Op0.getDebugLoc();
8410  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8411}
8412
8413/// Convert a comparison if required by the subtarget.
8414SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8415                                                 SelectionDAG &DAG) const {
8416  // If the subtarget does not support the FUCOMI instruction, floating-point
8417  // comparisons have to be converted.
8418  if (Subtarget->hasCMov() ||
8419      Cmp.getOpcode() != X86ISD::CMP ||
8420      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8421      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8422    return Cmp;
8423
8424  // The instruction selector will select an FUCOM instruction instead of
8425  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8426  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8427  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8428  DebugLoc dl = Cmp.getDebugLoc();
8429  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8430  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8431  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8432                            DAG.getConstant(8, MVT::i8));
8433  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8434  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8435}
8436
8437/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8438/// if it's possible.
8439SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8440                                     DebugLoc dl, SelectionDAG &DAG) const {
8441  SDValue Op0 = And.getOperand(0);
8442  SDValue Op1 = And.getOperand(1);
8443  if (Op0.getOpcode() == ISD::TRUNCATE)
8444    Op0 = Op0.getOperand(0);
8445  if (Op1.getOpcode() == ISD::TRUNCATE)
8446    Op1 = Op1.getOperand(0);
8447
8448  SDValue LHS, RHS;
8449  if (Op1.getOpcode() == ISD::SHL)
8450    std::swap(Op0, Op1);
8451  if (Op0.getOpcode() == ISD::SHL) {
8452    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8453      if (And00C->getZExtValue() == 1) {
8454        // If we looked past a truncate, check that it's only truncating away
8455        // known zeros.
8456        unsigned BitWidth = Op0.getValueSizeInBits();
8457        unsigned AndBitWidth = And.getValueSizeInBits();
8458        if (BitWidth > AndBitWidth) {
8459          APInt Zeros, Ones;
8460          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8461          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8462            return SDValue();
8463        }
8464        LHS = Op1;
8465        RHS = Op0.getOperand(1);
8466      }
8467  } else if (Op1.getOpcode() == ISD::Constant) {
8468    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8469    uint64_t AndRHSVal = AndRHS->getZExtValue();
8470    SDValue AndLHS = Op0;
8471
8472    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8473      LHS = AndLHS.getOperand(0);
8474      RHS = AndLHS.getOperand(1);
8475    }
8476
8477    // Use BT if the immediate can't be encoded in a TEST instruction.
8478    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8479      LHS = AndLHS;
8480      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8481    }
8482  }
8483
8484  if (LHS.getNode()) {
8485    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8486    // instruction.  Since the shift amount is in-range-or-undefined, we know
8487    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8488    // the encoding for the i16 version is larger than the i32 version.
8489    // Also promote i16 to i32 for performance / code size reason.
8490    if (LHS.getValueType() == MVT::i8 ||
8491        LHS.getValueType() == MVT::i16)
8492      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8493
8494    // If the operand types disagree, extend the shift amount to match.  Since
8495    // BT ignores high bits (like shifts) we can use anyextend.
8496    if (LHS.getValueType() != RHS.getValueType())
8497      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8498
8499    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8500    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8501    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8502                       DAG.getConstant(Cond, MVT::i8), BT);
8503  }
8504
8505  return SDValue();
8506}
8507
8508SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8509
8510  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8511
8512  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8513  SDValue Op0 = Op.getOperand(0);
8514  SDValue Op1 = Op.getOperand(1);
8515  DebugLoc dl = Op.getDebugLoc();
8516  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8517
8518  // Optimize to BT if possible.
8519  // Lower (X & (1 << N)) == 0 to BT(X, N).
8520  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8521  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8522  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8523      Op1.getOpcode() == ISD::Constant &&
8524      cast<ConstantSDNode>(Op1)->isNullValue() &&
8525      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8526    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8527    if (NewSetCC.getNode())
8528      return NewSetCC;
8529  }
8530
8531  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8532  // these.
8533  if (Op1.getOpcode() == ISD::Constant &&
8534      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8535       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8536      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8537
8538    // If the input is a setcc, then reuse the input setcc or use a new one with
8539    // the inverted condition.
8540    if (Op0.getOpcode() == X86ISD::SETCC) {
8541      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8542      bool Invert = (CC == ISD::SETNE) ^
8543        cast<ConstantSDNode>(Op1)->isNullValue();
8544      if (!Invert) return Op0;
8545
8546      CCode = X86::GetOppositeBranchCondition(CCode);
8547      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8548                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8549    }
8550  }
8551
8552  bool isFP = Op1.getValueType().isFloatingPoint();
8553  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8554  if (X86CC == X86::COND_INVALID)
8555    return SDValue();
8556
8557  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8558  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8559  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8560                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8561}
8562
8563// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8564// ones, and then concatenate the result back.
8565static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8566  EVT VT = Op.getValueType();
8567
8568  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8569         "Unsupported value type for operation");
8570
8571  unsigned NumElems = VT.getVectorNumElements();
8572  DebugLoc dl = Op.getDebugLoc();
8573  SDValue CC = Op.getOperand(2);
8574
8575  // Extract the LHS vectors
8576  SDValue LHS = Op.getOperand(0);
8577  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8578  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8579
8580  // Extract the RHS vectors
8581  SDValue RHS = Op.getOperand(1);
8582  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8583  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8584
8585  // Issue the operation on the smaller types and concatenate the result back
8586  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8587  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8588  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8589                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8590                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8591}
8592
8593
8594SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8595  SDValue Cond;
8596  SDValue Op0 = Op.getOperand(0);
8597  SDValue Op1 = Op.getOperand(1);
8598  SDValue CC = Op.getOperand(2);
8599  EVT VT = Op.getValueType();
8600  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8601  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8602  DebugLoc dl = Op.getDebugLoc();
8603
8604  if (isFP) {
8605    unsigned SSECC = 8;
8606    EVT EltVT = Op0.getValueType().getVectorElementType();
8607    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8608
8609    bool Swap = false;
8610
8611    // SSE Condition code mapping:
8612    //  0 - EQ
8613    //  1 - LT
8614    //  2 - LE
8615    //  3 - UNORD
8616    //  4 - NEQ
8617    //  5 - NLT
8618    //  6 - NLE
8619    //  7 - ORD
8620    switch (SetCCOpcode) {
8621    default: break;
8622    case ISD::SETOEQ:
8623    case ISD::SETEQ:  SSECC = 0; break;
8624    case ISD::SETOGT:
8625    case ISD::SETGT: Swap = true; // Fallthrough
8626    case ISD::SETLT:
8627    case ISD::SETOLT: SSECC = 1; break;
8628    case ISD::SETOGE:
8629    case ISD::SETGE: Swap = true; // Fallthrough
8630    case ISD::SETLE:
8631    case ISD::SETOLE: SSECC = 2; break;
8632    case ISD::SETUO:  SSECC = 3; break;
8633    case ISD::SETUNE:
8634    case ISD::SETNE:  SSECC = 4; break;
8635    case ISD::SETULE: Swap = true;
8636    case ISD::SETUGE: SSECC = 5; break;
8637    case ISD::SETULT: Swap = true;
8638    case ISD::SETUGT: SSECC = 6; break;
8639    case ISD::SETO:   SSECC = 7; break;
8640    }
8641    if (Swap)
8642      std::swap(Op0, Op1);
8643
8644    // In the two special cases we can't handle, emit two comparisons.
8645    if (SSECC == 8) {
8646      if (SetCCOpcode == ISD::SETUEQ) {
8647        SDValue UNORD, EQ;
8648        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8649                            DAG.getConstant(3, MVT::i8));
8650        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8651                         DAG.getConstant(0, MVT::i8));
8652        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8653      }
8654      if (SetCCOpcode == ISD::SETONE) {
8655        SDValue ORD, NEQ;
8656        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8657                          DAG.getConstant(7, MVT::i8));
8658        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8659                          DAG.getConstant(4, MVT::i8));
8660        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8661      }
8662      llvm_unreachable("Illegal FP comparison");
8663    }
8664    // Handle all other FP comparisons here.
8665    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8666                       DAG.getConstant(SSECC, MVT::i8));
8667  }
8668
8669  // Break 256-bit integer vector compare into smaller ones.
8670  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8671    return Lower256IntVSETCC(Op, DAG);
8672
8673  // We are handling one of the integer comparisons here.  Since SSE only has
8674  // GT and EQ comparisons for integer, swapping operands and multiple
8675  // operations may be required for some comparisons.
8676  unsigned Opc = 0;
8677  bool Swap = false, Invert = false, FlipSigns = false;
8678
8679  switch (SetCCOpcode) {
8680  default: break;
8681  case ISD::SETNE:  Invert = true;
8682  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8683  case ISD::SETLT:  Swap = true;
8684  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8685  case ISD::SETGE:  Swap = true;
8686  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8687  case ISD::SETULT: Swap = true;
8688  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8689  case ISD::SETUGE: Swap = true;
8690  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8691  }
8692  if (Swap)
8693    std::swap(Op0, Op1);
8694
8695  // Check that the operation in question is available (most are plain SSE2,
8696  // but PCMPGTQ and PCMPEQQ have different requirements).
8697  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8698    return SDValue();
8699  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8700    return SDValue();
8701
8702  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8703  // bits of the inputs before performing those operations.
8704  if (FlipSigns) {
8705    EVT EltVT = VT.getVectorElementType();
8706    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8707                                      EltVT);
8708    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8709    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8710                                    SignBits.size());
8711    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8712    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8713  }
8714
8715  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8716
8717  // If the logical-not of the result is required, perform that now.
8718  if (Invert)
8719    Result = DAG.getNOT(dl, Result, VT);
8720
8721  return Result;
8722}
8723
8724// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8725static bool isX86LogicalCmp(SDValue Op) {
8726  unsigned Opc = Op.getNode()->getOpcode();
8727  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8728      Opc == X86ISD::SAHF)
8729    return true;
8730  if (Op.getResNo() == 1 &&
8731      (Opc == X86ISD::ADD ||
8732       Opc == X86ISD::SUB ||
8733       Opc == X86ISD::ADC ||
8734       Opc == X86ISD::SBB ||
8735       Opc == X86ISD::SMUL ||
8736       Opc == X86ISD::UMUL ||
8737       Opc == X86ISD::INC ||
8738       Opc == X86ISD::DEC ||
8739       Opc == X86ISD::OR ||
8740       Opc == X86ISD::XOR ||
8741       Opc == X86ISD::AND))
8742    return true;
8743
8744  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8745    return true;
8746
8747  return false;
8748}
8749
8750static bool isZero(SDValue V) {
8751  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8752  return C && C->isNullValue();
8753}
8754
8755static bool isAllOnes(SDValue V) {
8756  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8757  return C && C->isAllOnesValue();
8758}
8759
8760SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8761  bool addTest = true;
8762  SDValue Cond  = Op.getOperand(0);
8763  SDValue Op1 = Op.getOperand(1);
8764  SDValue Op2 = Op.getOperand(2);
8765  DebugLoc DL = Op.getDebugLoc();
8766  SDValue CC;
8767
8768  if (Cond.getOpcode() == ISD::SETCC) {
8769    SDValue NewCond = LowerSETCC(Cond, DAG);
8770    if (NewCond.getNode())
8771      Cond = NewCond;
8772  }
8773
8774  // Handle the following cases related to max and min:
8775  // (a > b) ? (a-b) : 0
8776  // (a >= b) ? (a-b) : 0
8777  // (b < a) ? (a-b) : 0
8778  // (b <= a) ? (a-b) : 0
8779  // Comparison is removed to use EFLAGS from SUB.
8780  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op2))
8781    if (Cond.getOpcode() == X86ISD::SETCC &&
8782        Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8783        (Op1.getOpcode() == ISD::SUB || Op1.getOpcode() == X86ISD::SUB) &&
8784        C->getAPIntValue() == 0) {
8785      SDValue Cmp = Cond.getOperand(1);
8786      unsigned CC = cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8787      if ((DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(0)) &&
8788           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(1)) &&
8789           (CC == X86::COND_G || CC == X86::COND_GE ||
8790            CC == X86::COND_A || CC == X86::COND_AE)) ||
8791          (DAG.isEqualTo(Op1.getOperand(0), Cmp.getOperand(1)) &&
8792           DAG.isEqualTo(Op1.getOperand(1), Cmp.getOperand(0)) &&
8793           (CC == X86::COND_L || CC == X86::COND_LE ||
8794            CC == X86::COND_B || CC == X86::COND_BE))) {
8795
8796        if (Op1.getOpcode() == ISD::SUB) {
8797          SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i32);
8798          SDValue New = DAG.getNode(X86ISD::SUB, DL, VTs,
8799                                    Op1.getOperand(0), Op1.getOperand(1));
8800          DAG.ReplaceAllUsesWith(Op1, New);
8801          Op1 = New;
8802        }
8803
8804        SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8805        unsigned NewCC = (CC == X86::COND_G || CC == X86::COND_GE ||
8806                          CC == X86::COND_L ||
8807                          CC == X86::COND_LE) ? X86::COND_GE : X86::COND_AE;
8808        SDValue Ops[] = { Op2, Op1, DAG.getConstant(NewCC, MVT::i8),
8809                          SDValue(Op1.getNode(), 1) };
8810        return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8811      }
8812    }
8813
8814  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8815  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8816  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8817  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8818  if (Cond.getOpcode() == X86ISD::SETCC &&
8819      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8820      isZero(Cond.getOperand(1).getOperand(1))) {
8821    SDValue Cmp = Cond.getOperand(1);
8822
8823    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8824
8825    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8826        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8827      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8828
8829      SDValue CmpOp0 = Cmp.getOperand(0);
8830      // Apply further optimizations for special cases
8831      // (select (x != 0), -1, 0) -> neg & sbb
8832      // (select (x == 0), 0, -1) -> neg & sbb
8833      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
8834        if (YC->isNullValue() &&
8835            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
8836          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
8837          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
8838                                    DAG.getConstant(0, CmpOp0.getValueType()),
8839                                    CmpOp0);
8840          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8841                                    DAG.getConstant(X86::COND_B, MVT::i8),
8842                                    SDValue(Neg.getNode(), 1));
8843          return Res;
8844        }
8845
8846      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8847                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8848      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
8849
8850      SDValue Res =   // Res = 0 or -1.
8851        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8852                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8853
8854      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8855        Res = DAG.getNOT(DL, Res, Res.getValueType());
8856
8857      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8858      if (N2C == 0 || !N2C->isNullValue())
8859        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8860      return Res;
8861    }
8862  }
8863
8864  // Look past (and (setcc_carry (cmp ...)), 1).
8865  if (Cond.getOpcode() == ISD::AND &&
8866      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8867    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8868    if (C && C->getAPIntValue() == 1)
8869      Cond = Cond.getOperand(0);
8870  }
8871
8872  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8873  // setting operand in place of the X86ISD::SETCC.
8874  unsigned CondOpcode = Cond.getOpcode();
8875  if (CondOpcode == X86ISD::SETCC ||
8876      CondOpcode == X86ISD::SETCC_CARRY) {
8877    CC = Cond.getOperand(0);
8878
8879    SDValue Cmp = Cond.getOperand(1);
8880    unsigned Opc = Cmp.getOpcode();
8881    EVT VT = Op.getValueType();
8882
8883    bool IllegalFPCMov = false;
8884    if (VT.isFloatingPoint() && !VT.isVector() &&
8885        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8886      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8887
8888    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8889        Opc == X86ISD::BT) { // FIXME
8890      Cond = Cmp;
8891      addTest = false;
8892    }
8893  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8894             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8895             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8896              Cond.getOperand(0).getValueType() != MVT::i8)) {
8897    SDValue LHS = Cond.getOperand(0);
8898    SDValue RHS = Cond.getOperand(1);
8899    unsigned X86Opcode;
8900    unsigned X86Cond;
8901    SDVTList VTs;
8902    switch (CondOpcode) {
8903    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8904    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8905    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8906    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8907    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8908    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8909    default: llvm_unreachable("unexpected overflowing operator");
8910    }
8911    if (CondOpcode == ISD::UMULO)
8912      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8913                          MVT::i32);
8914    else
8915      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8916
8917    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8918
8919    if (CondOpcode == ISD::UMULO)
8920      Cond = X86Op.getValue(2);
8921    else
8922      Cond = X86Op.getValue(1);
8923
8924    CC = DAG.getConstant(X86Cond, MVT::i8);
8925    addTest = false;
8926  }
8927
8928  if (addTest) {
8929    // Look pass the truncate.
8930    if (Cond.getOpcode() == ISD::TRUNCATE)
8931      Cond = Cond.getOperand(0);
8932
8933    // We know the result of AND is compared against zero. Try to match
8934    // it to BT.
8935    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8936      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8937      if (NewSetCC.getNode()) {
8938        CC = NewSetCC.getOperand(0);
8939        Cond = NewSetCC.getOperand(1);
8940        addTest = false;
8941      }
8942    }
8943  }
8944
8945  if (addTest) {
8946    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8947    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8948  }
8949
8950  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8951  // a <  b ?  0 : -1 -> RES = setcc_carry
8952  // a >= b ? -1 :  0 -> RES = setcc_carry
8953  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8954  if (Cond.getOpcode() == X86ISD::CMP) {
8955    Cond = ConvertCmpIfNecessary(Cond, DAG);
8956    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8957
8958    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8959        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8960      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8961                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8962      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8963        return DAG.getNOT(DL, Res, Res.getValueType());
8964      return Res;
8965    }
8966  }
8967
8968  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8969  // condition is true.
8970  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8971  SDValue Ops[] = { Op2, Op1, CC, Cond };
8972  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8973}
8974
8975// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8976// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8977// from the AND / OR.
8978static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8979  Opc = Op.getOpcode();
8980  if (Opc != ISD::OR && Opc != ISD::AND)
8981    return false;
8982  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8983          Op.getOperand(0).hasOneUse() &&
8984          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8985          Op.getOperand(1).hasOneUse());
8986}
8987
8988// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8989// 1 and that the SETCC node has a single use.
8990static bool isXor1OfSetCC(SDValue Op) {
8991  if (Op.getOpcode() != ISD::XOR)
8992    return false;
8993  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8994  if (N1C && N1C->getAPIntValue() == 1) {
8995    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8996      Op.getOperand(0).hasOneUse();
8997  }
8998  return false;
8999}
9000
9001SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9002  bool addTest = true;
9003  SDValue Chain = Op.getOperand(0);
9004  SDValue Cond  = Op.getOperand(1);
9005  SDValue Dest  = Op.getOperand(2);
9006  DebugLoc dl = Op.getDebugLoc();
9007  SDValue CC;
9008  bool Inverted = false;
9009
9010  if (Cond.getOpcode() == ISD::SETCC) {
9011    // Check for setcc([su]{add,sub,mul}o == 0).
9012    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9013        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9014        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9015        Cond.getOperand(0).getResNo() == 1 &&
9016        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9017         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9018         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9019         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9020         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9021         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9022      Inverted = true;
9023      Cond = Cond.getOperand(0);
9024    } else {
9025      SDValue NewCond = LowerSETCC(Cond, DAG);
9026      if (NewCond.getNode())
9027        Cond = NewCond;
9028    }
9029  }
9030#if 0
9031  // FIXME: LowerXALUO doesn't handle these!!
9032  else if (Cond.getOpcode() == X86ISD::ADD  ||
9033           Cond.getOpcode() == X86ISD::SUB  ||
9034           Cond.getOpcode() == X86ISD::SMUL ||
9035           Cond.getOpcode() == X86ISD::UMUL)
9036    Cond = LowerXALUO(Cond, DAG);
9037#endif
9038
9039  // Look pass (and (setcc_carry (cmp ...)), 1).
9040  if (Cond.getOpcode() == ISD::AND &&
9041      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9042    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9043    if (C && C->getAPIntValue() == 1)
9044      Cond = Cond.getOperand(0);
9045  }
9046
9047  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9048  // setting operand in place of the X86ISD::SETCC.
9049  unsigned CondOpcode = Cond.getOpcode();
9050  if (CondOpcode == X86ISD::SETCC ||
9051      CondOpcode == X86ISD::SETCC_CARRY) {
9052    CC = Cond.getOperand(0);
9053
9054    SDValue Cmp = Cond.getOperand(1);
9055    unsigned Opc = Cmp.getOpcode();
9056    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9057    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9058      Cond = Cmp;
9059      addTest = false;
9060    } else {
9061      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9062      default: break;
9063      case X86::COND_O:
9064      case X86::COND_B:
9065        // These can only come from an arithmetic instruction with overflow,
9066        // e.g. SADDO, UADDO.
9067        Cond = Cond.getNode()->getOperand(1);
9068        addTest = false;
9069        break;
9070      }
9071    }
9072  }
9073  CondOpcode = Cond.getOpcode();
9074  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9075      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9076      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9077       Cond.getOperand(0).getValueType() != MVT::i8)) {
9078    SDValue LHS = Cond.getOperand(0);
9079    SDValue RHS = Cond.getOperand(1);
9080    unsigned X86Opcode;
9081    unsigned X86Cond;
9082    SDVTList VTs;
9083    switch (CondOpcode) {
9084    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9085    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9086    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9087    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9088    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9089    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9090    default: llvm_unreachable("unexpected overflowing operator");
9091    }
9092    if (Inverted)
9093      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9094    if (CondOpcode == ISD::UMULO)
9095      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9096                          MVT::i32);
9097    else
9098      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9099
9100    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9101
9102    if (CondOpcode == ISD::UMULO)
9103      Cond = X86Op.getValue(2);
9104    else
9105      Cond = X86Op.getValue(1);
9106
9107    CC = DAG.getConstant(X86Cond, MVT::i8);
9108    addTest = false;
9109  } else {
9110    unsigned CondOpc;
9111    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9112      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9113      if (CondOpc == ISD::OR) {
9114        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9115        // two branches instead of an explicit OR instruction with a
9116        // separate test.
9117        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9118            isX86LogicalCmp(Cmp)) {
9119          CC = Cond.getOperand(0).getOperand(0);
9120          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9121                              Chain, Dest, CC, Cmp);
9122          CC = Cond.getOperand(1).getOperand(0);
9123          Cond = Cmp;
9124          addTest = false;
9125        }
9126      } else { // ISD::AND
9127        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9128        // two branches instead of an explicit AND instruction with a
9129        // separate test. However, we only do this if this block doesn't
9130        // have a fall-through edge, because this requires an explicit
9131        // jmp when the condition is false.
9132        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9133            isX86LogicalCmp(Cmp) &&
9134            Op.getNode()->hasOneUse()) {
9135          X86::CondCode CCode =
9136            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9137          CCode = X86::GetOppositeBranchCondition(CCode);
9138          CC = DAG.getConstant(CCode, MVT::i8);
9139          SDNode *User = *Op.getNode()->use_begin();
9140          // Look for an unconditional branch following this conditional branch.
9141          // We need this because we need to reverse the successors in order
9142          // to implement FCMP_OEQ.
9143          if (User->getOpcode() == ISD::BR) {
9144            SDValue FalseBB = User->getOperand(1);
9145            SDNode *NewBR =
9146              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9147            assert(NewBR == User);
9148            (void)NewBR;
9149            Dest = FalseBB;
9150
9151            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9152                                Chain, Dest, CC, Cmp);
9153            X86::CondCode CCode =
9154              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9155            CCode = X86::GetOppositeBranchCondition(CCode);
9156            CC = DAG.getConstant(CCode, MVT::i8);
9157            Cond = Cmp;
9158            addTest = false;
9159          }
9160        }
9161      }
9162    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9163      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9164      // It should be transformed during dag combiner except when the condition
9165      // is set by a arithmetics with overflow node.
9166      X86::CondCode CCode =
9167        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9168      CCode = X86::GetOppositeBranchCondition(CCode);
9169      CC = DAG.getConstant(CCode, MVT::i8);
9170      Cond = Cond.getOperand(0).getOperand(1);
9171      addTest = false;
9172    } else if (Cond.getOpcode() == ISD::SETCC &&
9173               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9174      // For FCMP_OEQ, we can emit
9175      // two branches instead of an explicit AND instruction with a
9176      // separate test. However, we only do this if this block doesn't
9177      // have a fall-through edge, because this requires an explicit
9178      // jmp when the condition is false.
9179      if (Op.getNode()->hasOneUse()) {
9180        SDNode *User = *Op.getNode()->use_begin();
9181        // Look for an unconditional branch following this conditional branch.
9182        // We need this because we need to reverse the successors in order
9183        // to implement FCMP_OEQ.
9184        if (User->getOpcode() == ISD::BR) {
9185          SDValue FalseBB = User->getOperand(1);
9186          SDNode *NewBR =
9187            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9188          assert(NewBR == User);
9189          (void)NewBR;
9190          Dest = FalseBB;
9191
9192          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9193                                    Cond.getOperand(0), Cond.getOperand(1));
9194          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9195          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9196          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9197                              Chain, Dest, CC, Cmp);
9198          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9199          Cond = Cmp;
9200          addTest = false;
9201        }
9202      }
9203    } else if (Cond.getOpcode() == ISD::SETCC &&
9204               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9205      // For FCMP_UNE, we can emit
9206      // two branches instead of an explicit AND instruction with a
9207      // separate test. However, we only do this if this block doesn't
9208      // have a fall-through edge, because this requires an explicit
9209      // jmp when the condition is false.
9210      if (Op.getNode()->hasOneUse()) {
9211        SDNode *User = *Op.getNode()->use_begin();
9212        // Look for an unconditional branch following this conditional branch.
9213        // We need this because we need to reverse the successors in order
9214        // to implement FCMP_UNE.
9215        if (User->getOpcode() == ISD::BR) {
9216          SDValue FalseBB = User->getOperand(1);
9217          SDNode *NewBR =
9218            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9219          assert(NewBR == User);
9220          (void)NewBR;
9221
9222          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9223                                    Cond.getOperand(0), Cond.getOperand(1));
9224          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9225          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9226          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9227                              Chain, Dest, CC, Cmp);
9228          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9229          Cond = Cmp;
9230          addTest = false;
9231          Dest = FalseBB;
9232        }
9233      }
9234    }
9235  }
9236
9237  if (addTest) {
9238    // Look pass the truncate.
9239    if (Cond.getOpcode() == ISD::TRUNCATE)
9240      Cond = Cond.getOperand(0);
9241
9242    // We know the result of AND is compared against zero. Try to match
9243    // it to BT.
9244    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9245      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9246      if (NewSetCC.getNode()) {
9247        CC = NewSetCC.getOperand(0);
9248        Cond = NewSetCC.getOperand(1);
9249        addTest = false;
9250      }
9251    }
9252  }
9253
9254  if (addTest) {
9255    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9256    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9257  }
9258  Cond = ConvertCmpIfNecessary(Cond, DAG);
9259  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9260                     Chain, Dest, CC, Cond);
9261}
9262
9263
9264// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9265// Calls to _alloca is needed to probe the stack when allocating more than 4k
9266// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9267// that the guard pages used by the OS virtual memory manager are allocated in
9268// correct sequence.
9269SDValue
9270X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9271                                           SelectionDAG &DAG) const {
9272  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9273          getTargetMachine().Options.EnableSegmentedStacks) &&
9274         "This should be used only on Windows targets or when segmented stacks "
9275         "are being used");
9276  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9277  DebugLoc dl = Op.getDebugLoc();
9278
9279  // Get the inputs.
9280  SDValue Chain = Op.getOperand(0);
9281  SDValue Size  = Op.getOperand(1);
9282  // FIXME: Ensure alignment here
9283
9284  bool Is64Bit = Subtarget->is64Bit();
9285  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9286
9287  if (getTargetMachine().Options.EnableSegmentedStacks) {
9288    MachineFunction &MF = DAG.getMachineFunction();
9289    MachineRegisterInfo &MRI = MF.getRegInfo();
9290
9291    if (Is64Bit) {
9292      // The 64 bit implementation of segmented stacks needs to clobber both r10
9293      // r11. This makes it impossible to use it along with nested parameters.
9294      const Function *F = MF.getFunction();
9295
9296      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9297           I != E; ++I)
9298        if (I->hasNestAttr())
9299          report_fatal_error("Cannot use segmented stacks with functions that "
9300                             "have nested arguments.");
9301    }
9302
9303    const TargetRegisterClass *AddrRegClass =
9304      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9305    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9306    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9307    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9308                                DAG.getRegister(Vreg, SPTy));
9309    SDValue Ops1[2] = { Value, Chain };
9310    return DAG.getMergeValues(Ops1, 2, dl);
9311  } else {
9312    SDValue Flag;
9313    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9314
9315    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9316    Flag = Chain.getValue(1);
9317    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9318
9319    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9320    Flag = Chain.getValue(1);
9321
9322    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9323
9324    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9325    return DAG.getMergeValues(Ops1, 2, dl);
9326  }
9327}
9328
9329SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9330  MachineFunction &MF = DAG.getMachineFunction();
9331  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9332
9333  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9334  DebugLoc DL = Op.getDebugLoc();
9335
9336  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9337    // vastart just stores the address of the VarArgsFrameIndex slot into the
9338    // memory location argument.
9339    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9340                                   getPointerTy());
9341    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9342                        MachinePointerInfo(SV), false, false, 0);
9343  }
9344
9345  // __va_list_tag:
9346  //   gp_offset         (0 - 6 * 8)
9347  //   fp_offset         (48 - 48 + 8 * 16)
9348  //   overflow_arg_area (point to parameters coming in memory).
9349  //   reg_save_area
9350  SmallVector<SDValue, 8> MemOps;
9351  SDValue FIN = Op.getOperand(1);
9352  // Store gp_offset
9353  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9354                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9355                                               MVT::i32),
9356                               FIN, MachinePointerInfo(SV), false, false, 0);
9357  MemOps.push_back(Store);
9358
9359  // Store fp_offset
9360  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9361                    FIN, DAG.getIntPtrConstant(4));
9362  Store = DAG.getStore(Op.getOperand(0), DL,
9363                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9364                                       MVT::i32),
9365                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9366  MemOps.push_back(Store);
9367
9368  // Store ptr to overflow_arg_area
9369  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9370                    FIN, DAG.getIntPtrConstant(4));
9371  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9372                                    getPointerTy());
9373  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9374                       MachinePointerInfo(SV, 8),
9375                       false, false, 0);
9376  MemOps.push_back(Store);
9377
9378  // Store ptr to reg_save_area.
