X86ISelLowering.cpp revision a44defeb2208376ca3113ffdddc391570ba865b8
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/CallSite.h"
49#include "llvm/Support/Debug.h"
50#include "llvm/Support/Dwarf.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54using namespace llvm;
55using namespace dwarf;
56
57STATISTIC(NumTailCalls, "Number of tail calls");
58
59// Forward declarations.
60static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
61                       SDValue V2);
62
63static SDValue Insert128BitVector(SDValue Result,
64                                  SDValue Vec,
65                                  SDValue Idx,
66                                  SelectionDAG &DAG,
67                                  DebugLoc dl);
68
69static SDValue Extract128BitVector(SDValue Vec,
70                                   SDValue Idx,
71                                   SelectionDAG &DAG,
72                                   DebugLoc dl);
73
74/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
75/// sets things up to match to an AVX VEXTRACTF128 instruction or a
76/// simple subregister reference.  Idx is an index in the 128 bits we
77/// want.  It need not be aligned to a 128-bit bounday.  That makes
78/// lowering EXTRACT_VECTOR_ELT operations easier.
79static SDValue Extract128BitVector(SDValue Vec,
80                                   SDValue Idx,
81                                   SelectionDAG &DAG,
82                                   DebugLoc dl) {
83  EVT VT = Vec.getValueType();
84  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
85  EVT ElVT = VT.getVectorElementType();
86  int Factor = VT.getSizeInBits()/128;
87  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
88                                  VT.getVectorNumElements()/Factor);
89
90  // Extract from UNDEF is UNDEF.
91  if (Vec.getOpcode() == ISD::UNDEF)
92    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
93
94  if (isa<ConstantSDNode>(Idx)) {
95    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
96
97    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
98    // we can match to VEXTRACTF128.
99    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
100
101    // This is the index of the first element of the 128-bit chunk
102    // we want.
103    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
104                                 * ElemsPerChunk);
105
106    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
107    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
108                                 VecIdx);
109
110    return Result;
111  }
112
113  return SDValue();
114}
115
116/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
117/// sets things up to match to an AVX VINSERTF128 instruction or a
118/// simple superregister reference.  Idx is an index in the 128 bits
119/// we want.  It need not be aligned to a 128-bit bounday.  That makes
120/// lowering INSERT_VECTOR_ELT operations easier.
121static SDValue Insert128BitVector(SDValue Result,
122                                  SDValue Vec,
123                                  SDValue Idx,
124                                  SelectionDAG &DAG,
125                                  DebugLoc dl) {
126  if (isa<ConstantSDNode>(Idx)) {
127    EVT VT = Vec.getValueType();
128    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
129
130    EVT ElVT = VT.getVectorElementType();
131    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
132    EVT ResultVT = Result.getValueType();
133
134    // Insert the relevant 128 bits.
135    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
136
137    // This is the index of the first element of the 128-bit chunk
138    // we want.
139    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
140                                 * ElemsPerChunk);
141
142    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
143    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
144                         VecIdx);
145    return Result;
146  }
147
148  return SDValue();
149}
150
151static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
152  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
153  bool is64Bit = Subtarget->is64Bit();
154
155  if (Subtarget->isTargetEnvMacho()) {
156    if (is64Bit)
157      return new X8664_MachoTargetObjectFile();
158    return new TargetLoweringObjectFileMachO();
159  }
160
161  if (Subtarget->isTargetELF())
162    return new TargetLoweringObjectFileELF();
163  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
164    return new TargetLoweringObjectFileCOFF();
165  llvm_unreachable("unknown subtarget type");
166}
167
168X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
169  : TargetLowering(TM, createTLOF(TM)) {
170  Subtarget = &TM.getSubtarget<X86Subtarget>();
171  X86ScalarSSEf64 = Subtarget->hasXMMInt();
172  X86ScalarSSEf32 = Subtarget->hasXMM();
173  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
174
175  RegInfo = TM.getRegisterInfo();
176  TD = getTargetData();
177
178  // Set up the TargetLowering object.
179  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
180
181  // X86 is weird, it always uses i8 for shift amounts and setcc results.
182  setBooleanContents(ZeroOrOneBooleanContent);
183
184  // For 64-bit since we have so many registers use the ILP scheduler, for
185  // 32-bit code use the register pressure specific scheduling.
186  if (Subtarget->is64Bit())
187    setSchedulingPreference(Sched::ILP);
188  else
189    setSchedulingPreference(Sched::RegPressure);
190  setStackPointerRegisterToSaveRestore(X86StackPtr);
191
192  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
193    // Setup Windows compiler runtime calls.
194    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
195    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
196    setLibcallName(RTLIB::SREM_I64, "_allrem");
197    setLibcallName(RTLIB::UREM_I64, "_aullrem");
198    setLibcallName(RTLIB::MUL_I64, "_allmul");
199    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
200    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
201    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
202    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
203    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
204    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
205    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
206    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
207    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
208  }
209
210  if (Subtarget->isTargetDarwin()) {
211    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
212    setUseUnderscoreSetJmp(false);
213    setUseUnderscoreLongJmp(false);
214  } else if (Subtarget->isTargetMingw()) {
215    // MS runtime is weird: it exports _setjmp, but longjmp!
216    setUseUnderscoreSetJmp(true);
217    setUseUnderscoreLongJmp(false);
218  } else {
219    setUseUnderscoreSetJmp(true);
220    setUseUnderscoreLongJmp(true);
221  }
222
223  // Set up the register classes.
224  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
225  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
226  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
227  if (Subtarget->is64Bit())
228    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
229
230  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
231
232  // We don't accept any truncstore of integer registers.
233  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
234  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
235  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
236  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
237  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
238  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
239
240  // SETOEQ and SETUNE require checking two conditions.
241  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
242  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
243  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
244  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
245  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
246  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
247
248  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
249  // operation.
250  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
251  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
252  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
253
254  if (Subtarget->is64Bit()) {
255    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
257  } else if (!UseSoftFloat) {
258    // We have an algorithm for SSE2->double, and we turn this into a
259    // 64-bit FILD followed by conditional FADD for other targets.
260    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
261    // We have an algorithm for SSE2, and we turn this into a 64-bit
262    // FILD for other targets.
263    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
264  }
265
266  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
267  // this operation.
268  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
269  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
270
271  if (!UseSoftFloat) {
272    // SSE has no i16 to fp conversion, only i32
273    if (X86ScalarSSEf32) {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
275      // f32 and f64 cases are Legal, f80 case is not
276      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
277    } else {
278      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
279      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280    }
281  } else {
282    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
283    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
284  }
285
286  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
287  // are Legal, f80 is custom lowered.
288  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
289  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
290
291  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
292  // this operation.
293  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
294  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
295
296  if (X86ScalarSSEf32) {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
298    // f32 and f64 cases are Legal, f80 case is not
299    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
300  } else {
301    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
302    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303  }
304
305  // Handle FP_TO_UINT by promoting the destination to a larger signed
306  // conversion.
307  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
308  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
309  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
310
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
313    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
314  } else if (!UseSoftFloat) {
315    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
316      // Expand FP_TO_UINT into a select.
317      // FIXME: We would like to use a Custom expander here eventually to do
318      // the optimal thing for SSE vs. the default expansion in the legalizer.
319      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
320    else
321      // With SSE3 we can use fisttpll to convert to a signed i64; without
322      // SSE, we're stuck with a fistpll.
323      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
324  }
325
326  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
327  if (!X86ScalarSSEf64) {
328    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
329    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
330    if (Subtarget->is64Bit()) {
331      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
332      // Without SSE, i64->f64 goes through memory.
333      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
334    }
335  }
336
337  // Scalar integer divide and remainder are lowered to use operations that
338  // produce two results, to match the available instructions. This exposes
339  // the two-result form to trivial CSE, which is able to combine x/y and x%y
340  // into a single instruction.
341  //
342  // Scalar integer multiply-high is also lowered to use two-result
343  // operations, to match the available instructions. However, plain multiply
344  // (low) operations are left as Legal, as there are single-result
345  // instructions for this in x86. Using the two-result multiply instructions
346  // when both high and low results are needed must be arranged by dagcombine.
347  for (unsigned i = 0, e = 4; i != e; ++i) {
348    MVT VT = IntVTs[i];
349    setOperationAction(ISD::MULHS, VT, Expand);
350    setOperationAction(ISD::MULHU, VT, Expand);
351    setOperationAction(ISD::SDIV, VT, Expand);
352    setOperationAction(ISD::UDIV, VT, Expand);
353    setOperationAction(ISD::SREM, VT, Expand);
354    setOperationAction(ISD::UREM, VT, Expand);
355
356    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
357    setOperationAction(ISD::ADDC, VT, Custom);
358    setOperationAction(ISD::ADDE, VT, Custom);
359    setOperationAction(ISD::SUBC, VT, Custom);
360    setOperationAction(ISD::SUBE, VT, Custom);
361  }
362
363  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
364  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
365  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
366  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
367  if (Subtarget->is64Bit())
368    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
369  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
372  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
373  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
376  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
377
378  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
379  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
380  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
381  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
382  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
383  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
384  if (Subtarget->is64Bit()) {
385    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
386    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
387  }
388
389  if (Subtarget->hasPOPCNT()) {
390    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
391  } else {
392    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
393    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
394    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
397  }
398
399  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
400  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
401
402  // These should be promoted to a larger select which is supported.
403  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
404  // X86 wants to expand cmov itself.
405  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
406  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
407  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
408  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
409  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
410  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
411  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
412  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
413  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
414  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
415  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
416  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
417  if (Subtarget->is64Bit()) {
418    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
419    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
420  }
421  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
422
423  // Darwin ABI issue.
424  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
425  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
426  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
427  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
428  if (Subtarget->is64Bit())
429    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
430  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
431  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
432  if (Subtarget->is64Bit()) {
433    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
434    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
435    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
436    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
437    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
438  }
439  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
440  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
441  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
442  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
443  if (Subtarget->is64Bit()) {
444    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
445    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
446    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
447  }
448
449  if (Subtarget->hasXMM())
450    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
451
452  // We may not have a libcall for MEMBARRIER so we should lower this.
453  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
454
455  // On X86 and X86-64, atomic operations are lowered to locked instructions.
456  // Locked instructions, in turn, have implicit fence semantics (all memory
457  // operations are flushed before issuing the locked instruction, and they
458  // are not buffered), so we can fold away the common pattern of
459  // fence-atomic-fence.
460  setShouldFoldAtomicFences(true);
461
462  // Expand certain atomics
463  for (unsigned i = 0, e = 4; i != e; ++i) {
464    MVT VT = IntVTs[i];
465    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
466    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
467  }
468
469  if (!Subtarget->is64Bit()) {
470    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
471    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
472    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
473    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
474    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
475    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
476    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
477  }
478
479  // FIXME - use subtarget debug flags
480  if (!Subtarget->isTargetDarwin() &&
481      !Subtarget->isTargetELF() &&
482      !Subtarget->isTargetCygMing()) {
483    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
484  }
485
486  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
487  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
488  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
489  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
490  if (Subtarget->is64Bit()) {
491    setExceptionPointerRegister(X86::RAX);
492    setExceptionSelectorRegister(X86::RDX);
493  } else {
494    setExceptionPointerRegister(X86::EAX);
495    setExceptionSelectorRegister(X86::EDX);
496  }
497  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
498  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
499
500  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
501
502  setOperationAction(ISD::TRAP, MVT::Other, Legal);
503
504  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
505  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
506  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
507  if (Subtarget->is64Bit()) {
508    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
509    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
510  } else {
511    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
512    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
513  }
514
515  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
516  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
517  setOperationAction(ISD::DYNAMIC_STACKALLOC,
518                     (Subtarget->is64Bit() ? MVT::i64 : MVT::i32),
519                     (Subtarget->isTargetCOFF()
520                      && !Subtarget->isTargetEnvMacho()
521                      ? Custom : Expand));
522
523  if (!UseSoftFloat && X86ScalarSSEf64) {
524    // f32 and f64 use SSE.
525    // Set up the FP register classes.
526    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
527    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
528
529    // Use ANDPD to simulate FABS.
530    setOperationAction(ISD::FABS , MVT::f64, Custom);
531    setOperationAction(ISD::FABS , MVT::f32, Custom);
532
533    // Use XORP to simulate FNEG.
534    setOperationAction(ISD::FNEG , MVT::f64, Custom);
535    setOperationAction(ISD::FNEG , MVT::f32, Custom);
536
537    // Use ANDPD and ORPD to simulate FCOPYSIGN.
538    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
539    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
540
541    // Lower this to FGETSIGNx86 plus an AND.
542    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
543    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
544
545    // We don't support sin/cos/fmod
546    setOperationAction(ISD::FSIN , MVT::f64, Expand);
547    setOperationAction(ISD::FCOS , MVT::f64, Expand);
548    setOperationAction(ISD::FSIN , MVT::f32, Expand);
549    setOperationAction(ISD::FCOS , MVT::f32, Expand);
550
551    // Expand FP immediates into loads from the stack, except for the special
552    // cases we handle.
553    addLegalFPImmediate(APFloat(+0.0)); // xorpd
554    addLegalFPImmediate(APFloat(+0.0f)); // xorps
555  } else if (!UseSoftFloat && X86ScalarSSEf32) {
556    // Use SSE for f32, x87 for f64.
557    // Set up the FP register classes.
558    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
559    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
560
561    // Use ANDPS to simulate FABS.
562    setOperationAction(ISD::FABS , MVT::f32, Custom);
563
564    // Use XORP to simulate FNEG.
565    setOperationAction(ISD::FNEG , MVT::f32, Custom);
566
567    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
568
569    // Use ANDPS and ORPS to simulate FCOPYSIGN.
570    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
571    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
572
573    // We don't support sin/cos/fmod
574    setOperationAction(ISD::FSIN , MVT::f32, Expand);
575    setOperationAction(ISD::FCOS , MVT::f32, Expand);
576
577    // Special cases we handle for FP constants.
578    addLegalFPImmediate(APFloat(+0.0f)); // xorps
579    addLegalFPImmediate(APFloat(+0.0)); // FLD0
580    addLegalFPImmediate(APFloat(+1.0)); // FLD1
581    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
582    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
583
584    if (!UnsafeFPMath) {
585      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
586      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
587    }
588  } else if (!UseSoftFloat) {
589    // f32 and f64 in x87.
590    // Set up the FP register classes.
591    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
592    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
593
594    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
595    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
596    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
597    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
598
599    if (!UnsafeFPMath) {
600      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
601      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
602    }
603    addLegalFPImmediate(APFloat(+0.0)); // FLD0
604    addLegalFPImmediate(APFloat(+1.0)); // FLD1
605    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
606    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
607    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
608    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
609    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
610    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
611  }
612
613  // We don't support FMA.
614  setOperationAction(ISD::FMA, MVT::f64, Expand);
615  setOperationAction(ISD::FMA, MVT::f32, Expand);
616
617  // Long double always uses X87.
618  if (!UseSoftFloat) {
619    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
620    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
621    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
622    {
623      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
624      addLegalFPImmediate(TmpFlt);  // FLD0
625      TmpFlt.changeSign();
626      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
627
628      bool ignored;
629      APFloat TmpFlt2(+1.0);
630      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
631                      &ignored);
632      addLegalFPImmediate(TmpFlt2);  // FLD1
633      TmpFlt2.changeSign();
634      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
635    }
636
637    if (!UnsafeFPMath) {
638      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
639      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
640    }
641
642    setOperationAction(ISD::FMA, MVT::f80, Expand);
643  }
644
645  // Always use a library call for pow.
646  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
647  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
648  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
649
650  setOperationAction(ISD::FLOG, MVT::f80, Expand);
651  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
652  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
653  setOperationAction(ISD::FEXP, MVT::f80, Expand);
654  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
655
656  // First set operation action for all vector types to either promote
657  // (for widening) or expand (for scalarization). Then we will selectively
658  // turn on ones that can be effectively codegen'd.
659  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
660       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
661    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
662    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
663    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
664    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
665    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
666    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
667    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
668    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
669    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
670    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
671    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
672    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
673    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
674    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
675    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
676    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
677    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
678    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
679    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
680    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
681    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
696    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
698    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
699    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
711    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
715    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
716         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
717      setTruncStoreAction((MVT::SimpleValueType)VT,
718                          (MVT::SimpleValueType)InnerVT, Expand);
719    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
720    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
721    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
722  }
723
724  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
725  // with -msoft-float, disable use of MMX as well.
726  if (!UseSoftFloat && Subtarget->hasMMX()) {
727    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
728    // No operations on x86mmx supported, everything uses intrinsics.
729  }
730
731  // MMX-sized vectors (other than x86mmx) are expected to be expanded
732  // into smaller operations.
733  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
734  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
735  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
736  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
737  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
738  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
739  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
740  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
741  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
742  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
743  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
744  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
745  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
746  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
747  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
748  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
749  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
750  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
751  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
752  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
753  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
754  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
755  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
756  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
757  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
758  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
759  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
760  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
761  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
762
763  if (!UseSoftFloat && Subtarget->hasXMM()) {
764    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
765
766    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
767    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
768    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
769    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
770    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
771    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
772    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
773    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
774    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
775    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
776    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
777    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
778  }
779
780  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
781    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
782
783    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
784    // registers cannot be used even for integer operations.
785    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
786    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
787    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
788    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
789
790    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
791    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
792    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
793    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
794    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
795    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
796    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
797    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
798    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
799    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
800    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
801    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
802    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
803    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
804    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
805    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
806
807    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
808    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
809    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
810    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
811
812    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
813    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
814    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
815    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
816    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
817
818    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
819    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
820    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
821    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
822    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
823
824    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
825    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
826      EVT VT = (MVT::SimpleValueType)i;
827      // Do not attempt to custom lower non-power-of-2 vectors
828      if (!isPowerOf2_32(VT.getVectorNumElements()))
829        continue;
830      // Do not attempt to custom lower non-128-bit vectors
831      if (!VT.is128BitVector())
832        continue;
833      setOperationAction(ISD::BUILD_VECTOR,
834                         VT.getSimpleVT().SimpleTy, Custom);
835      setOperationAction(ISD::VECTOR_SHUFFLE,
836                         VT.getSimpleVT().SimpleTy, Custom);
837      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
838                         VT.getSimpleVT().SimpleTy, Custom);
839    }
840
841    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
842    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
843    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
844    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
845    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
846    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
847
848    if (Subtarget->is64Bit()) {
849      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
850      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
851    }
852
853    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
854    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
855      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
856      EVT VT = SVT;
857
858      // Do not attempt to promote non-128-bit vectors
859      if (!VT.is128BitVector())
860        continue;
861
862      setOperationAction(ISD::AND,    SVT, Promote);
863      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
864      setOperationAction(ISD::OR,     SVT, Promote);
865      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
866      setOperationAction(ISD::XOR,    SVT, Promote);
867      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
868      setOperationAction(ISD::LOAD,   SVT, Promote);
869      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
870      setOperationAction(ISD::SELECT, SVT, Promote);
871      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
872    }
873
874    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
875
876    // Custom lower v2i64 and v2f64 selects.
877    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
879    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
880    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
881
882    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
883    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
884  }
885
886  if (Subtarget->hasSSE41()) {
887    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
888    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
889    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
890    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
891    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
892    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
893    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
894    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
895    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
896    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
897
898    // FIXME: Do we need to handle scalar-to-vector here?
899    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
900
901    // Can turn SHL into an integer multiply.
902    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
903    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
904
905    // i8 and i16 vectors are custom , because the source register and source
906    // source memory operand types are not the same width.  f32 vectors are
907    // custom since the immediate controlling the insert encodes additional
908    // information.
909    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
910    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
911    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
912    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
913
914    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
915    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
916    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
917    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
918
919    if (Subtarget->is64Bit()) {
920      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
921      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
922    }
923  }
924
925  if (Subtarget->hasSSE2()) {
926    setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
927    setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
928    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
929
930    setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
931    setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
932    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
933
934    setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
935    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
936  }
937
938  if (Subtarget->hasSSE42())
939    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
940
941  if (!UseSoftFloat && Subtarget->hasAVX()) {
942    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
943    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
944    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
945    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
946    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
947    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
948
949    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
950    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
951    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
952
953    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
954    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
955    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
956    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
957    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
958    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
959
960    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
961    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
962    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
963    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
964    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
965    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
966
967    // Custom lower several nodes for 256-bit types.
968    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
969                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
970      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
971      EVT VT = SVT;
972
973      // Extract subvector is special because the value type
974      // (result) is 128-bit but the source is 256-bit wide.
975      if (VT.is128BitVector())
976        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
977
978      // Do not attempt to custom lower other non-256-bit vectors
979      if (!VT.is256BitVector())
980        continue;
981
982      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
983      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
984      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
985      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
986      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
987      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
988    }
989
990    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
991    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
992      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
993      EVT VT = SVT;
994
995      // Do not attempt to promote non-256-bit vectors
996      if (!VT.is256BitVector())
997        continue;
998
999      setOperationAction(ISD::AND,    SVT, Promote);
1000      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1001      setOperationAction(ISD::OR,     SVT, Promote);
1002      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1003      setOperationAction(ISD::XOR,    SVT, Promote);
1004      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1005      setOperationAction(ISD::LOAD,   SVT, Promote);
1006      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1007      setOperationAction(ISD::SELECT, SVT, Promote);
1008      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1009    }
1010  }
1011
1012  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1013  // of this type with custom code.
1014  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1015         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1016    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1017  }
1018
1019  // We want to custom lower some of our intrinsics.
1020  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1021
1022
1023  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1024  // handle type legalization for these operations here.
1025  //
1026  // FIXME: We really should do custom legalization for addition and
1027  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1028  // than generic legalization for 64-bit multiplication-with-overflow, though.
1029  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1030    // Add/Sub/Mul with overflow operations are custom lowered.
1031    MVT VT = IntVTs[i];
1032    setOperationAction(ISD::SADDO, VT, Custom);
1033    setOperationAction(ISD::UADDO, VT, Custom);
1034    setOperationAction(ISD::SSUBO, VT, Custom);
1035    setOperationAction(ISD::USUBO, VT, Custom);
1036    setOperationAction(ISD::SMULO, VT, Custom);
1037    setOperationAction(ISD::UMULO, VT, Custom);
1038  }
1039
1040  // There are no 8-bit 3-address imul/mul instructions
1041  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1042  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1043
1044  if (!Subtarget->is64Bit()) {
1045    // These libcalls are not available in 32-bit.
1046    setLibcallName(RTLIB::SHL_I128, 0);
1047    setLibcallName(RTLIB::SRL_I128, 0);
1048    setLibcallName(RTLIB::SRA_I128, 0);
1049  }
1050
1051  // We have target-specific dag combine patterns for the following nodes:
1052  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1053  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1054  setTargetDAGCombine(ISD::BUILD_VECTOR);
1055  setTargetDAGCombine(ISD::SELECT);
1056  setTargetDAGCombine(ISD::SHL);
1057  setTargetDAGCombine(ISD::SRA);
1058  setTargetDAGCombine(ISD::SRL);
1059  setTargetDAGCombine(ISD::OR);
1060  setTargetDAGCombine(ISD::AND);
1061  setTargetDAGCombine(ISD::ADD);
1062  setTargetDAGCombine(ISD::SUB);
1063  setTargetDAGCombine(ISD::STORE);
1064  setTargetDAGCombine(ISD::ZERO_EXTEND);
1065  setTargetDAGCombine(ISD::SINT_TO_FP);
1066  if (Subtarget->is64Bit())
1067    setTargetDAGCombine(ISD::MUL);
1068
1069  computeRegisterProperties();
1070
1071  // On Darwin, -Os means optimize for size without hurting performance,
1072  // do not reduce the limit.
1073  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1074  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1075  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1076  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1077  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1078  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1079  setPrefLoopAlignment(16);
1080  benefitFromCodePlacementOpt = true;
1081
1082  setPrefFunctionAlignment(4);
1083}
1084
1085
1086MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1087  return MVT::i8;
1088}
1089
1090
1091/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1092/// the desired ByVal argument alignment.
1093static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1094  if (MaxAlign == 16)
1095    return;
1096  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1097    if (VTy->getBitWidth() == 128)
1098      MaxAlign = 16;
1099  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1100    unsigned EltAlign = 0;
1101    getMaxByValAlign(ATy->getElementType(), EltAlign);
1102    if (EltAlign > MaxAlign)
1103      MaxAlign = EltAlign;
1104  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1105    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1106      unsigned EltAlign = 0;
1107      getMaxByValAlign(STy->getElementType(i), EltAlign);
1108      if (EltAlign > MaxAlign)
1109        MaxAlign = EltAlign;
1110      if (MaxAlign == 16)
1111        break;
1112    }
1113  }
1114  return;
1115}
1116
1117/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1118/// function arguments in the caller parameter area. For X86, aggregates
1119/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1120/// are at 4-byte boundaries.
1121unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1122  if (Subtarget->is64Bit()) {
1123    // Max of 8 and alignment of type.
1124    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1125    if (TyAlign > 8)
1126      return TyAlign;
1127    return 8;
1128  }
1129
1130  unsigned Align = 4;
1131  if (Subtarget->hasXMM())
1132    getMaxByValAlign(Ty, Align);
1133  return Align;
1134}
1135
1136/// getOptimalMemOpType - Returns the target specific optimal type for load
1137/// and store operations as a result of memset, memcpy, and memmove
1138/// lowering. If DstAlign is zero that means it's safe to destination
1139/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1140/// means there isn't a need to check it against alignment requirement,
1141/// probably because the source does not need to be loaded. If
1142/// 'NonScalarIntSafe' is true, that means it's safe to return a
1143/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1144/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1145/// constant so it does not need to be loaded.
1146/// It returns EVT::Other if the type should be determined using generic
1147/// target-independent logic.
1148EVT
1149X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1150                                       unsigned DstAlign, unsigned SrcAlign,
1151                                       bool NonScalarIntSafe,
1152                                       bool MemcpyStrSrc,
1153                                       MachineFunction &MF) const {
1154  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1155  // linux.  This is because the stack realignment code can't handle certain
1156  // cases like PR2962.  This should be removed when PR2962 is fixed.
1157  const Function *F = MF.getFunction();
1158  if (NonScalarIntSafe &&
1159      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1160    if (Size >= 16 &&
1161        (Subtarget->isUnalignedMemAccessFast() ||
1162         ((DstAlign == 0 || DstAlign >= 16) &&
1163          (SrcAlign == 0 || SrcAlign >= 16))) &&
1164        Subtarget->getStackAlignment() >= 16) {
1165      if (Subtarget->hasSSE2())
1166        return MVT::v4i32;
1167      if (Subtarget->hasSSE1())
1168        return MVT::v4f32;
1169    } else if (!MemcpyStrSrc && Size >= 8 &&
1170               !Subtarget->is64Bit() &&
1171               Subtarget->getStackAlignment() >= 8 &&
1172               Subtarget->hasXMMInt()) {
1173      // Do not use f64 to lower memcpy if source is string constant. It's
1174      // better to use i32 to avoid the loads.
1175      return MVT::f64;
1176    }
1177  }
1178  if (Subtarget->is64Bit() && Size >= 8)
1179    return MVT::i64;
1180  return MVT::i32;
1181}
1182
1183/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1184/// current function.  The returned value is a member of the
1185/// MachineJumpTableInfo::JTEntryKind enum.
1186unsigned X86TargetLowering::getJumpTableEncoding() const {
1187  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1188  // symbol.
1189  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1190      Subtarget->isPICStyleGOT())
1191    return MachineJumpTableInfo::EK_Custom32;
1192
1193  // Otherwise, use the normal jump table encoding heuristics.
1194  return TargetLowering::getJumpTableEncoding();
1195}
1196
1197const MCExpr *
1198X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1199                                             const MachineBasicBlock *MBB,
1200                                             unsigned uid,MCContext &Ctx) const{
1201  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1202         Subtarget->isPICStyleGOT());
1203  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1204  // entries.
1205  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1206                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1207}
1208
1209/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1210/// jumptable.
1211SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1212                                                    SelectionDAG &DAG) const {
1213  if (!Subtarget->is64Bit())
1214    // This doesn't have DebugLoc associated with it, but is not really the
1215    // same as a Register.
1216    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1217  return Table;
1218}
1219
1220/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1221/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1222/// MCExpr.
1223const MCExpr *X86TargetLowering::
1224getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1225                             MCContext &Ctx) const {
1226  // X86-64 uses RIP relative addressing based on the jump table label.
1227  if (Subtarget->isPICStyleRIPRel())
1228    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1229
1230  // Otherwise, the reference is relative to the PIC base.
1231  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1232}
1233
1234// FIXME: Why this routine is here? Move to RegInfo!
1235std::pair<const TargetRegisterClass*, uint8_t>
1236X86TargetLowering::findRepresentativeClass(EVT VT) const{
1237  const TargetRegisterClass *RRC = 0;
1238  uint8_t Cost = 1;
1239  switch (VT.getSimpleVT().SimpleTy) {
1240  default:
1241    return TargetLowering::findRepresentativeClass(VT);
1242  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1243    RRC = (Subtarget->is64Bit()
1244           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1245    break;
1246  case MVT::x86mmx:
1247    RRC = X86::VR64RegisterClass;
1248    break;
1249  case MVT::f32: case MVT::f64:
1250  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1251  case MVT::v4f32: case MVT::v2f64:
1252  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1253  case MVT::v4f64:
1254    RRC = X86::VR128RegisterClass;
1255    break;
1256  }
1257  return std::make_pair(RRC, Cost);
1258}
1259
1260bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1261                                               unsigned &Offset) const {
1262  if (!Subtarget->isTargetLinux())
1263    return false;
1264
1265  if (Subtarget->is64Bit()) {
1266    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1267    Offset = 0x28;
1268    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1269      AddressSpace = 256;
1270    else
1271      AddressSpace = 257;
1272  } else {
1273    // %gs:0x14 on i386
1274    Offset = 0x14;
1275    AddressSpace = 256;
1276  }
1277  return true;
1278}
1279
1280
1281//===----------------------------------------------------------------------===//
1282//               Return Value Calling Convention Implementation
1283//===----------------------------------------------------------------------===//
1284
1285#include "X86GenCallingConv.inc"
1286
1287bool
1288X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1289				  MachineFunction &MF, bool isVarArg,
1290                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1291                        LLVMContext &Context) const {
1292  SmallVector<CCValAssign, 16> RVLocs;
1293  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1294                 RVLocs, Context);
1295  return CCInfo.CheckReturn(Outs, RetCC_X86);
1296}
1297
1298SDValue
1299X86TargetLowering::LowerReturn(SDValue Chain,
1300                               CallingConv::ID CallConv, bool isVarArg,
1301                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1302                               const SmallVectorImpl<SDValue> &OutVals,
1303                               DebugLoc dl, SelectionDAG &DAG) const {
1304  MachineFunction &MF = DAG.getMachineFunction();
1305  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1306
1307  SmallVector<CCValAssign, 16> RVLocs;
1308  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1309                 RVLocs, *DAG.getContext());
1310  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1311
1312  // Add the regs to the liveout set for the function.
1313  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1314  for (unsigned i = 0; i != RVLocs.size(); ++i)
1315    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1316      MRI.addLiveOut(RVLocs[i].getLocReg());
1317
1318  SDValue Flag;
1319
1320  SmallVector<SDValue, 6> RetOps;
1321  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1322  // Operand #1 = Bytes To Pop
1323  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1324                   MVT::i16));
1325
1326  // Copy the result values into the output registers.
1327  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1328    CCValAssign &VA = RVLocs[i];
1329    assert(VA.isRegLoc() && "Can only return in registers!");
1330    SDValue ValToCopy = OutVals[i];
1331    EVT ValVT = ValToCopy.getValueType();
1332
1333    // If this is x86-64, and we disabled SSE, we can't return FP values,
1334    // or SSE or MMX vectors.
1335    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1336         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1337          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1338      report_fatal_error("SSE register return with SSE disabled");
1339    }
1340    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1341    // llvm-gcc has never done it right and no one has noticed, so this
1342    // should be OK for now.
1343    if (ValVT == MVT::f64 &&
1344        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1345      report_fatal_error("SSE2 register return with SSE2 disabled");
1346
1347    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1348    // the RET instruction and handled by the FP Stackifier.
1349    if (VA.getLocReg() == X86::ST0 ||
1350        VA.getLocReg() == X86::ST1) {
1351      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1352      // change the value to the FP stack register class.
1353      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1354        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1355      RetOps.push_back(ValToCopy);
1356      // Don't emit a copytoreg.
1357      continue;
1358    }
1359
1360    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1361    // which is returned in RAX / RDX.
1362    if (Subtarget->is64Bit()) {
1363      if (ValVT == MVT::x86mmx) {
1364        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1365          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1366          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1367                                  ValToCopy);
1368          // If we don't have SSE2 available, convert to v4f32 so the generated
1369          // register is legal.
1370          if (!Subtarget->hasSSE2())
1371            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1372        }
1373      }
1374    }
1375
1376    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1377    Flag = Chain.getValue(1);
1378  }
1379
1380  // The x86-64 ABI for returning structs by value requires that we copy
1381  // the sret argument into %rax for the return. We saved the argument into
1382  // a virtual register in the entry block, so now we copy the value out
1383  // and into %rax.
1384  if (Subtarget->is64Bit() &&
1385      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1386    MachineFunction &MF = DAG.getMachineFunction();
1387    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1388    unsigned Reg = FuncInfo->getSRetReturnReg();
1389    assert(Reg &&
1390           "SRetReturnReg should have been set in LowerFormalArguments().");
1391    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1392
1393    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1394    Flag = Chain.getValue(1);
1395
1396    // RAX now acts like a return value.
1397    MRI.addLiveOut(X86::RAX);
1398  }
1399
1400  RetOps[0] = Chain;  // Update chain.
1401
1402  // Add the flag if we have it.
1403  if (Flag.getNode())
1404    RetOps.push_back(Flag);
1405
1406  return DAG.getNode(X86ISD::RET_FLAG, dl,
1407                     MVT::Other, &RetOps[0], RetOps.size());
1408}
1409
1410bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1411  if (N->getNumValues() != 1)
1412    return false;
1413  if (!N->hasNUsesOfValue(1, 0))
1414    return false;
1415
1416  SDNode *Copy = *N->use_begin();
1417  if (Copy->getOpcode() != ISD::CopyToReg &&
1418      Copy->getOpcode() != ISD::FP_EXTEND)
1419    return false;
1420
1421  bool HasRet = false;
1422  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1423       UI != UE; ++UI) {
1424    if (UI->getOpcode() != X86ISD::RET_FLAG)
1425      return false;
1426    HasRet = true;
1427  }
1428
1429  return HasRet;
1430}
1431
1432EVT
1433X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1434                                            ISD::NodeType ExtendKind) const {
1435  MVT ReturnMVT;
1436  // TODO: Is this also valid on 32-bit?
1437  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1438    ReturnMVT = MVT::i8;
1439  else
1440    ReturnMVT = MVT::i32;
1441
1442  EVT MinVT = getRegisterType(Context, ReturnMVT);
1443  return VT.bitsLT(MinVT) ? MinVT : VT;
1444}
1445
1446/// LowerCallResult - Lower the result values of a call into the
1447/// appropriate copies out of appropriate physical registers.
1448///
1449SDValue
1450X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1451                                   CallingConv::ID CallConv, bool isVarArg,
1452                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1453                                   DebugLoc dl, SelectionDAG &DAG,
1454                                   SmallVectorImpl<SDValue> &InVals) const {
1455
1456  // Assign locations to each value returned by this call.
1457  SmallVector<CCValAssign, 16> RVLocs;
1458  bool Is64Bit = Subtarget->is64Bit();
1459  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1460		 getTargetMachine(), RVLocs, *DAG.getContext());
1461  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1462
1463  // Copy all of the result registers out of their specified physreg.
1464  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1465    CCValAssign &VA = RVLocs[i];
1466    EVT CopyVT = VA.getValVT();
1467
1468    // If this is x86-64, and we disabled SSE, we can't return FP values
1469    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1470        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1471      report_fatal_error("SSE register return with SSE disabled");
1472    }
1473
1474    SDValue Val;
1475
1476    // If this is a call to a function that returns an fp value on the floating
1477    // point stack, we must guarantee the the value is popped from the stack, so
1478    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1479    // if the return value is not used. We use the FpPOP_RETVAL instruction
1480    // instead.
1481    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1482      // If we prefer to use the value in xmm registers, copy it out as f80 and
1483      // use a truncate to move it from fp stack reg to xmm reg.
1484      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1485      SDValue Ops[] = { Chain, InFlag };
1486      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1487                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1488      Val = Chain.getValue(0);
1489
1490      // Round the f80 to the right size, which also moves it to the appropriate
1491      // xmm register.
1492      if (CopyVT != VA.getValVT())
1493        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1494                          // This truncation won't change the value.
1495                          DAG.getIntPtrConstant(1));
1496    } else {
1497      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1498                                 CopyVT, InFlag).getValue(1);
1499      Val = Chain.getValue(0);
1500    }
1501    InFlag = Chain.getValue(2);
1502    InVals.push_back(Val);
1503  }
1504
1505  return Chain;
1506}
1507
1508
1509//===----------------------------------------------------------------------===//
1510//                C & StdCall & Fast Calling Convention implementation
1511//===----------------------------------------------------------------------===//
1512//  StdCall calling convention seems to be standard for many Windows' API
1513//  routines and around. It differs from C calling convention just a little:
1514//  callee should clean up the stack, not caller. Symbols should be also
1515//  decorated in some fancy way :) It doesn't support any vector arguments.
1516//  For info on fast calling convention see Fast Calling Convention (tail call)
1517//  implementation LowerX86_32FastCCCallTo.
1518
1519/// CallIsStructReturn - Determines whether a call uses struct return
1520/// semantics.
1521static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1522  if (Outs.empty())
1523    return false;
1524
1525  return Outs[0].Flags.isSRet();
1526}
1527
1528/// ArgsAreStructReturn - Determines whether a function uses struct
1529/// return semantics.
1530static bool
1531ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1532  if (Ins.empty())
1533    return false;
1534
1535  return Ins[0].Flags.isSRet();
1536}
1537
1538/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1539/// by "Src" to address "Dst" with size and alignment information specified by
1540/// the specific parameter attribute. The copy will be passed as a byval
1541/// function parameter.
1542static SDValue
1543CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1544                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1545                          DebugLoc dl) {
1546  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1547
1548  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1549                       /*isVolatile*/false, /*AlwaysInline=*/true,
1550                       MachinePointerInfo(), MachinePointerInfo());
1551}
1552
1553/// IsTailCallConvention - Return true if the calling convention is one that
1554/// supports tail call optimization.
1555static bool IsTailCallConvention(CallingConv::ID CC) {
1556  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1557}
1558
1559bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1560  if (!CI->isTailCall())
1561    return false;
1562
1563  CallSite CS(CI);
1564  CallingConv::ID CalleeCC = CS.getCallingConv();
1565  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1566    return false;
1567
1568  return true;
1569}
1570
1571/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1572/// a tailcall target by changing its ABI.
1573static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1574  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1575}
1576
1577SDValue
1578X86TargetLowering::LowerMemArgument(SDValue Chain,
1579                                    CallingConv::ID CallConv,
1580                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1581                                    DebugLoc dl, SelectionDAG &DAG,
1582                                    const CCValAssign &VA,
1583                                    MachineFrameInfo *MFI,
1584                                    unsigned i) const {
1585  // Create the nodes corresponding to a load from this parameter slot.
1586  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1587  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1588  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1589  EVT ValVT;
1590
1591  // If value is passed by pointer we have address passed instead of the value
1592  // itself.
1593  if (VA.getLocInfo() == CCValAssign::Indirect)
1594    ValVT = VA.getLocVT();
1595  else
1596    ValVT = VA.getValVT();
1597
1598  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1599  // changed with more analysis.
1600  // In case of tail call optimization mark all arguments mutable. Since they
1601  // could be overwritten by lowering of arguments in case of a tail call.
1602  if (Flags.isByVal()) {
1603    unsigned Bytes = Flags.getByValSize();
1604    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1605    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1606    return DAG.getFrameIndex(FI, getPointerTy());
1607  } else {
1608    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1609                                    VA.getLocMemOffset(), isImmutable);
1610    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1611    return DAG.getLoad(ValVT, dl, Chain, FIN,
1612                       MachinePointerInfo::getFixedStack(FI),
1613                       false, false, 0);
1614  }
1615}
1616
1617SDValue
1618X86TargetLowering::LowerFormalArguments(SDValue Chain,
1619                                        CallingConv::ID CallConv,
1620                                        bool isVarArg,
1621                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1622                                        DebugLoc dl,
1623                                        SelectionDAG &DAG,
1624                                        SmallVectorImpl<SDValue> &InVals)
1625                                          const {
1626  MachineFunction &MF = DAG.getMachineFunction();
1627  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1628
1629  const Function* Fn = MF.getFunction();
1630  if (Fn->hasExternalLinkage() &&
1631      Subtarget->isTargetCygMing() &&
1632      Fn->getName() == "main")
1633    FuncInfo->setForceFramePointer(true);
1634
1635  MachineFrameInfo *MFI = MF.getFrameInfo();
1636  bool Is64Bit = Subtarget->is64Bit();
1637  bool IsWin64 = Subtarget->isTargetWin64();
1638
1639  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1640         "Var args not supported with calling convention fastcc or ghc");
1641
1642  // Assign locations to all of the incoming arguments.
1643  SmallVector<CCValAssign, 16> ArgLocs;
1644  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1645                 ArgLocs, *DAG.getContext());
1646
1647  // Allocate shadow area for Win64
1648  if (IsWin64) {
1649    CCInfo.AllocateStack(32, 8);
1650  }
1651
1652  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1653
1654  unsigned LastVal = ~0U;
1655  SDValue ArgValue;
1656  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1657    CCValAssign &VA = ArgLocs[i];
1658    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1659    // places.
1660    assert(VA.getValNo() != LastVal &&
1661           "Don't support value assigned to multiple locs yet");
1662    LastVal = VA.getValNo();
1663
1664    if (VA.isRegLoc()) {
1665      EVT RegVT = VA.getLocVT();
1666      TargetRegisterClass *RC = NULL;
1667      if (RegVT == MVT::i32)
1668        RC = X86::GR32RegisterClass;
1669      else if (Is64Bit && RegVT == MVT::i64)
1670        RC = X86::GR64RegisterClass;
1671      else if (RegVT == MVT::f32)
1672        RC = X86::FR32RegisterClass;
1673      else if (RegVT == MVT::f64)
1674        RC = X86::FR64RegisterClass;
1675      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1676        RC = X86::VR256RegisterClass;
1677      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1678        RC = X86::VR128RegisterClass;
1679      else if (RegVT == MVT::x86mmx)
1680        RC = X86::VR64RegisterClass;
1681      else
1682        llvm_unreachable("Unknown argument type!");
1683
1684      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1685      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1686
1687      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1688      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1689      // right size.
1690      if (VA.getLocInfo() == CCValAssign::SExt)
1691        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1692                               DAG.getValueType(VA.getValVT()));
1693      else if (VA.getLocInfo() == CCValAssign::ZExt)
1694        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1695                               DAG.getValueType(VA.getValVT()));
1696      else if (VA.getLocInfo() == CCValAssign::BCvt)
1697        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1698
1699      if (VA.isExtInLoc()) {
1700        // Handle MMX values passed in XMM regs.
1701        if (RegVT.isVector()) {
1702          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1703                                 ArgValue);
1704        } else
1705          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1706      }
1707    } else {
1708      assert(VA.isMemLoc());
1709      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1710    }
1711
1712    // If value is passed via pointer - do a load.
1713    if (VA.getLocInfo() == CCValAssign::Indirect)
1714      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1715                             MachinePointerInfo(), false, false, 0);
1716
1717    InVals.push_back(ArgValue);
1718  }
1719
1720  // The x86-64 ABI for returning structs by value requires that we copy
1721  // the sret argument into %rax for the return. Save the argument into
1722  // a virtual register so that we can access it from the return points.
1723  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1724    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1725    unsigned Reg = FuncInfo->getSRetReturnReg();
1726    if (!Reg) {
1727      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1728      FuncInfo->setSRetReturnReg(Reg);
1729    }
1730    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1731    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1732  }
1733
1734  unsigned StackSize = CCInfo.getNextStackOffset();
1735  // Align stack specially for tail calls.
1736  if (FuncIsMadeTailCallSafe(CallConv))
1737    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1738
1739  // If the function takes variable number of arguments, make a frame index for
1740  // the start of the first vararg value... for expansion of llvm.va_start.
1741  if (isVarArg) {
1742    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1743                    CallConv != CallingConv::X86_ThisCall)) {
1744      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1745    }
1746    if (Is64Bit) {
1747      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1748
1749      // FIXME: We should really autogenerate these arrays
1750      static const unsigned GPR64ArgRegsWin64[] = {
1751        X86::RCX, X86::RDX, X86::R8,  X86::R9
1752      };
1753      static const unsigned GPR64ArgRegs64Bit[] = {
1754        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1755      };
1756      static const unsigned XMMArgRegs64Bit[] = {
1757        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1758        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1759      };
1760      const unsigned *GPR64ArgRegs;
1761      unsigned NumXMMRegs = 0;
1762
1763      if (IsWin64) {
1764        // The XMM registers which might contain var arg parameters are shadowed
1765        // in their paired GPR.  So we only need to save the GPR to their home
1766        // slots.
1767        TotalNumIntRegs = 4;
1768        GPR64ArgRegs = GPR64ArgRegsWin64;
1769      } else {
1770        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1771        GPR64ArgRegs = GPR64ArgRegs64Bit;
1772
1773        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1774      }
1775      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1776                                                       TotalNumIntRegs);
1777
1778      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1779      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1780             "SSE register cannot be used when SSE is disabled!");
1781      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1782             "SSE register cannot be used when SSE is disabled!");
1783      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1784        // Kernel mode asks for SSE to be disabled, so don't push them
1785        // on the stack.
1786        TotalNumXMMRegs = 0;
1787
1788      if (IsWin64) {
1789        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1790        // Get to the caller-allocated home save location.  Add 8 to account
1791        // for the return address.
1792        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1793        FuncInfo->setRegSaveFrameIndex(
1794          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1795        // Fixup to set vararg frame on shadow area (4 x i64).
1796        if (NumIntRegs < 4)
1797          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1798      } else {
1799        // For X86-64, if there are vararg parameters that are passed via
1800        // registers, then we must store them to their spots on the stack so they
1801        // may be loaded by deferencing the result of va_next.
1802        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1803        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1804        FuncInfo->setRegSaveFrameIndex(
1805          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1806                               false));
1807      }
1808
1809      // Store the integer parameter registers.
1810      SmallVector<SDValue, 8> MemOps;
1811      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1812                                        getPointerTy());
1813      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1814      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1815        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1816                                  DAG.getIntPtrConstant(Offset));
1817        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1818                                     X86::GR64RegisterClass);
1819        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1820        SDValue Store =
1821          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1822                       MachinePointerInfo::getFixedStack(
1823                         FuncInfo->getRegSaveFrameIndex(), Offset),
1824                       false, false, 0);
1825        MemOps.push_back(Store);
1826        Offset += 8;
1827      }
1828
1829      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1830        // Now store the XMM (fp + vector) parameter registers.
1831        SmallVector<SDValue, 11> SaveXMMOps;
1832        SaveXMMOps.push_back(Chain);
1833
1834        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1835        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1836        SaveXMMOps.push_back(ALVal);
1837
1838        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1839                               FuncInfo->getRegSaveFrameIndex()));
1840        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1841                               FuncInfo->getVarArgsFPOffset()));
1842
1843        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1844          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1845                                       X86::VR128RegisterClass);
1846          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1847          SaveXMMOps.push_back(Val);
1848        }
1849        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1850                                     MVT::Other,
1851                                     &SaveXMMOps[0], SaveXMMOps.size()));
1852      }
1853
1854      if (!MemOps.empty())
1855        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1856                            &MemOps[0], MemOps.size());
1857    }
1858  }
1859
1860  // Some CCs need callee pop.
1861  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1862    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1863  } else {
1864    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1865    // If this is an sret function, the return should pop the hidden pointer.
1866    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1867      FuncInfo->setBytesToPopOnReturn(4);
1868  }
1869
1870  if (!Is64Bit) {
1871    // RegSaveFrameIndex is X86-64 only.
1872    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1873    if (CallConv == CallingConv::X86_FastCall ||
1874        CallConv == CallingConv::X86_ThisCall)
1875      // fastcc functions can't have varargs.
1876      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1877  }
1878
1879  return Chain;
1880}
1881
1882SDValue
1883X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1884                                    SDValue StackPtr, SDValue Arg,
1885                                    DebugLoc dl, SelectionDAG &DAG,
1886                                    const CCValAssign &VA,
1887                                    ISD::ArgFlagsTy Flags) const {
1888  unsigned LocMemOffset = VA.getLocMemOffset();
1889  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1890  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1891  if (Flags.isByVal())
1892    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1893
1894  return DAG.getStore(Chain, dl, Arg, PtrOff,
1895                      MachinePointerInfo::getStack(LocMemOffset),
1896                      false, false, 0);
1897}
1898
1899/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1900/// optimization is performed and it is required.
1901SDValue
1902X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1903                                           SDValue &OutRetAddr, SDValue Chain,
1904                                           bool IsTailCall, bool Is64Bit,
1905                                           int FPDiff, DebugLoc dl) const {
1906  // Adjust the Return address stack slot.
1907  EVT VT = getPointerTy();
1908  OutRetAddr = getReturnAddressFrameIndex(DAG);
1909
1910  // Load the "old" Return address.
1911  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1912                           false, false, 0);
1913  return SDValue(OutRetAddr.getNode(), 1);
1914}
1915
1916/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
1917/// optimization is performed and it is required (FPDiff!=0).
1918static SDValue
1919EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1920                         SDValue Chain, SDValue RetAddrFrIdx,
1921                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1922  // Store the return address to the appropriate stack slot.
1923  if (!FPDiff) return Chain;
1924  // Calculate the new stack slot for the return address.
1925  int SlotSize = Is64Bit ? 8 : 4;
1926  int NewReturnAddrFI =
1927    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1928  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1929  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1930  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1931                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1932                       false, false, 0);
1933  return Chain;
1934}
1935
1936SDValue
1937X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1938                             CallingConv::ID CallConv, bool isVarArg,
1939                             bool &isTailCall,
1940                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1941                             const SmallVectorImpl<SDValue> &OutVals,
1942                             const SmallVectorImpl<ISD::InputArg> &Ins,
1943                             DebugLoc dl, SelectionDAG &DAG,
1944                             SmallVectorImpl<SDValue> &InVals) const {
1945  MachineFunction &MF = DAG.getMachineFunction();
1946  bool Is64Bit        = Subtarget->is64Bit();
1947  bool IsWin64        = Subtarget->isTargetWin64();
1948  bool IsStructRet    = CallIsStructReturn(Outs);
1949  bool IsSibcall      = false;
1950
1951  if (isTailCall) {
1952    // Check if it's really possible to do a tail call.
1953    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1954                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1955                                                   Outs, OutVals, Ins, DAG);
1956
1957    // Sibcalls are automatically detected tailcalls which do not require
1958    // ABI changes.
