X86ISelLowering.cpp revision a54cf176613f9ae8301519a61b8935652c0fb8ae
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the interfaces that X86 uses to lower LLVM code into a 11// selection DAG. 12// 13//===----------------------------------------------------------------------===// 14 15#include "X86.h" 16#include "X86InstrBuilder.h" 17#include "X86ISelLowering.h" 18#include "X86MachineFunctionInfo.h" 19#include "X86TargetMachine.h" 20#include "llvm/CallingConv.h" 21#include "llvm/Constants.h" 22#include "llvm/DerivedTypes.h" 23#include "llvm/GlobalVariable.h" 24#include "llvm/Function.h" 25#include "llvm/Intrinsics.h" 26#include "llvm/ADT/BitVector.h" 27#include "llvm/ADT/VectorExtras.h" 28#include "llvm/CodeGen/CallingConvLower.h" 29#include "llvm/CodeGen/MachineFrameInfo.h" 30#include "llvm/CodeGen/MachineFunction.h" 31#include "llvm/CodeGen/MachineInstrBuilder.h" 32#include "llvm/CodeGen/MachineModuleInfo.h" 33#include "llvm/CodeGen/MachineRegisterInfo.h" 34#include "llvm/CodeGen/PseudoSourceValue.h" 35#include "llvm/CodeGen/SelectionDAG.h" 36#include "llvm/Support/MathExtras.h" 37#include "llvm/Support/Debug.h" 38#include "llvm/Target/TargetOptions.h" 39#include "llvm/ADT/SmallSet.h" 40#include "llvm/ADT/StringExtras.h" 41using namespace llvm; 42 43// Forward declarations. 44static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG); 45 46X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) 47 : TargetLowering(TM) { 48 Subtarget = &TM.getSubtarget<X86Subtarget>(); 49 X86ScalarSSEf64 = Subtarget->hasSSE2(); 50 X86ScalarSSEf32 = Subtarget->hasSSE1(); 51 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; 52 53 bool Fast = false; 54 55 RegInfo = TM.getRegisterInfo(); 56 57 // Set up the TargetLowering object. 58 59 // X86 is weird, it always uses i8 for shift amounts and setcc results. 60 setShiftAmountType(MVT::i8); 61 setSetCCResultContents(ZeroOrOneSetCCResult); 62 setSchedulingPreference(SchedulingForRegPressure); 63 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 64 setStackPointerRegisterToSaveRestore(X86StackPtr); 65 66 if (Subtarget->isTargetDarwin()) { 67 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. 68 setUseUnderscoreSetJmp(false); 69 setUseUnderscoreLongJmp(false); 70 } else if (Subtarget->isTargetMingw()) { 71 // MS runtime is weird: it exports _setjmp, but longjmp! 72 setUseUnderscoreSetJmp(true); 73 setUseUnderscoreLongJmp(false); 74 } else { 75 setUseUnderscoreSetJmp(true); 76 setUseUnderscoreLongJmp(true); 77 } 78 79 // Set up the register classes. 80 addRegisterClass(MVT::i8, X86::GR8RegisterClass); 81 addRegisterClass(MVT::i16, X86::GR16RegisterClass); 82 addRegisterClass(MVT::i32, X86::GR32RegisterClass); 83 if (Subtarget->is64Bit()) 84 addRegisterClass(MVT::i64, X86::GR64RegisterClass); 85 86 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote); 87 88 // We don't accept any truncstore of integer registers. 89 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 90 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 91 setTruncStoreAction(MVT::i64, MVT::i8 , Expand); 92 setTruncStoreAction(MVT::i32, MVT::i16, Expand); 93 setTruncStoreAction(MVT::i32, MVT::i8 , Expand); 94 setTruncStoreAction(MVT::i16, MVT::i8, Expand); 95 96 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this 97 // operation. 98 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); 99 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); 100 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); 101 102 if (Subtarget->is64Bit()) { 103 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); 104 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); 105 } else { 106 if (X86ScalarSSEf64) 107 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP. 108 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); 109 else 110 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); 111 } 112 113 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have 114 // this operation. 115 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); 116 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); 117 // SSE has no i16 to fp conversion, only i32 118 if (X86ScalarSSEf32) { 119 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); 120 // f32 and f64 cases are Legal, f80 case is not 121 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); 122 } else { 123 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); 124 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); 125 } 126 127 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 128 // are Legal, f80 is custom lowered. 129 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); 130 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); 131 132 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have 133 // this operation. 134 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); 135 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); 136 137 if (X86ScalarSSEf32) { 138 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); 139 // f32 and f64 cases are Legal, f80 case is not 140 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); 141 } else { 142 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); 143 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); 144 } 145 146 // Handle FP_TO_UINT by promoting the destination to a larger signed 147 // conversion. 148 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); 149 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); 150 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); 151 152 if (Subtarget->is64Bit()) { 153 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); 154 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); 155 } else { 156 if (X86ScalarSSEf32 && !Subtarget->hasSSE3()) 157 // Expand FP_TO_UINT into a select. 158 // FIXME: We would like to use a Custom expander here eventually to do 159 // the optimal thing for SSE vs. the default expansion in the legalizer. 160 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); 161 else 162 // With SSE3 we can use fisttpll to convert to a signed i64. 163 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); 164 } 165 166 // TODO: when we have SSE, these could be more efficient, by using movd/movq. 167 if (!X86ScalarSSEf64) { 168 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); 169 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); 170 } 171 172 // Scalar integer divide and remainder are lowered to use operations that 173 // produce two results, to match the available instructions. This exposes 174 // the two-result form to trivial CSE, which is able to combine x/y and x%y 175 // into a single instruction. 176 // 177 // Scalar integer multiply-high is also lowered to use two-result 178 // operations, to match the available instructions. However, plain multiply 179 // (low) operations are left as Legal, as there are single-result 180 // instructions for this in x86. Using the two-result multiply instructions 181 // when both high and low results are needed must be arranged by dagcombine. 