9379  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9380                    FIN, DAG.getIntPtrConstant(8));
9381  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9382                                    getPointerTy());
9383  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9384                       MachinePointerInfo(SV, 16), false, false, 0);
9385  MemOps.push_back(Store);
9386  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9387                     &MemOps[0], MemOps.size());
9388}
9389
9390SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9391  assert(Subtarget->is64Bit() &&
9392         "LowerVAARG only handles 64-bit va_arg!");
9393  assert((Subtarget->isTargetLinux() ||
9394          Subtarget->isTargetDarwin()) &&
9395          "Unhandled target in LowerVAARG");
9396  assert(Op.getNode()->getNumOperands() == 4);
9397  SDValue Chain = Op.getOperand(0);
9398  SDValue SrcPtr = Op.getOperand(1);
9399  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9400  unsigned Align = Op.getConstantOperandVal(3);
9401  DebugLoc dl = Op.getDebugLoc();
9402
9403  EVT ArgVT = Op.getNode()->getValueType(0);
9404  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9405  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9406  uint8_t ArgMode;
9407
9408  // Decide which area this value should be read from.
9409  // TODO: Implement the AMD64 ABI in its entirety. This simple
9410  // selection mechanism works only for the basic types.
9411  if (ArgVT == MVT::f80) {
9412    llvm_unreachable("va_arg for f80 not yet implemented");
9413  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9414    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9415  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9416    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9417  } else {
9418    llvm_unreachable("Unhandled argument type in LowerVAARG");
9419  }
9420
9421  if (ArgMode == 2) {
9422    // Sanity Check: Make sure using fp_offset makes sense.
9423    assert(!getTargetMachine().Options.UseSoftFloat &&
9424           !(DAG.getMachineFunction()
9425                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9426           Subtarget->hasSSE1());
9427  }
9428
9429  // Insert VAARG_64 node into the DAG
9430  // VAARG_64 returns two values: Variable Argument Address, Chain
9431  SmallVector<SDValue, 11> InstOps;
9432  InstOps.push_back(Chain);
9433  InstOps.push_back(SrcPtr);
9434  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9435  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9436  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9437  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9438  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9439                                          VTs, &InstOps[0], InstOps.size(),
9440                                          MVT::i64,
9441                                          MachinePointerInfo(SV),
9442                                          /*Align=*/0,
9443                                          /*Volatile=*/false,
9444                                          /*ReadMem=*/true,
9445                                          /*WriteMem=*/true);
9446  Chain = VAARG.getValue(1);
9447
9448  // Load the next argument and return it
9449  return DAG.getLoad(ArgVT, dl,
9450                     Chain,
9451                     VAARG,
9452                     MachinePointerInfo(),
9453                     false, false, false, 0);
9454}
9455
9456SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9457  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9458  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9459  SDValue Chain = Op.getOperand(0);
9460  SDValue DstPtr = Op.getOperand(1);
9461  SDValue SrcPtr = Op.getOperand(2);
9462  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9463  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9464  DebugLoc DL = Op.getDebugLoc();
9465
9466  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9467                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9468                       false,
9469                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9470}
9471
9472// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9473// may or may not be a constant. Takes immediate version of shift as input.
9474static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9475                                   SDValue SrcOp, SDValue ShAmt,
9476                                   SelectionDAG &DAG) {
9477  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9478
9479  if (isa<ConstantSDNode>(ShAmt)) {
9480    // Constant may be a TargetConstant. Use a regular constant.
9481    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9482    switch (Opc) {
9483      default: llvm_unreachable("Unknown target vector shift node");
9484      case X86ISD::VSHLI:
9485      case X86ISD::VSRLI:
9486      case X86ISD::VSRAI:
9487        return DAG.getNode(Opc, dl, VT, SrcOp,
9488                           DAG.getConstant(ShiftAmt, MVT::i32));
9489    }
9490  }
9491
9492  // Change opcode to non-immediate version
9493  switch (Opc) {
9494    default: llvm_unreachable("Unknown target vector shift node");
9495    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9496    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9497    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9498  }
9499
9500  // Need to build a vector containing shift amount
9501  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9502  SDValue ShOps[4];
9503  ShOps[0] = ShAmt;
9504  ShOps[1] = DAG.getConstant(0, MVT::i32);
9505  ShOps[2] = DAG.getUNDEF(MVT::i32);
9506  ShOps[3] = DAG.getUNDEF(MVT::i32);
9507  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9508
9509  // The return type has to be a 128-bit type with the same element
9510  // type as the input type.
9511  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9512  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9513
9514  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9515  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9516}
9517
9518SDValue
9519X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9520  DebugLoc dl = Op.getDebugLoc();
9521  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9522  switch (IntNo) {
9523  default: return SDValue();    // Don't custom lower most intrinsics.
9524  // Comparison intrinsics.
9525  case Intrinsic::x86_sse_comieq_ss:
9526  case Intrinsic::x86_sse_comilt_ss:
9527  case Intrinsic::x86_sse_comile_ss:
9528  case Intrinsic::x86_sse_comigt_ss:
9529  case Intrinsic::x86_sse_comige_ss:
9530  case Intrinsic::x86_sse_comineq_ss:
9531  case Intrinsic::x86_sse_ucomieq_ss:
9532  case Intrinsic::x86_sse_ucomilt_ss:
9533  case Intrinsic::x86_sse_ucomile_ss:
9534  case Intrinsic::x86_sse_ucomigt_ss:
9535  case Intrinsic::x86_sse_ucomige_ss:
9536  case Intrinsic::x86_sse_ucomineq_ss:
9537  case Intrinsic::x86_sse2_comieq_sd:
9538  case Intrinsic::x86_sse2_comilt_sd:
9539  case Intrinsic::x86_sse2_comile_sd:
9540  case Intrinsic::x86_sse2_comigt_sd:
9541  case Intrinsic::x86_sse2_comige_sd:
9542  case Intrinsic::x86_sse2_comineq_sd:
9543  case Intrinsic::x86_sse2_ucomieq_sd:
9544  case Intrinsic::x86_sse2_ucomilt_sd:
9545  case Intrinsic::x86_sse2_ucomile_sd:
9546  case Intrinsic::x86_sse2_ucomigt_sd:
9547  case Intrinsic::x86_sse2_ucomige_sd:
9548  case Intrinsic::x86_sse2_ucomineq_sd: {
9549    unsigned Opc = 0;
9550    ISD::CondCode CC = ISD::SETCC_INVALID;
9551    switch (IntNo) {
9552    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9553    case Intrinsic::x86_sse_comieq_ss:
9554    case Intrinsic::x86_sse2_comieq_sd:
9555      Opc = X86ISD::COMI;
9556      CC = ISD::SETEQ;
9557      break;
9558    case Intrinsic::x86_sse_comilt_ss:
9559    case Intrinsic::x86_sse2_comilt_sd:
9560      Opc = X86ISD::COMI;
9561      CC = ISD::SETLT;
9562      break;
9563    case Intrinsic::x86_sse_comile_ss:
9564    case Intrinsic::x86_sse2_comile_sd:
9565      Opc = X86ISD::COMI;
9566      CC = ISD::SETLE;
9567      break;
9568    case Intrinsic::x86_sse_comigt_ss:
9569    case Intrinsic::x86_sse2_comigt_sd:
9570      Opc = X86ISD::COMI;
9571      CC = ISD::SETGT;
9572      break;
9573    case Intrinsic::x86_sse_comige_ss:
9574    case Intrinsic::x86_sse2_comige_sd:
9575      Opc = X86ISD::COMI;
9576      CC = ISD::SETGE;
9577      break;
9578    case Intrinsic::x86_sse_comineq_ss:
9579    case Intrinsic::x86_sse2_comineq_sd:
9580      Opc = X86ISD::COMI;
9581      CC = ISD::SETNE;
9582      break;
9583    case Intrinsic::x86_sse_ucomieq_ss:
9584    case Intrinsic::x86_sse2_ucomieq_sd:
9585      Opc = X86ISD::UCOMI;
9586      CC = ISD::SETEQ;
9587      break;
9588    case Intrinsic::x86_sse_ucomilt_ss:
9589    case Intrinsic::x86_sse2_ucomilt_sd:
9590      Opc = X86ISD::UCOMI;
9591      CC = ISD::SETLT;
9592      break;
9593    case Intrinsic::x86_sse_ucomile_ss:
9594    case Intrinsic::x86_sse2_ucomile_sd:
9595      Opc = X86ISD::UCOMI;
9596      CC = ISD::SETLE;
9597      break;
9598    case Intrinsic::x86_sse_ucomigt_ss:
9599    case Intrinsic::x86_sse2_ucomigt_sd:
9600      Opc = X86ISD::UCOMI;
9601      CC = ISD::SETGT;
9602      break;
9603    case Intrinsic::x86_sse_ucomige_ss:
9604    case Intrinsic::x86_sse2_ucomige_sd:
9605      Opc = X86ISD::UCOMI;
9606      CC = ISD::SETGE;
9607      break;
9608    case Intrinsic::x86_sse_ucomineq_ss:
9609    case Intrinsic::x86_sse2_ucomineq_sd:
9610      Opc = X86ISD::UCOMI;
9611      CC = ISD::SETNE;
9612      break;
9613    }
9614
9615    SDValue LHS = Op.getOperand(1);
9616    SDValue RHS = Op.getOperand(2);
9617    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9618    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9619    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9620    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9621                                DAG.getConstant(X86CC, MVT::i8), Cond);
9622    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9623  }
9624  // Arithmetic intrinsics.
9625  case Intrinsic::x86_sse2_pmulu_dq:
9626  case Intrinsic::x86_avx2_pmulu_dq:
9627    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9628                       Op.getOperand(1), Op.getOperand(2));
9629  case Intrinsic::x86_sse3_hadd_ps:
9630  case Intrinsic::x86_sse3_hadd_pd:
9631  case Intrinsic::x86_avx_hadd_ps_256:
9632  case Intrinsic::x86_avx_hadd_pd_256:
9633    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9634                       Op.getOperand(1), Op.getOperand(2));
9635  case Intrinsic::x86_sse3_hsub_ps:
9636  case Intrinsic::x86_sse3_hsub_pd:
9637  case Intrinsic::x86_avx_hsub_ps_256:
9638  case Intrinsic::x86_avx_hsub_pd_256:
9639    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9640                       Op.getOperand(1), Op.getOperand(2));
9641  case Intrinsic::x86_ssse3_phadd_w_128:
9642  case Intrinsic::x86_ssse3_phadd_d_128:
9643  case Intrinsic::x86_avx2_phadd_w:
9644  case Intrinsic::x86_avx2_phadd_d:
9645    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9646                       Op.getOperand(1), Op.getOperand(2));
9647  case Intrinsic::x86_ssse3_phsub_w_128:
9648  case Intrinsic::x86_ssse3_phsub_d_128:
9649  case Intrinsic::x86_avx2_phsub_w:
9650  case Intrinsic::x86_avx2_phsub_d:
9651    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9652                       Op.getOperand(1), Op.getOperand(2));
9653  case Intrinsic::x86_avx2_psllv_d:
9654  case Intrinsic::x86_avx2_psllv_q:
9655  case Intrinsic::x86_avx2_psllv_d_256:
9656  case Intrinsic::x86_avx2_psllv_q_256:
9657    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9658                      Op.getOperand(1), Op.getOperand(2));
9659  case Intrinsic::x86_avx2_psrlv_d:
9660  case Intrinsic::x86_avx2_psrlv_q:
9661  case Intrinsic::x86_avx2_psrlv_d_256:
9662  case Intrinsic::x86_avx2_psrlv_q_256:
9663    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9664                      Op.getOperand(1), Op.getOperand(2));
9665  case Intrinsic::x86_avx2_psrav_d:
9666  case Intrinsic::x86_avx2_psrav_d_256:
9667    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9668                      Op.getOperand(1), Op.getOperand(2));
9669  case Intrinsic::x86_ssse3_pshuf_b_128:
9670  case Intrinsic::x86_avx2_pshuf_b:
9671    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9672                       Op.getOperand(1), Op.getOperand(2));
9673  case Intrinsic::x86_ssse3_psign_b_128:
9674  case Intrinsic::x86_ssse3_psign_w_128:
9675  case Intrinsic::x86_ssse3_psign_d_128:
9676  case Intrinsic::x86_avx2_psign_b:
9677  case Intrinsic::x86_avx2_psign_w:
9678  case Intrinsic::x86_avx2_psign_d:
9679    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9680                       Op.getOperand(1), Op.getOperand(2));
9681  case Intrinsic::x86_sse41_insertps:
9682    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9683                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9684  case Intrinsic::x86_avx_vperm2f128_ps_256:
9685  case Intrinsic::x86_avx_vperm2f128_pd_256:
9686  case Intrinsic::x86_avx_vperm2f128_si_256:
9687  case Intrinsic::x86_avx2_vperm2i128:
9688    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9689                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9690  case Intrinsic::x86_avx2_permd:
9691  case Intrinsic::x86_avx2_permps:
9692    // Operands intentionally swapped. Mask is last operand to intrinsic,
9693    // but second operand for node/intruction.
9694    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9695                       Op.getOperand(2), Op.getOperand(1));
9696
9697  // ptest and testp intrinsics. The intrinsic these come from are designed to
9698  // return an integer value, not just an instruction so lower it to the ptest
9699  // or testp pattern and a setcc for the result.
9700  case Intrinsic::x86_sse41_ptestz:
9701  case Intrinsic::x86_sse41_ptestc:
9702  case Intrinsic::x86_sse41_ptestnzc:
9703  case Intrinsic::x86_avx_ptestz_256:
9704  case Intrinsic::x86_avx_ptestc_256:
9705  case Intrinsic::x86_avx_ptestnzc_256:
9706  case Intrinsic::x86_avx_vtestz_ps:
9707  case Intrinsic::x86_avx_vtestc_ps:
9708  case Intrinsic::x86_avx_vtestnzc_ps:
9709  case Intrinsic::x86_avx_vtestz_pd:
9710  case Intrinsic::x86_avx_vtestc_pd:
9711  case Intrinsic::x86_avx_vtestnzc_pd:
9712  case Intrinsic::x86_avx_vtestz_ps_256:
9713  case Intrinsic::x86_avx_vtestc_ps_256:
9714  case Intrinsic::x86_avx_vtestnzc_ps_256:
9715  case Intrinsic::x86_avx_vtestz_pd_256:
9716  case Intrinsic::x86_avx_vtestc_pd_256:
9717  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9718    bool IsTestPacked = false;
9719    unsigned X86CC = 0;
9720    switch (IntNo) {
9721    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9722    case Intrinsic::x86_avx_vtestz_ps:
9723    case Intrinsic::x86_avx_vtestz_pd:
9724    case Intrinsic::x86_avx_vtestz_ps_256:
9725    case Intrinsic::x86_avx_vtestz_pd_256:
9726      IsTestPacked = true; // Fallthrough
9727    case Intrinsic::x86_sse41_ptestz:
9728    case Intrinsic::x86_avx_ptestz_256:
9729      // ZF = 1
9730      X86CC = X86::COND_E;
9731      break;
9732    case Intrinsic::x86_avx_vtestc_ps:
9733    case Intrinsic::x86_avx_vtestc_pd:
9734    case Intrinsic::x86_avx_vtestc_ps_256:
9735    case Intrinsic::x86_avx_vtestc_pd_256:
9736      IsTestPacked = true; // Fallthrough
9737    case Intrinsic::x86_sse41_ptestc:
9738    case Intrinsic::x86_avx_ptestc_256:
9739      // CF = 1
9740      X86CC = X86::COND_B;
9741      break;
9742    case Intrinsic::x86_avx_vtestnzc_ps:
9743    case Intrinsic::x86_avx_vtestnzc_pd:
9744    case Intrinsic::x86_avx_vtestnzc_ps_256:
9745    case Intrinsic::x86_avx_vtestnzc_pd_256:
9746      IsTestPacked = true; // Fallthrough
9747    case Intrinsic::x86_sse41_ptestnzc:
9748    case Intrinsic::x86_avx_ptestnzc_256:
9749      // ZF and CF = 0
9750      X86CC = X86::COND_A;
9751      break;
9752    }
9753
9754    SDValue LHS = Op.getOperand(1);
9755    SDValue RHS = Op.getOperand(2);
9756    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9757    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9758    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9759    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9760    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9761  }
9762
9763  // SSE/AVX shift intrinsics
9764  case Intrinsic::x86_sse2_psll_w:
9765  case Intrinsic::x86_sse2_psll_d:
9766  case Intrinsic::x86_sse2_psll_q:
9767  case Intrinsic::x86_avx2_psll_w:
9768  case Intrinsic::x86_avx2_psll_d:
9769  case Intrinsic::x86_avx2_psll_q:
9770    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9771                       Op.getOperand(1), Op.getOperand(2));
9772  case Intrinsic::x86_sse2_psrl_w:
9773  case Intrinsic::x86_sse2_psrl_d:
9774  case Intrinsic::x86_sse2_psrl_q:
9775  case Intrinsic::x86_avx2_psrl_w:
9776  case Intrinsic::x86_avx2_psrl_d:
9777  case Intrinsic::x86_avx2_psrl_q:
9778    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9779                       Op.getOperand(1), Op.getOperand(2));
9780  case Intrinsic::x86_sse2_psra_w:
9781  case Intrinsic::x86_sse2_psra_d:
9782  case Intrinsic::x86_avx2_psra_w:
9783  case Intrinsic::x86_avx2_psra_d:
9784    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9785                       Op.getOperand(1), Op.getOperand(2));
9786  case Intrinsic::x86_sse2_pslli_w:
9787  case Intrinsic::x86_sse2_pslli_d:
9788  case Intrinsic::x86_sse2_pslli_q:
9789  case Intrinsic::x86_avx2_pslli_w:
9790  case Intrinsic::x86_avx2_pslli_d:
9791  case Intrinsic::x86_avx2_pslli_q:
9792    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9793                               Op.getOperand(1), Op.getOperand(2), DAG);
9794  case Intrinsic::x86_sse2_psrli_w:
9795  case Intrinsic::x86_sse2_psrli_d:
9796  case Intrinsic::x86_sse2_psrli_q:
9797  case Intrinsic::x86_avx2_psrli_w:
9798  case Intrinsic::x86_avx2_psrli_d:
9799  case Intrinsic::x86_avx2_psrli_q:
9800    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9801                               Op.getOperand(1), Op.getOperand(2), DAG);
9802  case Intrinsic::x86_sse2_psrai_w:
9803  case Intrinsic::x86_sse2_psrai_d:
9804  case Intrinsic::x86_avx2_psrai_w:
9805  case Intrinsic::x86_avx2_psrai_d:
9806    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9807                               Op.getOperand(1), Op.getOperand(2), DAG);
9808  // Fix vector shift instructions where the last operand is a non-immediate
9809  // i32 value.
9810  case Intrinsic::x86_mmx_pslli_w:
9811  case Intrinsic::x86_mmx_pslli_d:
9812  case Intrinsic::x86_mmx_pslli_q:
9813  case Intrinsic::x86_mmx_psrli_w:
9814  case Intrinsic::x86_mmx_psrli_d:
9815  case Intrinsic::x86_mmx_psrli_q:
9816  case Intrinsic::x86_mmx_psrai_w:
9817  case Intrinsic::x86_mmx_psrai_d: {
9818    SDValue ShAmt = Op.getOperand(2);
9819    if (isa<ConstantSDNode>(ShAmt))
9820      return SDValue();
9821
9822    unsigned NewIntNo = 0;
9823    switch (IntNo) {
9824    case Intrinsic::x86_mmx_pslli_w:
9825      NewIntNo = Intrinsic::x86_mmx_psll_w;
9826      break;
9827    case Intrinsic::x86_mmx_pslli_d:
9828      NewIntNo = Intrinsic::x86_mmx_psll_d;
9829      break;
9830    case Intrinsic::x86_mmx_pslli_q:
9831      NewIntNo = Intrinsic::x86_mmx_psll_q;
9832      break;
9833    case Intrinsic::x86_mmx_psrli_w:
9834      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9835      break;
9836    case Intrinsic::x86_mmx_psrli_d:
9837      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9838      break;
9839    case Intrinsic::x86_mmx_psrli_q:
9840      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9841      break;
9842    case Intrinsic::x86_mmx_psrai_w:
9843      NewIntNo = Intrinsic::x86_mmx_psra_w;
9844      break;
9845    case Intrinsic::x86_mmx_psrai_d:
9846      NewIntNo = Intrinsic::x86_mmx_psra_d;
9847      break;
9848    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9849    }
9850
9851    // The vector shift intrinsics with scalars uses 32b shift amounts but
9852    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9853    // to be zero.
9854    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9855                         DAG.getConstant(0, MVT::i32));
9856// FIXME this must be lowered to get rid of the invalid type.
9857
9858    EVT VT = Op.getValueType();
9859    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9860    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9861                       DAG.getConstant(NewIntNo, MVT::i32),
9862                       Op.getOperand(1), ShAmt);
9863  }
9864  }
9865}
9866
9867SDValue
9868X86TargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9869  DebugLoc dl = Op.getDebugLoc();
9870  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9871  switch (IntNo) {
9872  default: return SDValue();    // Don't custom lower most intrinsics.
9873
9874  // RDRAND intrinsics.
9875  case Intrinsic::x86_rdrand_16:
9876  case Intrinsic::x86_rdrand_32:
9877  case Intrinsic::x86_rdrand_64: {
9878    // Emit the node with the right value type.
9879    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
9880    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
9881
9882    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
9883    // return the value from Rand, which is always 0, casted to i32.
9884    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
9885                      DAG.getConstant(1, Op->getValueType(1)),
9886                      DAG.getConstant(X86::COND_B, MVT::i32),
9887                      SDValue(Result.getNode(), 1) };
9888    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
9889                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
9890                                  Ops, 4);
9891
9892    // Return { result, isValid, chain }.
9893    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
9894                       SDValue(Result.getNode(), 2));
9895  }
9896  }
9897}
9898
9899SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9900                                           SelectionDAG &DAG) const {
9901  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9902  MFI->setReturnAddressIsTaken(true);
9903
9904  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9905  DebugLoc dl = Op.getDebugLoc();
9906
9907  if (Depth > 0) {
9908    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9909    SDValue Offset =
9910      DAG.getConstant(TD->getPointerSize(),
9911                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9912    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9913                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9914                                   FrameAddr, Offset),
9915                       MachinePointerInfo(), false, false, false, 0);
9916  }
9917
9918  // Just load the return address.
9919  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9920  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9921                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9922}
9923
9924SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9925  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9926  MFI->setFrameAddressIsTaken(true);
9927
9928  EVT VT = Op.getValueType();
9929  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9930  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9931  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9932  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9933  while (Depth--)
9934    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9935                            MachinePointerInfo(),
9936                            false, false, false, 0);
9937  return FrameAddr;
9938}
9939
9940SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9941                                                     SelectionDAG &DAG) const {
9942  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9943}
9944
9945SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9946  SDValue Chain     = Op.getOperand(0);
9947  SDValue Offset    = Op.getOperand(1);
9948  SDValue Handler   = Op.getOperand(2);
9949  DebugLoc dl       = Op.getDebugLoc();
9950
9951  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9952                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9953                                     getPointerTy());
9954  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9955
9956  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9957                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9958  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9959  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9960                       false, false, 0);
9961  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9962
9963  return DAG.getNode(X86ISD::EH_RETURN, dl,
9964                     MVT::Other,
9965                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9966}
9967
9968SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9969                                                  SelectionDAG &DAG) const {
9970  return Op.getOperand(0);
9971}
9972
9973SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9974                                                SelectionDAG &DAG) const {
9975  SDValue Root = Op.getOperand(0);
9976  SDValue Trmp = Op.getOperand(1); // trampoline
9977  SDValue FPtr = Op.getOperand(2); // nested function
9978  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9979  DebugLoc dl  = Op.getDebugLoc();
9980
9981  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9982
9983  if (Subtarget->is64Bit()) {
9984    SDValue OutChains[6];
9985
9986    // Large code-model.
9987    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9988    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9989
9990    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9991    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9992
9993    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9994
9995    // Load the pointer to the nested function into R11.
9996    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9997    SDValue Addr = Trmp;
9998    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9999                                Addr, MachinePointerInfo(TrmpAddr),
10000                                false, false, 0);
10001
10002    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10003                       DAG.getConstant(2, MVT::i64));
10004    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10005                                MachinePointerInfo(TrmpAddr, 2),
10006                                false, false, 2);
10007
10008    // Load the 'nest' parameter value into R10.
10009    // R10 is specified in X86CallingConv.td
10010    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10011    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10012                       DAG.getConstant(10, MVT::i64));
10013    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10014                                Addr, MachinePointerInfo(TrmpAddr, 10),
10015                                false, false, 0);
10016
10017    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10018                       DAG.getConstant(12, MVT::i64));
10019    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10020                                MachinePointerInfo(TrmpAddr, 12),
10021                                false, false, 2);
10022
10023    // Jump to the nested function.
10024    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10025    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10026                       DAG.getConstant(20, MVT::i64));
10027    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10028                                Addr, MachinePointerInfo(TrmpAddr, 20),
10029                                false, false, 0);
10030
10031    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10032    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10033                       DAG.getConstant(22, MVT::i64));
10034    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10035                                MachinePointerInfo(TrmpAddr, 22),
10036                                false, false, 0);
10037
10038    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10039  } else {
10040    const Function *Func =
10041      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10042    CallingConv::ID CC = Func->getCallingConv();
10043    unsigned NestReg;
10044
10045    switch (CC) {
10046    default:
10047      llvm_unreachable("Unsupported calling convention");
10048    case CallingConv::C:
10049    case CallingConv::X86_StdCall: {
10050      // Pass 'nest' parameter in ECX.
10051      // Must be kept in sync with X86CallingConv.td
10052      NestReg = X86::ECX;
10053
10054      // Check that ECX wasn't needed by an 'inreg' parameter.
10055      FunctionType *FTy = Func->getFunctionType();
10056      const AttrListPtr &Attrs = Func->getAttributes();
10057
10058      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10059        unsigned InRegCount = 0;
10060        unsigned Idx = 1;
10061
10062        for (FunctionType::param_iterator I = FTy->param_begin(),
10063             E = FTy->param_end(); I != E; ++I, ++Idx)
10064          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
10065            // FIXME: should only count parameters that are lowered to integers.
10066            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10067
10068        if (InRegCount > 2) {
10069          report_fatal_error("Nest register in use - reduce number of inreg"
10070                             " parameters!");
10071        }
10072      }
10073      break;
10074    }
10075    case CallingConv::X86_FastCall:
10076    case CallingConv::X86_ThisCall:
10077    case CallingConv::Fast:
10078      // Pass 'nest' parameter in EAX.
10079      // Must be kept in sync with X86CallingConv.td
10080      NestReg = X86::EAX;
10081      break;
10082    }
10083
10084    SDValue OutChains[4];
10085    SDValue Addr, Disp;
10086
10087    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10088                       DAG.getConstant(10, MVT::i32));
10089    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10090
10091    // This is storing the opcode for MOV32ri.
10092    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10093    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10094    OutChains[0] = DAG.getStore(Root, dl,
10095                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10096                                Trmp, MachinePointerInfo(TrmpAddr),
10097                                false, false, 0);
10098
10099    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10100                       DAG.getConstant(1, MVT::i32));
10101    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10102                                MachinePointerInfo(TrmpAddr, 1),
10103                                false, false, 1);
10104
10105    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10106    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10107                       DAG.getConstant(5, MVT::i32));
10108    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10109                                MachinePointerInfo(TrmpAddr, 5),
10110                                false, false, 1);
10111
10112    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10113                       DAG.getConstant(6, MVT::i32));
10114    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10115                                MachinePointerInfo(TrmpAddr, 6),
10116                                false, false, 1);
10117
10118    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10119  }
10120}
10121
10122SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10123                                            SelectionDAG &DAG) const {
10124  /*
10125   The rounding mode is in bits 11:10 of FPSR, and has the following
10126   settings:
10127     00 Round to nearest
10128     01 Round to -inf
10129     10 Round to +inf
10130     11 Round to 0
10131
10132  FLT_ROUNDS, on the other hand, expects the following:
10133    -1 Undefined
10134     0 Round to 0
10135     1 Round to nearest
10136     2 Round to +inf
10137     3 Round to -inf
10138
10139  To perform the conversion, we do:
10140    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10141  */
10142
10143  MachineFunction &MF = DAG.getMachineFunction();
10144  const TargetMachine &TM = MF.getTarget();
10145  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10146  unsigned StackAlignment = TFI.getStackAlignment();
10147  EVT VT = Op.getValueType();
10148  DebugLoc DL = Op.getDebugLoc();
10149
10150  // Save FP Control Word to stack slot
10151  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10152  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10153
10154
10155  MachineMemOperand *MMO =
10156   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10157                           MachineMemOperand::MOStore, 2, 2);
10158
10159  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10160  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10161                                          DAG.getVTList(MVT::Other),
10162                                          Ops, 2, MVT::i16, MMO);
10163
10164  // Load FP Control Word from stack slot
10165  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10166                            MachinePointerInfo(), false, false, false, 0);
10167
10168  // Transform as necessary
10169  SDValue CWD1 =
10170    DAG.getNode(ISD::SRL, DL, MVT::i16,
10171                DAG.getNode(ISD::AND, DL, MVT::i16,
10172                            CWD, DAG.getConstant(0x800, MVT::i16)),
10173                DAG.getConstant(11, MVT::i8));
10174  SDValue CWD2 =
10175    DAG.getNode(ISD::SRL, DL, MVT::i16,
10176                DAG.getNode(ISD::AND, DL, MVT::i16,
10177                            CWD, DAG.getConstant(0x400, MVT::i16)),
10178                DAG.getConstant(9, MVT::i8));
10179
10180  SDValue RetVal =
10181    DAG.getNode(ISD::AND, DL, MVT::i16,
10182                DAG.getNode(ISD::ADD, DL, MVT::i16,
10183                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10184                            DAG.getConstant(1, MVT::i16)),
10185                DAG.getConstant(3, MVT::i16));
10186
10187
10188  return DAG.getNode((VT.getSizeInBits() < 16 ?