1959    if (!GuaranteedTailCallOpt && isTailCall)
1960      IsSibcall = true;
1961
1962    if (isTailCall)
1963      ++NumTailCalls;
1964  }
1965
1966  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1967         "Var args not supported with calling convention fastcc or ghc");
1968
1969  // Analyze operands of the call, assigning locations to each operand.
1970  SmallVector<CCValAssign, 16> ArgLocs;
1971  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1972                 ArgLocs, *DAG.getContext());
1973
1974  // Allocate shadow area for Win64
1975  if (IsWin64) {
1976    CCInfo.AllocateStack(32, 8);
1977  }
1978
1979  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1980
1981  // Get a count of how many bytes are to be pushed on the stack.
1982  unsigned NumBytes = CCInfo.getNextStackOffset();
1983  if (IsSibcall)
1984    // This is a sibcall. The memory operands are available in caller's
1985    // own caller's stack.
1986    NumBytes = 0;
1987  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1988    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1989
1990  int FPDiff = 0;
1991  if (isTailCall && !IsSibcall) {
1992    // Lower arguments at fp - stackoffset + fpdiff.
1993    unsigned NumBytesCallerPushed =
1994      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1995    FPDiff = NumBytesCallerPushed - NumBytes;
1996
1997    // Set the delta of movement of the returnaddr stackslot.
1998    // But only set if delta is greater than previous delta.
1999    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2000      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2001  }
2002
2003  if (!IsSibcall)
2004    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2005
2006  SDValue RetAddrFrIdx;
2007  // Load return address for tail calls.
2008  if (isTailCall && FPDiff)
2009    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2010                                    Is64Bit, FPDiff, dl);
2011
2012  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2013  SmallVector<SDValue, 8> MemOpChains;
2014  SDValue StackPtr;
2015
2016  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2017  // of tail call optimization arguments are handle later.
2018  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2019    CCValAssign &VA = ArgLocs[i];
2020    EVT RegVT = VA.getLocVT();
2021    SDValue Arg = OutVals[i];
2022    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2023    bool isByVal = Flags.isByVal();
2024
2025    // Promote the value if needed.
2026    switch (VA.getLocInfo()) {
2027    default: llvm_unreachable("Unknown loc info!");
2028    case CCValAssign::Full: break;
2029    case CCValAssign::SExt:
2030      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2031      break;
2032    case CCValAssign::ZExt:
2033      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2034      break;
2035    case CCValAssign::AExt:
2036      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2037        // Special case: passing MMX values in XMM registers.
2038        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2039        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2040        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2041      } else
2042        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2043      break;
2044    case CCValAssign::BCvt:
2045      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2046      break;
2047    case CCValAssign::Indirect: {
2048      // Store the argument.
2049      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2050      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2051      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2052                           MachinePointerInfo::getFixedStack(FI),
2053                           false, false, 0);
2054      Arg = SpillSlot;
2055      break;
2056    }
2057    }
2058
2059    if (VA.isRegLoc()) {
2060      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2061      if (isVarArg && IsWin64) {
2062        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2063        // shadow reg if callee is a varargs function.
2064        unsigned ShadowReg = 0;
2065        switch (VA.getLocReg()) {
2066        case X86::XMM0: ShadowReg = X86::RCX; break;
2067        case X86::XMM1: ShadowReg = X86::RDX; break;
2068        case X86::XMM2: ShadowReg = X86::R8; break;
2069        case X86::XMM3: ShadowReg = X86::R9; break;
2070        }
2071        if (ShadowReg)
2072          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2073      }
2074    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2075      assert(VA.isMemLoc());
2076      if (StackPtr.getNode() == 0)
2077        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2078      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2079                                             dl, DAG, VA, Flags));
2080    }
2081  }
2082
2083  if (!MemOpChains.empty())
2084    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2085                        &MemOpChains[0], MemOpChains.size());
2086
2087  // Build a sequence of copy-to-reg nodes chained together with token chain
2088  // and flag operands which copy the outgoing args into registers.
2089  SDValue InFlag;
2090  // Tail call byval lowering might overwrite argument registers so in case of
2091  // tail call optimization the copies to registers are lowered later.
2092  if (!isTailCall)
2093    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2094      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2095                               RegsToPass[i].second, InFlag);
2096      InFlag = Chain.getValue(1);
2097    }
2098
2099  if (Subtarget->isPICStyleGOT()) {
2100    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2101    // GOT pointer.
2102    if (!isTailCall) {
2103      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2104                               DAG.getNode(X86ISD::GlobalBaseReg,
2105                                           DebugLoc(), getPointerTy()),
2106                               InFlag);
2107      InFlag = Chain.getValue(1);
2108    } else {
2109      // If we are tail calling and generating PIC/GOT style code load the
2110      // address of the callee into ECX. The value in ecx is used as target of
2111      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2112      // for tail calls on PIC/GOT architectures. Normally we would just put the
2113      // address of GOT into ebx and then call target@PLT. But for tail calls
2114      // ebx would be restored (since ebx is callee saved) before jumping to the
2115      // target@PLT.
2116
2117      // Note: The actual moving to ECX is done further down.
2118      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2119      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2120          !G->getGlobal()->hasProtectedVisibility())
2121        Callee = LowerGlobalAddress(Callee, DAG);
2122      else if (isa<ExternalSymbolSDNode>(Callee))
2123        Callee = LowerExternalSymbol(Callee, DAG);
2124    }
2125  }
2126
2127  if (Is64Bit && isVarArg && !IsWin64) {
2128    // From AMD64 ABI document:
2129    // For calls that may call functions that use varargs or stdargs
2130    // (prototype-less calls or calls to functions containing ellipsis (...) in
2131    // the declaration) %al is used as hidden argument to specify the number
2132    // of SSE registers used. The contents of %al do not need to match exactly
2133    // the number of registers, but must be an ubound on the number of SSE
2134    // registers used and is in the range 0 - 8 inclusive.
2135
2136    // Count the number of XMM registers allocated.
2137    static const unsigned XMMArgRegs[] = {
2138      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2139      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2140    };
2141    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2142    assert((Subtarget->hasXMM() || !NumXMMRegs)
2143           && "SSE registers cannot be used when SSE is disabled");
2144
2145    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2146                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2147    InFlag = Chain.getValue(1);
2148  }
2149
2150
2151  // For tail calls lower the arguments to the 'real' stack slot.
2152  if (isTailCall) {
2153    // Force all the incoming stack arguments to be loaded from the stack
2154    // before any new outgoing arguments are stored to the stack, because the
2155    // outgoing stack slots may alias the incoming argument stack slots, and
2156    // the alias isn't otherwise explicit. This is slightly more conservative
2157    // than necessary, because it means that each store effectively depends
2158    // on every argument instead of just those arguments it would clobber.
2159    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2160
2161    SmallVector<SDValue, 8> MemOpChains2;
2162    SDValue FIN;
2163    int FI = 0;
2164    // Do not flag preceding copytoreg stuff together with the following stuff.
2165    InFlag = SDValue();
2166    if (GuaranteedTailCallOpt) {
2167      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2168        CCValAssign &VA = ArgLocs[i];
2169        if (VA.isRegLoc())
2170          continue;
2171        assert(VA.isMemLoc());
2172        SDValue Arg = OutVals[i];
2173        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2174        // Create frame index.
2175        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2176        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2177        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2178        FIN = DAG.getFrameIndex(FI, getPointerTy());
2179
2180        if (Flags.isByVal()) {
2181          // Copy relative to framepointer.
2182          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2183          if (StackPtr.getNode() == 0)
2184            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2185                                          getPointerTy());
2186          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2187
2188          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2189                                                           ArgChain,
2190                                                           Flags, DAG, dl));
2191        } else {
2192          // Store relative to framepointer.
2193          MemOpChains2.push_back(
2194            DAG.getStore(ArgChain, dl, Arg, FIN,
2195                         MachinePointerInfo::getFixedStack(FI),
2196                         false, false, 0));
2197        }
2198      }
2199    }
2200
2201    if (!MemOpChains2.empty())
2202      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2203                          &MemOpChains2[0], MemOpChains2.size());
2204
2205    // Copy arguments to their registers.
2206    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2207      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2208                               RegsToPass[i].second, InFlag);
2209      InFlag = Chain.getValue(1);
2210    }
2211    InFlag =SDValue();
2212
2213    // Store the return address to the appropriate stack slot.
2214    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2215                                     FPDiff, dl);
2216  }
2217
2218  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2219    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2220    // In the 64-bit large code model, we have to make all calls
2221    // through a register, since the call instruction's 32-bit
2222    // pc-relative offset may not be large enough to hold the whole
2223    // address.
2224  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2225    // If the callee is a GlobalAddress node (quite common, every direct call
2226    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2227    // it.
2228
2229    // We should use extra load for direct calls to dllimported functions in
2230    // non-JIT mode.
2231    const GlobalValue *GV = G->getGlobal();
2232    if (!GV->hasDLLImportLinkage()) {
2233      unsigned char OpFlags = 0;
2234      bool ExtraLoad = false;
2235      unsigned WrapperKind = ISD::DELETED_NODE;
2236
2237      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2238      // external symbols most go through the PLT in PIC mode.  If the symbol
2239      // has hidden or protected visibility, or if it is static or local, then
2240      // we don't need to use the PLT - we can directly call it.
2241      if (Subtarget->isTargetELF() &&
2242          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2243          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2244        OpFlags = X86II::MO_PLT;
2245      } else if (Subtarget->isPICStyleStubAny() &&
2246                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2247                 (!Subtarget->getTargetTriple().isMacOSX() ||
2248                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2249        // PC-relative references to external symbols should go through $stub,
2250        // unless we're building with the leopard linker or later, which
2251        // automatically synthesizes these stubs.
2252        OpFlags = X86II::MO_DARWIN_STUB;
2253      } else if (Subtarget->isPICStyleRIPRel() &&
2254                 isa<Function>(GV) &&
2255                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2256        // If the function is marked as non-lazy, generate an indirect call
2257        // which loads from the GOT directly. This avoids runtime overhead
2258        // at the cost of eager binding (and one extra byte of encoding).
2259        OpFlags = X86II::MO_GOTPCREL;
2260        WrapperKind = X86ISD::WrapperRIP;
2261        ExtraLoad = true;
2262      }
2263
2264      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2265                                          G->getOffset(), OpFlags);
2266
2267      // Add a wrapper if needed.
2268      if (WrapperKind != ISD::DELETED_NODE)
2269        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2270      // Add extra indirection if needed.
2271      if (ExtraLoad)
2272        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2273                             MachinePointerInfo::getGOT(),
2274                             false, false, 0);
2275    }
2276  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2277    unsigned char OpFlags = 0;
2278
2279    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2280    // external symbols should go through the PLT.
2281    if (Subtarget->isTargetELF() &&
2282        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2283      OpFlags = X86II::MO_PLT;
2284    } else if (Subtarget->isPICStyleStubAny() &&
2285               (!Subtarget->getTargetTriple().isMacOSX() ||
2286                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2287      // PC-relative references to external symbols should go through $stub,
2288      // unless we're building with the leopard linker or later, which
2289      // automatically synthesizes these stubs.
2290      OpFlags = X86II::MO_DARWIN_STUB;
2291    }
2292
2293    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2294                                         OpFlags);
2295  }
2296
2297  // Returns a chain & a flag for retval copy to use.
2298  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2299  SmallVector<SDValue, 8> Ops;
2300
2301  if (!IsSibcall && isTailCall) {
2302    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2303                           DAG.getIntPtrConstant(0, true), InFlag);
2304    InFlag = Chain.getValue(1);
2305  }
2306
2307  Ops.push_back(Chain);
2308  Ops.push_back(Callee);
2309
2310  if (isTailCall)
2311    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2312
2313  // Add argument registers to the end of the list so that they are known live
2314  // into the call.
2315  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2316    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2317                                  RegsToPass[i].second.getValueType()));
2318
2319  // Add an implicit use GOT pointer in EBX.
2320  if (!isTailCall && Subtarget->isPICStyleGOT())
2321    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2322
2323  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2324  if (Is64Bit && isVarArg && !IsWin64)
2325    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2326
2327  if (InFlag.getNode())
2328    Ops.push_back(InFlag);
2329
2330  if (isTailCall) {
2331    // We used to do:
2332    //// If this is the first return lowered for this function, add the regs
2333    //// to the liveout set for the function.
2334    // This isn't right, although it's probably harmless on x86; liveouts
2335    // should be computed from returns not tail calls.  Consider a void
2336    // function making a tail call to a function returning int.
2337    return DAG.getNode(X86ISD::TC_RETURN, dl,
2338                       NodeTys, &Ops[0], Ops.size());
2339  }
2340
2341  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2342  InFlag = Chain.getValue(1);
2343
2344  // Create the CALLSEQ_END node.
2345  unsigned NumBytesForCalleeToPush;
2346  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2347    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2348  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2349    // If this is a call to a struct-return function, the callee
2350    // pops the hidden struct pointer, so we have to push it back.
2351    // This is common for Darwin/X86, Linux & Mingw32 targets.
2352    NumBytesForCalleeToPush = 4;
2353  else
2354    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2355
2356  // Returns a flag for retval copy to use.
2357  if (!IsSibcall) {
2358    Chain = DAG.getCALLSEQ_END(Chain,
2359                               DAG.getIntPtrConstant(NumBytes, true),
2360                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2361                                                     true),
2362                               InFlag);
2363    InFlag = Chain.getValue(1);
2364  }
2365
2366  // Handle result values, copying them out of physregs into vregs that we
2367  // return.
2368  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2369                         Ins, dl, DAG, InVals);
2370}
2371
2372
2373//===----------------------------------------------------------------------===//
2374//                Fast Calling Convention (tail call) implementation
2375//===----------------------------------------------------------------------===//
2376
2377//  Like std call, callee cleans arguments, convention except that ECX is
2378//  reserved for storing the tail called function address. Only 2 registers are
2379//  free for argument passing (inreg). Tail call optimization is performed
2380//  provided:
2381//                * tailcallopt is enabled
2382//                * caller/callee are fastcc
2383//  On X86_64 architecture with GOT-style position independent code only local
2384//  (within module) calls are supported at the moment.
2385//  To keep the stack aligned according to platform abi the function
2386//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2387//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2388//  If a tail called function callee has more arguments than the caller the
2389//  caller needs to make sure that there is room to move the RETADDR to. This is
2390//  achieved by reserving an area the size of the argument delta right after the
2391//  original REtADDR, but before the saved framepointer or the spilled registers
2392//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2393//  stack layout:
2394//    arg1
2395//    arg2
2396//    RETADDR
2397//    [ new RETADDR
2398//      move area ]
2399//    (possible EBP)
2400//    ESI
2401//    EDI
2402//    local1 ..
2403
2404/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2405/// for a 16 byte align requirement.
2406unsigned
2407X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2408                                               SelectionDAG& DAG) const {
2409  MachineFunction &MF = DAG.getMachineFunction();
2410  const TargetMachine &TM = MF.getTarget();
2411  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2412  unsigned StackAlignment = TFI.getStackAlignment();
2413  uint64_t AlignMask = StackAlignment - 1;
2414  int64_t Offset = StackSize;
2415  uint64_t SlotSize = TD->getPointerSize();
2416  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2417    // Number smaller than 12 so just add the difference.
2418    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2419  } else {
2420    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2421    Offset = ((~AlignMask) & Offset) + StackAlignment +
2422      (StackAlignment-SlotSize);
2423  }
2424  return Offset;
2425}
2426
2427/// MatchingStackOffset - Return true if the given stack call argument is
2428/// already available in the same position (relatively) of the caller's
2429/// incoming argument stack.
2430static
2431bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2432                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2433                         const X86InstrInfo *TII) {
2434  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2435  int FI = INT_MAX;
2436  if (Arg.getOpcode() == ISD::CopyFromReg) {
2437    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2438    if (!TargetRegisterInfo::isVirtualRegister(VR))
2439      return false;
2440    MachineInstr *Def = MRI->getVRegDef(VR);
2441    if (!Def)
2442      return false;
2443    if (!Flags.isByVal()) {
2444      if (!TII->isLoadFromStackSlot(Def, FI))
2445        return false;
2446    } else {
2447      unsigned Opcode = Def->getOpcode();
2448      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2449          Def->getOperand(1).isFI()) {
2450        FI = Def->getOperand(1).getIndex();
2451        Bytes = Flags.getByValSize();
2452      } else
2453        return false;
2454    }
2455  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2456    if (Flags.isByVal())
2457      // ByVal argument is passed in as a pointer but it's now being
2458      // dereferenced. e.g.
2459      // define @foo(%struct.X* %A) {
2460      //   tail call @bar(%struct.X* byval %A)
2461      // }
2462      return false;
2463    SDValue Ptr = Ld->getBasePtr();
2464    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2465    if (!FINode)
2466      return false;
2467    FI = FINode->getIndex();
2468  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2469    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2470    FI = FINode->getIndex();
2471    Bytes = Flags.getByValSize();
2472  } else
2473    return false;
2474
2475  assert(FI != INT_MAX);
2476  if (!MFI->isFixedObjectIndex(FI))
2477    return false;
2478  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2479}
2480
2481/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2482/// for tail call optimization. Targets which want to do tail call
2483/// optimization should implement this function.
2484bool
2485X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2486                                                     CallingConv::ID CalleeCC,
2487                                                     bool isVarArg,
2488                                                     bool isCalleeStructRet,
2489                                                     bool isCallerStructRet,
2490                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2491                                    const SmallVectorImpl<SDValue> &OutVals,
2492                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2493                                                     SelectionDAG& DAG) const {
2494  if (!IsTailCallConvention(CalleeCC) &&
2495      CalleeCC != CallingConv::C)
2496    return false;
2497
2498  // If -tailcallopt is specified, make fastcc functions tail-callable.
2499  const MachineFunction &MF = DAG.getMachineFunction();
2500  const Function *CallerF = DAG.getMachineFunction().getFunction();
2501  CallingConv::ID CallerCC = CallerF->getCallingConv();
2502  bool CCMatch = CallerCC == CalleeCC;
2503
2504  if (GuaranteedTailCallOpt) {
2505    if (IsTailCallConvention(CalleeCC) && CCMatch)
2506      return true;
2507    return false;
2508  }
2509
2510  // Look for obvious safe cases to perform tail call optimization that do not
2511  // require ABI changes. This is what gcc calls sibcall.
2512
2513  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2514  // emit a special epilogue.
2515  if (RegInfo->needsStackRealignment(MF))
2516    return false;
2517
2518  // Also avoid sibcall optimization if either caller or callee uses struct
2519  // return semantics.
2520  if (isCalleeStructRet || isCallerStructRet)
2521    return false;
2522
2523  // An stdcall caller is expected to clean up its arguments; the callee
2524  // isn't going to do that.
2525  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2526    return false;
2527
2528  // Do not sibcall optimize vararg calls unless all arguments are passed via
2529  // registers.
2530  if (isVarArg && !Outs.empty()) {
2531
2532    // Optimizing for varargs on Win64 is unlikely to be safe without
2533    // additional testing.
2534    if (Subtarget->isTargetWin64())
2535      return false;
2536
2537    SmallVector<CCValAssign, 16> ArgLocs;
2538    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2539		   getTargetMachine(), ArgLocs, *DAG.getContext());
2540
2541    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2542    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2543      if (!ArgLocs[i].isRegLoc())
2544        return false;
2545  }
2546
2547  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2548  // Therefore if it's not used by the call it is not safe to optimize this into
2549  // a sibcall.
2550  bool Unused = false;
2551  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2552    if (!Ins[i].Used) {
2553      Unused = true;
2554      break;
2555    }
2556  }
2557  if (Unused) {
2558    SmallVector<CCValAssign, 16> RVLocs;
2559    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2560		   getTargetMachine(), RVLocs, *DAG.getContext());
2561    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2562    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2563      CCValAssign &VA = RVLocs[i];
2564      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2565        return false;
2566    }
2567  }
2568
2569  // If the calling conventions do not match, then we'd better make sure the
2570  // results are returned in the same way as what the caller expects.
2571  if (!CCMatch) {
2572    SmallVector<CCValAssign, 16> RVLocs1;
2573    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2574		    getTargetMachine(), RVLocs1, *DAG.getContext());
2575    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2576
2577    SmallVector<CCValAssign, 16> RVLocs2;
2578    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2579		    getTargetMachine(), RVLocs2, *DAG.getContext());
2580    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2581
2582    if (RVLocs1.size() != RVLocs2.size())
2583      return false;
2584    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2585      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2586        return false;
2587      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2588        return false;
2589      if (RVLocs1[i].isRegLoc()) {
2590        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2591          return false;
2592      } else {
2593        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2594          return false;
2595      }
2596    }
2597  }
2598
2599  // If the callee takes no arguments then go on to check the results of the
2600  // call.
2601  if (!Outs.empty()) {
2602    // Check if stack adjustment is needed. For now, do not do this if any
2603    // argument is passed on the stack.
2604    SmallVector<CCValAssign, 16> ArgLocs;
2605    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2606		   getTargetMachine(), ArgLocs, *DAG.getContext());
2607
2608    // Allocate shadow area for Win64
2609    if (Subtarget->isTargetWin64()) {
2610      CCInfo.AllocateStack(32, 8);
2611    }
2612
2613    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2614    if (CCInfo.getNextStackOffset()) {
2615      MachineFunction &MF = DAG.getMachineFunction();
2616      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2617        return false;
2618
2619      // Check if the arguments are already laid out in the right way as
2620      // the caller's fixed stack objects.
2621      MachineFrameInfo *MFI = MF.getFrameInfo();
2622      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2623      const X86InstrInfo *TII =
2624        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2625      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2626        CCValAssign &VA = ArgLocs[i];
2627        SDValue Arg = OutVals[i];
2628        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2629        if (VA.getLocInfo() == CCValAssign::Indirect)
2630          return false;
2631        if (!VA.isRegLoc()) {
2632          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2633                                   MFI, MRI, TII))
2634            return false;
2635        }
2636      }
2637    }
2638
2639    // If the tailcall address may be in a register, then make sure it's
2640    // possible to register allocate for it. In 32-bit, the call address can
2641    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2642    // callee-saved registers are restored. These happen to be the same
2643    // registers used to pass 'inreg' arguments so watch out for those.
2644    if (!Subtarget->is64Bit() &&
2645        !isa<GlobalAddressSDNode>(Callee) &&
2646        !isa<ExternalSymbolSDNode>(Callee)) {
2647      unsigned NumInRegs = 0;
2648      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2649        CCValAssign &VA = ArgLocs[i];
2650        if (!VA.isRegLoc())
2651          continue;
2652        unsigned Reg = VA.getLocReg();
2653        switch (Reg) {
2654        default: break;
2655        case X86::EAX: case X86::EDX: case X86::ECX:
2656          if (++NumInRegs == 3)
2657            return false;
2658          break;
2659        }
2660      }
2661    }
2662  }
2663
2664  return true;
2665}
2666
2667FastISel *
2668X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2669  return X86::createFastISel(funcInfo);
2670}
2671
2672
2673//===----------------------------------------------------------------------===//
2674//                           Other Lowering Hooks
2675//===----------------------------------------------------------------------===//
2676
2677static bool MayFoldLoad(SDValue Op) {
2678  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2679}
2680
2681static bool MayFoldIntoStore(SDValue Op) {
2682  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2683}
2684
2685static bool isTargetShuffle(unsigned Opcode) {
2686  switch(Opcode) {
2687  default: return false;
2688  case X86ISD::PSHUFD:
2689  case X86ISD::PSHUFHW:
2690  case X86ISD::PSHUFLW:
2691  case X86ISD::SHUFPD:
2692  case X86ISD::PALIGN:
2693  case X86ISD::SHUFPS:
2694  case X86ISD::MOVLHPS:
2695  case X86ISD::MOVLHPD:
2696  case X86ISD::MOVHLPS:
2697  case X86ISD::MOVLPS:
2698  case X86ISD::MOVLPD:
2699  case X86ISD::MOVSHDUP:
2700  case X86ISD::MOVSLDUP:
2701  case X86ISD::MOVDDUP:
2702  case X86ISD::MOVSS:
2703  case X86ISD::MOVSD:
2704  case X86ISD::UNPCKLPS:
2705  case X86ISD::UNPCKLPD:
2706  case X86ISD::VUNPCKLPSY:
2707  case X86ISD::VUNPCKLPDY:
2708  case X86ISD::PUNPCKLWD:
2709  case X86ISD::PUNPCKLBW:
2710  case X86ISD::PUNPCKLDQ:
2711  case X86ISD::PUNPCKLQDQ:
2712  case X86ISD::UNPCKHPS:
2713  case X86ISD::UNPCKHPD:
2714  case X86ISD::VUNPCKHPSY:
2715  case X86ISD::VUNPCKHPDY:
2716  case X86ISD::PUNPCKHWD:
2717  case X86ISD::PUNPCKHBW:
2718  case X86ISD::PUNPCKHDQ:
2719  case X86ISD::PUNPCKHQDQ:
2720  case X86ISD::VPERMILPS:
2721  case X86ISD::VPERMILPSY:
2722  case X86ISD::VPERMILPD:
2723  case X86ISD::VPERMILPDY:
2724    return true;
2725  }
2726  return false;
2727}
2728
2729static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2730                                               SDValue V1, SelectionDAG &DAG) {
2731  switch(Opc) {
2732  default: llvm_unreachable("Unknown x86 shuffle node");
2733  case X86ISD::MOVSHDUP:
2734  case X86ISD::MOVSLDUP:
2735  case X86ISD::MOVDDUP:
2736    return DAG.getNode(Opc, dl, VT, V1);
2737  }
2738
2739  return SDValue();
2740}
2741
2742static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2743                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2744  switch(Opc) {
2745  default: llvm_unreachable("Unknown x86 shuffle node");
2746  case X86ISD::PSHUFD:
2747  case X86ISD::PSHUFHW:
2748  case X86ISD::PSHUFLW:
2749  case X86ISD::VPERMILPS:
2750  case X86ISD::VPERMILPSY:
2751  case X86ISD::VPERMILPD:
2752  case X86ISD::VPERMILPDY:
2753    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2754  }
2755
2756  return SDValue();
2757}
2758
2759static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2760               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2761  switch(Opc) {
2762  default: llvm_unreachable("Unknown x86 shuffle node");
2763  case X86ISD::PALIGN:
2764  case X86ISD::SHUFPD:
2765  case X86ISD::SHUFPS:
2766    return DAG.getNode(Opc, dl, VT, V1, V2,
2767                       DAG.getConstant(TargetMask, MVT::i8));
2768  }
2769  return SDValue();
2770}
2771
2772static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2773                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2774  switch(Opc) {
2775  default: llvm_unreachable("Unknown x86 shuffle node");
2776  case X86ISD::MOVLHPS:
2777  case X86ISD::MOVLHPD:
2778  case X86ISD::MOVHLPS:
2779  case X86ISD::MOVLPS:
2780  case X86ISD::MOVLPD:
2781  case X86ISD::MOVSS:
2782  case X86ISD::MOVSD:
2783  case X86ISD::UNPCKLPS:
2784  case X86ISD::UNPCKLPD:
2785  case X86ISD::VUNPCKLPSY:
2786  case X86ISD::VUNPCKLPDY:
2787  case X86ISD::PUNPCKLWD:
2788  case X86ISD::PUNPCKLBW:
2789  case X86ISD::PUNPCKLDQ:
2790  case X86ISD::PUNPCKLQDQ:
2791  case X86ISD::UNPCKHPS:
2792  case X86ISD::UNPCKHPD:
2793  case X86ISD::VUNPCKHPSY:
2794  case X86ISD::VUNPCKHPDY:
2795  case X86ISD::PUNPCKHWD:
2796  case X86ISD::PUNPCKHBW:
2797  case X86ISD::PUNPCKHDQ:
2798  case X86ISD::PUNPCKHQDQ:
2799    return DAG.getNode(Opc, dl, VT, V1, V2);
2800  }
2801  return SDValue();
2802}
2803
2804SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2805  MachineFunction &MF = DAG.getMachineFunction();
2806  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2807  int ReturnAddrIndex = FuncInfo->getRAIndex();
2808
2809  if (ReturnAddrIndex == 0) {
2810    // Set up a frame object for the return address.
2811    uint64_t SlotSize = TD->getPointerSize();
2812    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2813                                                           false);
2814    FuncInfo->setRAIndex(ReturnAddrIndex);
2815  }
2816
2817  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2818}
2819
2820
2821bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2822                                       bool hasSymbolicDisplacement) {
2823  // Offset should fit into 32 bit immediate field.
2824  if (!isInt<32>(Offset))
2825    return false;
2826
2827  // If we don't have a symbolic displacement - we don't have any extra
2828  // restrictions.
2829  if (!hasSymbolicDisplacement)
2830    return true;
2831
2832  // FIXME: Some tweaks might be needed for medium code model.
2833  if (M != CodeModel::Small && M != CodeModel::Kernel)
2834    return false;
2835
2836  // For small code model we assume that latest object is 16MB before end of 31
2837  // bits boundary. We may also accept pretty large negative constants knowing
2838  // that all objects are in the positive half of address space.
2839  if (M == CodeModel::Small && Offset < 16*1024*1024)
2840    return true;
2841
2842  // For kernel code model we know that all object resist in the negative half
2843  // of 32bits address space. We may not accept negative offsets, since they may
2844  // be just off and we may accept pretty large positive ones.
2845  if (M == CodeModel::Kernel && Offset > 0)
2846    return true;
2847
2848  return false;
2849}
2850
2851/// isCalleePop - Determines whether the callee is required to pop its
2852/// own arguments. Callee pop is necessary to support tail calls.
2853bool X86::isCalleePop(CallingConv::ID CallingConv,
2854                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2855  if (IsVarArg)
2856    return false;
2857
2858  switch (CallingConv) {
2859  default:
2860    return false;
2861  case CallingConv::X86_StdCall:
2862    return !is64Bit;
2863  case CallingConv::X86_FastCall:
2864    return !is64Bit;
2865  case CallingConv::X86_ThisCall:
2866    return !is64Bit;
2867  case CallingConv::Fast:
2868    return TailCallOpt;
2869  case CallingConv::GHC:
2870    return TailCallOpt;
2871  }
2872}
2873
2874/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2875/// specific condition code, returning the condition code and the LHS/RHS of the
2876/// comparison to make.
2877static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2878                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2879  if (!isFP) {
2880    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2881      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2882        // X > -1   -> X == 0, jump !sign.
2883        RHS = DAG.getConstant(0, RHS.getValueType());
2884        return X86::COND_NS;
2885      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2886        // X < 0   -> X == 0, jump on sign.
2887        return X86::COND_S;
2888      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2889        // X < 1   -> X <= 0
2890        RHS = DAG.getConstant(0, RHS.getValueType());
2891        return X86::COND_LE;
2892      }
2893    }
2894
2895    switch (SetCCOpcode) {
2896    default: llvm_unreachable("Invalid integer condition!");
2897    case ISD::SETEQ:  return X86::COND_E;
2898    case ISD::SETGT:  return X86::COND_G;
2899    case ISD::SETGE:  return X86::COND_GE;
2900    case ISD::SETLT:  return X86::COND_L;
2901    case ISD::SETLE:  return X86::COND_LE;
2902    case ISD::SETNE:  return X86::COND_NE;
2903    case ISD::SETULT: return X86::COND_B;
2904    case ISD::SETUGT: return X86::COND_A;
2905    case ISD::SETULE: return X86::COND_BE;
2906    case ISD::SETUGE: return X86::COND_AE;
2907    }
2908  }
2909
2910  // First determine if it is required or is profitable to flip the operands.
2911
2912  // If LHS is a foldable load, but RHS is not, flip the condition.
2913  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2914      !ISD::isNON_EXTLoad(RHS.getNode())) {
2915    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2916    std::swap(LHS, RHS);
2917  }
2918
2919  switch (SetCCOpcode) {
2920  default: break;
2921  case ISD::SETOLT:
2922  case ISD::SETOLE:
2923  case ISD::SETUGT:
2924  case ISD::SETUGE:
2925    std::swap(LHS, RHS);
2926    break;
2927  }
2928
2929  // On a floating point condition, the flags are set as follows:
2930  // ZF  PF  CF   op
2931  //  0 | 0 | 0 | X > Y
2932  //  0 | 0 | 1 | X < Y
2933  //  1 | 0 | 0 | X == Y
2934  //  1 | 1 | 1 | unordered
2935  switch (SetCCOpcode) {
2936  default: llvm_unreachable("Condcode should be pre-legalized away");
2937  case ISD::SETUEQ:
2938  case ISD::SETEQ:   return X86::COND_E;
2939  case ISD::SETOLT:              // flipped
2940  case ISD::SETOGT:
2941  case ISD::SETGT:   return X86::COND_A;
2942  case ISD::SETOLE:              // flipped
2943  case ISD::SETOGE:
2944  case ISD::SETGE:   return X86::COND_AE;
2945  case ISD::SETUGT:              // flipped
2946  case ISD::SETULT:
2947  case ISD::SETLT:   return X86::COND_B;
2948  case ISD::SETUGE:              // flipped
2949  case ISD::SETULE:
2950  case ISD::SETLE:   return X86::COND_BE;
2951  case ISD::SETONE:
2952  case ISD::SETNE:   return X86::COND_NE;
2953  case ISD::SETUO:   return X86::COND_P;
2954  case ISD::SETO:    return X86::COND_NP;
2955  case ISD::SETOEQ:
2956  case ISD::SETUNE:  return X86::COND_INVALID;
2957  }
2958}
2959
2960/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2961/// code. Current x86 isa includes the following FP cmov instructions:
2962/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2963static bool hasFPCMov(unsigned X86CC) {
2964  switch (X86CC) {
2965  default:
2966    return false;
2967  case X86::COND_B:
2968  case X86::COND_BE:
2969  case X86::COND_E:
2970  case X86::COND_P:
2971  case X86::COND_A:
2972  case X86::COND_AE:
2973  case X86::COND_NE:
2974  case X86::COND_NP:
2975    return true;
2976  }
2977}
2978
2979/// isFPImmLegal - Returns true if the target can instruction select the
2980/// specified FP immediate natively. If false, the legalizer will
2981/// materialize the FP immediate as a load from a constant pool.
2982bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2983  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2984    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2985      return true;
2986  }
2987  return false;
2988}
2989
2990/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2991/// the specified range (L, H].
2992static bool isUndefOrInRange(int Val, int Low, int Hi) {
2993  return (Val < 0) || (Val >= Low && Val < Hi);
2994}
2995
2996/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2997/// specified value.
2998static bool isUndefOrEqual(int Val, int CmpVal) {
2999  if (Val < 0 || Val == CmpVal)
3000    return true;
3001  return false;
3002}
3003
3004/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3005/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3006/// the second operand.
3007static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3008  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3009    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3010  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3011    return (Mask[0] < 2 && Mask[1] < 2);
3012  return false;
3013}
3014
3015bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3016  SmallVector<int, 8> M;
3017  N->getMask(M);
3018  return ::isPSHUFDMask(M, N->getValueType(0));
3019}
3020
3021/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3022/// is suitable for input to PSHUFHW.
3023static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3024  if (VT != MVT::v8i16)
3025    return false;
3026
3027  // Lower quadword copied in order or undef.
3028  for (int i = 0; i != 4; ++i)
3029    if (Mask[i] >= 0 && Mask[i] != i)
3030      return false;
3031
3032  // Upper quadword shuffled.
3033  for (int i = 4; i != 8; ++i)
3034    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3035      return false;
3036
3037  return true;
3038}
3039
3040bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3041  SmallVector<int, 8> M;
3042  N->getMask(M);
3043  return ::isPSHUFHWMask(M, N->getValueType(0));
3044}
3045
3046/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3047/// is suitable for input to PSHUFLW.
3048static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3049  if (VT != MVT::v8i16)
3050    return false;
3051
3052  // Upper quadword copied in order.
3053  for (int i = 4; i != 8; ++i)
3054    if (Mask[i] >= 0 && Mask[i] != i)
3055      return false;
3056
3057  // Lower quadword shuffled.
3058  for (int i = 0; i != 4; ++i)
3059    if (Mask[i] >= 4)
3060      return false;
3061
3062  return true;
3063}
3064
3065bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3066  SmallVector<int, 8> M;
3067  N->getMask(M);
3068  return ::isPSHUFLWMask(M, N->getValueType(0));
3069}
3070
3071/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3072/// is suitable for input to PALIGNR.
3073static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3074                          bool hasSSSE3) {
3075  int i, e = VT.getVectorNumElements();
3076
3077  // Do not handle v2i64 / v2f64 shuffles with palignr.
3078  if (e < 4 || !hasSSSE3)
3079    return false;
3080
3081  for (i = 0; i != e; ++i)
3082    if (Mask[i] >= 0)
3083      break;
3084
3085  // All undef, not a palignr.
3086  if (i == e)
3087    return false;
3088
3089  // Make sure we're shifting in the right direction.
3090  if (Mask[i] <= i)
3091    return false;
3092
3093  int s = Mask[i] - i;
3094
3095  // Check the rest of the elements to see if they are consecutive.
3096  for (++i; i != e; ++i) {
3097    int m = Mask[i];
3098    if (m >= 0 && m != s+i)
3099      return false;
3100  }
3101  return true;
3102}
3103
3104bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
3105  SmallVector<int, 8> M;
3106  N->getMask(M);
3107  return ::isPALIGNRMask(M, N->getValueType(0), true);
3108}
3109
3110/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3111/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3112static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3113  int NumElems = VT.getVectorNumElements();
3114  if (NumElems != 2 && NumElems != 4)
3115    return false;
3116
3117  int Half = NumElems / 2;
3118  for (int i = 0; i < Half; ++i)
3119    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3120      return false;
3121  for (int i = Half; i < NumElems; ++i)
3122    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3123      return false;
3124
3125  return true;
3126}
3127
3128bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3129  SmallVector<int, 8> M;
3130  N->getMask(M);
3131  return ::isSHUFPMask(M, N->getValueType(0));
3132}
3133
3134/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3135/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3136/// half elements to come from vector 1 (which would equal the dest.) and
3137/// the upper half to come from vector 2.
3138static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3139  int NumElems = VT.getVectorNumElements();
3140
3141  if (NumElems != 2 && NumElems != 4)
3142    return false;
3143
3144  int Half = NumElems / 2;
3145  for (int i = 0; i < Half; ++i)
3146    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3147      return false;
3148  for (int i = Half; i < NumElems; ++i)
3149    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3150      return false;
3151  return true;
3152}
3153
3154static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3155  SmallVector<int, 8> M;
3156  N->getMask(M);
3157  return isCommutedSHUFPMask(M, N->getValueType(0));
3158}
3159
3160/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3161/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3162bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3163  if (N->getValueType(0).getVectorNumElements() != 4)
3164    return false;
3165
3166  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3167  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3168         isUndefOrEqual(N->getMaskElt(1), 7) &&
3169         isUndefOrEqual(N->getMaskElt(2), 2) &&
3170         isUndefOrEqual(N->getMaskElt(3), 3);
3171}
3172
3173/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3174/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3175/// <2, 3, 2, 3>
3176bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3177  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3178
3179  if (NumElems != 4)
3180    return false;
3181
3182  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3183  isUndefOrEqual(N->getMaskElt(1), 3) &&
3184  isUndefOrEqual(N->getMaskElt(2), 2) &&
3185  isUndefOrEqual(N->getMaskElt(3), 3);
3186}
3187
3188/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3189/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3190bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3191  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3192
3193  if (NumElems != 2 && NumElems != 4)
3194    return false;
3195
3196  for (unsigned i = 0; i < NumElems/2; ++i)
3197    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3198      return false;
3199
3200  for (unsigned i = NumElems/2; i < NumElems; ++i)
3201    if (!isUndefOrEqual(N->getMaskElt(i), i))
3202      return false;
3203
3204  return true;
3205}
3206
3207/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3208/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3209bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3210  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3211
3212  if ((NumElems != 2 && NumElems != 4)
3213      || N->getValueType(0).getSizeInBits() > 128)
3214    return false;
3215
3216  for (unsigned i = 0; i < NumElems/2; ++i)
3217    if (!isUndefOrEqual(N->getMaskElt(i), i))
3218      return false;
3219
3220  for (unsigned i = 0; i < NumElems/2; ++i)
3221    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3222      return false;
3223
3224  return true;
3225}
3226
3227/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3228/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3229static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3230                         bool V2IsSplat = false) {
3231  int NumElts = VT.getVectorNumElements();
3232
3233  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3234         "Unsupported vector type for unpckh");
3235
3236  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3237    return false;
3238
3239  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3240  // independently on 128-bit lanes.
3241  unsigned NumLanes = VT.getSizeInBits()/128;
3242  unsigned NumLaneElts = NumElts/NumLanes;
3243
3244  unsigned Start = 0;
3245  unsigned End = NumLaneElts;
3246  for (unsigned s = 0; s < NumLanes; ++s) {
3247    for (unsigned i = Start, j = s * NumLaneElts;
3248         i != End;
3249         i += 2, ++j) {
3250      int BitI  = Mask[i];
3251      int BitI1 = Mask[i+1];
3252      if (!isUndefOrEqual(BitI, j))
3253        return false;
3254      if (V2IsSplat) {
3255        if (!isUndefOrEqual(BitI1, NumElts))
3256          return false;
3257      } else {
3258        if (!isUndefOrEqual(BitI1, j + NumElts))
3259          return false;
3260      }
3261    }
3262    // Process the next 128 bits.
3263    Start += NumLaneElts;
3264    End += NumLaneElts;
3265  }
3266
3267  return true;
3268}
3269
3270bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3271  SmallVector<int, 8> M;
3272  N->getMask(M);
3273  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3274}
3275
3276/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3277/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3278static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3279                         bool V2IsSplat = false) {
3280  int NumElts = VT.getVectorNumElements();
3281
3282  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3283         "Unsupported vector type for unpckh");
3284
3285  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3286    return false;
3287
3288  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3289  // independently on 128-bit lanes.
3290  unsigned NumLanes = VT.getSizeInBits()/128;
3291  unsigned NumLaneElts = NumElts/NumLanes;
3292
3293  unsigned Start = 0;
3294  unsigned End = NumLaneElts;
3295  for (unsigned l = 0; l != NumLanes; ++l) {
3296    for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3297                             i != End; i += 2, ++j) {
3298      int BitI  = Mask[i];
3299      int BitI1 = Mask[i+1];
3300      if (!isUndefOrEqual(BitI, j))
3301        return false;
3302      if (V2IsSplat) {
3303        if (isUndefOrEqual(BitI1, NumElts))
3304          return false;
3305      } else {
3306        if (!isUndefOrEqual(BitI1, j+NumElts))
3307          return false;
3308      }
3309    }
3310    // Process the next 128 bits.
3311    Start += NumLaneElts;
3312    End += NumLaneElts;
3313  }
3314  return true;
3315}
3316
3317bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3318  SmallVector<int, 8> M;
3319  N->getMask(M);
3320  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3321}
3322
3323/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3324/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3325/// <0, 0, 1, 1>
3326static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3327  int NumElems = VT.getVectorNumElements();
3328  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3329    return false;
3330
3331  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3332  // independently on 128-bit lanes.
3333  unsigned NumLanes = VT.getSizeInBits() / 128;
3334  unsigned NumLaneElts = NumElems / NumLanes;
3335
3336  for (unsigned s = 0; s < NumLanes; ++s) {
3337    for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3338         i != NumLaneElts * (s + 1);
3339         i += 2, ++j) {
3340      int BitI  = Mask[i];
3341      int BitI1 = Mask[i+1];
3342
3343      if (!isUndefOrEqual(BitI, j))
3344        return false;
3345      if (!isUndefOrEqual(BitI1, j))
3346        return false;
3347    }
3348  }
3349
3350  return true;
3351}
3352
3353bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3354  SmallVector<int, 8> M;
3355  N->getMask(M);
3356  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3357}
3358
3359/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3360/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3361/// <2, 2, 3, 3>
3362static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3363  int NumElems = VT.getVectorNumElements();
3364  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3365    return false;
3366
3367  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3368    int BitI  = Mask[i];
3369    int BitI1 = Mask[i+1];
3370    if (!isUndefOrEqual(BitI, j))
3371      return false;
3372    if (!isUndefOrEqual(BitI1, j))
3373      return false;
3374  }
3375  return true;
3376}
3377
3378bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3379  SmallVector<int, 8> M;
3380  N->getMask(M);
3381  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3382}
3383
3384/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3385/// specifies a shuffle of elements that is suitable for input to MOVSS,
3386/// MOVSD, and MOVD, i.e. setting the lowest element.
3387static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3388  if (VT.getVectorElementType().getSizeInBits() < 32)
3389    return false;
3390
3391  int NumElts = VT.getVectorNumElements();
3392
3393  if (!isUndefOrEqual(Mask[0], NumElts))
3394    return false;
3395
3396  for (int i = 1; i < NumElts; ++i)
3397    if (!isUndefOrEqual(Mask[i], i))
3398      return false;
3399
3400  return true;
3401}
3402
3403bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3404  SmallVector<int, 8> M;
3405  N->getMask(M);
3406  return ::isMOVLMask(M, N->getValueType(0));
3407}
3408
3409/// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3410/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3411/// Note that VPERMIL mask matching is different depending whether theunderlying
3412/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3413/// to the same elements of the low, but to the higher half of the source.
3414/// In VPERMILPD the two lanes could be shuffled independently of each other
3415/// with the same restriction that lanes can't be crossed.
3416static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3417                            const X86Subtarget *Subtarget) {
3418  int NumElts = VT.getVectorNumElements();
3419  int NumLanes = VT.getSizeInBits()/128;
3420
3421  if (!Subtarget->hasAVX())
3422    return false;
3423
3424  // Match any permutation of 128-bit vector with 64-bit types
3425  if (NumLanes == 1 && NumElts != 2)
3426    return false;
3427
3428  // Only match 256-bit with 32 types
3429  if (VT.getSizeInBits() == 256 && NumElts != 4)
3430    return false;
3431
3432  // The mask on the high lane is independent of the low. Both can match
3433  // any element in inside its own lane, but can't cross.
3434  int LaneSize = NumElts/NumLanes;
3435  for (int l = 0; l < NumLanes; ++l)
3436    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3437      int LaneStart = l*LaneSize;
3438      if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3439        return false;
3440    }
3441
3442  return true;
3443}
3444
3445/// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3446/// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3447/// Note that VPERMIL mask matching is different depending whether theunderlying
3448/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3449/// to the same elements of the low, but to the higher half of the source.
3450/// In VPERMILPD the two lanes could be shuffled independently of each other
3451/// with the same restriction that lanes can't be crossed.
3452static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3453                            const X86Subtarget *Subtarget) {
3454  unsigned NumElts = VT.getVectorNumElements();
3455  unsigned NumLanes = VT.getSizeInBits()/128;
3456
3457  if (!Subtarget->hasAVX())
3458    return false;
3459
3460  // Match any permutation of 128-bit vector with 32-bit types
3461  if (NumLanes == 1 && NumElts != 4)
3462    return false;
3463
3464  // Only match 256-bit with 32 types
3465  if (VT.getSizeInBits() == 256 && NumElts != 8)
3466    return false;
3467
3468  // The mask on the high lane should be the same as the low. Actually,
3469  // they can differ if any of the corresponding index in a lane is undef.
3470  int LaneSize = NumElts/NumLanes;
3471  for (int i = 0; i < LaneSize; ++i) {
3472    int HighElt = i+LaneSize;
3473    if (Mask[i] < 0 || Mask[HighElt] < 0)
3474      continue;
3475    if (Mask[HighElt]-Mask[i] != LaneSize)
3476      return false;
3477  }
3478
3479  return true;
3480}
3481
3482/// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3483/// the specified VECTOR_MASK mask with VPERMILPS* instructions.
3484static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3485  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3486  EVT VT = SVOp->getValueType(0);
3487
3488  int NumElts = VT.getVectorNumElements();
3489  int NumLanes = VT.getSizeInBits()/128;
3490
3491  unsigned Mask = 0;
3492  for (int i = 0; i < NumElts/NumLanes /* lane size */; ++i)
3493    Mask |= SVOp->getMaskElt(i) << (i*2);
3494
3495  return Mask;
3496}
3497
3498/// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3499/// the specified VECTOR_MASK mask with VPERMILPD* instructions.
3500static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3501  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3502  EVT VT = SVOp->getValueType(0);
3503
3504  int NumElts = VT.getVectorNumElements();
3505  int NumLanes = VT.getSizeInBits()/128;
3506
3507  unsigned Mask = 0;
3508  int LaneSize = NumElts/NumLanes;
3509  for (int l = 0; l < NumLanes; ++l)
3510    for (int i = l*LaneSize; i < LaneSize*(l+1); ++i)
3511      Mask |= (SVOp->getMaskElt(i)-l*LaneSize) << i;
3512
3513  return Mask;
3514}
3515
3516/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3517/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3518/// element of vector 2 and the other elements to come from vector 1 in order.
3519static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3520                               bool V2IsSplat = false, bool V2IsUndef = false) {
3521  int NumOps = VT.getVectorNumElements();
3522  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3523    return false;
3524
3525  if (!isUndefOrEqual(Mask[0], 0))
3526    return false;
3527
3528  for (int i = 1; i < NumOps; ++i)
3529    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3530          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3531          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3532      return false;
3533
3534  return true;
3535}
3536
3537static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3538                           bool V2IsUndef = false) {
3539  SmallVector<int, 8> M;
3540  N->getMask(M);
3541  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3542}
3543
3544/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3545/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3546/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3547bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3548                         const X86Subtarget *Subtarget) {
3549  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3550    return false;
3551
3552  // The second vector must be undef
3553  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3554    return false;
3555
3556  EVT VT = N->getValueType(0);
3557  unsigned NumElems = VT.getVectorNumElements();
3558
3559  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3560      (VT.getSizeInBits() == 256 && NumElems != 8))
3561    return false;
3562
3563  // "i+1" is the value the indexed mask element must have
3564  for (unsigned i = 0; i < NumElems; i += 2)
3565    if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3566        !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3567      return false;
3568
3569  return true;
3570}
3571
3572/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3573/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3574/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3575bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3576                         const X86Subtarget *Subtarget) {
3577  if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3578    return false;
3579
3580  // The second vector must be undef
3581  if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3582    return false;
3583
3584  EVT VT = N->getValueType(0);
3585  unsigned NumElems = VT.getVectorNumElements();
3586
3587  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3588      (VT.getSizeInBits() == 256 && NumElems != 8))
3589    return false;
3590
3591  // "i" is the value the indexed mask element must have
3592  for (unsigned i = 0; i < NumElems; i += 2)
3593    if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3594        !isUndefOrEqual(N->getMaskElt(i+1), i))
3595      return false;
3596
3597  return true;
3598}
3599
3600/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3601/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3602bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3603  int e = N->getValueType(0).getVectorNumElements() / 2;
3604
3605  for (int i = 0; i < e; ++i)
3606    if (!isUndefOrEqual(N->getMaskElt(i), i))
3607      return false;
3608  for (int i = 0; i < e; ++i)
3609    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3610      return false;
3611  return true;
3612}
3613
3614/// isVEXTRACTF128Index - Return true if the specified
3615/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3616/// suitable for input to VEXTRACTF128.
3617bool X86::isVEXTRACTF128Index(SDNode *N) {
3618  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3619    return false;
3620
3621  // The index should be aligned on a 128-bit boundary.