182 setOperationAction(ISD::MULHS , MVT::i8 , Expand); 183 setOperationAction(ISD::MULHU , MVT::i8 , Expand); 184 setOperationAction(ISD::SDIV , MVT::i8 , Expand); 185 setOperationAction(ISD::UDIV , MVT::i8 , Expand); 186 setOperationAction(ISD::SREM , MVT::i8 , Expand); 187 setOperationAction(ISD::UREM , MVT::i8 , Expand); 188 setOperationAction(ISD::MULHS , MVT::i16 , Expand); 189 setOperationAction(ISD::MULHU , MVT::i16 , Expand); 190 setOperationAction(ISD::SDIV , MVT::i16 , Expand); 191 setOperationAction(ISD::UDIV , MVT::i16 , Expand); 192 setOperationAction(ISD::SREM , MVT::i16 , Expand); 193 setOperationAction(ISD::UREM , MVT::i16 , Expand); 194 setOperationAction(ISD::MULHS , MVT::i32 , Expand); 195 setOperationAction(ISD::MULHU , MVT::i32 , Expand); 196 setOperationAction(ISD::SDIV , MVT::i32 , Expand); 197 setOperationAction(ISD::UDIV , MVT::i32 , Expand); 198 setOperationAction(ISD::SREM , MVT::i32 , Expand); 199 setOperationAction(ISD::UREM , MVT::i32 , Expand); 200 setOperationAction(ISD::MULHS , MVT::i64 , Expand); 201 setOperationAction(ISD::MULHU , MVT::i64 , Expand); 202 setOperationAction(ISD::SDIV , MVT::i64 , Expand); 203 setOperationAction(ISD::UDIV , MVT::i64 , Expand); 204 setOperationAction(ISD::SREM , MVT::i64 , Expand); 205 setOperationAction(ISD::UREM , MVT::i64 , Expand); 206 207 setOperationAction(ISD::BR_JT , MVT::Other, Expand); 208 setOperationAction(ISD::BRCOND , MVT::Other, Custom); 209 setOperationAction(ISD::BR_CC , MVT::Other, Expand); 210 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); 211 if (Subtarget->is64Bit()) 212 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); 213 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); 214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); 215 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 216 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); 217 setOperationAction(ISD::FREM , MVT::f32 , Expand); 218 setOperationAction(ISD::FREM , MVT::f64 , Expand); 219 setOperationAction(ISD::FREM , MVT::f80 , Expand); 220 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); 221 222 setOperationAction(ISD::CTPOP , MVT::i8 , Expand); 223 setOperationAction(ISD::CTTZ , MVT::i8 , Custom); 224 setOperationAction(ISD::CTLZ , MVT::i8 , Custom); 225 setOperationAction(ISD::CTPOP , MVT::i16 , Expand); 226 setOperationAction(ISD::CTTZ , MVT::i16 , Custom); 227 setOperationAction(ISD::CTLZ , MVT::i16 , Custom); 228 setOperationAction(ISD::CTPOP , MVT::i32 , Expand); 229 setOperationAction(ISD::CTTZ , MVT::i32 , Custom); 230 setOperationAction(ISD::CTLZ , MVT::i32 , Custom); 231 if (Subtarget->is64Bit()) { 232 setOperationAction(ISD::CTPOP , MVT::i64 , Expand); 233 setOperationAction(ISD::CTTZ , MVT::i64 , Custom); 234 setOperationAction(ISD::CTLZ , MVT::i64 , Custom); 235 } 236 237 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); 238 setOperationAction(ISD::BSWAP , MVT::i16 , Expand); 239 240 // These should be promoted to a larger select which is supported. 241 setOperationAction(ISD::SELECT , MVT::i1 , Promote); 242 setOperationAction(ISD::SELECT , MVT::i8 , Promote); 243 // X86 wants to expand cmov itself. 244 setOperationAction(ISD::SELECT , MVT::i16 , Custom); 245 setOperationAction(ISD::SELECT , MVT::i32 , Custom); 246 setOperationAction(ISD::SELECT , MVT::f32 , Custom); 247 setOperationAction(ISD::SELECT , MVT::f64 , Custom); 248 setOperationAction(ISD::SELECT , MVT::f80 , Custom); 249 setOperationAction(ISD::SETCC , MVT::i8 , Custom); 250 setOperationAction(ISD::SETCC , MVT::i16 , Custom); 251 setOperationAction(ISD::SETCC , MVT::i32 , Custom); 252 setOperationAction(ISD::SETCC , MVT::f32 , Custom); 253 setOperationAction(ISD::SETCC , MVT::f64 , Custom); 254 setOperationAction(ISD::SETCC , MVT::f80 , Custom); 255 if (Subtarget->is64Bit()) { 256 setOperationAction(ISD::SELECT , MVT::i64 , Custom); 257 setOperationAction(ISD::SETCC , MVT::i64 , Custom); 258 } 259 // X86 ret instruction may pop stack. 260 setOperationAction(ISD::RET , MVT::Other, Custom); 261 if (!Subtarget->is64Bit()) 262 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); 263 264 // Darwin ABI issue. 265 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); 266 setOperationAction(ISD::JumpTable , MVT::i32 , Custom); 267 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); 268 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); 269 if (Subtarget->is64Bit()) 270 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 271 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); 272 if (Subtarget->is64Bit()) { 273 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); 274 setOperationAction(ISD::JumpTable , MVT::i64 , Custom); 275 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); 276 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); 277 } 278 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) 279 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); 280 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); 281 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); 282 if (Subtarget->is64Bit()) { 283 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); 284 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); 285 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); 286 } 287 288 if (Subtarget->hasSSE1()) 289 setOperationAction(ISD::PREFETCH , MVT::Other, Legal); 290 291 if (!Subtarget->hasSSE2()) 292 setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand); 293 294 // Expand certain atomics 295 setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i8, Custom); 296 setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i16, Custom); 297 setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i32, Custom); 298 setOperationAction(ISD::ATOMIC_CMP_SWAP , MVT::i64, Custom); 299 setOperationAction(ISD::ATOMIC_LOAD_SUB , MVT::i32, Expand); 300 301 // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion. 302 setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand); 303 // FIXME - use subtarget debug flags 304 if (!Subtarget->isTargetDarwin() && 305 !Subtarget->isTargetELF() && 306 !Subtarget->isTargetCygMing()) { 307 setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand); 308 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); 309 } 310 311 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 312 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 313 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 314 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 315 if (Subtarget->is64Bit()) { 316 // FIXME: Verify 317 setExceptionPointerRegister(X86::RAX); 318 setExceptionSelectorRegister(X86::RDX); 319 } else { 320 setExceptionPointerRegister(X86::EAX); 321 setExceptionSelectorRegister(X86::EDX); 322 } 323 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 324 325 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); 326 327 setOperationAction(ISD::TRAP, MVT::Other, Legal); 328 329 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 330 setOperationAction(ISD::VASTART , MVT::Other, Custom); 331 setOperationAction(ISD::VAEND , MVT::Other, Expand); 332 if (Subtarget->is64Bit()) { 333 setOperationAction(ISD::VAARG , MVT::Other, Custom); 334 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 335 } else { 336 setOperationAction(ISD::VAARG , MVT::Other, Expand); 337 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 338 } 339 340 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 341 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 342 if (Subtarget->is64Bit()) 343 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 344 if (Subtarget->isTargetCygMing()) 345 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 346 else 347 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 348 349 if (X86ScalarSSEf64) { 350 // f32 and f64 use SSE. 351 // Set up the FP register classes. 