10189                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10190}
10191
10192SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10193  EVT VT = Op.getValueType();
10194  EVT OpVT = VT;
10195  unsigned NumBits = VT.getSizeInBits();
10196  DebugLoc dl = Op.getDebugLoc();
10197
10198  Op = Op.getOperand(0);
10199  if (VT == MVT::i8) {
10200    // Zero extend to i32 since there is not an i8 bsr.
10201    OpVT = MVT::i32;
10202    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10203  }
10204
10205  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10206  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10207  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10208
10209  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10210  SDValue Ops[] = {
10211    Op,
10212    DAG.getConstant(NumBits+NumBits-1, OpVT),
10213    DAG.getConstant(X86::COND_E, MVT::i8),
10214    Op.getValue(1)
10215  };
10216  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10217
10218  // Finally xor with NumBits-1.
10219  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10220
10221  if (VT == MVT::i8)
10222    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10223  return Op;
10224}
10225
10226SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10227                                                SelectionDAG &DAG) const {
10228  EVT VT = Op.getValueType();
10229  EVT OpVT = VT;
10230  unsigned NumBits = VT.getSizeInBits();
10231  DebugLoc dl = Op.getDebugLoc();
10232
10233  Op = Op.getOperand(0);
10234  if (VT == MVT::i8) {
10235    // Zero extend to i32 since there is not an i8 bsr.
10236    OpVT = MVT::i32;
10237    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10238  }
10239
10240  // Issue a bsr (scan bits in reverse).
10241  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10242  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10243
10244  // And xor with NumBits-1.
10245  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10246
10247  if (VT == MVT::i8)
10248    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10249  return Op;
10250}
10251
10252SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10253  EVT VT = Op.getValueType();
10254  unsigned NumBits = VT.getSizeInBits();
10255  DebugLoc dl = Op.getDebugLoc();
10256  Op = Op.getOperand(0);
10257
10258  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10259  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10260  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10261
10262  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10263  SDValue Ops[] = {
10264    Op,
10265    DAG.getConstant(NumBits, VT),
10266    DAG.getConstant(X86::COND_E, MVT::i8),
10267    Op.getValue(1)
10268  };
10269  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10270}
10271
10272// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10273// ones, and then concatenate the result back.
10274static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10275  EVT VT = Op.getValueType();
10276
10277  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10278         "Unsupported value type for operation");
10279
10280  unsigned NumElems = VT.getVectorNumElements();
10281  DebugLoc dl = Op.getDebugLoc();
10282
10283  // Extract the LHS vectors
10284  SDValue LHS = Op.getOperand(0);
10285  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10286  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10287
10288  // Extract the RHS vectors
10289  SDValue RHS = Op.getOperand(1);
10290  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10291  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10292
10293  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10294  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10295
10296  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10297                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10298                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10299}
10300
10301SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10302  assert(Op.getValueType().getSizeInBits() == 256 &&
10303         Op.getValueType().isInteger() &&
10304         "Only handle AVX 256-bit vector integer operation");
10305  return Lower256IntArith(Op, DAG);
10306}
10307
10308SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10309  assert(Op.getValueType().getSizeInBits() == 256 &&
10310         Op.getValueType().isInteger() &&
10311         "Only handle AVX 256-bit vector integer operation");
10312  return Lower256IntArith(Op, DAG);
10313}
10314
10315SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10316  EVT VT = Op.getValueType();
10317
10318  // Decompose 256-bit ops into smaller 128-bit ops.
10319  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10320    return Lower256IntArith(Op, DAG);
10321
10322  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10323         "Only know how to lower V2I64/V4I64 multiply");
10324
10325  DebugLoc dl = Op.getDebugLoc();
10326
10327  //  Ahi = psrlqi(a, 32);
10328  //  Bhi = psrlqi(b, 32);
10329  //
10330  //  AloBlo = pmuludq(a, b);
10331  //  AloBhi = pmuludq(a, Bhi);
10332  //  AhiBlo = pmuludq(Ahi, b);
10333
10334  //  AloBhi = psllqi(AloBhi, 32);
10335  //  AhiBlo = psllqi(AhiBlo, 32);
10336  //  return AloBlo + AloBhi + AhiBlo;
10337
10338  SDValue A = Op.getOperand(0);
10339  SDValue B = Op.getOperand(1);
10340
10341  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10342
10343  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10344  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10345
10346  // Bit cast to 32-bit vectors for MULUDQ
10347  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10348  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10349  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10350  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10351  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10352
10353  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10354  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10355  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10356
10357  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10358  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10359
10360  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10361  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10362}
10363
10364SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10365
10366  EVT VT = Op.getValueType();
10367  DebugLoc dl = Op.getDebugLoc();
10368  SDValue R = Op.getOperand(0);
10369  SDValue Amt = Op.getOperand(1);
10370  LLVMContext *Context = DAG.getContext();
10371
10372  if (!Subtarget->hasSSE2())
10373    return SDValue();
10374
10375  // Optimize shl/srl/sra with constant shift amount.
10376  if (isSplatVector(Amt.getNode())) {
10377    SDValue SclrAmt = Amt->getOperand(0);
10378    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10379      uint64_t ShiftAmt = C->getZExtValue();
10380
10381      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10382          (Subtarget->hasAVX2() &&
10383           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10384        if (Op.getOpcode() == ISD::SHL)
10385          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10386                             DAG.getConstant(ShiftAmt, MVT::i32));
10387        if (Op.getOpcode() == ISD::SRL)
10388          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10389                             DAG.getConstant(ShiftAmt, MVT::i32));
10390        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10391          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10392                             DAG.getConstant(ShiftAmt, MVT::i32));
10393      }
10394
10395      if (VT == MVT::v16i8) {
10396        if (Op.getOpcode() == ISD::SHL) {
10397          // Make a large shift.
10398          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10399                                    DAG.getConstant(ShiftAmt, MVT::i32));
10400          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10401          // Zero out the rightmost bits.
10402          SmallVector<SDValue, 16> V(16,
10403                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10404                                                     MVT::i8));
10405          return DAG.getNode(ISD::AND, dl, VT, SHL,
10406                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10407        }
10408        if (Op.getOpcode() == ISD::SRL) {
10409          // Make a large shift.
10410          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10411                                    DAG.getConstant(ShiftAmt, MVT::i32));
10412          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10413          // Zero out the leftmost bits.
10414          SmallVector<SDValue, 16> V(16,
10415                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10416                                                     MVT::i8));
10417          return DAG.getNode(ISD::AND, dl, VT, SRL,
10418                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10419        }
10420        if (Op.getOpcode() == ISD::SRA) {
10421          if (ShiftAmt == 7) {
10422            // R s>> 7  ===  R s< 0
10423            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10424            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10425          }
10426
10427          // R s>> a === ((R u>> a) ^ m) - m
10428          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10429          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10430                                                         MVT::i8));
10431          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10432          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10433          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10434          return Res;
10435        }
10436        llvm_unreachable("Unknown shift opcode.");
10437      }
10438
10439      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10440        if (Op.getOpcode() == ISD::SHL) {
10441          // Make a large shift.
10442          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10443                                    DAG.getConstant(ShiftAmt, MVT::i32));
10444          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10445          // Zero out the rightmost bits.
10446          SmallVector<SDValue, 32> V(32,
10447                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10448                                                     MVT::i8));
10449          return DAG.getNode(ISD::AND, dl, VT, SHL,
10450                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10451        }
10452        if (Op.getOpcode() == ISD::SRL) {
10453          // Make a large shift.
10454          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10455                                    DAG.getConstant(ShiftAmt, MVT::i32));
10456          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10457          // Zero out the leftmost bits.
10458          SmallVector<SDValue, 32> V(32,
10459                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10460                                                     MVT::i8));
10461          return DAG.getNode(ISD::AND, dl, VT, SRL,
10462                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10463        }
10464        if (Op.getOpcode() == ISD::SRA) {
10465          if (ShiftAmt == 7) {
10466            // R s>> 7  ===  R s< 0
10467            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10468            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10469          }
10470
10471          // R s>> a === ((R u>> a) ^ m) - m
10472          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10473          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10474                                                         MVT::i8));
10475          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10476          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10477          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10478          return Res;
10479        }
10480        llvm_unreachable("Unknown shift opcode.");
10481      }
10482    }
10483  }
10484
10485  // Lower SHL with variable shift amount.
10486  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10487    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10488                     DAG.getConstant(23, MVT::i32));
10489
10490    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10491    Constant *C = ConstantDataVector::get(*Context, CV);
10492    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10493    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10494                                 MachinePointerInfo::getConstantPool(),
10495                                 false, false, false, 16);
10496
10497    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10498    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10499    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10500    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10501  }
10502  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10503    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10504
10505    // a = a << 5;
10506    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10507                     DAG.getConstant(5, MVT::i32));
10508    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10509
10510    // Turn 'a' into a mask suitable for VSELECT
10511    SDValue VSelM = DAG.getConstant(0x80, VT);
10512    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10513    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10514
10515    SDValue CM1 = DAG.getConstant(0x0f, VT);
10516    SDValue CM2 = DAG.getConstant(0x3f, VT);
10517
10518    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10519    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10520    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10521                            DAG.getConstant(4, MVT::i32), DAG);
10522    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10523    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10524
10525    // a += a
10526    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10527    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10528    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10529
10530    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10531    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10532    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10533                            DAG.getConstant(2, MVT::i32), DAG);
10534    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10535    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10536
10537    // a += a
10538    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10539    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10540    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10541
10542    // return VSELECT(r, r+r, a);
10543    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10544                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10545    return R;
10546  }
10547
10548  // Decompose 256-bit shifts into smaller 128-bit shifts.
10549  if (VT.getSizeInBits() == 256) {
10550    unsigned NumElems = VT.getVectorNumElements();
10551    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10552    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10553
10554    // Extract the two vectors
10555    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10556    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10557
10558    // Recreate the shift amount vectors
10559    SDValue Amt1, Amt2;
10560    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10561      // Constant shift amount
10562      SmallVector<SDValue, 4> Amt1Csts;
10563      SmallVector<SDValue, 4> Amt2Csts;
10564      for (unsigned i = 0; i != NumElems/2; ++i)
10565        Amt1Csts.push_back(Amt->getOperand(i));
10566      for (unsigned i = NumElems/2; i != NumElems; ++i)
10567        Amt2Csts.push_back(Amt->getOperand(i));
10568
10569      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10570                                 &Amt1Csts[0], NumElems/2);
10571      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10572                                 &Amt2Csts[0], NumElems/2);
10573    } else {
10574      // Variable shift amount
10575      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
10576      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
10577    }
10578
10579    // Issue new vector shifts for the smaller types
10580    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10581    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10582
10583    // Concatenate the result back
10584    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10585  }
10586
10587  return SDValue();
10588}
10589
10590SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10591  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10592  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10593  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10594  // has only one use.
10595  SDNode *N = Op.getNode();
10596  SDValue LHS = N->getOperand(0);
10597  SDValue RHS = N->getOperand(1);
10598  unsigned BaseOp = 0;
10599  unsigned Cond = 0;
10600  DebugLoc DL = Op.getDebugLoc();
10601  switch (Op.getOpcode()) {
10602  default: llvm_unreachable("Unknown ovf instruction!");
10603  case ISD::SADDO:
10604    // A subtract of one will be selected as a INC. Note that INC doesn't
10605    // set CF, so we can't do this for UADDO.
10606    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10607      if (C->isOne()) {
10608        BaseOp = X86ISD::INC;
10609        Cond = X86::COND_O;
10610        break;
10611      }
10612    BaseOp = X86ISD::ADD;
10613    Cond = X86::COND_O;
10614    break;
10615  case ISD::UADDO:
10616    BaseOp = X86ISD::ADD;
10617    Cond = X86::COND_B;
10618    break;
10619  case ISD::SSUBO:
10620    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10621    // set CF, so we can't do this for USUBO.
10622    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10623      if (C->isOne()) {
10624        BaseOp = X86ISD::DEC;
10625        Cond = X86::COND_O;
10626        break;
10627      }
10628    BaseOp = X86ISD::SUB;
10629    Cond = X86::COND_O;
10630    break;
10631  case ISD::USUBO:
10632    BaseOp = X86ISD::SUB;
10633    Cond = X86::COND_B;
10634    break;
10635  case ISD::SMULO:
10636    BaseOp = X86ISD::SMUL;
10637    Cond = X86::COND_O;
10638    break;
10639  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10640    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10641                                 MVT::i32);
10642    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10643
10644    SDValue SetCC =
10645      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10646                  DAG.getConstant(X86::COND_O, MVT::i32),
10647                  SDValue(Sum.getNode(), 2));
10648
10649    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10650  }
10651  }
10652
10653  // Also sets EFLAGS.
10654  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10655  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10656
10657  SDValue SetCC =
10658    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10659                DAG.getConstant(Cond, MVT::i32),
10660                SDValue(Sum.getNode(), 1));
10661
10662  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10663}
10664
10665SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10666                                                  SelectionDAG &DAG) const {
10667  DebugLoc dl = Op.getDebugLoc();
10668  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10669  EVT VT = Op.getValueType();
10670
10671  if (!Subtarget->hasSSE2() || !VT.isVector())
10672    return SDValue();
10673
10674  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10675                      ExtraVT.getScalarType().getSizeInBits();
10676  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10677
10678  switch (VT.getSimpleVT().SimpleTy) {
10679    default: return SDValue();
10680    case MVT::v8i32:
10681    case MVT::v16i16:
10682      if (!Subtarget->hasAVX())
10683        return SDValue();
10684      if (!Subtarget->hasAVX2()) {
10685        // needs to be split
10686        unsigned NumElems = VT.getVectorNumElements();
10687
10688        // Extract the LHS vectors
10689        SDValue LHS = Op.getOperand(0);
10690        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10691        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10692
10693        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10694        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10695
10696        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10697        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
10698        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10699                                   ExtraNumElems/2);
10700        SDValue Extra = DAG.getValueType(ExtraVT);
10701
10702        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10703        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10704
10705        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10706      }
10707      // fall through
10708    case MVT::v4i32:
10709    case MVT::v8i16: {
10710      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10711                                         Op.getOperand(0), ShAmt, DAG);
10712      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10713    }
10714  }
10715}
10716
10717
10718SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10719  DebugLoc dl = Op.getDebugLoc();
10720
10721  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10722  // There isn't any reason to disable it if the target processor supports it.
10723  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10724    SDValue Chain = Op.getOperand(0);
10725    SDValue Zero = DAG.getConstant(0, MVT::i32);
10726    SDValue Ops[] = {
10727      DAG.getRegister(X86::ESP, MVT::i32), // Base
10728      DAG.getTargetConstant(1, MVT::i8),   // Scale
10729      DAG.getRegister(0, MVT::i32),        // Index
10730      DAG.getTargetConstant(0, MVT::i32),  // Disp
10731      DAG.getRegister(0, MVT::i32),        // Segment.
10732      Zero,
10733      Chain
10734    };
10735    SDNode *Res =
10736      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10737                          array_lengthof(Ops));
10738    return SDValue(Res, 0);
10739  }
10740
10741  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10742  if (!isDev)
10743    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10744
10745  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10746  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10747  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10748  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10749
10750  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10751  if (!Op1 && !Op2 && !Op3 && Op4)
10752    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10753
10754  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10755  if (Op1 && !Op2 && !Op3 && !Op4)
10756    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10757
10758  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10759  //           (MFENCE)>;
10760  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10761}
10762
10763SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10764                                             SelectionDAG &DAG) const {
10765  DebugLoc dl = Op.getDebugLoc();
10766  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10767    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10768  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10769    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10770
10771  // The only fence that needs an instruction is a sequentially-consistent
10772  // cross-thread fence.
10773  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10774    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10775    // no-sse2). There isn't any reason to disable it if the target processor
10776    // supports it.
10777    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10778      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10779
10780    SDValue Chain = Op.getOperand(0);
10781    SDValue Zero = DAG.getConstant(0, MVT::i32);
10782    SDValue Ops[] = {
10783      DAG.getRegister(X86::ESP, MVT::i32), // Base
10784      DAG.getTargetConstant(1, MVT::i8),   // Scale
10785      DAG.getRegister(0, MVT::i32),        // Index
10786      DAG.getTargetConstant(0, MVT::i32),  // Disp
10787      DAG.getRegister(0, MVT::i32),        // Segment.
10788      Zero,
10789      Chain
10790    };
10791    SDNode *Res =
10792      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10793                         array_lengthof(Ops));
10794    return SDValue(Res, 0);
10795  }
10796
10797  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10798  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10799}
10800
10801
10802SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10803  EVT T = Op.getValueType();
10804  DebugLoc DL = Op.getDebugLoc();
10805  unsigned Reg = 0;
10806  unsigned size = 0;
10807  switch(T.getSimpleVT().SimpleTy) {
10808  default: llvm_unreachable("Invalid value type!");
10809  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10810  case MVT::i16: Reg = X86::AX;  size = 2; break;
10811  case MVT::i32: Reg = X86::EAX; size = 4; break;
10812  case MVT::i64:
10813    assert(Subtarget->is64Bit() && "Node not type legal!");
10814    Reg = X86::RAX; size = 8;
10815    break;
10816  }
10817  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10818                                    Op.getOperand(2), SDValue());
10819  SDValue Ops[] = { cpIn.getValue(0),
10820                    Op.getOperand(1),
10821                    Op.getOperand(3),
10822                    DAG.getTargetConstant(size, MVT::i8),
10823                    cpIn.getValue(1) };
10824  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10825  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10826  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10827                                           Ops, 5, T, MMO);
10828  SDValue cpOut =
10829    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10830  return cpOut;
10831}
10832
10833SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10834                                                 SelectionDAG &DAG) const {
10835  assert(Subtarget->is64Bit() && "Result not type legalized?");
10836  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10837  SDValue TheChain = Op.getOperand(0);
10838  DebugLoc dl = Op.getDebugLoc();
10839  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10840  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10841  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10842                                   rax.getValue(2));
10843  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10844                            DAG.getConstant(32, MVT::i8));
10845  SDValue Ops[] = {
10846    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10847    rdx.getValue(1)
10848  };
10849  return DAG.getMergeValues(Ops, 2, dl);
10850}
10851
10852SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10853                                            SelectionDAG &DAG) const {
10854  EVT SrcVT = Op.getOperand(0).getValueType();
10855  EVT DstVT = Op.getValueType();
10856  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10857         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10858  assert((DstVT == MVT::i64 ||
10859          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10860         "Unexpected custom BITCAST");
10861  // i64 <=> MMX conversions are Legal.
10862  if (SrcVT==MVT::i64 && DstVT.isVector())
10863    return Op;
10864  if (DstVT==MVT::i64 && SrcVT.isVector())
10865    return Op;
10866  // MMX <=> MMX conversions are Legal.
10867  if (SrcVT.isVector() && DstVT.isVector())
10868    return Op;
10869  // All other conversions need to be expanded.
10870  return SDValue();
10871}
10872
10873SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10874  SDNode *Node = Op.getNode();
10875  DebugLoc dl = Node->getDebugLoc();
10876  EVT T = Node->getValueType(0);
10877  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10878                              DAG.getConstant(0, T), Node->getOperand(2));
10879  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10880                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10881                       Node->getOperand(0),
10882                       Node->getOperand(1), negOp,
10883                       cast<AtomicSDNode>(Node)->getSrcValue(),
10884                       cast<AtomicSDNode>(Node)->getAlignment(),
10885                       cast<AtomicSDNode>(Node)->getOrdering(),
10886                       cast<AtomicSDNode>(Node)->getSynchScope());
10887}
10888
10889static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10890  SDNode *Node = Op.getNode();
10891  DebugLoc dl = Node->getDebugLoc();
10892  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10893
10894  // Convert seq_cst store -> xchg
10895  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10896  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10897  //        (The only way to get a 16-byte store is cmpxchg16b)
10898  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10899  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10900      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10901    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10902                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10903                                 Node->getOperand(0),
10904                                 Node->getOperand(1), Node->getOperand(2),
10905                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10906                                 cast<AtomicSDNode>(Node)->getOrdering(),
10907                                 cast<AtomicSDNode>(Node)->getSynchScope());
10908    return Swap.getValue(1);
10909  }
10910  // Other atomic stores have a simple pattern.
10911  return Op;
10912}
10913
10914static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10915  EVT VT = Op.getNode()->getValueType(0);
10916
10917  // Let legalize expand this if it isn't a legal type yet.
10918  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10919    return SDValue();
10920
10921  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10922
10923  unsigned Opc;
10924  bool ExtraOp = false;
10925  switch (Op.getOpcode()) {
10926  default: llvm_unreachable("Invalid code");
10927  case ISD::ADDC: Opc = X86ISD::ADD; break;
10928  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10929  case ISD::SUBC: Opc = X86ISD::SUB; break;
10930  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10931  }
10932
10933  if (!ExtraOp)
10934    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10935                       Op.getOperand(1));
10936  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10937                     Op.getOperand(1), Op.getOperand(2));
10938}
10939
10940/// LowerOperation - Provide custom lowering hooks for some operations.
10941///
10942SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10943  switch (Op.getOpcode()) {
10944  default: llvm_unreachable("Should not custom lower this!");
10945  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10946  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10947  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10948  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10949  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10950  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10951  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10952  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10953  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10954  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10955  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10956  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10957  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10958  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10959  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10960  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10961  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10962  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10963  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10964  case ISD::SHL_PARTS:
10965  case ISD::SRA_PARTS:
10966  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10967  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10968  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10969  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10970  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10971  case ISD::FABS:               return LowerFABS(Op, DAG);
10972  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10973  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10974  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10975  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10976  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10977  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10978  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10979  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10980  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10981  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10982  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10983  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
10984  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10985  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10986  case ISD::FRAME_TO_ARGS_OFFSET:
10987                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10988  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10989  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10990  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10991  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10992  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10993  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10994  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10995  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10996  case ISD::MUL:                return LowerMUL(Op, DAG);
10997  case ISD::SRA:
10998  case ISD::SRL:
10999  case ISD::SHL:                return LowerShift(Op, DAG);
11000  case ISD::SADDO:
11001  case ISD::UADDO:
11002  case ISD::SSUBO:
11003  case ISD::USUBO:
11004  case ISD::SMULO:
11005  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11006  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
11007  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11008  case ISD::ADDC:
11009  case ISD::ADDE:
11010  case ISD::SUBC:
11011  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11012  case ISD::ADD:                return LowerADD(Op, DAG);
11013  case ISD::SUB:                return LowerSUB(Op, DAG);
11014  }
11015}
11016
11017static void ReplaceATOMIC_LOAD(SDNode *Node,
11018                                  SmallVectorImpl<SDValue> &Results,
11019                                  SelectionDAG &DAG) {
11020  DebugLoc dl = Node->getDebugLoc();
11021  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11022
11023  // Convert wide load -> cmpxchg8b/cmpxchg16b
11024  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11025  //        (The only way to get a 16-byte load is cmpxchg16b)
11026  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11027  SDValue Zero = DAG.getConstant(0, VT);
11028  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11029                               Node->getOperand(0),
11030                               Node->getOperand(1), Zero, Zero,
11031                               cast<AtomicSDNode>(Node)->getMemOperand(),
11032                               cast<AtomicSDNode>(Node)->getOrdering(),
11033                               cast<AtomicSDNode>(Node)->getSynchScope());
11034  Results.push_back(Swap.getValue(0));
11035  Results.push_back(Swap.getValue(1));
11036}
11037
11038void X86TargetLowering::
11039ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11040                        SelectionDAG &DAG, unsigned NewOp) const {
11041  DebugLoc dl = Node->getDebugLoc();
11042  assert (Node->getValueType(0) == MVT::i64 &&
11043          "Only know how to expand i64 atomics");
11044
11045  SDValue Chain = Node->getOperand(0);
11046  SDValue In1 = Node->getOperand(1);
11047  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11048                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11049  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11050                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11051  SDValue Ops[] = { Chain, In1, In2L, In2H };
11052  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11053  SDValue Result =
11054    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11055                            cast<MemSDNode>(Node)->getMemOperand());
11056  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11057  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11058  Results.push_back(Result.getValue(2));
11059}
11060
11061/// ReplaceNodeResults - Replace a node with an illegal result type
11062/// with a new node built out of custom code.
11063void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11064                                           SmallVectorImpl<SDValue>&Results,
11065                                           SelectionDAG &DAG) const {
11066  DebugLoc dl = N->getDebugLoc();
11067  switch (N->getOpcode()) {
11068  default:
11069    llvm_unreachable("Do not know how to custom type legalize this operation!");
11070  case ISD::SIGN_EXTEND_INREG:
11071  case ISD::ADDC:
11072  case ISD::ADDE:
11073  case ISD::SUBC:
11074  case ISD::SUBE:
11075    // We don't want to expand or promote these.
11076    return;
11077  case ISD::FP_TO_SINT:
11078  case ISD::FP_TO_UINT: {
11079    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11080
11081    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11082      return;
11083
11084    std::pair<SDValue,SDValue> Vals =
11085        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11086    SDValue FIST = Vals.first, StackSlot = Vals.second;
11087    if (FIST.getNode() != 0) {
11088      EVT VT = N->getValueType(0);
11089      // Return a load from the stack slot.
11090      if (StackSlot.getNode() != 0)
11091        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11092                                      MachinePointerInfo(),
11093                                      false, false, false, 0));
11094      else
11095        Results.push_back(FIST);
11096    }
11097    return;
11098  }
11099  case ISD::READCYCLECOUNTER: {
11100    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11101    SDValue TheChain = N->getOperand(0);
11102    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11103    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11104                                     rd.getValue(1));
11105    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11106                                     eax.getValue(2));
11107    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11108    SDValue Ops[] = { eax, edx };
11109    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11110    Results.push_back(edx.getValue(1));
11111    return;
11112  }
11113  case ISD::ATOMIC_CMP_SWAP: {
11114    EVT T = N->getValueType(0);
11115    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11116    bool Regs64bit = T == MVT::i128;
11117    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11118    SDValue cpInL, cpInH;
11119    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11120                        DAG.getConstant(0, HalfT));
11121    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11122                        DAG.getConstant(1, HalfT));
11123    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11124                             Regs64bit ? X86::RAX : X86::EAX,
11125                             cpInL, SDValue());
11126    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11127                             Regs64bit ? X86::RDX : X86::EDX,
11128                             cpInH, cpInL.getValue(1));
11129    SDValue swapInL, swapInH;
11130    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11131                          DAG.getConstant(0, HalfT));
11132    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11133                          DAG.getConstant(1, HalfT));
11134    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11135                               Regs64bit ? X86::RBX : X86::EBX,
11136                               swapInL, cpInH.getValue(1));
11137    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11138                               Regs64bit ? X86::RCX : X86::ECX,
11139                               swapInH, swapInL.getValue(1));
11140    SDValue Ops[] = { swapInH.getValue(0),
11141                      N->getOperand(1),
11142                      swapInH.getValue(1) };
11143    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11144    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11145    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11146                                  X86ISD::LCMPXCHG8_DAG;
11147    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11148                                             Ops, 3, T, MMO);
11149    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11150                                        Regs64bit ? X86::RAX : X86::EAX,
11151                                        HalfT, Result.getValue(1));
11152    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11153                                        Regs64bit ? X86::RDX : X86::EDX,
11154                                        HalfT, cpOutL.getValue(2));
11155    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11156    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11157    Results.push_back(cpOutH.getValue(1));
11158    return;
11159  }
11160  case ISD::ATOMIC_LOAD_ADD:
11161    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
11162    return;
11163  case ISD::ATOMIC_LOAD_AND:
11164    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
11165    return;
11166  case ISD::ATOMIC_LOAD_NAND:
11167    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
11168    return;
11169  case ISD::ATOMIC_LOAD_OR:
11170    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
11171    return;
11172  case ISD::ATOMIC_LOAD_SUB:
11173    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
11174    return;
11175  case ISD::ATOMIC_LOAD_XOR:
11176    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
11177    return;
11178  case ISD::ATOMIC_SWAP:
11179    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11180    return;
11181  case ISD::ATOMIC_LOAD:
11182    ReplaceATOMIC_LOAD(N, Results, DAG);
11183  }
11184}
11185
11186const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11187  switch (Opcode) {
11188  default: return NULL;
11189  case X86ISD::BSF:                return "X86ISD::BSF";
11190  case X86ISD::BSR:                return "X86ISD::BSR";
11191  case X86ISD::SHLD:               return "X86ISD::SHLD";
11192  case X86ISD::SHRD:               return "X86ISD::SHRD";
11193  case X86ISD::FAND:               return "X86ISD::FAND";
11194  case X86ISD::FOR:                return "X86ISD::FOR";
11195  case X86ISD::FXOR:               return "X86ISD::FXOR";
11196  case X86ISD::FSRL:               return "X86ISD::FSRL";
11197  case X86ISD::FILD:               return "X86ISD::FILD";
11198  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11199  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11200  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11201  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11202  case X86ISD::FLD:                return "X86ISD::FLD";
11203  case X86ISD::FST:                return "X86ISD::FST";
11204  case X86ISD::CALL:               return "X86ISD::CALL";
11205  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11206  case X86ISD::BT:                 return "X86ISD::BT";
11207  case X86ISD::CMP:                return "X86ISD::CMP";
11208  case X86ISD::COMI:               return "X86ISD::COMI";
11209  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11210  case X86ISD::SETCC:              return "X86ISD::SETCC";
11211  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11212  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11213  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11214  case X86ISD::CMOV:               return "X86ISD::CMOV";
11215  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11216  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11217  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11218  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11219  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11220  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11221  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11222  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11223  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11224  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11225  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11226  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11227  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11228  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11229  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11230  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11231  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11232  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11233  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11234  case X86ISD::HADD:               return "X86ISD::HADD";
11235  case X86ISD::HSUB:               return "X86ISD::HSUB";
11236  case X86ISD::FHADD:              return "X86ISD::FHADD";
11237  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11238  case X86ISD::FMAX:               return "X86ISD::FMAX";
11239  case X86ISD::FMIN:               return "X86ISD::FMIN";
11240  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11241  case X86ISD::FRCP:               return "X86ISD::FRCP";
11242  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11243  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11244  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11245  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11246  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11247  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11248  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11249  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11250  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11251  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11252  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11253  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11254  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11255  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11256  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11257  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11258  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11259  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11260  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11261  case X86ISD::VSHL:               return "X86ISD::VSHL";
11262  case X86ISD::VSRL:               return "X86ISD::VSRL";
11263  case X86ISD::VSRA:               return "X86ISD::VSRA";
11264  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11265  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11266  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11267  case X86ISD::CMPP:               return "X86ISD::CMPP";
11268  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11269  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11270  case X86ISD::ADD:                return "X86ISD::ADD";
11271  case X86ISD::SUB:                return "X86ISD::SUB";
11272  case X86ISD::ADC:                return "X86ISD::ADC";
11273  case X86ISD::SBB:                return "X86ISD::SBB";
11274  case X86ISD::SMUL:               return "X86ISD::SMUL";
11275  case X86ISD::UMUL:               return "X86ISD::UMUL";
11276  case X86ISD::INC:                return "X86ISD::INC";
11277  case X86ISD::DEC:                return "X86ISD::DEC";
11278  case X86ISD::OR:                 return "X86ISD::OR";
11279  case X86ISD::XOR:                return "X86ISD::XOR";
11280  case X86ISD::AND:                return "X86ISD::AND";
11281  case X86ISD::ANDN:               return "X86ISD::ANDN";
11282  case X86ISD::BLSI:               return "X86ISD::BLSI";
11283  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11284  case X86ISD::BLSR:               return "X86ISD::BLSR";
11285  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11286  case X86ISD::PTEST:              return "X86ISD::PTEST";
11287  case X86ISD::TESTP:              return "X86ISD::TESTP";
11288  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11289  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11290  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11291  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11292  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11293  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11294  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11295  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11296  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11297  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11298  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11299  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11300  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11301  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11302  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11303  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11304  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11305  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11306  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11307  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11308  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11309  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11310  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11311  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11312  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11313  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11314  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11315  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11316  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11317  case X86ISD::SAHF:               return "X86ISD::SAHF";
11318  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
11319  }
11320}
11321
11322// isLegalAddressingMode - Return true if the addressing mode represented
11323// by AM is legal for this target, for a load/store of the specified type.