3622  uint64_t Index =
3623    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3624
3625  unsigned VL = N->getValueType(0).getVectorNumElements();
3626  unsigned VBits = N->getValueType(0).getSizeInBits();
3627  unsigned ElSize = VBits / VL;
3628  bool Result = (Index * ElSize) % 128 == 0;
3629
3630  return Result;
3631}
3632
3633/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3634/// operand specifies a subvector insert that is suitable for input to
3635/// VINSERTF128.
3636bool X86::isVINSERTF128Index(SDNode *N) {
3637  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3638    return false;
3639
3640  // The index should be aligned on a 128-bit boundary.
3641  uint64_t Index =
3642    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3643
3644  unsigned VL = N->getValueType(0).getVectorNumElements();
3645  unsigned VBits = N->getValueType(0).getSizeInBits();
3646  unsigned ElSize = VBits / VL;
3647  bool Result = (Index * ElSize) % 128 == 0;
3648
3649  return Result;
3650}
3651
3652/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3653/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3654unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3655  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3656  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3657
3658  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3659  unsigned Mask = 0;
3660  for (int i = 0; i < NumOperands; ++i) {
3661    int Val = SVOp->getMaskElt(NumOperands-i-1);
3662    if (Val < 0) Val = 0;
3663    if (Val >= NumOperands) Val -= NumOperands;
3664    Mask |= Val;
3665    if (i != NumOperands - 1)
3666      Mask <<= Shift;
3667  }
3668  return Mask;
3669}
3670
3671/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3672/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3673unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3674  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3675  unsigned Mask = 0;
3676  // 8 nodes, but we only care about the last 4.
3677  for (unsigned i = 7; i >= 4; --i) {
3678    int Val = SVOp->getMaskElt(i);
3679    if (Val >= 0)
3680      Mask |= (Val - 4);
3681    if (i != 4)
3682      Mask <<= 2;
3683  }
3684  return Mask;
3685}
3686
3687/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3688/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3689unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3690  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3691  unsigned Mask = 0;
3692  // 8 nodes, but we only care about the first 4.
3693  for (int i = 3; i >= 0; --i) {
3694    int Val = SVOp->getMaskElt(i);
3695    if (Val >= 0)
3696      Mask |= Val;
3697    if (i != 0)
3698      Mask <<= 2;
3699  }
3700  return Mask;
3701}
3702
3703/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3704/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3705unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3706  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3707  EVT VVT = N->getValueType(0);
3708  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3709  int Val = 0;
3710
3711  unsigned i, e;
3712  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3713    Val = SVOp->getMaskElt(i);
3714    if (Val >= 0)
3715      break;
3716  }
3717  assert(Val - i > 0 && "PALIGNR imm should be positive");
3718  return (Val - i) * EltSize;
3719}
3720
3721/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3722/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3723/// instructions.
3724unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3725  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3726    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3727
3728  uint64_t Index =
3729    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3730
3731  EVT VecVT = N->getOperand(0).getValueType();
3732  EVT ElVT = VecVT.getVectorElementType();
3733
3734  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3735  return Index / NumElemsPerChunk;
3736}
3737
3738/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3739/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3740/// instructions.
3741unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3742  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3743    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3744
3745  uint64_t Index =
3746    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3747
3748  EVT VecVT = N->getValueType(0);
3749  EVT ElVT = VecVT.getVectorElementType();
3750
3751  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3752  return Index / NumElemsPerChunk;
3753}
3754
3755/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3756/// constant +0.0.
3757bool X86::isZeroNode(SDValue Elt) {
3758  return ((isa<ConstantSDNode>(Elt) &&
3759           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3760          (isa<ConstantFPSDNode>(Elt) &&
3761           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3762}
3763
3764/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3765/// their permute mask.
3766static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3767                                    SelectionDAG &DAG) {
3768  EVT VT = SVOp->getValueType(0);
3769  unsigned NumElems = VT.getVectorNumElements();
3770  SmallVector<int, 8> MaskVec;
3771
3772  for (unsigned i = 0; i != NumElems; ++i) {
3773    int idx = SVOp->getMaskElt(i);
3774    if (idx < 0)
3775      MaskVec.push_back(idx);
3776    else if (idx < (int)NumElems)
3777      MaskVec.push_back(idx + NumElems);
3778    else
3779      MaskVec.push_back(idx - NumElems);
3780  }
3781  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3782                              SVOp->getOperand(0), &MaskVec[0]);
3783}
3784
3785/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3786/// the two vector operands have swapped position.
3787static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3788  unsigned NumElems = VT.getVectorNumElements();
3789  for (unsigned i = 0; i != NumElems; ++i) {
3790    int idx = Mask[i];
3791    if (idx < 0)
3792      continue;
3793    else if (idx < (int)NumElems)
3794      Mask[i] = idx + NumElems;
3795    else
3796      Mask[i] = idx - NumElems;
3797  }
3798}
3799
3800/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3801/// match movhlps. The lower half elements should come from upper half of
3802/// V1 (and in order), and the upper half elements should come from the upper
3803/// half of V2 (and in order).
3804static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3805  if (Op->getValueType(0).getVectorNumElements() != 4)
3806    return false;
3807  for (unsigned i = 0, e = 2; i != e; ++i)
3808    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3809      return false;
3810  for (unsigned i = 2; i != 4; ++i)
3811    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3812      return false;
3813  return true;
3814}
3815
3816/// isScalarLoadToVector - Returns true if the node is a scalar load that
3817/// is promoted to a vector. It also returns the LoadSDNode by reference if
3818/// required.
3819static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3820  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3821    return false;
3822  N = N->getOperand(0).getNode();
3823  if (!ISD::isNON_EXTLoad(N))
3824    return false;
3825  if (LD)
3826    *LD = cast<LoadSDNode>(N);
3827  return true;
3828}
3829
3830/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3831/// match movlp{s|d}. The lower half elements should come from lower half of
3832/// V1 (and in order), and the upper half elements should come from the upper
3833/// half of V2 (and in order). And since V1 will become the source of the
3834/// MOVLP, it must be either a vector load or a scalar load to vector.
3835static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3836                               ShuffleVectorSDNode *Op) {
3837  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3838    return false;
3839  // Is V2 is a vector load, don't do this transformation. We will try to use
3840  // load folding shufps op.
3841  if (ISD::isNON_EXTLoad(V2))
3842    return false;
3843
3844  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3845
3846  if (NumElems != 2 && NumElems != 4)
3847    return false;
3848  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3849    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3850      return false;
3851  for (unsigned i = NumElems/2; i != NumElems; ++i)
3852    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3853      return false;
3854  return true;
3855}
3856
3857/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3858/// all the same.
3859static bool isSplatVector(SDNode *N) {
3860  if (N->getOpcode() != ISD::BUILD_VECTOR)
3861    return false;
3862
3863  SDValue SplatValue = N->getOperand(0);
3864  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3865    if (N->getOperand(i) != SplatValue)
3866      return false;
3867  return true;
3868}
3869
3870/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3871/// to an zero vector.
3872/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3873static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3874  SDValue V1 = N->getOperand(0);
3875  SDValue V2 = N->getOperand(1);
3876  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3877  for (unsigned i = 0; i != NumElems; ++i) {
3878    int Idx = N->getMaskElt(i);
3879    if (Idx >= (int)NumElems) {
3880      unsigned Opc = V2.getOpcode();
3881      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3882        continue;
3883      if (Opc != ISD::BUILD_VECTOR ||
3884          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3885        return false;
3886    } else if (Idx >= 0) {
3887      unsigned Opc = V1.getOpcode();
3888      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3889        continue;
3890      if (Opc != ISD::BUILD_VECTOR ||
3891          !X86::isZeroNode(V1.getOperand(Idx)))
3892        return false;
3893    }
3894  }
3895  return true;
3896}
3897
3898/// getZeroVector - Returns a vector of specified type with all zero elements.
3899///
3900static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3901                             DebugLoc dl) {
3902  assert(VT.isVector() && "Expected a vector type");
3903
3904  // Always build SSE zero vectors as <4 x i32> bitcasted
3905  // to their dest type. This ensures they get CSE'd.
3906  SDValue Vec;
3907  if (VT.getSizeInBits() == 128) {  // SSE
3908    if (HasSSE2) {  // SSE2
3909      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3910      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3911    } else { // SSE1
3912      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3913      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3914    }
3915  } else if (VT.getSizeInBits() == 256) { // AVX
3916    // 256-bit logic and arithmetic instructions in AVX are
3917    // all floating-point, no support for integer ops. Default
3918    // to emitting fp zeroed vectors then.
3919    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3920    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3921    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3922  }
3923  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3924}
3925
3926/// getOnesVector - Returns a vector of specified type with all bits set.
3927/// Always build ones vectors as <4 x i32>. For 256-bit types, use two
3928/// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
3929/// original type, ensuring they get CSE'd.
3930static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3931  assert(VT.isVector() && "Expected a vector type");
3932  assert((VT.is128BitVector() || VT.is256BitVector())
3933         && "Expected a 128-bit or 256-bit vector type");
3934
3935  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3936  SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
3937                            Cst, Cst, Cst, Cst);
3938
3939  if (VT.is256BitVector()) {
3940    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
3941                              Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
3942    Vec = Insert128BitVector(InsV, Vec,
3943                  DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
3944  }
3945
3946  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3947}
3948
3949/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3950/// that point to V2 points to its first element.
3951static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3952  EVT VT = SVOp->getValueType(0);
3953  unsigned NumElems = VT.getVectorNumElements();
3954
3955  bool Changed = false;
3956  SmallVector<int, 8> MaskVec;
3957  SVOp->getMask(MaskVec);
3958
3959  for (unsigned i = 0; i != NumElems; ++i) {
3960    if (MaskVec[i] > (int)NumElems) {
3961      MaskVec[i] = NumElems;
3962      Changed = true;
3963    }
3964  }
3965  if (Changed)
3966    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3967                                SVOp->getOperand(1), &MaskVec[0]);
3968  return SDValue(SVOp, 0);
3969}
3970
3971/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3972/// operation of specified width.
3973static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3974                       SDValue V2) {
3975  unsigned NumElems = VT.getVectorNumElements();
3976  SmallVector<int, 8> Mask;
3977  Mask.push_back(NumElems);
3978  for (unsigned i = 1; i != NumElems; ++i)
3979    Mask.push_back(i);
3980  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3981}
3982
3983/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3984static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3985                          SDValue V2) {
3986  unsigned NumElems = VT.getVectorNumElements();
3987  SmallVector<int, 8> Mask;
3988  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3989    Mask.push_back(i);
3990    Mask.push_back(i + NumElems);
3991  }
3992  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3993}
3994
3995/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
3996static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3997                          SDValue V2) {
3998  unsigned NumElems = VT.getVectorNumElements();
3999  unsigned Half = NumElems/2;
4000  SmallVector<int, 8> Mask;
4001  for (unsigned i = 0; i != Half; ++i) {
4002    Mask.push_back(i + Half);
4003    Mask.push_back(i + NumElems + Half);
4004  }
4005  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4006}
4007
4008// PromoteSplatv8v16 - All i16 and i8 vector types can't be used directly by
4009// a generic shuffle instruction because the target has no such instructions.
4010// Generate shuffles which repeat i16 and i8 several times until they can be
4011// represented by v4f32 and then be manipulated by target suported shuffles.
4012static SDValue PromoteSplatv8v16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4013  EVT VT = V.getValueType();
4014  int NumElems = VT.getVectorNumElements();
4015  DebugLoc dl = V.getDebugLoc();
4016
4017  while (NumElems > 4) {
4018    if (EltNo < NumElems/2) {
4019      V = getUnpackl(DAG, dl, VT, V, V);
4020    } else {
4021      V = getUnpackh(DAG, dl, VT, V, V);
4022      EltNo -= NumElems/2;
4023    }
4024    NumElems >>= 1;
4025  }
4026  return V;
4027}
4028
4029/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4030static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4031  EVT VT = V.getValueType();
4032  DebugLoc dl = V.getDebugLoc();
4033  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4034         && "Vector size not supported");
4035
4036  bool Is128 = VT.getSizeInBits() == 128;
4037  EVT NVT = Is128 ? MVT::v4f32 : MVT::v8f32;
4038  V = DAG.getNode(ISD::BITCAST, dl, NVT, V);
4039
4040  if (Is128) {
4041    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4042    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
4043  } else {
4044    // The second half of indicies refer to the higher part, which is a
4045    // duplication of the lower one. This makes this shuffle a perfect match
4046    // for the VPERM instruction.
4047    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4048                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4049    V = DAG.getVectorShuffle(NVT, dl, V, DAG.getUNDEF(NVT), &SplatMask[0]);
4050  }
4051
4052  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4053}
4054
4055/// PromoteVectorToScalarSplat - Since there's no native support for
4056/// scalar_to_vector for 256-bit AVX, a 128-bit scalar_to_vector +
4057/// INSERT_SUBVECTOR is generated. Recognize this idiom and do the
4058/// shuffle before the insertion, this yields less instructions in the end.
4059static SDValue PromoteVectorToScalarSplat(ShuffleVectorSDNode *SV,
4060                                          SelectionDAG &DAG) {
4061  EVT SrcVT = SV->getValueType(0);
4062  SDValue V1 = SV->getOperand(0);
4063  DebugLoc dl = SV->getDebugLoc();
4064  int NumElems = SrcVT.getVectorNumElements();
4065
4066  assert(SrcVT.is256BitVector() && "unknown howto handle vector type");
4067
4068  SmallVector<int, 4> Mask;
4069  for (int i = 0; i < NumElems/2; ++i)
4070    Mask.push_back(SV->getMaskElt(i));
4071
4072  EVT SVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(),
4073                             NumElems/2);
4074  SDValue SV1 = DAG.getVectorShuffle(SVT, dl, V1.getOperand(1),
4075                                     DAG.getUNDEF(SVT), &Mask[0]);
4076  SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), SV1,
4077                                    DAG.getConstant(0, MVT::i32), DAG, dl);
4078
4079  return Insert128BitVector(InsV, SV1,
4080                       DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4081}
4082
4083/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32 and
4084/// v8i32, v16i16 or v32i8 to v8f32.
4085static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4086  EVT SrcVT = SV->getValueType(0);
4087  SDValue V1 = SV->getOperand(0);
4088  DebugLoc dl = SV->getDebugLoc();
4089
4090  int EltNo = SV->getSplatIndex();
4091  int NumElems = SrcVT.getVectorNumElements();
4092  unsigned Size = SrcVT.getSizeInBits();
4093
4094  // Extract the 128-bit part containing the splat element and update
4095  // the splat element index when it refers to the higher register.
4096  if (Size == 256) {
4097    unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4098    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4099    if (Idx > 0)
4100      EltNo -= NumElems/2;
4101  }
4102
4103  // Make this 128-bit vector duplicate i8 and i16 elements
4104  if (NumElems > 4)
4105    V1 = PromoteSplatv8v16(V1, DAG, EltNo);
4106
4107  // Recreate the 256-bit vector and place the same 128-bit vector
4108  // into the low and high part. This is necessary because we want
4109  // to use VPERM to shuffle the v8f32 vector, and VPERM only shuffles
4110  // inside each separate v4f32 lane.
4111  if (Size == 256) {
4112    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4113                         DAG.getConstant(0, MVT::i32), DAG, dl);
4114    V1 = Insert128BitVector(InsV, V1,
4115               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4116  }
4117
4118  return getLegalSplat(DAG, V1, EltNo);
4119}
4120
4121/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4122/// vector of zero or undef vector.  This produces a shuffle where the low
4123/// element of V2 is swizzled into the zero/undef vector, landing at element
4124/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4125static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4126                                             bool isZero, bool HasSSE2,
4127                                             SelectionDAG &DAG) {
4128  EVT VT = V2.getValueType();
4129  SDValue V1 = isZero
4130    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4131  unsigned NumElems = VT.getVectorNumElements();
4132  SmallVector<int, 16> MaskVec;
4133  for (unsigned i = 0; i != NumElems; ++i)
4134    // If this is the insertion idx, put the low elt of V2 here.
4135    MaskVec.push_back(i == Idx ? NumElems : i);
4136  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4137}
4138
4139/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4140/// element of the result of the vector shuffle.
4141static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4142                                   unsigned Depth) {
4143  if (Depth == 6)
4144    return SDValue();  // Limit search depth.
4145
4146  SDValue V = SDValue(N, 0);
4147  EVT VT = V.getValueType();
4148  unsigned Opcode = V.getOpcode();
4149
4150  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4151  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4152    Index = SV->getMaskElt(Index);
4153
4154    if (Index < 0)
4155      return DAG.getUNDEF(VT.getVectorElementType());
4156
4157    int NumElems = VT.getVectorNumElements();
4158    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4159    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4160  }
4161
4162  // Recurse into target specific vector shuffles to find scalars.
4163  if (isTargetShuffle(Opcode)) {
4164    int NumElems = VT.getVectorNumElements();
4165    SmallVector<unsigned, 16> ShuffleMask;
4166    SDValue ImmN;
4167
4168    switch(Opcode) {
4169    case X86ISD::SHUFPS:
4170    case X86ISD::SHUFPD:
4171      ImmN = N->getOperand(N->getNumOperands()-1);
4172      DecodeSHUFPSMask(NumElems,
4173                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4174                       ShuffleMask);
4175      break;
4176    case X86ISD::PUNPCKHBW:
4177    case X86ISD::PUNPCKHWD:
4178    case X86ISD::PUNPCKHDQ:
4179    case X86ISD::PUNPCKHQDQ:
4180      DecodePUNPCKHMask(NumElems, ShuffleMask);
4181      break;
4182    case X86ISD::UNPCKHPS:
4183    case X86ISD::UNPCKHPD:
4184    case X86ISD::VUNPCKHPSY:
4185    case X86ISD::VUNPCKHPDY:
4186      DecodeUNPCKHPMask(NumElems, ShuffleMask);
4187      break;
4188    case X86ISD::PUNPCKLBW:
4189    case X86ISD::PUNPCKLWD:
4190    case X86ISD::PUNPCKLDQ:
4191    case X86ISD::PUNPCKLQDQ:
4192      DecodePUNPCKLMask(VT, ShuffleMask);
4193      break;
4194    case X86ISD::UNPCKLPS:
4195    case X86ISD::UNPCKLPD:
4196    case X86ISD::VUNPCKLPSY:
4197    case X86ISD::VUNPCKLPDY:
4198      DecodeUNPCKLPMask(VT, ShuffleMask);
4199      break;
4200    case X86ISD::MOVHLPS:
4201      DecodeMOVHLPSMask(NumElems, ShuffleMask);
4202      break;
4203    case X86ISD::MOVLHPS:
4204      DecodeMOVLHPSMask(NumElems, ShuffleMask);
4205      break;
4206    case X86ISD::PSHUFD:
4207      ImmN = N->getOperand(N->getNumOperands()-1);
4208      DecodePSHUFMask(NumElems,
4209                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
4210                      ShuffleMask);
4211      break;
4212    case X86ISD::PSHUFHW:
4213      ImmN = N->getOperand(N->getNumOperands()-1);
4214      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4215                        ShuffleMask);
4216      break;
4217    case X86ISD::PSHUFLW:
4218      ImmN = N->getOperand(N->getNumOperands()-1);
4219      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4220                        ShuffleMask);
4221      break;
4222    case X86ISD::MOVSS:
4223    case X86ISD::MOVSD: {
4224      // The index 0 always comes from the first element of the second source,
4225      // this is why MOVSS and MOVSD are used in the first place. The other
4226      // elements come from the other positions of the first source vector.
4227      unsigned OpNum = (Index == 0) ? 1 : 0;
4228      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4229                                 Depth+1);
4230    }
4231    case X86ISD::VPERMILPS:
4232    case X86ISD::VPERMILPSY:
4233      // FIXME: Implement the other types
4234      ImmN = N->getOperand(N->getNumOperands()-1);
4235      DecodeVPERMILMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4236                        ShuffleMask);
4237    default:
4238      assert("not implemented for target shuffle node");
4239      return SDValue();
4240    }
4241
4242    Index = ShuffleMask[Index];
4243    if (Index < 0)
4244      return DAG.getUNDEF(VT.getVectorElementType());
4245
4246    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4247    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4248                               Depth+1);
4249  }
4250
4251  // Actual nodes that may contain scalar elements
4252  if (Opcode == ISD::BITCAST) {
4253    V = V.getOperand(0);
4254    EVT SrcVT = V.getValueType();
4255    unsigned NumElems = VT.getVectorNumElements();
4256
4257    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4258      return SDValue();
4259  }
4260
4261  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4262    return (Index == 0) ? V.getOperand(0)
4263                          : DAG.getUNDEF(VT.getVectorElementType());
4264
4265  if (V.getOpcode() == ISD::BUILD_VECTOR)
4266    return V.getOperand(Index);
4267
4268  return SDValue();
4269}
4270
4271/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4272/// shuffle operation which come from a consecutively from a zero. The
4273/// search can start in two different directions, from left or right.
4274static
4275unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4276                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4277  int i = 0;
4278
4279  while (i < NumElems) {
4280    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4281    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4282    if (!(Elt.getNode() &&
4283         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4284      break;
4285    ++i;
4286  }
4287
4288  return i;
4289}
4290
4291/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4292/// MaskE correspond consecutively to elements from one of the vector operands,
4293/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4294static
4295bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4296                              int OpIdx, int NumElems, unsigned &OpNum) {
4297  bool SeenV1 = false;
4298  bool SeenV2 = false;
4299
4300  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4301    int Idx = SVOp->getMaskElt(i);
4302    // Ignore undef indicies
4303    if (Idx < 0)
4304      continue;
4305
4306    if (Idx < NumElems)
4307      SeenV1 = true;
4308    else
4309      SeenV2 = true;
4310
4311    // Only accept consecutive elements from the same vector
4312    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4313      return false;
4314  }
4315
4316  OpNum = SeenV1 ? 0 : 1;
4317  return true;
4318}
4319
4320/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4321/// logical left shift of a vector.
4322static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4323                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4324  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4325  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4326              false /* check zeros from right */, DAG);
4327  unsigned OpSrc;
4328
4329  if (!NumZeros)
4330    return false;
4331
4332  // Considering the elements in the mask that are not consecutive zeros,
4333  // check if they consecutively come from only one of the source vectors.
4334  //
4335  //               V1 = {X, A, B, C}     0
4336  //                         \  \  \    /
4337  //   vector_shuffle V1, V2 <1, 2, 3, X>
4338  //
4339  if (!isShuffleMaskConsecutive(SVOp,
4340            0,                   // Mask Start Index
4341            NumElems-NumZeros-1, // Mask End Index
4342            NumZeros,            // Where to start looking in the src vector
4343            NumElems,            // Number of elements in vector
4344            OpSrc))              // Which source operand ?
4345    return false;
4346
4347  isLeft = false;
4348  ShAmt = NumZeros;
4349  ShVal = SVOp->getOperand(OpSrc);
4350  return true;
4351}
4352
4353/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4354/// logical left shift of a vector.
4355static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4356                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4357  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4358  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4359              true /* check zeros from left */, DAG);
4360  unsigned OpSrc;
4361
4362  if (!NumZeros)
4363    return false;
4364
4365  // Considering the elements in the mask that are not consecutive zeros,
4366  // check if they consecutively come from only one of the source vectors.
4367  //
4368  //                           0    { A, B, X, X } = V2
4369  //                          / \    /  /
4370  //   vector_shuffle V1, V2 <X, X, 4, 5>
4371  //
4372  if (!isShuffleMaskConsecutive(SVOp,
4373            NumZeros,     // Mask Start Index
4374            NumElems-1,   // Mask End Index
4375            0,            // Where to start looking in the src vector
4376            NumElems,     // Number of elements in vector
4377            OpSrc))       // Which source operand ?
4378    return false;
4379
4380  isLeft = true;
4381  ShAmt = NumZeros;
4382  ShVal = SVOp->getOperand(OpSrc);
4383  return true;
4384}
4385
4386/// isVectorShift - Returns true if the shuffle can be implemented as a
4387/// logical left or right shift of a vector.
4388static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4389                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4390  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4391      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4392    return true;
4393
4394  return false;
4395}
4396
4397/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4398///
4399static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4400                                       unsigned NumNonZero, unsigned NumZero,
4401                                       SelectionDAG &DAG,
4402                                       const TargetLowering &TLI) {
4403  if (NumNonZero > 8)
4404    return SDValue();
4405
4406  DebugLoc dl = Op.getDebugLoc();
4407  SDValue V(0, 0);
4408  bool First = true;
4409  for (unsigned i = 0; i < 16; ++i) {
4410    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4411    if (ThisIsNonZero && First) {
4412      if (NumZero)
4413        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4414      else
4415        V = DAG.getUNDEF(MVT::v8i16);
4416      First = false;
4417    }
4418
4419    if ((i & 1) != 0) {
4420      SDValue ThisElt(0, 0), LastElt(0, 0);
4421      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4422      if (LastIsNonZero) {
4423        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4424                              MVT::i16, Op.getOperand(i-1));
4425      }
4426      if (ThisIsNonZero) {
4427        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4428        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4429                              ThisElt, DAG.getConstant(8, MVT::i8));
4430        if (LastIsNonZero)
4431          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4432      } else
4433        ThisElt = LastElt;
4434
4435      if (ThisElt.getNode())
4436        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4437                        DAG.getIntPtrConstant(i/2));
4438    }
4439  }
4440
4441  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4442}
4443
4444/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4445///
4446static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4447                                     unsigned NumNonZero, unsigned NumZero,
4448                                     SelectionDAG &DAG,
4449                                     const TargetLowering &TLI) {
4450  if (NumNonZero > 4)
4451    return SDValue();
4452
4453  DebugLoc dl = Op.getDebugLoc();
4454  SDValue V(0, 0);
4455  bool First = true;
4456  for (unsigned i = 0; i < 8; ++i) {
4457    bool isNonZero = (NonZeros & (1 << i)) != 0;
4458    if (isNonZero) {
4459      if (First) {
4460        if (NumZero)
4461          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4462        else
4463          V = DAG.getUNDEF(MVT::v8i16);
4464        First = false;
4465      }
4466      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4467                      MVT::v8i16, V, Op.getOperand(i),
4468                      DAG.getIntPtrConstant(i));
4469    }
4470  }
4471
4472  return V;
4473}
4474
4475/// getVShift - Return a vector logical shift node.
4476///
4477static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4478                         unsigned NumBits, SelectionDAG &DAG,
4479                         const TargetLowering &TLI, DebugLoc dl) {
4480  EVT ShVT = MVT::v2i64;
4481  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4482  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4483  return DAG.getNode(ISD::BITCAST, dl, VT,
4484                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4485                             DAG.getConstant(NumBits,
4486                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4487}
4488
4489SDValue
4490X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4491                                          SelectionDAG &DAG) const {
4492
4493  // Check if the scalar load can be widened into a vector load. And if
4494  // the address is "base + cst" see if the cst can be "absorbed" into
4495  // the shuffle mask.
4496  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4497    SDValue Ptr = LD->getBasePtr();
4498    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4499      return SDValue();
4500    EVT PVT = LD->getValueType(0);
4501    if (PVT != MVT::i32 && PVT != MVT::f32)
4502      return SDValue();
4503
4504    int FI = -1;
4505    int64_t Offset = 0;
4506    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4507      FI = FINode->getIndex();
4508      Offset = 0;
4509    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4510               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4511      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4512      Offset = Ptr.getConstantOperandVal(1);
4513      Ptr = Ptr.getOperand(0);
4514    } else {
4515      return SDValue();
4516    }
4517
4518    SDValue Chain = LD->getChain();
4519    // Make sure the stack object alignment is at least 16.
4520    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4521    if (DAG.InferPtrAlignment(Ptr) < 16) {
4522      if (MFI->isFixedObjectIndex(FI)) {
4523        // Can't change the alignment. FIXME: It's possible to compute
4524        // the exact stack offset and reference FI + adjust offset instead.
4525        // If someone *really* cares about this. That's the way to implement it.
4526        return SDValue();
4527      } else {
4528        MFI->setObjectAlignment(FI, 16);
4529      }
4530    }
4531
4532    // (Offset % 16) must be multiple of 4. Then address is then
4533    // Ptr + (Offset & ~15).
4534    if (Offset < 0)
4535      return SDValue();
4536    if ((Offset % 16) & 3)
4537      return SDValue();
4538    int64_t StartOffset = Offset & ~15;
4539    if (StartOffset)
4540      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4541                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4542
4543    int EltNo = (Offset - StartOffset) >> 2;
4544    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4545    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4546    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4547                             LD->getPointerInfo().getWithOffset(StartOffset),
4548                             false, false, 0);
4549    // Canonicalize it to a v4i32 shuffle.
4550    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4551    return DAG.getNode(ISD::BITCAST, dl, VT,
4552                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4553                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4554  }
4555
4556  return SDValue();
4557}
4558
4559/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4560/// vector of type 'VT', see if the elements can be replaced by a single large
4561/// load which has the same value as a build_vector whose operands are 'elts'.
4562///
4563/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4564///
4565/// FIXME: we'd also like to handle the case where the last elements are zero
4566/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4567/// There's even a handy isZeroNode for that purpose.
4568static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4569                                        DebugLoc &DL, SelectionDAG &DAG) {
4570  EVT EltVT = VT.getVectorElementType();
4571  unsigned NumElems = Elts.size();
4572
4573  LoadSDNode *LDBase = NULL;
4574  unsigned LastLoadedElt = -1U;
4575
4576  // For each element in the initializer, see if we've found a load or an undef.
4577  // If we don't find an initial load element, or later load elements are
4578  // non-consecutive, bail out.
4579  for (unsigned i = 0; i < NumElems; ++i) {
4580    SDValue Elt = Elts[i];
4581
4582    if (!Elt.getNode() ||
4583        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4584      return SDValue();
4585    if (!LDBase) {
4586      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4587        return SDValue();
4588      LDBase = cast<LoadSDNode>(Elt.getNode());
4589      LastLoadedElt = i;
4590      continue;
4591    }
4592    if (Elt.getOpcode() == ISD::UNDEF)
4593      continue;
4594
4595    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4596    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4597      return SDValue();
4598    LastLoadedElt = i;
4599  }
4600
4601  // If we have found an entire vector of loads and undefs, then return a large
4602  // load of the entire vector width starting at the base pointer.  If we found
4603  // consecutive loads for the low half, generate a vzext_load node.
4604  if (LastLoadedElt == NumElems - 1) {
4605    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4606      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4607                         LDBase->getPointerInfo(),
4608                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4609    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4610                       LDBase->getPointerInfo(),
4611                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4612                       LDBase->getAlignment());
4613  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4614             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4615    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4616    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4617    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4618                                              Ops, 2, MVT::i32,
4619                                              LDBase->getMemOperand());
4620    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4621  }
4622  return SDValue();
4623}
4624
4625SDValue
4626X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4627  DebugLoc dl = Op.getDebugLoc();
4628
4629  EVT VT = Op.getValueType();
4630  EVT ExtVT = VT.getVectorElementType();
4631  unsigned NumElems = Op.getNumOperands();
4632
4633  // All zero's:
4634  //  - pxor (SSE2), xorps (SSE1), vpxor (128 AVX), xorp[s|d] (256 AVX)
4635  // All one's:
4636  //  - pcmpeqd (SSE2 and 128 AVX), fallback to constant pools (256 AVX)
4637  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4638      ISD::isBuildVectorAllOnes(Op.getNode())) {
4639    // Canonicalize this to <4 x i32> or <8 x 32> (SSE) to
4640    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4641    // eliminated on x86-32 hosts.
4642    if (Op.getValueType() == MVT::v4i32 ||
4643        Op.getValueType() == MVT::v8i32)
4644      return Op;
4645
4646    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4647      return getOnesVector(Op.getValueType(), DAG, dl);
4648    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4649  }
4650
4651  unsigned EVTBits = ExtVT.getSizeInBits();
4652
4653  unsigned NumZero  = 0;
4654  unsigned NumNonZero = 0;
4655  unsigned NonZeros = 0;
4656  bool IsAllConstants = true;
4657  SmallSet<SDValue, 8> Values;
4658  for (unsigned i = 0; i < NumElems; ++i) {
4659    SDValue Elt = Op.getOperand(i);
4660    if (Elt.getOpcode() == ISD::UNDEF)
4661      continue;
4662    Values.insert(Elt);
4663    if (Elt.getOpcode() != ISD::Constant &&
4664        Elt.getOpcode() != ISD::ConstantFP)
4665      IsAllConstants = false;
4666    if (X86::isZeroNode(Elt))
4667      NumZero++;
4668    else {
4669      NonZeros |= (1 << i);
4670      NumNonZero++;
4671    }
4672  }
4673
4674  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4675  if (NumNonZero == 0)
4676    return DAG.getUNDEF(VT);
4677
4678  // Special case for single non-zero, non-undef, element.
4679  if (NumNonZero == 1) {
4680    unsigned Idx = CountTrailingZeros_32(NonZeros);
4681    SDValue Item = Op.getOperand(Idx);
4682
4683    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4684    // the value are obviously zero, truncate the value to i32 and do the
4685    // insertion that way.  Only do this if the value is non-constant or if the
4686    // value is a constant being inserted into element 0.  It is cheaper to do
4687    // a constant pool load than it is to do a movd + shuffle.
4688    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4689        (!IsAllConstants || Idx == 0)) {
4690      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4691        // Handle SSE only.
4692        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4693        EVT VecVT = MVT::v4i32;
4694        unsigned VecElts = 4;
4695
4696        // Truncate the value (which may itself be a constant) to i32, and
4697        // convert it to a vector with movd (S2V+shuffle to zero extend).
4698        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4699        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4700        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4701                                           Subtarget->hasSSE2(), DAG);
4702
4703        // Now we have our 32-bit value zero extended in the low element of
4704        // a vector.  If Idx != 0, swizzle it into place.
4705        if (Idx != 0) {
4706          SmallVector<int, 4> Mask;
4707          Mask.push_back(Idx);
4708          for (unsigned i = 1; i != VecElts; ++i)
4709            Mask.push_back(i);
4710          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4711                                      DAG.getUNDEF(Item.getValueType()),
4712                                      &Mask[0]);
4713        }
4714        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4715      }
4716    }
4717
4718    // If we have a constant or non-constant insertion into the low element of
4719    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4720    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4721    // depending on what the source datatype is.
4722    if (Idx == 0) {
4723      if (NumZero == 0) {
4724        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4725      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4726          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4727        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4728        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4729        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4730                                           DAG);
4731      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4732        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4733        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4734        EVT MiddleVT = MVT::v4i32;
4735        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4736        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4737                                           Subtarget->hasSSE2(), DAG);
4738        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4739      }
4740    }
4741
4742    // Is it a vector logical left shift?
4743    if (NumElems == 2 && Idx == 1 &&
4744        X86::isZeroNode(Op.getOperand(0)) &&
4745        !X86::isZeroNode(Op.getOperand(1))) {
4746      unsigned NumBits = VT.getSizeInBits();
4747      return getVShift(true, VT,
4748                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4749                                   VT, Op.getOperand(1)),
4750                       NumBits/2, DAG, *this, dl);
4751    }
4752
4753    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4754      return SDValue();
4755
4756    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4757    // is a non-constant being inserted into an element other than the low one,
4758    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4759    // movd/movss) to move this into the low element, then shuffle it into
4760    // place.
4761    if (EVTBits == 32) {
4762      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4763
4764      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4765      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4766                                         Subtarget->hasSSE2(), DAG);
4767      SmallVector<int, 8> MaskVec;
4768      for (unsigned i = 0; i < NumElems; i++)
4769        MaskVec.push_back(i == Idx ? 0 : 1);
4770      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4771    }
4772  }
4773
4774  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4775  if (Values.size() == 1) {
4776    if (EVTBits == 32) {
4777      // Instead of a shuffle like this:
4778      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4779      // Check if it's possible to issue this instead.
4780      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4781      unsigned Idx = CountTrailingZeros_32(NonZeros);
4782      SDValue Item = Op.getOperand(Idx);
4783      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4784        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4785    }
4786    return SDValue();
4787  }
4788
4789  // A vector full of immediates; various special cases are already
4790  // handled, so this is best done with a single constant-pool load.
4791  if (IsAllConstants)
4792    return SDValue();
4793
4794  // For AVX-length vectors, build the individual 128-bit pieces and use
4795  // shuffles to put them in place.
4796  if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
4797    SmallVector<SDValue, 32> V;
4798    for (unsigned i = 0; i < NumElems; ++i)
4799      V.push_back(Op.getOperand(i));
4800
4801    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4802
4803    // Build both the lower and upper subvector.
4804    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4805    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4806                                NumElems/2);
4807
4808    // Recreate the wider vector with the lower and upper part.
4809    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
4810                                DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4811    return Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32),
4812                              DAG, dl);
4813  }
4814
4815  // Let legalizer expand 2-wide build_vectors.
4816  if (EVTBits == 64) {
4817    if (NumNonZero == 1) {
4818      // One half is zero or undef.
4819      unsigned Idx = CountTrailingZeros_32(NonZeros);
4820      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4821                                 Op.getOperand(Idx));
4822      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4823                                         Subtarget->hasSSE2(), DAG);
4824    }
4825    return SDValue();
4826  }
4827
4828  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4829  if (EVTBits == 8 && NumElems == 16) {
4830    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4831                                        *this);
4832    if (V.getNode()) return V;
4833  }
4834
4835  if (EVTBits == 16 && NumElems == 8) {
4836    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4837                                      *this);
4838    if (V.getNode()) return V;
4839  }
4840
4841  // If element VT is == 32 bits, turn it into a number of shuffles.
4842  SmallVector<SDValue, 8> V;
4843  V.resize(NumElems);
4844  if (NumElems == 4 && NumZero > 0) {
4845    for (unsigned i = 0; i < 4; ++i) {
4846      bool isZero = !(NonZeros & (1 << i));
4847      if (isZero)
4848        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4849      else
4850        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4851    }
4852
4853    for (unsigned i = 0; i < 2; ++i) {
4854      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4855        default: break;
4856        case 0:
4857          V[i] = V[i*2];  // Must be a zero vector.
4858          break;
4859        case 1:
4860          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4861          break;
4862        case 2:
4863          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4864          break;
4865        case 3:
4866          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4867          break;
4868      }
4869    }
4870
4871    SmallVector<int, 8> MaskVec;
4872    bool Reverse = (NonZeros & 0x3) == 2;
4873    for (unsigned i = 0; i < 2; ++i)
4874      MaskVec.push_back(Reverse ? 1-i : i);
4875    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4876    for (unsigned i = 0; i < 2; ++i)
4877      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4878    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4879  }
4880
4881  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4882    // Check for a build vector of consecutive loads.
4883    for (unsigned i = 0; i < NumElems; ++i)
4884      V[i] = Op.getOperand(i);
4885
4886    // Check for elements which are consecutive loads.
4887    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4888    if (LD.getNode())
4889      return LD;
4890
4891    // For SSE 4.1, use insertps to put the high elements into the low element.
4892    if (getSubtarget()->hasSSE41()) {
4893      SDValue Result;
4894      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4895        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4896      else
4897        Result = DAG.getUNDEF(VT);
4898
4899      for (unsigned i = 1; i < NumElems; ++i) {
4900        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4901        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4902                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4903      }
4904      return Result;
4905    }
4906
4907    // Otherwise, expand into a number of unpckl*, start by extending each of
4908    // our (non-undef) elements to the full vector width with the element in the
4909    // bottom slot of the vector (which generates no code for SSE).
4910    for (unsigned i = 0; i < NumElems; ++i) {
4911      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4912        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4913      else
4914        V[i] = DAG.getUNDEF(VT);
4915    }
4916
4917    // Next, we iteratively mix elements, e.g. for v4f32:
4918    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4919    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4920    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4921    unsigned EltStride = NumElems >> 1;
4922    while (EltStride != 0) {
4923      for (unsigned i = 0; i < EltStride; ++i) {
4924        // If V[i+EltStride] is undef and this is the first round of mixing,
4925        // then it is safe to just drop this shuffle: V[i] is already in the
4926        // right place, the one element (since it's the first round) being
4927        // inserted as undef can be dropped.  This isn't safe for successive
4928        // rounds because they will permute elements within both vectors.
4929        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4930            EltStride == NumElems/2)
4931          continue;
4932
4933        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4934      }
4935      EltStride >>= 1;
4936    }
4937    return V[0];
4938  }
4939  return SDValue();
4940}
4941
4942SDValue
4943X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4944  // We support concatenate two MMX registers and place them in a MMX
4945  // register.  This is better than doing a stack convert.
4946  DebugLoc dl = Op.getDebugLoc();
4947  EVT ResVT = Op.getValueType();
4948  assert(Op.getNumOperands() == 2);
4949  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4950         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4951  int Mask[2];
4952  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4953  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4954  InVec = Op.getOperand(1);
4955  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4956    unsigned NumElts = ResVT.getVectorNumElements();
4957    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4958    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4959                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4960  } else {
4961    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4962    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4963    Mask[0] = 0; Mask[1] = 2;
4964    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4965  }
4966  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4967}
4968
4969// v8i16 shuffles - Prefer shuffles in the following order:
4970// 1. [all]   pshuflw, pshufhw, optional move
4971// 2. [ssse3] 1 x pshufb
4972// 3. [ssse3] 2 x pshufb + 1 x por
4973// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4974SDValue
4975X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4976                                            SelectionDAG &DAG) const {
4977  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4978  SDValue V1 = SVOp->getOperand(0);
4979  SDValue V2 = SVOp->getOperand(1);
4980  DebugLoc dl = SVOp->getDebugLoc();
4981  SmallVector<int, 8> MaskVals;
4982
4983  // Determine if more than 1 of the words in each of the low and high quadwords
4984  // of the result come from the same quadword of one of the two inputs.  Undef
4985  // mask values count as coming from any quadword, for better codegen.
4986  SmallVector<unsigned, 4> LoQuad(4);
4987  SmallVector<unsigned, 4> HiQuad(4);
4988  BitVector InputQuads(4);
4989  for (unsigned i = 0; i < 8; ++i) {
4990    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4991    int EltIdx = SVOp->getMaskElt(i);
4992    MaskVals.push_back(EltIdx);
4993    if (EltIdx < 0) {
4994      ++Quad[0];
4995      ++Quad[1];
4996      ++Quad[2];
4997      ++Quad[3];
4998      continue;
4999    }
5000    ++Quad[EltIdx / 4];
5001    InputQuads.set(EltIdx / 4);
5002  }
5003
5004  int BestLoQuad = -1;
5005  unsigned MaxQuad = 1;
5006  for (unsigned i = 0; i < 4; ++i) {
5007    if (LoQuad[i] > MaxQuad) {
5008      BestLoQuad = i;
5009      MaxQuad = LoQuad[i];
5010    }
5011  }
5012
5013  int BestHiQuad = -1;
5014  MaxQuad = 1;
5015  for (unsigned i = 0; i < 4; ++i) {
5016    if (HiQuad[i] > MaxQuad) {
5017      BestHiQuad = i;
5018      MaxQuad = HiQuad[i];
5019    }
5020  }
5021
5022  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5023  // of the two input vectors, shuffle them into one input vector so only a
5024  // single pshufb instruction is necessary. If There are more than 2 input
5025  // quads, disable the next transformation since it does not help SSSE3.
5026  bool V1Used = InputQuads[0] || InputQuads[1];
5027  bool V2Used = InputQuads[2] || InputQuads[3];
5028  if (Subtarget->hasSSSE3()) {
5029    if (InputQuads.count() == 2 && V1Used && V2Used) {
5030      BestLoQuad = InputQuads.find_first();
5031      BestHiQuad = InputQuads.find_next(BestLoQuad);
5032    }
5033    if (InputQuads.count() > 2) {
5034      BestLoQuad = -1;
5035      BestHiQuad = -1;
5036    }
5037  }
5038
5039  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5040  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5041  // words from all 4 input quadwords.
5042  SDValue NewV;
5043  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5044    SmallVector<int, 8> MaskV;
5045    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5046    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5047    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5048                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5049                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5050    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5051
5052    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5053    // source words for the shuffle, to aid later transformations.
5054    bool AllWordsInNewV = true;
5055    bool InOrder[2] = { true, true };
5056    for (unsigned i = 0; i != 8; ++i) {
5057      int idx = MaskVals[i];
5058      if (idx != (int)i)
5059        InOrder[i/4] = false;
5060      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5061        continue;
5062      AllWordsInNewV = false;
5063      break;
5064    }
5065
5066    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5067    if (AllWordsInNewV) {
5068      for (int i = 0; i != 8; ++i) {
5069        int idx = MaskVals[i];
5070        if (idx < 0)
5071          continue;
5072        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5073        if ((idx != i) && idx < 4)
5074          pshufhw = false;
5075        if ((idx != i) && idx > 3)
5076          pshuflw = false;
5077      }
5078      V1 = NewV;
5079      V2Used = false;
5080      BestLoQuad = 0;
5081      BestHiQuad = 1;
5082    }
5083
5084    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5085    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5086    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5087      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5088      unsigned TargetMask = 0;
5089      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5090                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5091      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5092                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
5093      V1 = NewV.getOperand(0);
5094      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5095    }
5096  }
5097
5098  // If we have SSSE3, and all words of the result are from 1 input vector,
5099  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5100  // is present, fall back to case 4.
5101  if (Subtarget->hasSSSE3()) {
5102    SmallVector<SDValue,16> pshufbMask;
5103
5104    // If we have elements from both input vectors, set the high bit of the
5105    // shuffle mask element to zero out elements that come from V2 in the V1
5106    // mask, and elements that come from V1 in the V2 mask, so that the two
5107    // results can be OR'd together.
5108    bool TwoInputs = V1Used && V2Used;
5109    for (unsigned i = 0; i != 8; ++i) {
5110      int EltIdx = MaskVals[i] * 2;
5111      if (TwoInputs && (EltIdx >= 16)) {
5112        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5113        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5114        continue;
5115      }
5116      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5117      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5118    }
5119    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5120    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5121                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5122                                 MVT::v16i8, &pshufbMask[0], 16));
5123    if (!TwoInputs)
5124      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5125
5126    // Calculate the shuffle mask for the second input, shuffle it, and
5127    // OR it with the first shuffled input.
5128    pshufbMask.clear();
5129    for (unsigned i = 0; i != 8; ++i) {
5130      int EltIdx = MaskVals[i] * 2;
5131      if (EltIdx < 16) {
5132        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5133        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5134        continue;
5135      }
5136      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5137      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5138    }
5139    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5140    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5141                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5142                                 MVT::v16i8, &pshufbMask[0], 16));
5143    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5144    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5145  }
5146
5147  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5148  // and update MaskVals with new element order.
5149  BitVector InOrder(8);
5150  if (BestLoQuad >= 0) {
5151    SmallVector<int, 8> MaskV;
5152    for (int i = 0; i != 4; ++i) {
5153      int idx = MaskVals[i];
5154      if (idx < 0) {
5155        MaskV.push_back(-1);
5156        InOrder.set(i);
5157      } else if ((idx / 4) == BestLoQuad) {
5158        MaskV.push_back(idx & 3);
5159        InOrder.set(i);
5160      } else {
5161        MaskV.push_back(-1);
5162      }
5163    }
5164    for (unsigned i = 4; i != 8; ++i)
5165      MaskV.push_back(i);
5166    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5167                                &MaskV[0]);
5168
5169    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5170      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5171                               NewV.getOperand(0),
5172                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5173                               DAG);
5174  }
5175
5176  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5177  // and update MaskVals with the new element order.
5178  if (BestHiQuad >= 0) {
5179    SmallVector<int, 8> MaskV;
5180    for (unsigned i = 0; i != 4; ++i)
5181      MaskV.push_back(i);
5182    for (unsigned i = 4; i != 8; ++i) {
5183      int idx = MaskVals[i];
5184      if (idx < 0) {
5185        MaskV.push_back(-1);
5186        InOrder.set(i);
5187      } else if ((idx / 4) == BestHiQuad) {
5188        MaskV.push_back((idx & 3) + 4);
5189        InOrder.set(i);
5190      } else {
5191        MaskV.push_back(-1);
5192      }
5193    }
5194    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5195                                &MaskV[0]);
5196
5197    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
5198      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5199                              NewV.getOperand(0),
5200                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5201                              DAG);
5202  }
5203
5204  // In case BestHi & BestLo were both -1, which means each quadword has a word
5205  // from each of the four input quadwords, calculate the InOrder bitvector now
5206  // before falling through to the insert/extract cleanup.
5207  if (BestLoQuad == -1 && BestHiQuad == -1) {
5208    NewV = V1;
5209    for (int i = 0; i != 8; ++i)
5210      if (MaskVals[i] < 0 || MaskVals[i] == i)
5211        InOrder.set(i);
5212  }
5213
5214  // The other elements are put in the right place using pextrw and pinsrw.
5215  for (unsigned i = 0; i != 8; ++i) {
5216    if (InOrder[i])
5217      continue;
5218    int EltIdx = MaskVals[i];
5219    if (EltIdx < 0)
5220      continue;
5221    SDValue ExtOp = (EltIdx < 8)
5222    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5223                  DAG.getIntPtrConstant(EltIdx))
5224    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5225                  DAG.getIntPtrConstant(EltIdx - 8));
5226    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5227                       DAG.getIntPtrConstant(i));
5228  }
5229  return NewV;
5230}
5231
5232// v16i8 shuffles - Prefer shuffles in the following order:
5233// 1. [ssse3] 1 x pshufb
5234// 2. [ssse3] 2 x pshufb + 1 x por
5235// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5236static
5237SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5238                                 SelectionDAG &DAG,
5239                                 const X86TargetLowering &TLI) {
5240  SDValue V1 = SVOp->getOperand(0);
5241  SDValue V2 = SVOp->getOperand(1);
5242  DebugLoc dl = SVOp->getDebugLoc();
5243  SmallVector<int, 16> MaskVals;
5244  SVOp->getMask(MaskVals);
5245
5246  // If we have SSSE3, case 1 is generated when all result bytes come from
5247  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5248  // present, fall back to case 3.
5249  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5250  bool V1Only = true;
5251  bool V2Only = true;
5252  for (unsigned i = 0; i < 16; ++i) {
5253    int EltIdx = MaskVals[i];
5254    if (EltIdx < 0)
5255      continue;
5256    if (EltIdx < 16)
5257      V2Only = false;
5258    else
5259      V1Only = false;
5260  }
5261
5262  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5263  if (TLI.getSubtarget()->hasSSSE3()) {
5264    SmallVector<SDValue,16> pshufbMask;
5265
5266    // If all result elements are from one input vector, then only translate
5267    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5268    //
5269    // Otherwise, we have elements from both input vectors, and must zero out
5270    // elements that come from V2 in the first mask, and V1 in the second mask
5271    // so that we can OR them together.
5272    bool TwoInputs = !(V1Only || V2Only);
5273    for (unsigned i = 0; i != 16; ++i) {
5274      int EltIdx = MaskVals[i];
5275      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5276        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5277        continue;
5278      }
5279      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5280    }
5281    // If all the elements are from V2, assign it to V1 and return after
5282    // building the first pshufb.
5283    if (V2Only)
5284      V1 = V2;
5285    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5286                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5287                                 MVT::v16i8, &pshufbMask[0], 16));
5288    if (!TwoInputs)
5289      return V1;
5290
5291    // Calculate the shuffle mask for the second input, shuffle it, and
5292    // OR it with the first shuffled input.