352 addRegisterClass(MVT::f32, X86::FR32RegisterClass); 353 addRegisterClass(MVT::f64, X86::FR64RegisterClass); 354 355 // Use ANDPD to simulate FABS. 356 setOperationAction(ISD::FABS , MVT::f64, Custom); 357 setOperationAction(ISD::FABS , MVT::f32, Custom); 358 359 // Use XORP to simulate FNEG. 360 setOperationAction(ISD::FNEG , MVT::f64, Custom); 361 setOperationAction(ISD::FNEG , MVT::f32, Custom); 362 363 // Use ANDPD and ORPD to simulate FCOPYSIGN. 364 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 365 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 366 367 // We don't support sin/cos/fmod 368 setOperationAction(ISD::FSIN , MVT::f64, Expand); 369 setOperationAction(ISD::FCOS , MVT::f64, Expand); 370 setOperationAction(ISD::FSIN , MVT::f32, Expand); 371 setOperationAction(ISD::FCOS , MVT::f32, Expand); 372 373 // Expand FP immediates into loads from the stack, except for the special 374 // cases we handle. 375 addLegalFPImmediate(APFloat(+0.0)); // xorpd 376 addLegalFPImmediate(APFloat(+0.0f)); // xorps 377 378 // Floating truncations from f80 and extensions to f80 go through memory. 379 // If optimizing, we lie about this though and handle it in 380 // InstructionSelectPreprocess so that dagcombine2 can hack on these. 381 if (Fast) { 382 setConvertAction(MVT::f32, MVT::f80, Expand); 383 setConvertAction(MVT::f64, MVT::f80, Expand); 384 setConvertAction(MVT::f80, MVT::f32, Expand); 385 setConvertAction(MVT::f80, MVT::f64, Expand); 386 } 387 } else if (X86ScalarSSEf32) { 388 // Use SSE for f32, x87 for f64. 389 // Set up the FP register classes. 390 addRegisterClass(MVT::f32, X86::FR32RegisterClass); 391 addRegisterClass(MVT::f64, X86::RFP64RegisterClass); 392 393 // Use ANDPS to simulate FABS. 394 setOperationAction(ISD::FABS , MVT::f32, Custom); 395 396 // Use XORP to simulate FNEG. 397 setOperationAction(ISD::FNEG , MVT::f32, Custom); 398 399 setOperationAction(ISD::UNDEF, MVT::f64, Expand); 400 401 // Use ANDPS and ORPS to simulate FCOPYSIGN. 402 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 403 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 404 405 // We don't support sin/cos/fmod 406 setOperationAction(ISD::FSIN , MVT::f32, Expand); 407 setOperationAction(ISD::FCOS , MVT::f32, Expand); 408 409 // Special cases we handle for FP constants. 410 addLegalFPImmediate(APFloat(+0.0f)); // xorps 411 addLegalFPImmediate(APFloat(+0.0)); // FLD0 412 addLegalFPImmediate(APFloat(+1.0)); // FLD1 413 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS 414 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS 415 416 // SSE <-> X87 conversions go through memory. If optimizing, we lie about 417 // this though and handle it in InstructionSelectPreprocess so that 418 // dagcombine2 can hack on these. 419 if (Fast) { 420 setConvertAction(MVT::f32, MVT::f64, Expand); 421 setConvertAction(MVT::f32, MVT::f80, Expand); 422 setConvertAction(MVT::f80, MVT::f32, Expand); 423 setConvertAction(MVT::f64, MVT::f32, Expand); 424 // And x87->x87 truncations also. 425 setConvertAction(MVT::f80, MVT::f64, Expand); 426 } 427 428 if (!UnsafeFPMath) { 429 setOperationAction(ISD::FSIN , MVT::f64 , Expand); 430 setOperationAction(ISD::FCOS , MVT::f64 , Expand); 431 } 432 } else { 433 // f32 and f64 in x87. 434 // Set up the FP register classes. 435 addRegisterClass(MVT::f64, X86::RFP64RegisterClass); 436 addRegisterClass(MVT::f32, X86::RFP32RegisterClass); 437 438 setOperationAction(ISD::UNDEF, MVT::f64, Expand); 439 setOperationAction(ISD::UNDEF, MVT::f32, Expand); 440 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 441 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 442 443 // Floating truncations go through memory. If optimizing, we lie about 444 // this though and handle it in InstructionSelectPreprocess so that 445 // dagcombine2 can hack on these. 446 if (Fast) { 447 setConvertAction(MVT::f80, MVT::f32, Expand); 448 setConvertAction(MVT::f64, MVT::f32, Expand); 449 setConvertAction(MVT::f80, MVT::f64, Expand); 450 } 451 452 if (!UnsafeFPMath) { 453 setOperationAction(ISD::FSIN , MVT::f64 , Expand); 454 setOperationAction(ISD::FCOS , MVT::f64 , Expand); 455 } 456 addLegalFPImmediate(APFloat(+0.0)); // FLD0 457 addLegalFPImmediate(APFloat(+1.0)); // FLD1 458 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS 459 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS 460 addLegalFPImmediate(APFloat(+0.0f)); // FLD0 461 addLegalFPImmediate(APFloat(+1.0f)); // FLD1 462 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS 463 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS 464 } 465 466 // Long double always uses X87. 467 addRegisterClass(MVT::f80, X86::RFP80RegisterClass); 468 setOperationAction(ISD::UNDEF, MVT::f80, Expand); 469 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); 470 { 471 APFloat TmpFlt(+0.0); 472 TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven); 473 addLegalFPImmediate(TmpFlt); // FLD0 474 TmpFlt.changeSign(); 475 addLegalFPImmediate(TmpFlt); // FLD0/FCHS 476 APFloat TmpFlt2(+1.0); 477 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven); 478 addLegalFPImmediate(TmpFlt2); // FLD1 479 TmpFlt2.changeSign(); 480 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS 481 } 482 483 if (!UnsafeFPMath) { 484 setOperationAction(ISD::FSIN , MVT::f80 , Expand); 485 setOperationAction(ISD::FCOS , MVT::f80 , Expand); 486 } 487 488 // Always use a library call for pow. 489 setOperationAction(ISD::FPOW , MVT::f32 , Expand); 490 setOperationAction(ISD::FPOW , MVT::f64 , Expand); 491 setOperationAction(ISD::FPOW , MVT::f80 , Expand); 492 493 // First set operation action for all vector types to expand. Then we 494 // will selectively turn on ones that can be effectively codegen'd. 495 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 496 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { 497 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand); 498 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand); 499 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand); 500 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand); 501 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand); 502 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand); 503 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand); 504 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand); 505 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand); 506 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand); 507 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand); 508 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand); 509 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand); 510 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand); 511 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::SimpleValueType)VT, Expand); 512 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::SimpleValueType)VT, Expand); 513 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand); 514 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand); 515 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand); 516 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand); 517 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand); 518 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand); 519 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); 520 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 521 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 522 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand); 523 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand); 524 