11324bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11325                                              Type *Ty) const {
11326  // X86 supports extremely general addressing modes.
11327  CodeModel::Model M = getTargetMachine().getCodeModel();
11328  Reloc::Model R = getTargetMachine().getRelocationModel();
11329
11330  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11331  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11332    return false;
11333
11334  if (AM.BaseGV) {
11335    unsigned GVFlags =
11336      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11337
11338    // If a reference to this global requires an extra load, we can't fold it.
11339    if (isGlobalStubReference(GVFlags))
11340      return false;
11341
11342    // If BaseGV requires a register for the PIC base, we cannot also have a
11343    // BaseReg specified.
11344    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11345      return false;
11346
11347    // If lower 4G is not available, then we must use rip-relative addressing.
11348    if ((M != CodeModel::Small || R != Reloc::Static) &&
11349        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11350      return false;
11351  }
11352
11353  switch (AM.Scale) {
11354  case 0:
11355  case 1:
11356  case 2:
11357  case 4:
11358  case 8:
11359    // These scales always work.
11360    break;
11361  case 3:
11362  case 5:
11363  case 9:
11364    // These scales are formed with basereg+scalereg.  Only accept if there is
11365    // no basereg yet.
11366    if (AM.HasBaseReg)
11367      return false;
11368    break;
11369  default:  // Other stuff never works.
11370    return false;
11371  }
11372
11373  return true;
11374}
11375
11376
11377bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11378  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11379    return false;
11380  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11381  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11382  if (NumBits1 <= NumBits2)
11383    return false;
11384  return true;
11385}
11386
11387bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11388  if (!VT1.isInteger() || !VT2.isInteger())
11389    return false;
11390  unsigned NumBits1 = VT1.getSizeInBits();
11391  unsigned NumBits2 = VT2.getSizeInBits();
11392  if (NumBits1 <= NumBits2)
11393    return false;
11394  return true;
11395}
11396
11397bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11398  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11399  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11400}
11401
11402bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11403  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11404  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11405}
11406
11407bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11408  // i16 instructions are longer (0x66 prefix) and potentially slower.
11409  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11410}
11411
11412/// isShuffleMaskLegal - Targets can use this to indicate that they only
11413/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11414/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11415/// are assumed to be legal.
11416bool
11417X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11418                                      EVT VT) const {
11419  // Very little shuffling can be done for 64-bit vectors right now.
11420  if (VT.getSizeInBits() == 64)
11421    return false;
11422
11423  // FIXME: pshufb, blends, shifts.
11424  return (VT.getVectorNumElements() == 2 ||
11425          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11426          isMOVLMask(M, VT) ||
11427          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11428          isPSHUFDMask(M, VT) ||
11429          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11430          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11431          isPALIGNRMask(M, VT, Subtarget) ||
11432          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11433          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11434          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11435          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11436}
11437
11438bool
11439X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11440                                          EVT VT) const {
11441  unsigned NumElts = VT.getVectorNumElements();
11442  // FIXME: This collection of masks seems suspect.
11443  if (NumElts == 2)
11444    return true;
11445  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11446    return (isMOVLMask(Mask, VT)  ||
11447            isCommutedMOVLMask(Mask, VT, true) ||
11448            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11449            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11450  }
11451  return false;
11452}
11453
11454//===----------------------------------------------------------------------===//
11455//                           X86 Scheduler Hooks
11456//===----------------------------------------------------------------------===//
11457
11458// private utility function
11459MachineBasicBlock *
11460X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11461                                                       MachineBasicBlock *MBB,
11462                                                       unsigned regOpc,
11463                                                       unsigned immOpc,
11464                                                       unsigned LoadOpc,
11465                                                       unsigned CXchgOpc,
11466                                                       unsigned notOpc,
11467                                                       unsigned EAXreg,
11468                                                 const TargetRegisterClass *RC,
11469                                                       bool Invert) const {
11470  // For the atomic bitwise operator, we generate
11471  //   thisMBB:
11472  //   newMBB:
11473  //     ld  t1 = [bitinstr.addr]
11474  //     op  t2 = t1, [bitinstr.val]
11475  //     not t3 = t2  (if Invert)
11476  //     mov EAX = t1
11477  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11478  //     bz  newMBB
11479  //     fallthrough -->nextMBB
11480  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11481  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11482  MachineFunction::iterator MBBIter = MBB;
11483  ++MBBIter;
11484
11485  /// First build the CFG
11486  MachineFunction *F = MBB->getParent();
11487  MachineBasicBlock *thisMBB = MBB;
11488  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11489  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11490  F->insert(MBBIter, newMBB);
11491  F->insert(MBBIter, nextMBB);
11492
11493  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11494  nextMBB->splice(nextMBB->begin(), thisMBB,
11495                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11496                  thisMBB->end());
11497  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11498
11499  // Update thisMBB to fall through to newMBB
11500  thisMBB->addSuccessor(newMBB);
11501
11502  // newMBB jumps to itself and fall through to nextMBB
11503  newMBB->addSuccessor(nextMBB);
11504  newMBB->addSuccessor(newMBB);
11505
11506  // Insert instructions into newMBB based on incoming instruction
11507  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11508         "unexpected number of operands");
11509  DebugLoc dl = bInstr->getDebugLoc();
11510  MachineOperand& destOper = bInstr->getOperand(0);
11511  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11512  int numArgs = bInstr->getNumOperands() - 1;
11513  for (int i=0; i < numArgs; ++i)
11514    argOpers[i] = &bInstr->getOperand(i+1);
11515
11516  // x86 address has 4 operands: base, index, scale, and displacement
11517  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11518  int valArgIndx = lastAddrIndx + 1;
11519
11520  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11521  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11522  for (int i=0; i <= lastAddrIndx; ++i)
11523    (*MIB).addOperand(*argOpers[i]);
11524
11525  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11526  assert((argOpers[valArgIndx]->isReg() ||
11527          argOpers[valArgIndx]->isImm()) &&
11528         "invalid operand");
11529  if (argOpers[valArgIndx]->isReg())
11530    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11531  else
11532    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11533  MIB.addReg(t1);
11534  (*MIB).addOperand(*argOpers[valArgIndx]);
11535
11536  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11537  if (Invert) {
11538    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11539  }
11540  else
11541    t3 = t2;
11542
11543  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11544  MIB.addReg(t1);
11545
11546  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11547  for (int i=0; i <= lastAddrIndx; ++i)
11548    (*MIB).addOperand(*argOpers[i]);
11549  MIB.addReg(t3);
11550  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11551  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11552                    bInstr->memoperands_end());
11553
11554  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11555  MIB.addReg(EAXreg);
11556
11557  // insert branch
11558  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11559
11560  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11561  return nextMBB;
11562}
11563
11564// private utility function:  64 bit atomics on 32 bit host.
11565MachineBasicBlock *
11566X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11567                                                       MachineBasicBlock *MBB,
11568                                                       unsigned regOpcL,
11569                                                       unsigned regOpcH,
11570                                                       unsigned immOpcL,
11571                                                       unsigned immOpcH,
11572                                                       bool Invert) const {
11573  // For the atomic bitwise operator, we generate
11574  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11575  //     ld t1,t2 = [bitinstr.addr]
11576  //   newMBB:
11577  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11578  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11579  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11580  //     neg t7, t8 < t5, t6  (if Invert)
11581  //     mov ECX, EBX <- t5, t6
11582  //     mov EAX, EDX <- t1, t2
11583  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11584  //     mov t3, t4 <- EAX, EDX
11585  //     bz  newMBB
11586  //     result in out1, out2
11587  //     fallthrough -->nextMBB
11588
11589  const TargetRegisterClass *RC = &X86::GR32RegClass;
11590  const unsigned LoadOpc = X86::MOV32rm;
11591  const unsigned NotOpc = X86::NOT32r;
11592  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11593  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11594  MachineFunction::iterator MBBIter = MBB;
11595  ++MBBIter;
11596
11597  /// First build the CFG
11598  MachineFunction *F = MBB->getParent();
11599  MachineBasicBlock *thisMBB = MBB;
11600  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11601  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11602  F->insert(MBBIter, newMBB);
11603  F->insert(MBBIter, nextMBB);
11604
11605  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11606  nextMBB->splice(nextMBB->begin(), thisMBB,
11607                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11608                  thisMBB->end());
11609  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11610
11611  // Update thisMBB to fall through to newMBB
11612  thisMBB->addSuccessor(newMBB);
11613
11614  // newMBB jumps to itself and fall through to nextMBB
11615  newMBB->addSuccessor(nextMBB);
11616  newMBB->addSuccessor(newMBB);
11617
11618  DebugLoc dl = bInstr->getDebugLoc();
11619  // Insert instructions into newMBB based on incoming instruction
11620  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11621  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11622         "unexpected number of operands");
11623  MachineOperand& dest1Oper = bInstr->getOperand(0);
11624  MachineOperand& dest2Oper = bInstr->getOperand(1);
11625  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11626  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11627    argOpers[i] = &bInstr->getOperand(i+2);
11628
11629    // We use some of the operands multiple times, so conservatively just
11630    // clear any kill flags that might be present.
11631    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11632      argOpers[i]->setIsKill(false);
11633  }
11634
11635  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11636  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11637
11638  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11639  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11640  for (int i=0; i <= lastAddrIndx; ++i)
11641    (*MIB).addOperand(*argOpers[i]);
11642  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11643  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11644  // add 4 to displacement.
11645  for (int i=0; i <= lastAddrIndx-2; ++i)
11646    (*MIB).addOperand(*argOpers[i]);
11647  MachineOperand newOp3 = *(argOpers[3]);
11648  if (newOp3.isImm())
11649    newOp3.setImm(newOp3.getImm()+4);
11650  else
11651    newOp3.setOffset(newOp3.getOffset()+4);
11652  (*MIB).addOperand(newOp3);
11653  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11654
11655  // t3/4 are defined later, at the bottom of the loop
11656  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11657  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11658  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11659    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11660  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11661    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11662
11663  // The subsequent operations should be using the destination registers of
11664  // the PHI instructions.
11665  t1 = dest1Oper.getReg();
11666  t2 = dest2Oper.getReg();
11667
11668  int valArgIndx = lastAddrIndx + 1;
11669  assert((argOpers[valArgIndx]->isReg() ||
11670          argOpers[valArgIndx]->isImm()) &&
11671         "invalid operand");
11672  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11673  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11674  if (argOpers[valArgIndx]->isReg())
11675    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11676  else
11677    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11678  if (regOpcL != X86::MOV32rr)
11679    MIB.addReg(t1);
11680  (*MIB).addOperand(*argOpers[valArgIndx]);
11681  assert(argOpers[valArgIndx + 1]->isReg() ==
11682         argOpers[valArgIndx]->isReg());
11683  assert(argOpers[valArgIndx + 1]->isImm() ==
11684         argOpers[valArgIndx]->isImm());
11685  if (argOpers[valArgIndx + 1]->isReg())
11686    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11687  else
11688    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11689  if (regOpcH != X86::MOV32rr)
11690    MIB.addReg(t2);
11691  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11692
11693  unsigned t7, t8;
11694  if (Invert) {
11695    t7 = F->getRegInfo().createVirtualRegister(RC);
11696    t8 = F->getRegInfo().createVirtualRegister(RC);
11697    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
11698    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
11699  } else {
11700    t7 = t5;
11701    t8 = t6;
11702  }
11703
11704  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11705  MIB.addReg(t1);
11706  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11707  MIB.addReg(t2);
11708
11709  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11710  MIB.addReg(t7);
11711  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11712  MIB.addReg(t8);
11713
11714  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11715  for (int i=0; i <= lastAddrIndx; ++i)
11716    (*MIB).addOperand(*argOpers[i]);
11717
11718  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11719  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11720                    bInstr->memoperands_end());
11721
11722  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11723  MIB.addReg(X86::EAX);
11724  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11725  MIB.addReg(X86::EDX);
11726
11727  // insert branch
11728  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11729
11730  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11731  return nextMBB;
11732}
11733
11734// private utility function
11735MachineBasicBlock *
11736X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11737                                                      MachineBasicBlock *MBB,
11738                                                      unsigned cmovOpc) const {
11739  // For the atomic min/max operator, we generate
11740  //   thisMBB:
11741  //   newMBB:
11742  //     ld t1 = [min/max.addr]
11743  //     mov t2 = [min/max.val]
11744  //     cmp  t1, t2
11745  //     cmov[cond] t2 = t1
11746  //     mov EAX = t1
11747  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11748  //     bz   newMBB
11749  //     fallthrough -->nextMBB
11750  //
11751  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11752  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11753  MachineFunction::iterator MBBIter = MBB;
11754  ++MBBIter;
11755
11756  /// First build the CFG
11757  MachineFunction *F = MBB->getParent();
11758  MachineBasicBlock *thisMBB = MBB;
11759  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11760  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11761  F->insert(MBBIter, newMBB);
11762  F->insert(MBBIter, nextMBB);
11763
11764  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11765  nextMBB->splice(nextMBB->begin(), thisMBB,
11766                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11767                  thisMBB->end());
11768  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11769
11770  // Update thisMBB to fall through to newMBB
11771  thisMBB->addSuccessor(newMBB);
11772
11773  // newMBB jumps to newMBB and fall through to nextMBB
11774  newMBB->addSuccessor(nextMBB);
11775  newMBB->addSuccessor(newMBB);
11776
11777  DebugLoc dl = mInstr->getDebugLoc();
11778  // Insert instructions into newMBB based on incoming instruction
11779  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11780         "unexpected number of operands");
11781  MachineOperand& destOper = mInstr->getOperand(0);
11782  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11783  int numArgs = mInstr->getNumOperands() - 1;
11784  for (int i=0; i < numArgs; ++i)
11785    argOpers[i] = &mInstr->getOperand(i+1);
11786
11787  // x86 address has 4 operands: base, index, scale, and displacement
11788  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11789  int valArgIndx = lastAddrIndx + 1;
11790
11791  unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11792  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11793  for (int i=0; i <= lastAddrIndx; ++i)
11794    (*MIB).addOperand(*argOpers[i]);
11795
11796  // We only support register and immediate values
11797  assert((argOpers[valArgIndx]->isReg() ||
11798          argOpers[valArgIndx]->isImm()) &&
11799         "invalid operand");
11800
11801  unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11802  if (argOpers[valArgIndx]->isReg())
11803    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11804  else
11805    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11806  (*MIB).addOperand(*argOpers[valArgIndx]);
11807
11808  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11809  MIB.addReg(t1);
11810
11811  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11812  MIB.addReg(t1);
11813  MIB.addReg(t2);
11814
11815  // Generate movc
11816  unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
11817  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11818  MIB.addReg(t2);
11819  MIB.addReg(t1);
11820
11821  // Cmp and exchange if none has modified the memory location
11822  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11823  for (int i=0; i <= lastAddrIndx; ++i)
11824    (*MIB).addOperand(*argOpers[i]);
11825  MIB.addReg(t3);
11826  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11827  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11828                    mInstr->memoperands_end());
11829
11830  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11831  MIB.addReg(X86::EAX);
11832
11833  // insert branch
11834  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11835
11836  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11837  return nextMBB;
11838}
11839
11840// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11841// or XMM0_V32I8 in AVX all of this code can be replaced with that
11842// in the .td file.
11843MachineBasicBlock *
11844X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11845                            unsigned numArgs, bool memArg) const {
11846  assert(Subtarget->hasSSE42() &&
11847         "Target must have SSE4.2 or AVX features enabled");
11848
11849  DebugLoc dl = MI->getDebugLoc();
11850  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11851  unsigned Opc;
11852  if (!Subtarget->hasAVX()) {
11853    if (memArg)
11854      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11855    else
11856      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11857  } else {
11858    if (memArg)
11859      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11860    else
11861      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11862  }
11863
11864  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11865  for (unsigned i = 0; i < numArgs; ++i) {
11866    MachineOperand &Op = MI->getOperand(i+1);
11867    if (!(Op.isReg() && Op.isImplicit()))
11868      MIB.addOperand(Op);
11869  }
11870  BuildMI(*BB, MI, dl,
11871    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11872             MI->getOperand(0).getReg())
11873    .addReg(X86::XMM0);
11874
11875  MI->eraseFromParent();
11876  return BB;
11877}
11878
11879MachineBasicBlock *
11880X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11881  DebugLoc dl = MI->getDebugLoc();
11882  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11883
11884  // Address into RAX/EAX, other two args into ECX, EDX.
11885  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11886  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11887  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11888  for (int i = 0; i < X86::AddrNumOperands; ++i)
11889    MIB.addOperand(MI->getOperand(i));
11890
11891  unsigned ValOps = X86::AddrNumOperands;
11892  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11893    .addReg(MI->getOperand(ValOps).getReg());
11894  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11895    .addReg(MI->getOperand(ValOps+1).getReg());
11896
11897  // The instruction doesn't actually take any operands though.
11898  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11899
11900  MI->eraseFromParent(); // The pseudo is gone now.
11901  return BB;
11902}
11903
11904MachineBasicBlock *
11905X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11906  DebugLoc dl = MI->getDebugLoc();
11907  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11908
11909  // First arg in ECX, the second in EAX.
11910  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11911    .addReg(MI->getOperand(0).getReg());
11912  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11913    .addReg(MI->getOperand(1).getReg());
11914
11915  // The instruction doesn't actually take any operands though.
11916  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11917
11918  MI->eraseFromParent(); // The pseudo is gone now.
11919  return BB;
11920}
11921
11922MachineBasicBlock *
11923X86TargetLowering::EmitVAARG64WithCustomInserter(
11924                   MachineInstr *MI,
11925                   MachineBasicBlock *MBB) const {
11926  // Emit va_arg instruction on X86-64.
11927
11928  // Operands to this pseudo-instruction:
11929  // 0  ) Output        : destination address (reg)
11930  // 1-5) Input         : va_list address (addr, i64mem)
11931  // 6  ) ArgSize       : Size (in bytes) of vararg type
11932  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11933  // 8  ) Align         : Alignment of type
11934  // 9  ) EFLAGS (implicit-def)
11935
11936  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11937  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11938
11939  unsigned DestReg = MI->getOperand(0).getReg();
11940  MachineOperand &Base = MI->getOperand(1);
11941  MachineOperand &Scale = MI->getOperand(2);
11942  MachineOperand &Index = MI->getOperand(3);
11943  MachineOperand &Disp = MI->getOperand(4);
11944  MachineOperand &Segment = MI->getOperand(5);
11945  unsigned ArgSize = MI->getOperand(6).getImm();
11946  unsigned ArgMode = MI->getOperand(7).getImm();
11947  unsigned Align = MI->getOperand(8).getImm();
11948
11949  // Memory Reference
11950  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11951  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11952  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11953
11954  // Machine Information
11955  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11956  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11957  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11958  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11959  DebugLoc DL = MI->getDebugLoc();
11960
11961  // struct va_list {
11962  //   i32   gp_offset
11963  //   i32   fp_offset
11964  //   i64   overflow_area (address)
11965  //   i64   reg_save_area (address)
11966  // }
11967  // sizeof(va_list) = 24
11968  // alignment(va_list) = 8
11969
11970  unsigned TotalNumIntRegs = 6;
11971  unsigned TotalNumXMMRegs = 8;
11972  bool UseGPOffset = (ArgMode == 1);
11973  bool UseFPOffset = (ArgMode == 2);
11974  unsigned MaxOffset = TotalNumIntRegs * 8 +
11975                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11976
11977  /* Align ArgSize to a multiple of 8 */
11978  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11979  bool NeedsAlign = (Align > 8);
11980
11981  MachineBasicBlock *thisMBB = MBB;
11982  MachineBasicBlock *overflowMBB;
11983  MachineBasicBlock *offsetMBB;
11984  MachineBasicBlock *endMBB;
11985
11986  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11987  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11988  unsigned OffsetReg = 0;
11989
11990  if (!UseGPOffset && !UseFPOffset) {
11991    // If we only pull from the overflow region, we don't create a branch.
11992    // We don't need to alter control flow.
11993    OffsetDestReg = 0; // unused
11994    OverflowDestReg = DestReg;
11995
11996    offsetMBB = NULL;
11997    overflowMBB = thisMBB;
11998    endMBB = thisMBB;
11999  } else {
12000    // First emit code to check if gp_offset (or fp_offset) is below the bound.
12001    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12002    // If not, pull from overflow_area. (branch to overflowMBB)
12003    //
12004    //       thisMBB
12005    //         |     .
12006    //         |        .
12007    //     offsetMBB   overflowMBB
12008    //         |        .
12009    //         |     .
12010    //        endMBB
12011
12012    // Registers for the PHI in endMBB
12013    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12014    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12015
12016    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12017    MachineFunction *MF = MBB->getParent();
12018    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12019    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12020    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12021
12022    MachineFunction::iterator MBBIter = MBB;
12023    ++MBBIter;
12024
12025    // Insert the new basic blocks
12026    MF->insert(MBBIter, offsetMBB);
12027    MF->insert(MBBIter, overflowMBB);
12028    MF->insert(MBBIter, endMBB);
12029
12030    // Transfer the remainder of MBB and its successor edges to endMBB.
12031    endMBB->splice(endMBB->begin(), thisMBB,
12032                    llvm::next(MachineBasicBlock::iterator(MI)),
12033                    thisMBB->end());
12034    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12035
12036    // Make offsetMBB and overflowMBB successors of thisMBB
12037    thisMBB->addSuccessor(offsetMBB);
12038    thisMBB->addSuccessor(overflowMBB);
12039
12040    // endMBB is a successor of both offsetMBB and overflowMBB
12041    offsetMBB->addSuccessor(endMBB);
12042    overflowMBB->addSuccessor(endMBB);
12043
12044    // Load the offset value into a register
12045    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12046    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12047      .addOperand(Base)
12048      .addOperand(Scale)
12049      .addOperand(Index)
12050      .addDisp(Disp, UseFPOffset ? 4 : 0)
12051      .addOperand(Segment)
12052      .setMemRefs(MMOBegin, MMOEnd);
12053
12054    // Check if there is enough room left to pull this argument.
12055    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12056      .addReg(OffsetReg)
12057      .addImm(MaxOffset + 8 - ArgSizeA8);
12058
12059    // Branch to "overflowMBB" if offset >= max
12060    // Fall through to "offsetMBB" otherwise
12061    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12062      .addMBB(overflowMBB);
12063  }
12064
12065  // In offsetMBB, emit code to use the reg_save_area.
12066  if (offsetMBB) {
12067    assert(OffsetReg != 0);
12068
12069    // Read the reg_save_area address.
12070    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12071    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12072      .addOperand(Base)
12073      .addOperand(Scale)
12074      .addOperand(Index)
12075      .addDisp(Disp, 16)
12076      .addOperand(Segment)
12077      .setMemRefs(MMOBegin, MMOEnd);
12078
12079    // Zero-extend the offset
12080    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12081      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12082        .addImm(0)
12083        .addReg(OffsetReg)
12084        .addImm(X86::sub_32bit);
12085
12086    // Add the offset to the reg_save_area to get the final address.
12087    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12088      .addReg(OffsetReg64)
12089      .addReg(RegSaveReg);
12090
12091    // Compute the offset for the next argument
12092    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12093    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12094      .addReg(OffsetReg)
12095      .addImm(UseFPOffset ? 16 : 8);
12096
12097    // Store it back into the va_list.
12098    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12099      .addOperand(Base)
12100      .addOperand(Scale)
12101      .addOperand(Index)
12102      .addDisp(Disp, UseFPOffset ? 4 : 0)
12103      .addOperand(Segment)
12104      .addReg(NextOffsetReg)
12105      .setMemRefs(MMOBegin, MMOEnd);
12106
12107    // Jump to endMBB
12108    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12109      .addMBB(endMBB);
12110  }
12111
12112  //
12113  // Emit code to use overflow area
12114  //
12115
12116  // Load the overflow_area address into a register.
12117  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12118  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12119    .addOperand(Base)
12120    .addOperand(Scale)
12121    .addOperand(Index)
12122    .addDisp(Disp, 8)
12123    .addOperand(Segment)
12124    .setMemRefs(MMOBegin, MMOEnd);
12125
12126  // If we need to align it, do so. Otherwise, just copy the address
12127  // to OverflowDestReg.
12128  if (NeedsAlign) {
12129    // Align the overflow address
12130    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12131    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12132
12133    // aligned_addr = (addr + (align-1)) & ~(align-1)
12134    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12135      .addReg(OverflowAddrReg)
12136      .addImm(Align-1);
12137
12138    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12139      .addReg(TmpReg)
12140      .addImm(~(uint64_t)(Align-1));
12141  } else {
12142    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12143      .addReg(OverflowAddrReg);
12144  }
12145
12146  // Compute the next overflow address after this argument.
12147  // (the overflow address should be kept 8-byte aligned)
12148  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12149  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12150    .addReg(OverflowDestReg)
12151    .addImm(ArgSizeA8);
12152
12153  // Store the new overflow address.
12154  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12155    .addOperand(Base)
12156    .addOperand(Scale)
12157    .addOperand(Index)
12158    .addDisp(Disp, 8)
12159    .addOperand(Segment)
12160    .addReg(NextAddrReg)
12161    .setMemRefs(MMOBegin, MMOEnd);
12162
12163  // If we branched, emit the PHI to the front of endMBB.
12164  if (offsetMBB) {
12165    BuildMI(*endMBB, endMBB->begin(), DL,
12166            TII->get(X86::PHI), DestReg)
12167      .addReg(OffsetDestReg).addMBB(offsetMBB)
12168      .addReg(OverflowDestReg).addMBB(overflowMBB);
12169  }
12170
12171  // Erase the pseudo instruction
12172  MI->eraseFromParent();
12173
12174  return endMBB;
12175}
12176
12177MachineBasicBlock *
12178X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12179                                                 MachineInstr *MI,
12180                                                 MachineBasicBlock *MBB) const {
12181  // Emit code to save XMM registers to the stack. The ABI says that the
12182  // number of registers to save is given in %al, so it's theoretically
12183  // possible to do an indirect jump trick to avoid saving all of them,
12184  // however this code takes a simpler approach and just executes all
12185  // of the stores if %al is non-zero. It's less code, and it's probably
12186  // easier on the hardware branch predictor, and stores aren't all that
12187  // expensive anyway.
12188
12189  // Create the new basic blocks. One block contains all the XMM stores,
12190  // and one block is the final destination regardless of whether any
12191  // stores were performed.
12192  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12193  MachineFunction *F = MBB->getParent();
12194  MachineFunction::iterator MBBIter = MBB;
12195  ++MBBIter;
12196  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12197  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12198  F->insert(MBBIter, XMMSaveMBB);
12199  F->insert(MBBIter, EndMBB);
12200
12201  // Transfer the remainder of MBB and its successor edges to EndMBB.
12202  EndMBB->splice(EndMBB->begin(), MBB,
12203                 llvm::next(MachineBasicBlock::iterator(MI)),
12204                 MBB->end());
12205  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12206
12207  // The original block will now fall through to the XMM save block.
12208  MBB->addSuccessor(XMMSaveMBB);
12209  // The XMMSaveMBB will fall through to the end block.
12210  XMMSaveMBB->addSuccessor(EndMBB);
12211
12212  // Now add the instructions.
12213  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12214  DebugLoc DL = MI->getDebugLoc();
12215
12216  unsigned CountReg = MI->getOperand(0).getReg();
12217  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12218  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12219
12220  if (!Subtarget->isTargetWin64()) {
12221    // If %al is 0, branch around the XMM save block.
12222    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12223    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12224    MBB->addSuccessor(EndMBB);
12225  }
12226
12227  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12228  // In the XMM save block, save all the XMM argument registers.
12229  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12230    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12231    MachineMemOperand *MMO =
12232      F->getMachineMemOperand(
12233          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12234        MachineMemOperand::MOStore,
12235        /*Size=*/16, /*Align=*/16);
12236    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12237      .addFrameIndex(RegSaveFrameIndex)
12238      .addImm(/*Scale=*/1)
12239      .addReg(/*IndexReg=*/0)
12240      .addImm(/*Disp=*/Offset)
12241      .addReg(/*Segment=*/0)
12242      .addReg(MI->getOperand(i).getReg())
12243      .addMemOperand(MMO);
12244  }
12245
12246  MI->eraseFromParent();   // The pseudo instruction is gone now.
12247
12248  return EndMBB;
12249}
12250
12251// The EFLAGS operand of SelectItr might be missing a kill marker
12252// because there were multiple uses of EFLAGS, and ISel didn't know
12253// which to mark. Figure out whether SelectItr should have had a
12254// kill marker, and set it if it should. Returns the correct kill
12255// marker value.