5293    pshufbMask.clear();
5294    for (unsigned i = 0; i != 16; ++i) {
5295      int EltIdx = MaskVals[i];
5296      if (EltIdx < 16) {
5297        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5298        continue;
5299      }
5300      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5301    }
5302    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5303                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5304                                 MVT::v16i8, &pshufbMask[0], 16));
5305    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5306  }
5307
5308  // No SSSE3 - Calculate in place words and then fix all out of place words
5309  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5310  // the 16 different words that comprise the two doublequadword input vectors.
5311  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5312  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5313  SDValue NewV = V2Only ? V2 : V1;
5314  for (int i = 0; i != 8; ++i) {
5315    int Elt0 = MaskVals[i*2];
5316    int Elt1 = MaskVals[i*2+1];
5317
5318    // This word of the result is all undef, skip it.
5319    if (Elt0 < 0 && Elt1 < 0)
5320      continue;
5321
5322    // This word of the result is already in the correct place, skip it.
5323    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5324      continue;
5325    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5326      continue;
5327
5328    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5329    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5330    SDValue InsElt;
5331
5332    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5333    // using a single extract together, load it and store it.
5334    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5335      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5336                           DAG.getIntPtrConstant(Elt1 / 2));
5337      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5338                        DAG.getIntPtrConstant(i));
5339      continue;
5340    }
5341
5342    // If Elt1 is defined, extract it from the appropriate source.  If the
5343    // source byte is not also odd, shift the extracted word left 8 bits
5344    // otherwise clear the bottom 8 bits if we need to do an or.
5345    if (Elt1 >= 0) {
5346      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5347                           DAG.getIntPtrConstant(Elt1 / 2));
5348      if ((Elt1 & 1) == 0)
5349        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5350                             DAG.getConstant(8,
5351                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5352      else if (Elt0 >= 0)
5353        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5354                             DAG.getConstant(0xFF00, MVT::i16));
5355    }
5356    // If Elt0 is defined, extract it from the appropriate source.  If the
5357    // source byte is not also even, shift the extracted word right 8 bits. If
5358    // Elt1 was also defined, OR the extracted values together before
5359    // inserting them in the result.
5360    if (Elt0 >= 0) {
5361      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5362                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5363      if ((Elt0 & 1) != 0)
5364        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5365                              DAG.getConstant(8,
5366                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5367      else if (Elt1 >= 0)
5368        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5369                             DAG.getConstant(0x00FF, MVT::i16));
5370      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5371                         : InsElt0;
5372    }
5373    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5374                       DAG.getIntPtrConstant(i));
5375  }
5376  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5377}
5378
5379/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5380/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5381/// done when every pair / quad of shuffle mask elements point to elements in
5382/// the right sequence. e.g.
5383/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5384static
5385SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5386                                 SelectionDAG &DAG, DebugLoc dl) {
5387  EVT VT = SVOp->getValueType(0);
5388  SDValue V1 = SVOp->getOperand(0);
5389  SDValue V2 = SVOp->getOperand(1);
5390  unsigned NumElems = VT.getVectorNumElements();
5391  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5392  EVT NewVT;
5393  switch (VT.getSimpleVT().SimpleTy) {
5394  default: assert(false && "Unexpected!");
5395  case MVT::v4f32: NewVT = MVT::v2f64; break;
5396  case MVT::v4i32: NewVT = MVT::v2i64; break;
5397  case MVT::v8i16: NewVT = MVT::v4i32; break;
5398  case MVT::v16i8: NewVT = MVT::v4i32; break;
5399  }
5400
5401  int Scale = NumElems / NewWidth;
5402  SmallVector<int, 8> MaskVec;
5403  for (unsigned i = 0; i < NumElems; i += Scale) {
5404    int StartIdx = -1;
5405    for (int j = 0; j < Scale; ++j) {
5406      int EltIdx = SVOp->getMaskElt(i+j);
5407      if (EltIdx < 0)
5408        continue;
5409      if (StartIdx == -1)
5410        StartIdx = EltIdx - (EltIdx % Scale);
5411      if (EltIdx != StartIdx + j)
5412        return SDValue();
5413    }
5414    if (StartIdx == -1)
5415      MaskVec.push_back(-1);
5416    else
5417      MaskVec.push_back(StartIdx / Scale);
5418  }
5419
5420  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5421  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5422  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5423}
5424
5425/// getVZextMovL - Return a zero-extending vector move low node.
5426///
5427static SDValue getVZextMovL(EVT VT, EVT OpVT,
5428                            SDValue SrcOp, SelectionDAG &DAG,
5429                            const X86Subtarget *Subtarget, DebugLoc dl) {
5430  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5431    LoadSDNode *LD = NULL;
5432    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5433      LD = dyn_cast<LoadSDNode>(SrcOp);
5434    if (!LD) {
5435      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5436      // instead.
5437      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5438      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5439          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5440          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5441          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5442        // PR2108
5443        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5444        return DAG.getNode(ISD::BITCAST, dl, VT,
5445                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5446                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5447                                                   OpVT,
5448                                                   SrcOp.getOperand(0)
5449                                                          .getOperand(0))));
5450      }
5451    }
5452  }
5453
5454  return DAG.getNode(ISD::BITCAST, dl, VT,
5455                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5456                                 DAG.getNode(ISD::BITCAST, dl,
5457                                             OpVT, SrcOp)));
5458}
5459
5460/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5461/// which could not be matched by any known target speficic shuffle
5462static SDValue
5463LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5464  return SDValue();
5465}
5466
5467/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
5468/// 4 elements, and match them with several different shuffle types.
5469static SDValue
5470LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5471  SDValue V1 = SVOp->getOperand(0);
5472  SDValue V2 = SVOp->getOperand(1);
5473  DebugLoc dl = SVOp->getDebugLoc();
5474  EVT VT = SVOp->getValueType(0);
5475
5476  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
5477
5478  SmallVector<std::pair<int, int>, 8> Locs;
5479  Locs.resize(4);
5480  SmallVector<int, 8> Mask1(4U, -1);
5481  SmallVector<int, 8> PermMask;
5482  SVOp->getMask(PermMask);
5483
5484  unsigned NumHi = 0;
5485  unsigned NumLo = 0;
5486  for (unsigned i = 0; i != 4; ++i) {
5487    int Idx = PermMask[i];
5488    if (Idx < 0) {
5489      Locs[i] = std::make_pair(-1, -1);
5490    } else {
5491      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5492      if (Idx < 4) {
5493        Locs[i] = std::make_pair(0, NumLo);
5494        Mask1[NumLo] = Idx;
5495        NumLo++;
5496      } else {
5497        Locs[i] = std::make_pair(1, NumHi);
5498        if (2+NumHi < 4)
5499          Mask1[2+NumHi] = Idx;
5500        NumHi++;
5501      }
5502    }
5503  }
5504
5505  if (NumLo <= 2 && NumHi <= 2) {
5506    // If no more than two elements come from either vector. This can be
5507    // implemented with two shuffles. First shuffle gather the elements.
5508    // The second shuffle, which takes the first shuffle as both of its
5509    // vector operands, put the elements into the right order.
5510    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5511
5512    SmallVector<int, 8> Mask2(4U, -1);
5513
5514    for (unsigned i = 0; i != 4; ++i) {
5515      if (Locs[i].first == -1)
5516        continue;
5517      else {
5518        unsigned Idx = (i < 2) ? 0 : 4;
5519        Idx += Locs[i].first * 2 + Locs[i].second;
5520        Mask2[i] = Idx;
5521      }
5522    }
5523
5524    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5525  } else if (NumLo == 3 || NumHi == 3) {
5526    // Otherwise, we must have three elements from one vector, call it X, and
5527    // one element from the other, call it Y.  First, use a shufps to build an
5528    // intermediate vector with the one element from Y and the element from X
5529    // that will be in the same half in the final destination (the indexes don't
5530    // matter). Then, use a shufps to build the final vector, taking the half
5531    // containing the element from Y from the intermediate, and the other half
5532    // from X.
5533    if (NumHi == 3) {
5534      // Normalize it so the 3 elements come from V1.
5535      CommuteVectorShuffleMask(PermMask, VT);
5536      std::swap(V1, V2);
5537    }
5538
5539    // Find the element from V2.
5540    unsigned HiIndex;
5541    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5542      int Val = PermMask[HiIndex];
5543      if (Val < 0)
5544        continue;
5545      if (Val >= 4)
5546        break;
5547    }
5548
5549    Mask1[0] = PermMask[HiIndex];
5550    Mask1[1] = -1;
5551    Mask1[2] = PermMask[HiIndex^1];
5552    Mask1[3] = -1;
5553    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5554
5555    if (HiIndex >= 2) {
5556      Mask1[0] = PermMask[0];
5557      Mask1[1] = PermMask[1];
5558      Mask1[2] = HiIndex & 1 ? 6 : 4;
5559      Mask1[3] = HiIndex & 1 ? 4 : 6;
5560      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5561    } else {
5562      Mask1[0] = HiIndex & 1 ? 2 : 0;
5563      Mask1[1] = HiIndex & 1 ? 0 : 2;
5564      Mask1[2] = PermMask[2];
5565      Mask1[3] = PermMask[3];
5566      if (Mask1[2] >= 0)
5567        Mask1[2] += 4;
5568      if (Mask1[3] >= 0)
5569        Mask1[3] += 4;
5570      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5571    }
5572  }
5573
5574  // Break it into (shuffle shuffle_hi, shuffle_lo).
5575  Locs.clear();
5576  Locs.resize(4);
5577  SmallVector<int,8> LoMask(4U, -1);
5578  SmallVector<int,8> HiMask(4U, -1);
5579
5580  SmallVector<int,8> *MaskPtr = &LoMask;
5581  unsigned MaskIdx = 0;
5582  unsigned LoIdx = 0;
5583  unsigned HiIdx = 2;
5584  for (unsigned i = 0; i != 4; ++i) {
5585    if (i == 2) {
5586      MaskPtr = &HiMask;
5587      MaskIdx = 1;
5588      LoIdx = 0;
5589      HiIdx = 2;
5590    }
5591    int Idx = PermMask[i];
5592    if (Idx < 0) {
5593      Locs[i] = std::make_pair(-1, -1);
5594    } else if (Idx < 4) {
5595      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5596      (*MaskPtr)[LoIdx] = Idx;
5597      LoIdx++;
5598    } else {
5599      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5600      (*MaskPtr)[HiIdx] = Idx;
5601      HiIdx++;
5602    }
5603  }
5604
5605  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5606  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5607  SmallVector<int, 8> MaskOps;
5608  for (unsigned i = 0; i != 4; ++i) {
5609    if (Locs[i].first == -1) {
5610      MaskOps.push_back(-1);
5611    } else {
5612      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5613      MaskOps.push_back(Idx);
5614    }
5615  }
5616  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5617}
5618
5619static bool MayFoldVectorLoad(SDValue V) {
5620  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5621    V = V.getOperand(0);
5622  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5623    V = V.getOperand(0);
5624  if (MayFoldLoad(V))
5625    return true;
5626  return false;
5627}
5628
5629// FIXME: the version above should always be used. Since there's
5630// a bug where several vector shuffles can't be folded because the
5631// DAG is not updated during lowering and a node claims to have two
5632// uses while it only has one, use this version, and let isel match
5633// another instruction if the load really happens to have more than
5634// one use. Remove this version after this bug get fixed.
5635// rdar://8434668, PR8156
5636static bool RelaxedMayFoldVectorLoad(SDValue V) {
5637  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5638    V = V.getOperand(0);
5639  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5640    V = V.getOperand(0);
5641  if (ISD::isNormalLoad(V.getNode()))
5642    return true;
5643  return false;
5644}
5645
5646/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5647/// a vector extract, and if both can be later optimized into a single load.
5648/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5649/// here because otherwise a target specific shuffle node is going to be
5650/// emitted for this shuffle, and the optimization not done.
5651/// FIXME: This is probably not the best approach, but fix the problem
5652/// until the right path is decided.
5653static
5654bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5655                                         const TargetLowering &TLI) {
5656  EVT VT = V.getValueType();
5657  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5658
5659  // Be sure that the vector shuffle is present in a pattern like this:
5660  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5661  if (!V.hasOneUse())
5662    return false;
5663
5664  SDNode *N = *V.getNode()->use_begin();
5665  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5666    return false;
5667
5668  SDValue EltNo = N->getOperand(1);
5669  if (!isa<ConstantSDNode>(EltNo))
5670    return false;
5671
5672  // If the bit convert changed the number of elements, it is unsafe
5673  // to examine the mask.
5674  bool HasShuffleIntoBitcast = false;
5675  if (V.getOpcode() == ISD::BITCAST) {
5676    EVT SrcVT = V.getOperand(0).getValueType();
5677    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5678      return false;
5679    V = V.getOperand(0);
5680    HasShuffleIntoBitcast = true;
5681  }
5682
5683  // Select the input vector, guarding against out of range extract vector.
5684  unsigned NumElems = VT.getVectorNumElements();
5685  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5686  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5687  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5688
5689  // Skip one more bit_convert if necessary
5690  if (V.getOpcode() == ISD::BITCAST)
5691    V = V.getOperand(0);
5692
5693  if (ISD::isNormalLoad(V.getNode())) {
5694    // Is the original load suitable?
5695    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5696
5697    // FIXME: avoid the multi-use bug that is preventing lots of
5698    // of foldings to be detected, this is still wrong of course, but
5699    // give the temporary desired behavior, and if it happens that
5700    // the load has real more uses, during isel it will not fold, and
5701    // will generate poor code.
5702    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5703      return false;
5704
5705    if (!HasShuffleIntoBitcast)
5706      return true;
5707
5708    // If there's a bitcast before the shuffle, check if the load type and
5709    // alignment is valid.
5710    unsigned Align = LN0->getAlignment();
5711    unsigned NewAlign =
5712      TLI.getTargetData()->getABITypeAlignment(
5713                                    VT.getTypeForEVT(*DAG.getContext()));
5714
5715    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5716      return false;
5717  }
5718
5719  return true;
5720}
5721
5722static
5723SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5724  EVT VT = Op.getValueType();
5725
5726  // Canonizalize to v2f64.
5727  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5728  return DAG.getNode(ISD::BITCAST, dl, VT,
5729                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5730                                          V1, DAG));
5731}
5732
5733static
5734SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5735                        bool HasSSE2) {
5736  SDValue V1 = Op.getOperand(0);
5737  SDValue V2 = Op.getOperand(1);
5738  EVT VT = Op.getValueType();
5739
5740  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5741
5742  if (HasSSE2 && VT == MVT::v2f64)
5743    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5744
5745  // v4f32 or v4i32
5746  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5747}
5748
5749static
5750SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5751  SDValue V1 = Op.getOperand(0);
5752  SDValue V2 = Op.getOperand(1);
5753  EVT VT = Op.getValueType();
5754
5755  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5756         "unsupported shuffle type");
5757
5758  if (V2.getOpcode() == ISD::UNDEF)
5759    V2 = V1;
5760
5761  // v4i32 or v4f32
5762  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5763}
5764
5765static
5766SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5767  SDValue V1 = Op.getOperand(0);
5768  SDValue V2 = Op.getOperand(1);
5769  EVT VT = Op.getValueType();
5770  unsigned NumElems = VT.getVectorNumElements();
5771
5772  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5773  // operand of these instructions is only memory, so check if there's a
5774  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5775  // same masks.
5776  bool CanFoldLoad = false;
5777
5778  // Trivial case, when V2 comes from a load.
5779  if (MayFoldVectorLoad(V2))
5780    CanFoldLoad = true;
5781
5782  // When V1 is a load, it can be folded later into a store in isel, example:
5783  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5784  //    turns into:
5785  //  (MOVLPSmr addr:$src1, VR128:$src2)
5786  // So, recognize this potential and also use MOVLPS or MOVLPD
5787  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5788    CanFoldLoad = true;
5789
5790  // Both of them can't be memory operations though.
5791  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5792    CanFoldLoad = false;
5793
5794  if (CanFoldLoad) {
5795    if (HasSSE2 && NumElems == 2)
5796      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5797
5798    if (NumElems == 4)
5799      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5800  }
5801
5802  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5803  // movl and movlp will both match v2i64, but v2i64 is never matched by
5804  // movl earlier because we make it strict to avoid messing with the movlp load
5805  // folding logic (see the code above getMOVLP call). Match it here then,
5806  // this is horrible, but will stay like this until we move all shuffle
5807  // matching to x86 specific nodes. Note that for the 1st condition all
5808  // types are matched with movsd.
5809  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5810    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5811  else if (HasSSE2)
5812    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5813
5814
5815  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5816
5817  // Invert the operand order and use SHUFPS to match it.
5818  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5819                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5820}
5821
5822static inline unsigned getUNPCKLOpcode(EVT VT) {
5823  switch(VT.getSimpleVT().SimpleTy) {
5824  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5825  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5826  case MVT::v4f32: return X86ISD::UNPCKLPS;
5827  case MVT::v2f64: return X86ISD::UNPCKLPD;
5828  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5829  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5830  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5831  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5832  default:
5833    llvm_unreachable("Unknown type for unpckl");
5834  }
5835  return 0;
5836}
5837
5838static inline unsigned getUNPCKHOpcode(EVT VT) {
5839  switch(VT.getSimpleVT().SimpleTy) {
5840  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5841  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5842  case MVT::v4f32: return X86ISD::UNPCKHPS;
5843  case MVT::v2f64: return X86ISD::UNPCKHPD;
5844  case MVT::v8f32: return X86ISD::VUNPCKHPSY;
5845  case MVT::v4f64: return X86ISD::VUNPCKHPDY;
5846  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5847  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5848  default:
5849    llvm_unreachable("Unknown type for unpckh");
5850  }
5851  return 0;
5852}
5853
5854static inline unsigned getVPERMILOpcode(EVT VT) {
5855  switch(VT.getSimpleVT().SimpleTy) {
5856  case MVT::v4i32:
5857  case MVT::v4f32: return X86ISD::VPERMILPS;
5858  case MVT::v2i64:
5859  case MVT::v2f64: return X86ISD::VPERMILPD;
5860  case MVT::v8i32:
5861  case MVT::v8f32: return X86ISD::VPERMILPSY;
5862  case MVT::v4i64:
5863  case MVT::v4f64: return X86ISD::VPERMILPDY;
5864  default:
5865    llvm_unreachable("Unknown type for vpermil");
5866  }
5867  return 0;
5868}
5869
5870static
5871SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5872                               const TargetLowering &TLI,
5873                               const X86Subtarget *Subtarget) {
5874  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5875  EVT VT = Op.getValueType();
5876  DebugLoc dl = Op.getDebugLoc();
5877  SDValue V1 = Op.getOperand(0);
5878  SDValue V2 = Op.getOperand(1);
5879
5880  if (isZeroShuffle(SVOp))
5881    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5882
5883  // Handle splat operations
5884  if (SVOp->isSplat()) {
5885    unsigned NumElem = VT.getVectorNumElements();
5886    // Special case, this is the only place now where it's allowed to return
5887    // a vector_shuffle operation without using a target specific node, because
5888    // *hopefully* it will be optimized away by the dag combiner. FIXME: should
5889    // this be moved to DAGCombine instead?
5890    if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5891      return Op;
5892
5893    // Since there's no native support for scalar_to_vector for 256-bit AVX, a
5894    // 128-bit scalar_to_vector + INSERT_SUBVECTOR is generated. Recognize this
5895    // idiom and do the shuffle before the insertion, this yields less
5896    // instructions in the end.
5897    if (VT.is256BitVector() &&
5898        V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
5899        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
5900        V1.getOperand(1).getOpcode() == ISD::SCALAR_TO_VECTOR)
5901      return PromoteVectorToScalarSplat(SVOp, DAG);
5902
5903    // Handle splats by matching through known shuffle masks
5904    if ((VT.is128BitVector() && NumElem <= 4) ||
5905        (VT.is256BitVector() && NumElem <= 8))
5906      return SDValue();
5907
5908    // All i16 and i8 vector types can't be used directly by a generic shuffle
5909    // instruction because the target has no such instruction. Generate shuffles
5910    // which repeat i16 and i8 several times until they fit in i32, and then can
5911    // be manipulated by target suported shuffles. After the insertion of the
5912    // necessary shuffles, the result is bitcasted back to v4f32 or v8f32.
5913    return PromoteSplat(SVOp, DAG);
5914  }
5915
5916  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5917  // do it!
5918  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5919    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5920    if (NewOp.getNode())
5921      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5922  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5923    // FIXME: Figure out a cleaner way to do this.
5924    // Try to make use of movq to zero out the top part.
5925    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5926      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5927      if (NewOp.getNode()) {
5928        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5929          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5930                              DAG, Subtarget, dl);
5931      }
5932    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5933      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5934      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5935        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5936                            DAG, Subtarget, dl);
5937    }
5938  }
5939  return SDValue();
5940}
5941
5942SDValue
5943X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5944  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5945  SDValue V1 = Op.getOperand(0);
5946  SDValue V2 = Op.getOperand(1);
5947  EVT VT = Op.getValueType();
5948  DebugLoc dl = Op.getDebugLoc();
5949  unsigned NumElems = VT.getVectorNumElements();
5950  bool isMMX = VT.getSizeInBits() == 64;
5951  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5952  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5953  bool V1IsSplat = false;
5954  bool V2IsSplat = false;
5955  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5956  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5957  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5958  MachineFunction &MF = DAG.getMachineFunction();
5959  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5960
5961  // Shuffle operations on MMX not supported.
5962  if (isMMX)
5963    return Op;
5964
5965  // Vector shuffle lowering takes 3 steps:
5966  //
5967  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5968  //    narrowing and commutation of operands should be handled.
5969  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5970  //    shuffle nodes.
5971  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5972  //    so the shuffle can be broken into other shuffles and the legalizer can
5973  //    try the lowering again.
5974  //
5975  // The general ideia is that no vector_shuffle operation should be left to
5976  // be matched during isel, all of them must be converted to a target specific
5977  // node here.
5978
5979  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5980  // narrowing and commutation of operands should be handled. The actual code
5981  // doesn't include all of those, work in progress...
5982  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5983  if (NewOp.getNode())
5984    return NewOp;
5985
5986  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5987  // unpckh_undef). Only use pshufd if speed is more important than size.
5988  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5989    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5990  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5991    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5992
5993  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5994      RelaxedMayFoldVectorLoad(V1))
5995    return getMOVDDup(Op, dl, V1, DAG);
5996
5997  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5998    return getMOVHighToLow(Op, dl, DAG);
5999
6000  // Use to match splats
6001  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6002      (VT == MVT::v2f64 || VT == MVT::v2i64))
6003    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6004
6005  if (X86::isPSHUFDMask(SVOp)) {
6006    // The actual implementation will match the mask in the if above and then
6007    // during isel it can match several different instructions, not only pshufd
6008    // as its name says, sad but true, emulate the behavior for now...
6009    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6010        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6011
6012    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6013
6014    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6015      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6016
6017    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6018      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
6019                                  TargetMask, DAG);
6020
6021    if (VT == MVT::v4f32)
6022      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
6023                                  TargetMask, DAG);
6024  }
6025
6026  // Check if this can be converted into a logical shift.
6027  bool isLeft = false;
6028  unsigned ShAmt = 0;
6029  SDValue ShVal;
6030  bool isShift = getSubtarget()->hasSSE2() &&
6031    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6032  if (isShift && ShVal.hasOneUse()) {
6033    // If the shifted value has multiple uses, it may be cheaper to use
6034    // v_set0 + movlhps or movhlps, etc.
6035    EVT EltVT = VT.getVectorElementType();
6036    ShAmt *= EltVT.getSizeInBits();
6037    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6038  }
6039
6040  if (X86::isMOVLMask(SVOp)) {
6041    if (V1IsUndef)
6042      return V2;
6043    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6044      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6045    if (!X86::isMOVLPMask(SVOp)) {
6046      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6047        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6048
6049      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6050        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6051    }
6052  }
6053
6054  // FIXME: fold these into legal mask.
6055  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6056    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6057
6058  if (X86::isMOVHLPSMask(SVOp))
6059    return getMOVHighToLow(Op, dl, DAG);
6060
6061  if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6062    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6063
6064  if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6065    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6066
6067  if (X86::isMOVLPMask(SVOp))
6068    return getMOVLP(Op, dl, DAG, HasSSE2);
6069
6070  if (ShouldXformToMOVHLPS(SVOp) ||
6071      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6072    return CommuteVectorShuffle(SVOp, DAG);
6073
6074  if (isShift) {
6075    // No better options. Use a vshl / vsrl.
6076    EVT EltVT = VT.getVectorElementType();
6077    ShAmt *= EltVT.getSizeInBits();
6078    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6079  }
6080
6081  bool Commuted = false;
6082  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6083  // 1,1,1,1 -> v8i16 though.
6084  V1IsSplat = isSplatVector(V1.getNode());
6085  V2IsSplat = isSplatVector(V2.getNode());
6086
6087  // Canonicalize the splat or undef, if present, to be on the RHS.
6088  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6089    Op = CommuteVectorShuffle(SVOp, DAG);
6090    SVOp = cast<ShuffleVectorSDNode>(Op);
6091    V1 = SVOp->getOperand(0);
6092    V2 = SVOp->getOperand(1);
6093    std::swap(V1IsSplat, V2IsSplat);
6094    std::swap(V1IsUndef, V2IsUndef);
6095    Commuted = true;
6096  }
6097
6098  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6099    // Shuffling low element of v1 into undef, just return v1.
6100    if (V2IsUndef)
6101      return V1;
6102    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6103    // the instruction selector will not match, so get a canonical MOVL with
6104    // swapped operands to undo the commute.
6105    return getMOVL(DAG, dl, VT, V2, V1);
6106  }
6107
6108  if (X86::isUNPCKLMask(SVOp))
6109    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6110
6111  if (X86::isUNPCKHMask(SVOp))
6112    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6113
6114  if (V2IsSplat) {
6115    // Normalize mask so all entries that point to V2 points to its first
6116    // element then try to match unpck{h|l} again. If match, return a
6117    // new vector_shuffle with the corrected mask.
6118    SDValue NewMask = NormalizeMask(SVOp, DAG);
6119    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6120    if (NSVOp != SVOp) {
6121      if (X86::isUNPCKLMask(NSVOp, true)) {
6122        return NewMask;
6123      } else if (X86::isUNPCKHMask(NSVOp, true)) {
6124        return NewMask;
6125      }
6126    }
6127  }
6128
6129  if (Commuted) {
6130    // Commute is back and try unpck* again.
6131    // FIXME: this seems wrong.
6132    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6133    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6134
6135    if (X86::isUNPCKLMask(NewSVOp))
6136      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6137
6138    if (X86::isUNPCKHMask(NewSVOp))
6139      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6140  }
6141
6142  // Normalize the node to match x86 shuffle ops if needed
6143  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6144    return CommuteVectorShuffle(SVOp, DAG);
6145
6146  // The checks below are all present in isShuffleMaskLegal, but they are
6147  // inlined here right now to enable us to directly emit target specific
6148  // nodes, and remove one by one until they don't return Op anymore.
6149  SmallVector<int, 16> M;
6150  SVOp->getMask(M);
6151
6152  if (isPALIGNRMask(M, VT, HasSSSE3))
6153    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6154                                X86::getShufflePALIGNRImmediate(SVOp),
6155                                DAG);
6156
6157  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6158      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6159    if (VT == MVT::v2f64)
6160      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6161    if (VT == MVT::v2i64)
6162      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6163  }
6164
6165  if (isPSHUFHWMask(M, VT))
6166    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6167                                X86::getShufflePSHUFHWImmediate(SVOp),
6168                                DAG);
6169
6170  if (isPSHUFLWMask(M, VT))
6171    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6172                                X86::getShufflePSHUFLWImmediate(SVOp),
6173                                DAG);
6174
6175  if (isSHUFPMask(M, VT)) {
6176    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6177    if (VT == MVT::v4f32 || VT == MVT::v4i32)
6178      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
6179                                  TargetMask, DAG);
6180    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6181      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
6182                                  TargetMask, DAG);
6183  }
6184
6185  if (X86::isUNPCKL_v_undef_Mask(SVOp))
6186    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6187  if (X86::isUNPCKH_v_undef_Mask(SVOp))
6188    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6189
6190  //===--------------------------------------------------------------------===//
6191  // Generate target specific nodes for 128 or 256-bit shuffles only
6192  // supported in the AVX instruction set.
6193  //
6194
6195  // Handle VPERMILPS* permutations
6196  if (isVPERMILPSMask(M, VT, Subtarget))
6197    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6198                                getShuffleVPERMILPSImmediate(SVOp), DAG);
6199
6200  // Handle VPERMILPD* permutations
6201  if (isVPERMILPDMask(M, VT, Subtarget))
6202    return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6203                                getShuffleVPERMILPDImmediate(SVOp), DAG);
6204
6205  //===--------------------------------------------------------------------===//
6206  // Since no target specific shuffle was selected for this generic one,
6207  // lower it into other known shuffles. FIXME: this isn't true yet, but
6208  // this is the plan.
6209  //
6210
6211  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6212  if (VT == MVT::v8i16) {
6213    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6214    if (NewOp.getNode())
6215      return NewOp;
6216  }
6217
6218  if (VT == MVT::v16i8) {
6219    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6220    if (NewOp.getNode())
6221      return NewOp;
6222  }
6223
6224  // Handle all 128-bit wide vectors with 4 elements, and match them with
6225  // several different shuffle types.
6226  if (NumElems == 4 && VT.getSizeInBits() == 128)
6227    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6228
6229  // Handle general 256-bit shuffles
6230  if (VT.is256BitVector())
6231    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6232
6233  return SDValue();
6234}
6235
6236SDValue
6237X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6238                                                SelectionDAG &DAG) const {
6239  EVT VT = Op.getValueType();
6240  DebugLoc dl = Op.getDebugLoc();
6241  if (VT.getSizeInBits() == 8) {
6242    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6243                                    Op.getOperand(0), Op.getOperand(1));
6244    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6245                                    DAG.getValueType(VT));
6246    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6247  } else if (VT.getSizeInBits() == 16) {
6248    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6249    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6250    if (Idx == 0)
6251      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6252                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6253                                     DAG.getNode(ISD::BITCAST, dl,
6254                                                 MVT::v4i32,
6255                                                 Op.getOperand(0)),
6256                                     Op.getOperand(1)));
6257    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6258                                    Op.getOperand(0), Op.getOperand(1));
6259    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6260                                    DAG.getValueType(VT));
6261    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6262  } else if (VT == MVT::f32) {
6263    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6264    // the result back to FR32 register. It's only worth matching if the
6265    // result has a single use which is a store or a bitcast to i32.  And in
6266    // the case of a store, it's not worth it if the index is a constant 0,
6267    // because a MOVSSmr can be used instead, which is smaller and faster.
6268    if (!Op.hasOneUse())
6269      return SDValue();
6270    SDNode *User = *Op.getNode()->use_begin();
6271    if ((User->getOpcode() != ISD::STORE ||
6272         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6273          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6274        (User->getOpcode() != ISD::BITCAST ||
6275         User->getValueType(0) != MVT::i32))
6276      return SDValue();
6277    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6278                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6279                                              Op.getOperand(0)),
6280                                              Op.getOperand(1));
6281    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6282  } else if (VT == MVT::i32) {
6283    // ExtractPS works with constant index.
6284    if (isa<ConstantSDNode>(Op.getOperand(1)))
6285      return Op;
6286  }
6287  return SDValue();
6288}
6289
6290
6291SDValue
6292X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6293                                           SelectionDAG &DAG) const {
6294  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6295    return SDValue();
6296
6297  SDValue Vec = Op.getOperand(0);
6298  EVT VecVT = Vec.getValueType();
6299
6300  // If this is a 256-bit vector result, first extract the 128-bit
6301  // vector and then extract from the 128-bit vector.
6302  if (VecVT.getSizeInBits() > 128) {
6303    DebugLoc dl = Op.getNode()->getDebugLoc();
6304    unsigned NumElems = VecVT.getVectorNumElements();
6305    SDValue Idx = Op.getOperand(1);
6306
6307    if (!isa<ConstantSDNode>(Idx))
6308      return SDValue();
6309
6310    unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
6311    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6312
6313    // Get the 128-bit vector.
6314    bool Upper = IdxVal >= ExtractNumElems;
6315    Vec = Extract128BitVector(Vec, Idx, DAG, dl);
6316
6317    // Extract from it.
6318    SDValue ScaledIdx = Idx;
6319    if (Upper)
6320      ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
6321                              DAG.getConstant(ExtractNumElems,
6322                                              Idx.getValueType()));
6323    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6324                       ScaledIdx);
6325  }
6326
6327  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6328
6329  if (Subtarget->hasSSE41()) {
6330    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6331    if (Res.getNode())
6332      return Res;
6333  }
6334
6335  EVT VT = Op.getValueType();
6336  DebugLoc dl = Op.getDebugLoc();
6337  // TODO: handle v16i8.
6338  if (VT.getSizeInBits() == 16) {
6339    SDValue Vec = Op.getOperand(0);
6340    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6341    if (Idx == 0)
6342      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6343                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6344                                     DAG.getNode(ISD::BITCAST, dl,
6345                                                 MVT::v4i32, Vec),
6346                                     Op.getOperand(1)));
6347    // Transform it so it match pextrw which produces a 32-bit result.
6348    EVT EltVT = MVT::i32;
6349    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6350                                    Op.getOperand(0), Op.getOperand(1));
6351    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6352                                    DAG.getValueType(VT));
6353    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6354  } else if (VT.getSizeInBits() == 32) {
6355    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6356    if (Idx == 0)
6357      return Op;
6358
6359    // SHUFPS the element to the lowest double word, then movss.
6360    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6361    EVT VVT = Op.getOperand(0).getValueType();
6362    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6363                                       DAG.getUNDEF(VVT), Mask);
6364    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6365                       DAG.getIntPtrConstant(0));
6366  } else if (VT.getSizeInBits() == 64) {
6367    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6368    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6369    //        to match extract_elt for f64.
6370    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6371    if (Idx == 0)
6372      return Op;
6373
6374    // UNPCKHPD the element to the lowest double word, then movsd.
6375    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6376    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6377    int Mask[2] = { 1, -1 };
6378    EVT VVT = Op.getOperand(0).getValueType();
6379    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6380                                       DAG.getUNDEF(VVT), Mask);
6381    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6382                       DAG.getIntPtrConstant(0));
6383  }
6384
6385  return SDValue();
6386}
6387
6388SDValue
6389X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6390                                               SelectionDAG &DAG) const {
6391  EVT VT = Op.getValueType();
6392  EVT EltVT = VT.getVectorElementType();
6393  DebugLoc dl = Op.getDebugLoc();
6394
6395  SDValue N0 = Op.getOperand(0);
6396  SDValue N1 = Op.getOperand(1);
6397  SDValue N2 = Op.getOperand(2);
6398
6399  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6400      isa<ConstantSDNode>(N2)) {
6401    unsigned Opc;
6402    if (VT == MVT::v8i16)
6403      Opc = X86ISD::PINSRW;
6404    else if (VT == MVT::v16i8)
6405      Opc = X86ISD::PINSRB;
6406    else
6407      Opc = X86ISD::PINSRB;
6408
6409    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6410    // argument.
6411    if (N1.getValueType() != MVT::i32)
6412      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6413    if (N2.getValueType() != MVT::i32)
6414      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6415    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6416  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6417    // Bits [7:6] of the constant are the source select.  This will always be
6418    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6419    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6420    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6421    // Bits [5:4] of the constant are the destination select.  This is the
6422    //  value of the incoming immediate.
6423    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6424    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6425    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6426    // Create this as a scalar to vector..
6427    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6428    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6429  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6430    // PINSR* works with constant index.
6431    return Op;
6432  }
6433  return SDValue();
6434}
6435
6436SDValue
6437X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6438  EVT VT = Op.getValueType();
6439  EVT EltVT = VT.getVectorElementType();
6440
6441  DebugLoc dl = Op.getDebugLoc();
6442  SDValue N0 = Op.getOperand(0);
6443  SDValue N1 = Op.getOperand(1);
6444  SDValue N2 = Op.getOperand(2);
6445
6446  // If this is a 256-bit vector result, first insert into a 128-bit
6447  // vector and then insert into the 256-bit vector.
6448  if (VT.getSizeInBits() > 128) {
6449    if (!isa<ConstantSDNode>(N2))
6450      return SDValue();
6451
6452    // Get the 128-bit vector.
6453    unsigned NumElems = VT.getVectorNumElements();
6454    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6455    bool Upper = IdxVal >= NumElems / 2;
6456
6457    SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
6458
6459    // Insert into it.
6460    SDValue ScaledN2 = N2;
6461    if (Upper)
6462      ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
6463                             DAG.getConstant(NumElems /
6464                                             (VT.getSizeInBits() / 128),
6465                                             N2.getValueType()));
6466    Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
6467                     N1, ScaledN2);
6468
6469    // Insert the 128-bit vector
6470    // FIXME: Why UNDEF?
6471    return Insert128BitVector(N0, Op, N2, DAG, dl);
6472  }
6473
6474  if (Subtarget->hasSSE41())
6475    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6476
6477  if (EltVT == MVT::i8)
6478    return SDValue();
6479
6480  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6481    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6482    // as its second argument.
6483    if (N1.getValueType() != MVT::i32)
6484      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6485    if (N2.getValueType() != MVT::i32)
6486      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6487    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6488  }
6489  return SDValue();
6490}
6491
6492SDValue
6493X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6494  LLVMContext *Context = DAG.getContext();
6495  DebugLoc dl = Op.getDebugLoc();
6496  EVT OpVT = Op.getValueType();
6497
6498  // If this is a 256-bit vector result, first insert into a 128-bit
6499  // vector and then insert into the 256-bit vector.
6500  if (OpVT.getSizeInBits() > 128) {
6501    // Insert into a 128-bit vector.
6502    EVT VT128 = EVT::getVectorVT(*Context,
6503                                 OpVT.getVectorElementType(),
6504                                 OpVT.getVectorNumElements() / 2);
6505
6506    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6507
6508    // Insert the 128-bit vector.
6509    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6510                              DAG.getConstant(0, MVT::i32),
6511                              DAG, dl);
6512  }
6513
6514  if (Op.getValueType() == MVT::v1i64 &&
6515      Op.getOperand(0).getValueType() == MVT::i64)
6516    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6517
6518  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6519  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6520         "Expected an SSE type!");
6521  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6522                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6523}
6524
6525// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6526// a simple subregister reference or explicit instructions to grab
6527// upper bits of a vector.
6528SDValue
6529X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6530  if (Subtarget->hasAVX()) {
6531    DebugLoc dl = Op.getNode()->getDebugLoc();
6532    SDValue Vec = Op.getNode()->getOperand(0);
6533    SDValue Idx = Op.getNode()->getOperand(1);
6534
6535    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6536        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6537        return Extract128BitVector(Vec, Idx, DAG, dl);
6538    }
6539  }
6540  return SDValue();
6541}
6542
6543// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6544// simple superregister reference or explicit instructions to insert
6545// the upper bits of a vector.
6546SDValue
6547X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6548  if (Subtarget->hasAVX()) {
6549    DebugLoc dl = Op.getNode()->getDebugLoc();
6550    SDValue Vec = Op.getNode()->getOperand(0);
6551    SDValue SubVec = Op.getNode()->getOperand(1);
6552    SDValue Idx = Op.getNode()->getOperand(2);
6553
6554    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6555        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6556      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6557    }
6558  }
6559  return SDValue();
6560}
6561
6562// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6563// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6564// one of the above mentioned nodes. It has to be wrapped because otherwise
6565// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6566// be used to form addressing mode. These wrapped nodes will be selected
6567// into MOV32ri.
6568SDValue
6569X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6570  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6571
6572  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6573  // global base reg.
6574  unsigned char OpFlag = 0;
6575  unsigned WrapperKind = X86ISD::Wrapper;
6576  CodeModel::Model M = getTargetMachine().getCodeModel();
6577
6578  if (Subtarget->isPICStyleRIPRel() &&
6579      (M == CodeModel::Small || M == CodeModel::Kernel))
6580    WrapperKind = X86ISD::WrapperRIP;
6581  else if (Subtarget->isPICStyleGOT())
6582    OpFlag = X86II::MO_GOTOFF;
6583  else if (Subtarget->isPICStyleStubPIC())
6584    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6585
6586  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6587                                             CP->getAlignment(),
6588                                             CP->getOffset(), OpFlag);
6589  DebugLoc DL = CP->getDebugLoc();
6590  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6591  // With PIC, the address is actually $g + Offset.
6592  if (OpFlag) {
6593    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6594                         DAG.getNode(X86ISD::GlobalBaseReg,
6595                                     DebugLoc(), getPointerTy()),
6596                         Result);
6597  }
6598
6599  return Result;
6600}
6601
6602SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6603  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6604
6605  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6606  // global base reg.
6607  unsigned char OpFlag = 0;
6608  unsigned WrapperKind = X86ISD::Wrapper;
6609  CodeModel::Model M = getTargetMachine().getCodeModel();
6610
6611  if (Subtarget->isPICStyleRIPRel() &&
6612      (M == CodeModel::Small || M == CodeModel::Kernel))
6613    WrapperKind = X86ISD::WrapperRIP;
6614  else if (Subtarget->isPICStyleGOT())
6615    OpFlag = X86II::MO_GOTOFF;
6616  else if (Subtarget->isPICStyleStubPIC())
6617    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6618
6619  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6620                                          OpFlag);
6621  DebugLoc DL = JT->getDebugLoc();
6622  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6623
6624  // With PIC, the address is actually $g + Offset.
6625  if (OpFlag)
6626    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6627                         DAG.getNode(X86ISD::GlobalBaseReg,
6628                                     DebugLoc(), getPointerTy()),
6629                         Result);
6630
6631  return Result;
6632}
6633
6634SDValue
6635X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6636  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6637
6638  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6639  // global base reg.
6640  unsigned char OpFlag = 0;
6641  unsigned WrapperKind = X86ISD::Wrapper;
6642  CodeModel::Model M = getTargetMachine().getCodeModel();
6643
6644  if (Subtarget->isPICStyleRIPRel() &&
6645      (M == CodeModel::Small || M == CodeModel::Kernel))
6646    WrapperKind = X86ISD::WrapperRIP;
6647  else if (Subtarget->isPICStyleGOT())
6648    OpFlag = X86II::MO_GOTOFF;
6649  else if (Subtarget->isPICStyleStubPIC())
6650    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6651
6652  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6653
6654  DebugLoc DL = Op.getDebugLoc();
6655  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6656
6657
6658  // With PIC, the address is actually $g + Offset.
6659  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6660      !Subtarget->is64Bit()) {
6661    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6662                         DAG.getNode(X86ISD::GlobalBaseReg,
6663                                     DebugLoc(), getPointerTy()),
6664                         Result);
6665  }
6666
6667  return Result;
6668}
6669
6670SDValue
6671X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6672  // Create the TargetBlockAddressAddress node.
6673  unsigned char OpFlags =
6674    Subtarget->ClassifyBlockAddressReference();
6675  CodeModel::Model M = getTargetMachine().getCodeModel();
6676  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6677  DebugLoc dl = Op.getDebugLoc();
6678  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6679                                       /*isTarget=*/true, OpFlags);
6680
6681  if (Subtarget->isPICStyleRIPRel() &&
6682      (M == CodeModel::Small || M == CodeModel::Kernel))
6683    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6684  else
6685    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6686
6687  // With PIC, the address is actually $g + Offset.
6688  if (isGlobalRelativeToPICBase(OpFlags)) {
6689    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6690                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6691                         Result);
6692  }
6693
6694  return Result;
6695}
6696
6697SDValue
6698X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6699                                      int64_t Offset,
6700                                      SelectionDAG &DAG) const {
6701  // Create the TargetGlobalAddress node, folding in the constant
6702  // offset if it is legal.
6703  unsigned char OpFlags =
6704    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6705  CodeModel::Model M = getTargetMachine().getCodeModel();
6706  SDValue Result;
6707  if (OpFlags == X86II::MO_NO_FLAG &&
6708      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6709    // A direct static reference to a global.
6710    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6711    Offset = 0;
6712  } else {
6713    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6714  }
6715
6716  if (Subtarget->isPICStyleRIPRel() &&
6717      (M == CodeModel::Small || M == CodeModel::Kernel))
6718    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6719  else
6720    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6721
6722  // With PIC, the address is actually $g + Offset.
6723  if (isGlobalRelativeToPICBase(OpFlags)) {
6724    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6725                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6726                         Result);
6727  }
6728
6729  // For globals that require a load from a stub to get the address, emit the
6730  // load.
6731  if (isGlobalStubReference(OpFlags))
6732    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6733                         MachinePointerInfo::getGOT(), false, false, 0);
6734
6735  // If there was a non-zero offset that we didn't fold, create an explicit
6736  // addition for it.
6737  if (Offset != 0)
6738    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6739                         DAG.getConstant(Offset, getPointerTy()));
6740
6741  return Result;
6742}
6743
6744SDValue
6745X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6746  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6747  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6748  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6749}
6750
6751static SDValue
6752GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6753           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6754           unsigned char OperandFlags) {
6755  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6756  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6757  DebugLoc dl = GA->getDebugLoc();
6758  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6759                                           GA->getValueType(0),
6760                                           GA->getOffset(),
6761                                           OperandFlags);
6762  if (InFlag) {
6763    SDValue Ops[] = { Chain,  TGA, *InFlag };
6764    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6765  } else {
6766    SDValue Ops[]  = { Chain, TGA };
6767    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6768  }
6769
6770  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6771  MFI->setAdjustsStack(true);
6772
6773  SDValue Flag = Chain.getValue(1);
6774  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6775}
6776
6777// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6778static SDValue
6779LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6780                                const EVT PtrVT) {
6781  SDValue InFlag;
6782  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6783  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6784                                     DAG.getNode(X86ISD::GlobalBaseReg,
6785                                                 DebugLoc(), PtrVT), InFlag);
6786  InFlag = Chain.getValue(1);
6787
6788  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6789}
6790
6791// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6792static SDValue
6793LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6794                                const EVT PtrVT) {
6795  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6796                    X86::RAX, X86II::MO_TLSGD);
6797}
6798
6799// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6800// "local exec" model.
6801static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6802                                   const EVT PtrVT, TLSModel::Model model,
6803                                   bool is64Bit) {
6804  DebugLoc dl = GA->getDebugLoc();
6805
6806  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6807  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6808                                                         is64Bit ? 257 : 256));
6809
6810  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6811                                      DAG.getIntPtrConstant(0),
6812                                      MachinePointerInfo(Ptr), false, false, 0);
6813
6814  unsigned char OperandFlags = 0;
6815  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6816  // initialexec.
6817  unsigned WrapperKind = X86ISD::Wrapper;
6818  if (model == TLSModel::LocalExec) {
6819    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6820  } else if (is64Bit) {
6821    assert(model == TLSModel::InitialExec);
6822    OperandFlags = X86II::MO_GOTTPOFF;
6823    WrapperKind = X86ISD::WrapperRIP;
6824  } else {
6825    assert(model == TLSModel::InitialExec);
6826    OperandFlags = X86II::MO_INDNTPOFF;
6827  }
6828
6829  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6830  // exec)
6831  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6832                                           GA->getValueType(0),
6833                                           GA->getOffset(), OperandFlags);
6834  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6835
6836  if (model == TLSModel::InitialExec)
6837    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6838                         MachinePointerInfo::getGOT(), false, false, 0);
6839
6840  // The address of the thread local variable is the add of the thread
6841  // pointer with the offset of the variable.
6842  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6843}
6844
6845SDValue
6846X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6847
6848  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6849  const GlobalValue *GV = GA->getGlobal();
6850
6851  if (Subtarget->isTargetELF()) {
6852    // TODO: implement the "local dynamic" model
6853    // TODO: implement the "initial exec"model for pic executables
6854
6855    // If GV is an alias then use the aliasee for determining
6856    // thread-localness.
6857    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6858      GV = GA->resolveAliasedGlobal(false);
6859
6860    TLSModel::Model model
6861      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6862
6863    switch (model) {
6864      case TLSModel::GeneralDynamic:
6865      case TLSModel::LocalDynamic: // not implemented
6866        if (Subtarget->is64Bit())
6867          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6868        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6869
6870      case TLSModel::InitialExec:
6871      case TLSModel::LocalExec:
6872        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6873                                   Subtarget->is64Bit());
6874    }
6875  } else if (Subtarget->isTargetDarwin()) {
6876    // Darwin only has one model of TLS.  Lower to that.
6877    unsigned char OpFlag = 0;
6878    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6879                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6880
6881    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6882    // global base reg.
6883    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6884                  !Subtarget->is64Bit();
6885    if (PIC32)
6886      OpFlag = X86II::MO_TLVP_PIC_BASE;
6887    else
6888      OpFlag = X86II::MO_TLVP;
6889    DebugLoc DL = Op.getDebugLoc();
6890    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6891                                                GA->getValueType(0),
6892                                                GA->getOffset(), OpFlag);
6893    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6894
6895    // With PIC32, the address is actually $g + Offset.
6896    if (PIC32)
6897      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6898                           DAG.getNode(X86ISD::GlobalBaseReg,
6899                                       DebugLoc(), getPointerTy()),
6900                           Offset);
6901
6902    // Lowering the machine isd will make sure everything is in the right
6903    // location.
6904    SDValue Chain = DAG.getEntryNode();
6905    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6906    SDValue Args[] = { Chain, Offset };
6907    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6908
6909    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6910    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6911    MFI->setAdjustsStack(true);
6912
6913    // And our return value (tls address) is in the standard call return value
6914    // location.
6915    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6916    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6917  }
6918
6919  assert(false &&
6920         "TLS not implemented for this target.");
6921
6922  llvm_unreachable("Unreachable");
6923  return SDValue();
6924}
6925
6926
6927/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
6928/// take a 2 x i32 value to shift plus a shift amount.
6929SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
6930  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6931  EVT VT = Op.getValueType();
6932  unsigned VTBits = VT.getSizeInBits();
6933  DebugLoc dl = Op.getDebugLoc();
6934  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6935  SDValue ShOpLo = Op.getOperand(0);
6936  SDValue ShOpHi = Op.getOperand(1);
6937  SDValue ShAmt  = Op.getOperand(2);
6938  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6939                                     DAG.getConstant(VTBits - 1, MVT::i8))
6940                       : DAG.getConstant(0, VT);
6941
6942  SDValue Tmp2, Tmp3;
6943  if (Op.getOpcode() == ISD::SHL_PARTS) {
6944    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6945    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6946  } else {
6947    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6948    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6949  }
6950
6951  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6952                                DAG.getConstant(VTBits, MVT::i8));
6953  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6954                             AndNode, DAG.getConstant(0, MVT::i8));
6955
6956  SDValue Hi, Lo;
6957  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6958  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6959  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6960
6961  if (Op.getOpcode() == ISD::SHL_PARTS) {
6962    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6963    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6964  } else {
6965    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6966    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6967  }
6968
6969  SDValue Ops[2] = { Lo, Hi };
6970  return DAG.getMergeValues(Ops, 2, dl);
6971}
6972
6973SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6974                                           SelectionDAG &DAG) const {
6975  EVT SrcVT = Op.getOperand(0).getValueType();
6976
6977  if (SrcVT.isVector())
6978    return SDValue();
6979
6980  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6981         "Unknown SINT_TO_FP to lower!");
6982
6983  // These are really Legal; return the operand so the caller accepts it as
6984  // Legal.