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand); 525 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand); 526 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand); 527 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand); 528 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand); 529 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand); 530 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand); 531 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand); 532 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand); 533 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); 534 setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand); 535 } 536 537 if (Subtarget->hasMMX()) { 538 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); 539 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); 540 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); 541 addRegisterClass(MVT::v2f32, X86::VR64RegisterClass); 542 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass); 543 544 // FIXME: add MMX packed arithmetics 545 546 setOperationAction(ISD::ADD, MVT::v8i8, Legal); 547 setOperationAction(ISD::ADD, MVT::v4i16, Legal); 548 setOperationAction(ISD::ADD, MVT::v2i32, Legal); 549 setOperationAction(ISD::ADD, MVT::v1i64, Legal); 550 551 setOperationAction(ISD::SUB, MVT::v8i8, Legal); 552 setOperationAction(ISD::SUB, MVT::v4i16, Legal); 553 setOperationAction(ISD::SUB, MVT::v2i32, Legal); 554 setOperationAction(ISD::SUB, MVT::v1i64, Legal); 555 556 setOperationAction(ISD::MULHS, MVT::v4i16, Legal); 557 setOperationAction(ISD::MUL, MVT::v4i16, Legal); 558 559 setOperationAction(ISD::AND, MVT::v8i8, Promote); 560 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64); 561 setOperationAction(ISD::AND, MVT::v4i16, Promote); 562 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64); 563 setOperationAction(ISD::AND, MVT::v2i32, Promote); 564 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64); 565 setOperationAction(ISD::AND, MVT::v1i64, Legal); 566 567 setOperationAction(ISD::OR, MVT::v8i8, Promote); 568 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64); 569 setOperationAction(ISD::OR, MVT::v4i16, Promote); 570 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64); 571 setOperationAction(ISD::OR, MVT::v2i32, Promote); 572 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64); 573 setOperationAction(ISD::OR, MVT::v1i64, Legal); 574 575 setOperationAction(ISD::XOR, MVT::v8i8, Promote); 576 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64); 577 setOperationAction(ISD::XOR, MVT::v4i16, Promote); 578 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64); 579 setOperationAction(ISD::XOR, MVT::v2i32, Promote); 580 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64); 581 setOperationAction(ISD::XOR, MVT::v1i64, Legal); 582 583 setOperationAction(ISD::LOAD, MVT::v8i8, Promote); 584 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64); 585 setOperationAction(ISD::LOAD, MVT::v4i16, Promote); 586 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64); 587 setOperationAction(ISD::LOAD, MVT::v2i32, Promote); 588 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64); 589 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 590 AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64); 591 setOperationAction(ISD::LOAD, MVT::v1i64, Legal); 592 593 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); 594 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); 595 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); 596 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom); 597 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); 598 599 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); 600 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); 601 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); 602 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); 603 604 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom); 605 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom); 606 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom); 607 } 608 609 if (Subtarget->hasSSE1()) { 610 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); 611 612 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 613 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 614 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 615 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 616 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 617 setOperationAction(ISD::FNEG, MVT::v4f32, Custom); 618 setOperationAction(ISD::LOAD, MVT::v4f32, Legal); 619 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 620 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); 621 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 622 setOperationAction(ISD::SELECT, MVT::v4f32, Custom); 623 setOperationAction(ISD::VSETCC, MVT::v4f32, Legal); 624 } 625 626 if (Subtarget->hasSSE2()) { 627 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); 628 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); 629 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); 630 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); 631 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); 632 633 setOperationAction(ISD::ADD, MVT::v16i8, Legal); 634 setOperationAction(ISD::ADD, MVT::v8i16, Legal); 635 setOperationAction(ISD::ADD, MVT::v4i32, Legal); 636 setOperationAction(ISD::ADD, MVT::v2i64, Legal); 637 setOperationAction(ISD::SUB, MVT::v16i8, Legal); 638 setOperationAction(ISD::SUB, MVT::v8i16, Legal); 639 setOperationAction(ISD::SUB, MVT::v4i32, Legal); 640 setOperationAction(ISD::SUB, MVT::v2i64, Legal); 641 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 642 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 643 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 644 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 645 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 646 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 647 setOperationAction(ISD::FNEG, MVT::v2f64, Custom); 648 649 setOperationAction(ISD::VSETCC, MVT::v2f64, Legal); 650 setOperationAction(ISD::VSETCC, MVT::v16i8, Legal); 651 setOperationAction(ISD::VSETCC, MVT::v8i16, Legal); 652 setOperationAction(ISD::VSETCC, MVT::v4i32, Legal); 653 setOperationAction(ISD::VSETCC, MVT::v2i64, Legal); 654 655 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); 656 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); 657 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 658 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 659 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 660 661 // Custom lower build_vector, vector_shuffle, and extract_vector_elt. 662 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) { 663 MVT VT = (MVT::SimpleValueType)i; 664 // Do not attempt to custom lower non-power-of-2 vectors 665 if (!isPowerOf2_32(VT.getVectorNumElements())) 666 continue; 667 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 668 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 669 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 670 } 671 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 672 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 673 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); 674 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); 675 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 676 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 677 if (Subtarget->is64Bit()) { 678 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 679 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); 680 } 681 682 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. 