12256static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12257                                     MachineBasicBlock* BB,
12258                                     const TargetRegisterInfo* TRI) {
12259  // Scan forward through BB for a use/def of EFLAGS.
12260  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12261  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12262    const MachineInstr& mi = *miI;
12263    if (mi.readsRegister(X86::EFLAGS))
12264      return false;
12265    if (mi.definesRegister(X86::EFLAGS))
12266      break; // Should have kill-flag - update below.
12267  }
12268
12269  // If we hit the end of the block, check whether EFLAGS is live into a
12270  // successor.
12271  if (miI == BB->end()) {
12272    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12273                                          sEnd = BB->succ_end();
12274         sItr != sEnd; ++sItr) {
12275      MachineBasicBlock* succ = *sItr;
12276      if (succ->isLiveIn(X86::EFLAGS))
12277        return false;
12278    }
12279  }
12280
12281  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12282  // out. SelectMI should have a kill flag on EFLAGS.
12283  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12284  return true;
12285}
12286
12287MachineBasicBlock *
12288X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12289                                     MachineBasicBlock *BB) const {
12290  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12291  DebugLoc DL = MI->getDebugLoc();
12292
12293  // To "insert" a SELECT_CC instruction, we actually have to insert the
12294  // diamond control-flow pattern.  The incoming instruction knows the
12295  // destination vreg to set, the condition code register to branch on, the
12296  // true/false values to select between, and a branch opcode to use.
12297  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12298  MachineFunction::iterator It = BB;
12299  ++It;
12300
12301  //  thisMBB:
12302  //  ...
12303  //   TrueVal = ...
12304  //   cmpTY ccX, r1, r2
12305  //   bCC copy1MBB
12306  //   fallthrough --> copy0MBB
12307  MachineBasicBlock *thisMBB = BB;
12308  MachineFunction *F = BB->getParent();
12309  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12310  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12311  F->insert(It, copy0MBB);
12312  F->insert(It, sinkMBB);
12313
12314  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12315  // live into the sink and copy blocks.
12316  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12317  if (!MI->killsRegister(X86::EFLAGS) &&
12318      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12319    copy0MBB->addLiveIn(X86::EFLAGS);
12320    sinkMBB->addLiveIn(X86::EFLAGS);
12321  }
12322
12323  // Transfer the remainder of BB and its successor edges to sinkMBB.
12324  sinkMBB->splice(sinkMBB->begin(), BB,
12325                  llvm::next(MachineBasicBlock::iterator(MI)),
12326                  BB->end());
12327  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12328
12329  // Add the true and fallthrough blocks as its successors.
12330  BB->addSuccessor(copy0MBB);
12331  BB->addSuccessor(sinkMBB);
12332
12333  // Create the conditional branch instruction.
12334  unsigned Opc =
12335    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12336  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12337
12338  //  copy0MBB:
12339  //   %FalseValue = ...
12340  //   # fallthrough to sinkMBB
12341  copy0MBB->addSuccessor(sinkMBB);
12342
12343  //  sinkMBB:
12344  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12345  //  ...
12346  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12347          TII->get(X86::PHI), MI->getOperand(0).getReg())
12348    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12349    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12350
12351  MI->eraseFromParent();   // The pseudo instruction is gone now.
12352  return sinkMBB;
12353}
12354
12355MachineBasicBlock *
12356X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12357                                        bool Is64Bit) const {
12358  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12359  DebugLoc DL = MI->getDebugLoc();
12360  MachineFunction *MF = BB->getParent();
12361  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12362
12363  assert(getTargetMachine().Options.EnableSegmentedStacks);
12364
12365  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12366  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12367
12368  // BB:
12369  //  ... [Till the alloca]
12370  // If stacklet is not large enough, jump to mallocMBB
12371  //
12372  // bumpMBB:
12373  //  Allocate by subtracting from RSP
12374  //  Jump to continueMBB
12375  //
12376  // mallocMBB:
12377  //  Allocate by call to runtime
12378  //
12379  // continueMBB:
12380  //  ...
12381  //  [rest of original BB]
12382  //
12383
12384  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12385  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12386  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12387
12388  MachineRegisterInfo &MRI = MF->getRegInfo();
12389  const TargetRegisterClass *AddrRegClass =
12390    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12391
12392  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12393    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12394    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12395    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12396    sizeVReg = MI->getOperand(1).getReg(),
12397    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12398
12399  MachineFunction::iterator MBBIter = BB;
12400  ++MBBIter;
12401
12402  MF->insert(MBBIter, bumpMBB);
12403  MF->insert(MBBIter, mallocMBB);
12404  MF->insert(MBBIter, continueMBB);
12405
12406  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12407                      (MachineBasicBlock::iterator(MI)), BB->end());
12408  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12409
12410  // Add code to the main basic block to check if the stack limit has been hit,
12411  // and if so, jump to mallocMBB otherwise to bumpMBB.
12412  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12413  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12414    .addReg(tmpSPVReg).addReg(sizeVReg);
12415  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12416    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12417    .addReg(SPLimitVReg);
12418  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12419
12420  // bumpMBB simply decreases the stack pointer, since we know the current
12421  // stacklet has enough space.
12422  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12423    .addReg(SPLimitVReg);
12424  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12425    .addReg(SPLimitVReg);
12426  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12427
12428  // Calls into a routine in libgcc to allocate more space from the heap.
12429  const uint32_t *RegMask =
12430    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12431  if (Is64Bit) {
12432    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12433      .addReg(sizeVReg);
12434    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12435      .addExternalSymbol("__morestack_allocate_stack_space")
12436      .addRegMask(RegMask)
12437      .addReg(X86::RDI, RegState::Implicit)
12438      .addReg(X86::RAX, RegState::ImplicitDefine);
12439  } else {
12440    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12441      .addImm(12);
12442    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12443    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12444      .addExternalSymbol("__morestack_allocate_stack_space")
12445      .addRegMask(RegMask)
12446      .addReg(X86::EAX, RegState::ImplicitDefine);
12447  }
12448
12449  if (!Is64Bit)
12450    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12451      .addImm(16);
12452
12453  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12454    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12455  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12456
12457  // Set up the CFG correctly.
12458  BB->addSuccessor(bumpMBB);
12459  BB->addSuccessor(mallocMBB);
12460  mallocMBB->addSuccessor(continueMBB);
12461  bumpMBB->addSuccessor(continueMBB);
12462
12463  // Take care of the PHI nodes.
12464  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12465          MI->getOperand(0).getReg())
12466    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12467    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12468
12469  // Delete the original pseudo instruction.
12470  MI->eraseFromParent();
12471
12472  // And we're done.
12473  return continueMBB;
12474}
12475
12476MachineBasicBlock *
12477X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12478                                          MachineBasicBlock *BB) const {
12479  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12480  DebugLoc DL = MI->getDebugLoc();
12481
12482  assert(!Subtarget->isTargetEnvMacho());
12483
12484  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12485  // non-trivial part is impdef of ESP.
12486
12487  if (Subtarget->isTargetWin64()) {
12488    if (Subtarget->isTargetCygMing()) {
12489      // ___chkstk(Mingw64):
12490      // Clobbers R10, R11, RAX and EFLAGS.
12491      // Updates RSP.
12492      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12493        .addExternalSymbol("___chkstk")
12494        .addReg(X86::RAX, RegState::Implicit)
12495        .addReg(X86::RSP, RegState::Implicit)
12496        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12497        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12498        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12499    } else {
12500      // __chkstk(MSVCRT): does not update stack pointer.
12501      // Clobbers R10, R11 and EFLAGS.
12502      // FIXME: RAX(allocated size) might be reused and not killed.
12503      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12504        .addExternalSymbol("__chkstk")
12505        .addReg(X86::RAX, RegState::Implicit)
12506        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12507      // RAX has the offset to subtracted from RSP.
12508      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12509        .addReg(X86::RSP)
12510        .addReg(X86::RAX);
12511    }
12512  } else {
12513    const char *StackProbeSymbol =
12514      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12515
12516    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12517      .addExternalSymbol(StackProbeSymbol)
12518      .addReg(X86::EAX, RegState::Implicit)
12519      .addReg(X86::ESP, RegState::Implicit)
12520      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12521      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12522      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12523  }
12524
12525  MI->eraseFromParent();   // The pseudo instruction is gone now.
12526  return BB;
12527}
12528
12529MachineBasicBlock *
12530X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12531                                      MachineBasicBlock *BB) const {
12532  // This is pretty easy.  We're taking the value that we received from
12533  // our load from the relocation, sticking it in either RDI (x86-64)
12534  // or EAX and doing an indirect call.  The return value will then
12535  // be in the normal return register.
12536  const X86InstrInfo *TII
12537    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12538  DebugLoc DL = MI->getDebugLoc();
12539  MachineFunction *F = BB->getParent();
12540
12541  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12542  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12543
12544  // Get a register mask for the lowered call.
12545  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12546  // proper register mask.
12547  const uint32_t *RegMask =
12548    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12549  if (Subtarget->is64Bit()) {
12550    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12551                                      TII->get(X86::MOV64rm), X86::RDI)
12552    .addReg(X86::RIP)
12553    .addImm(0).addReg(0)
12554    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12555                      MI->getOperand(3).getTargetFlags())
12556    .addReg(0);
12557    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12558    addDirectMem(MIB, X86::RDI);
12559    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12560  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12561    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12562                                      TII->get(X86::MOV32rm), X86::EAX)
12563    .addReg(0)
12564    .addImm(0).addReg(0)
12565    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12566                      MI->getOperand(3).getTargetFlags())
12567    .addReg(0);
12568    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12569    addDirectMem(MIB, X86::EAX);
12570    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12571  } else {
12572    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12573                                      TII->get(X86::MOV32rm), X86::EAX)
12574    .addReg(TII->getGlobalBaseReg(F))
12575    .addImm(0).addReg(0)
12576    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12577                      MI->getOperand(3).getTargetFlags())
12578    .addReg(0);
12579    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12580    addDirectMem(MIB, X86::EAX);
12581    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12582  }
12583
12584  MI->eraseFromParent(); // The pseudo instruction is gone now.
12585  return BB;
12586}
12587
12588MachineBasicBlock *
12589X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12590                                               MachineBasicBlock *BB) const {
12591  switch (MI->getOpcode()) {
12592  default: llvm_unreachable("Unexpected instr type to insert");
12593  case X86::TAILJMPd64:
12594  case X86::TAILJMPr64:
12595  case X86::TAILJMPm64:
12596    llvm_unreachable("TAILJMP64 would not be touched here.");
12597  case X86::TCRETURNdi64:
12598  case X86::TCRETURNri64:
12599  case X86::TCRETURNmi64:
12600    return BB;
12601  case X86::WIN_ALLOCA:
12602    return EmitLoweredWinAlloca(MI, BB);
12603  case X86::SEG_ALLOCA_32:
12604    return EmitLoweredSegAlloca(MI, BB, false);
12605  case X86::SEG_ALLOCA_64:
12606    return EmitLoweredSegAlloca(MI, BB, true);
12607  case X86::TLSCall_32:
12608  case X86::TLSCall_64:
12609    return EmitLoweredTLSCall(MI, BB);
12610  case X86::CMOV_GR8:
12611  case X86::CMOV_FR32:
12612  case X86::CMOV_FR64:
12613  case X86::CMOV_V4F32:
12614  case X86::CMOV_V2F64:
12615  case X86::CMOV_V2I64:
12616  case X86::CMOV_V8F32:
12617  case X86::CMOV_V4F64:
12618  case X86::CMOV_V4I64:
12619  case X86::CMOV_GR16:
12620  case X86::CMOV_GR32:
12621  case X86::CMOV_RFP32:
12622  case X86::CMOV_RFP64:
12623  case X86::CMOV_RFP80:
12624    return EmitLoweredSelect(MI, BB);
12625
12626  case X86::FP32_TO_INT16_IN_MEM:
12627  case X86::FP32_TO_INT32_IN_MEM:
12628  case X86::FP32_TO_INT64_IN_MEM:
12629  case X86::FP64_TO_INT16_IN_MEM:
12630  case X86::FP64_TO_INT32_IN_MEM:
12631  case X86::FP64_TO_INT64_IN_MEM:
12632  case X86::FP80_TO_INT16_IN_MEM:
12633  case X86::FP80_TO_INT32_IN_MEM:
12634  case X86::FP80_TO_INT64_IN_MEM: {
12635    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12636    DebugLoc DL = MI->getDebugLoc();
12637
12638    // Change the floating point control register to use "round towards zero"
12639    // mode when truncating to an integer value.
12640    MachineFunction *F = BB->getParent();
12641    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12642    addFrameReference(BuildMI(*BB, MI, DL,
12643                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12644
12645    // Load the old value of the high byte of the control word...
12646    unsigned OldCW =
12647      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
12648    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12649                      CWFrameIdx);
12650
12651    // Set the high part to be round to zero...
12652    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12653      .addImm(0xC7F);
12654
12655    // Reload the modified control word now...
12656    addFrameReference(BuildMI(*BB, MI, DL,
12657                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12658
12659    // Restore the memory image of control word to original value
12660    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12661      .addReg(OldCW);
12662
12663    // Get the X86 opcode to use.
12664    unsigned Opc;
12665    switch (MI->getOpcode()) {
12666    default: llvm_unreachable("illegal opcode!");
12667    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12668    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12669    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12670    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12671    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12672    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12673    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12674    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12675    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12676    }
12677
12678    X86AddressMode AM;
12679    MachineOperand &Op = MI->getOperand(0);
12680    if (Op.isReg()) {
12681      AM.BaseType = X86AddressMode::RegBase;
12682      AM.Base.Reg = Op.getReg();
12683    } else {
12684      AM.BaseType = X86AddressMode::FrameIndexBase;
12685      AM.Base.FrameIndex = Op.getIndex();
12686    }
12687    Op = MI->getOperand(1);
12688    if (Op.isImm())
12689      AM.Scale = Op.getImm();
12690    Op = MI->getOperand(2);
12691    if (Op.isImm())
12692      AM.IndexReg = Op.getImm();
12693    Op = MI->getOperand(3);
12694    if (Op.isGlobal()) {
12695      AM.GV = Op.getGlobal();
12696    } else {
12697      AM.Disp = Op.getImm();
12698    }
12699    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12700                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12701
12702    // Reload the original control word now.
12703    addFrameReference(BuildMI(*BB, MI, DL,
12704                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12705
12706    MI->eraseFromParent();   // The pseudo instruction is gone now.
12707    return BB;
12708  }
12709    // String/text processing lowering.
12710  case X86::PCMPISTRM128REG:
12711  case X86::VPCMPISTRM128REG:
12712    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12713  case X86::PCMPISTRM128MEM:
12714  case X86::VPCMPISTRM128MEM:
12715    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12716  case X86::PCMPESTRM128REG:
12717  case X86::VPCMPESTRM128REG:
12718    return EmitPCMP(MI, BB, 5, false /* in mem */);
12719  case X86::PCMPESTRM128MEM:
12720  case X86::VPCMPESTRM128MEM:
12721    return EmitPCMP(MI, BB, 5, true /* in mem */);
12722
12723    // Thread synchronization.
12724  case X86::MONITOR:
12725    return EmitMonitor(MI, BB);
12726  case X86::MWAIT:
12727    return EmitMwait(MI, BB);
12728
12729    // Atomic Lowering.
12730  case X86::ATOMAND32:
12731    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12732                                               X86::AND32ri, X86::MOV32rm,
12733                                               X86::LCMPXCHG32,
12734                                               X86::NOT32r, X86::EAX,
12735                                               &X86::GR32RegClass);
12736  case X86::ATOMOR32:
12737    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12738                                               X86::OR32ri, X86::MOV32rm,
12739                                               X86::LCMPXCHG32,
12740                                               X86::NOT32r, X86::EAX,
12741                                               &X86::GR32RegClass);
12742  case X86::ATOMXOR32:
12743    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12744                                               X86::XOR32ri, X86::MOV32rm,
12745                                               X86::LCMPXCHG32,
12746                                               X86::NOT32r, X86::EAX,
12747                                               &X86::GR32RegClass);
12748  case X86::ATOMNAND32:
12749    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12750                                               X86::AND32ri, X86::MOV32rm,
12751                                               X86::LCMPXCHG32,
12752                                               X86::NOT32r, X86::EAX,
12753                                               &X86::GR32RegClass, true);
12754  case X86::ATOMMIN32:
12755    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12756  case X86::ATOMMAX32:
12757    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12758  case X86::ATOMUMIN32:
12759    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12760  case X86::ATOMUMAX32:
12761    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12762
12763  case X86::ATOMAND16:
12764    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12765                                               X86::AND16ri, X86::MOV16rm,
12766                                               X86::LCMPXCHG16,
12767                                               X86::NOT16r, X86::AX,
12768                                               &X86::GR16RegClass);
12769  case X86::ATOMOR16:
12770    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12771                                               X86::OR16ri, X86::MOV16rm,
12772                                               X86::LCMPXCHG16,
12773                                               X86::NOT16r, X86::AX,
12774                                               &X86::GR16RegClass);
12775  case X86::ATOMXOR16:
12776    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12777                                               X86::XOR16ri, X86::MOV16rm,
12778                                               X86::LCMPXCHG16,
12779                                               X86::NOT16r, X86::AX,
12780                                               &X86::GR16RegClass);
12781  case X86::ATOMNAND16:
12782    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12783                                               X86::AND16ri, X86::MOV16rm,
12784                                               X86::LCMPXCHG16,
12785                                               X86::NOT16r, X86::AX,
12786                                               &X86::GR16RegClass, true);
12787  case X86::ATOMMIN16:
12788    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12789  case X86::ATOMMAX16:
12790    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12791  case X86::ATOMUMIN16:
12792    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12793  case X86::ATOMUMAX16:
12794    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12795
12796  case X86::ATOMAND8:
12797    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12798                                               X86::AND8ri, X86::MOV8rm,
12799                                               X86::LCMPXCHG8,
12800                                               X86::NOT8r, X86::AL,
12801                                               &X86::GR8RegClass);
12802  case X86::ATOMOR8:
12803    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12804                                               X86::OR8ri, X86::MOV8rm,
12805                                               X86::LCMPXCHG8,
12806                                               X86::NOT8r, X86::AL,
12807                                               &X86::GR8RegClass);
12808  case X86::ATOMXOR8:
12809    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12810                                               X86::XOR8ri, X86::MOV8rm,
12811                                               X86::LCMPXCHG8,
12812                                               X86::NOT8r, X86::AL,
12813                                               &X86::GR8RegClass);
12814  case X86::ATOMNAND8:
12815    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12816                                               X86::AND8ri, X86::MOV8rm,
12817                                               X86::LCMPXCHG8,
12818                                               X86::NOT8r, X86::AL,
12819                                               &X86::GR8RegClass, true);
12820  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12821  // This group is for 64-bit host.
12822  case X86::ATOMAND64:
12823    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12824                                               X86::AND64ri32, X86::MOV64rm,
12825                                               X86::LCMPXCHG64,
12826                                               X86::NOT64r, X86::RAX,
12827                                               &X86::GR64RegClass);
12828  case X86::ATOMOR64:
12829    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12830                                               X86::OR64ri32, X86::MOV64rm,
12831                                               X86::LCMPXCHG64,
12832                                               X86::NOT64r, X86::RAX,
12833                                               &X86::GR64RegClass);
12834  case X86::ATOMXOR64:
12835    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12836                                               X86::XOR64ri32, X86::MOV64rm,
12837                                               X86::LCMPXCHG64,
12838                                               X86::NOT64r, X86::RAX,
12839                                               &X86::GR64RegClass);
12840  case X86::ATOMNAND64:
12841    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12842                                               X86::AND64ri32, X86::MOV64rm,
12843                                               X86::LCMPXCHG64,
12844                                               X86::NOT64r, X86::RAX,
12845                                               &X86::GR64RegClass, true);
12846  case X86::ATOMMIN64:
12847    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12848  case X86::ATOMMAX64:
12849    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12850  case X86::ATOMUMIN64:
12851    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12852  case X86::ATOMUMAX64:
12853    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12854
12855  // This group does 64-bit operations on a 32-bit host.
12856  case X86::ATOMAND6432:
12857    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12858                                               X86::AND32rr, X86::AND32rr,
12859                                               X86::AND32ri, X86::AND32ri,
12860                                               false);
12861  case X86::ATOMOR6432:
12862    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12863                                               X86::OR32rr, X86::OR32rr,
12864                                               X86::OR32ri, X86::OR32ri,
12865                                               false);
12866  case X86::ATOMXOR6432:
12867    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12868                                               X86::XOR32rr, X86::XOR32rr,
12869                                               X86::XOR32ri, X86::XOR32ri,
12870                                               false);
12871  case X86::ATOMNAND6432:
12872    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12873                                               X86::AND32rr, X86::AND32rr,
12874                                               X86::AND32ri, X86::AND32ri,
12875                                               true);
12876  case X86::ATOMADD6432:
12877    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12878                                               X86::ADD32rr, X86::ADC32rr,
12879                                               X86::ADD32ri, X86::ADC32ri,
12880                                               false);
12881  case X86::ATOMSUB6432:
12882    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12883                                               X86::SUB32rr, X86::SBB32rr,
12884                                               X86::SUB32ri, X86::SBB32ri,
12885                                               false);
12886  case X86::ATOMSWAP6432:
12887    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12888                                               X86::MOV32rr, X86::MOV32rr,
12889                                               X86::MOV32ri, X86::MOV32ri,
12890                                               false);
12891  case X86::VASTART_SAVE_XMM_REGS:
12892    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12893
12894  case X86::VAARG_64:
12895    return EmitVAARG64WithCustomInserter(MI, BB);
12896  }
12897}
12898
12899//===----------------------------------------------------------------------===//
12900//                           X86 Optimization Hooks
12901//===----------------------------------------------------------------------===//
12902
12903void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12904                                                       APInt &KnownZero,
12905                                                       APInt &KnownOne,
12906                                                       const SelectionDAG &DAG,
12907                                                       unsigned Depth) const {
12908  unsigned BitWidth = KnownZero.getBitWidth();
12909  unsigned Opc = Op.getOpcode();
12910  assert((Opc >= ISD::BUILTIN_OP_END ||
12911          Opc == ISD::INTRINSIC_WO_CHAIN ||
12912          Opc == ISD::INTRINSIC_W_CHAIN ||
12913          Opc == ISD::INTRINSIC_VOID) &&
12914         "Should use MaskedValueIsZero if you don't know whether Op"
12915         " is a target node!");
12916
12917  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12918  switch (Opc) {
12919  default: break;
12920  case X86ISD::ADD:
12921  case X86ISD::SUB:
12922  case X86ISD::ADC:
12923  case X86ISD::SBB:
12924  case X86ISD::SMUL:
12925  case X86ISD::UMUL:
12926  case X86ISD::INC:
12927  case X86ISD::DEC:
12928  case X86ISD::OR:
12929  case X86ISD::XOR:
12930  case X86ISD::AND:
12931    // These nodes' second result is a boolean.
12932    if (Op.getResNo() == 0)
12933      break;
12934    // Fallthrough
12935  case X86ISD::SETCC:
12936    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12937    break;
12938  case ISD::INTRINSIC_WO_CHAIN: {
12939    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12940    unsigned NumLoBits = 0;
12941    switch (IntId) {
12942    default: break;
12943    case Intrinsic::x86_sse_movmsk_ps:
12944    case Intrinsic::x86_avx_movmsk_ps_256:
12945    case Intrinsic::x86_sse2_movmsk_pd:
12946    case Intrinsic::x86_avx_movmsk_pd_256:
12947    case Intrinsic::x86_mmx_pmovmskb:
12948    case Intrinsic::x86_sse2_pmovmskb_128:
12949    case Intrinsic::x86_avx2_pmovmskb: {
12950      // High bits of movmskp{s|d}, pmovmskb are known zero.
12951      switch (IntId) {
12952        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12953        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12954        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12955        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12956        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12957        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12958        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12959        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12960      }
12961      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12962      break;
12963    }
12964    }
12965    break;
12966  }
12967  }
12968}
12969
12970unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12971                                                         unsigned Depth) const {
12972  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12973  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12974    return Op.getValueType().getScalarType().getSizeInBits();
12975
12976  // Fallback case.
12977  return 1;
12978}
12979
12980/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12981/// node is a GlobalAddress + offset.
12982bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12983                                       const GlobalValue* &GA,
12984                                       int64_t &Offset) const {
12985  if (N->getOpcode() == X86ISD::Wrapper) {
12986    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12987      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12988      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12989      return true;
12990    }
12991  }
12992  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12993}
12994
12995/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12996/// same as extracting the high 128-bit part of 256-bit vector and then
12997/// inserting the result into the low part of a new 256-bit vector
12998static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12999  EVT VT = SVOp->getValueType(0);
13000  unsigned NumElems = VT.getVectorNumElements();
13001
13002  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13003  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
13004    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13005        SVOp->getMaskElt(j) >= 0)
13006      return false;
13007
13008  return true;
13009}
13010
13011/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
13012/// same as extracting the low 128-bit part of 256-bit vector and then
13013/// inserting the result into the high part of a new 256-bit vector
13014static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
13015  EVT VT = SVOp->getValueType(0);
13016  unsigned NumElems = VT.getVectorNumElements();
13017
13018  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13019  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
13020    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13021        SVOp->getMaskElt(j) >= 0)
13022      return false;
13023
13024  return true;
13025}
13026
13027/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
13028static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13029                                        TargetLowering::DAGCombinerInfo &DCI,
13030                                        const X86Subtarget* Subtarget) {
13031  DebugLoc dl = N->getDebugLoc();
13032  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13033  SDValue V1 = SVOp->getOperand(0);
13034  SDValue V2 = SVOp->getOperand(1);
13035  EVT VT = SVOp->getValueType(0);
13036  unsigned NumElems = VT.getVectorNumElements();
13037
13038  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13039      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13040    //
13041    //                   0,0,0,...
13042    //                      |
13043    //    V      UNDEF    BUILD_VECTOR    UNDEF
13044    //     \      /           \           /
13045    //  CONCAT_VECTOR         CONCAT_VECTOR
13046    //         \                  /
13047    //          \                /
13048    //          RESULT: V + zero extended
13049    //
13050    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13051        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13052        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13053      return SDValue();
13054
13055    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13056      return SDValue();
13057
13058    // To match the shuffle mask, the first half of the mask should
13059    // be exactly the first vector, and all the rest a splat with the
13060    // first element of the second one.
13061    for (unsigned i = 0; i != NumElems/2; ++i)
13062      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13063          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13064        return SDValue();
13065
13066    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13067    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13068      if (Ld->hasNUsesOfValue(1, 0)) {
13069        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13070        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13071        SDValue ResNode =
13072          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13073                                  Ld->getMemoryVT(),
13074                                  Ld->getPointerInfo(),
13075                                  Ld->getAlignment(),
13076                                  false/*isVolatile*/, true/*ReadMem*/,
13077                                  false/*WriteMem*/);
13078        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13079      }
13080    }
13081
13082    // Emit a zeroed vector and insert the desired subvector on its
13083    // first half.
13084    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13085    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13086    return DCI.CombineTo(N, InsV);
13087  }
13088
13089  //===--------------------------------------------------------------------===//
13090  // Combine some shuffles into subvector extracts and inserts:
13091  //
13092
13093  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13094  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13095    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13096    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13097    return DCI.CombineTo(N, InsV);
13098  }
13099
13100  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13101  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13102    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13103    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13104    return DCI.CombineTo(N, InsV);
13105  }
13106
13107  return SDValue();
13108}
13109
13110/// PerformShuffleCombine - Performs several different shuffle combines.
13111static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13112                                     TargetLowering::DAGCombinerInfo &DCI,
13113                                     const X86Subtarget *Subtarget) {
13114  DebugLoc dl = N->getDebugLoc();
13115  EVT VT = N->getValueType(0);
13116
13117  // Don't create instructions with illegal types after legalize types has run.
13118  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13119  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13120    return SDValue();
13121
13122  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13123  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
13124      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13125    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13126
13127  // Only handle 128 wide vector from here on.
13128  if (VT.getSizeInBits() != 128)
13129    return SDValue();
13130
13131  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13132  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13133  // consecutive, non-overlapping, and in the right order.
13134  SmallVector<SDValue, 16> Elts;
13135  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13136    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13137
13138  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13139}
13140
13141
13142/// DCI, PerformTruncateCombine - Converts truncate operation to
13143/// a sequence of vector shuffle operations.
13144/// It is possible when we truncate 256-bit vector to 128-bit vector
13145
13146SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13147                                                  DAGCombinerInfo &DCI) const {
13148  if (!DCI.isBeforeLegalizeOps())
13149    return SDValue();
13150
13151  if (!Subtarget->hasAVX())
13152    return SDValue();
13153
13154  EVT VT = N->getValueType(0);
13155  SDValue Op = N->getOperand(0);
13156  EVT OpVT = Op.getValueType();
13157  DebugLoc dl = N->getDebugLoc();
13158
13159  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13160
13161    if (Subtarget->hasAVX2()) {
13162      // AVX2: v4i64 -> v4i32
13163
13164      // VPERMD
13165      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13166
13167      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13168      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13169                                ShufMask);
13170
13171      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13172                         DAG.getIntPtrConstant(0));
13173    }
13174
13175    // AVX: v4i64 -> v4i32
13176    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13177                               DAG.getIntPtrConstant(0));
13178
13179    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13180                               DAG.getIntPtrConstant(2));
13181
13182    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13183    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13184
13185    // PSHUFD
13186    static const int ShufMask1[] = {0, 2, 0, 0};
13187
13188    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT), ShufMask1);
13189    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT), ShufMask1);
13190
13191    // MOVLHPS
13192    static const int ShufMask2[] = {0, 1, 4, 5};
13193
13194    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13195  }
13196
13197  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13198
13199    if (Subtarget->hasAVX2()) {
13200      // AVX2: v8i32 -> v8i16
13201
13202      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13203
13204      // PSHUFB
13205      SmallVector<SDValue,32> pshufbMask;
13206      for (unsigned i = 0; i < 2; ++i) {
13207        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13208        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13209        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13210        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13211        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13212        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13213        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13214        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13215        for (unsigned j = 0; j < 8; ++j)
13216          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13217      }
13218      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13219                               &pshufbMask[0], 32);
13220      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13221
13222      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13223
13224      static const int ShufMask[] = {0,  2,  -1,  -1};
13225      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13226                                &ShufMask[0]);
13227
13228      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13229                       DAG.getIntPtrConstant(0));
13230
13231      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13232    }
13233
13234    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13235                               DAG.getIntPtrConstant(0));
13236
13237    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13238                               DAG.getIntPtrConstant(4));
13239
13240    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13241    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13242
13243    // PSHUFB
13244    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13245                                   -1, -1, -1, -1, -1, -1, -1, -1};
13246
13247    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, DAG.getUNDEF(MVT::v16i8),
13248                                ShufMask1);
13249    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, DAG.getUNDEF(MVT::v16i8),
13250                                ShufMask1);
13251
13252    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13253    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13254
13255    // MOVLHPS
13256    static const int ShufMask2[] = {0, 1, 4, 5};
13257
13258    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13259    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13260  }
13261
13262  return SDValue();
13263}
13264
13265/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13266/// specific shuffle of a load can be folded into a single element load.