6985  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6986    return Op;
6987  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6988      Subtarget->is64Bit()) {
6989    return Op;
6990  }
6991
6992  DebugLoc dl = Op.getDebugLoc();
6993  unsigned Size = SrcVT.getSizeInBits()/8;
6994  MachineFunction &MF = DAG.getMachineFunction();
6995  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6996  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6997  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6998                               StackSlot,
6999                               MachinePointerInfo::getFixedStack(SSFI),
7000                               false, false, 0);
7001  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7002}
7003
7004SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7005                                     SDValue StackSlot,
7006                                     SelectionDAG &DAG) const {
7007  // Build the FILD
7008  DebugLoc DL = Op.getDebugLoc();
7009  SDVTList Tys;
7010  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7011  if (useSSE)
7012    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7013  else
7014    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7015
7016  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7017
7018  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7019  MachineMemOperand *MMO;
7020  if (FI) {
7021    int SSFI = FI->getIndex();
7022    MMO =
7023      DAG.getMachineFunction()
7024      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7025                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7026  } else {
7027    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7028    StackSlot = StackSlot.getOperand(1);
7029  }
7030  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7031  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7032                                           X86ISD::FILD, DL,
7033                                           Tys, Ops, array_lengthof(Ops),
7034                                           SrcVT, MMO);
7035
7036  if (useSSE) {
7037    Chain = Result.getValue(1);
7038    SDValue InFlag = Result.getValue(2);
7039
7040    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7041    // shouldn't be necessary except that RFP cannot be live across
7042    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7043    MachineFunction &MF = DAG.getMachineFunction();
7044    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7045    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7046    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7047    Tys = DAG.getVTList(MVT::Other);
7048    SDValue Ops[] = {
7049      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7050    };
7051    MachineMemOperand *MMO =
7052      DAG.getMachineFunction()
7053      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7054                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7055
7056    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7057                                    Ops, array_lengthof(Ops),
7058                                    Op.getValueType(), MMO);
7059    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7060                         MachinePointerInfo::getFixedStack(SSFI),
7061                         false, false, 0);
7062  }
7063
7064  return Result;
7065}
7066
7067// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7068SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7069                                               SelectionDAG &DAG) const {
7070  // This algorithm is not obvious. Here it is in C code, more or less:
7071  /*
7072    double uint64_to_double( uint32_t hi, uint32_t lo ) {
7073      static const __m128i exp = { 0x4330000045300000ULL, 0 };
7074      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7075
7076      // Copy ints to xmm registers.
7077      __m128i xh = _mm_cvtsi32_si128( hi );
7078      __m128i xl = _mm_cvtsi32_si128( lo );
7079
7080      // Combine into low half of a single xmm register.
7081      __m128i x = _mm_unpacklo_epi32( xh, xl );
7082      __m128d d;
7083      double sd;
7084
7085      // Merge in appropriate exponents to give the integer bits the right
7086      // magnitude.
7087      x = _mm_unpacklo_epi32( x, exp );
7088
7089      // Subtract away the biases to deal with the IEEE-754 double precision
7090      // implicit 1.
7091      d = _mm_sub_pd( (__m128d) x, bias );
7092
7093      // All conversions up to here are exact. The correctly rounded result is
7094      // calculated using the current rounding mode using the following
7095      // horizontal add.
7096      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7097      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7098                                // store doesn't really need to be here (except
7099                                // maybe to zero the other double)
7100      return sd;
7101    }
7102  */
7103
7104  DebugLoc dl = Op.getDebugLoc();
7105  LLVMContext *Context = DAG.getContext();
7106
7107  // Build some magic constants.
7108  std::vector<Constant*> CV0;
7109  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7110  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7111  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7112  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7113  Constant *C0 = ConstantVector::get(CV0);
7114  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7115
7116  std::vector<Constant*> CV1;
7117  CV1.push_back(
7118    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7119  CV1.push_back(
7120    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7121  Constant *C1 = ConstantVector::get(CV1);
7122  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7123
7124  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7125                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7126                                        Op.getOperand(0),
7127                                        DAG.getIntPtrConstant(1)));
7128  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7129                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7130                                        Op.getOperand(0),
7131                                        DAG.getIntPtrConstant(0)));
7132  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7133  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7134                              MachinePointerInfo::getConstantPool(),
7135                              false, false, 16);
7136  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7137  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7138  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7139                              MachinePointerInfo::getConstantPool(),
7140                              false, false, 16);
7141  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7142
7143  // Add the halves; easiest way is to swap them into another reg first.
7144  int ShufMask[2] = { 1, -1 };
7145  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7146                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
7147  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7148  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7149                     DAG.getIntPtrConstant(0));
7150}
7151
7152// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7153SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7154                                               SelectionDAG &DAG) const {
7155  DebugLoc dl = Op.getDebugLoc();
7156  // FP constant to bias correct the final result.
7157  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7158                                   MVT::f64);
7159
7160  // Load the 32-bit value into an XMM register.
7161  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7162                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7163                                         Op.getOperand(0),
7164                                         DAG.getIntPtrConstant(0)));
7165
7166  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7167                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7168                     DAG.getIntPtrConstant(0));
7169
7170  // Or the load with the bias.
7171  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7172                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7173                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7174                                                   MVT::v2f64, Load)),
7175                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7176                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7177                                                   MVT::v2f64, Bias)));
7178  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7179                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7180                   DAG.getIntPtrConstant(0));
7181
7182  // Subtract the bias.
7183  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7184
7185  // Handle final rounding.
7186  EVT DestVT = Op.getValueType();
7187
7188  if (DestVT.bitsLT(MVT::f64)) {
7189    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7190                       DAG.getIntPtrConstant(0));
7191  } else if (DestVT.bitsGT(MVT::f64)) {
7192    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7193  }
7194
7195  // Handle final rounding.
7196  return Sub;
7197}
7198
7199SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7200                                           SelectionDAG &DAG) const {
7201  SDValue N0 = Op.getOperand(0);
7202  DebugLoc dl = Op.getDebugLoc();
7203
7204  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7205  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7206  // the optimization here.
7207  if (DAG.SignBitIsZero(N0))
7208    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7209
7210  EVT SrcVT = N0.getValueType();
7211  EVT DstVT = Op.getValueType();
7212  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7213    return LowerUINT_TO_FP_i64(Op, DAG);
7214  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7215    return LowerUINT_TO_FP_i32(Op, DAG);
7216
7217  // Make a 64-bit buffer, and use it to build an FILD.
7218  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7219  if (SrcVT == MVT::i32) {
7220    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7221    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7222                                     getPointerTy(), StackSlot, WordOff);
7223    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7224                                  StackSlot, MachinePointerInfo(),
7225                                  false, false, 0);
7226    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7227                                  OffsetSlot, MachinePointerInfo(),
7228                                  false, false, 0);
7229    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7230    return Fild;
7231  }
7232
7233  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7234  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7235                                StackSlot, MachinePointerInfo(),
7236                               false, false, 0);
7237  // For i64 source, we need to add the appropriate power of 2 if the input
7238  // was negative.  This is the same as the optimization in
7239  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7240  // we must be careful to do the computation in x87 extended precision, not
7241  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7242  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7243  MachineMemOperand *MMO =
7244    DAG.getMachineFunction()
7245    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7246                          MachineMemOperand::MOLoad, 8, 8);
7247
7248  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7249  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7250  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7251                                         MVT::i64, MMO);
7252
7253  APInt FF(32, 0x5F800000ULL);
7254
7255  // Check whether the sign bit is set.
7256  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7257                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7258                                 ISD::SETLT);
7259
7260  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7261  SDValue FudgePtr = DAG.getConstantPool(
7262                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7263                                         getPointerTy());
7264
7265  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7266  SDValue Zero = DAG.getIntPtrConstant(0);
7267  SDValue Four = DAG.getIntPtrConstant(4);
7268  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7269                               Zero, Four);
7270  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7271
7272  // Load the value out, extending it from f32 to f80.
7273  // FIXME: Avoid the extend by constructing the right constant pool?
7274  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7275                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7276                                 MVT::f32, false, false, 4);
7277  // Extend everything to 80 bits to force it to be done on x87.
7278  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7279  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7280}
7281
7282std::pair<SDValue,SDValue> X86TargetLowering::
7283FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7284  DebugLoc DL = Op.getDebugLoc();
7285
7286  EVT DstTy = Op.getValueType();
7287
7288  if (!IsSigned) {
7289    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7290    DstTy = MVT::i64;
7291  }
7292
7293  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7294         DstTy.getSimpleVT() >= MVT::i16 &&
7295         "Unknown FP_TO_SINT to lower!");
7296
7297  // These are really Legal.
7298  if (DstTy == MVT::i32 &&
7299      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7300    return std::make_pair(SDValue(), SDValue());
7301  if (Subtarget->is64Bit() &&
7302      DstTy == MVT::i64 &&
7303      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7304    return std::make_pair(SDValue(), SDValue());
7305
7306  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7307  // stack slot.
7308  MachineFunction &MF = DAG.getMachineFunction();
7309  unsigned MemSize = DstTy.getSizeInBits()/8;
7310  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7311  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7312
7313
7314
7315  unsigned Opc;
7316  switch (DstTy.getSimpleVT().SimpleTy) {
7317  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7318  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7319  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7320  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7321  }
7322
7323  SDValue Chain = DAG.getEntryNode();
7324  SDValue Value = Op.getOperand(0);
7325  EVT TheVT = Op.getOperand(0).getValueType();
7326  if (isScalarFPTypeInSSEReg(TheVT)) {
7327    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7328    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7329                         MachinePointerInfo::getFixedStack(SSFI),
7330                         false, false, 0);
7331    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7332    SDValue Ops[] = {
7333      Chain, StackSlot, DAG.getValueType(TheVT)
7334    };
7335
7336    MachineMemOperand *MMO =
7337      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7338                              MachineMemOperand::MOLoad, MemSize, MemSize);
7339    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7340                                    DstTy, MMO);
7341    Chain = Value.getValue(1);
7342    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7343    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7344  }
7345
7346  MachineMemOperand *MMO =
7347    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7348                            MachineMemOperand::MOStore, MemSize, MemSize);
7349
7350  // Build the FP_TO_INT*_IN_MEM
7351  SDValue Ops[] = { Chain, Value, StackSlot };
7352  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7353                                         Ops, 3, DstTy, MMO);
7354
7355  return std::make_pair(FIST, StackSlot);
7356}
7357
7358SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7359                                           SelectionDAG &DAG) const {
7360  if (Op.getValueType().isVector())
7361    return SDValue();
7362
7363  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7364  SDValue FIST = Vals.first, StackSlot = Vals.second;
7365  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7366  if (FIST.getNode() == 0) return Op;
7367
7368  // Load the result.
7369  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7370                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7371}
7372
7373SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7374                                           SelectionDAG &DAG) const {
7375  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7376  SDValue FIST = Vals.first, StackSlot = Vals.second;
7377  assert(FIST.getNode() && "Unexpected failure");
7378
7379  // Load the result.
7380  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7381                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7382}
7383
7384SDValue X86TargetLowering::LowerFABS(SDValue Op,
7385                                     SelectionDAG &DAG) const {
7386  LLVMContext *Context = DAG.getContext();
7387  DebugLoc dl = Op.getDebugLoc();
7388  EVT VT = Op.getValueType();
7389  EVT EltVT = VT;
7390  if (VT.isVector())
7391    EltVT = VT.getVectorElementType();
7392  std::vector<Constant*> CV;
7393  if (EltVT == MVT::f64) {
7394    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7395    CV.push_back(C);
7396    CV.push_back(C);
7397  } else {
7398    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7399    CV.push_back(C);
7400    CV.push_back(C);
7401    CV.push_back(C);
7402    CV.push_back(C);
7403  }
7404  Constant *C = ConstantVector::get(CV);
7405  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7406  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7407                             MachinePointerInfo::getConstantPool(),
7408                             false, false, 16);
7409  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7410}
7411
7412SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7413  LLVMContext *Context = DAG.getContext();
7414  DebugLoc dl = Op.getDebugLoc();
7415  EVT VT = Op.getValueType();
7416  EVT EltVT = VT;
7417  if (VT.isVector())
7418    EltVT = VT.getVectorElementType();
7419  std::vector<Constant*> CV;
7420  if (EltVT == MVT::f64) {
7421    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7422    CV.push_back(C);
7423    CV.push_back(C);
7424  } else {
7425    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7426    CV.push_back(C);
7427    CV.push_back(C);
7428    CV.push_back(C);
7429    CV.push_back(C);
7430  }
7431  Constant *C = ConstantVector::get(CV);
7432  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7433  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7434                             MachinePointerInfo::getConstantPool(),
7435                             false, false, 16);
7436  if (VT.isVector()) {
7437    return DAG.getNode(ISD::BITCAST, dl, VT,
7438                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7439                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7440                                Op.getOperand(0)),
7441                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7442  } else {
7443    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7444  }
7445}
7446
7447SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7448  LLVMContext *Context = DAG.getContext();
7449  SDValue Op0 = Op.getOperand(0);
7450  SDValue Op1 = Op.getOperand(1);
7451  DebugLoc dl = Op.getDebugLoc();
7452  EVT VT = Op.getValueType();
7453  EVT SrcVT = Op1.getValueType();
7454
7455  // If second operand is smaller, extend it first.
7456  if (SrcVT.bitsLT(VT)) {
7457    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7458    SrcVT = VT;
7459  }
7460  // And if it is bigger, shrink it first.
7461  if (SrcVT.bitsGT(VT)) {
7462    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7463    SrcVT = VT;
7464  }
7465
7466  // At this point the operands and the result should have the same
7467  // type, and that won't be f80 since that is not custom lowered.
7468
7469  // First get the sign bit of second operand.
7470  std::vector<Constant*> CV;
7471  if (SrcVT == MVT::f64) {
7472    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7473    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7474  } else {
7475    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7476    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7477    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7478    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7479  }
7480  Constant *C = ConstantVector::get(CV);
7481  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7482  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7483                              MachinePointerInfo::getConstantPool(),
7484                              false, false, 16);
7485  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7486
7487  // Shift sign bit right or left if the two operands have different types.
7488  if (SrcVT.bitsGT(VT)) {
7489    // Op0 is MVT::f32, Op1 is MVT::f64.
7490    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7491    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7492                          DAG.getConstant(32, MVT::i32));
7493    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7494    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7495                          DAG.getIntPtrConstant(0));
7496  }
7497
7498  // Clear first operand sign bit.
7499  CV.clear();
7500  if (VT == MVT::f64) {
7501    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7502    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7503  } else {
7504    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7505    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7506    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7507    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7508  }
7509  C = ConstantVector::get(CV);
7510  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7511  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7512                              MachinePointerInfo::getConstantPool(),
7513                              false, false, 16);
7514  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7515
7516  // Or the value with the sign bit.
7517  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7518}
7519
7520SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7521  SDValue N0 = Op.getOperand(0);
7522  DebugLoc dl = Op.getDebugLoc();
7523  EVT VT = Op.getValueType();
7524
7525  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
7526  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
7527                                  DAG.getConstant(1, VT));
7528  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
7529}
7530
7531/// Emit nodes that will be selected as "test Op0,Op0", or something
7532/// equivalent.
7533SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7534                                    SelectionDAG &DAG) const {
7535  DebugLoc dl = Op.getDebugLoc();
7536
7537  // CF and OF aren't always set the way we want. Determine which
7538  // of these we need.
7539  bool NeedCF = false;
7540  bool NeedOF = false;
7541  switch (X86CC) {
7542  default: break;
7543  case X86::COND_A: case X86::COND_AE:
7544  case X86::COND_B: case X86::COND_BE:
7545    NeedCF = true;
7546    break;
7547  case X86::COND_G: case X86::COND_GE:
7548  case X86::COND_L: case X86::COND_LE:
7549  case X86::COND_O: case X86::COND_NO:
7550    NeedOF = true;
7551    break;
7552  }
7553
7554  // See if we can use the EFLAGS value from the operand instead of
7555  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7556  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7557  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7558    // Emit a CMP with 0, which is the TEST pattern.
7559    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7560                       DAG.getConstant(0, Op.getValueType()));
7561
7562  unsigned Opcode = 0;
7563  unsigned NumOperands = 0;
7564  switch (Op.getNode()->getOpcode()) {
7565  case ISD::ADD:
7566    // Due to an isel shortcoming, be conservative if this add is likely to be
7567    // selected as part of a load-modify-store instruction. When the root node
7568    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7569    // uses of other nodes in the match, such as the ADD in this case. This
7570    // leads to the ADD being left around and reselected, with the result being
7571    // two adds in the output.  Alas, even if none our users are stores, that
7572    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7573    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7574    // climbing the DAG back to the root, and it doesn't seem to be worth the
7575    // effort.
7576    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7577           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7578      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7579        goto default_case;
7580
7581    if (ConstantSDNode *C =
7582        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7583      // An add of one will be selected as an INC.
7584      if (C->getAPIntValue() == 1) {
7585        Opcode = X86ISD::INC;
7586        NumOperands = 1;
7587        break;
7588      }
7589
7590      // An add of negative one (subtract of one) will be selected as a DEC.
7591      if (C->getAPIntValue().isAllOnesValue()) {
7592        Opcode = X86ISD::DEC;
7593        NumOperands = 1;
7594        break;
7595      }
7596    }
7597
7598    // Otherwise use a regular EFLAGS-setting add.
7599    Opcode = X86ISD::ADD;
7600    NumOperands = 2;
7601    break;
7602  case ISD::AND: {
7603    // If the primary and result isn't used, don't bother using X86ISD::AND,
7604    // because a TEST instruction will be better.
7605    bool NonFlagUse = false;
7606    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7607           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7608      SDNode *User = *UI;
7609      unsigned UOpNo = UI.getOperandNo();
7610      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7611        // Look pass truncate.
7612        UOpNo = User->use_begin().getOperandNo();
7613        User = *User->use_begin();
7614      }
7615
7616      if (User->getOpcode() != ISD::BRCOND &&
7617          User->getOpcode() != ISD::SETCC &&
7618          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7619        NonFlagUse = true;
7620        break;
7621      }
7622    }
7623
7624    if (!NonFlagUse)
7625      break;
7626  }
7627    // FALL THROUGH
7628  case ISD::SUB:
7629  case ISD::OR:
7630  case ISD::XOR:
7631    // Due to the ISEL shortcoming noted above, be conservative if this op is
7632    // likely to be selected as part of a load-modify-store instruction.
7633    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7634           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7635      if (UI->getOpcode() == ISD::STORE)
7636        goto default_case;
7637
7638    // Otherwise use a regular EFLAGS-setting instruction.
7639    switch (Op.getNode()->getOpcode()) {
7640    default: llvm_unreachable("unexpected operator!");
7641    case ISD::SUB: Opcode = X86ISD::SUB; break;
7642    case ISD::OR:  Opcode = X86ISD::OR;  break;
7643    case ISD::XOR: Opcode = X86ISD::XOR; break;
7644    case ISD::AND: Opcode = X86ISD::AND; break;
7645    }
7646
7647    NumOperands = 2;
7648    break;
7649  case X86ISD::ADD:
7650  case X86ISD::SUB:
7651  case X86ISD::INC:
7652  case X86ISD::DEC:
7653  case X86ISD::OR:
7654  case X86ISD::XOR:
7655  case X86ISD::AND:
7656    return SDValue(Op.getNode(), 1);
7657  default:
7658  default_case:
7659    break;
7660  }
7661
7662  if (Opcode == 0)
7663    // Emit a CMP with 0, which is the TEST pattern.
7664    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7665                       DAG.getConstant(0, Op.getValueType()));
7666
7667  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7668  SmallVector<SDValue, 4> Ops;
7669  for (unsigned i = 0; i != NumOperands; ++i)
7670    Ops.push_back(Op.getOperand(i));
7671
7672  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7673  DAG.ReplaceAllUsesWith(Op, New);
7674  return SDValue(New.getNode(), 1);
7675}
7676
7677/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7678/// equivalent.
7679SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7680                                   SelectionDAG &DAG) const {
7681  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7682    if (C->getAPIntValue() == 0)
7683      return EmitTest(Op0, X86CC, DAG);
7684
7685  DebugLoc dl = Op0.getDebugLoc();
7686  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7687}
7688
7689/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7690/// if it's possible.
7691SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7692                                     DebugLoc dl, SelectionDAG &DAG) const {
7693  SDValue Op0 = And.getOperand(0);
7694  SDValue Op1 = And.getOperand(1);
7695  if (Op0.getOpcode() == ISD::TRUNCATE)
7696    Op0 = Op0.getOperand(0);
7697  if (Op1.getOpcode() == ISD::TRUNCATE)
7698    Op1 = Op1.getOperand(0);
7699
7700  SDValue LHS, RHS;
7701  if (Op1.getOpcode() == ISD::SHL)
7702    std::swap(Op0, Op1);
7703  if (Op0.getOpcode() == ISD::SHL) {
7704    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7705      if (And00C->getZExtValue() == 1) {
7706        // If we looked past a truncate, check that it's only truncating away
7707        // known zeros.
7708        unsigned BitWidth = Op0.getValueSizeInBits();
7709        unsigned AndBitWidth = And.getValueSizeInBits();
7710        if (BitWidth > AndBitWidth) {
7711          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7712          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7713          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7714            return SDValue();
7715        }
7716        LHS = Op1;
7717        RHS = Op0.getOperand(1);
7718      }
7719  } else if (Op1.getOpcode() == ISD::Constant) {
7720    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7721    SDValue AndLHS = Op0;
7722    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7723      LHS = AndLHS.getOperand(0);
7724      RHS = AndLHS.getOperand(1);
7725    }
7726  }
7727
7728  if (LHS.getNode()) {
7729    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7730    // instruction.  Since the shift amount is in-range-or-undefined, we know
7731    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7732    // the encoding for the i16 version is larger than the i32 version.
7733    // Also promote i16 to i32 for performance / code size reason.
7734    if (LHS.getValueType() == MVT::i8 ||
7735        LHS.getValueType() == MVT::i16)
7736      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7737
7738    // If the operand types disagree, extend the shift amount to match.  Since
7739    // BT ignores high bits (like shifts) we can use anyextend.
7740    if (LHS.getValueType() != RHS.getValueType())
7741      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7742
7743    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7744    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7745    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7746                       DAG.getConstant(Cond, MVT::i8), BT);
7747  }
7748
7749  return SDValue();
7750}
7751
7752SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7753  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7754  SDValue Op0 = Op.getOperand(0);
7755  SDValue Op1 = Op.getOperand(1);
7756  DebugLoc dl = Op.getDebugLoc();
7757  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7758
7759  // Optimize to BT if possible.
7760  // Lower (X & (1 << N)) == 0 to BT(X, N).
7761  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7762  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7763  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7764      Op1.getOpcode() == ISD::Constant &&
7765      cast<ConstantSDNode>(Op1)->isNullValue() &&
7766      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7767    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7768    if (NewSetCC.getNode())
7769      return NewSetCC;
7770  }
7771
7772  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7773  // these.
7774  if (Op1.getOpcode() == ISD::Constant &&
7775      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7776       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7777      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7778
7779    // If the input is a setcc, then reuse the input setcc or use a new one with
7780    // the inverted condition.
7781    if (Op0.getOpcode() == X86ISD::SETCC) {
7782      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7783      bool Invert = (CC == ISD::SETNE) ^
7784        cast<ConstantSDNode>(Op1)->isNullValue();
7785      if (!Invert) return Op0;
7786
7787      CCode = X86::GetOppositeBranchCondition(CCode);
7788      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7789                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7790    }
7791  }
7792
7793  bool isFP = Op1.getValueType().isFloatingPoint();
7794  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7795  if (X86CC == X86::COND_INVALID)
7796    return SDValue();
7797
7798  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7799  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7800                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7801}
7802
7803SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7804  SDValue Cond;
7805  SDValue Op0 = Op.getOperand(0);
7806  SDValue Op1 = Op.getOperand(1);
7807  SDValue CC = Op.getOperand(2);
7808  EVT VT = Op.getValueType();
7809  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7810  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7811  DebugLoc dl = Op.getDebugLoc();
7812
7813  if (isFP) {
7814    unsigned SSECC = 8;
7815    EVT VT0 = Op0.getValueType();
7816    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7817    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7818    bool Swap = false;
7819
7820    switch (SetCCOpcode) {
7821    default: break;
7822    case ISD::SETOEQ:
7823    case ISD::SETEQ:  SSECC = 0; break;
7824    case ISD::SETOGT:
7825    case ISD::SETGT: Swap = true; // Fallthrough
7826    case ISD::SETLT:
7827    case ISD::SETOLT: SSECC = 1; break;
7828    case ISD::SETOGE:
7829    case ISD::SETGE: Swap = true; // Fallthrough
7830    case ISD::SETLE:
7831    case ISD::SETOLE: SSECC = 2; break;
7832    case ISD::SETUO:  SSECC = 3; break;
7833    case ISD::SETUNE:
7834    case ISD::SETNE:  SSECC = 4; break;
7835    case ISD::SETULE: Swap = true;
7836    case ISD::SETUGE: SSECC = 5; break;
7837    case ISD::SETULT: Swap = true;
7838    case ISD::SETUGT: SSECC = 6; break;
7839    case ISD::SETO:   SSECC = 7; break;
7840    }
7841    if (Swap)
7842      std::swap(Op0, Op1);
7843
7844    // In the two special cases we can't handle, emit two comparisons.
7845    if (SSECC == 8) {
7846      if (SetCCOpcode == ISD::SETUEQ) {
7847        SDValue UNORD, EQ;
7848        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7849        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7850        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7851      }
7852      else if (SetCCOpcode == ISD::SETONE) {
7853        SDValue ORD, NEQ;
7854        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7855        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7856        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7857      }
7858      llvm_unreachable("Illegal FP comparison");
7859    }
7860    // Handle all other FP comparisons here.
7861    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7862  }
7863
7864  // We are handling one of the integer comparisons here.  Since SSE only has
7865  // GT and EQ comparisons for integer, swapping operands and multiple
7866  // operations may be required for some comparisons.
7867  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7868  bool Swap = false, Invert = false, FlipSigns = false;
7869
7870  switch (VT.getSimpleVT().SimpleTy) {
7871  default: break;
7872  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7873  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7874  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7875  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7876  }
7877
7878  switch (SetCCOpcode) {
7879  default: break;
7880  case ISD::SETNE:  Invert = true;
7881  case ISD::SETEQ:  Opc = EQOpc; break;
7882  case ISD::SETLT:  Swap = true;
7883  case ISD::SETGT:  Opc = GTOpc; break;
7884  case ISD::SETGE:  Swap = true;
7885  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7886  case ISD::SETULT: Swap = true;
7887  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7888  case ISD::SETUGE: Swap = true;
7889  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7890  }
7891  if (Swap)
7892    std::swap(Op0, Op1);
7893
7894  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7895  // bits of the inputs before performing those operations.
7896  if (FlipSigns) {
7897    EVT EltVT = VT.getVectorElementType();
7898    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7899                                      EltVT);
7900    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7901    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7902                                    SignBits.size());
7903    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7904    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7905  }
7906
7907  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7908
7909  // If the logical-not of the result is required, perform that now.
7910  if (Invert)
7911    Result = DAG.getNOT(dl, Result, VT);
7912
7913  return Result;
7914}
7915
7916// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7917static bool isX86LogicalCmp(SDValue Op) {
7918  unsigned Opc = Op.getNode()->getOpcode();
7919  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7920    return true;
7921  if (Op.getResNo() == 1 &&
7922      (Opc == X86ISD::ADD ||
7923       Opc == X86ISD::SUB ||
7924       Opc == X86ISD::ADC ||
7925       Opc == X86ISD::SBB ||
7926       Opc == X86ISD::SMUL ||
7927       Opc == X86ISD::UMUL ||
7928       Opc == X86ISD::INC ||
7929       Opc == X86ISD::DEC ||
7930       Opc == X86ISD::OR ||
7931       Opc == X86ISD::XOR ||
7932       Opc == X86ISD::AND))
7933    return true;
7934
7935  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7936    return true;
7937
7938  return false;
7939}
7940
7941static bool isZero(SDValue V) {
7942  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7943  return C && C->isNullValue();
7944}
7945
7946static bool isAllOnes(SDValue V) {
7947  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7948  return C && C->isAllOnesValue();
7949}
7950
7951SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7952  bool addTest = true;
7953  SDValue Cond  = Op.getOperand(0);
7954  SDValue Op1 = Op.getOperand(1);
7955  SDValue Op2 = Op.getOperand(2);
7956  DebugLoc DL = Op.getDebugLoc();
7957  SDValue CC;
7958
7959  if (Cond.getOpcode() == ISD::SETCC) {
7960    SDValue NewCond = LowerSETCC(Cond, DAG);
7961    if (NewCond.getNode())
7962      Cond = NewCond;
7963  }
7964
7965  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7966  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7967  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7968  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7969  if (Cond.getOpcode() == X86ISD::SETCC &&
7970      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7971      isZero(Cond.getOperand(1).getOperand(1))) {
7972    SDValue Cmp = Cond.getOperand(1);
7973
7974    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7975
7976    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7977        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7978      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7979
7980      SDValue CmpOp0 = Cmp.getOperand(0);
7981      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7982                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7983
7984      SDValue Res =   // Res = 0 or -1.
7985        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7986                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7987
7988      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7989        Res = DAG.getNOT(DL, Res, Res.getValueType());
7990
7991      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7992      if (N2C == 0 || !N2C->isNullValue())
7993        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7994      return Res;
7995    }
7996  }
7997
7998  // Look past (and (setcc_carry (cmp ...)), 1).
7999  if (Cond.getOpcode() == ISD::AND &&
8000      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8001    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8002    if (C && C->getAPIntValue() == 1)
8003      Cond = Cond.getOperand(0);
8004  }
8005
8006  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8007  // setting operand in place of the X86ISD::SETCC.
8008  if (Cond.getOpcode() == X86ISD::SETCC ||
8009      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8010    CC = Cond.getOperand(0);
8011
8012    SDValue Cmp = Cond.getOperand(1);
8013    unsigned Opc = Cmp.getOpcode();
8014    EVT VT = Op.getValueType();
8015
8016    bool IllegalFPCMov = false;
8017    if (VT.isFloatingPoint() && !VT.isVector() &&
8018        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8019      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8020
8021    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8022        Opc == X86ISD::BT) { // FIXME
8023      Cond = Cmp;
8024      addTest = false;
8025    }
8026  }
8027
8028  if (addTest) {
8029    // Look pass the truncate.
8030    if (Cond.getOpcode() == ISD::TRUNCATE)
8031      Cond = Cond.getOperand(0);
8032
8033    // We know the result of AND is compared against zero. Try to match
8034    // it to BT.
8035    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8036      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8037      if (NewSetCC.getNode()) {
8038        CC = NewSetCC.getOperand(0);
8039        Cond = NewSetCC.getOperand(1);
8040        addTest = false;
8041      }
8042    }
8043  }
8044
8045  if (addTest) {
8046    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8047    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8048  }
8049
8050  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8051  // a <  b ?  0 : -1 -> RES = setcc_carry
8052  // a >= b ? -1 :  0 -> RES = setcc_carry
8053  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8054  if (Cond.getOpcode() == X86ISD::CMP) {
8055    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8056
8057    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8058        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8059      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8060                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8061      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8062        return DAG.getNOT(DL, Res, Res.getValueType());
8063      return Res;
8064    }
8065  }
8066
8067  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8068  // condition is true.
8069  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8070  SDValue Ops[] = { Op2, Op1, CC, Cond };
8071  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8072}
8073
8074// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8075// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8076// from the AND / OR.
8077static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8078  Opc = Op.getOpcode();
8079  if (Opc != ISD::OR && Opc != ISD::AND)
8080    return false;
8081  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8082          Op.getOperand(0).hasOneUse() &&
8083          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8084          Op.getOperand(1).hasOneUse());
8085}
8086
8087// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8088// 1 and that the SETCC node has a single use.
8089static bool isXor1OfSetCC(SDValue Op) {
8090  if (Op.getOpcode() != ISD::XOR)
8091    return false;
8092  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8093  if (N1C && N1C->getAPIntValue() == 1) {
8094    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8095      Op.getOperand(0).hasOneUse();
8096  }
8097  return false;
8098}
8099
8100SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8101  bool addTest = true;
8102  SDValue Chain = Op.getOperand(0);
8103  SDValue Cond  = Op.getOperand(1);
8104  SDValue Dest  = Op.getOperand(2);
8105  DebugLoc dl = Op.getDebugLoc();
8106  SDValue CC;
8107
8108  if (Cond.getOpcode() == ISD::SETCC) {
8109    SDValue NewCond = LowerSETCC(Cond, DAG);
8110    if (NewCond.getNode())
8111      Cond = NewCond;
8112  }
8113#if 0
8114  // FIXME: LowerXALUO doesn't handle these!!
8115  else if (Cond.getOpcode() == X86ISD::ADD  ||
8116           Cond.getOpcode() == X86ISD::SUB  ||
8117           Cond.getOpcode() == X86ISD::SMUL ||
8118           Cond.getOpcode() == X86ISD::UMUL)
8119    Cond = LowerXALUO(Cond, DAG);
8120#endif
8121
8122  // Look pass (and (setcc_carry (cmp ...)), 1).
8123  if (Cond.getOpcode() == ISD::AND &&
8124      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8125    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8126    if (C && C->getAPIntValue() == 1)
8127      Cond = Cond.getOperand(0);
8128  }
8129
8130  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8131  // setting operand in place of the X86ISD::SETCC.
8132  if (Cond.getOpcode() == X86ISD::SETCC ||
8133      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8134    CC = Cond.getOperand(0);
8135
8136    SDValue Cmp = Cond.getOperand(1);
8137    unsigned Opc = Cmp.getOpcode();
8138    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8139    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8140      Cond = Cmp;
8141      addTest = false;
8142    } else {
8143      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8144      default: break;
8145      case X86::COND_O:
8146      case X86::COND_B:
8147        // These can only come from an arithmetic instruction with overflow,
8148        // e.g. SADDO, UADDO.
8149        Cond = Cond.getNode()->getOperand(1);
8150        addTest = false;
8151        break;
8152      }
8153    }
8154  } else {
8155    unsigned CondOpc;
8156    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8157      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8158      if (CondOpc == ISD::OR) {
8159        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8160        // two branches instead of an explicit OR instruction with a
8161        // separate test.
8162        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8163            isX86LogicalCmp(Cmp)) {
8164          CC = Cond.getOperand(0).getOperand(0);
8165          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8166                              Chain, Dest, CC, Cmp);
8167          CC = Cond.getOperand(1).getOperand(0);
8168          Cond = Cmp;
8169          addTest = false;
8170        }
8171      } else { // ISD::AND
8172        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8173        // two branches instead of an explicit AND instruction with a
8174        // separate test. However, we only do this if this block doesn't
8175        // have a fall-through edge, because this requires an explicit
8176        // jmp when the condition is false.
8177        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8178            isX86LogicalCmp(Cmp) &&
8179            Op.getNode()->hasOneUse()) {
8180          X86::CondCode CCode =
8181            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8182          CCode = X86::GetOppositeBranchCondition(CCode);
8183          CC = DAG.getConstant(CCode, MVT::i8);
8184          SDNode *User = *Op.getNode()->use_begin();
8185          // Look for an unconditional branch following this conditional branch.
8186          // We need this because we need to reverse the successors in order
8187          // to implement FCMP_OEQ.
8188          if (User->getOpcode() == ISD::BR) {
8189            SDValue FalseBB = User->getOperand(1);
8190            SDNode *NewBR =
8191              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8192            assert(NewBR == User);
8193            (void)NewBR;
8194            Dest = FalseBB;
8195
8196            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8197                                Chain, Dest, CC, Cmp);
8198            X86::CondCode CCode =
8199              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8200            CCode = X86::GetOppositeBranchCondition(CCode);
8201            CC = DAG.getConstant(CCode, MVT::i8);
8202            Cond = Cmp;
8203            addTest = false;
8204          }
8205        }
8206      }
8207    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8208      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8209      // It should be transformed during dag combiner except when the condition
8210      // is set by a arithmetics with overflow node.
8211      X86::CondCode CCode =
8212        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8213      CCode = X86::GetOppositeBranchCondition(CCode);
8214      CC = DAG.getConstant(CCode, MVT::i8);
8215      Cond = Cond.getOperand(0).getOperand(1);
8216      addTest = false;
8217    }
8218  }
8219
8220  if (addTest) {
8221    // Look pass the truncate.
8222    if (Cond.getOpcode() == ISD::TRUNCATE)
8223      Cond = Cond.getOperand(0);
8224
8225    // We know the result of AND is compared against zero. Try to match
8226    // it to BT.
8227    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8228      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8229      if (NewSetCC.getNode()) {
8230        CC = NewSetCC.getOperand(0);
8231        Cond = NewSetCC.getOperand(1);
8232        addTest = false;
8233      }
8234    }
8235  }
8236
8237  if (addTest) {
8238    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8239    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8240  }
8241  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8242                     Chain, Dest, CC, Cond);
8243}
8244
8245
8246// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8247// Calls to _alloca is needed to probe the stack when allocating more than 4k
8248// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8249// that the guard pages used by the OS virtual memory manager are allocated in
8250// correct sequence.
8251SDValue
8252X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8253                                           SelectionDAG &DAG) const {
8254  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
8255         "This should be used only on Windows targets");
8256  assert(!Subtarget->isTargetEnvMacho());
8257  DebugLoc dl = Op.getDebugLoc();
8258
8259  // Get the inputs.
8260  SDValue Chain = Op.getOperand(0);
8261  SDValue Size  = Op.getOperand(1);
8262  // FIXME: Ensure alignment here
8263
8264  SDValue Flag;
8265
8266  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
8267  unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8268
8269  Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8270  Flag = Chain.getValue(1);
8271
8272  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8273
8274  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8275  Flag = Chain.getValue(1);
8276
8277  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8278
8279  SDValue Ops1[2] = { Chain.getValue(0), Chain };
8280  return DAG.getMergeValues(Ops1, 2, dl);
8281}
8282
8283SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8284  MachineFunction &MF = DAG.getMachineFunction();
8285  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8286
8287  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8288  DebugLoc DL = Op.getDebugLoc();
8289
8290  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8291    // vastart just stores the address of the VarArgsFrameIndex slot into the
8292    // memory location argument.
8293    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8294                                   getPointerTy());
8295    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8296                        MachinePointerInfo(SV), false, false, 0);
8297  }
8298
8299  // __va_list_tag:
8300  //   gp_offset         (0 - 6 * 8)
8301  //   fp_offset         (48 - 48 + 8 * 16)
8302  //   overflow_arg_area (point to parameters coming in memory).
8303  //   reg_save_area
8304  SmallVector<SDValue, 8> MemOps;
8305  SDValue FIN = Op.getOperand(1);
8306  // Store gp_offset
8307  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
8308                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
8309                                               MVT::i32),
8310                               FIN, MachinePointerInfo(SV), false, false, 0);
8311  MemOps.push_back(Store);
8312
8313  // Store fp_offset
8314  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8315                    FIN, DAG.getIntPtrConstant(4));
8316  Store = DAG.getStore(Op.getOperand(0), DL,
8317                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
8318                                       MVT::i32),
8319                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
8320  MemOps.push_back(Store);
8321
8322  // Store ptr to overflow_arg_area
8323  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8324                    FIN, DAG.getIntPtrConstant(4));
8325  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8326                                    getPointerTy());
8327  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
8328                       MachinePointerInfo(SV, 8),
8329                       false, false, 0);
8330  MemOps.push_back(Store);
8331
8332  // Store ptr to reg_save_area.
8333  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
8334                    FIN, DAG.getIntPtrConstant(8));
8335  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
8336                                    getPointerTy());
8337  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
8338                       MachinePointerInfo(SV, 16), false, false, 0);
8339  MemOps.push_back(Store);
8340  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8341                     &MemOps[0], MemOps.size());
8342}
8343
8344SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8345  assert(Subtarget->is64Bit() &&
8346         "LowerVAARG only handles 64-bit va_arg!");
8347  assert((Subtarget->isTargetLinux() ||
8348          Subtarget->isTargetDarwin()) &&
8349          "Unhandled target in LowerVAARG");
8350  assert(Op.getNode()->getNumOperands() == 4);
8351  SDValue Chain = Op.getOperand(0);
8352  SDValue SrcPtr = Op.getOperand(1);
8353  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8354  unsigned Align = Op.getConstantOperandVal(3);
8355  DebugLoc dl = Op.getDebugLoc();
8356
8357  EVT ArgVT = Op.getNode()->getValueType(0);
8358  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8359  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8360  uint8_t ArgMode;
8361
8362  // Decide which area this value should be read from.
8363  // TODO: Implement the AMD64 ABI in its entirety. This simple
8364  // selection mechanism works only for the basic types.
8365  if (ArgVT == MVT::f80) {
8366    llvm_unreachable("va_arg for f80 not yet implemented");
8367  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8368    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8369  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8370    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8371  } else {
8372    llvm_unreachable("Unhandled argument type in LowerVAARG");
8373  }
8374
8375  if (ArgMode == 2) {
8376    // Sanity Check: Make sure using fp_offset makes sense.
8377    assert(!UseSoftFloat &&
8378           !(DAG.getMachineFunction()
8379                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8380           Subtarget->hasXMM());
8381  }
8382
8383  // Insert VAARG_64 node into the DAG
8384  // VAARG_64 returns two values: Variable Argument Address, Chain
8385  SmallVector<SDValue, 11> InstOps;
8386  InstOps.push_back(Chain);
8387  InstOps.push_back(SrcPtr);
8388  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8389  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8390  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8391  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8392  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8393                                          VTs, &InstOps[0], InstOps.size(),
8394                                          MVT::i64,
8395                                          MachinePointerInfo(SV),
8396                                          /*Align=*/0,
8397                                          /*Volatile=*/false,
8398                                          /*ReadMem=*/true,
8399                                          /*WriteMem=*/true);
8400  Chain = VAARG.getValue(1);
8401
8402  // Load the next argument and return it
8403  return DAG.getLoad(ArgVT, dl,
8404                     Chain,
8405                     VAARG,
8406                     MachinePointerInfo(),
8407                     false, false, 0);
8408}
8409
8410SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8411  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8412  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8413  SDValue Chain = Op.getOperand(0);
8414  SDValue DstPtr = Op.getOperand(1);
8415  SDValue SrcPtr = Op.getOperand(2);
8416  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8417  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8418  DebugLoc DL = Op.getDebugLoc();
8419
8420  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8421                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8422                       false,
8423                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8424}
8425
8426SDValue
8427X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8428  DebugLoc dl = Op.getDebugLoc();
8429  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8430  switch (IntNo) {
8431  default: return SDValue();    // Don't custom lower most intrinsics.
8432  // Comparison intrinsics.
8433  case Intrinsic::x86_sse_comieq_ss:
8434  case Intrinsic::x86_sse_comilt_ss:
8435  case Intrinsic::x86_sse_comile_ss:
8436  case Intrinsic::x86_sse_comigt_ss:
8437  case Intrinsic::x86_sse_comige_ss:
8438  case Intrinsic::x86_sse_comineq_ss:
8439  case Intrinsic::x86_sse_ucomieq_ss:
8440  case Intrinsic::x86_sse_ucomilt_ss:
8441  case Intrinsic::x86_sse_ucomile_ss:
8442  case Intrinsic::x86_sse_ucomigt_ss:
8443  case Intrinsic::x86_sse_ucomige_ss:
8444  case Intrinsic::x86_sse_ucomineq_ss:
8445  case Intrinsic::x86_sse2_comieq_sd:
8446  case Intrinsic::x86_sse2_comilt_sd:
8447  case Intrinsic::x86_sse2_comile_sd:
8448  case Intrinsic::x86_sse2_comigt_sd:
8449  case Intrinsic::x86_sse2_comige_sd:
8450  case Intrinsic::x86_sse2_comineq_sd:
8451  case Intrinsic::x86_sse2_ucomieq_sd:
8452  case Intrinsic::x86_sse2_ucomilt_sd:
8453  case Intrinsic::x86_sse2_ucomile_sd:
8454  case Intrinsic::x86_sse2_ucomigt_sd:
8455  case Intrinsic::x86_sse2_ucomige_sd:
8456  case Intrinsic::x86_sse2_ucomineq_sd: {
8457    unsigned Opc = 0;
8458    ISD::CondCode CC = ISD::SETCC_INVALID;
8459    switch (IntNo) {
8460    default: break;
8461    case Intrinsic::x86_sse_comieq_ss:
8462    case Intrinsic::x86_sse2_comieq_sd:
8463      Opc = X86ISD::COMI;
8464      CC = ISD::SETEQ;
8465      break;
8466    case Intrinsic::x86_sse_comilt_ss:
8467    case Intrinsic::x86_sse2_comilt_sd:
8468      Opc = X86ISD::COMI;
8469      CC = ISD::SETLT;
8470      break;
8471    case Intrinsic::x86_sse_comile_ss:
8472    case Intrinsic::x86_sse2_comile_sd:
8473      Opc = X86ISD::COMI;
8474      CC = ISD::SETLE;
8475      break;
8476    case Intrinsic::x86_sse_comigt_ss:
8477    case Intrinsic::x86_sse2_comigt_sd:
8478      Opc = X86ISD::COMI;
8479      CC = ISD::SETGT;
8480      break;
8481    case Intrinsic::x86_sse_comige_ss:
8482    case Intrinsic::x86_sse2_comige_sd:
8483      Opc = X86ISD::COMI;
8484      CC = ISD::SETGE;
8485      break;
8486    case Intrinsic::x86_sse_comineq_ss:
8487    case Intrinsic::x86_sse2_comineq_sd:
8488      Opc = X86ISD::COMI;
8489      CC = ISD::SETNE;
8490      break;
8491    case Intrinsic::x86_sse_ucomieq_ss:
8492    case Intrinsic::x86_sse2_ucomieq_sd:
8493      Opc = X86ISD::UCOMI;
8494      CC = ISD::SETEQ;
8495      break;
8496    case Intrinsic::x86_sse_ucomilt_ss:
8497    case Intrinsic::x86_sse2_ucomilt_sd:
8498      Opc = X86ISD::UCOMI;
8499      CC = ISD::SETLT;
8500      break;
8501    case Intrinsic::x86_sse_ucomile_ss:
8502    case Intrinsic::x86_sse2_ucomile_sd:
8503      Opc = X86ISD::UCOMI;
8504      CC = ISD::SETLE;
8505      break;
8506    case Intrinsic::x86_sse_ucomigt_ss:
8507    case Intrinsic::x86_sse2_ucomigt_sd:
8508      Opc = X86ISD::UCOMI;
8509      CC = ISD::SETGT;
8510      break;
8511    case Intrinsic::x86_sse_ucomige_ss:
8512    case Intrinsic::x86_sse2_ucomige_sd:
8513      Opc = X86ISD::UCOMI;
8514      CC = ISD::SETGE;
8515      break;
8516    case Intrinsic::x86_sse_ucomineq_ss:
8517    case Intrinsic::x86_sse2_ucomineq_sd:
8518      Opc = X86ISD::UCOMI;
8519      CC = ISD::SETNE;
8520      break;
8521    }
8522
8523    SDValue LHS = Op.getOperand(1);
8524    SDValue RHS = Op.getOperand(2);
8525    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8526    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8527    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8528    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8529                                DAG.getConstant(X86CC, MVT::i8), Cond);
8530    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8531  }
8532  // ptest and testp intrinsics. The intrinsic these come from are designed to
8533  // return an integer value, not just an instruction so lower it to the ptest
8534  // or testp pattern and a setcc for the result.
8535  case Intrinsic::x86_sse41_ptestz:
8536  case Intrinsic::x86_sse41_ptestc:
8537  case Intrinsic::x86_sse41_ptestnzc:
8538  case Intrinsic::x86_avx_ptestz_256:
8539  case Intrinsic::x86_avx_ptestc_256:
8540  case Intrinsic::x86_avx_ptestnzc_256:
8541  case Intrinsic::x86_avx_vtestz_ps:
8542  case Intrinsic::x86_avx_vtestc_ps:
8543  case Intrinsic::x86_avx_vtestnzc_ps:
8544  case Intrinsic::x86_avx_vtestz_pd:
8545  case Intrinsic::x86_avx_vtestc_pd:
8546  case Intrinsic::x86_avx_vtestnzc_pd:
8547  case Intrinsic::x86_avx_vtestz_ps_256:
8548  case Intrinsic::x86_avx_vtestc_ps_256:
8549  case Intrinsic::x86_avx_vtestnzc_ps_256:
8550  case Intrinsic::x86_avx_vtestz_pd_256:
8551  case Intrinsic::x86_avx_vtestc_pd_256:
8552  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8553    bool IsTestPacked = false;
8554    unsigned X86CC = 0;
8555    switch (IntNo) {
8556    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8557    case Intrinsic::x86_avx_vtestz_ps:
8558    case Intrinsic::x86_avx_vtestz_pd:
8559    case Intrinsic::x86_avx_vtestz_ps_256:
8560    case Intrinsic::x86_avx_vtestz_pd_256:
8561      IsTestPacked = true; // Fallthrough
8562    case Intrinsic::x86_sse41_ptestz:
8563    case Intrinsic::x86_avx_ptestz_256:
8564      // ZF = 1
8565      X86CC = X86::COND_E;
8566      break;
8567    case Intrinsic::x86_avx_vtestc_ps:
8568    case Intrinsic::x86_avx_vtestc_pd:
8569    case Intrinsic::x86_avx_vtestc_ps_256:
8570    case Intrinsic::x86_avx_vtestc_pd_256:
8571      IsTestPacked = true; // Fallthrough
8572    case Intrinsic::x86_sse41_ptestc:
8573    case Intrinsic::x86_avx_ptestc_256:
8574      // CF = 1
8575      X86CC = X86::COND_B;
8576      break;
8577    case Intrinsic::x86_avx_vtestnzc_ps:
8578    case Intrinsic::x86_avx_vtestnzc_pd:
8579    case Intrinsic::x86_avx_vtestnzc_ps_256:
8580    case Intrinsic::x86_avx_vtestnzc_pd_256:
8581      IsTestPacked = true; // Fallthrough
8582    case Intrinsic::x86_sse41_ptestnzc:
8583    case Intrinsic::x86_avx_ptestnzc_256:
8584      // ZF and CF = 0
8585      X86CC = X86::COND_A;
8586      break;
8587    }
8588
8589    SDValue LHS = Op.getOperand(1);
8590    SDValue RHS = Op.getOperand(2);
8591    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8592    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8593    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8594    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8595    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8596  }
8597
8598  // Fix vector shift instructions where the last operand is a non-immediate
8599  // i32 value.