683 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { 684 setOperationAction(ISD::AND, (MVT::SimpleValueType)VT, Promote); 685 AddPromotedToType (ISD::AND, (MVT::SimpleValueType)VT, MVT::v2i64); 686 setOperationAction(ISD::OR, (MVT::SimpleValueType)VT, Promote); 687 AddPromotedToType (ISD::OR, (MVT::SimpleValueType)VT, MVT::v2i64); 688 setOperationAction(ISD::XOR, (MVT::SimpleValueType)VT, Promote); 689 AddPromotedToType (ISD::XOR, (MVT::SimpleValueType)VT, MVT::v2i64); 690 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Promote); 691 AddPromotedToType (ISD::LOAD, (MVT::SimpleValueType)VT, MVT::v2i64); 692 setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote); 693 AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64); 694 } 695 696 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 697 698 // Custom lower v2i64 and v2f64 selects. 699 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 700 setOperationAction(ISD::LOAD, MVT::v2i64, Legal); 701 setOperationAction(ISD::SELECT, MVT::v2f64, Custom); 702 setOperationAction(ISD::SELECT, MVT::v2i64, Custom); 703 704 } 705 706 if (Subtarget->hasSSE41()) { 707 // FIXME: Do we need to handle scalar-to-vector here? 708 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 709 setOperationAction(ISD::MUL, MVT::v2i64, Legal); 710 711 // i8 and i16 vectors are custom , because the source register and source 712 // source memory operand types are not the same width. f32 vectors are 713 // custom since the immediate controlling the insert encodes additional 714 // information. 715 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 716 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 717 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); 718 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 719 720 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); 721 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); 722 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); 723 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 724 725 if (Subtarget->is64Bit()) { 726 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 727 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 728 } 729 } 730 731 // We want to custom lower some of our intrinsics. 732 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 733 734 // We have target-specific dag combine patterns for the following nodes: 735 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 736 setTargetDAGCombine(ISD::BUILD_VECTOR); 737 setTargetDAGCombine(ISD::SELECT); 738 setTargetDAGCombine(ISD::STORE); 739 740 computeRegisterProperties(); 741 742 // FIXME: These should be based on subtarget info. Plus, the values should 743 // be smaller when we are in optimizing for size mode. 744 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores 745 maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores 746 maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores 747 allowUnalignedMemoryAccesses = true; // x86 supports it! 748 setPrefLoopAlignment(16); 749} 750 751 752MVT X86TargetLowering::getSetCCResultType(const SDOperand &) const { 753 return MVT::i8; 754} 755 756 757/// getMaxByValAlign - Helper for getByValTypeAlignment to determine 758/// the desired ByVal argument alignment. 759static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) { 760 if (MaxAlign == 16) 761 return; 762 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { 763 if (VTy->getBitWidth() == 128) 764 MaxAlign = 16; 765 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 766 unsigned EltAlign = 0; 767 getMaxByValAlign(ATy->getElementType(), EltAlign); 768 if (EltAlign > MaxAlign) 769 MaxAlign = EltAlign; 770 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { 771 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 772 unsigned EltAlign = 0; 773 getMaxByValAlign(STy->getElementType(i), EltAlign); 774 if (EltAlign > MaxAlign) 775 MaxAlign = EltAlign; 776 if (MaxAlign == 16) 777 break; 778 } 779 } 780 return; 781} 782 783/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 784/// function arguments in the caller parameter area. For X86, aggregates 785/// that contain SSE vectors are placed at 16-byte boundaries while the rest 786/// are at 4-byte boundaries. 787unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const { 788 if (Subtarget->is64Bit()) 789 return getTargetData()->getABITypeAlignment(Ty); 790 unsigned Align = 4; 791 if (Subtarget->hasSSE1()) 792 getMaxByValAlign(Ty, Align); 793 return Align; 794} 795 796/// getOptimalMemOpType - Returns the target specific optimal type for load 797/// and store operations as a result of memset, memcpy, and memmove 798/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for 799/// determining it. 800MVT 801X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align, 802 bool isSrcConst, bool isSrcStr) const { 803 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16) 804 return MVT::v4i32; 805 if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16) 806 return MVT::v4f32; 807 if (Subtarget->is64Bit() && Size >= 8) 808 return MVT::i64; 809 return MVT::i32; 810} 811 812 813/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC 814/// jumptable. 815SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table, 816 SelectionDAG &DAG) const { 817 if (usesGlobalOffsetTable()) 818 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy()); 819 if (!Subtarget->isPICStyleRIPRel()) 820 return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()); 821 return Table; 822} 823 824//===----------------------------------------------------------------------===// 825// Return Value Calling Convention Implementation 826//===----------------------------------------------------------------------===// 827 828#include "X86GenCallingConv.inc" 829 830/// LowerRET - Lower an ISD::RET node. 831SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) { 832 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args"); 833 834 SmallVector<CCValAssign, 16> RVLocs; 835 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv(); 836 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 837 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs); 838 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86); 839 840 // If this is the first return lowered for this function, add the regs to the 841 // liveout set for the function. 842 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { 843 for (unsigned i = 0; i != RVLocs.size(); ++i) 844 if (RVLocs[i].isRegLoc()) 845 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); 846 } 847 SDOperand Chain = Op.getOperand(0); 848 849 // Handle tail call return. 850 Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL); 851 if (Chain.getOpcode() == X86ISD::TAILCALL) { 852 SDOperand TailCall = Chain; 853 SDOperand TargetAddress = TailCall.getOperand(1); 854 SDOperand StackAdjustment = TailCall.getOperand(2); 855 assert(((TargetAddress.getOpcode() == ISD::Register && 856 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX || 857 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) || 858 TargetAddress.getOpcode() == ISD::TargetExternalSymbol || 859 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) && 860 "Expecting an global address, external symbol, or register"); 861 assert(StackAdjustment.getOpcode() == ISD::Constant && 862 "Expecting a const value"); 863 864 SmallVector<SDOperand,8> Operands; 865 Operands.push_back(Chain.getOperand(0)); 866 Operands.push_back(TargetAddress); 867 Operands.push_back(StackAdjustment); 868 // Copy registers used by the call. Last operand is a flag so it is not 869 // copied. 