13267/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13268/// shuffles have been customed lowered so we need to handle those here.
13269static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13270                                         TargetLowering::DAGCombinerInfo &DCI) {
13271  if (DCI.isBeforeLegalizeOps())
13272    return SDValue();
13273
13274  SDValue InVec = N->getOperand(0);
13275  SDValue EltNo = N->getOperand(1);
13276
13277  if (!isa<ConstantSDNode>(EltNo))
13278    return SDValue();
13279
13280  EVT VT = InVec.getValueType();
13281
13282  bool HasShuffleIntoBitcast = false;
13283  if (InVec.getOpcode() == ISD::BITCAST) {
13284    // Don't duplicate a load with other uses.
13285    if (!InVec.hasOneUse())
13286      return SDValue();
13287    EVT BCVT = InVec.getOperand(0).getValueType();
13288    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13289      return SDValue();
13290    InVec = InVec.getOperand(0);
13291    HasShuffleIntoBitcast = true;
13292  }
13293
13294  if (!isTargetShuffle(InVec.getOpcode()))
13295    return SDValue();
13296
13297  // Don't duplicate a load with other uses.
13298  if (!InVec.hasOneUse())
13299    return SDValue();
13300
13301  SmallVector<int, 16> ShuffleMask;
13302  bool UnaryShuffle;
13303  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
13304                            UnaryShuffle))
13305    return SDValue();
13306
13307  // Select the input vector, guarding against out of range extract vector.
13308  unsigned NumElems = VT.getVectorNumElements();
13309  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13310  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13311  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13312                                         : InVec.getOperand(1);
13313
13314  // If inputs to shuffle are the same for both ops, then allow 2 uses
13315  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13316
13317  if (LdNode.getOpcode() == ISD::BITCAST) {
13318    // Don't duplicate a load with other uses.
13319    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13320      return SDValue();
13321
13322    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13323    LdNode = LdNode.getOperand(0);
13324  }
13325
13326  if (!ISD::isNormalLoad(LdNode.getNode()))
13327    return SDValue();
13328
13329  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13330
13331  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13332    return SDValue();
13333
13334  if (HasShuffleIntoBitcast) {
13335    // If there's a bitcast before the shuffle, check if the load type and
13336    // alignment is valid.
13337    unsigned Align = LN0->getAlignment();
13338    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13339    unsigned NewAlign = TLI.getTargetData()->
13340      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13341
13342    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13343      return SDValue();
13344  }
13345
13346  // All checks match so transform back to vector_shuffle so that DAG combiner
13347  // can finish the job
13348  DebugLoc dl = N->getDebugLoc();
13349
13350  // Create shuffle node taking into account the case that its a unary shuffle
13351  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13352  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13353                                 InVec.getOperand(0), Shuffle,
13354                                 &ShuffleMask[0]);
13355  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13356  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13357                     EltNo);
13358}
13359
13360/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13361/// generation and convert it from being a bunch of shuffles and extracts
13362/// to a simple store and scalar loads to extract the elements.
13363static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13364                                         TargetLowering::DAGCombinerInfo &DCI) {
13365  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13366  if (NewOp.getNode())
13367    return NewOp;
13368
13369  SDValue InputVector = N->getOperand(0);
13370
13371  // Only operate on vectors of 4 elements, where the alternative shuffling
13372  // gets to be more expensive.
13373  if (InputVector.getValueType() != MVT::v4i32)
13374    return SDValue();
13375
13376  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13377  // single use which is a sign-extend or zero-extend, and all elements are
13378  // used.
13379  SmallVector<SDNode *, 4> Uses;
13380  unsigned ExtractedElements = 0;
13381  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13382       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13383    if (UI.getUse().getResNo() != InputVector.getResNo())
13384      return SDValue();
13385
13386    SDNode *Extract = *UI;
13387    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13388      return SDValue();
13389
13390    if (Extract->getValueType(0) != MVT::i32)
13391      return SDValue();
13392    if (!Extract->hasOneUse())
13393      return SDValue();
13394    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13395        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13396      return SDValue();
13397    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13398      return SDValue();
13399
13400    // Record which element was extracted.
13401    ExtractedElements |=
13402      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13403
13404    Uses.push_back(Extract);
13405  }
13406
13407  // If not all the elements were used, this may not be worthwhile.
13408  if (ExtractedElements != 15)
13409    return SDValue();
13410
13411  // Ok, we've now decided to do the transformation.
13412  DebugLoc dl = InputVector.getDebugLoc();
13413
13414  // Store the value to a temporary stack slot.
13415  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13416  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13417                            MachinePointerInfo(), false, false, 0);
13418
13419  // Replace each use (extract) with a load of the appropriate element.
13420  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13421       UE = Uses.end(); UI != UE; ++UI) {
13422    SDNode *Extract = *UI;
13423
13424    // cOMpute the element's address.
13425    SDValue Idx = Extract->getOperand(1);
13426    unsigned EltSize =
13427        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13428    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13429    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13430    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13431
13432    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13433                                     StackPtr, OffsetVal);
13434
13435    // Load the scalar.
13436    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13437                                     ScalarAddr, MachinePointerInfo(),
13438                                     false, false, false, 0);
13439
13440    // Replace the exact with the load.
13441    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13442  }
13443
13444  // The replacement was made in place; don't return anything.
13445  return SDValue();
13446}
13447
13448/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13449/// nodes.
13450static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13451                                    TargetLowering::DAGCombinerInfo &DCI,
13452                                    const X86Subtarget *Subtarget) {
13453  DebugLoc DL = N->getDebugLoc();
13454  SDValue Cond = N->getOperand(0);
13455  // Get the LHS/RHS of the select.
13456  SDValue LHS = N->getOperand(1);
13457  SDValue RHS = N->getOperand(2);
13458  EVT VT = LHS.getValueType();
13459
13460  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13461  // instructions match the semantics of the common C idiom x<y?x:y but not
13462  // x<=y?x:y, because of how they handle negative zero (which can be
13463  // ignored in unsafe-math mode).
13464  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13465      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13466      (Subtarget->hasSSE2() ||
13467       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13468    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13469
13470    unsigned Opcode = 0;
13471    // Check for x CC y ? x : y.
13472    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13473        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13474      switch (CC) {
13475      default: break;
13476      case ISD::SETULT:
13477        // Converting this to a min would handle NaNs incorrectly, and swapping
13478        // the operands would cause it to handle comparisons between positive
13479        // and negative zero incorrectly.
13480        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13481          if (!DAG.getTarget().Options.UnsafeFPMath &&
13482              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13483            break;
13484          std::swap(LHS, RHS);
13485        }
13486        Opcode = X86ISD::FMIN;
13487        break;
13488      case ISD::SETOLE:
13489        // Converting this to a min would handle comparisons between positive
13490        // and negative zero incorrectly.
13491        if (!DAG.getTarget().Options.UnsafeFPMath &&
13492            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13493          break;
13494        Opcode = X86ISD::FMIN;
13495        break;
13496      case ISD::SETULE:
13497        // Converting this to a min would handle both negative zeros and NaNs
13498        // incorrectly, but we can swap the operands to fix both.
13499        std::swap(LHS, RHS);
13500      case ISD::SETOLT:
13501      case ISD::SETLT:
13502      case ISD::SETLE:
13503        Opcode = X86ISD::FMIN;
13504        break;
13505
13506      case ISD::SETOGE:
13507        // Converting this to a max would handle comparisons between positive
13508        // and negative zero incorrectly.
13509        if (!DAG.getTarget().Options.UnsafeFPMath &&
13510            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13511          break;
13512        Opcode = X86ISD::FMAX;
13513        break;
13514      case ISD::SETUGT:
13515        // Converting this to a max would handle NaNs incorrectly, and swapping
13516        // the operands would cause it to handle comparisons between positive
13517        // and negative zero incorrectly.
13518        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13519          if (!DAG.getTarget().Options.UnsafeFPMath &&
13520              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13521            break;
13522          std::swap(LHS, RHS);
13523        }
13524        Opcode = X86ISD::FMAX;
13525        break;
13526      case ISD::SETUGE:
13527        // Converting this to a max would handle both negative zeros and NaNs
13528        // incorrectly, but we can swap the operands to fix both.
13529        std::swap(LHS, RHS);
13530      case ISD::SETOGT:
13531      case ISD::SETGT:
13532      case ISD::SETGE:
13533        Opcode = X86ISD::FMAX;
13534        break;
13535      }
13536    // Check for x CC y ? y : x -- a min/max with reversed arms.
13537    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13538               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13539      switch (CC) {
13540      default: break;
13541      case ISD::SETOGE:
13542        // Converting this to a min would handle comparisons between positive
13543        // and negative zero incorrectly, and swapping the operands would
13544        // cause it to handle NaNs incorrectly.
13545        if (!DAG.getTarget().Options.UnsafeFPMath &&
13546            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13547          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13548            break;
13549          std::swap(LHS, RHS);
13550        }
13551        Opcode = X86ISD::FMIN;
13552        break;
13553      case ISD::SETUGT:
13554        // Converting this to a min would handle NaNs incorrectly.
13555        if (!DAG.getTarget().Options.UnsafeFPMath &&
13556            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13557          break;
13558        Opcode = X86ISD::FMIN;
13559        break;
13560      case ISD::SETUGE:
13561        // Converting this to a min would handle both negative zeros and NaNs
13562        // incorrectly, but we can swap the operands to fix both.
13563        std::swap(LHS, RHS);
13564      case ISD::SETOGT:
13565      case ISD::SETGT:
13566      case ISD::SETGE:
13567        Opcode = X86ISD::FMIN;
13568        break;
13569
13570      case ISD::SETULT:
13571        // Converting this to a max would handle NaNs incorrectly.
13572        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13573          break;
13574        Opcode = X86ISD::FMAX;
13575        break;
13576      case ISD::SETOLE:
13577        // Converting this to a max would handle comparisons between positive
13578        // and negative zero incorrectly, and swapping the operands would
13579        // cause it to handle NaNs incorrectly.
13580        if (!DAG.getTarget().Options.UnsafeFPMath &&
13581            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13582          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13583            break;
13584          std::swap(LHS, RHS);
13585        }
13586        Opcode = X86ISD::FMAX;
13587        break;
13588      case ISD::SETULE:
13589        // Converting this to a max would handle both negative zeros and NaNs
13590        // incorrectly, but we can swap the operands to fix both.
13591        std::swap(LHS, RHS);
13592      case ISD::SETOLT:
13593      case ISD::SETLT:
13594      case ISD::SETLE:
13595        Opcode = X86ISD::FMAX;
13596        break;
13597      }
13598    }
13599
13600    if (Opcode)
13601      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13602  }
13603
13604  // If this is a select between two integer constants, try to do some
13605  // optimizations.
13606  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13607    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13608      // Don't do this for crazy integer types.
13609      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13610        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13611        // so that TrueC (the true value) is larger than FalseC.
13612        bool NeedsCondInvert = false;
13613
13614        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13615            // Efficiently invertible.
13616            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13617             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13618              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13619          NeedsCondInvert = true;
13620          std::swap(TrueC, FalseC);
13621        }
13622
13623        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13624        if (FalseC->getAPIntValue() == 0 &&
13625            TrueC->getAPIntValue().isPowerOf2()) {
13626          if (NeedsCondInvert) // Invert the condition if needed.
13627            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13628                               DAG.getConstant(1, Cond.getValueType()));
13629
13630          // Zero extend the condition if needed.
13631          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13632
13633          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13634          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13635                             DAG.getConstant(ShAmt, MVT::i8));
13636        }
13637
13638        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13639        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13640          if (NeedsCondInvert) // Invert the condition if needed.
13641            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13642                               DAG.getConstant(1, Cond.getValueType()));
13643
13644          // Zero extend the condition if needed.
13645          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13646                             FalseC->getValueType(0), Cond);
13647          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13648                             SDValue(FalseC, 0));
13649        }
13650
13651        // Optimize cases that will turn into an LEA instruction.  This requires
13652        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13653        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13654          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13655          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13656
13657          bool isFastMultiplier = false;
13658          if (Diff < 10) {
13659            switch ((unsigned char)Diff) {
13660              default: break;
13661              case 1:  // result = add base, cond
13662              case 2:  // result = lea base(    , cond*2)
13663              case 3:  // result = lea base(cond, cond*2)
13664              case 4:  // result = lea base(    , cond*4)
13665              case 5:  // result = lea base(cond, cond*4)
13666              case 8:  // result = lea base(    , cond*8)
13667              case 9:  // result = lea base(cond, cond*8)
13668                isFastMultiplier = true;
13669                break;
13670            }
13671          }
13672
13673          if (isFastMultiplier) {
13674            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13675            if (NeedsCondInvert) // Invert the condition if needed.
13676              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13677                                 DAG.getConstant(1, Cond.getValueType()));
13678
13679            // Zero extend the condition if needed.
13680            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13681                               Cond);
13682            // Scale the condition by the difference.
13683            if (Diff != 1)
13684              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13685                                 DAG.getConstant(Diff, Cond.getValueType()));
13686
13687            // Add the base if non-zero.
13688            if (FalseC->getAPIntValue() != 0)
13689              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13690                                 SDValue(FalseC, 0));
13691            return Cond;
13692          }
13693        }
13694      }
13695  }
13696
13697  // Canonicalize max and min:
13698  // (x > y) ? x : y -> (x >= y) ? x : y
13699  // (x < y) ? x : y -> (x <= y) ? x : y
13700  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13701  // the need for an extra compare
13702  // against zero. e.g.
13703  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13704  // subl   %esi, %edi
13705  // testl  %edi, %edi
13706  // movl   $0, %eax
13707  // cmovgl %edi, %eax
13708  // =>
13709  // xorl   %eax, %eax
13710  // subl   %esi, $edi
13711  // cmovsl %eax, %edi
13712  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13713      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13714      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13715    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13716    switch (CC) {
13717    default: break;
13718    case ISD::SETLT:
13719    case ISD::SETGT: {
13720      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13721      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13722                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13723      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13724    }
13725    }
13726  }
13727
13728  // If we know that this node is legal then we know that it is going to be
13729  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13730  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13731  // to simplify previous instructions.
13732  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13733  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13734      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
13735    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13736
13737    // Don't optimize vector selects that map to mask-registers.
13738    if (BitWidth == 1)
13739      return SDValue();
13740
13741    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13742    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13743
13744    APInt KnownZero, KnownOne;
13745    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13746                                          DCI.isBeforeLegalizeOps());
13747    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13748        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13749      DCI.CommitTargetLoweringOpt(TLO);
13750  }
13751
13752  return SDValue();
13753}
13754
13755/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13756static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13757                                  TargetLowering::DAGCombinerInfo &DCI) {
13758  DebugLoc DL = N->getDebugLoc();
13759
13760  // If the flag operand isn't dead, don't touch this CMOV.
13761  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13762    return SDValue();
13763
13764  SDValue FalseOp = N->getOperand(0);
13765  SDValue TrueOp = N->getOperand(1);
13766  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13767  SDValue Cond = N->getOperand(3);
13768  if (CC == X86::COND_E || CC == X86::COND_NE) {
13769    switch (Cond.getOpcode()) {
13770    default: break;
13771    case X86ISD::BSR:
13772    case X86ISD::BSF:
13773      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13774      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13775        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13776    }
13777  }
13778
13779  // If this is a select between two integer constants, try to do some
13780  // optimizations.  Note that the operands are ordered the opposite of SELECT
13781  // operands.
13782  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13783    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13784      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13785      // larger than FalseC (the false value).
13786      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13787        CC = X86::GetOppositeBranchCondition(CC);
13788        std::swap(TrueC, FalseC);
13789      }
13790
13791      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13792      // This is efficient for any integer data type (including i8/i16) and
13793      // shift amount.
13794      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13795        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13796                           DAG.getConstant(CC, MVT::i8), Cond);
13797
13798        // Zero extend the condition if needed.
13799        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13800
13801        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13802        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13803                           DAG.getConstant(ShAmt, MVT::i8));
13804        if (N->getNumValues() == 2)  // Dead flag value?
13805          return DCI.CombineTo(N, Cond, SDValue());
13806        return Cond;
13807      }
13808
13809      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13810      // for any integer data type, including i8/i16.
13811      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13812        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13813                           DAG.getConstant(CC, MVT::i8), Cond);
13814
13815        // Zero extend the condition if needed.
13816        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13817                           FalseC->getValueType(0), Cond);
13818        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13819                           SDValue(FalseC, 0));
13820
13821        if (N->getNumValues() == 2)  // Dead flag value?
13822          return DCI.CombineTo(N, Cond, SDValue());
13823        return Cond;
13824      }
13825
13826      // Optimize cases that will turn into an LEA instruction.  This requires
13827      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13828      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13829        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13830        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13831
13832        bool isFastMultiplier = false;
13833        if (Diff < 10) {
13834          switch ((unsigned char)Diff) {
13835          default: break;
13836          case 1:  // result = add base, cond
13837          case 2:  // result = lea base(    , cond*2)
13838          case 3:  // result = lea base(cond, cond*2)
13839          case 4:  // result = lea base(    , cond*4)
13840          case 5:  // result = lea base(cond, cond*4)
13841          case 8:  // result = lea base(    , cond*8)
13842          case 9:  // result = lea base(cond, cond*8)
13843            isFastMultiplier = true;
13844            break;
13845          }
13846        }
13847
13848        if (isFastMultiplier) {
13849          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13850          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13851                             DAG.getConstant(CC, MVT::i8), Cond);
13852          // Zero extend the condition if needed.
13853          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13854                             Cond);
13855          // Scale the condition by the difference.
13856          if (Diff != 1)
13857            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13858                               DAG.getConstant(Diff, Cond.getValueType()));
13859
13860          // Add the base if non-zero.
13861          if (FalseC->getAPIntValue() != 0)
13862            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13863                               SDValue(FalseC, 0));
13864          if (N->getNumValues() == 2)  // Dead flag value?
13865            return DCI.CombineTo(N, Cond, SDValue());
13866          return Cond;
13867        }
13868      }
13869    }
13870  }
13871  return SDValue();
13872}
13873
13874
13875/// PerformMulCombine - Optimize a single multiply with constant into two
13876/// in order to implement it with two cheaper instructions, e.g.
13877/// LEA + SHL, LEA + LEA.
13878static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13879                                 TargetLowering::DAGCombinerInfo &DCI) {
13880  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13881    return SDValue();
13882
13883  EVT VT = N->getValueType(0);
13884  if (VT != MVT::i64)
13885    return SDValue();
13886
13887  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13888  if (!C)
13889    return SDValue();
13890  uint64_t MulAmt = C->getZExtValue();
13891  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13892    return SDValue();
13893
13894  uint64_t MulAmt1 = 0;
13895  uint64_t MulAmt2 = 0;
13896  if ((MulAmt % 9) == 0) {
13897    MulAmt1 = 9;
13898    MulAmt2 = MulAmt / 9;
13899  } else if ((MulAmt % 5) == 0) {
13900    MulAmt1 = 5;
13901    MulAmt2 = MulAmt / 5;
13902  } else if ((MulAmt % 3) == 0) {
13903    MulAmt1 = 3;
13904    MulAmt2 = MulAmt / 3;
13905  }
13906  if (MulAmt2 &&
13907      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13908    DebugLoc DL = N->getDebugLoc();
13909
13910    if (isPowerOf2_64(MulAmt2) &&
13911        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13912      // If second multiplifer is pow2, issue it first. We want the multiply by
13913      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13914      // is an add.
13915      std::swap(MulAmt1, MulAmt2);
13916
13917    SDValue NewMul;
13918    if (isPowerOf2_64(MulAmt1))
13919      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13920                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13921    else
13922      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13923                           DAG.getConstant(MulAmt1, VT));
13924
13925    if (isPowerOf2_64(MulAmt2))
13926      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13927                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13928    else
13929      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13930                           DAG.getConstant(MulAmt2, VT));
13931
13932    // Do not add new nodes to DAG combiner worklist.
13933    DCI.CombineTo(N, NewMul, false);
13934  }
13935  return SDValue();
13936}
13937
13938static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13939  SDValue N0 = N->getOperand(0);
13940  SDValue N1 = N->getOperand(1);
13941  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13942  EVT VT = N0.getValueType();
13943
13944  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13945  // since the result of setcc_c is all zero's or all ones.
13946  if (VT.isInteger() && !VT.isVector() &&
13947      N1C && N0.getOpcode() == ISD::AND &&
13948      N0.getOperand(1).getOpcode() == ISD::Constant) {
13949    SDValue N00 = N0.getOperand(0);
13950    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13951        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13952          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13953         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13954      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13955      APInt ShAmt = N1C->getAPIntValue();
13956      Mask = Mask.shl(ShAmt);
13957      if (Mask != 0)
13958        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13959                           N00, DAG.getConstant(Mask, VT));
13960    }
13961  }
13962
13963
13964  // Hardware support for vector shifts is sparse which makes us scalarize the
13965  // vector operations in many cases. Also, on sandybridge ADD is faster than
13966  // shl.
13967  // (shl V, 1) -> add V,V
13968  if (isSplatVector(N1.getNode())) {
13969    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13970    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13971    // We shift all of the values by one. In many cases we do not have
13972    // hardware support for this operation. This is better expressed as an ADD
13973    // of two values.
13974    if (N1C && (1 == N1C->getZExtValue())) {
13975      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13976    }
13977  }
13978
13979  return SDValue();
13980}
13981
13982/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13983///                       when possible.
13984static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13985                                   TargetLowering::DAGCombinerInfo &DCI,
13986                                   const X86Subtarget *Subtarget) {
13987  EVT VT = N->getValueType(0);
13988  if (N->getOpcode() == ISD::SHL) {
13989    SDValue V = PerformSHLCombine(N, DAG);
13990    if (V.getNode()) return V;
13991  }
13992
13993  // On X86 with SSE2 support, we can transform this to a vector shift if
13994  // all elements are shifted by the same amount.  We can't do this in legalize
13995  // because the a constant vector is typically transformed to a constant pool
13996  // so we have no knowledge of the shift amount.
13997  if (!Subtarget->hasSSE2())
13998    return SDValue();
13999
14000  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
14001      (!Subtarget->hasAVX2() ||
14002       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
14003    return SDValue();
14004
14005  SDValue ShAmtOp = N->getOperand(1);
14006  EVT EltVT = VT.getVectorElementType();
14007  DebugLoc DL = N->getDebugLoc();
14008  SDValue BaseShAmt = SDValue();
14009  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
14010    unsigned NumElts = VT.getVectorNumElements();
14011    unsigned i = 0;
14012    for (; i != NumElts; ++i) {
14013      SDValue Arg = ShAmtOp.getOperand(i);
14014      if (Arg.getOpcode() == ISD::UNDEF) continue;
14015      BaseShAmt = Arg;
14016      break;
14017    }
14018    // Handle the case where the build_vector is all undef
14019    // FIXME: Should DAG allow this?
14020    if (i == NumElts)
14021      return SDValue();
14022
14023    for (; i != NumElts; ++i) {
14024      SDValue Arg = ShAmtOp.getOperand(i);
14025      if (Arg.getOpcode() == ISD::UNDEF) continue;
14026      if (Arg != BaseShAmt) {
14027        return SDValue();
14028      }
14029    }
14030  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
14031             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
14032    SDValue InVec = ShAmtOp.getOperand(0);
14033    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
14034      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14035      unsigned i = 0;
14036      for (; i != NumElts; ++i) {
14037        SDValue Arg = InVec.getOperand(i);
14038        if (Arg.getOpcode() == ISD::UNDEF) continue;
14039        BaseShAmt = Arg;
14040        break;
14041      }
14042    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14043       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14044         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14045         if (C->getZExtValue() == SplatIdx)
14046           BaseShAmt = InVec.getOperand(1);
14047       }
14048    }
14049    if (BaseShAmt.getNode() == 0) {
14050      // Don't create instructions with illegal types after legalize
14051      // types has run.
14052      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14053          !DCI.isBeforeLegalize())
14054        return SDValue();
14055
14056      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14057                              DAG.getIntPtrConstant(0));
14058    }
14059  } else
14060    return SDValue();
14061
14062  // The shift amount is an i32.
14063  if (EltVT.bitsGT(MVT::i32))
14064    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14065  else if (EltVT.bitsLT(MVT::i32))
14066    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14067
14068  // The shift amount is identical so we can do a vector shift.
14069  SDValue  ValOp = N->getOperand(0);
14070  switch (N->getOpcode()) {
14071  default:
14072    llvm_unreachable("Unknown shift opcode!");
14073  case ISD::SHL:
14074    switch (VT.getSimpleVT().SimpleTy) {
14075    default: return SDValue();
14076    case MVT::v2i64:
14077    case MVT::v4i32:
14078    case MVT::v8i16:
14079    case MVT::v4i64:
14080    case MVT::v8i32:
14081    case MVT::v16i16:
14082      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14083    }
14084  case ISD::SRA:
14085    switch (VT.getSimpleVT().SimpleTy) {
14086    default: return SDValue();
14087    case MVT::v4i32:
14088    case MVT::v8i16:
14089    case MVT::v8i32:
14090    case MVT::v16i16:
14091      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14092    }
14093  case ISD::SRL:
14094    switch (VT.getSimpleVT().SimpleTy) {
14095    default: return SDValue();
14096    case MVT::v2i64:
14097    case MVT::v4i32:
14098    case MVT::v8i16:
14099    case MVT::v4i64:
14100    case MVT::v8i32:
14101    case MVT::v16i16:
14102      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14103    }
14104  }
14105}
14106
14107
14108// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14109// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14110// and friends.  Likewise for OR -> CMPNEQSS.
14111static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14112                            TargetLowering::DAGCombinerInfo &DCI,
14113                            const X86Subtarget *Subtarget) {
14114  unsigned opcode;
14115
14116  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14117  // we're requiring SSE2 for both.
14118  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14119    SDValue N0 = N->getOperand(0);
14120    SDValue N1 = N->getOperand(1);
14121    SDValue CMP0 = N0->getOperand(1);
14122    SDValue CMP1 = N1->getOperand(1);
14123    DebugLoc DL = N->getDebugLoc();
14124
14125    // The SETCCs should both refer to the same CMP.
14126    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14127      return SDValue();
14128
14129    SDValue CMP00 = CMP0->getOperand(0);
14130    SDValue CMP01 = CMP0->getOperand(1);
14131    EVT     VT    = CMP00.getValueType();
14132
14133    if (VT == MVT::f32 || VT == MVT::f64) {
14134      bool ExpectingFlags = false;
14135      // Check for any users that want flags:
14136      for (SDNode::use_iterator UI = N->use_begin(),
14137             UE = N->use_end();
14138           !ExpectingFlags && UI != UE; ++UI)
14139        switch (UI->getOpcode()) {
14140        default:
14141        case ISD::BR_CC:
14142        case ISD::BRCOND:
14143        case ISD::SELECT:
14144          ExpectingFlags = true;
14145          break;
14146        case ISD::CopyToReg:
14147        case ISD::SIGN_EXTEND:
14148        case ISD::ZERO_EXTEND:
14149        case ISD::ANY_EXTEND:
14150          break;
14151        }
14152
14153      if (!ExpectingFlags) {
14154        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14155        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14156
14157        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14158          X86::CondCode tmp = cc0;
14159          cc0 = cc1;
14160          cc1 = tmp;
14161        }
14162
14163        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14164            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14165          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14166          X86ISD::NodeType NTOperator = is64BitFP ?
14167            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14168          // FIXME: need symbolic constants for these magic numbers.
14169          // See X86ATTInstPrinter.cpp:printSSECC().
14170          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14171          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14172                                              DAG.getConstant(x86cc, MVT::i8));
14173          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14174                                              OnesOrZeroesF);
14175          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14176                                      DAG.getConstant(1, MVT::i32));
14177          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14178          return OneBitOfTruth;
14179        }
14180      }
14181    }
14182  }
14183  return SDValue();
14184}
14185
14186/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14187/// so it can be folded inside ANDNP.
14188static bool CanFoldXORWithAllOnes(const SDNode *N) {
14189  EVT VT = N->getValueType(0);
14190
14191  // Match direct AllOnes for 128 and 256-bit vectors
14192  if (ISD::isBuildVectorAllOnes(N))
14193    return true;
14194
14195  // Look through a bit convert.