8600  case Intrinsic::x86_sse2_pslli_w:
8601  case Intrinsic::x86_sse2_pslli_d:
8602  case Intrinsic::x86_sse2_pslli_q:
8603  case Intrinsic::x86_sse2_psrli_w:
8604  case Intrinsic::x86_sse2_psrli_d:
8605  case Intrinsic::x86_sse2_psrli_q:
8606  case Intrinsic::x86_sse2_psrai_w:
8607  case Intrinsic::x86_sse2_psrai_d:
8608  case Intrinsic::x86_mmx_pslli_w:
8609  case Intrinsic::x86_mmx_pslli_d:
8610  case Intrinsic::x86_mmx_pslli_q:
8611  case Intrinsic::x86_mmx_psrli_w:
8612  case Intrinsic::x86_mmx_psrli_d:
8613  case Intrinsic::x86_mmx_psrli_q:
8614  case Intrinsic::x86_mmx_psrai_w:
8615  case Intrinsic::x86_mmx_psrai_d: {
8616    SDValue ShAmt = Op.getOperand(2);
8617    if (isa<ConstantSDNode>(ShAmt))
8618      return SDValue();
8619
8620    unsigned NewIntNo = 0;
8621    EVT ShAmtVT = MVT::v4i32;
8622    switch (IntNo) {
8623    case Intrinsic::x86_sse2_pslli_w:
8624      NewIntNo = Intrinsic::x86_sse2_psll_w;
8625      break;
8626    case Intrinsic::x86_sse2_pslli_d:
8627      NewIntNo = Intrinsic::x86_sse2_psll_d;
8628      break;
8629    case Intrinsic::x86_sse2_pslli_q:
8630      NewIntNo = Intrinsic::x86_sse2_psll_q;
8631      break;
8632    case Intrinsic::x86_sse2_psrli_w:
8633      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8634      break;
8635    case Intrinsic::x86_sse2_psrli_d:
8636      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8637      break;
8638    case Intrinsic::x86_sse2_psrli_q:
8639      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8640      break;
8641    case Intrinsic::x86_sse2_psrai_w:
8642      NewIntNo = Intrinsic::x86_sse2_psra_w;
8643      break;
8644    case Intrinsic::x86_sse2_psrai_d:
8645      NewIntNo = Intrinsic::x86_sse2_psra_d;
8646      break;
8647    default: {
8648      ShAmtVT = MVT::v2i32;
8649      switch (IntNo) {
8650      case Intrinsic::x86_mmx_pslli_w:
8651        NewIntNo = Intrinsic::x86_mmx_psll_w;
8652        break;
8653      case Intrinsic::x86_mmx_pslli_d:
8654        NewIntNo = Intrinsic::x86_mmx_psll_d;
8655        break;
8656      case Intrinsic::x86_mmx_pslli_q:
8657        NewIntNo = Intrinsic::x86_mmx_psll_q;
8658        break;
8659      case Intrinsic::x86_mmx_psrli_w:
8660        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8661        break;
8662      case Intrinsic::x86_mmx_psrli_d:
8663        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8664        break;
8665      case Intrinsic::x86_mmx_psrli_q:
8666        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8667        break;
8668      case Intrinsic::x86_mmx_psrai_w:
8669        NewIntNo = Intrinsic::x86_mmx_psra_w;
8670        break;
8671      case Intrinsic::x86_mmx_psrai_d:
8672        NewIntNo = Intrinsic::x86_mmx_psra_d;
8673        break;
8674      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8675      }
8676      break;
8677    }
8678    }
8679
8680    // The vector shift intrinsics with scalars uses 32b shift amounts but
8681    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8682    // to be zero.
8683    SDValue ShOps[4];
8684    ShOps[0] = ShAmt;
8685    ShOps[1] = DAG.getConstant(0, MVT::i32);
8686    if (ShAmtVT == MVT::v4i32) {
8687      ShOps[2] = DAG.getUNDEF(MVT::i32);
8688      ShOps[3] = DAG.getUNDEF(MVT::i32);
8689      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8690    } else {
8691      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8692// FIXME this must be lowered to get rid of the invalid type.
8693    }
8694
8695    EVT VT = Op.getValueType();
8696    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8697    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8698                       DAG.getConstant(NewIntNo, MVT::i32),
8699                       Op.getOperand(1), ShAmt);
8700  }
8701  }
8702}
8703
8704SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8705                                           SelectionDAG &DAG) const {
8706  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8707  MFI->setReturnAddressIsTaken(true);
8708
8709  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8710  DebugLoc dl = Op.getDebugLoc();
8711
8712  if (Depth > 0) {
8713    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8714    SDValue Offset =
8715      DAG.getConstant(TD->getPointerSize(),
8716                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8717    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8718                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8719                                   FrameAddr, Offset),
8720                       MachinePointerInfo(), false, false, 0);
8721  }
8722
8723  // Just load the return address.
8724  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8725  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8726                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8727}
8728
8729SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8730  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8731  MFI->setFrameAddressIsTaken(true);
8732
8733  EVT VT = Op.getValueType();
8734  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8735  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8736  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8737  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8738  while (Depth--)
8739    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8740                            MachinePointerInfo(),
8741                            false, false, 0);
8742  return FrameAddr;
8743}
8744
8745SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8746                                                     SelectionDAG &DAG) const {
8747  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8748}
8749
8750SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8751  MachineFunction &MF = DAG.getMachineFunction();
8752  SDValue Chain     = Op.getOperand(0);
8753  SDValue Offset    = Op.getOperand(1);
8754  SDValue Handler   = Op.getOperand(2);
8755  DebugLoc dl       = Op.getDebugLoc();
8756
8757  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8758                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8759                                     getPointerTy());
8760  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8761
8762  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8763                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8764  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8765  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8766                       false, false, 0);
8767  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8768  MF.getRegInfo().addLiveOut(StoreAddrReg);
8769
8770  return DAG.getNode(X86ISD::EH_RETURN, dl,
8771                     MVT::Other,
8772                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8773}
8774
8775SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8776                                             SelectionDAG &DAG) const {
8777  SDValue Root = Op.getOperand(0);
8778  SDValue Trmp = Op.getOperand(1); // trampoline
8779  SDValue FPtr = Op.getOperand(2); // nested function
8780  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8781  DebugLoc dl  = Op.getDebugLoc();
8782
8783  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8784
8785  if (Subtarget->is64Bit()) {
8786    SDValue OutChains[6];
8787
8788    // Large code-model.
8789    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8790    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8791
8792    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
8793    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
8794
8795    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8796
8797    // Load the pointer to the nested function into R11.
8798    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8799    SDValue Addr = Trmp;
8800    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8801                                Addr, MachinePointerInfo(TrmpAddr),
8802                                false, false, 0);
8803
8804    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8805                       DAG.getConstant(2, MVT::i64));
8806    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8807                                MachinePointerInfo(TrmpAddr, 2),
8808                                false, false, 2);
8809
8810    // Load the 'nest' parameter value into R10.
8811    // R10 is specified in X86CallingConv.td
8812    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8813    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8814                       DAG.getConstant(10, MVT::i64));
8815    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8816                                Addr, MachinePointerInfo(TrmpAddr, 10),
8817                                false, false, 0);
8818
8819    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8820                       DAG.getConstant(12, MVT::i64));
8821    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8822                                MachinePointerInfo(TrmpAddr, 12),
8823                                false, false, 2);
8824
8825    // Jump to the nested function.
8826    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8827    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8828                       DAG.getConstant(20, MVT::i64));
8829    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8830                                Addr, MachinePointerInfo(TrmpAddr, 20),
8831                                false, false, 0);
8832
8833    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8834    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8835                       DAG.getConstant(22, MVT::i64));
8836    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8837                                MachinePointerInfo(TrmpAddr, 22),
8838                                false, false, 0);
8839
8840    SDValue Ops[] =
8841      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8842    return DAG.getMergeValues(Ops, 2, dl);
8843  } else {
8844    const Function *Func =
8845      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8846    CallingConv::ID CC = Func->getCallingConv();
8847    unsigned NestReg;
8848
8849    switch (CC) {
8850    default:
8851      llvm_unreachable("Unsupported calling convention");
8852    case CallingConv::C:
8853    case CallingConv::X86_StdCall: {
8854      // Pass 'nest' parameter in ECX.
8855      // Must be kept in sync with X86CallingConv.td
8856      NestReg = X86::ECX;
8857
8858      // Check that ECX wasn't needed by an 'inreg' parameter.
8859      FunctionType *FTy = Func->getFunctionType();
8860      const AttrListPtr &Attrs = Func->getAttributes();
8861
8862      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8863        unsigned InRegCount = 0;
8864        unsigned Idx = 1;
8865
8866        for (FunctionType::param_iterator I = FTy->param_begin(),
8867             E = FTy->param_end(); I != E; ++I, ++Idx)
8868          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8869            // FIXME: should only count parameters that are lowered to integers.
8870            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8871
8872        if (InRegCount > 2) {
8873          report_fatal_error("Nest register in use - reduce number of inreg"
8874                             " parameters!");
8875        }
8876      }
8877      break;
8878    }
8879    case CallingConv::X86_FastCall:
8880    case CallingConv::X86_ThisCall:
8881    case CallingConv::Fast:
8882      // Pass 'nest' parameter in EAX.
8883      // Must be kept in sync with X86CallingConv.td
8884      NestReg = X86::EAX;
8885      break;
8886    }
8887
8888    SDValue OutChains[4];
8889    SDValue Addr, Disp;
8890
8891    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8892                       DAG.getConstant(10, MVT::i32));
8893    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8894
8895    // This is storing the opcode for MOV32ri.
8896    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8897    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
8898    OutChains[0] = DAG.getStore(Root, dl,
8899                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8900                                Trmp, MachinePointerInfo(TrmpAddr),
8901                                false, false, 0);
8902
8903    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8904                       DAG.getConstant(1, MVT::i32));
8905    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8906                                MachinePointerInfo(TrmpAddr, 1),
8907                                false, false, 1);
8908
8909    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8910    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8911                       DAG.getConstant(5, MVT::i32));
8912    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8913                                MachinePointerInfo(TrmpAddr, 5),
8914                                false, false, 1);
8915
8916    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8917                       DAG.getConstant(6, MVT::i32));
8918    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8919                                MachinePointerInfo(TrmpAddr, 6),
8920                                false, false, 1);
8921
8922    SDValue Ops[] =
8923      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8924    return DAG.getMergeValues(Ops, 2, dl);
8925  }
8926}
8927
8928SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8929                                            SelectionDAG &DAG) const {
8930  /*
8931   The rounding mode is in bits 11:10 of FPSR, and has the following
8932   settings:
8933     00 Round to nearest
8934     01 Round to -inf
8935     10 Round to +inf
8936     11 Round to 0
8937
8938  FLT_ROUNDS, on the other hand, expects the following:
8939    -1 Undefined
8940     0 Round to 0
8941     1 Round to nearest
8942     2 Round to +inf
8943     3 Round to -inf
8944
8945  To perform the conversion, we do:
8946    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8947  */
8948
8949  MachineFunction &MF = DAG.getMachineFunction();
8950  const TargetMachine &TM = MF.getTarget();
8951  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8952  unsigned StackAlignment = TFI.getStackAlignment();
8953  EVT VT = Op.getValueType();
8954  DebugLoc DL = Op.getDebugLoc();
8955
8956  // Save FP Control Word to stack slot
8957  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8958  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8959
8960
8961  MachineMemOperand *MMO =
8962   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8963                           MachineMemOperand::MOStore, 2, 2);
8964
8965  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8966  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8967                                          DAG.getVTList(MVT::Other),
8968                                          Ops, 2, MVT::i16, MMO);
8969
8970  // Load FP Control Word from stack slot
8971  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8972                            MachinePointerInfo(), false, false, 0);
8973
8974  // Transform as necessary
8975  SDValue CWD1 =
8976    DAG.getNode(ISD::SRL, DL, MVT::i16,
8977                DAG.getNode(ISD::AND, DL, MVT::i16,
8978                            CWD, DAG.getConstant(0x800, MVT::i16)),
8979                DAG.getConstant(11, MVT::i8));
8980  SDValue CWD2 =
8981    DAG.getNode(ISD::SRL, DL, MVT::i16,
8982                DAG.getNode(ISD::AND, DL, MVT::i16,
8983                            CWD, DAG.getConstant(0x400, MVT::i16)),
8984                DAG.getConstant(9, MVT::i8));
8985
8986  SDValue RetVal =
8987    DAG.getNode(ISD::AND, DL, MVT::i16,
8988                DAG.getNode(ISD::ADD, DL, MVT::i16,
8989                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8990                            DAG.getConstant(1, MVT::i16)),
8991                DAG.getConstant(3, MVT::i16));
8992
8993
8994  return DAG.getNode((VT.getSizeInBits() < 16 ?
8995                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8996}
8997
8998SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8999  EVT VT = Op.getValueType();
9000  EVT OpVT = VT;
9001  unsigned NumBits = VT.getSizeInBits();
9002  DebugLoc dl = Op.getDebugLoc();
9003
9004  Op = Op.getOperand(0);
9005  if (VT == MVT::i8) {
9006    // Zero extend to i32 since there is not an i8 bsr.
9007    OpVT = MVT::i32;
9008    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9009  }
9010
9011  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9012  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9013  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9014
9015  // If src is zero (i.e. bsr sets ZF), returns NumBits.
9016  SDValue Ops[] = {
9017    Op,
9018    DAG.getConstant(NumBits+NumBits-1, OpVT),
9019    DAG.getConstant(X86::COND_E, MVT::i8),
9020    Op.getValue(1)
9021  };
9022  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9023
9024  // Finally xor with NumBits-1.
9025  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9026
9027  if (VT == MVT::i8)
9028    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9029  return Op;
9030}
9031
9032SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9033  EVT VT = Op.getValueType();
9034  EVT OpVT = VT;
9035  unsigned NumBits = VT.getSizeInBits();
9036  DebugLoc dl = Op.getDebugLoc();
9037
9038  Op = Op.getOperand(0);
9039  if (VT == MVT::i8) {
9040    OpVT = MVT::i32;
9041    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9042  }
9043
9044  // Issue a bsf (scan bits forward) which also sets EFLAGS.
9045  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9046  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9047
9048  // If src is zero (i.e. bsf sets ZF), returns NumBits.
9049  SDValue Ops[] = {
9050    Op,
9051    DAG.getConstant(NumBits, OpVT),
9052    DAG.getConstant(X86::COND_E, MVT::i8),
9053    Op.getValue(1)
9054  };
9055  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9056
9057  if (VT == MVT::i8)
9058    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9059  return Op;
9060}
9061
9062SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
9063  EVT VT = Op.getValueType();
9064  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9065  DebugLoc dl = Op.getDebugLoc();
9066
9067  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9068  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9069  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9070  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9071  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9072  //
9073  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9074  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9075  //  return AloBlo + AloBhi + AhiBlo;
9076
9077  SDValue A = Op.getOperand(0);
9078  SDValue B = Op.getOperand(1);
9079
9080  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9081                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9082                       A, DAG.getConstant(32, MVT::i32));
9083  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9084                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9085                       B, DAG.getConstant(32, MVT::i32));
9086  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9087                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9088                       A, B);
9089  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9090                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9091                       A, Bhi);
9092  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9093                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9094                       Ahi, B);
9095  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9096                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9097                       AloBhi, DAG.getConstant(32, MVT::i32));
9098  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9099                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9100                       AhiBlo, DAG.getConstant(32, MVT::i32));
9101  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9102  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9103  return Res;
9104}
9105
9106SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9107
9108  EVT VT = Op.getValueType();
9109  DebugLoc dl = Op.getDebugLoc();
9110  SDValue R = Op.getOperand(0);
9111  SDValue Amt = Op.getOperand(1);
9112
9113  LLVMContext *Context = DAG.getContext();
9114
9115  // Must have SSE2.
9116  if (!Subtarget->hasSSE2()) return SDValue();
9117
9118  // Optimize shl/srl/sra with constant shift amount.
9119  if (isSplatVector(Amt.getNode())) {
9120    SDValue SclrAmt = Amt->getOperand(0);
9121    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9122      uint64_t ShiftAmt = C->getZExtValue();
9123
9124      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9125       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9126                     DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9127                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9128
9129      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9130       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9131                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9132                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9133
9134      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9135       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9136                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9137                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9138
9139      if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9140       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9141                     DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9142                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9143
9144      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9145       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9146                     DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9147                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9148
9149      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9150       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9151                     DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9152                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9153
9154      if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9155       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9156                     DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9157                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9158
9159      if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9160       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9161                     DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9162                     R, DAG.getConstant(ShiftAmt, MVT::i32));
9163    }
9164  }
9165
9166  // Lower SHL with variable shift amount.
9167  // Cannot lower SHL without SSE2 or later.
9168  if (!Subtarget->hasSSE2()) return SDValue();
9169
9170  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9171    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9172                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9173                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9174
9175    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9176
9177    std::vector<Constant*> CV(4, CI);
9178    Constant *C = ConstantVector::get(CV);
9179    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9180    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9181                                 MachinePointerInfo::getConstantPool(),
9182                                 false, false, 16);
9183
9184    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9185    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9186    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9187    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9188  }
9189  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9190    // a = a << 5;
9191    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9192                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9193                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9194
9195    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
9196    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
9197
9198    std::vector<Constant*> CVM1(16, CM1);
9199    std::vector<Constant*> CVM2(16, CM2);
9200    Constant *C = ConstantVector::get(CVM1);
9201    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9202    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9203                            MachinePointerInfo::getConstantPool(),
9204                            false, false, 16);
9205
9206    // r = pblendv(r, psllw(r & (char16)15, 4), a);
9207    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9208    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9209                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9210                    DAG.getConstant(4, MVT::i32));
9211    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9212    // a += a
9213    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9214
9215    C = ConstantVector::get(CVM2);
9216    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9217    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9218                    MachinePointerInfo::getConstantPool(),
9219                    false, false, 16);
9220
9221    // r = pblendv(r, psllw(r & (char16)63, 2), a);
9222    M = DAG.getNode(ISD::AND, dl, VT, R, M);
9223    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9224                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
9225                    DAG.getConstant(2, MVT::i32));
9226    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
9227    // a += a
9228    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
9229
9230    // return pblendv(r, r+r, a);
9231    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
9232                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
9233    return R;
9234  }
9235  return SDValue();
9236}
9237
9238SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
9239  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
9240  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
9241  // looks for this combo and may remove the "setcc" instruction if the "setcc"
9242  // has only one use.
9243  SDNode *N = Op.getNode();
9244  SDValue LHS = N->getOperand(0);
9245  SDValue RHS = N->getOperand(1);
9246  unsigned BaseOp = 0;
9247  unsigned Cond = 0;
9248  DebugLoc DL = Op.getDebugLoc();
9249  switch (Op.getOpcode()) {
9250  default: llvm_unreachable("Unknown ovf instruction!");
9251  case ISD::SADDO:
9252    // A subtract of one will be selected as a INC. Note that INC doesn't
9253    // set CF, so we can't do this for UADDO.
9254    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9255      if (C->isOne()) {
9256        BaseOp = X86ISD::INC;
9257        Cond = X86::COND_O;
9258        break;
9259      }
9260    BaseOp = X86ISD::ADD;
9261    Cond = X86::COND_O;
9262    break;
9263  case ISD::UADDO:
9264    BaseOp = X86ISD::ADD;
9265    Cond = X86::COND_B;
9266    break;
9267  case ISD::SSUBO:
9268    // A subtract of one will be selected as a DEC. Note that DEC doesn't
9269    // set CF, so we can't do this for USUBO.
9270    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
9271      if (C->isOne()) {
9272        BaseOp = X86ISD::DEC;
9273        Cond = X86::COND_O;
9274        break;
9275      }
9276    BaseOp = X86ISD::SUB;
9277    Cond = X86::COND_O;
9278    break;
9279  case ISD::USUBO:
9280    BaseOp = X86ISD::SUB;
9281    Cond = X86::COND_B;
9282    break;
9283  case ISD::SMULO:
9284    BaseOp = X86ISD::SMUL;
9285    Cond = X86::COND_O;
9286    break;
9287  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
9288    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
9289                                 MVT::i32);
9290    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
9291
9292    SDValue SetCC =
9293      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9294                  DAG.getConstant(X86::COND_O, MVT::i32),
9295                  SDValue(Sum.getNode(), 2));
9296
9297    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9298  }
9299  }
9300
9301  // Also sets EFLAGS.
9302  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
9303  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
9304
9305  SDValue SetCC =
9306    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
9307                DAG.getConstant(Cond, MVT::i32),
9308                SDValue(Sum.getNode(), 1));
9309
9310  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
9311}
9312
9313SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
9314  DebugLoc dl = Op.getDebugLoc();
9315  SDNode* Node = Op.getNode();
9316  EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9317  EVT VT = Node->getValueType(0);
9318
9319  if (Subtarget->hasSSE2() && VT.isVector()) {
9320    unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
9321                        ExtraVT.getScalarType().getSizeInBits();
9322    SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
9323
9324    unsigned SHLIntrinsicsID = 0;
9325    unsigned SRAIntrinsicsID = 0;
9326    switch (VT.getSimpleVT().SimpleTy) {
9327      default:
9328        return SDValue();
9329      case MVT::v2i64: {
9330        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_q;
9331        SRAIntrinsicsID = 0;
9332        break;
9333      }
9334      case MVT::v4i32: {
9335        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
9336        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
9337        break;
9338      }
9339      case MVT::v8i16: {
9340        SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
9341        SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
9342        break;
9343      }
9344    }
9345
9346    SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9347                         DAG.getConstant(SHLIntrinsicsID, MVT::i32),
9348                         Node->getOperand(0), ShAmt);
9349
9350    // In case of 1 bit sext, no need to shr
9351    if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
9352
9353    if (SRAIntrinsicsID) {
9354      Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9355                         DAG.getConstant(SRAIntrinsicsID, MVT::i32),
9356                         Tmp1, ShAmt);
9357    }
9358    return Tmp1;
9359  }
9360
9361  return SDValue();
9362}
9363
9364
9365SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
9366  DebugLoc dl = Op.getDebugLoc();
9367
9368  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
9369  // There isn't any reason to disable it if the target processor supports it.
9370  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
9371    SDValue Chain = Op.getOperand(0);
9372    SDValue Zero = DAG.getConstant(0, MVT::i32);
9373    SDValue Ops[] = {
9374      DAG.getRegister(X86::ESP, MVT::i32), // Base
9375      DAG.getTargetConstant(1, MVT::i8),   // Scale
9376      DAG.getRegister(0, MVT::i32),        // Index
9377      DAG.getTargetConstant(0, MVT::i32),  // Disp
9378      DAG.getRegister(0, MVT::i32),        // Segment.
9379      Zero,
9380      Chain
9381    };
9382    SDNode *Res =
9383      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
9384                          array_lengthof(Ops));
9385    return SDValue(Res, 0);
9386  }
9387
9388  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
9389  if (!isDev)
9390    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
9391
9392  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
9393  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
9394  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
9395  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
9396
9397  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
9398  if (!Op1 && !Op2 && !Op3 && Op4)
9399    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
9400
9401  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
9402  if (Op1 && !Op2 && !Op3 && !Op4)
9403    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
9404
9405  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
9406  //           (MFENCE)>;
9407  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
9408}
9409
9410SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
9411  EVT T = Op.getValueType();
9412  DebugLoc DL = Op.getDebugLoc();
9413  unsigned Reg = 0;
9414  unsigned size = 0;
9415  switch(T.getSimpleVT().SimpleTy) {
9416  default:
9417    assert(false && "Invalid value type!");
9418  case MVT::i8:  Reg = X86::AL;  size = 1; break;
9419  case MVT::i16: Reg = X86::AX;  size = 2; break;
9420  case MVT::i32: Reg = X86::EAX; size = 4; break;
9421  case MVT::i64:
9422    assert(Subtarget->is64Bit() && "Node not type legal!");
9423    Reg = X86::RAX; size = 8;
9424    break;
9425  }
9426  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
9427                                    Op.getOperand(2), SDValue());
9428  SDValue Ops[] = { cpIn.getValue(0),
9429                    Op.getOperand(1),
9430                    Op.getOperand(3),
9431                    DAG.getTargetConstant(size, MVT::i8),
9432                    cpIn.getValue(1) };
9433  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9434  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
9435  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
9436                                           Ops, 5, T, MMO);
9437  SDValue cpOut =
9438    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
9439  return cpOut;
9440}
9441
9442SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
9443                                                 SelectionDAG &DAG) const {
9444  assert(Subtarget->is64Bit() && "Result not type legalized?");
9445  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9446  SDValue TheChain = Op.getOperand(0);
9447  DebugLoc dl = Op.getDebugLoc();
9448  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9449  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9450  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9451                                   rax.getValue(2));
9452  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9453                            DAG.getConstant(32, MVT::i8));
9454  SDValue Ops[] = {
9455    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9456    rdx.getValue(1)
9457  };
9458  return DAG.getMergeValues(Ops, 2, dl);
9459}
9460
9461SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9462                                            SelectionDAG &DAG) const {
9463  EVT SrcVT = Op.getOperand(0).getValueType();
9464  EVT DstVT = Op.getValueType();
9465  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9466         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9467  assert((DstVT == MVT::i64 ||
9468          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9469         "Unexpected custom BITCAST");
9470  // i64 <=> MMX conversions are Legal.
9471  if (SrcVT==MVT::i64 && DstVT.isVector())
9472    return Op;
9473  if (DstVT==MVT::i64 && SrcVT.isVector())
9474    return Op;
9475  // MMX <=> MMX conversions are Legal.
9476  if (SrcVT.isVector() && DstVT.isVector())
9477    return Op;
9478  // All other conversions need to be expanded.
9479  return SDValue();
9480}
9481
9482SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9483  SDNode *Node = Op.getNode();
9484  DebugLoc dl = Node->getDebugLoc();
9485  EVT T = Node->getValueType(0);
9486  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9487                              DAG.getConstant(0, T), Node->getOperand(2));
9488  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9489                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9490                       Node->getOperand(0),
9491                       Node->getOperand(1), negOp,
9492                       cast<AtomicSDNode>(Node)->getSrcValue(),
9493                       cast<AtomicSDNode>(Node)->getAlignment());
9494}
9495
9496static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9497  EVT VT = Op.getNode()->getValueType(0);
9498
9499  // Let legalize expand this if it isn't a legal type yet.
9500  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9501    return SDValue();
9502
9503  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9504
9505  unsigned Opc;
9506  bool ExtraOp = false;
9507  switch (Op.getOpcode()) {
9508  default: assert(0 && "Invalid code");
9509  case ISD::ADDC: Opc = X86ISD::ADD; break;
9510  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9511  case ISD::SUBC: Opc = X86ISD::SUB; break;
9512  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9513  }
9514
9515  if (!ExtraOp)
9516    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9517                       Op.getOperand(1));
9518  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9519                     Op.getOperand(1), Op.getOperand(2));
9520}
9521
9522/// LowerOperation - Provide custom lowering hooks for some operations.
9523///
9524SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9525  switch (Op.getOpcode()) {
9526  default: llvm_unreachable("Should not custom lower this!");
9527  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
9528  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9529  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9530  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9531  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9532  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9533  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9534  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9535  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9536  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9537  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9538  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9539  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9540  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9541  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9542  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9543  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9544  case ISD::SHL_PARTS:
9545  case ISD::SRA_PARTS:
9546  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
9547  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9548  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9549  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9550  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9551  case ISD::FABS:               return LowerFABS(Op, DAG);
9552  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9553  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9554  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
9555  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9556  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9557  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9558  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9559  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9560  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9561  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9562  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9563  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9564  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9565  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9566  case ISD::FRAME_TO_ARGS_OFFSET:
9567                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9568  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9569  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9570  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9571  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9572  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9573  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9574  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9575  case ISD::SRA:
9576  case ISD::SRL:
9577  case ISD::SHL:                return LowerShift(Op, DAG);
9578  case ISD::SADDO:
9579  case ISD::UADDO:
9580  case ISD::SSUBO:
9581  case ISD::USUBO:
9582  case ISD::SMULO:
9583  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9584  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9585  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9586  case ISD::ADDC:
9587  case ISD::ADDE:
9588  case ISD::SUBC:
9589  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9590  }
9591}
9592
9593void X86TargetLowering::
9594ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9595                        SelectionDAG &DAG, unsigned NewOp) const {
9596  EVT T = Node->getValueType(0);
9597  DebugLoc dl = Node->getDebugLoc();
9598  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9599
9600  SDValue Chain = Node->getOperand(0);
9601  SDValue In1 = Node->getOperand(1);
9602  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9603                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9604  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9605                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9606  SDValue Ops[] = { Chain, In1, In2L, In2H };
9607  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9608  SDValue Result =
9609    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9610                            cast<MemSDNode>(Node)->getMemOperand());
9611  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9612  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9613  Results.push_back(Result.getValue(2));
9614}
9615
9616/// ReplaceNodeResults - Replace a node with an illegal result type
9617/// with a new node built out of custom code.
9618void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9619                                           SmallVectorImpl<SDValue>&Results,
9620                                           SelectionDAG &DAG) const {
9621  DebugLoc dl = N->getDebugLoc();
9622  switch (N->getOpcode()) {
9623  default:
9624    assert(false && "Do not know how to custom type legalize this operation!");
9625    return;
9626  case ISD::SIGN_EXTEND_INREG:
9627  case ISD::ADDC:
9628  case ISD::ADDE:
9629  case ISD::SUBC:
9630  case ISD::SUBE:
9631    // We don't want to expand or promote these.
9632    return;
9633  case ISD::FP_TO_SINT: {
9634    std::pair<SDValue,SDValue> Vals =
9635        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9636    SDValue FIST = Vals.first, StackSlot = Vals.second;
9637    if (FIST.getNode() != 0) {
9638      EVT VT = N->getValueType(0);
9639      // Return a load from the stack slot.
9640      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9641                                    MachinePointerInfo(), false, false, 0));
9642    }
9643    return;
9644  }
9645  case ISD::READCYCLECOUNTER: {
9646    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9647    SDValue TheChain = N->getOperand(0);
9648    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9649    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9650                                     rd.getValue(1));
9651    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9652                                     eax.getValue(2));
9653    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9654    SDValue Ops[] = { eax, edx };
9655    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9656    Results.push_back(edx.getValue(1));
9657    return;
9658  }
9659  case ISD::ATOMIC_CMP_SWAP: {
9660    EVT T = N->getValueType(0);
9661    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9662    SDValue cpInL, cpInH;
9663    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9664                        DAG.getConstant(0, MVT::i32));
9665    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9666                        DAG.getConstant(1, MVT::i32));
9667    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9668    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9669                             cpInL.getValue(1));
9670    SDValue swapInL, swapInH;
9671    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9672                          DAG.getConstant(0, MVT::i32));
9673    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9674                          DAG.getConstant(1, MVT::i32));
9675    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9676                               cpInH.getValue(1));
9677    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9678                               swapInL.getValue(1));
9679    SDValue Ops[] = { swapInH.getValue(0),
9680                      N->getOperand(1),
9681                      swapInH.getValue(1) };
9682    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9683    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9684    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9685                                             Ops, 3, T, MMO);
9686    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9687                                        MVT::i32, Result.getValue(1));
9688    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9689                                        MVT::i32, cpOutL.getValue(2));
9690    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9691    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9692    Results.push_back(cpOutH.getValue(1));
9693    return;
9694  }
9695  case ISD::ATOMIC_LOAD_ADD:
9696    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9697    return;
9698  case ISD::ATOMIC_LOAD_AND:
9699    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9700    return;
9701  case ISD::ATOMIC_LOAD_NAND:
9702    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9703    return;
9704  case ISD::ATOMIC_LOAD_OR:
9705    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9706    return;
9707  case ISD::ATOMIC_LOAD_SUB:
9708    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9709    return;
9710  case ISD::ATOMIC_LOAD_XOR:
9711    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9712    return;
9713  case ISD::ATOMIC_SWAP:
9714    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9715    return;
9716  }
9717}
9718
9719const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9720  switch (Opcode) {
9721  default: return NULL;
9722  case X86ISD::BSF:                return "X86ISD::BSF";
9723  case X86ISD::BSR:                return "X86ISD::BSR";
9724  case X86ISD::SHLD:               return "X86ISD::SHLD";
9725  case X86ISD::SHRD:               return "X86ISD::SHRD";
9726  case X86ISD::FAND:               return "X86ISD::FAND";
9727  case X86ISD::FOR:                return "X86ISD::FOR";
9728  case X86ISD::FXOR:               return "X86ISD::FXOR";
9729  case X86ISD::FSRL:               return "X86ISD::FSRL";
9730  case X86ISD::FILD:               return "X86ISD::FILD";
9731  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9732  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9733  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9734  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9735  case X86ISD::FLD:                return "X86ISD::FLD";
9736  case X86ISD::FST:                return "X86ISD::FST";
9737  case X86ISD::CALL:               return "X86ISD::CALL";
9738  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9739  case X86ISD::BT:                 return "X86ISD::BT";
9740  case X86ISD::CMP:                return "X86ISD::CMP";
9741  case X86ISD::COMI:               return "X86ISD::COMI";
9742  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9743  case X86ISD::SETCC:              return "X86ISD::SETCC";
9744  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9745  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
9746  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
9747  case X86ISD::CMOV:               return "X86ISD::CMOV";
9748  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9749  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9750  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9751  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9752  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9753  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9754  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9755  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9756  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9757  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9758  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9759  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9760  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9761  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
9762  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9763  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9764  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9765  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9766  case X86ISD::FMAX:               return "X86ISD::FMAX";
9767  case X86ISD::FMIN:               return "X86ISD::FMIN";
9768  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9769  case X86ISD::FRCP:               return "X86ISD::FRCP";
9770  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9771  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9772  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9773  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9774  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9775  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9776  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9777  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9778  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9779  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9780  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9781  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9782  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9783  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9784  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9785  case X86ISD::VSHL:               return "X86ISD::VSHL";
9786  case X86ISD::VSRL:               return "X86ISD::VSRL";
9787  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9788  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9789  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9790  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9791  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9792  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9793  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9794  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9795  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9796  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9797  case X86ISD::ADD:                return "X86ISD::ADD";
9798  case X86ISD::SUB:                return "X86ISD::SUB";
9799  case X86ISD::ADC:                return "X86ISD::ADC";
9800  case X86ISD::SBB:                return "X86ISD::SBB";
9801  case X86ISD::SMUL:               return "X86ISD::SMUL";
9802  case X86ISD::UMUL:               return "X86ISD::UMUL";
9803  case X86ISD::INC:                return "X86ISD::INC";
9804  case X86ISD::DEC:                return "X86ISD::DEC";
9805  case X86ISD::OR:                 return "X86ISD::OR";
9806  case X86ISD::XOR:                return "X86ISD::XOR";
9807  case X86ISD::AND:                return "X86ISD::AND";
9808  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9809  case X86ISD::PTEST:              return "X86ISD::PTEST";
9810  case X86ISD::TESTP:              return "X86ISD::TESTP";
9811  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9812  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9813  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9814  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9815  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9816  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9817  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9818  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9819  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9820  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9821  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9822  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9823  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9824  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9825  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9826  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9827  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9828  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9829  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9830  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9831  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9832  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9833  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9834  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
9835  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9836  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9837  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9838  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9839  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9840  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9841  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9842  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9843  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9844  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9845  case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
9846  case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
9847  case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
9848  case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
9849  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9850  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9851  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9852  }
9853}
9854
9855// isLegalAddressingMode - Return true if the addressing mode represented
9856// by AM is legal for this target, for a load/store of the specified type.
9857bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9858                                              Type *Ty) const {
9859  // X86 supports extremely general addressing modes.
9860  CodeModel::Model M = getTargetMachine().getCodeModel();
9861  Reloc::Model R = getTargetMachine().getRelocationModel();
9862
9863  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9864  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9865    return false;
9866
9867  if (AM.BaseGV) {
9868    unsigned GVFlags =
9869      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9870
9871    // If a reference to this global requires an extra load, we can't fold it.
9872    if (isGlobalStubReference(GVFlags))
9873      return false;
9874
9875    // If BaseGV requires a register for the PIC base, we cannot also have a
9876    // BaseReg specified.
9877    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9878      return false;
9879
9880    // If lower 4G is not available, then we must use rip-relative addressing.
9881    if ((M != CodeModel::Small || R != Reloc::Static) &&
9882        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9883      return false;
9884  }
9885
9886  switch (AM.Scale) {
9887  case 0:
9888  case 1:
9889  case 2:
9890  case 4:
9891  case 8:
9892    // These scales always work.
9893    break;
9894  case 3:
9895  case 5:
9896  case 9:
9897    // These scales are formed with basereg+scalereg.  Only accept if there is
9898    // no basereg yet.
9899    if (AM.HasBaseReg)
9900      return false;
9901    break;
9902  default:  // Other stuff never works.
9903    return false;
9904  }
9905
9906  return true;
9907}
9908
9909
9910bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
9911  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9912    return false;
9913  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9914  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9915  if (NumBits1 <= NumBits2)
9916    return false;
9917  return true;
9918}
9919
9920bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9921  if (!VT1.isInteger() || !VT2.isInteger())
9922    return false;
9923  unsigned NumBits1 = VT1.getSizeInBits();
9924  unsigned NumBits2 = VT2.getSizeInBits();
9925  if (NumBits1 <= NumBits2)
9926    return false;
9927  return true;
9928}
9929
9930bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
9931  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9932  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9933}
9934
9935bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9936  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9937  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9938}
9939
9940bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9941  // i16 instructions are longer (0x66 prefix) and potentially slower.
9942  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9943}
9944
9945/// isShuffleMaskLegal - Targets can use this to indicate that they only
9946/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9947/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9948/// are assumed to be legal.
9949bool
9950X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9951                                      EVT VT) const {
9952  // Very little shuffling can be done for 64-bit vectors right now.
9953  if (VT.getSizeInBits() == 64)
9954    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9955
9956  // FIXME: pshufb, blends, shifts.
9957  return (VT.getVectorNumElements() == 2 ||
9958          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9959          isMOVLMask(M, VT) ||
9960          isSHUFPMask(M, VT) ||
9961          isPSHUFDMask(M, VT) ||
9962          isPSHUFHWMask(M, VT) ||
9963          isPSHUFLWMask(M, VT) ||
9964          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9965          isUNPCKLMask(M, VT) ||
9966          isUNPCKHMask(M, VT) ||
9967          isUNPCKL_v_undef_Mask(M, VT) ||
9968          isUNPCKH_v_undef_Mask(M, VT));
9969}
9970
9971bool
9972X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9973                                          EVT VT) const {
9974  unsigned NumElts = VT.getVectorNumElements();
9975  // FIXME: This collection of masks seems suspect.
9976  if (NumElts == 2)
9977    return true;
9978  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9979    return (isMOVLMask(Mask, VT)  ||
9980            isCommutedMOVLMask(Mask, VT, true) ||
9981            isSHUFPMask(Mask, VT) ||
9982            isCommutedSHUFPMask(Mask, VT));
9983  }
9984  return false;
9985}
9986
9987//===----------------------------------------------------------------------===//
9988//                           X86 Scheduler Hooks
9989//===----------------------------------------------------------------------===//
9990
9991// private utility function
9992MachineBasicBlock *
9993X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9994                                                       MachineBasicBlock *MBB,
9995                                                       unsigned regOpc,
9996                                                       unsigned immOpc,
9997                                                       unsigned LoadOpc,
9998                                                       unsigned CXchgOpc,
9999                                                       unsigned notOpc,
10000                                                       unsigned EAXreg,
10001                                                       TargetRegisterClass *RC,
10002                                                       bool invSrc) const {
10003  // For the atomic bitwise operator, we generate
10004  //   thisMBB:
10005  //   newMBB:
10006  //     ld  t1 = [bitinstr.addr]
10007  //     op  t2 = t1, [bitinstr.val]
10008  //     mov EAX = t1
10009  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10010  //     bz  newMBB
10011  //     fallthrough -->nextMBB
10012  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10013  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10014  MachineFunction::iterator MBBIter = MBB;
10015  ++MBBIter;
10016
10017  /// First build the CFG
10018  MachineFunction *F = MBB->getParent();
10019  MachineBasicBlock *thisMBB = MBB;
10020  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10021  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10022  F->insert(MBBIter, newMBB);
10023  F->insert(MBBIter, nextMBB);
10024
10025  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10026  nextMBB->splice(nextMBB->begin(), thisMBB,
10027                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10028                  thisMBB->end());
10029  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10030
10031  // Update thisMBB to fall through to newMBB
10032  thisMBB->addSuccessor(newMBB);
10033
10034  // newMBB jumps to itself and fall through to nextMBB
10035  newMBB->addSuccessor(nextMBB);
10036  newMBB->addSuccessor(newMBB);
10037
10038  // Insert instructions into newMBB based on incoming instruction
10039  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10040         "unexpected number of operands");
10041  DebugLoc dl = bInstr->getDebugLoc();
10042  MachineOperand& destOper = bInstr->getOperand(0);
10043  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10044  int numArgs = bInstr->getNumOperands() - 1;
10045  for (int i=0; i < numArgs; ++i)
10046    argOpers[i] = &bInstr->getOperand(i+1);
10047
10048  // x86 address has 4 operands: base, index, scale, and displacement
10049  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10050  int valArgIndx = lastAddrIndx + 1;
10051
10052  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10053  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10054  for (int i=0; i <= lastAddrIndx; ++i)
10055    (*MIB).addOperand(*argOpers[i]);
10056
10057  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10058  if (invSrc) {
10059    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10060  }
10061  else
10062    tt = t1;
10063
10064  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10065  assert((argOpers[valArgIndx]->isReg() ||
10066          argOpers[valArgIndx]->isImm()) &&
10067         "invalid operand");
10068  if (argOpers[valArgIndx]->isReg())
10069    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10070  else
10071    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10072  MIB.addReg(tt);
10073  (*MIB).addOperand(*argOpers[valArgIndx]);
10074
10075  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10076  MIB.addReg(t1);
10077
10078  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10079  for (int i=0; i <= lastAddrIndx; ++i)
10080    (*MIB).addOperand(*argOpers[i]);
10081  MIB.addReg(t2);
10082  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10083  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10084                    bInstr->memoperands_end());
10085
10086  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10087  MIB.addReg(EAXreg);
10088
10089  // insert branch
10090  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10091
10092  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10093  return nextMBB;
10094}
10095
10096// private utility function:  64 bit atomics on 32 bit host.
10097MachineBasicBlock *
10098X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
10099                                                       MachineBasicBlock *MBB,
10100                                                       unsigned regOpcL,
10101                                                       unsigned regOpcH,
10102                                                       unsigned immOpcL,
10103                                                       unsigned immOpcH,
10104                                                       bool invSrc) const {
10105  // For the atomic bitwise operator, we generate
10106  //   thisMBB (instructions are in pairs, except cmpxchg8b)
10107  //     ld t1,t2 = [bitinstr.addr]
10108  //   newMBB:
10109  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
10110  //     op  t5, t6 <- out1, out2, [bitinstr.val]
10111  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
10112  //     mov ECX, EBX <- t5, t6
10113  //     mov EAX, EDX <- t1, t2
10114  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
10115  //     mov t3, t4 <- EAX, EDX
10116  //     bz  newMBB
10117  //     result in out1, out2
10118  //     fallthrough -->nextMBB
10119
10120  const TargetRegisterClass *RC = X86::GR32RegisterClass;
10121  const unsigned LoadOpc = X86::MOV32rm;
10122  const unsigned NotOpc = X86::NOT32r;
10123  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10124  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10125  MachineFunction::iterator MBBIter = MBB;
10126  ++MBBIter;
10127
10128  /// First build the CFG
10129  MachineFunction *F = MBB->getParent();
10130  MachineBasicBlock *thisMBB = MBB;
10131  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10132  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10133  F->insert(MBBIter, newMBB);
10134  F->insert(MBBIter, nextMBB);
10135
10136  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10137  nextMBB->splice(nextMBB->begin(), thisMBB,
10138                  llvm::next(MachineBasicBlock::iterator(bInstr)),
10139                  thisMBB->end());
10140  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10141
10142  // Update thisMBB to fall through to newMBB
10143  thisMBB->addSuccessor(newMBB);
10144
10145  // newMBB jumps to itself and fall through to nextMBB
10146  newMBB->addSuccessor(nextMBB);
10147  newMBB->addSuccessor(newMBB);
10148
10149  DebugLoc dl = bInstr->getDebugLoc();
10150  // Insert instructions into newMBB based on incoming instruction
10151  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
10152  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
10153         "unexpected number of operands");
10154  MachineOperand& dest1Oper = bInstr->getOperand(0);
10155  MachineOperand& dest2Oper = bInstr->getOperand(1);
10156  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10157  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
10158    argOpers[i] = &bInstr->getOperand(i+2);
10159
10160    // We use some of the operands multiple times, so conservatively just
10161    // clear any kill flags that might be present.
10162    if (argOpers[i]->isReg() && argOpers[i]->isUse())
10163      argOpers[i]->setIsKill(false);
10164  }
10165
10166  // x86 address has 5 operands: base, index, scale, displacement, and segment.
10167  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10168
10169  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10170  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
10171  for (int i=0; i <= lastAddrIndx; ++i)
10172    (*MIB).addOperand(*argOpers[i]);
10173  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10174  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
10175  // add 4 to displacement.
10176  for (int i=0; i <= lastAddrIndx-2; ++i)
10177    (*MIB).addOperand(*argOpers[i]);
10178  MachineOperand newOp3 = *(argOpers[3]);
10179  if (newOp3.isImm())
10180    newOp3.setImm(newOp3.getImm()+4);
10181  else
10182    newOp3.setOffset(newOp3.getOffset()+4);
10183  (*MIB).addOperand(newOp3);
10184  (*MIB).addOperand(*argOpers[lastAddrIndx]);
10185
10186  // t3/4 are defined later, at the bottom of the loop
10187  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
10188  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
10189  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
10190    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
10191  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
10192    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
10193
10194  // The subsequent operations should be using the destination registers of
10195  //the PHI instructions.
10196  if (invSrc) {
10197    t1 = F->getRegInfo().createVirtualRegister(RC);
10198    t2 = F->getRegInfo().createVirtualRegister(RC);
10199    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
10200    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
10201  } else {
10202    t1 = dest1Oper.getReg();
10203    t2 = dest2Oper.getReg();
10204  }
10205
10206  int valArgIndx = lastAddrIndx + 1;
10207  assert((argOpers[valArgIndx]->isReg() ||
10208          argOpers[valArgIndx]->isImm()) &&
10209         "invalid operand");
10210  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
10211  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
10212  if (argOpers[valArgIndx]->isReg())
10213    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
10214  else
10215    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
10216  if (regOpcL != X86::MOV32rr)
10217    MIB.addReg(t1);
10218  (*MIB).addOperand(*argOpers[valArgIndx]);
10219  assert(argOpers[valArgIndx + 1]->isReg() ==
10220         argOpers[valArgIndx]->isReg());
10221  assert(argOpers[valArgIndx + 1]->isImm() ==
10222         argOpers[valArgIndx]->isImm());
10223  if (argOpers[valArgIndx + 1]->isReg())
10224    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
10225  else
10226    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
10227  if (regOpcH != X86::MOV32rr)
10228    MIB.addReg(t2);
10229  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
10230
10231  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10232  MIB.addReg(t1);
10233  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
10234  MIB.addReg(t2);
10235
10236  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
10237  MIB.addReg(t5);
10238  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
10239  MIB.addReg(t6);
10240
10241  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
10242  for (int i=0; i <= lastAddrIndx; ++i)
10243    (*MIB).addOperand(*argOpers[i]);
10244
10245  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10246  (*MIB).setMemRefs(bInstr->memoperands_begin(),
10247                    bInstr->memoperands_end());
10248
10249  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
10250  MIB.addReg(X86::EAX);
10251  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
10252  MIB.addReg(X86::EDX);
10253
10254  // insert branch
10255  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10256
10257  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10258  return nextMBB;
10259}
10260
10261// private utility function
10262MachineBasicBlock *
10263X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
10264                                                      MachineBasicBlock *MBB,
10265                                                      unsigned cmovOpc) const {
10266  // For the atomic min/max operator, we generate
10267  //   thisMBB:
10268  //   newMBB:
10269  //     ld t1 = [min/max.addr]
10270  //     mov t2 = [min/max.val]
10271  //     cmp  t1, t2
10272  //     cmov[cond] t2 = t1
10273  //     mov EAX = t1
10274  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10275  //     bz   newMBB
10276  //     fallthrough -->nextMBB
10277  //
10278  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10279  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10280  MachineFunction::iterator MBBIter = MBB;
10281  ++MBBIter;
10282
10283  /// First build the CFG
10284  MachineFunction *F = MBB->getParent();
10285  MachineBasicBlock *thisMBB = MBB;
10286  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10287  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10288  F->insert(MBBIter, newMBB);
10289  F->insert(MBBIter, nextMBB);
10290
10291  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10292  nextMBB->splice(nextMBB->begin(), thisMBB,
10293                  llvm::next(MachineBasicBlock::iterator(mInstr)),
10294                  thisMBB->end());
10295  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10296
10297  // Update thisMBB to fall through to newMBB
10298  thisMBB->addSuccessor(newMBB);
10299
10300  // newMBB jumps to newMBB and fall through to nextMBB
10301  newMBB->addSuccessor(nextMBB);
10302  newMBB->addSuccessor(newMBB);
10303
10304  DebugLoc dl = mInstr->getDebugLoc();
10305  // Insert instructions into newMBB based on incoming instruction
10306  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10307         "unexpected number of operands");
10308  MachineOperand& destOper = mInstr->getOperand(0);
10309  MachineOperand* argOpers[2 + X86::AddrNumOperands];
10310  int numArgs = mInstr->getNumOperands() - 1;
10311  for (int i=0; i < numArgs; ++i)
10312    argOpers[i] = &mInstr->getOperand(i+1);
10313
10314  // x86 address has 4 operands: base, index, scale, and displacement
10315  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10316  int valArgIndx = lastAddrIndx + 1;
10317
10318  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10319  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
10320  for (int i=0; i <= lastAddrIndx; ++i)
10321    (*MIB).addOperand(*argOpers[i]);
10322
10323  // We only support register and immediate values
10324  assert((argOpers[valArgIndx]->isReg() ||
10325          argOpers[valArgIndx]->isImm()) &&
10326         "invalid operand");
10327
10328  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10329  if (argOpers[valArgIndx]->isReg())
10330    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
10331  else
10332    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
10333  (*MIB).addOperand(*argOpers[valArgIndx]);
10334
10335  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
10336  MIB.addReg(t1);
10337
10338  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
10339  MIB.addReg(t1);
10340  MIB.addReg(t2);
10341
10342  // Generate movc
10343  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
10344  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
10345  MIB.addReg(t2);
10346  MIB.addReg(t1);
10347
10348  // Cmp and exchange if none has modified the memory location
10349  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
10350  for (int i=0; i <= lastAddrIndx; ++i)
10351    (*MIB).addOperand(*argOpers[i]);
10352  MIB.addReg(t3);
10353  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10354  (*MIB).setMemRefs(mInstr->memoperands_begin(),
10355                    mInstr->memoperands_end());
10356
10357  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10358  MIB.addReg(X86::EAX);
10359
10360  // insert branch
10361  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10362
10363  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
10364  return nextMBB;
10365}
10366
10367// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
10368// or XMM0_V32I8 in AVX all of this code can be replaced with that
10369// in the .td file.