870 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) { 871 Operands.push_back(Chain.getOperand(i)); 872 } 873 return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0], 874 Operands.size()); 875 } 876 877 // Regular return. 878 SDOperand Flag; 879 880 SmallVector<SDOperand, 6> RetOps; 881 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 882 // Operand #1 = Bytes To Pop 883 RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); 884 885 // Copy the result values into the output registers. 886 for (unsigned i = 0; i != RVLocs.size(); ++i) { 887 CCValAssign &VA = RVLocs[i]; 888 assert(VA.isRegLoc() && "Can only return in registers!"); 889 SDOperand ValToCopy = Op.getOperand(i*2+1); 890 891 // Returns in ST0/ST1 are handled specially: these are pushed as operands to 892 // the RET instruction and handled by the FP Stackifier. 893 if (RVLocs[i].getLocReg() == X86::ST0 || 894 RVLocs[i].getLocReg() == X86::ST1) { 895 // If this is a copy from an xmm register to ST(0), use an FPExtend to 896 // change the value to the FP stack register class. 897 if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) 898 ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy); 899 RetOps.push_back(ValToCopy); 900 // Don't emit a copytoreg. 901 continue; 902 } 903 904 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag); 905 Flag = Chain.getValue(1); 906 } 907 908 // The x86-64 ABI for returning structs by value requires that we copy 909 // the sret argument into %rax for the return. We saved the argument into 910 // a virtual register in the entry block, so now we copy the value out 911 // and into %rax. 912 if (Subtarget->is64Bit() && 913 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { 914 MachineFunction &MF = DAG.getMachineFunction(); 915 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 916 unsigned Reg = FuncInfo->getSRetReturnReg(); 917 if (!Reg) { 918 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); 919 FuncInfo->setSRetReturnReg(Reg); 920 } 921 SDOperand Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy()); 922 923 Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag); 924 Flag = Chain.getValue(1); 925 } 926 927 RetOps[0] = Chain; // Update chain. 928 929 // Add the flag if we have it. 930 if (Flag.Val) 931 RetOps.push_back(Flag); 932 933 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size()); 934} 935 936 937/// LowerCallResult - Lower the result values of an ISD::CALL into the 938/// appropriate copies out of appropriate physical registers. This assumes that 939/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call 940/// being lowered. The returns a SDNode with the same number of values as the 941/// ISD::CALL. 942SDNode *X86TargetLowering:: 943LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall, 944 unsigned CallingConv, SelectionDAG &DAG) { 945 946 // Assign locations to each value returned by this call. 947 SmallVector<CCValAssign, 16> RVLocs; 948 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0; 949 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs); 950 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86); 951 952 SmallVector<SDOperand, 8> ResultVals; 953 954 // Copy all of the result registers out of their specified physreg. 955 for (unsigned i = 0; i != RVLocs.size(); ++i) { 956 MVT CopyVT = RVLocs[i].getValVT(); 957 958 // If this is a call to a function that returns an fp value on the floating 959 // point stack, but where we prefer to use the value in xmm registers, copy 960 // it out as F80 and use a truncate to move it from fp stack reg to xmm reg. 961 if (RVLocs[i].getLocReg() == X86::ST0 && 962 isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) { 963 CopyVT = MVT::f80; 964 } 965 966 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(), 967 CopyVT, InFlag).getValue(1); 968 SDOperand Val = Chain.getValue(0); 969 InFlag = Chain.getValue(2); 970 971 if (CopyVT != RVLocs[i].getValVT()) { 972 // Round the F80 the right size, which also moves to the appropriate xmm 973 // register. 974 Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val, 975 // This truncation won't change the value. 976 DAG.getIntPtrConstant(1)); 977 } 978 979 ResultVals.push_back(Val); 980 } 981 982 // Merge everything together with a MERGE_VALUES node. 983 ResultVals.push_back(Chain); 984 return DAG.getMergeValues(TheCall->getVTList(), &ResultVals[0], 985 ResultVals.size()).Val; 986} 987 988 989//===----------------------------------------------------------------------===// 990// C & StdCall & Fast Calling Convention implementation 991//===----------------------------------------------------------------------===// 992// StdCall calling convention seems to be standard for many Windows' API 993// routines and around. It differs from C calling convention just a little: 994// callee should clean up the stack, not caller. Symbols should be also 995// decorated in some fancy way :) It doesn't support any vector arguments. 996// For info on fast calling convention see Fast Calling Convention (tail call) 997// implementation LowerX86_32FastCCCallTo. 998 999/// AddLiveIn - This helper function adds the specified physical register to the 1000/// MachineFunction as a live in value. It also creates a corresponding virtual 1001/// register for it. 1002static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, 1003 const TargetRegisterClass *RC) { 1004 assert(RC->contains(PReg) && "Not the correct regclass!"); 1005 unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); 1006 MF.getRegInfo().addLiveIn(PReg, VReg); 1007 return VReg; 1008} 1009 1010/// CallIsStructReturn - Determines whether a CALL node uses struct return 1011/// semantics. 1012static bool CallIsStructReturn(SDOperand Op) { 1013 unsigned NumOps = (Op.getNumOperands() - 5) / 2; 1014 if (!NumOps) 1015 return false; 1016 1017 return cast<ARG_FLAGSSDNode>(Op.getOperand(6))->getArgFlags().isSRet(); 1018} 1019 1020/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct 1021/// return semantics. 1022static bool ArgsAreStructReturn(SDOperand Op) { 1023 unsigned NumArgs = Op.Val->getNumValues() - 1; 1024 if (!NumArgs) 1025 return false; 1026 1027 return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet(); 1028} 1029 1030/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires 1031/// the callee to pop its own arguments. Callee pop is necessary to support tail 1032/// calls. 