14196  if (N->getOpcode() == ISD::BITCAST)
14197    N = N->getOperand(0).getNode();
14198
14199  // Sometimes the operand may come from a insert_subvector building a 256-bit
14200  // allones vector
14201  if (VT.getSizeInBits() == 256 &&
14202      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14203    SDValue V1 = N->getOperand(0);
14204    SDValue V2 = N->getOperand(1);
14205
14206    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14207        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14208        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14209        ISD::isBuildVectorAllOnes(V2.getNode()))
14210      return true;
14211  }
14212
14213  return false;
14214}
14215
14216static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14217                                 TargetLowering::DAGCombinerInfo &DCI,
14218                                 const X86Subtarget *Subtarget) {
14219  if (DCI.isBeforeLegalizeOps())
14220    return SDValue();
14221
14222  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14223  if (R.getNode())
14224    return R;
14225
14226  EVT VT = N->getValueType(0);
14227
14228  // Create ANDN, BLSI, and BLSR instructions
14229  // BLSI is X & (-X)
14230  // BLSR is X & (X-1)
14231  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14232    SDValue N0 = N->getOperand(0);
14233    SDValue N1 = N->getOperand(1);
14234    DebugLoc DL = N->getDebugLoc();
14235
14236    // Check LHS for not
14237    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14238      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14239    // Check RHS for not
14240    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14241      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14242
14243    // Check LHS for neg
14244    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14245        isZero(N0.getOperand(0)))
14246      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14247
14248    // Check RHS for neg
14249    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14250        isZero(N1.getOperand(0)))
14251      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14252
14253    // Check LHS for X-1
14254    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14255        isAllOnes(N0.getOperand(1)))
14256      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14257
14258    // Check RHS for X-1
14259    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14260        isAllOnes(N1.getOperand(1)))
14261      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14262
14263    return SDValue();
14264  }
14265
14266  // Want to form ANDNP nodes:
14267  // 1) In the hopes of then easily combining them with OR and AND nodes
14268  //    to form PBLEND/PSIGN.
14269  // 2) To match ANDN packed intrinsics
14270  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14271    return SDValue();
14272
14273  SDValue N0 = N->getOperand(0);
14274  SDValue N1 = N->getOperand(1);
14275  DebugLoc DL = N->getDebugLoc();
14276
14277  // Check LHS for vnot
14278  if (N0.getOpcode() == ISD::XOR &&
14279      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14280      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14281    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14282
14283  // Check RHS for vnot
14284  if (N1.getOpcode() == ISD::XOR &&
14285      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14286      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14287    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14288
14289  return SDValue();
14290}
14291
14292static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14293                                TargetLowering::DAGCombinerInfo &DCI,
14294                                const X86Subtarget *Subtarget) {
14295  if (DCI.isBeforeLegalizeOps())
14296    return SDValue();
14297
14298  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14299  if (R.getNode())
14300    return R;
14301
14302  EVT VT = N->getValueType(0);
14303
14304  SDValue N0 = N->getOperand(0);
14305  SDValue N1 = N->getOperand(1);
14306
14307  // look for psign/blend
14308  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14309    if (!Subtarget->hasSSSE3() ||
14310        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14311      return SDValue();
14312
14313    // Canonicalize pandn to RHS
14314    if (N0.getOpcode() == X86ISD::ANDNP)
14315      std::swap(N0, N1);
14316    // or (and (m, y), (pandn m, x))
14317    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14318      SDValue Mask = N1.getOperand(0);
14319      SDValue X    = N1.getOperand(1);
14320      SDValue Y;
14321      if (N0.getOperand(0) == Mask)
14322        Y = N0.getOperand(1);
14323      if (N0.getOperand(1) == Mask)
14324        Y = N0.getOperand(0);
14325
14326      // Check to see if the mask appeared in both the AND and ANDNP and
14327      if (!Y.getNode())
14328        return SDValue();
14329
14330      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14331      // Look through mask bitcast.
14332      if (Mask.getOpcode() == ISD::BITCAST)
14333        Mask = Mask.getOperand(0);
14334      if (X.getOpcode() == ISD::BITCAST)
14335        X = X.getOperand(0);
14336      if (Y.getOpcode() == ISD::BITCAST)
14337        Y = Y.getOperand(0);
14338
14339      EVT MaskVT = Mask.getValueType();
14340
14341      // Validate that the Mask operand is a vector sra node.
14342      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14343      // there is no psrai.b
14344      if (Mask.getOpcode() != X86ISD::VSRAI)
14345        return SDValue();
14346
14347      // Check that the SRA is all signbits.
14348      SDValue SraC = Mask.getOperand(1);
14349      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14350      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14351      if ((SraAmt + 1) != EltBits)
14352        return SDValue();
14353
14354      DebugLoc DL = N->getDebugLoc();
14355
14356      // Now we know we at least have a plendvb with the mask val.  See if
14357      // we can form a psignb/w/d.
14358      // psign = x.type == y.type == mask.type && y = sub(0, x);
14359      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14360          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14361          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14362        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14363               "Unsupported VT for PSIGN");
14364        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14365        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14366      }
14367      // PBLENDVB only available on SSE 4.1
14368      if (!Subtarget->hasSSE41())
14369        return SDValue();
14370
14371      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14372
14373      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14374      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14375      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14376      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14377      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14378    }
14379  }
14380
14381  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14382    return SDValue();
14383
14384  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14385  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14386    std::swap(N0, N1);
14387  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14388    return SDValue();
14389  if (!N0.hasOneUse() || !N1.hasOneUse())
14390    return SDValue();
14391
14392  SDValue ShAmt0 = N0.getOperand(1);
14393  if (ShAmt0.getValueType() != MVT::i8)
14394    return SDValue();
14395  SDValue ShAmt1 = N1.getOperand(1);
14396  if (ShAmt1.getValueType() != MVT::i8)
14397    return SDValue();
14398  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14399    ShAmt0 = ShAmt0.getOperand(0);
14400  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14401    ShAmt1 = ShAmt1.getOperand(0);
14402
14403  DebugLoc DL = N->getDebugLoc();
14404  unsigned Opc = X86ISD::SHLD;
14405  SDValue Op0 = N0.getOperand(0);
14406  SDValue Op1 = N1.getOperand(0);
14407  if (ShAmt0.getOpcode() == ISD::SUB) {
14408    Opc = X86ISD::SHRD;
14409    std::swap(Op0, Op1);
14410    std::swap(ShAmt0, ShAmt1);
14411  }
14412
14413  unsigned Bits = VT.getSizeInBits();
14414  if (ShAmt1.getOpcode() == ISD::SUB) {
14415    SDValue Sum = ShAmt1.getOperand(0);
14416    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14417      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14418      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14419        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14420      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14421        return DAG.getNode(Opc, DL, VT,
14422                           Op0, Op1,
14423                           DAG.getNode(ISD::TRUNCATE, DL,
14424                                       MVT::i8, ShAmt0));
14425    }
14426  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14427    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14428    if (ShAmt0C &&
14429        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14430      return DAG.getNode(Opc, DL, VT,
14431                         N0.getOperand(0), N1.getOperand(0),
14432                         DAG.getNode(ISD::TRUNCATE, DL,
14433                                       MVT::i8, ShAmt0));
14434  }
14435
14436  return SDValue();
14437}
14438
14439// Generate NEG and CMOV for integer abs.
14440static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
14441  EVT VT = N->getValueType(0);
14442
14443  // Since X86 does not have CMOV for 8-bit integer, we don't convert
14444  // 8-bit integer abs to NEG and CMOV.
14445  if (VT.isInteger() && VT.getSizeInBits() == 8)
14446    return SDValue();
14447
14448  SDValue N0 = N->getOperand(0);
14449  SDValue N1 = N->getOperand(1);
14450  DebugLoc DL = N->getDebugLoc();
14451
14452  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
14453  // and change it to SUB and CMOV.
14454  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
14455      N0.getOpcode() == ISD::ADD &&
14456      N0.getOperand(1) == N1 &&
14457      N1.getOpcode() == ISD::SRA &&
14458      N1.getOperand(0) == N0.getOperand(0))
14459    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
14460      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
14461        // Generate SUB & CMOV.
14462        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
14463                                  DAG.getConstant(0, VT), N0.getOperand(0));
14464
14465        SDValue Ops[] = { N0.getOperand(0), Neg,
14466                          DAG.getConstant(X86::COND_GE, MVT::i8),
14467                          SDValue(Neg.getNode(), 1) };
14468        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
14469                           Ops, array_lengthof(Ops));
14470      }
14471  return SDValue();
14472}
14473
14474// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14475static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14476                                 TargetLowering::DAGCombinerInfo &DCI,
14477                                 const X86Subtarget *Subtarget) {
14478  if (DCI.isBeforeLegalizeOps())
14479    return SDValue();
14480
14481  if (Subtarget->hasCMov()) {
14482    SDValue RV = performIntegerAbsCombine(N, DAG);
14483    if (RV.getNode())
14484      return RV;
14485  }
14486
14487  // Try forming BMI if it is available.
14488  if (!Subtarget->hasBMI())
14489    return SDValue();
14490
14491  EVT VT = N->getValueType(0);
14492
14493  if (VT != MVT::i32 && VT != MVT::i64)
14494    return SDValue();
14495
14496  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14497
14498  // Create BLSMSK instructions by finding X ^ (X-1)
14499  SDValue N0 = N->getOperand(0);
14500  SDValue N1 = N->getOperand(1);
14501  DebugLoc DL = N->getDebugLoc();
14502
14503  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14504      isAllOnes(N0.getOperand(1)))
14505    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14506
14507  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14508      isAllOnes(N1.getOperand(1)))
14509    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14510
14511  return SDValue();
14512}
14513
14514/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14515static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14516                                  TargetLowering::DAGCombinerInfo &DCI,
14517                                  const X86Subtarget *Subtarget) {
14518  LoadSDNode *Ld = cast<LoadSDNode>(N);
14519  EVT RegVT = Ld->getValueType(0);
14520  EVT MemVT = Ld->getMemoryVT();
14521  DebugLoc dl = Ld->getDebugLoc();
14522  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14523
14524  ISD::LoadExtType Ext = Ld->getExtensionType();
14525
14526  // If this is a vector EXT Load then attempt to optimize it using a
14527  // shuffle. We need SSE4 for the shuffles.
14528  // TODO: It is possible to support ZExt by zeroing the undef values
14529  // during the shuffle phase or after the shuffle.
14530  if (RegVT.isVector() && RegVT.isInteger() &&
14531      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14532    assert(MemVT != RegVT && "Cannot extend to the same type");
14533    assert(MemVT.isVector() && "Must load a vector from memory");
14534
14535    unsigned NumElems = RegVT.getVectorNumElements();
14536    unsigned RegSz = RegVT.getSizeInBits();
14537    unsigned MemSz = MemVT.getSizeInBits();
14538    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14539
14540    // All sizes must be a power of two.
14541    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
14542      return SDValue();
14543
14544    // Attempt to load the original value using scalar loads.
14545    // Find the largest scalar type that divides the total loaded size.
14546    MVT SclrLoadTy = MVT::i8;
14547    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14548         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14549      MVT Tp = (MVT::SimpleValueType)tp;
14550      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
14551        SclrLoadTy = Tp;
14552      }
14553    }
14554
14555    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
14556    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
14557        (64 <= MemSz))
14558      SclrLoadTy = MVT::f64;
14559
14560    // Calculate the number of scalar loads that we need to perform
14561    // in order to load our vector from memory.
14562    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
14563
14564    // Represent our vector as a sequence of elements which are the
14565    // largest scalar that we can load.
14566    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14567      RegSz/SclrLoadTy.getSizeInBits());
14568
14569    // Represent the data using the same element type that is stored in
14570    // memory. In practice, we ''widen'' MemVT.
14571    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14572                                  RegSz/MemVT.getScalarType().getSizeInBits());
14573
14574    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
14575      "Invalid vector type");
14576
14577    // We can't shuffle using an illegal type.
14578    if (!TLI.isTypeLegal(WideVecVT))
14579      return SDValue();
14580
14581    SmallVector<SDValue, 8> Chains;
14582    SDValue Ptr = Ld->getBasePtr();
14583    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
14584                                        TLI.getPointerTy());
14585    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
14586
14587    for (unsigned i = 0; i < NumLoads; ++i) {
14588      // Perform a single load.
14589      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14590                                       Ptr, Ld->getPointerInfo(),
14591                                       Ld->isVolatile(), Ld->isNonTemporal(),
14592                                       Ld->isInvariant(), Ld->getAlignment());
14593      Chains.push_back(ScalarLoad.getValue(1));
14594      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
14595      // another round of DAGCombining.
14596      if (i == 0)
14597        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
14598      else
14599        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
14600                          ScalarLoad, DAG.getIntPtrConstant(i));
14601
14602      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14603    }
14604
14605    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14606                               Chains.size());
14607
14608    // Bitcast the loaded value to a vector of the original element type, in
14609    // the size of the target vector type.
14610    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
14611    unsigned SizeRatio = RegSz/MemSz;
14612
14613    // Redistribute the loaded elements into the different locations.
14614    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14615    for (unsigned i = 0; i != NumElems; ++i)
14616      ShuffleVec[i*SizeRatio] = i;
14617
14618    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14619                                         DAG.getUNDEF(WideVecVT),
14620                                         &ShuffleVec[0]);
14621
14622    // Bitcast to the requested type.
14623    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14624    // Replace the original load with the new sequence
14625    // and return the new chain.
14626    return DCI.CombineTo(N, Shuff, TF, true);
14627  }
14628
14629  return SDValue();
14630}
14631
14632/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14633static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14634                                   const X86Subtarget *Subtarget) {
14635  StoreSDNode *St = cast<StoreSDNode>(N);
14636  EVT VT = St->getValue().getValueType();
14637  EVT StVT = St->getMemoryVT();
14638  DebugLoc dl = St->getDebugLoc();
14639  SDValue StoredVal = St->getOperand(1);
14640  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14641
14642  // If we are saving a concatenation of two XMM registers, perform two stores.
14643  // On Sandy Bridge, 256-bit memory operations are executed by two
14644  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
14645  // memory  operation.
14646  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2() &&
14647      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14648      StoredVal.getNumOperands() == 2) {
14649    SDValue Value0 = StoredVal.getOperand(0);
14650    SDValue Value1 = StoredVal.getOperand(1);
14651
14652    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14653    SDValue Ptr0 = St->getBasePtr();
14654    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14655
14656    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14657                                St->getPointerInfo(), St->isVolatile(),
14658                                St->isNonTemporal(), St->getAlignment());
14659    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14660                                St->getPointerInfo(), St->isVolatile(),
14661                                St->isNonTemporal(), St->getAlignment());
14662    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14663  }
14664
14665  // Optimize trunc store (of multiple scalars) to shuffle and store.
14666  // First, pack all of the elements in one place. Next, store to memory
14667  // in fewer chunks.
14668  if (St->isTruncatingStore() && VT.isVector()) {
14669    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14670    unsigned NumElems = VT.getVectorNumElements();
14671    assert(StVT != VT && "Cannot truncate to the same type");
14672    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14673    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14674
14675    // From, To sizes and ElemCount must be pow of two
14676    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14677    // We are going to use the original vector elt for storing.
14678    // Accumulated smaller vector elements must be a multiple of the store size.
14679    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14680
14681    unsigned SizeRatio  = FromSz / ToSz;
14682
14683    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14684
14685    // Create a type on which we perform the shuffle
14686    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14687            StVT.getScalarType(), NumElems*SizeRatio);
14688
14689    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14690
14691    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14692    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14693    for (unsigned i = 0; i != NumElems; ++i)
14694      ShuffleVec[i] = i * SizeRatio;
14695
14696    // Can't shuffle using an illegal type.
14697    if (!TLI.isTypeLegal(WideVecVT))
14698      return SDValue();
14699
14700    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14701                                         DAG.getUNDEF(WideVecVT),
14702                                         &ShuffleVec[0]);
14703    // At this point all of the data is stored at the bottom of the
14704    // register. We now need to save it to mem.
14705
14706    // Find the largest store unit
14707    MVT StoreType = MVT::i8;
14708    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14709         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14710      MVT Tp = (MVT::SimpleValueType)tp;
14711      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
14712        StoreType = Tp;
14713    }
14714
14715    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
14716    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
14717        (64 <= NumElems * ToSz))
14718      StoreType = MVT::f64;
14719
14720    // Bitcast the original vector into a vector of store-size units
14721    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14722            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
14723    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14724    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14725    SmallVector<SDValue, 8> Chains;
14726    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14727                                        TLI.getPointerTy());
14728    SDValue Ptr = St->getBasePtr();
14729
14730    // Perform one or more big stores into memory.
14731    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
14732      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14733                                   StoreType, ShuffWide,
14734                                   DAG.getIntPtrConstant(i));
14735      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14736                                St->getPointerInfo(), St->isVolatile(),
14737                                St->isNonTemporal(), St->getAlignment());
14738      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14739      Chains.push_back(Ch);
14740    }
14741
14742    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14743                               Chains.size());
14744  }
14745
14746
14747  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14748  // the FP state in cases where an emms may be missing.
14749  // A preferable solution to the general problem is to figure out the right
14750  // places to insert EMMS.  This qualifies as a quick hack.
14751
14752  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14753  if (VT.getSizeInBits() != 64)
14754    return SDValue();
14755
14756  const Function *F = DAG.getMachineFunction().getFunction();
14757  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14758  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14759                     && Subtarget->hasSSE2();
14760  if ((VT.isVector() ||
14761       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14762      isa<LoadSDNode>(St->getValue()) &&
14763      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14764      St->getChain().hasOneUse() && !St->isVolatile()) {
14765    SDNode* LdVal = St->getValue().getNode();
14766    LoadSDNode *Ld = 0;
14767    int TokenFactorIndex = -1;
14768    SmallVector<SDValue, 8> Ops;
14769    SDNode* ChainVal = St->getChain().getNode();
14770    // Must be a store of a load.  We currently handle two cases:  the load
14771    // is a direct child, and it's under an intervening TokenFactor.  It is
14772    // possible to dig deeper under nested TokenFactors.
14773    if (ChainVal == LdVal)
14774      Ld = cast<LoadSDNode>(St->getChain());
14775    else if (St->getValue().hasOneUse() &&
14776             ChainVal->getOpcode() == ISD::TokenFactor) {
14777      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14778        if (ChainVal->getOperand(i).getNode() == LdVal) {
14779          TokenFactorIndex = i;
14780          Ld = cast<LoadSDNode>(St->getValue());
14781        } else
14782          Ops.push_back(ChainVal->getOperand(i));
14783      }
14784    }
14785
14786    if (!Ld || !ISD::isNormalLoad(Ld))
14787      return SDValue();
14788
14789    // If this is not the MMX case, i.e. we are just turning i64 load/store
14790    // into f64 load/store, avoid the transformation if there are multiple
14791    // uses of the loaded value.
14792    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14793      return SDValue();
14794
14795    DebugLoc LdDL = Ld->getDebugLoc();
14796    DebugLoc StDL = N->getDebugLoc();
14797    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14798    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14799    // pair instead.
14800    if (Subtarget->is64Bit() || F64IsLegal) {
14801      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14802      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14803                                  Ld->getPointerInfo(), Ld->isVolatile(),
14804                                  Ld->isNonTemporal(), Ld->isInvariant(),
14805                                  Ld->getAlignment());
14806      SDValue NewChain = NewLd.getValue(1);
14807      if (TokenFactorIndex != -1) {
14808        Ops.push_back(NewChain);
14809        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14810                               Ops.size());
14811      }
14812      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14813                          St->getPointerInfo(),
14814                          St->isVolatile(), St->isNonTemporal(),
14815                          St->getAlignment());
14816    }
14817
14818    // Otherwise, lower to two pairs of 32-bit loads / stores.
14819    SDValue LoAddr = Ld->getBasePtr();
14820    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14821                                 DAG.getConstant(4, MVT::i32));
14822
14823    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14824                               Ld->getPointerInfo(),
14825                               Ld->isVolatile(), Ld->isNonTemporal(),
14826                               Ld->isInvariant(), Ld->getAlignment());
14827    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14828                               Ld->getPointerInfo().getWithOffset(4),
14829                               Ld->isVolatile(), Ld->isNonTemporal(),
14830                               Ld->isInvariant(),
14831                               MinAlign(Ld->getAlignment(), 4));
14832
14833    SDValue NewChain = LoLd.getValue(1);
14834    if (TokenFactorIndex != -1) {
14835      Ops.push_back(LoLd);
14836      Ops.push_back(HiLd);
14837      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14838                             Ops.size());
14839    }
14840
14841    LoAddr = St->getBasePtr();
14842    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14843                         DAG.getConstant(4, MVT::i32));
14844
14845    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14846                                St->getPointerInfo(),
14847                                St->isVolatile(), St->isNonTemporal(),
14848                                St->getAlignment());
14849    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14850                                St->getPointerInfo().getWithOffset(4),
14851                                St->isVolatile(),
14852                                St->isNonTemporal(),
14853                                MinAlign(St->getAlignment(), 4));
14854    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14855  }
14856  return SDValue();
14857}
14858
14859/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14860/// and return the operands for the horizontal operation in LHS and RHS.  A
14861/// horizontal operation performs the binary operation on successive elements
14862/// of its first operand, then on successive elements of its second operand,
14863/// returning the resulting values in a vector.  For example, if
14864///   A = < float a0, float a1, float a2, float a3 >
14865/// and
14866///   B = < float b0, float b1, float b2, float b3 >
14867/// then the result of doing a horizontal operation on A and B is
14868///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14869/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14870/// A horizontal-op B, for some already available A and B, and if so then LHS is
14871/// set to A, RHS to B, and the routine returns 'true'.
14872/// Note that the binary operation should have the property that if one of the
14873/// operands is UNDEF then the result is UNDEF.
14874static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14875  // Look for the following pattern: if
14876  //   A = < float a0, float a1, float a2, float a3 >
14877  //   B = < float b0, float b1, float b2, float b3 >
14878  // and
14879  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14880  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14881  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14882  // which is A horizontal-op B.
14883
14884  // At least one of the operands should be a vector shuffle.
14885  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14886      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14887    return false;
14888
14889  EVT VT = LHS.getValueType();
14890
14891  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14892         "Unsupported vector type for horizontal add/sub");
14893
14894  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14895  // operate independently on 128-bit lanes.
14896  unsigned NumElts = VT.getVectorNumElements();
14897  unsigned NumLanes = VT.getSizeInBits()/128;
14898  unsigned NumLaneElts = NumElts / NumLanes;
14899  assert((NumLaneElts % 2 == 0) &&
14900         "Vector type should have an even number of elements in each lane");
14901  unsigned HalfLaneElts = NumLaneElts/2;
14902
14903  // View LHS in the form
14904  //   LHS = VECTOR_SHUFFLE A, B, LMask
14905  // If LHS is not a shuffle then pretend it is the shuffle
14906  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14907  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14908  // type VT.
14909  SDValue A, B;
14910  SmallVector<int, 16> LMask(NumElts);
14911  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14912    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14913      A = LHS.getOperand(0);
14914    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14915      B = LHS.getOperand(1);
14916    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14917    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14918  } else {
14919    if (LHS.getOpcode() != ISD::UNDEF)
14920      A = LHS;
14921    for (unsigned i = 0; i != NumElts; ++i)
14922      LMask[i] = i;
14923  }
14924
14925  // Likewise, view RHS in the form
14926  //   RHS = VECTOR_SHUFFLE C, D, RMask
14927  SDValue C, D;
14928  SmallVector<int, 16> RMask(NumElts);
14929  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14930    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14931      C = RHS.getOperand(0);
14932    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14933      D = RHS.getOperand(1);
14934    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14935    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14936  } else {
14937    if (RHS.getOpcode() != ISD::UNDEF)
14938      C = RHS;
14939    for (unsigned i = 0; i != NumElts; ++i)
14940      RMask[i] = i;
14941  }
14942
14943  // Check that the shuffles are both shuffling the same vectors.
14944  if (!(A == C && B == D) && !(A == D && B == C))
14945    return false;
14946
14947  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14948  if (!A.getNode() && !B.getNode())
14949    return false;
14950
14951  // If A and B occur in reverse order in RHS, then "swap" them (which means
14952  // rewriting the mask).
14953  if (A != C)
14954    CommuteVectorShuffleMask(RMask, NumElts);
14955
14956  // At this point LHS and RHS are equivalent to
14957  //   LHS = VECTOR_SHUFFLE A, B, LMask
14958  //   RHS = VECTOR_SHUFFLE A, B, RMask
14959  // Check that the masks correspond to performing a horizontal operation.
14960  for (unsigned i = 0; i != NumElts; ++i) {
14961    int LIdx = LMask[i], RIdx = RMask[i];
14962
14963    // Ignore any UNDEF components.
14964    if (LIdx < 0 || RIdx < 0 ||
14965        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14966        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14967      continue;
14968
14969    // Check that successive elements are being operated on.  If not, this is
14970    // not a horizontal operation.
14971    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14972    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14973    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14974    if (!(LIdx == Index && RIdx == Index + 1) &&
14975        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14976      return false;
14977  }
14978
14979  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14980  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14981  return true;
14982}
14983
14984/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14985static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14986                                  const X86Subtarget *Subtarget) {
14987  EVT VT = N->getValueType(0);
14988  SDValue LHS = N->getOperand(0);
14989  SDValue RHS = N->getOperand(1);
14990
14991  // Try to synthesize horizontal adds from adds of shuffles.
14992  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14993       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14994      isHorizontalBinOp(LHS, RHS, true))
14995    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14996  return SDValue();
14997}
14998
14999/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
15000static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
15001                                  const X86Subtarget *Subtarget) {
15002  EVT VT = N->getValueType(0);
15003  SDValue LHS = N->getOperand(0);
15004  SDValue RHS = N->getOperand(1);
15005
15006  // Try to synthesize horizontal subs from subs of shuffles.
15007  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15008       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15009      isHorizontalBinOp(LHS, RHS, false))
15010    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
15011  return SDValue();
15012}
15013
15014/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
15015/// X86ISD::FXOR nodes.
15016static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
15017  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
15018  // F[X]OR(0.0, x) -> x
15019  // F[X]OR(x, 0.0) -> x
15020  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15021    if (C->getValueAPF().isPosZero())
15022      return N->getOperand(1);
15023  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15024    if (C->getValueAPF().isPosZero())
15025      return N->getOperand(0);
15026  return SDValue();
15027}
15028
15029/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
15030static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
15031  // FAND(0.0, x) -> 0.0
15032  // FAND(x, 0.0) -> 0.0
15033  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15034    if (C->getValueAPF().isPosZero())
15035      return N->getOperand(0);
15036  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15037    if (C->getValueAPF().isPosZero())
15038      return N->getOperand(1);
15039  return SDValue();
15040}
15041
15042static SDValue PerformBTCombine(SDNode *N,
15043                                SelectionDAG &DAG,
15044                                TargetLowering::DAGCombinerInfo &DCI) {
15045  // BT ignores high bits in the bit index operand.
15046  SDValue Op1 = N->getOperand(1);
15047  if (Op1.hasOneUse()) {
15048    unsigned BitWidth = Op1.getValueSizeInBits();
15049    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
15050    APInt KnownZero, KnownOne;
15051    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
15052                                          !DCI.isBeforeLegalizeOps());
15053    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15054    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
15055        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
15056      DCI.CommitTargetLoweringOpt(TLO);
15057  }
15058  return SDValue();
15059}
15060
15061static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
15062  SDValue Op = N->getOperand(0);
15063  if (Op.getOpcode() == ISD::BITCAST)
15064    Op = Op.getOperand(0);
15065  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
15066  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
15067      VT.getVectorElementType().getSizeInBits() ==
15068      OpVT.getVectorElementType().getSizeInBits()) {
15069    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
15070  }
15071  return SDValue();
15072}
15073
15074static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
15075                                  TargetLowering::DAGCombinerInfo &DCI,
15076                                  const X86Subtarget *Subtarget) {
15077  if (!DCI.isBeforeLegalizeOps())
15078    return SDValue();
15079
15080  if (!Subtarget->hasAVX())
15081    return SDValue();
15082
15083  EVT VT = N->getValueType(0);
15084  SDValue Op = N->getOperand(0);
15085  EVT OpVT = Op.getValueType();
15086  DebugLoc dl = N->getDebugLoc();
15087
15088  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
15089      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
15090
15091    if (Subtarget->hasAVX2())
15092      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
15093
15094    // Optimize vectors in AVX mode
15095    // Sign extend  v8i16 to v8i32 and
15096    //              v4i32 to v4i64
15097    //
15098    // Divide input vector into two parts
15099    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
15100    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
15101    // concat the vectors to original VT
15102
15103    unsigned NumElems = OpVT.getVectorNumElements();
15104    SmallVector<int,8> ShufMask1(NumElems, -1);
15105    for (unsigned i = 0; i != NumElems/2; ++i)
15106      ShufMask1[i] = i;
15107
15108    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
15109                                        &ShufMask1[0]);
15110
15111    SmallVector<int,8> ShufMask2(NumElems, -1);
15112    for (unsigned i = 0; i != NumElems/2; ++i)
15113      ShufMask2[i] = i + NumElems/2;
15114
15115    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
15116                                        &ShufMask2[0]);
15117
15118    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15119                                  VT.getVectorNumElements()/2);
15120
15121    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15122    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15123
15124    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15125  }
15126  return SDValue();
15127}
15128
15129static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15130                                  TargetLowering::DAGCombinerInfo &DCI,
15131                                  const X86Subtarget *Subtarget) {
15132  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15133  //           (and (i32 x86isd::setcc_carry), 1)
15134  // This eliminates the zext. This transformation is necessary because
15135  // ISD::SETCC is always legalized to i8.
15136  DebugLoc dl = N->getDebugLoc();
15137  SDValue N0 = N->getOperand(0);
15138  EVT VT = N->getValueType(0);
15139  EVT OpVT = N0.getValueType();
15140
15141  if (N0.getOpcode() == ISD::AND &&
15142      N0.hasOneUse() &&
15143      N0.getOperand(0).hasOneUse()) {
15144    SDValue N00 = N0.getOperand(0);
15145    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15146      return SDValue();
15147    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15148    if (!C || C->getZExtValue() != 1)
15149      return SDValue();
15150    return DAG.getNode(ISD::AND, dl, VT,
15151                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15152                                   N00.getOperand(0), N00.getOperand(1)),
15153                       DAG.getConstant(1, VT));
15154  }
15155
15156  // Optimize vectors in AVX mode:
15157  //
15158  //   v8i16 -> v8i32
15159  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15160  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15161  //   Concat upper and lower parts.
15162  //
15163  //   v4i32 -> v4i64
15164  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15165  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15166  //   Concat upper and lower parts.