10370MachineBasicBlock *
10371X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
10372                            unsigned numArgs, bool memArg) const {
10373  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
10374         "Target must have SSE4.2 or AVX features enabled");
10375
10376  DebugLoc dl = MI->getDebugLoc();
10377  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10378  unsigned Opc;
10379  if (!Subtarget->hasAVX()) {
10380    if (memArg)
10381      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
10382    else
10383      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
10384  } else {
10385    if (memArg)
10386      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
10387    else
10388      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
10389  }
10390
10391  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
10392  for (unsigned i = 0; i < numArgs; ++i) {
10393    MachineOperand &Op = MI->getOperand(i+1);
10394    if (!(Op.isReg() && Op.isImplicit()))
10395      MIB.addOperand(Op);
10396  }
10397  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
10398    .addReg(X86::XMM0);
10399
10400  MI->eraseFromParent();
10401  return BB;
10402}
10403
10404MachineBasicBlock *
10405X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
10406  DebugLoc dl = MI->getDebugLoc();
10407  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10408
10409  // Address into RAX/EAX, other two args into ECX, EDX.
10410  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
10411  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
10412  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
10413  for (int i = 0; i < X86::AddrNumOperands; ++i)
10414    MIB.addOperand(MI->getOperand(i));
10415
10416  unsigned ValOps = X86::AddrNumOperands;
10417  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10418    .addReg(MI->getOperand(ValOps).getReg());
10419  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
10420    .addReg(MI->getOperand(ValOps+1).getReg());
10421
10422  // The instruction doesn't actually take any operands though.
10423  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
10424
10425  MI->eraseFromParent(); // The pseudo is gone now.
10426  return BB;
10427}
10428
10429MachineBasicBlock *
10430X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
10431  DebugLoc dl = MI->getDebugLoc();
10432  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10433
10434  // First arg in ECX, the second in EAX.
10435  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
10436    .addReg(MI->getOperand(0).getReg());
10437  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
10438    .addReg(MI->getOperand(1).getReg());
10439
10440  // The instruction doesn't actually take any operands though.
10441  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
10442
10443  MI->eraseFromParent(); // The pseudo is gone now.
10444  return BB;
10445}
10446
10447MachineBasicBlock *
10448X86TargetLowering::EmitVAARG64WithCustomInserter(
10449                   MachineInstr *MI,
10450                   MachineBasicBlock *MBB) const {
10451  // Emit va_arg instruction on X86-64.
10452
10453  // Operands to this pseudo-instruction:
10454  // 0  ) Output        : destination address (reg)
10455  // 1-5) Input         : va_list address (addr, i64mem)
10456  // 6  ) ArgSize       : Size (in bytes) of vararg type
10457  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10458  // 8  ) Align         : Alignment of type
10459  // 9  ) EFLAGS (implicit-def)
10460
10461  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10462  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10463
10464  unsigned DestReg = MI->getOperand(0).getReg();
10465  MachineOperand &Base = MI->getOperand(1);
10466  MachineOperand &Scale = MI->getOperand(2);
10467  MachineOperand &Index = MI->getOperand(3);
10468  MachineOperand &Disp = MI->getOperand(4);
10469  MachineOperand &Segment = MI->getOperand(5);
10470  unsigned ArgSize = MI->getOperand(6).getImm();
10471  unsigned ArgMode = MI->getOperand(7).getImm();
10472  unsigned Align = MI->getOperand(8).getImm();
10473
10474  // Memory Reference
10475  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10476  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10477  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10478
10479  // Machine Information
10480  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10481  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10482  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10483  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10484  DebugLoc DL = MI->getDebugLoc();
10485
10486  // struct va_list {
10487  //   i32   gp_offset
10488  //   i32   fp_offset
10489  //   i64   overflow_area (address)
10490  //   i64   reg_save_area (address)
10491  // }
10492  // sizeof(va_list) = 24
10493  // alignment(va_list) = 8
10494
10495  unsigned TotalNumIntRegs = 6;
10496  unsigned TotalNumXMMRegs = 8;
10497  bool UseGPOffset = (ArgMode == 1);
10498  bool UseFPOffset = (ArgMode == 2);
10499  unsigned MaxOffset = TotalNumIntRegs * 8 +
10500                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10501
10502  /* Align ArgSize to a multiple of 8 */
10503  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10504  bool NeedsAlign = (Align > 8);
10505
10506  MachineBasicBlock *thisMBB = MBB;
10507  MachineBasicBlock *overflowMBB;
10508  MachineBasicBlock *offsetMBB;
10509  MachineBasicBlock *endMBB;
10510
10511  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10512  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10513  unsigned OffsetReg = 0;
10514
10515  if (!UseGPOffset && !UseFPOffset) {
10516    // If we only pull from the overflow region, we don't create a branch.
10517    // We don't need to alter control flow.
10518    OffsetDestReg = 0; // unused
10519    OverflowDestReg = DestReg;
10520
10521    offsetMBB = NULL;
10522    overflowMBB = thisMBB;
10523    endMBB = thisMBB;
10524  } else {
10525    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10526    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10527    // If not, pull from overflow_area. (branch to overflowMBB)
10528    //
10529    //       thisMBB
10530    //         |     .
10531    //         |        .
10532    //     offsetMBB   overflowMBB
10533    //         |        .
10534    //         |     .
10535    //        endMBB
10536
10537    // Registers for the PHI in endMBB
10538    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10539    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10540
10541    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10542    MachineFunction *MF = MBB->getParent();
10543    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10544    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10545    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10546
10547    MachineFunction::iterator MBBIter = MBB;
10548    ++MBBIter;
10549
10550    // Insert the new basic blocks
10551    MF->insert(MBBIter, offsetMBB);
10552    MF->insert(MBBIter, overflowMBB);
10553    MF->insert(MBBIter, endMBB);
10554
10555    // Transfer the remainder of MBB and its successor edges to endMBB.
10556    endMBB->splice(endMBB->begin(), thisMBB,
10557                    llvm::next(MachineBasicBlock::iterator(MI)),
10558                    thisMBB->end());
10559    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10560
10561    // Make offsetMBB and overflowMBB successors of thisMBB
10562    thisMBB->addSuccessor(offsetMBB);
10563    thisMBB->addSuccessor(overflowMBB);
10564
10565    // endMBB is a successor of both offsetMBB and overflowMBB
10566    offsetMBB->addSuccessor(endMBB);
10567    overflowMBB->addSuccessor(endMBB);
10568
10569    // Load the offset value into a register
10570    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10571    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10572      .addOperand(Base)
10573      .addOperand(Scale)
10574      .addOperand(Index)
10575      .addDisp(Disp, UseFPOffset ? 4 : 0)
10576      .addOperand(Segment)
10577      .setMemRefs(MMOBegin, MMOEnd);
10578
10579    // Check if there is enough room left to pull this argument.
10580    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10581      .addReg(OffsetReg)
10582      .addImm(MaxOffset + 8 - ArgSizeA8);
10583
10584    // Branch to "overflowMBB" if offset >= max
10585    // Fall through to "offsetMBB" otherwise
10586    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10587      .addMBB(overflowMBB);
10588  }
10589
10590  // In offsetMBB, emit code to use the reg_save_area.
10591  if (offsetMBB) {
10592    assert(OffsetReg != 0);
10593
10594    // Read the reg_save_area address.
10595    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10596    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10597      .addOperand(Base)
10598      .addOperand(Scale)
10599      .addOperand(Index)
10600      .addDisp(Disp, 16)
10601      .addOperand(Segment)
10602      .setMemRefs(MMOBegin, MMOEnd);
10603
10604    // Zero-extend the offset
10605    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10606      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10607        .addImm(0)
10608        .addReg(OffsetReg)
10609        .addImm(X86::sub_32bit);
10610
10611    // Add the offset to the reg_save_area to get the final address.
10612    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10613      .addReg(OffsetReg64)
10614      .addReg(RegSaveReg);
10615
10616    // Compute the offset for the next argument
10617    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10618    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10619      .addReg(OffsetReg)
10620      .addImm(UseFPOffset ? 16 : 8);
10621
10622    // Store it back into the va_list.
10623    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10624      .addOperand(Base)
10625      .addOperand(Scale)
10626      .addOperand(Index)
10627      .addDisp(Disp, UseFPOffset ? 4 : 0)
10628      .addOperand(Segment)
10629      .addReg(NextOffsetReg)
10630      .setMemRefs(MMOBegin, MMOEnd);
10631
10632    // Jump to endMBB
10633    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10634      .addMBB(endMBB);
10635  }
10636
10637  //
10638  // Emit code to use overflow area
10639  //
10640
10641  // Load the overflow_area address into a register.
10642  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10643  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10644    .addOperand(Base)
10645    .addOperand(Scale)
10646    .addOperand(Index)
10647    .addDisp(Disp, 8)
10648    .addOperand(Segment)
10649    .setMemRefs(MMOBegin, MMOEnd);
10650
10651  // If we need to align it, do so. Otherwise, just copy the address
10652  // to OverflowDestReg.
10653  if (NeedsAlign) {
10654    // Align the overflow address
10655    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10656    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10657
10658    // aligned_addr = (addr + (align-1)) & ~(align-1)
10659    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10660      .addReg(OverflowAddrReg)
10661      .addImm(Align-1);
10662
10663    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10664      .addReg(TmpReg)
10665      .addImm(~(uint64_t)(Align-1));
10666  } else {
10667    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10668      .addReg(OverflowAddrReg);
10669  }
10670
10671  // Compute the next overflow address after this argument.
10672  // (the overflow address should be kept 8-byte aligned)
10673  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10674  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10675    .addReg(OverflowDestReg)
10676    .addImm(ArgSizeA8);
10677
10678  // Store the new overflow address.
10679  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10680    .addOperand(Base)
10681    .addOperand(Scale)
10682    .addOperand(Index)
10683    .addDisp(Disp, 8)
10684    .addOperand(Segment)
10685    .addReg(NextAddrReg)
10686    .setMemRefs(MMOBegin, MMOEnd);
10687
10688  // If we branched, emit the PHI to the front of endMBB.
10689  if (offsetMBB) {
10690    BuildMI(*endMBB, endMBB->begin(), DL,
10691            TII->get(X86::PHI), DestReg)
10692      .addReg(OffsetDestReg).addMBB(offsetMBB)
10693      .addReg(OverflowDestReg).addMBB(overflowMBB);
10694  }
10695
10696  // Erase the pseudo instruction
10697  MI->eraseFromParent();
10698
10699  return endMBB;
10700}
10701
10702MachineBasicBlock *
10703X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10704                                                 MachineInstr *MI,
10705                                                 MachineBasicBlock *MBB) const {
10706  // Emit code to save XMM registers to the stack. The ABI says that the
10707  // number of registers to save is given in %al, so it's theoretically
10708  // possible to do an indirect jump trick to avoid saving all of them,
10709  // however this code takes a simpler approach and just executes all
10710  // of the stores if %al is non-zero. It's less code, and it's probably
10711  // easier on the hardware branch predictor, and stores aren't all that
10712  // expensive anyway.
10713
10714  // Create the new basic blocks. One block contains all the XMM stores,
10715  // and one block is the final destination regardless of whether any
10716  // stores were performed.
10717  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10718  MachineFunction *F = MBB->getParent();
10719  MachineFunction::iterator MBBIter = MBB;
10720  ++MBBIter;
10721  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10722  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10723  F->insert(MBBIter, XMMSaveMBB);
10724  F->insert(MBBIter, EndMBB);
10725
10726  // Transfer the remainder of MBB and its successor edges to EndMBB.
10727  EndMBB->splice(EndMBB->begin(), MBB,
10728                 llvm::next(MachineBasicBlock::iterator(MI)),
10729                 MBB->end());
10730  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10731
10732  // The original block will now fall through to the XMM save block.
10733  MBB->addSuccessor(XMMSaveMBB);
10734  // The XMMSaveMBB will fall through to the end block.
10735  XMMSaveMBB->addSuccessor(EndMBB);
10736
10737  // Now add the instructions.
10738  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10739  DebugLoc DL = MI->getDebugLoc();
10740
10741  unsigned CountReg = MI->getOperand(0).getReg();
10742  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10743  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10744
10745  if (!Subtarget->isTargetWin64()) {
10746    // If %al is 0, branch around the XMM save block.
10747    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10748    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10749    MBB->addSuccessor(EndMBB);
10750  }
10751
10752  // In the XMM save block, save all the XMM argument registers.
10753  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10754    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10755    MachineMemOperand *MMO =
10756      F->getMachineMemOperand(
10757          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10758        MachineMemOperand::MOStore,
10759        /*Size=*/16, /*Align=*/16);
10760    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10761      .addFrameIndex(RegSaveFrameIndex)
10762      .addImm(/*Scale=*/1)
10763      .addReg(/*IndexReg=*/0)
10764      .addImm(/*Disp=*/Offset)
10765      .addReg(/*Segment=*/0)
10766      .addReg(MI->getOperand(i).getReg())
10767      .addMemOperand(MMO);
10768  }
10769
10770  MI->eraseFromParent();   // The pseudo instruction is gone now.
10771
10772  return EndMBB;
10773}
10774
10775MachineBasicBlock *
10776X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10777                                     MachineBasicBlock *BB) const {
10778  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10779  DebugLoc DL = MI->getDebugLoc();
10780
10781  // To "insert" a SELECT_CC instruction, we actually have to insert the
10782  // diamond control-flow pattern.  The incoming instruction knows the
10783  // destination vreg to set, the condition code register to branch on, the
10784  // true/false values to select between, and a branch opcode to use.
10785  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10786  MachineFunction::iterator It = BB;
10787  ++It;
10788
10789  //  thisMBB:
10790  //  ...
10791  //   TrueVal = ...
10792  //   cmpTY ccX, r1, r2
10793  //   bCC copy1MBB
10794  //   fallthrough --> copy0MBB
10795  MachineBasicBlock *thisMBB = BB;
10796  MachineFunction *F = BB->getParent();
10797  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10798  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10799  F->insert(It, copy0MBB);
10800  F->insert(It, sinkMBB);
10801
10802  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10803  // live into the sink and copy blocks.
10804  const MachineFunction *MF = BB->getParent();
10805  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10806  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10807
10808  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10809    const MachineOperand &MO = MI->getOperand(I);
10810    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10811    unsigned Reg = MO.getReg();
10812    if (Reg != X86::EFLAGS) continue;
10813    copy0MBB->addLiveIn(Reg);
10814    sinkMBB->addLiveIn(Reg);
10815  }
10816
10817  // Transfer the remainder of BB and its successor edges to sinkMBB.
10818  sinkMBB->splice(sinkMBB->begin(), BB,
10819                  llvm::next(MachineBasicBlock::iterator(MI)),
10820                  BB->end());
10821  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10822
10823  // Add the true and fallthrough blocks as its successors.
10824  BB->addSuccessor(copy0MBB);
10825  BB->addSuccessor(sinkMBB);
10826
10827  // Create the conditional branch instruction.
10828  unsigned Opc =
10829    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10830  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10831
10832  //  copy0MBB:
10833  //   %FalseValue = ...
10834  //   # fallthrough to sinkMBB
10835  copy0MBB->addSuccessor(sinkMBB);
10836
10837  //  sinkMBB:
10838  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10839  //  ...
10840  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10841          TII->get(X86::PHI), MI->getOperand(0).getReg())
10842    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10843    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10844
10845  MI->eraseFromParent();   // The pseudo instruction is gone now.
10846  return sinkMBB;
10847}
10848
10849MachineBasicBlock *
10850X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10851                                          MachineBasicBlock *BB) const {
10852  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10853  DebugLoc DL = MI->getDebugLoc();
10854
10855  assert(!Subtarget->isTargetEnvMacho());
10856
10857  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10858  // non-trivial part is impdef of ESP.
10859
10860  if (Subtarget->isTargetWin64()) {
10861    if (Subtarget->isTargetCygMing()) {
10862      // ___chkstk(Mingw64):
10863      // Clobbers R10, R11, RAX and EFLAGS.
10864      // Updates RSP.
10865      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10866        .addExternalSymbol("___chkstk")
10867        .addReg(X86::RAX, RegState::Implicit)
10868        .addReg(X86::RSP, RegState::Implicit)
10869        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
10870        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
10871        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10872    } else {
10873      // __chkstk(MSVCRT): does not update stack pointer.
10874      // Clobbers R10, R11 and EFLAGS.
10875      // FIXME: RAX(allocated size) might be reused and not killed.
10876      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
10877        .addExternalSymbol("__chkstk")
10878        .addReg(X86::RAX, RegState::Implicit)
10879        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10880      // RAX has the offset to subtracted from RSP.
10881      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
10882        .addReg(X86::RSP)
10883        .addReg(X86::RAX);
10884    }
10885  } else {
10886    const char *StackProbeSymbol =
10887      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10888
10889    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10890      .addExternalSymbol(StackProbeSymbol)
10891      .addReg(X86::EAX, RegState::Implicit)
10892      .addReg(X86::ESP, RegState::Implicit)
10893      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10894      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10895      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10896  }
10897
10898  MI->eraseFromParent();   // The pseudo instruction is gone now.
10899  return BB;
10900}
10901
10902MachineBasicBlock *
10903X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10904                                      MachineBasicBlock *BB) const {
10905  // This is pretty easy.  We're taking the value that we received from
10906  // our load from the relocation, sticking it in either RDI (x86-64)
10907  // or EAX and doing an indirect call.  The return value will then
10908  // be in the normal return register.
10909  const X86InstrInfo *TII
10910    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10911  DebugLoc DL = MI->getDebugLoc();
10912  MachineFunction *F = BB->getParent();
10913
10914  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10915  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10916
10917  if (Subtarget->is64Bit()) {
10918    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10919                                      TII->get(X86::MOV64rm), X86::RDI)
10920    .addReg(X86::RIP)
10921    .addImm(0).addReg(0)
10922    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10923                      MI->getOperand(3).getTargetFlags())
10924    .addReg(0);
10925    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10926    addDirectMem(MIB, X86::RDI);
10927  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10928    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10929                                      TII->get(X86::MOV32rm), X86::EAX)
10930    .addReg(0)
10931    .addImm(0).addReg(0)
10932    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10933                      MI->getOperand(3).getTargetFlags())
10934    .addReg(0);
10935    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10936    addDirectMem(MIB, X86::EAX);
10937  } else {
10938    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10939                                      TII->get(X86::MOV32rm), X86::EAX)
10940    .addReg(TII->getGlobalBaseReg(F))
10941    .addImm(0).addReg(0)
10942    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10943                      MI->getOperand(3).getTargetFlags())
10944    .addReg(0);
10945    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10946    addDirectMem(MIB, X86::EAX);
10947  }
10948
10949  MI->eraseFromParent(); // The pseudo instruction is gone now.
10950  return BB;
10951}
10952
10953MachineBasicBlock *
10954X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10955                                               MachineBasicBlock *BB) const {
10956  switch (MI->getOpcode()) {
10957  default: assert(false && "Unexpected instr type to insert");
10958  case X86::TAILJMPd64:
10959  case X86::TAILJMPr64:
10960  case X86::TAILJMPm64:
10961    assert(!"TAILJMP64 would not be touched here.");
10962  case X86::TCRETURNdi64:
10963  case X86::TCRETURNri64:
10964  case X86::TCRETURNmi64:
10965    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
10966    // On AMD64, additional defs should be added before register allocation.
10967    if (!Subtarget->isTargetWin64()) {
10968      MI->addRegisterDefined(X86::RSI);
10969      MI->addRegisterDefined(X86::RDI);
10970      MI->addRegisterDefined(X86::XMM6);
10971      MI->addRegisterDefined(X86::XMM7);
10972      MI->addRegisterDefined(X86::XMM8);
10973      MI->addRegisterDefined(X86::XMM9);
10974      MI->addRegisterDefined(X86::XMM10);
10975      MI->addRegisterDefined(X86::XMM11);
10976      MI->addRegisterDefined(X86::XMM12);
10977      MI->addRegisterDefined(X86::XMM13);
10978      MI->addRegisterDefined(X86::XMM14);
10979      MI->addRegisterDefined(X86::XMM15);
10980    }
10981    return BB;
10982  case X86::WIN_ALLOCA:
10983    return EmitLoweredWinAlloca(MI, BB);
10984  case X86::TLSCall_32:
10985  case X86::TLSCall_64:
10986    return EmitLoweredTLSCall(MI, BB);
10987  case X86::CMOV_GR8:
10988  case X86::CMOV_FR32:
10989  case X86::CMOV_FR64:
10990  case X86::CMOV_V4F32:
10991  case X86::CMOV_V2F64:
10992  case X86::CMOV_V2I64:
10993  case X86::CMOV_GR16:
10994  case X86::CMOV_GR32:
10995  case X86::CMOV_RFP32:
10996  case X86::CMOV_RFP64:
10997  case X86::CMOV_RFP80:
10998    return EmitLoweredSelect(MI, BB);
10999
11000  case X86::FP32_TO_INT16_IN_MEM:
11001  case X86::FP32_TO_INT32_IN_MEM:
11002  case X86::FP32_TO_INT64_IN_MEM:
11003  case X86::FP64_TO_INT16_IN_MEM:
11004  case X86::FP64_TO_INT32_IN_MEM:
11005  case X86::FP64_TO_INT64_IN_MEM:
11006  case X86::FP80_TO_INT16_IN_MEM:
11007  case X86::FP80_TO_INT32_IN_MEM:
11008  case X86::FP80_TO_INT64_IN_MEM: {
11009    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11010    DebugLoc DL = MI->getDebugLoc();
11011
11012    // Change the floating point control register to use "round towards zero"
11013    // mode when truncating to an integer value.
11014    MachineFunction *F = BB->getParent();
11015    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
11016    addFrameReference(BuildMI(*BB, MI, DL,
11017                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
11018
11019    // Load the old value of the high byte of the control word...
11020    unsigned OldCW =
11021      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
11022    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
11023                      CWFrameIdx);
11024
11025    // Set the high part to be round to zero...
11026    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
11027      .addImm(0xC7F);
11028
11029    // Reload the modified control word now...
11030    addFrameReference(BuildMI(*BB, MI, DL,
11031                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11032
11033    // Restore the memory image of control word to original value
11034    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
11035      .addReg(OldCW);
11036
11037    // Get the X86 opcode to use.
11038    unsigned Opc;
11039    switch (MI->getOpcode()) {
11040    default: llvm_unreachable("illegal opcode!");
11041    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
11042    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
11043    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
11044    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
11045    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
11046    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
11047    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
11048    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
11049    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
11050    }
11051
11052    X86AddressMode AM;
11053    MachineOperand &Op = MI->getOperand(0);
11054    if (Op.isReg()) {
11055      AM.BaseType = X86AddressMode::RegBase;
11056      AM.Base.Reg = Op.getReg();
11057    } else {
11058      AM.BaseType = X86AddressMode::FrameIndexBase;
11059      AM.Base.FrameIndex = Op.getIndex();
11060    }
11061    Op = MI->getOperand(1);
11062    if (Op.isImm())
11063      AM.Scale = Op.getImm();
11064    Op = MI->getOperand(2);
11065    if (Op.isImm())
11066      AM.IndexReg = Op.getImm();
11067    Op = MI->getOperand(3);
11068    if (Op.isGlobal()) {
11069      AM.GV = Op.getGlobal();
11070    } else {
11071      AM.Disp = Op.getImm();
11072    }
11073    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
11074                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
11075
11076    // Reload the original control word now.
11077    addFrameReference(BuildMI(*BB, MI, DL,
11078                              TII->get(X86::FLDCW16m)), CWFrameIdx);
11079
11080    MI->eraseFromParent();   // The pseudo instruction is gone now.
11081    return BB;
11082  }
11083    // String/text processing lowering.
11084  case X86::PCMPISTRM128REG:
11085  case X86::VPCMPISTRM128REG:
11086    return EmitPCMP(MI, BB, 3, false /* in-mem */);
11087  case X86::PCMPISTRM128MEM:
11088  case X86::VPCMPISTRM128MEM:
11089    return EmitPCMP(MI, BB, 3, true /* in-mem */);
11090  case X86::PCMPESTRM128REG:
11091  case X86::VPCMPESTRM128REG:
11092    return EmitPCMP(MI, BB, 5, false /* in mem */);
11093  case X86::PCMPESTRM128MEM:
11094  case X86::VPCMPESTRM128MEM:
11095    return EmitPCMP(MI, BB, 5, true /* in mem */);
11096
11097    // Thread synchronization.
11098  case X86::MONITOR:
11099    return EmitMonitor(MI, BB);
11100  case X86::MWAIT:
11101    return EmitMwait(MI, BB);
11102
11103    // Atomic Lowering.
11104  case X86::ATOMAND32:
11105    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11106                                               X86::AND32ri, X86::MOV32rm,
11107                                               X86::LCMPXCHG32,
11108                                               X86::NOT32r, X86::EAX,
11109                                               X86::GR32RegisterClass);
11110  case X86::ATOMOR32:
11111    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
11112                                               X86::OR32ri, X86::MOV32rm,
11113                                               X86::LCMPXCHG32,
11114                                               X86::NOT32r, X86::EAX,
11115                                               X86::GR32RegisterClass);
11116  case X86::ATOMXOR32:
11117    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
11118                                               X86::XOR32ri, X86::MOV32rm,
11119                                               X86::LCMPXCHG32,
11120                                               X86::NOT32r, X86::EAX,
11121                                               X86::GR32RegisterClass);
11122  case X86::ATOMNAND32:
11123    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
11124                                               X86::AND32ri, X86::MOV32rm,
11125                                               X86::LCMPXCHG32,
11126                                               X86::NOT32r, X86::EAX,
11127                                               X86::GR32RegisterClass, true);
11128  case X86::ATOMMIN32:
11129    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
11130  case X86::ATOMMAX32:
11131    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
11132  case X86::ATOMUMIN32:
11133    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
11134  case X86::ATOMUMAX32:
11135    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
11136
11137  case X86::ATOMAND16:
11138    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11139                                               X86::AND16ri, X86::MOV16rm,
11140                                               X86::LCMPXCHG16,
11141                                               X86::NOT16r, X86::AX,
11142                                               X86::GR16RegisterClass);
11143  case X86::ATOMOR16:
11144    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
11145                                               X86::OR16ri, X86::MOV16rm,
11146                                               X86::LCMPXCHG16,
11147                                               X86::NOT16r, X86::AX,
11148                                               X86::GR16RegisterClass);
11149  case X86::ATOMXOR16:
11150    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
11151                                               X86::XOR16ri, X86::MOV16rm,
11152                                               X86::LCMPXCHG16,
11153                                               X86::NOT16r, X86::AX,
11154                                               X86::GR16RegisterClass);
11155  case X86::ATOMNAND16:
11156    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
11157                                               X86::AND16ri, X86::MOV16rm,
11158                                               X86::LCMPXCHG16,
11159                                               X86::NOT16r, X86::AX,
11160                                               X86::GR16RegisterClass, true);
11161  case X86::ATOMMIN16:
11162    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
11163  case X86::ATOMMAX16:
11164    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
11165  case X86::ATOMUMIN16:
11166    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
11167  case X86::ATOMUMAX16:
11168    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
11169
11170  case X86::ATOMAND8:
11171    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11172                                               X86::AND8ri, X86::MOV8rm,
11173                                               X86::LCMPXCHG8,
11174                                               X86::NOT8r, X86::AL,
11175                                               X86::GR8RegisterClass);
11176  case X86::ATOMOR8:
11177    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
11178                                               X86::OR8ri, X86::MOV8rm,
11179                                               X86::LCMPXCHG8,
11180                                               X86::NOT8r, X86::AL,
11181                                               X86::GR8RegisterClass);
11182  case X86::ATOMXOR8:
11183    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
11184                                               X86::XOR8ri, X86::MOV8rm,
11185                                               X86::LCMPXCHG8,
11186                                               X86::NOT8r, X86::AL,
11187                                               X86::GR8RegisterClass);
11188  case X86::ATOMNAND8:
11189    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
11190                                               X86::AND8ri, X86::MOV8rm,
11191                                               X86::LCMPXCHG8,
11192                                               X86::NOT8r, X86::AL,
11193                                               X86::GR8RegisterClass, true);
11194  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
11195  // This group is for 64-bit host.
11196  case X86::ATOMAND64:
11197    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11198                                               X86::AND64ri32, X86::MOV64rm,
11199                                               X86::LCMPXCHG64,
11200                                               X86::NOT64r, X86::RAX,
11201                                               X86::GR64RegisterClass);
11202  case X86::ATOMOR64:
11203    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
11204                                               X86::OR64ri32, X86::MOV64rm,
11205                                               X86::LCMPXCHG64,
11206                                               X86::NOT64r, X86::RAX,
11207                                               X86::GR64RegisterClass);
11208  case X86::ATOMXOR64:
11209    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
11210                                               X86::XOR64ri32, X86::MOV64rm,
11211                                               X86::LCMPXCHG64,
11212                                               X86::NOT64r, X86::RAX,
11213                                               X86::GR64RegisterClass);
11214  case X86::ATOMNAND64:
11215    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
11216                                               X86::AND64ri32, X86::MOV64rm,
11217                                               X86::LCMPXCHG64,
11218                                               X86::NOT64r, X86::RAX,
11219                                               X86::GR64RegisterClass, true);
11220  case X86::ATOMMIN64:
11221    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
11222  case X86::ATOMMAX64:
11223    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
11224  case X86::ATOMUMIN64:
11225    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
11226  case X86::ATOMUMAX64:
11227    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
11228
11229  // This group does 64-bit operations on a 32-bit host.
11230  case X86::ATOMAND6432:
11231    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11232                                               X86::AND32rr, X86::AND32rr,
11233                                               X86::AND32ri, X86::AND32ri,
11234                                               false);
11235  case X86::ATOMOR6432:
11236    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11237                                               X86::OR32rr, X86::OR32rr,
11238                                               X86::OR32ri, X86::OR32ri,
11239                                               false);
11240  case X86::ATOMXOR6432:
11241    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11242                                               X86::XOR32rr, X86::XOR32rr,
11243                                               X86::XOR32ri, X86::XOR32ri,
11244                                               false);
11245  case X86::ATOMNAND6432:
11246    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11247                                               X86::AND32rr, X86::AND32rr,
11248                                               X86::AND32ri, X86::AND32ri,
11249                                               true);
11250  case X86::ATOMADD6432:
11251    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11252                                               X86::ADD32rr, X86::ADC32rr,
11253                                               X86::ADD32ri, X86::ADC32ri,
11254                                               false);
11255  case X86::ATOMSUB6432:
11256    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11257                                               X86::SUB32rr, X86::SBB32rr,
11258                                               X86::SUB32ri, X86::SBB32ri,
11259                                               false);
11260  case X86::ATOMSWAP6432:
11261    return EmitAtomicBit6432WithCustomInserter(MI, BB,
11262                                               X86::MOV32rr, X86::MOV32rr,
11263                                               X86::MOV32ri, X86::MOV32ri,
11264                                               false);
11265  case X86::VASTART_SAVE_XMM_REGS:
11266    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
11267
11268  case X86::VAARG_64:
11269    return EmitVAARG64WithCustomInserter(MI, BB);
11270  }
11271}
11272
11273//===----------------------------------------------------------------------===//
11274//                           X86 Optimization Hooks
11275//===----------------------------------------------------------------------===//
11276
11277void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
11278                                                       const APInt &Mask,
11279                                                       APInt &KnownZero,
11280                                                       APInt &KnownOne,
11281                                                       const SelectionDAG &DAG,
11282                                                       unsigned Depth) const {
11283  unsigned Opc = Op.getOpcode();
11284  assert((Opc >= ISD::BUILTIN_OP_END ||
11285          Opc == ISD::INTRINSIC_WO_CHAIN ||
11286          Opc == ISD::INTRINSIC_W_CHAIN ||
11287          Opc == ISD::INTRINSIC_VOID) &&
11288         "Should use MaskedValueIsZero if you don't know whether Op"
11289         " is a target node!");
11290
11291  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
11292  switch (Opc) {
11293  default: break;
11294  case X86ISD::ADD:
11295  case X86ISD::SUB:
11296  case X86ISD::ADC:
11297  case X86ISD::SBB:
11298  case X86ISD::SMUL:
11299  case X86ISD::UMUL:
11300  case X86ISD::INC:
11301  case X86ISD::DEC:
11302  case X86ISD::OR:
11303  case X86ISD::XOR:
11304  case X86ISD::AND:
11305    // These nodes' second result is a boolean.
11306    if (Op.getResNo() == 0)
11307      break;
11308    // Fallthrough
11309  case X86ISD::SETCC:
11310    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
11311                                       Mask.getBitWidth() - 1);
11312    break;
11313  }
11314}
11315
11316unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
11317                                                         unsigned Depth) const {
11318  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
11319  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
11320    return Op.getValueType().getScalarType().getSizeInBits();
11321
11322  // Fallback case.
11323  return 1;
11324}
11325
11326/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
11327/// node is a GlobalAddress + offset.
11328bool X86TargetLowering::isGAPlusOffset(SDNode *N,
11329                                       const GlobalValue* &GA,
11330                                       int64_t &Offset) const {
11331  if (N->getOpcode() == X86ISD::Wrapper) {
11332    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
11333      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
11334      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
11335      return true;
11336    }
11337  }
11338  return TargetLowering::isGAPlusOffset(N, GA, Offset);
11339}
11340
11341/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
11342static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
11343                                        TargetLowering::DAGCombinerInfo &DCI) {
11344  DebugLoc dl = N->getDebugLoc();
11345  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
11346  SDValue V1 = SVOp->getOperand(0);
11347  SDValue V2 = SVOp->getOperand(1);
11348  EVT VT = SVOp->getValueType(0);
11349
11350  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
11351      V2.getOpcode() == ISD::CONCAT_VECTORS) {
11352    //
11353    //                   0,0,0,...
11354    //                      |
11355    //    V      UNDEF    BUILD_VECTOR    UNDEF
11356    //     \      /           \           /
11357    //  CONCAT_VECTOR         CONCAT_VECTOR
11358    //         \                  /
11359    //          \                /
11360    //          RESULT: V + zero extended
11361    //
11362    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
11363        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
11364        V1.getOperand(1).getOpcode() != ISD::UNDEF)
11365      return SDValue();
11366
11367    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
11368      return SDValue();
11369
11370    // To match the shuffle mask, the first half of the mask should
11371    // be exactly the first vector, and all the rest a splat with the
11372    // first element of the second one.
11373    int NumElems = VT.getVectorNumElements();
11374    for (int i = 0; i < NumElems/2; ++i)
11375      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
11376          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
11377        return SDValue();
11378
11379    // Emit a zeroed vector and insert the desired subvector on its
11380    // first half.
11381    SDValue Zeros = getZeroVector(VT, true /* HasSSE2 */, DAG, dl);
11382    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
11383                         DAG.getConstant(0, MVT::i32), DAG, dl);
11384    return DCI.CombineTo(N, InsV);
11385  }
11386
11387  return SDValue();
11388}
11389
11390/// PerformShuffleCombine - Performs several different shuffle combines.
11391static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
11392                                     TargetLowering::DAGCombinerInfo &DCI) {
11393  DebugLoc dl = N->getDebugLoc();
11394  EVT VT = N->getValueType(0);
11395
11396  // Don't create instructions with illegal types after legalize types has run.
11397  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11398  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
11399    return SDValue();
11400
11401  // Only handle pure VECTOR_SHUFFLE nodes.
11402  if (VT.getSizeInBits() == 256 && N->getOpcode() == ISD::VECTOR_SHUFFLE)
11403    return PerformShuffleCombine256(N, DAG, DCI);
11404
11405  // Only handle 128 wide vector from here on.
11406  if (VT.getSizeInBits() != 128)
11407    return SDValue();
11408
11409  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
11410  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
11411  // consecutive, non-overlapping, and in the right order.
11412  SmallVector<SDValue, 16> Elts;
11413  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
11414    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
11415
11416  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
11417}
11418
11419/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
11420/// generation and convert it from being a bunch of shuffles and extracts
11421/// to a simple store and scalar loads to extract the elements.
11422static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
11423                                                const TargetLowering &TLI) {
11424  SDValue InputVector = N->getOperand(0);
11425
11426  // Only operate on vectors of 4 elements, where the alternative shuffling
11427  // gets to be more expensive.
11428  if (InputVector.getValueType() != MVT::v4i32)
11429    return SDValue();
11430
11431  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
11432  // single use which is a sign-extend or zero-extend, and all elements are
11433  // used.
11434  SmallVector<SDNode *, 4> Uses;
11435  unsigned ExtractedElements = 0;
11436  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
11437       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
11438    if (UI.getUse().getResNo() != InputVector.getResNo())
11439      return SDValue();
11440
11441    SDNode *Extract = *UI;
11442    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11443      return SDValue();
11444
11445    if (Extract->getValueType(0) != MVT::i32)
11446      return SDValue();
11447    if (!Extract->hasOneUse())
11448      return SDValue();
11449    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
11450        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
11451      return SDValue();
11452    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
11453      return SDValue();
11454
11455    // Record which element was extracted.
11456    ExtractedElements |=
11457      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
11458
11459    Uses.push_back(Extract);
11460  }
11461
11462  // If not all the elements were used, this may not be worthwhile.
11463  if (ExtractedElements != 15)
11464    return SDValue();
11465
11466  // Ok, we've now decided to do the transformation.
11467  DebugLoc dl = InputVector.getDebugLoc();
11468
11469  // Store the value to a temporary stack slot.
11470  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
11471  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
11472                            MachinePointerInfo(), false, false, 0);
11473
11474  // Replace each use (extract) with a load of the appropriate element.
11475  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
11476       UE = Uses.end(); UI != UE; ++UI) {
11477    SDNode *Extract = *UI;
11478
11479    // cOMpute the element's address.
11480    SDValue Idx = Extract->getOperand(1);
11481    unsigned EltSize =
11482        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
11483    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
11484    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
11485
11486    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
11487                                     StackPtr, OffsetVal);
11488
11489    // Load the scalar.
11490    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
11491                                     ScalarAddr, MachinePointerInfo(),
11492                                     false, false, 0);
11493
11494    // Replace the exact with the load.
11495    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
11496  }
11497
11498  // The replacement was made in place; don't return anything.
11499  return SDValue();
11500}
11501
11502/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
11503static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
11504                                    const X86Subtarget *Subtarget) {
11505  DebugLoc DL = N->getDebugLoc();
11506  SDValue Cond = N->getOperand(0);
11507  // Get the LHS/RHS of the select.
11508  SDValue LHS = N->getOperand(1);
11509  SDValue RHS = N->getOperand(2);
11510
11511  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
11512  // instructions match the semantics of the common C idiom x<y?x:y but not
11513  // x<=y?x:y, because of how they handle negative zero (which can be
11514  // ignored in unsafe-math mode).
11515  if (Subtarget->hasSSE2() &&
11516      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
11517      Cond.getOpcode() == ISD::SETCC) {
11518    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
11519
11520    unsigned Opcode = 0;
11521    // Check for x CC y ? x : y.
11522    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
11523        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
11524      switch (CC) {
11525      default: break;
11526      case ISD::SETULT:
11527        // Converting this to a min would handle NaNs incorrectly, and swapping
11528        // the operands would cause it to handle comparisons between positive
11529        // and negative zero incorrectly.
11530        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11531          if (!UnsafeFPMath &&
11532              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11533            break;
11534          std::swap(LHS, RHS);
11535        }
11536        Opcode = X86ISD::FMIN;
11537        break;
11538      case ISD::SETOLE:
11539        // Converting this to a min would handle comparisons between positive
11540        // and negative zero incorrectly.
11541        if (!UnsafeFPMath &&
11542            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11543          break;
11544        Opcode = X86ISD::FMIN;
11545        break;
11546      case ISD::SETULE:
11547        // Converting this to a min would handle both negative zeros and NaNs
11548        // incorrectly, but we can swap the operands to fix both.
11549        std::swap(LHS, RHS);
11550      case ISD::SETOLT:
11551      case ISD::SETLT:
11552      case ISD::SETLE:
11553        Opcode = X86ISD::FMIN;
11554        break;
11555
11556      case ISD::SETOGE:
11557        // Converting this to a max would handle comparisons between positive
11558        // and negative zero incorrectly.
11559        if (!UnsafeFPMath &&
11560            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
11561          break;
11562        Opcode = X86ISD::FMAX;
11563        break;
11564      case ISD::SETUGT:
11565        // Converting this to a max would handle NaNs incorrectly, and swapping
11566        // the operands would cause it to handle comparisons between positive
11567        // and negative zero incorrectly.
11568        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11569          if (!UnsafeFPMath &&
11570              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11571            break;
11572          std::swap(LHS, RHS);
11573        }
11574        Opcode = X86ISD::FMAX;
11575        break;
11576      case ISD::SETUGE:
11577        // Converting this to a max would handle both negative zeros and NaNs
11578        // incorrectly, but we can swap the operands to fix both.
11579        std::swap(LHS, RHS);
11580      case ISD::SETOGT:
11581      case ISD::SETGT:
11582      case ISD::SETGE:
11583        Opcode = X86ISD::FMAX;
11584        break;
11585      }
11586    // Check for x CC y ? y : x -- a min/max with reversed arms.
11587    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11588               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11589      switch (CC) {
11590      default: break;
11591      case ISD::SETOGE:
11592        // Converting this to a min would handle comparisons between positive
11593        // and negative zero incorrectly, and swapping the operands would
11594        // cause it to handle NaNs incorrectly.
11595        if (!UnsafeFPMath &&
11596            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11597          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11598            break;
11599          std::swap(LHS, RHS);
11600        }
11601        Opcode = X86ISD::FMIN;
11602        break;
11603      case ISD::SETUGT:
11604        // Converting this to a min would handle NaNs incorrectly.
11605        if (!UnsafeFPMath &&
11606            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11607          break;
11608        Opcode = X86ISD::FMIN;
11609        break;
11610      case ISD::SETUGE:
11611        // Converting this to a min would handle both negative zeros and NaNs
11612        // incorrectly, but we can swap the operands to fix both.
11613        std::swap(LHS, RHS);
11614      case ISD::SETOGT:
11615      case ISD::SETGT:
11616      case ISD::SETGE:
11617        Opcode = X86ISD::FMIN;
11618        break;
11619
11620      case ISD::SETULT:
11621        // Converting this to a max would handle NaNs incorrectly.
11622        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11623          break;
11624        Opcode = X86ISD::FMAX;
11625        break;
11626      case ISD::SETOLE:
11627        // Converting this to a max would handle comparisons between positive
11628        // and negative zero incorrectly, and swapping the operands would
11629        // cause it to handle NaNs incorrectly.
11630        if (!UnsafeFPMath &&
11631            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11632          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11633            break;
11634          std::swap(LHS, RHS);
11635        }
11636        Opcode = X86ISD::FMAX;
11637        break;
11638      case ISD::SETULE:
11639        // Converting this to a max would handle both negative zeros and NaNs
11640        // incorrectly, but we can swap the operands to fix both.
11641        std::swap(LHS, RHS);
11642      case ISD::SETOLT:
11643      case ISD::SETLT:
11644      case ISD::SETLE:
11645        Opcode = X86ISD::FMAX;
11646        break;
11647      }
11648    }
11649
11650    if (Opcode)
11651      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11652  }
11653
11654  // If this is a select between two integer constants, try to do some
11655  // optimizations.
11656  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11657    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11658      // Don't do this for crazy integer types.
11659      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11660        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11661        // so that TrueC (the true value) is larger than FalseC.
11662        bool NeedsCondInvert = false;
11663
11664        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11665            // Efficiently invertible.
11666            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11667             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11668              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11669          NeedsCondInvert = true;
11670          std::swap(TrueC, FalseC);
11671        }
11672
11673        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11674        if (FalseC->getAPIntValue() == 0 &&
11675            TrueC->getAPIntValue().isPowerOf2()) {
11676          if (NeedsCondInvert) // Invert the condition if needed.
11677            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11678                               DAG.getConstant(1, Cond.getValueType()));
11679
11680          // Zero extend the condition if needed.
11681          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11682
11683          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11684          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11685                             DAG.getConstant(ShAmt, MVT::i8));
11686        }
11687
11688        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11689        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11690          if (NeedsCondInvert) // Invert the condition if needed.
11691            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11692                               DAG.getConstant(1, Cond.getValueType()));
11693
11694          // Zero extend the condition if needed.
11695          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11696                             FalseC->getValueType(0), Cond);
11697          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11698                             SDValue(FalseC, 0));
11699        }
11700
11701        // Optimize cases that will turn into an LEA instruction.  This requires
11702        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11703        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11704          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11705          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11706
11707          bool isFastMultiplier = false;
11708          if (Diff < 10) {
11709            switch ((unsigned char)Diff) {
11710              default: break;
11711              case 1:  // result = add base, cond
11712              case 2:  // result = lea base(    , cond*2)
11713              case 3:  // result = lea base(cond, cond*2)
11714              case 4:  // result = lea base(    , cond*4)
11715              case 5:  // result = lea base(cond, cond*4)
11716              case 8:  // result = lea base(    , cond*8)
11717              case 9:  // result = lea base(cond, cond*8)
11718                isFastMultiplier = true;
11719                break;
11720            }
11721          }
11722
11723          if (isFastMultiplier) {
11724            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11725            if (NeedsCondInvert) // Invert the condition if needed.
11726              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11727                                 DAG.getConstant(1, Cond.getValueType()));
11728
11729            // Zero extend the condition if needed.
11730            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11731                               Cond);
11732            // Scale the condition by the difference.
11733            if (Diff != 1)
11734              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11735                                 DAG.getConstant(Diff, Cond.getValueType()));
11736
11737            // Add the base if non-zero.
11738            if (FalseC->getAPIntValue() != 0)
11739              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11740                                 SDValue(FalseC, 0));
11741            return Cond;
11742          }
11743        }
11744      }
11745  }
11746
11747  return SDValue();
11748}
11749
11750/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11751static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11752                                  TargetLowering::DAGCombinerInfo &DCI) {
11753  DebugLoc DL = N->getDebugLoc();
11754
11755  // If the flag operand isn't dead, don't touch this CMOV.
11756  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11757    return SDValue();
11758
11759  SDValue FalseOp = N->getOperand(0);
11760  SDValue TrueOp = N->getOperand(1);
11761  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11762  SDValue Cond = N->getOperand(3);
11763  if (CC == X86::COND_E || CC == X86::COND_NE) {
11764    switch (Cond.getOpcode()) {
11765    default: break;
11766    case X86ISD::BSR:
11767    case X86ISD::BSF:
11768      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
11769      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
11770        return (CC == X86::COND_E) ? FalseOp : TrueOp;
11771    }
11772  }
11773
11774  // If this is a select between two integer constants, try to do some
11775  // optimizations.  Note that the operands are ordered the opposite of SELECT
11776  // operands.
11777  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
11778    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
11779      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11780      // larger than FalseC (the false value).
11781      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11782        CC = X86::GetOppositeBranchCondition(CC);
11783        std::swap(TrueC, FalseC);
11784      }
11785
11786      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11787      // This is efficient for any integer data type (including i8/i16) and
11788      // shift amount.
11789      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11790        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11791                           DAG.getConstant(CC, MVT::i8), Cond);
11792
11793        // Zero extend the condition if needed.
11794        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11795
11796        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11797        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11798                           DAG.getConstant(ShAmt, MVT::i8));
11799        if (N->getNumValues() == 2)  // Dead flag value?
11800          return DCI.CombineTo(N, Cond, SDValue());
11801        return Cond;
11802      }
11803
11804      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11805      // for any integer data type, including i8/i16.
11806      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11807        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11808                           DAG.getConstant(CC, MVT::i8), Cond);
11809
11810        // Zero extend the condition if needed.
11811        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11812                           FalseC->getValueType(0), Cond);
11813        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11814                           SDValue(FalseC, 0));
11815
11816        if (N->getNumValues() == 2)  // Dead flag value?
11817          return DCI.CombineTo(N, Cond, SDValue());
11818        return Cond;
11819      }
11820
11821      // Optimize cases that will turn into an LEA instruction.  This requires
11822      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11823      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11824        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11825        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11826
11827        bool isFastMultiplier = false;
11828        if (Diff < 10) {
11829          switch ((unsigned char)Diff) {
11830          default: break;
11831          case 1:  // result = add base, cond
11832          case 2:  // result = lea base(    , cond*2)
11833          case 3:  // result = lea base(cond, cond*2)
11834          case 4:  // result = lea base(    , cond*4)
11835          case 5:  // result = lea base(cond, cond*4)
11836          case 8:  // result = lea base(    , cond*8)
11837          case 9:  // result = lea base(cond, cond*8)
11838            isFastMultiplier = true;
11839            break;
11840          }
11841        }
11842
11843        if (isFastMultiplier) {
11844          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11845          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11846                             DAG.getConstant(CC, MVT::i8), Cond);
11847          // Zero extend the condition if needed.
11848          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11849                             Cond);
11850          // Scale the condition by the difference.
11851          if (Diff != 1)
11852            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11853                               DAG.getConstant(Diff, Cond.getValueType()));
11854
11855          // Add the base if non-zero.
11856          if (FalseC->getAPIntValue() != 0)
11857            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11858                               SDValue(FalseC, 0));
11859          if (N->getNumValues() == 2)  // Dead flag value?
11860            return DCI.CombineTo(N, Cond, SDValue());
11861          return Cond;
11862        }
11863      }
11864    }
11865  }
11866  return SDValue();
11867}
11868
11869
11870/// PerformMulCombine - Optimize a single multiply with constant into two
11871/// in order to implement it with two cheaper instructions, e.g.
11872/// LEA + SHL, LEA + LEA.
11873static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11874                                 TargetLowering::DAGCombinerInfo &DCI) {
11875  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11876    return SDValue();
11877
11878  EVT VT = N->getValueType(0);
11879  if (VT != MVT::i64)
11880    return SDValue();
11881
11882  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11883  if (!C)
11884    return SDValue();
11885  uint64_t MulAmt = C->getZExtValue();
11886  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11887    return SDValue();
11888
11889  uint64_t MulAmt1 = 0;
11890  uint64_t MulAmt2 = 0;
11891  if ((MulAmt % 9) == 0) {
11892    MulAmt1 = 9;
11893    MulAmt2 = MulAmt / 9;
11894  } else if ((MulAmt % 5) == 0) {
11895    MulAmt1 = 5;
11896    MulAmt2 = MulAmt / 5;
11897  } else if ((MulAmt % 3) == 0) {
11898    MulAmt1 = 3;
11899    MulAmt2 = MulAmt / 3;
11900  }
11901  if (MulAmt2 &&
11902      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11903    DebugLoc DL = N->getDebugLoc();
11904
11905    if (isPowerOf2_64(MulAmt2) &&
11906        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11907      // If second multiplifer is pow2, issue it first. We want the multiply by
11908      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11909      // is an add.
11910      std::swap(MulAmt1, MulAmt2);
11911
11912    SDValue NewMul;
11913    if (isPowerOf2_64(MulAmt1))
11914      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11915                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11916    else
11917      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11918                           DAG.getConstant(MulAmt1, VT));
11919
11920    if (isPowerOf2_64(MulAmt2))
11921      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11922                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11923    else
11924      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11925                           DAG.getConstant(MulAmt2, VT));
11926
11927    // Do not add new nodes to DAG combiner worklist.
11928    DCI.CombineTo(N, NewMul, false);
11929  }
11930  return SDValue();
11931}
11932
11933static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11934  SDValue N0 = N->getOperand(0);
11935  SDValue N1 = N->getOperand(1);
11936  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11937  EVT VT = N0.getValueType();
11938
11939  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11940  // since the result of setcc_c is all zero's or all ones.