1033bool X86TargetLowering::IsCalleePop(SDOperand Op) { 1034 bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; 1035 if (IsVarArg) 1036 return false; 1037 1038 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) { 1039 default: 1040 return false; 1041 case CallingConv::X86_StdCall: 1042 return !Subtarget->is64Bit(); 1043 case CallingConv::X86_FastCall: 1044 return !Subtarget->is64Bit(); 1045 case CallingConv::Fast: 1046 return PerformTailCallOpt; 1047 } 1048} 1049 1050/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or 1051/// FORMAL_ARGUMENTS node. 1052CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const { 1053 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 1054 1055 if (Subtarget->is64Bit()) { 1056 if (Subtarget->isTargetWin64()) 1057 return CC_X86_Win64_C; 1058 else { 1059 if (CC == CallingConv::Fast && PerformTailCallOpt) 1060 return CC_X86_64_TailCall; 1061 else 1062 return CC_X86_64_C; 1063 } 1064 } 1065 1066 if (CC == CallingConv::X86_FastCall) 1067 return CC_X86_32_FastCall; 1068 else if (CC == CallingConv::Fast && PerformTailCallOpt) 1069 return CC_X86_32_TailCall; 1070 else 1071 return CC_X86_32_C; 1072} 1073 1074/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to 1075/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node. 1076NameDecorationStyle 1077X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) { 1078 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 1079 if (CC == CallingConv::X86_FastCall) 1080 return FastCall; 1081 else if (CC == CallingConv::X86_StdCall) 1082 return StdCall; 1083 return None; 1084} 1085 1086 1087/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer 1088/// in a register before calling. 1089bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) { 1090 return !IsTailCall && !Is64Bit && 1091 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1092 Subtarget->isPICStyleGOT(); 1093} 1094 1095/// CallRequiresFnAddressInReg - Check whether the call requires the function 1096/// address to be loaded in a register. 1097bool 1098X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) { 1099 return !Is64Bit && IsTailCall && 1100 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1101 Subtarget->isPICStyleGOT(); 1102} 1103 1104/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 1105/// by "Src" to address "Dst" with size and alignment information specified by 1106/// the specific parameter attribute. The copy will be passed as a byval 1107/// function parameter. 1108static SDOperand 1109CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain, 1110 ISD::ArgFlagsTy Flags, SelectionDAG &DAG) { 1111 SDOperand SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 1112 return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(), 1113 /*AlwaysInline=*/true, NULL, 0, NULL, 0); 1114} 1115 1116SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG, 1117 const CCValAssign &VA, 1118 MachineFrameInfo *MFI, 1119 unsigned CC, 1120 SDOperand Root, unsigned i) { 1121 // Create the nodes corresponding to a load from this parameter slot. 1122 ISD::ArgFlagsTy Flags = 1123 cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags(); 1124 bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt; 1125 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); 1126 1127 // FIXME: For now, all byval parameter objects are marked mutable. This can be 1128 // changed with more analysis. 1129 // In case of tail call optimization mark all arguments mutable. Since they 1130 // could be overwritten by lowering of arguments in case of a tail call. 1131 int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8, 1132 VA.getLocMemOffset(), isImmutable); 1133 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); 1134 if (Flags.isByVal()) 1135 return FIN; 1136 return DAG.getLoad(VA.getValVT(), Root, FIN, 1137 PseudoSourceValue::getFixedStack(FI), 0); 1138} 1139 1140SDOperand 1141X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { 1142 MachineFunction &MF = DAG.getMachineFunction(); 1143 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1144 1145 const Function* Fn = MF.getFunction(); 1146 if (Fn->hasExternalLinkage() && 1147 Subtarget->isTargetCygMing() && 1148 Fn->getName() == "main") 1149 FuncInfo->setForceFramePointer(true); 1150 1151 // Decorate the function name. 1152 FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op)); 1153 1154 MachineFrameInfo *MFI = MF.getFrameInfo(); 1155 SDOperand Root = Op.getOperand(0); 1156 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; 1157 unsigned CC = MF.getFunction()->getCallingConv(); 1158 bool Is64Bit = Subtarget->is64Bit(); 1159 bool IsWin64 = Subtarget->isTargetWin64(); 1160 1161 assert(!(isVarArg && CC == CallingConv::Fast) && 1162 "Var args not supported with calling convention fastcc"); 1163 1164 // Assign locations to all of the incoming arguments. 1165 SmallVector<CCValAssign, 16> ArgLocs; 1166 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); 1167 CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op)); 1168 1169 SmallVector<SDOperand, 8> ArgValues; 1170 unsigned LastVal = ~0U; 1171 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1172 CCValAssign &VA = ArgLocs[i]; 1173 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later 1174 // places. 1175 assert(VA.getValNo() != LastVal && 1176 "Don't support value assigned to multiple locs yet"); 1177 LastVal = VA.getValNo(); 1178 1179 if (VA.isRegLoc()) { 1180 MVT RegVT = VA.getLocVT(); 1181 TargetRegisterClass *RC; 1182 if (RegVT == MVT::i32) 1183 RC = X86::GR32RegisterClass; 1184 else if (Is64Bit && RegVT == MVT::i64) 1185 RC = X86::GR64RegisterClass; 1186 else if (RegVT == MVT::f32) 1187 RC = X86::FR32RegisterClass; 1188 else if (RegVT == MVT::f64) 1189 RC = X86::FR64RegisterClass; 1190 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128) 1191 RC = X86::VR128RegisterClass; 1192 else if (RegVT.isVector()) { 1193 assert(RegVT.getSizeInBits() == 64); 1194 if (!Is64Bit) 1195 RC = X86::VR64RegisterClass; // MMX values are passed in MMXs. 1196 else { 1197 // Darwin calling convention passes MMX values in either GPRs or 1198 // XMMs in x86-64. Other targets pass them in memory. 1199 if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) { 1200 RC = X86::VR128RegisterClass; // MMX values are passed in XMMs. 1201 RegVT = MVT::v2i64; 1202 } else { 1203 RC = X86::GR64RegisterClass; // v1i64 values are passed in GPRs. 1204 RegVT = MVT::i64; 1205 } 1206 } 1207 } else { 1208 assert(0 && "Unknown argument type!"); 1209 } 1210 1211 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC); 1212 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT); 1213 1214 // If this is an 8 or 16-bit value, it is really passed promoted to 32 1215 // bits. Insert an assert[sz]ext to capture this, then truncate to the 1216 // right size. 1217 if (VA.getLocInfo() == CCValAssign::SExt) 1218 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue, 1219 DAG.getValueType(VA.getValVT())); 1220 else if (VA.getLocInfo() == CCValAssign::ZExt) 1221 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue, 1222 DAG.getValueType(VA.getValVT())); 1223 1224 if (VA.getLocInfo() != CCValAssign::Full) 1225 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue); 1226 1227 // Handle MMX values passed in GPRs. 1228 if (Is64Bit && RegVT != VA.getLocVT()) { 1229 if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass) 1230 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue); 1231 else if (RC == X86::VR128RegisterClass) { 1232 ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue, 1233 DAG.getConstant(0, MVT::i64)); 1234 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue); 1235 } 1236 } 1237 1238 ArgValues.push_back(ArgValue); 1239 } else { 1240 assert(VA.isMemLoc()); 1241 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i)); 1242 } 1243 } 1244 1245 // The x86-64 ABI for returning structs by value requires that we copy 1246 // the sret argument into %rax for the return. Save the argument into 1247 // a virtual register so that we can access it from the return points. 