15167  //
15168  if (!DCI.isBeforeLegalizeOps())
15169    return SDValue();
15170
15171  if (!Subtarget->hasAVX())
15172    return SDValue();
15173
15174  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15175      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15176
15177    if (Subtarget->hasAVX2())
15178      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15179
15180    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15181    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15182    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15183
15184    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15185                               VT.getVectorNumElements()/2);
15186
15187    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15188    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15189
15190    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15191  }
15192
15193  return SDValue();
15194}
15195
15196// Optimize x == -y --> x+y == 0
15197//          x != -y --> x+y != 0
15198static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15199  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15200  SDValue LHS = N->getOperand(0);
15201  SDValue RHS = N->getOperand(1);
15202
15203  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15204    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15205      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15206        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15207                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15208        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15209                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15210      }
15211  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15212    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15213      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15214        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15215                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15216        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15217                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15218      }
15219  return SDValue();
15220}
15221
15222// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15223static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15224  unsigned X86CC = N->getConstantOperandVal(0);
15225  SDValue EFLAG = N->getOperand(1);
15226  DebugLoc DL = N->getDebugLoc();
15227
15228  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15229  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15230  // cases.
15231  if (X86CC == X86::COND_B)
15232    return DAG.getNode(ISD::AND, DL, MVT::i8,
15233                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15234                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
15235                       DAG.getConstant(1, MVT::i8));
15236
15237  return SDValue();
15238}
15239
15240static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
15241  SDValue Op0 = N->getOperand(0);
15242  EVT InVT = Op0->getValueType(0);
15243
15244  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
15245  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15246    DebugLoc dl = N->getDebugLoc();
15247    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15248    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
15249    // Notice that we use SINT_TO_FP because we know that the high bits
15250    // are zero and SINT_TO_FP is better supported by the hardware.
15251    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15252  }
15253
15254  return SDValue();
15255}
15256
15257static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
15258                                        const X86TargetLowering *XTLI) {
15259  SDValue Op0 = N->getOperand(0);
15260  EVT InVT = Op0->getValueType(0);
15261
15262  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
15263  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15264    DebugLoc dl = N->getDebugLoc();
15265    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15266    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
15267    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15268  }
15269
15270  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
15271  // a 32-bit target where SSE doesn't support i64->FP operations.
15272  if (Op0.getOpcode() == ISD::LOAD) {
15273    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
15274    EVT VT = Ld->getValueType(0);
15275    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
15276        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
15277        !XTLI->getSubtarget()->is64Bit() &&
15278        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
15279      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
15280                                          Ld->getChain(), Op0, DAG);
15281      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
15282      return FILDChain;
15283    }
15284  }
15285  return SDValue();
15286}
15287
15288static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
15289  EVT VT = N->getValueType(0);
15290
15291  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
15292  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
15293    DebugLoc dl = N->getDebugLoc();
15294    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15295    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
15296    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
15297  }
15298
15299  return SDValue();
15300}
15301
15302// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
15303static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
15304                                 X86TargetLowering::DAGCombinerInfo &DCI) {
15305  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
15306  // the result is either zero or one (depending on the input carry bit).
15307  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
15308  if (X86::isZeroNode(N->getOperand(0)) &&
15309      X86::isZeroNode(N->getOperand(1)) &&
15310      // We don't have a good way to replace an EFLAGS use, so only do this when
15311      // dead right now.
15312      SDValue(N, 1).use_empty()) {
15313    DebugLoc DL = N->getDebugLoc();
15314    EVT VT = N->getValueType(0);
15315    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
15316    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
15317                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
15318                                           DAG.getConstant(X86::COND_B,MVT::i8),
15319                                           N->getOperand(2)),
15320                               DAG.getConstant(1, VT));
15321    return DCI.CombineTo(N, Res1, CarryOut);
15322  }
15323
15324  return SDValue();
15325}
15326
15327// fold (add Y, (sete  X, 0)) -> adc  0, Y
15328//      (add Y, (setne X, 0)) -> sbb -1, Y
15329//      (sub (sete  X, 0), Y) -> sbb  0, Y
15330//      (sub (setne X, 0), Y) -> adc -1, Y
15331static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
15332  DebugLoc DL = N->getDebugLoc();
15333
15334  // Look through ZExts.
15335  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15336  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
15337    return SDValue();
15338
15339  SDValue SetCC = Ext.getOperand(0);
15340  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
15341    return SDValue();
15342
15343  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
15344  if (CC != X86::COND_E && CC != X86::COND_NE)
15345    return SDValue();
15346
15347  SDValue Cmp = SetCC.getOperand(1);
15348  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
15349      !X86::isZeroNode(Cmp.getOperand(1)) ||
15350      !Cmp.getOperand(0).getValueType().isInteger())
15351    return SDValue();
15352
15353  SDValue CmpOp0 = Cmp.getOperand(0);
15354  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
15355                               DAG.getConstant(1, CmpOp0.getValueType()));
15356
15357  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
15358  if (CC == X86::COND_NE)
15359    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
15360                       DL, OtherVal.getValueType(), OtherVal,
15361                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
15362  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
15363                     DL, OtherVal.getValueType(), OtherVal,
15364                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
15365}
15366
15367/// PerformADDCombine - Do target-specific dag combines on integer adds.
15368static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
15369                                 const X86Subtarget *Subtarget) {
15370  EVT VT = N->getValueType(0);
15371  SDValue Op0 = N->getOperand(0);
15372  SDValue Op1 = N->getOperand(1);
15373
15374  // Try to synthesize horizontal adds from adds of shuffles.
15375  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15376       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15377      isHorizontalBinOp(Op0, Op1, true))
15378    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
15379
15380  return OptimizeConditionalInDecrement(N, DAG);
15381}
15382
15383static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
15384                                 const X86Subtarget *Subtarget) {
15385  SDValue Op0 = N->getOperand(0);
15386  SDValue Op1 = N->getOperand(1);
15387
15388  // X86 can't encode an immediate LHS of a sub. See if we can push the
15389  // negation into a preceding instruction.
15390  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15391    // If the RHS of the sub is a XOR with one use and a constant, invert the
15392    // immediate. Then add one to the LHS of the sub so we can turn
15393    // X-Y -> X+~Y+1, saving one register.
15394    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15395        isa<ConstantSDNode>(Op1.getOperand(1))) {
15396      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15397      EVT VT = Op0.getValueType();
15398      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15399                                   Op1.getOperand(0),
15400                                   DAG.getConstant(~XorC, VT));
15401      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15402                         DAG.getConstant(C->getAPIntValue()+1, VT));
15403    }
15404  }
15405
15406  // Try to synthesize horizontal adds from adds of shuffles.
15407  EVT VT = N->getValueType(0);
15408  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15409       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15410      isHorizontalBinOp(Op0, Op1, true))
15411    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15412
15413  return OptimizeConditionalInDecrement(N, DAG);
15414}
15415
15416SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15417                                             DAGCombinerInfo &DCI) const {
15418  SelectionDAG &DAG = DCI.DAG;
15419  switch (N->getOpcode()) {
15420  default: break;
15421  case ISD::EXTRACT_VECTOR_ELT:
15422    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15423  case ISD::VSELECT:
15424  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15425  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15426  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15427  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15428  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15429  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15430  case ISD::SHL:
15431  case ISD::SRA:
15432  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15433  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15434  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15435  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15436  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
15437  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15438  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
15439  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15440  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
15441  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15442  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15443  case X86ISD::FXOR:
15444  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15445  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15446  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15447  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15448  case ISD::ANY_EXTEND:
15449  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
15450  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15451  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15452  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
15453  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15454  case X86ISD::SHUFP:       // Handle all target specific shuffles
15455  case X86ISD::PALIGN:
15456  case X86ISD::UNPCKH:
15457  case X86ISD::UNPCKL:
15458  case X86ISD::MOVHLPS:
15459  case X86ISD::MOVLHPS:
15460  case X86ISD::PSHUFD:
15461  case X86ISD::PSHUFHW:
15462  case X86ISD::PSHUFLW:
15463  case X86ISD::MOVSS:
15464  case X86ISD::MOVSD:
15465  case X86ISD::VPERMILP:
15466  case X86ISD::VPERM2X128:
15467  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15468  }
15469
15470  return SDValue();
15471}
15472
15473/// isTypeDesirableForOp - Return true if the target has native support for
15474/// the specified value type and it is 'desirable' to use the type for the
15475/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15476/// instruction encodings are longer and some i16 instructions are slow.
15477bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15478  if (!isTypeLegal(VT))
15479    return false;
15480  if (VT != MVT::i16)
15481    return true;
15482
15483  switch (Opc) {
15484  default:
15485    return true;
15486  case ISD::LOAD:
15487  case ISD::SIGN_EXTEND:
15488  case ISD::ZERO_EXTEND:
15489  case ISD::ANY_EXTEND:
15490  case ISD::SHL:
15491  case ISD::SRL:
15492  case ISD::SUB:
15493  case ISD::ADD:
15494  case ISD::MUL:
15495  case ISD::AND:
15496  case ISD::OR:
15497  case ISD::XOR:
15498    return false;
15499  }
15500}
15501
15502/// IsDesirableToPromoteOp - This method query the target whether it is
15503/// beneficial for dag combiner to promote the specified node. If true, it
15504/// should return the desired promotion type by reference.
15505bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15506  EVT VT = Op.getValueType();
15507  if (VT != MVT::i16)
15508    return false;
15509
15510  bool Promote = false;
15511  bool Commute = false;
15512  switch (Op.getOpcode()) {
15513  default: break;
15514  case ISD::LOAD: {
15515    LoadSDNode *LD = cast<LoadSDNode>(Op);
15516    // If the non-extending load has a single use and it's not live out, then it
15517    // might be folded.
15518    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15519                                                     Op.hasOneUse()*/) {
15520      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15521             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15522        // The only case where we'd want to promote LOAD (rather then it being
15523        // promoted as an operand is when it's only use is liveout.
15524        if (UI->getOpcode() != ISD::CopyToReg)
15525          return false;
15526      }
15527    }
15528    Promote = true;
15529    break;
15530  }
15531  case ISD::SIGN_EXTEND:
15532  case ISD::ZERO_EXTEND:
15533  case ISD::ANY_EXTEND:
15534    Promote = true;
15535    break;
15536  case ISD::SHL:
15537  case ISD::SRL: {
15538    SDValue N0 = Op.getOperand(0);
15539    // Look out for (store (shl (load), x)).
15540    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15541      return false;
15542    Promote = true;
15543    break;
15544  }
15545  case ISD::ADD:
15546  case ISD::MUL:
15547  case ISD::AND:
15548  case ISD::OR:
15549  case ISD::XOR:
15550    Commute = true;
15551    // fallthrough
15552  case ISD::SUB: {
15553    SDValue N0 = Op.getOperand(0);
15554    SDValue N1 = Op.getOperand(1);
15555    if (!Commute && MayFoldLoad(N1))
15556      return false;
15557    // Avoid disabling potential load folding opportunities.
15558    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15559      return false;
15560    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15561      return false;
15562    Promote = true;
15563  }
15564  }
15565
15566  PVT = MVT::i32;
15567  return Promote;
15568}
15569
15570//===----------------------------------------------------------------------===//
15571//                           X86 Inline Assembly Support
15572//===----------------------------------------------------------------------===//
15573
15574namespace {
15575  // Helper to match a string separated by whitespace.
15576  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15577    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15578
15579    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15580      StringRef piece(*args[i]);
15581      if (!s.startswith(piece)) // Check if the piece matches.
15582        return false;
15583
15584      s = s.substr(piece.size());
15585      StringRef::size_type pos = s.find_first_not_of(" \t");
15586      if (pos == 0) // We matched a prefix.
15587        return false;
15588
15589      s = s.substr(pos);
15590    }
15591
15592    return s.empty();
15593  }
15594  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15595}
15596
15597bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15598  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15599
15600  std::string AsmStr = IA->getAsmString();
15601
15602  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15603  if (!Ty || Ty->getBitWidth() % 16 != 0)
15604    return false;
15605
15606  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15607  SmallVector<StringRef, 4> AsmPieces;
15608  SplitString(AsmStr, AsmPieces, ";\n");
15609
15610  switch (AsmPieces.size()) {
15611  default: return false;
15612  case 1:
15613    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15614    // we will turn this bswap into something that will be lowered to logical
15615    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15616    // lower so don't worry about this.
15617    // bswap $0
15618    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15619        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15620        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15621        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15622        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15623        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15624      // No need to check constraints, nothing other than the equivalent of
15625      // "=r,0" would be valid here.
15626      return IntrinsicLowering::LowerToByteSwap(CI);
15627    }
15628
15629    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15630    if (CI->getType()->isIntegerTy(16) &&
15631        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15632        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15633         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15634      AsmPieces.clear();
15635      const std::string &ConstraintsStr = IA->getConstraintString();
15636      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15637      std::sort(AsmPieces.begin(), AsmPieces.end());
15638      if (AsmPieces.size() == 4 &&
15639          AsmPieces[0] == "~{cc}" &&
15640          AsmPieces[1] == "~{dirflag}" &&
15641          AsmPieces[2] == "~{flags}" &&
15642          AsmPieces[3] == "~{fpsr}")
15643      return IntrinsicLowering::LowerToByteSwap(CI);
15644    }
15645    break;
15646  case 3:
15647    if (CI->getType()->isIntegerTy(32) &&
15648        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15649        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15650        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15651        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15652      AsmPieces.clear();
15653      const std::string &ConstraintsStr = IA->getConstraintString();
15654      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15655      std::sort(AsmPieces.begin(), AsmPieces.end());
15656      if (AsmPieces.size() == 4 &&
15657          AsmPieces[0] == "~{cc}" &&
15658          AsmPieces[1] == "~{dirflag}" &&
15659          AsmPieces[2] == "~{flags}" &&
15660          AsmPieces[3] == "~{fpsr}")
15661        return IntrinsicLowering::LowerToByteSwap(CI);
15662    }
15663
15664    if (CI->getType()->isIntegerTy(64)) {
15665      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15666      if (Constraints.size() >= 2 &&
15667          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15668          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15669        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15670        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15671            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15672            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15673          return IntrinsicLowering::LowerToByteSwap(CI);
15674      }
15675    }
15676    break;
15677  }
15678  return false;
15679}
15680
15681
15682
15683/// getConstraintType - Given a constraint letter, return the type of
15684/// constraint it is for this target.
15685X86TargetLowering::ConstraintType
15686X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15687  if (Constraint.size() == 1) {
15688    switch (Constraint[0]) {
15689    case 'R':
15690    case 'q':
15691    case 'Q':
15692    case 'f':
15693    case 't':
15694    case 'u':
15695    case 'y':
15696    case 'x':
15697    case 'Y':
15698    case 'l':
15699      return C_RegisterClass;
15700    case 'a':
15701    case 'b':
15702    case 'c':
15703    case 'd':
15704    case 'S':
15705    case 'D':
15706    case 'A':
15707      return C_Register;
15708    case 'I':
15709    case 'J':
15710    case 'K':
15711    case 'L':
15712    case 'M':
15713    case 'N':
15714    case 'G':
15715    case 'C':
15716    case 'e':
15717    case 'Z':
15718      return C_Other;
15719    default:
15720      break;
15721    }
15722  }
15723  return TargetLowering::getConstraintType(Constraint);
15724}
15725
15726/// Examine constraint type and operand type and determine a weight value.
15727/// This object must already have been set up with the operand type
15728/// and the current alternative constraint selected.
15729TargetLowering::ConstraintWeight
15730  X86TargetLowering::getSingleConstraintMatchWeight(
15731    AsmOperandInfo &info, const char *constraint) const {
15732  ConstraintWeight weight = CW_Invalid;
15733  Value *CallOperandVal = info.CallOperandVal;
15734    // If we don't have a value, we can't do a match,
15735    // but allow it at the lowest weight.
15736  if (CallOperandVal == NULL)
15737    return CW_Default;
15738  Type *type = CallOperandVal->getType();
15739  // Look at the constraint type.
15740  switch (*constraint) {
15741  default:
15742    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15743  case 'R':
15744  case 'q':
15745  case 'Q':
15746  case 'a':
15747  case 'b':
15748  case 'c':
15749  case 'd':
15750  case 'S':
15751  case 'D':
15752  case 'A':
15753    if (CallOperandVal->getType()->isIntegerTy())
15754      weight = CW_SpecificReg;
15755    break;
15756  case 'f':
15757  case 't':
15758  case 'u':
15759      if (type->isFloatingPointTy())
15760        weight = CW_SpecificReg;
15761      break;
15762  case 'y':
15763      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15764        weight = CW_SpecificReg;
15765      break;
15766  case 'x':
15767  case 'Y':
15768    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15769        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15770      weight = CW_Register;
15771    break;
15772  case 'I':
15773    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15774      if (C->getZExtValue() <= 31)
15775        weight = CW_Constant;
15776    }
15777    break;
15778  case 'J':
15779    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15780      if (C->getZExtValue() <= 63)
15781        weight = CW_Constant;
15782    }
15783    break;
15784  case 'K':
15785    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15786      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15787        weight = CW_Constant;
15788    }
15789    break;
15790  case 'L':
15791    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15792      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15793        weight = CW_Constant;
15794    }
15795    break;
15796  case 'M':
15797    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15798      if (C->getZExtValue() <= 3)
15799        weight = CW_Constant;
15800    }
15801    break;
15802  case 'N':
15803    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15804      if (C->getZExtValue() <= 0xff)
15805        weight = CW_Constant;
15806    }
15807    break;
15808  case 'G':
15809  case 'C':
15810    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15811      weight = CW_Constant;
15812    }
15813    break;
15814  case 'e':
15815    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15816      if ((C->getSExtValue() >= -0x80000000LL) &&
15817          (C->getSExtValue() <= 0x7fffffffLL))
15818        weight = CW_Constant;
15819    }
15820    break;
15821  case 'Z':
15822    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15823      if (C->getZExtValue() <= 0xffffffff)
15824        weight = CW_Constant;
15825    }
15826    break;
15827  }
15828  return weight;
15829}
15830
15831/// LowerXConstraint - try to replace an X constraint, which matches anything,
15832/// with another that has more specific requirements based on the type of the
15833/// corresponding operand.
15834const char *X86TargetLowering::
15835LowerXConstraint(EVT ConstraintVT) const {
15836  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15837  // 'f' like normal targets.
15838  if (ConstraintVT.isFloatingPoint()) {
15839    if (Subtarget->hasSSE2())
15840      return "Y";
15841    if (Subtarget->hasSSE1())
15842      return "x";
15843  }
15844
15845  return TargetLowering::LowerXConstraint(ConstraintVT);
15846}
15847
15848/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15849/// vector.  If it is invalid, don't add anything to Ops.
15850void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15851                                                     std::string &Constraint,
15852                                                     std::vector<SDValue>&Ops,
15853                                                     SelectionDAG &DAG) const {
15854  SDValue Result(0, 0);
15855
15856  // Only support length 1 constraints for now.
15857  if (Constraint.length() > 1) return;
15858
15859  char ConstraintLetter = Constraint[0];
15860  switch (ConstraintLetter) {
15861  default: break;
15862  case 'I':
15863    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15864      if (C->getZExtValue() <= 31) {
15865        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15866        break;
15867      }
15868    }
15869    return;
15870  case 'J':
15871    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15872      if (C->getZExtValue() <= 63) {
15873        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15874        break;
15875      }
15876    }
15877    return;
15878  case 'K':
15879    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15880      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15881        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15882        break;
15883      }
15884    }
15885    return;
15886  case 'N':
15887    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15888      if (C->getZExtValue() <= 255) {
15889        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15890        break;
15891      }
15892    }
15893    return;
15894  case 'e': {
15895    // 32-bit signed value
15896    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15897      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15898                                           C->getSExtValue())) {
15899        // Widen to 64 bits here to get it sign extended.
15900        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15901        break;
15902      }
15903    // FIXME gcc accepts some relocatable values here too, but only in certain
15904    // memory models; it's complicated.
15905    }
15906    return;
15907  }
15908  case 'Z': {
15909    // 32-bit unsigned value
15910    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15911      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15912                                           C->getZExtValue())) {
15913        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15914        break;
15915      }
15916    }
15917    // FIXME gcc accepts some relocatable values here too, but only in certain
15918    // memory models; it's complicated.
15919    return;
15920  }
15921  case 'i': {
15922    // Literal immediates are always ok.
15923    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15924      // Widen to 64 bits here to get it sign extended.
15925      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15926      break;
15927    }
15928
15929    // In any sort of PIC mode addresses need to be computed at runtime by
15930    // adding in a register or some sort of table lookup.  These can't
15931    // be used as immediates.
15932    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15933      return;
15934
15935    // If we are in non-pic codegen mode, we allow the address of a global (with
15936    // an optional displacement) to be used with 'i'.
15937    GlobalAddressSDNode *GA = 0;
15938    int64_t Offset = 0;
15939
15940    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15941    while (1) {
15942      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15943        Offset += GA->getOffset();
15944        break;
15945      } else if (Op.getOpcode() == ISD::ADD) {
15946        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15947          Offset += C->getZExtValue();
15948          Op = Op.getOperand(0);
15949          continue;
15950        }
15951      } else if (Op.getOpcode() == ISD::SUB) {
15952        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15953          Offset += -C->getZExtValue();
15954          Op = Op.getOperand(0);
15955          continue;
15956        }
15957      }
15958
15959      // Otherwise, this isn't something we can handle, reject it.
15960      return;
15961    }
15962
15963    const GlobalValue *GV = GA->getGlobal();
15964    // If we require an extra load to get this address, as in PIC mode, we
15965    // can't accept it.
15966    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15967                                                        getTargetMachine())))
15968      return;
15969
15970    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15971                                        GA->getValueType(0), Offset);
15972    break;
15973  }
15974  }
15975
15976  if (Result.getNode()) {
15977    Ops.push_back(Result);
15978    return;
15979  }
15980  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15981}
15982
15983std::pair<unsigned, const TargetRegisterClass*>
15984X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15985                                                EVT VT) const {
15986  // First, see if this is a constraint that directly corresponds to an LLVM
15987  // register class.
15988  if (Constraint.size() == 1) {
15989    // GCC Constraint Letters
15990    switch (Constraint[0]) {
15991    default: break;
15992      // TODO: Slight differences here in allocation order and leaving
15993      // RIP in the class. Do they matter any more here than they do
15994      // in the normal allocation?
15995    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15996      if (Subtarget->is64Bit()) {
15997        if (VT == MVT::i32 || VT == MVT::f32)
15998          return std::make_pair(0U, &X86::GR32RegClass);
15999        if (VT == MVT::i16)
16000          return std::make_pair(0U, &X86::GR16RegClass);
16001        if (VT == MVT::i8 || VT == MVT::i1)
16002          return std::make_pair(0U, &X86::GR8RegClass);
16003        if (VT == MVT::i64 || VT == MVT::f64)
16004          return std::make_pair(0U, &X86::GR64RegClass);
16005        break;
16006      }
16007      // 32-bit fallthrough
16008    case 'Q':   // Q_REGS
16009      if (VT == MVT::i32 || VT == MVT::f32)
16010        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
16011      if (VT == MVT::i16)
16012        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
16013      if (VT == MVT::i8 || VT == MVT::i1)
16014        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
16015      if (VT == MVT::i64)
16016        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
16017      break;
16018    case 'r':   // GENERAL_REGS
16019    case 'l':   // INDEX_REGS
16020      if (VT == MVT::i8 || VT == MVT::i1)
16021        return std::make_pair(0U, &X86::GR8RegClass);
16022      if (VT == MVT::i16)
16023        return std::make_pair(0U, &X86::GR16RegClass);
16024      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
16025        return std::make_pair(0U, &X86::GR32RegClass);
16026      return std::make_pair(0U, &X86::GR64RegClass);
16027    case 'R':   // LEGACY_REGS
16028      if (VT == MVT::i8 || VT == MVT::i1)
16029        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
16030      if (VT == MVT::i16)
16031        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
16032      if (VT == MVT::i32 || !Subtarget->is64Bit())
16033        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
16034      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
16035    case 'f':  // FP Stack registers.
16036      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
16037      // value to the correct fpstack register class.
16038      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
16039        return std::make_pair(0U, &X86::RFP32RegClass);
16040      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
16041        return std::make_pair(0U, &X86::RFP64RegClass);
16042      return std::make_pair(0U, &X86::RFP80RegClass);
16043    case 'y':   // MMX_REGS if MMX allowed.
16044      if (!Subtarget->hasMMX()) break;
16045      return std::make_pair(0U, &X86::VR64RegClass);
16046    case 'Y':   // SSE_REGS if SSE2 allowed
16047      if (!Subtarget->hasSSE2()) break;
16048      // FALL THROUGH.
16049    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
16050      if (!Subtarget->hasSSE1()) break;
16051
16052      switch (VT.getSimpleVT().SimpleTy) {
16053      default: break;
16054      // Scalar SSE types.
16055      case MVT::f32:
16056      case MVT::i32:
16057        return std::make_pair(0U, &X86::FR32RegClass);
16058      case MVT::f64:
16059      case MVT::i64:
16060        return std::make_pair(0U, &X86::FR64RegClass);
16061      // Vector types.
16062      case MVT::v16i8:
16063      case MVT::v8i16:
16064      case MVT::v4i32:
16065      case MVT::v2i64:
16066      case MVT::v4f32:
16067      case MVT::v2f64:
16068        return std::make_pair(0U, &X86::VR128RegClass);
16069      // AVX types.
16070      case MVT::v32i8:
16071      case MVT::v16i16:
16072      case MVT::v8i32:
16073      case MVT::v4i64:
16074      case MVT::v8f32:
16075      case MVT::v4f64:
16076        return std::make_pair(0U, &X86::VR256RegClass);
16077      }
16078      break;
16079    }
16080  }
16081
16082  // Use the default implementation in TargetLowering to convert the register
16083  // constraint into a member of a register class.
16084  std::pair<unsigned, const TargetRegisterClass*> Res;
16085  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
16086
16087  // Not found as a standard register?
16088  if (Res.second == 0) {
16089    // Map st(0) -> st(7) -> ST0
16090    if (Constraint.size() == 7 && Constraint[0] == '{' &&
16091        tolower(Constraint[1]) == 's' &&
16092        tolower(Constraint[2]) == 't' &&
16093        Constraint[3] == '(' &&
16094        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
16095        Constraint[5] == ')' &&
16096        Constraint[6] == '}') {
16097
16098      Res.first = X86::ST0+Constraint[4]-'0';
16099      Res.second = &X86::RFP80RegClass;
16100      return Res;
16101    }
16102
16103    // GCC allows "st(0)" to be called just plain "st".
16104    if (StringRef("{st}").equals_lower(Constraint)) {
16105      Res.first = X86::ST0;
16106      Res.second = &X86::RFP80RegClass;
16107      return Res;
16108    }
16109
16110    // flags -> EFLAGS
16111    if (StringRef("{flags}").equals_lower(Constraint)) {
16112      Res.first = X86::EFLAGS;
16113      Res.second = &X86::CCRRegClass;
16114      return Res;
16115    }
16116
16117    // 'A' means EAX + EDX.
16118    if (Constraint == "A") {
16119      Res.first = X86::EAX;
16120      Res.second = &X86::GR32_ADRegClass;
16121      return Res;
16122    }
16123    return Res;
16124  }
16125
16126  // Otherwise, check to see if this is a register class of the wrong value
16127  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16128  // turn into {ax},{dx}.
16129  if (Res.second->hasType(VT))
16130    return Res;   // Correct type already, nothing to do.
16131
16132  // All of the single-register GCC register classes map their values onto
16133  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16134  // really want an 8-bit or 32-bit register, map to the appropriate register
16135  // class and return the appropriate register.
16136  if (Res.second == &X86::GR16RegClass) {
16137    if (VT == MVT::i8) {
16138      unsigned DestReg = 0;
16139      switch (Res.first) {
16140      default: break;
16141      case X86::AX: DestReg = X86::AL; break;
16142      case X86::DX: DestReg = X86::DL; break;
16143      case X86::CX: DestReg = X86::CL; break;
16144      case X86::BX: DestReg = X86::BL; break;
16145      }
16146      if (DestReg) {
16147        Res.first = DestReg;
16148        Res.second = &X86::GR8RegClass;
16149      }
16150    } else if (VT == MVT::i32) {
16151      unsigned DestReg = 0;
16152      switch (Res.first) {
16153      default: break;
16154      case X86::AX: DestReg = X86::EAX; break;
16155      case X86::DX: DestReg = X86::EDX; break;
16156      case X86::CX: DestReg = X86::ECX; break;
16157      case X86::BX: DestReg = X86::EBX; break;
16158      case X86::SI: DestReg = X86::ESI; break;
16159      case X86::DI: DestReg = X86::EDI; break;
16160      case X86::BP: DestReg = X86::EBP; break;
16161      case X86::SP: DestReg = X86::ESP; break;
16162      }
16163      if (DestReg) {
16164        Res.first = DestReg;
16165        Res.second = &X86::GR32RegClass;
16166      }
16167    } else if (VT == MVT::i64) {
16168      unsigned DestReg = 0;
16169      switch (Res.first) {
16170      default: break;
16171      case X86::AX: DestReg = X86::RAX; break;
16172      case X86::DX: DestReg = X86::RDX; break;
16173      case X86::CX: DestReg = X86::RCX; break;
16174      case X86::BX: DestReg = X86::RBX; break;
16175      case X86::SI: DestReg = X86::RSI; break;
16176      case X86::DI: DestReg = X86::RDI; break;
16177      case X86::BP: DestReg = X86::RBP; break;
16178      case X86::SP: DestReg = X86::RSP; break;
16179      }
16180      if (DestReg) {
16181        Res.first = DestReg;
16182        Res.second = &X86::GR64RegClass;
16183      }
16184    }
16185  } else if (Res.second == &X86::FR32RegClass ||
16186             Res.second == &X86::FR64RegClass ||
16187             Res.second == &X86::VR128RegClass) {
16188    // Handle references to XMM physical registers that got mapped into the
16189    // wrong class.  This can happen with constraints like {xmm0} where the
16190    // target independent register mapper will just pick the first match it can
16191    // find, ignoring the required type.
16192
16193    if (VT == MVT::f32 || VT == MVT::i32)
16194      Res.second = &X86::FR32RegClass;
16195    else if (VT == MVT::f64 || VT == MVT::i64)
16196      Res.second = &X86::FR64RegClass;
16197    else if (X86::VR128RegClass.hasType(VT))
16198      Res.second = &X86::VR128RegClass;
16199    else if (X86::VR256RegClass.hasType(VT))
16200      Res.second = &X86::VR256RegClass;
16201  }
16202
16203  return Res;
16204}
16205