11941  if (N1C && N0.getOpcode() == ISD::AND &&
11942      N0.getOperand(1).getOpcode() == ISD::Constant) {
11943    SDValue N00 = N0.getOperand(0);
11944    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11945        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11946          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11947         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11948      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11949      APInt ShAmt = N1C->getAPIntValue();
11950      Mask = Mask.shl(ShAmt);
11951      if (Mask != 0)
11952        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11953                           N00, DAG.getConstant(Mask, VT));
11954    }
11955  }
11956
11957  return SDValue();
11958}
11959
11960/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
11961///                       when possible.
11962static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
11963                                   const X86Subtarget *Subtarget) {
11964  EVT VT = N->getValueType(0);
11965  if (!VT.isVector() && VT.isInteger() &&
11966      N->getOpcode() == ISD::SHL)
11967    return PerformSHLCombine(N, DAG);
11968
11969  // On X86 with SSE2 support, we can transform this to a vector shift if
11970  // all elements are shifted by the same amount.  We can't do this in legalize
11971  // because the a constant vector is typically transformed to a constant pool
11972  // so we have no knowledge of the shift amount.
11973  if (!Subtarget->hasSSE2())
11974    return SDValue();
11975
11976  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11977    return SDValue();
11978
11979  SDValue ShAmtOp = N->getOperand(1);
11980  EVT EltVT = VT.getVectorElementType();
11981  DebugLoc DL = N->getDebugLoc();
11982  SDValue BaseShAmt = SDValue();
11983  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11984    unsigned NumElts = VT.getVectorNumElements();
11985    unsigned i = 0;
11986    for (; i != NumElts; ++i) {
11987      SDValue Arg = ShAmtOp.getOperand(i);
11988      if (Arg.getOpcode() == ISD::UNDEF) continue;
11989      BaseShAmt = Arg;
11990      break;
11991    }
11992    for (; i != NumElts; ++i) {
11993      SDValue Arg = ShAmtOp.getOperand(i);
11994      if (Arg.getOpcode() == ISD::UNDEF) continue;
11995      if (Arg != BaseShAmt) {
11996        return SDValue();
11997      }
11998    }
11999  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
12000             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
12001    SDValue InVec = ShAmtOp.getOperand(0);
12002    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
12003      unsigned NumElts = InVec.getValueType().getVectorNumElements();
12004      unsigned i = 0;
12005      for (; i != NumElts; ++i) {
12006        SDValue Arg = InVec.getOperand(i);
12007        if (Arg.getOpcode() == ISD::UNDEF) continue;
12008        BaseShAmt = Arg;
12009        break;
12010      }
12011    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
12012       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
12013         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
12014         if (C->getZExtValue() == SplatIdx)
12015           BaseShAmt = InVec.getOperand(1);
12016       }
12017    }
12018    if (BaseShAmt.getNode() == 0)
12019      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
12020                              DAG.getIntPtrConstant(0));
12021  } else
12022    return SDValue();
12023
12024  // The shift amount is an i32.
12025  if (EltVT.bitsGT(MVT::i32))
12026    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
12027  else if (EltVT.bitsLT(MVT::i32))
12028    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
12029
12030  // The shift amount is identical so we can do a vector shift.
12031  SDValue  ValOp = N->getOperand(0);
12032  switch (N->getOpcode()) {
12033  default:
12034    llvm_unreachable("Unknown shift opcode!");
12035    break;
12036  case ISD::SHL:
12037    if (VT == MVT::v2i64)
12038      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12039                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
12040                         ValOp, BaseShAmt);
12041    if (VT == MVT::v4i32)
12042      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12043                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
12044                         ValOp, BaseShAmt);
12045    if (VT == MVT::v8i16)
12046      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12047                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
12048                         ValOp, BaseShAmt);
12049    break;
12050  case ISD::SRA:
12051    if (VT == MVT::v4i32)
12052      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12053                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
12054                         ValOp, BaseShAmt);
12055    if (VT == MVT::v8i16)
12056      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12057                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
12058                         ValOp, BaseShAmt);
12059    break;
12060  case ISD::SRL:
12061    if (VT == MVT::v2i64)
12062      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12063                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
12064                         ValOp, BaseShAmt);
12065    if (VT == MVT::v4i32)
12066      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12067                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
12068                         ValOp, BaseShAmt);
12069    if (VT ==  MVT::v8i16)
12070      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
12071                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
12072                         ValOp, BaseShAmt);
12073    break;
12074  }
12075  return SDValue();
12076}
12077
12078
12079// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
12080// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
12081// and friends.  Likewise for OR -> CMPNEQSS.
12082static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
12083                            TargetLowering::DAGCombinerInfo &DCI,
12084                            const X86Subtarget *Subtarget) {
12085  unsigned opcode;
12086
12087  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
12088  // we're requiring SSE2 for both.
12089  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
12090    SDValue N0 = N->getOperand(0);
12091    SDValue N1 = N->getOperand(1);
12092    SDValue CMP0 = N0->getOperand(1);
12093    SDValue CMP1 = N1->getOperand(1);
12094    DebugLoc DL = N->getDebugLoc();
12095
12096    // The SETCCs should both refer to the same CMP.
12097    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
12098      return SDValue();
12099
12100    SDValue CMP00 = CMP0->getOperand(0);
12101    SDValue CMP01 = CMP0->getOperand(1);
12102    EVT     VT    = CMP00.getValueType();
12103
12104    if (VT == MVT::f32 || VT == MVT::f64) {
12105      bool ExpectingFlags = false;
12106      // Check for any users that want flags:
12107      for (SDNode::use_iterator UI = N->use_begin(),
12108             UE = N->use_end();
12109           !ExpectingFlags && UI != UE; ++UI)
12110        switch (UI->getOpcode()) {
12111        default:
12112        case ISD::BR_CC:
12113        case ISD::BRCOND:
12114        case ISD::SELECT:
12115          ExpectingFlags = true;
12116          break;
12117        case ISD::CopyToReg:
12118        case ISD::SIGN_EXTEND:
12119        case ISD::ZERO_EXTEND:
12120        case ISD::ANY_EXTEND:
12121          break;
12122        }
12123
12124      if (!ExpectingFlags) {
12125        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
12126        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
12127
12128        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
12129          X86::CondCode tmp = cc0;
12130          cc0 = cc1;
12131          cc1 = tmp;
12132        }
12133
12134        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
12135            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
12136          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
12137          X86ISD::NodeType NTOperator = is64BitFP ?
12138            X86ISD::FSETCCsd : X86ISD::FSETCCss;
12139          // FIXME: need symbolic constants for these magic numbers.
12140          // See X86ATTInstPrinter.cpp:printSSECC().
12141          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
12142          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
12143                                              DAG.getConstant(x86cc, MVT::i8));
12144          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
12145                                              OnesOrZeroesF);
12146          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
12147                                      DAG.getConstant(1, MVT::i32));
12148          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
12149          return OneBitOfTruth;
12150        }
12151      }
12152    }
12153  }
12154  return SDValue();
12155}
12156
12157/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
12158/// so it can be folded inside ANDNP.
12159static bool CanFoldXORWithAllOnes(const SDNode *N) {
12160  EVT VT = N->getValueType(0);
12161
12162  // Match direct AllOnes for 128 and 256-bit vectors
12163  if (ISD::isBuildVectorAllOnes(N))
12164    return true;
12165
12166  // Look through a bit convert.
12167  if (N->getOpcode() == ISD::BITCAST)
12168    N = N->getOperand(0).getNode();
12169
12170  // Sometimes the operand may come from a insert_subvector building a 256-bit
12171  // allones vector
12172  SDValue V1 = N->getOperand(0);
12173  SDValue V2 = N->getOperand(1);
12174
12175  if (VT.getSizeInBits() == 256 &&
12176      N->getOpcode() == ISD::INSERT_SUBVECTOR &&
12177      V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
12178      V1.getOperand(0).getOpcode() == ISD::UNDEF &&
12179      ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
12180      ISD::isBuildVectorAllOnes(V2.getNode()))
12181    return true;
12182
12183  return false;
12184}
12185
12186static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
12187                                 TargetLowering::DAGCombinerInfo &DCI,
12188                                 const X86Subtarget *Subtarget) {
12189  if (DCI.isBeforeLegalizeOps())
12190    return SDValue();
12191
12192  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12193  if (R.getNode())
12194    return R;
12195
12196  // Want to form ANDNP nodes:
12197  // 1) In the hopes of then easily combining them with OR and AND nodes
12198  //    to form PBLEND/PSIGN.
12199  // 2) To match ANDN packed intrinsics
12200  EVT VT = N->getValueType(0);
12201  if (VT != MVT::v2i64 && VT != MVT::v4i64)
12202    return SDValue();
12203
12204  SDValue N0 = N->getOperand(0);
12205  SDValue N1 = N->getOperand(1);
12206  DebugLoc DL = N->getDebugLoc();
12207
12208  // Check LHS for vnot
12209  if (N0.getOpcode() == ISD::XOR &&
12210      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
12211      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
12212    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
12213
12214  // Check RHS for vnot
12215  if (N1.getOpcode() == ISD::XOR &&
12216      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
12217      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
12218    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
12219
12220  return SDValue();
12221}
12222
12223static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
12224                                TargetLowering::DAGCombinerInfo &DCI,
12225                                const X86Subtarget *Subtarget) {
12226  if (DCI.isBeforeLegalizeOps())
12227    return SDValue();
12228
12229  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
12230  if (R.getNode())
12231    return R;
12232
12233  EVT VT = N->getValueType(0);
12234  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
12235    return SDValue();
12236
12237  SDValue N0 = N->getOperand(0);
12238  SDValue N1 = N->getOperand(1);
12239
12240  // look for psign/blend
12241  if (Subtarget->hasSSSE3()) {
12242    if (VT == MVT::v2i64) {
12243      // Canonicalize pandn to RHS
12244      if (N0.getOpcode() == X86ISD::ANDNP)
12245        std::swap(N0, N1);
12246      // or (and (m, x), (pandn m, y))
12247      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
12248        SDValue Mask = N1.getOperand(0);
12249        SDValue X    = N1.getOperand(1);
12250        SDValue Y;
12251        if (N0.getOperand(0) == Mask)
12252          Y = N0.getOperand(1);
12253        if (N0.getOperand(1) == Mask)
12254          Y = N0.getOperand(0);
12255
12256        // Check to see if the mask appeared in both the AND and ANDNP and
12257        if (!Y.getNode())
12258          return SDValue();
12259
12260        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
12261        if (Mask.getOpcode() != ISD::BITCAST ||
12262            X.getOpcode() != ISD::BITCAST ||
12263            Y.getOpcode() != ISD::BITCAST)
12264          return SDValue();
12265
12266        // Look through mask bitcast.
12267        Mask = Mask.getOperand(0);
12268        EVT MaskVT = Mask.getValueType();
12269
12270        // Validate that the Mask operand is a vector sra node.  The sra node
12271        // will be an intrinsic.
12272        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
12273          return SDValue();
12274
12275        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
12276        // there is no psrai.b
12277        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
12278        case Intrinsic::x86_sse2_psrai_w:
12279        case Intrinsic::x86_sse2_psrai_d:
12280          break;
12281        default: return SDValue();
12282        }
12283
12284        // Check that the SRA is all signbits.
12285        SDValue SraC = Mask.getOperand(2);
12286        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
12287        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
12288        if ((SraAmt + 1) != EltBits)
12289          return SDValue();
12290
12291        DebugLoc DL = N->getDebugLoc();
12292
12293        // Now we know we at least have a plendvb with the mask val.  See if
12294        // we can form a psignb/w/d.
12295        // psign = x.type == y.type == mask.type && y = sub(0, x);
12296        X = X.getOperand(0);
12297        Y = Y.getOperand(0);
12298        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
12299            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
12300            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
12301          unsigned Opc = 0;
12302          switch (EltBits) {
12303          case 8: Opc = X86ISD::PSIGNB; break;
12304          case 16: Opc = X86ISD::PSIGNW; break;
12305          case 32: Opc = X86ISD::PSIGND; break;
12306          default: break;
12307          }
12308          if (Opc) {
12309            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
12310            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
12311          }
12312        }
12313        // PBLENDVB only available on SSE 4.1
12314        if (!Subtarget->hasSSE41())
12315          return SDValue();
12316
12317        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
12318        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
12319        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
12320        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
12321        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
12322      }
12323    }
12324  }
12325
12326  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
12327  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
12328    std::swap(N0, N1);
12329  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
12330    return SDValue();
12331  if (!N0.hasOneUse() || !N1.hasOneUse())
12332    return SDValue();
12333
12334  SDValue ShAmt0 = N0.getOperand(1);
12335  if (ShAmt0.getValueType() != MVT::i8)
12336    return SDValue();
12337  SDValue ShAmt1 = N1.getOperand(1);
12338  if (ShAmt1.getValueType() != MVT::i8)
12339    return SDValue();
12340  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
12341    ShAmt0 = ShAmt0.getOperand(0);
12342  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
12343    ShAmt1 = ShAmt1.getOperand(0);
12344
12345  DebugLoc DL = N->getDebugLoc();
12346  unsigned Opc = X86ISD::SHLD;
12347  SDValue Op0 = N0.getOperand(0);
12348  SDValue Op1 = N1.getOperand(0);
12349  if (ShAmt0.getOpcode() == ISD::SUB) {
12350    Opc = X86ISD::SHRD;
12351    std::swap(Op0, Op1);
12352    std::swap(ShAmt0, ShAmt1);
12353  }
12354
12355  unsigned Bits = VT.getSizeInBits();
12356  if (ShAmt1.getOpcode() == ISD::SUB) {
12357    SDValue Sum = ShAmt1.getOperand(0);
12358    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
12359      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
12360      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
12361        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
12362      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
12363        return DAG.getNode(Opc, DL, VT,
12364                           Op0, Op1,
12365                           DAG.getNode(ISD::TRUNCATE, DL,
12366                                       MVT::i8, ShAmt0));
12367    }
12368  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
12369    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
12370    if (ShAmt0C &&
12371        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
12372      return DAG.getNode(Opc, DL, VT,
12373                         N0.getOperand(0), N1.getOperand(0),
12374                         DAG.getNode(ISD::TRUNCATE, DL,
12375                                       MVT::i8, ShAmt0));
12376  }
12377
12378  return SDValue();
12379}
12380
12381/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
12382static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
12383                                   const X86Subtarget *Subtarget) {
12384  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
12385  // the FP state in cases where an emms may be missing.
12386  // A preferable solution to the general problem is to figure out the right
12387  // places to insert EMMS.  This qualifies as a quick hack.
12388
12389  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
12390  StoreSDNode *St = cast<StoreSDNode>(N);
12391  EVT VT = St->getValue().getValueType();
12392  if (VT.getSizeInBits() != 64)
12393    return SDValue();
12394
12395  const Function *F = DAG.getMachineFunction().getFunction();
12396  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
12397  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
12398    && Subtarget->hasSSE2();
12399  if ((VT.isVector() ||
12400       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
12401      isa<LoadSDNode>(St->getValue()) &&
12402      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
12403      St->getChain().hasOneUse() && !St->isVolatile()) {
12404    SDNode* LdVal = St->getValue().getNode();
12405    LoadSDNode *Ld = 0;
12406    int TokenFactorIndex = -1;
12407    SmallVector<SDValue, 8> Ops;
12408    SDNode* ChainVal = St->getChain().getNode();
12409    // Must be a store of a load.  We currently handle two cases:  the load
12410    // is a direct child, and it's under an intervening TokenFactor.  It is
12411    // possible to dig deeper under nested TokenFactors.
12412    if (ChainVal == LdVal)
12413      Ld = cast<LoadSDNode>(St->getChain());
12414    else if (St->getValue().hasOneUse() &&
12415             ChainVal->getOpcode() == ISD::TokenFactor) {
12416      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
12417        if (ChainVal->getOperand(i).getNode() == LdVal) {
12418          TokenFactorIndex = i;
12419          Ld = cast<LoadSDNode>(St->getValue());
12420        } else
12421          Ops.push_back(ChainVal->getOperand(i));
12422      }
12423    }
12424
12425    if (!Ld || !ISD::isNormalLoad(Ld))
12426      return SDValue();
12427
12428    // If this is not the MMX case, i.e. we are just turning i64 load/store
12429    // into f64 load/store, avoid the transformation if there are multiple
12430    // uses of the loaded value.
12431    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
12432      return SDValue();
12433
12434    DebugLoc LdDL = Ld->getDebugLoc();
12435    DebugLoc StDL = N->getDebugLoc();
12436    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
12437    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
12438    // pair instead.
12439    if (Subtarget->is64Bit() || F64IsLegal) {
12440      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
12441      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
12442                                  Ld->getPointerInfo(), Ld->isVolatile(),
12443                                  Ld->isNonTemporal(), Ld->getAlignment());
12444      SDValue NewChain = NewLd.getValue(1);
12445      if (TokenFactorIndex != -1) {
12446        Ops.push_back(NewChain);
12447        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12448                               Ops.size());
12449      }
12450      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
12451                          St->getPointerInfo(),
12452                          St->isVolatile(), St->isNonTemporal(),
12453                          St->getAlignment());
12454    }
12455
12456    // Otherwise, lower to two pairs of 32-bit loads / stores.
12457    SDValue LoAddr = Ld->getBasePtr();
12458    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
12459                                 DAG.getConstant(4, MVT::i32));
12460
12461    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
12462                               Ld->getPointerInfo(),
12463                               Ld->isVolatile(), Ld->isNonTemporal(),
12464                               Ld->getAlignment());
12465    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
12466                               Ld->getPointerInfo().getWithOffset(4),
12467                               Ld->isVolatile(), Ld->isNonTemporal(),
12468                               MinAlign(Ld->getAlignment(), 4));
12469
12470    SDValue NewChain = LoLd.getValue(1);
12471    if (TokenFactorIndex != -1) {
12472      Ops.push_back(LoLd);
12473      Ops.push_back(HiLd);
12474      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
12475                             Ops.size());
12476    }
12477
12478    LoAddr = St->getBasePtr();
12479    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
12480                         DAG.getConstant(4, MVT::i32));
12481
12482    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
12483                                St->getPointerInfo(),
12484                                St->isVolatile(), St->isNonTemporal(),
12485                                St->getAlignment());
12486    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
12487                                St->getPointerInfo().getWithOffset(4),
12488                                St->isVolatile(),
12489                                St->isNonTemporal(),
12490                                MinAlign(St->getAlignment(), 4));
12491    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
12492  }
12493  return SDValue();
12494}
12495
12496/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
12497/// X86ISD::FXOR nodes.
12498static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
12499  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
12500  // F[X]OR(0.0, x) -> x
12501  // F[X]OR(x, 0.0) -> x
12502  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12503    if (C->getValueAPF().isPosZero())
12504      return N->getOperand(1);
12505  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12506    if (C->getValueAPF().isPosZero())
12507      return N->getOperand(0);
12508  return SDValue();
12509}
12510
12511/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
12512static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
12513  // FAND(0.0, x) -> 0.0
12514  // FAND(x, 0.0) -> 0.0
12515  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
12516    if (C->getValueAPF().isPosZero())
12517      return N->getOperand(0);
12518  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
12519    if (C->getValueAPF().isPosZero())
12520      return N->getOperand(1);
12521  return SDValue();
12522}
12523
12524static SDValue PerformBTCombine(SDNode *N,
12525                                SelectionDAG &DAG,
12526                                TargetLowering::DAGCombinerInfo &DCI) {
12527  // BT ignores high bits in the bit index operand.
12528  SDValue Op1 = N->getOperand(1);
12529  if (Op1.hasOneUse()) {
12530    unsigned BitWidth = Op1.getValueSizeInBits();
12531    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
12532    APInt KnownZero, KnownOne;
12533    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
12534                                          !DCI.isBeforeLegalizeOps());
12535    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12536    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
12537        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
12538      DCI.CommitTargetLoweringOpt(TLO);
12539  }
12540  return SDValue();
12541}
12542
12543static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
12544  SDValue Op = N->getOperand(0);
12545  if (Op.getOpcode() == ISD::BITCAST)
12546    Op = Op.getOperand(0);
12547  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
12548  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
12549      VT.getVectorElementType().getSizeInBits() ==
12550      OpVT.getVectorElementType().getSizeInBits()) {
12551    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
12552  }
12553  return SDValue();
12554}
12555
12556static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
12557  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
12558  //           (and (i32 x86isd::setcc_carry), 1)
12559  // This eliminates the zext. This transformation is necessary because
12560  // ISD::SETCC is always legalized to i8.
12561  DebugLoc dl = N->getDebugLoc();
12562  SDValue N0 = N->getOperand(0);
12563  EVT VT = N->getValueType(0);
12564  if (N0.getOpcode() == ISD::AND &&
12565      N0.hasOneUse() &&
12566      N0.getOperand(0).hasOneUse()) {
12567    SDValue N00 = N0.getOperand(0);
12568    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
12569      return SDValue();
12570    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
12571    if (!C || C->getZExtValue() != 1)
12572      return SDValue();
12573    return DAG.getNode(ISD::AND, dl, VT,
12574                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
12575                                   N00.getOperand(0), N00.getOperand(1)),
12576                       DAG.getConstant(1, VT));
12577  }
12578
12579  return SDValue();
12580}
12581
12582// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
12583static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
12584  unsigned X86CC = N->getConstantOperandVal(0);
12585  SDValue EFLAG = N->getOperand(1);
12586  DebugLoc DL = N->getDebugLoc();
12587
12588  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
12589  // a zext and produces an all-ones bit which is more useful than 0/1 in some
12590  // cases.
12591  if (X86CC == X86::COND_B)
12592    return DAG.getNode(ISD::AND, DL, MVT::i8,
12593                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
12594                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
12595                       DAG.getConstant(1, MVT::i8));
12596
12597  return SDValue();
12598}
12599
12600static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
12601                                        const X86TargetLowering *XTLI) {
12602  SDValue Op0 = N->getOperand(0);
12603  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
12604  // a 32-bit target where SSE doesn't support i64->FP operations.
12605  if (Op0.getOpcode() == ISD::LOAD) {
12606    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
12607    EVT VT = Ld->getValueType(0);
12608    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
12609        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
12610        !XTLI->getSubtarget()->is64Bit() &&
12611        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12612      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
12613                                          Ld->getChain(), Op0, DAG);
12614      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
12615      return FILDChain;
12616    }
12617  }
12618  return SDValue();
12619}
12620
12621// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
12622static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
12623                                 X86TargetLowering::DAGCombinerInfo &DCI) {
12624  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
12625  // the result is either zero or one (depending on the input carry bit).
12626  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
12627  if (X86::isZeroNode(N->getOperand(0)) &&
12628      X86::isZeroNode(N->getOperand(1)) &&
12629      // We don't have a good way to replace an EFLAGS use, so only do this when
12630      // dead right now.
12631      SDValue(N, 1).use_empty()) {
12632    DebugLoc DL = N->getDebugLoc();
12633    EVT VT = N->getValueType(0);
12634    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
12635    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
12636                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
12637                                           DAG.getConstant(X86::COND_B,MVT::i8),
12638                                           N->getOperand(2)),
12639                               DAG.getConstant(1, VT));
12640    return DCI.CombineTo(N, Res1, CarryOut);
12641  }
12642
12643  return SDValue();
12644}
12645
12646// fold (add Y, (sete  X, 0)) -> adc  0, Y
12647//      (add Y, (setne X, 0)) -> sbb -1, Y
12648//      (sub (sete  X, 0), Y) -> sbb  0, Y
12649//      (sub (setne X, 0), Y) -> adc -1, Y
12650static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
12651  DebugLoc DL = N->getDebugLoc();
12652
12653  // Look through ZExts.
12654  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
12655  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
12656    return SDValue();
12657
12658  SDValue SetCC = Ext.getOperand(0);
12659  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
12660    return SDValue();
12661
12662  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
12663  if (CC != X86::COND_E && CC != X86::COND_NE)
12664    return SDValue();
12665
12666  SDValue Cmp = SetCC.getOperand(1);
12667  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
12668      !X86::isZeroNode(Cmp.getOperand(1)) ||
12669      !Cmp.getOperand(0).getValueType().isInteger())
12670    return SDValue();
12671
12672  SDValue CmpOp0 = Cmp.getOperand(0);
12673  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
12674                               DAG.getConstant(1, CmpOp0.getValueType()));
12675
12676  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
12677  if (CC == X86::COND_NE)
12678    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
12679                       DL, OtherVal.getValueType(), OtherVal,
12680                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
12681  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
12682                     DL, OtherVal.getValueType(), OtherVal,
12683                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
12684}
12685
12686static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
12687  SDValue Op0 = N->getOperand(0);
12688  SDValue Op1 = N->getOperand(1);
12689
12690  // X86 can't encode an immediate LHS of a sub. See if we can push the
12691  // negation into a preceding instruction.
12692  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
12693    uint64_t Op0C = C->getSExtValue();
12694
12695    // If the RHS of the sub is a XOR with one use and a constant, invert the
12696    // immediate. Then add one to the LHS of the sub so we can turn
12697    // X-Y -> X+~Y+1, saving one register.
12698    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
12699        isa<ConstantSDNode>(Op1.getOperand(1))) {
12700      uint64_t XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getSExtValue();
12701      EVT VT = Op0.getValueType();
12702      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
12703                                   Op1.getOperand(0),
12704                                   DAG.getConstant(~XorC, VT));
12705      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
12706                         DAG.getConstant(Op0C+1, VT));
12707    }
12708  }
12709
12710  return OptimizeConditionalInDecrement(N, DAG);
12711}
12712
12713SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12714                                             DAGCombinerInfo &DCI) const {
12715  SelectionDAG &DAG = DCI.DAG;
12716  switch (N->getOpcode()) {
12717  default: break;
12718  case ISD::EXTRACT_VECTOR_ELT:
12719    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12720  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12721  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12722  case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
12723  case ISD::SUB:            return PerformSubCombine(N, DAG);
12724  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12725  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12726  case ISD::SHL:
12727  case ISD::SRA:
12728  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12729  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12730  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12731  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12732  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
12733  case X86ISD::FXOR:
12734  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12735  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12736  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12737  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12738  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12739  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12740  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12741  case X86ISD::SHUFPD:
12742  case X86ISD::PALIGN:
12743  case X86ISD::PUNPCKHBW:
12744  case X86ISD::PUNPCKHWD:
12745  case X86ISD::PUNPCKHDQ:
12746  case X86ISD::PUNPCKHQDQ:
12747  case X86ISD::UNPCKHPS:
12748  case X86ISD::UNPCKHPD:
12749  case X86ISD::VUNPCKHPSY:
12750  case X86ISD::VUNPCKHPDY:
12751  case X86ISD::PUNPCKLBW:
12752  case X86ISD::PUNPCKLWD:
12753  case X86ISD::PUNPCKLDQ:
12754  case X86ISD::PUNPCKLQDQ:
12755  case X86ISD::UNPCKLPS:
12756  case X86ISD::UNPCKLPD:
12757  case X86ISD::VUNPCKLPSY:
12758  case X86ISD::VUNPCKLPDY:
12759  case X86ISD::MOVHLPS:
12760  case X86ISD::MOVLHPS:
12761  case X86ISD::PSHUFD:
12762  case X86ISD::PSHUFHW:
12763  case X86ISD::PSHUFLW:
12764  case X86ISD::MOVSS:
12765  case X86ISD::MOVSD:
12766  case X86ISD::VPERMILPS:
12767  case X86ISD::VPERMILPSY:
12768  case X86ISD::VPERMILPD:
12769  case X86ISD::VPERMILPDY:
12770  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12771  }
12772
12773  return SDValue();
12774}
12775
12776/// isTypeDesirableForOp - Return true if the target has native support for
12777/// the specified value type and it is 'desirable' to use the type for the
12778/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12779/// instruction encodings are longer and some i16 instructions are slow.
12780bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12781  if (!isTypeLegal(VT))
12782    return false;
12783  if (VT != MVT::i16)
12784    return true;
12785
12786  switch (Opc) {
12787  default:
12788    return true;
12789  case ISD::LOAD:
12790  case ISD::SIGN_EXTEND:
12791  case ISD::ZERO_EXTEND:
12792  case ISD::ANY_EXTEND:
12793  case ISD::SHL:
12794  case ISD::SRL:
12795  case ISD::SUB:
12796  case ISD::ADD:
12797  case ISD::MUL:
12798  case ISD::AND:
12799  case ISD::OR:
12800  case ISD::XOR:
12801    return false;
12802  }
12803}
12804
12805/// IsDesirableToPromoteOp - This method query the target whether it is
12806/// beneficial for dag combiner to promote the specified node. If true, it
12807/// should return the desired promotion type by reference.
12808bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12809  EVT VT = Op.getValueType();
12810  if (VT != MVT::i16)
12811    return false;
12812
12813  bool Promote = false;
12814  bool Commute = false;
12815  switch (Op.getOpcode()) {
12816  default: break;
12817  case ISD::LOAD: {
12818    LoadSDNode *LD = cast<LoadSDNode>(Op);
12819    // If the non-extending load has a single use and it's not live out, then it
12820    // might be folded.
12821    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
12822                                                     Op.hasOneUse()*/) {
12823      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12824             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
12825        // The only case where we'd want to promote LOAD (rather then it being
12826        // promoted as an operand is when it's only use is liveout.
12827        if (UI->getOpcode() != ISD::CopyToReg)
12828          return false;
12829      }
12830    }
12831    Promote = true;
12832    break;
12833  }
12834  case ISD::SIGN_EXTEND:
12835  case ISD::ZERO_EXTEND:
12836  case ISD::ANY_EXTEND:
12837    Promote = true;
12838    break;
12839  case ISD::SHL:
12840  case ISD::SRL: {
12841    SDValue N0 = Op.getOperand(0);
12842    // Look out for (store (shl (load), x)).
12843    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
12844      return false;
12845    Promote = true;
12846    break;
12847  }
12848  case ISD::ADD:
12849  case ISD::MUL:
12850  case ISD::AND:
12851  case ISD::OR:
12852  case ISD::XOR:
12853    Commute = true;
12854    // fallthrough
12855  case ISD::SUB: {
12856    SDValue N0 = Op.getOperand(0);
12857    SDValue N1 = Op.getOperand(1);
12858    if (!Commute && MayFoldLoad(N1))
12859      return false;
12860    // Avoid disabling potential load folding opportunities.
12861    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
12862      return false;
12863    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
12864      return false;
12865    Promote = true;
12866  }
12867  }
12868
12869  PVT = MVT::i32;
12870  return Promote;
12871}
12872
12873//===----------------------------------------------------------------------===//
12874//                           X86 Inline Assembly Support
12875//===----------------------------------------------------------------------===//
12876
12877bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
12878  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12879
12880  std::string AsmStr = IA->getAsmString();
12881
12882  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
12883  SmallVector<StringRef, 4> AsmPieces;
12884  SplitString(AsmStr, AsmPieces, ";\n");
12885
12886  switch (AsmPieces.size()) {
12887  default: return false;
12888  case 1:
12889    AsmStr = AsmPieces[0];
12890    AsmPieces.clear();
12891    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
12892
12893    // FIXME: this should verify that we are targeting a 486 or better.  If not,
12894    // we will turn this bswap into something that will be lowered to logical ops
12895    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
12896    // so don't worry about this.
12897    // bswap $0
12898    if (AsmPieces.size() == 2 &&
12899        (AsmPieces[0] == "bswap" ||
12900         AsmPieces[0] == "bswapq" ||
12901         AsmPieces[0] == "bswapl") &&
12902        (AsmPieces[1] == "$0" ||
12903         AsmPieces[1] == "${0:q}")) {
12904      // No need to check constraints, nothing other than the equivalent of
12905      // "=r,0" would be valid here.
12906      IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12907      if (!Ty || Ty->getBitWidth() % 16 != 0)
12908        return false;
12909      return IntrinsicLowering::LowerToByteSwap(CI);
12910    }
12911    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
12912    if (CI->getType()->isIntegerTy(16) &&
12913        AsmPieces.size() == 3 &&
12914        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
12915        AsmPieces[1] == "$$8," &&
12916        AsmPieces[2] == "${0:w}" &&
12917        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12918      AsmPieces.clear();
12919      const std::string &ConstraintsStr = IA->getConstraintString();
12920      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12921      std::sort(AsmPieces.begin(), AsmPieces.end());
12922      if (AsmPieces.size() == 4 &&
12923          AsmPieces[0] == "~{cc}" &&
12924          AsmPieces[1] == "~{dirflag}" &&
12925          AsmPieces[2] == "~{flags}" &&
12926          AsmPieces[3] == "~{fpsr}") {
12927        IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12928        if (!Ty || Ty->getBitWidth() % 16 != 0)
12929          return false;
12930        return IntrinsicLowering::LowerToByteSwap(CI);
12931      }
12932    }
12933    break;
12934  case 3:
12935    if (CI->getType()->isIntegerTy(32) &&
12936        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12937      SmallVector<StringRef, 4> Words;
12938      SplitString(AsmPieces[0], Words, " \t,");
12939      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12940          Words[2] == "${0:w}") {
12941        Words.clear();
12942        SplitString(AsmPieces[1], Words, " \t,");
12943        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
12944            Words[2] == "$0") {
12945          Words.clear();
12946          SplitString(AsmPieces[2], Words, " \t,");
12947          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12948              Words[2] == "${0:w}") {
12949            AsmPieces.clear();
12950            const std::string &ConstraintsStr = IA->getConstraintString();
12951            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12952            std::sort(AsmPieces.begin(), AsmPieces.end());
12953            if (AsmPieces.size() == 4 &&
12954                AsmPieces[0] == "~{cc}" &&
12955                AsmPieces[1] == "~{dirflag}" &&
12956                AsmPieces[2] == "~{flags}" &&
12957                AsmPieces[3] == "~{fpsr}") {
12958              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12959              if (!Ty || Ty->getBitWidth() % 16 != 0)
12960                return false;
12961              return IntrinsicLowering::LowerToByteSwap(CI);
12962            }
12963          }
12964        }
12965      }
12966    }
12967
12968    if (CI->getType()->isIntegerTy(64)) {
12969      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
12970      if (Constraints.size() >= 2 &&
12971          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
12972          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
12973        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
12974        SmallVector<StringRef, 4> Words;
12975        SplitString(AsmPieces[0], Words, " \t");
12976        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
12977          Words.clear();
12978          SplitString(AsmPieces[1], Words, " \t");
12979          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
12980            Words.clear();
12981            SplitString(AsmPieces[2], Words, " \t,");
12982            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
12983                Words[2] == "%edx") {
12984              IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12985              if (!Ty || Ty->getBitWidth() % 16 != 0)
12986                return false;
12987              return IntrinsicLowering::LowerToByteSwap(CI);
12988            }
12989          }
12990        }
12991      }
12992    }
12993    break;
12994  }
12995  return false;
12996}
12997
12998
12999
13000/// getConstraintType - Given a constraint letter, return the type of
13001/// constraint it is for this target.
13002X86TargetLowering::ConstraintType
13003X86TargetLowering::getConstraintType(const std::string &Constraint) const {
13004  if (Constraint.size() == 1) {
13005    switch (Constraint[0]) {
13006    case 'R':
13007    case 'q':
13008    case 'Q':
13009    case 'f':
13010    case 't':
13011    case 'u':
13012    case 'y':
13013    case 'x':
13014    case 'Y':
13015    case 'l':
13016      return C_RegisterClass;
13017    case 'a':
13018    case 'b':
13019    case 'c':
13020    case 'd':
13021    case 'S':
13022    case 'D':
13023    case 'A':
13024      return C_Register;
13025    case 'I':
13026    case 'J':
13027    case 'K':
13028    case 'L':
13029    case 'M':
13030    case 'N':
13031    case 'G':
13032    case 'C':
13033    case 'e':
13034    case 'Z':
13035      return C_Other;
13036    default:
13037      break;
13038    }
13039  }
13040  return TargetLowering::getConstraintType(Constraint);
13041}
13042
13043/// Examine constraint type and operand type and determine a weight value.
13044/// This object must already have been set up with the operand type
13045/// and the current alternative constraint selected.
13046TargetLowering::ConstraintWeight
13047  X86TargetLowering::getSingleConstraintMatchWeight(
13048    AsmOperandInfo &info, const char *constraint) const {
13049  ConstraintWeight weight = CW_Invalid;
13050  Value *CallOperandVal = info.CallOperandVal;
13051    // If we don't have a value, we can't do a match,
13052    // but allow it at the lowest weight.
13053  if (CallOperandVal == NULL)
13054    return CW_Default;
13055  Type *type = CallOperandVal->getType();
13056  // Look at the constraint type.
13057  switch (*constraint) {
13058  default:
13059    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13060  case 'R':
13061  case 'q':
13062  case 'Q':
13063  case 'a':
13064  case 'b':
13065  case 'c':
13066  case 'd':
13067  case 'S':
13068  case 'D':
13069  case 'A':
13070    if (CallOperandVal->getType()->isIntegerTy())
13071      weight = CW_SpecificReg;
13072    break;
13073  case 'f':
13074  case 't':
13075  case 'u':
13076      if (type->isFloatingPointTy())
13077        weight = CW_SpecificReg;
13078      break;
13079  case 'y':
13080      if (type->isX86_MMXTy() && Subtarget->hasMMX())
13081        weight = CW_SpecificReg;
13082      break;
13083  case 'x':
13084  case 'Y':
13085    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
13086      weight = CW_Register;
13087    break;
13088  case 'I':
13089    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
13090      if (C->getZExtValue() <= 31)
13091        weight = CW_Constant;
13092    }
13093    break;
13094  case 'J':
13095    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13096      if (C->getZExtValue() <= 63)
13097        weight = CW_Constant;
13098    }
13099    break;
13100  case 'K':
13101    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13102      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
13103        weight = CW_Constant;
13104    }
13105    break;
13106  case 'L':
13107    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13108      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
13109        weight = CW_Constant;
13110    }
13111    break;
13112  case 'M':
13113    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13114      if (C->getZExtValue() <= 3)
13115        weight = CW_Constant;
13116    }
13117    break;
13118  case 'N':
13119    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13120      if (C->getZExtValue() <= 0xff)
13121        weight = CW_Constant;
13122    }
13123    break;
13124  case 'G':
13125  case 'C':
13126    if (dyn_cast<ConstantFP>(CallOperandVal)) {
13127      weight = CW_Constant;
13128    }
13129    break;
13130  case 'e':
13131    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13132      if ((C->getSExtValue() >= -0x80000000LL) &&
13133          (C->getSExtValue() <= 0x7fffffffLL))
13134        weight = CW_Constant;
13135    }
13136    break;
13137  case 'Z':
13138    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
13139      if (C->getZExtValue() <= 0xffffffff)
13140        weight = CW_Constant;
13141    }
13142    break;
13143  }
13144  return weight;
13145}
13146
13147/// LowerXConstraint - try to replace an X constraint, which matches anything,
13148/// with another that has more specific requirements based on the type of the
13149/// corresponding operand.
13150const char *X86TargetLowering::
13151LowerXConstraint(EVT ConstraintVT) const {
13152  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
13153  // 'f' like normal targets.
13154  if (ConstraintVT.isFloatingPoint()) {
13155    if (Subtarget->hasXMMInt())
13156      return "Y";
13157    if (Subtarget->hasXMM())
13158      return "x";
13159  }
13160
13161  return TargetLowering::LowerXConstraint(ConstraintVT);
13162}
13163
13164/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13165/// vector.  If it is invalid, don't add anything to Ops.
13166void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13167                                                     std::string &Constraint,
13168                                                     std::vector<SDValue>&Ops,
13169                                                     SelectionDAG &DAG) const {
13170  SDValue Result(0, 0);
13171
13172  // Only support length 1 constraints for now.
13173  if (Constraint.length() > 1) return;
13174
13175  char ConstraintLetter = Constraint[0];
13176  switch (ConstraintLetter) {
13177  default: break;
13178  case 'I':
13179    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13180      if (C->getZExtValue() <= 31) {
13181        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13182        break;
13183      }
13184    }
13185    return;
13186  case 'J':
13187    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13188      if (C->getZExtValue() <= 63) {
13189        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13190        break;
13191      }
13192    }
13193    return;
13194  case 'K':
13195    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13196      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
13197        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13198        break;
13199      }
13200    }
13201    return;
13202  case 'N':
13203    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13204      if (C->getZExtValue() <= 255) {
13205        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13206        break;
13207      }
13208    }
13209    return;
13210  case 'e': {
13211    // 32-bit signed value
13212    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13213      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13214                                           C->getSExtValue())) {
13215        // Widen to 64 bits here to get it sign extended.
13216        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
13217        break;
13218      }
13219    // FIXME gcc accepts some relocatable values here too, but only in certain
13220    // memory models; it's complicated.
13221    }
13222    return;
13223  }
13224  case 'Z': {
13225    // 32-bit unsigned value
13226    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
13227      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
13228                                           C->getZExtValue())) {
13229        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
13230        break;
13231      }
13232    }
13233    // FIXME gcc accepts some relocatable values here too, but only in certain
13234    // memory models; it's complicated.
13235    return;
13236  }
13237  case 'i': {
13238    // Literal immediates are always ok.
13239    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
13240      // Widen to 64 bits here to get it sign extended.
13241      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
13242      break;
13243    }
13244
13245    // In any sort of PIC mode addresses need to be computed at runtime by
13246    // adding in a register or some sort of table lookup.  These can't
13247    // be used as immediates.
13248    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
13249      return;
13250
13251    // If we are in non-pic codegen mode, we allow the address of a global (with
13252    // an optional displacement) to be used with 'i'.
13253    GlobalAddressSDNode *GA = 0;
13254    int64_t Offset = 0;
13255
13256    // Match either (GA), (GA+C), (GA+C1+C2), etc.
13257    while (1) {
13258      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
13259        Offset += GA->getOffset();
13260        break;
13261      } else if (Op.getOpcode() == ISD::ADD) {
13262        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13263          Offset += C->getZExtValue();
13264          Op = Op.getOperand(0);
13265          continue;
13266        }
13267      } else if (Op.getOpcode() == ISD::SUB) {
13268        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
13269          Offset += -C->getZExtValue();
13270          Op = Op.getOperand(0);
13271          continue;
13272        }
13273      }
13274
13275      // Otherwise, this isn't something we can handle, reject it.
13276      return;
13277    }
13278
13279    const GlobalValue *GV = GA->getGlobal();
13280    // If we require an extra load to get this address, as in PIC mode, we
13281    // can't accept it.
13282    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
13283                                                        getTargetMachine())))
13284      return;
13285
13286    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
13287                                        GA->getValueType(0), Offset);
13288    break;
13289  }
13290  }
13291
13292  if (Result.getNode()) {
13293    Ops.push_back(Result);
13294    return;
13295  }
13296  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13297}
13298
13299std::pair<unsigned, const TargetRegisterClass*>
13300X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
13301                                                EVT VT) const {
13302  // First, see if this is a constraint that directly corresponds to an LLVM
13303  // register class.
13304  if (Constraint.size() == 1) {
13305    // GCC Constraint Letters
13306    switch (Constraint[0]) {
13307    default: break;
13308      // TODO: Slight differences here in allocation order and leaving
13309      // RIP in the class. Do they matter any more here than they do
13310      // in the normal allocation?
13311    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
13312      if (Subtarget->is64Bit()) {
13313	if (VT == MVT::i32 || VT == MVT::f32)
13314	  return std::make_pair(0U, X86::GR32RegisterClass);
13315	else if (VT == MVT::i16)
13316	  return std::make_pair(0U, X86::GR16RegisterClass);
13317	else if (VT == MVT::i8 || VT == MVT::i1)
13318	  return std::make_pair(0U, X86::GR8RegisterClass);
13319	else if (VT == MVT::i64 || VT == MVT::f64)
13320	  return std::make_pair(0U, X86::GR64RegisterClass);
13321	break;
13322      }
13323      // 32-bit fallthrough
13324    case 'Q':   // Q_REGS
13325      if (VT == MVT::i32 || VT == MVT::f32)
13326	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
13327      else if (VT == MVT::i16)
13328	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
13329      else if (VT == MVT::i8 || VT == MVT::i1)
13330	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
13331      else if (VT == MVT::i64)
13332	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
13333      break;
13334    case 'r':   // GENERAL_REGS
13335    case 'l':   // INDEX_REGS
13336      if (VT == MVT::i8 || VT == MVT::i1)
13337        return std::make_pair(0U, X86::GR8RegisterClass);
13338      if (VT == MVT::i16)
13339        return std::make_pair(0U, X86::GR16RegisterClass);
13340      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
13341        return std::make_pair(0U, X86::GR32RegisterClass);
13342      return std::make_pair(0U, X86::GR64RegisterClass);
13343    case 'R':   // LEGACY_REGS
13344      if (VT == MVT::i8 || VT == MVT::i1)
13345        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
13346      if (VT == MVT::i16)
13347        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
13348      if (VT == MVT::i32 || !Subtarget->is64Bit())
13349        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
13350      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
13351    case 'f':  // FP Stack registers.
13352      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
13353      // value to the correct fpstack register class.
13354      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
13355        return std::make_pair(0U, X86::RFP32RegisterClass);
13356      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
13357        return std::make_pair(0U, X86::RFP64RegisterClass);
13358      return std::make_pair(0U, X86::RFP80RegisterClass);
13359    case 'y':   // MMX_REGS if MMX allowed.
13360      if (!Subtarget->hasMMX()) break;
13361      return std::make_pair(0U, X86::VR64RegisterClass);
13362    case 'Y':   // SSE_REGS if SSE2 allowed
13363      if (!Subtarget->hasXMMInt()) break;
13364      // FALL THROUGH.
13365    case 'x':   // SSE_REGS if SSE1 allowed
13366      if (!Subtarget->hasXMM()) break;
13367
13368      switch (VT.getSimpleVT().SimpleTy) {
13369      default: break;
13370      // Scalar SSE types.
13371      case MVT::f32:
13372      case MVT::i32:
13373        return std::make_pair(0U, X86::FR32RegisterClass);
13374      case MVT::f64:
13375      case MVT::i64:
13376        return std::make_pair(0U, X86::FR64RegisterClass);
13377      // Vector types.
13378      case MVT::v16i8:
13379      case MVT::v8i16:
13380      case MVT::v4i32:
13381      case MVT::v2i64:
13382      case MVT::v4f32:
13383      case MVT::v2f64:
13384        return std::make_pair(0U, X86::VR128RegisterClass);
13385      }
13386      break;
13387    }
13388  }
13389
13390  // Use the default implementation in TargetLowering to convert the register
13391  // constraint into a member of a register class.
13392  std::pair<unsigned, const TargetRegisterClass*> Res;
13393  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
13394
13395  // Not found as a standard register?
13396  if (Res.second == 0) {
13397    // Map st(0) -> st(7) -> ST0
13398    if (Constraint.size() == 7 && Constraint[0] == '{' &&
13399        tolower(Constraint[1]) == 's' &&
13400        tolower(Constraint[2]) == 't' &&
13401        Constraint[3] == '(' &&
13402        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
13403        Constraint[5] == ')' &&
13404        Constraint[6] == '}') {
13405
13406      Res.first = X86::ST0+Constraint[4]-'0';
13407      Res.second = X86::RFP80RegisterClass;
13408      return Res;
13409    }
13410
13411    // GCC allows "st(0)" to be called just plain "st".
13412    if (StringRef("{st}").equals_lower(Constraint)) {
13413      Res.first = X86::ST0;
13414      Res.second = X86::RFP80RegisterClass;
13415      return Res;
13416    }
13417
13418    // flags -> EFLAGS
13419    if (StringRef("{flags}").equals_lower(Constraint)) {
13420      Res.first = X86::EFLAGS;
13421      Res.second = X86::CCRRegisterClass;
13422      return Res;
13423    }
13424
13425    // 'A' means EAX + EDX.
13426    if (Constraint == "A") {
13427      Res.first = X86::EAX;
13428      Res.second = X86::GR32_ADRegisterClass;
13429      return Res;
13430    }
13431    return Res;
13432  }
13433
13434  // Otherwise, check to see if this is a register class of the wrong value
13435  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
13436  // turn into {ax},{dx}.
13437  if (Res.second->hasType(VT))
13438    return Res;   // Correct type already, nothing to do.
13439
13440  // All of the single-register GCC register classes map their values onto
13441  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
13442  // really want an 8-bit or 32-bit register, map to the appropriate register
13443  // class and return the appropriate register.
13444  if (Res.second == X86::GR16RegisterClass) {
13445    if (VT == MVT::i8) {
13446      unsigned DestReg = 0;
13447      switch (Res.first) {
13448      default: break;
13449      case X86::AX: DestReg = X86::AL; break;
13450      case X86::DX: DestReg = X86::DL; break;
13451      case X86::CX: DestReg = X86::CL; break;
13452      case X86::BX: DestReg = X86::BL; break;
13453      }
13454      if (DestReg) {
13455        Res.first = DestReg;
13456        Res.second = X86::GR8RegisterClass;
13457      }
13458    } else if (VT == MVT::i32) {
13459      unsigned DestReg = 0;
13460      switch (Res.first) {
13461      default: break;
13462      case X86::AX: DestReg = X86::EAX; break;
13463      case X86::DX: DestReg = X86::EDX; break;
13464      case X86::CX: DestReg = X86::ECX; break;
13465      case X86::BX: DestReg = X86::EBX; break;
13466      case X86::SI: DestReg = X86::ESI; break;
13467      case X86::DI: DestReg = X86::EDI; break;
13468      case X86::BP: DestReg = X86::EBP; break;
13469      case X86::SP: DestReg = X86::ESP; break;
13470      }
13471      if (DestReg) {
13472        Res.first = DestReg;
13473        Res.second = X86::GR32RegisterClass;
13474      }
13475    } else if (VT == MVT::i64) {
13476      unsigned DestReg = 0;
13477      switch (Res.first) {
13478      default: break;
13479      case X86::AX: DestReg = X86::RAX; break;
13480      case X86::DX: DestReg = X86::RDX; break;
13481      case X86::CX: DestReg = X86::RCX; break;
13482      case X86::BX: DestReg = X86::RBX; break;
13483      case X86::SI: DestReg = X86::RSI; break;
13484      case X86::DI: DestReg = X86::RDI; break;
13485      case X86::BP: DestReg = X86::RBP; break;
13486      case X86::SP: DestReg = X86::RSP; break;
13487      }
13488      if (DestReg) {
13489        Res.first = DestReg;
13490        Res.second = X86::GR64RegisterClass;
13491      }
13492    }
13493  } else if (Res.second == X86::FR32RegisterClass ||
13494             Res.second == X86::FR64RegisterClass ||
13495             Res.second == X86::VR128RegisterClass) {
13496    // Handle references to XMM physical registers that got mapped into the
13497    // wrong class.  This can happen with constraints like {xmm0} where the
13498    // target independent register mapper will just pick the first match it can
13499    // find, ignoring the required type.
13500    if (VT == MVT::f32)
13501      Res.second = X86::FR32RegisterClass;
13502    else if (VT == MVT::f64)
13503      Res.second = X86::FR64RegisterClass;
13504    else if (X86::VR128RegisterClass->hasType(VT))
13505      Res.second = X86::VR128RegisterClass;
13506  }
13507
13508  return Res;
13509}
13510