1248 if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { 1249 MachineFunction &MF = DAG.getMachineFunction(); 1250 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1251 unsigned Reg = FuncInfo->getSRetReturnReg(); 1252 if (!Reg) { 1253 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); 1254 FuncInfo->setSRetReturnReg(Reg); 1255 } 1256 SDOperand Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]); 1257 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root); 1258 } 1259 1260 unsigned StackSize = CCInfo.getNextStackOffset(); 1261 // align stack specially for tail calls 1262 if (CC == CallingConv::Fast) 1263 StackSize = GetAlignedArgumentStackSize(StackSize, DAG); 1264 1265 // If the function takes variable number of arguments, make a frame index for 1266 // the start of the first vararg value... for expansion of llvm.va_start. 1267 if (isVarArg) { 1268 if (Is64Bit || CC != CallingConv::X86_FastCall) { 1269 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize); 1270 } 1271 if (Is64Bit) { 1272 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; 1273 1274 // FIXME: We should really autogenerate these arrays 1275 static const unsigned GPR64ArgRegsWin64[] = { 1276 X86::RCX, X86::RDX, X86::R8, X86::R9 1277 }; 1278 static const unsigned XMMArgRegsWin64[] = { 1279 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 1280 }; 1281 static const unsigned GPR64ArgRegs64Bit[] = { 1282 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 1283 }; 1284 static const unsigned XMMArgRegs64Bit[] = { 1285 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 1286 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 1287 }; 1288 const unsigned *GPR64ArgRegs, *XMMArgRegs; 1289 1290 if (IsWin64) { 1291 TotalNumIntRegs = 4; TotalNumXMMRegs = 4; 1292 GPR64ArgRegs = GPR64ArgRegsWin64; 1293 XMMArgRegs = XMMArgRegsWin64; 1294 } else { 1295 TotalNumIntRegs = 6; TotalNumXMMRegs = 8; 1296 GPR64ArgRegs = GPR64ArgRegs64Bit; 1297 XMMArgRegs = XMMArgRegs64Bit; 1298 } 1299 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 1300 TotalNumIntRegs); 1301 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 1302 TotalNumXMMRegs); 1303 1304 // For X86-64, if there are vararg parameters that are passed via 1305 // registers, then we must store them to their spots on the stack so they 1306 // may be loaded by deferencing the result of va_next. 1307 VarArgsGPOffset = NumIntRegs * 8; 1308 VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16; 1309 RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 + 1310 TotalNumXMMRegs * 16, 16); 1311 1312 // Store the integer parameter registers. 1313 SmallVector<SDOperand, 8> MemOps; 1314 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); 1315 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, 1316 DAG.getIntPtrConstant(VarArgsGPOffset)); 1317 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { 1318 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs], 1319 X86::GR64RegisterClass); 1320 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64); 1321 SDOperand Store = 1322 DAG.getStore(Val.getValue(1), Val, FIN, 1323 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0); 1324 MemOps.push_back(Store); 1325 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, 1326 DAG.getIntPtrConstant(8)); 1327 } 1328 1329 // Now store the XMM (fp + vector) parameter registers. 1330 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN, 1331 DAG.getIntPtrConstant(VarArgsFPOffset)); 1332 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { 1333 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], 1334 X86::VR128RegisterClass); 1335 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32); 1336 SDOperand Store = 1337 DAG.getStore(Val.getValue(1), Val, FIN, 1338 PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0); 1339 MemOps.push_back(Store); 1340 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, 1341 DAG.getIntPtrConstant(16)); 1342 } 1343 if (!MemOps.empty()) 1344 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, 1345 &MemOps[0], MemOps.size()); 1346 } 1347 } 1348 1349 // Make sure the instruction takes 8n+4 bytes to make sure the start of the 1350 // arguments and the arguments after the retaddr has been pushed are 1351 // aligned. 1352 if (!Is64Bit && CC == CallingConv::X86_FastCall && 1353 !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() && 1354 (StackSize & 7) == 0) 1355 StackSize += 4; 1356 1357 ArgValues.push_back(Root); 1358 1359 // Some CCs need callee pop. 1360 if (IsCalleePop(Op)) { 1361 BytesToPopOnReturn = StackSize; // Callee pops everything. 1362 BytesCallerReserves = 0; 1363 } else { 1364 BytesToPopOnReturn = 0; // Callee pops nothing. 1365 // If this is an sret function, the return should pop the hidden pointer. 1366 if (!Is64Bit && ArgsAreStructReturn(Op)) 1367 BytesToPopOnReturn = 4; 1368 BytesCallerReserves = StackSize; 1369 } 1370 1371 if (!Is64Bit) { 1372 RegSaveFrameIndex = 0xAAAAAAA; // RegSaveFrameIndex is X86-64 only. 1373 if (CC == CallingConv::X86_FastCall) 1374 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. 1375 } 1376 1377 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn); 1378 1379 // Return the new list of results. 1380 return DAG.getMergeValues(Op.Val->getVTList(), &ArgValues[0], 1381 ArgValues.size()).getValue(Op.ResNo); 1382} 1383 1384SDOperand 1385X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG, 1386 const SDOperand &StackPtr, 1387 const CCValAssign &VA, 1388 SDOperand Chain, 1389 SDOperand Arg) { 1390 unsigned LocMemOffset = VA.getLocMemOffset(); 1391 SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset); 1392 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); 1393 ISD::ArgFlagsTy Flags = 1394 cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->getArgFlags(); 1395 if (Flags.isByVal()) { 1396 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG); 1397 } 1398 return DAG.getStore(Chain, Arg, PtrOff, 1399 PseudoSourceValue::getStack(), LocMemOffset); 1400} 1401 1402/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call 1403/// optimization is performed and it is required. 1404SDOperand 1405X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, 1406 SDOperand &OutRetAddr, 1407 SDOperand Chain, 1408 bool IsTailCall, 1409 bool Is64Bit, 1410 int FPDiff) { 1411 if (!IsTailCall || FPDiff==0) return Chain; 1412 1413 // Adjust the Return address stack slot. 1414 MVT VT = getPointerTy(); 1415 OutRetAddr = getReturnAddressFrameIndex(DAG); 1416 // Load the "old" Return address. 1417 OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0); 1418 return SDOperand(OutRetAddr.Val, 1); 1419} 1420 1421/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call 1422/// optimization is performed and it is required (FPDiff!=0). 1423static SDOperand 1424EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, 1425 SDOperand Chain, SDOperand RetAddrFrIdx, 1426 bool Is64Bit, int FPDiff) { 1427 // Store the return address to the appropriate stack slot. 1428 if (!FPDiff) return Chain; 1429 // Calculate the new stack slot for the return address. 1430 int SlotSize = Is64Bit ? 8 : 4; 1431 int NewReturnAddrFI = 1432 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize); 1433 MVT VT = Is64Bit ? MVT::i64 : MVT::i32; 1434 SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); 1435 Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx, 1436 PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0); 1437 return Chain; 1438} 1439 1440SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) { 1441 MachineFunction &MF = DAG.getMachineFunction(); 1442 SDOperand Chain = Op.getOperand(0); 1443 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 1444 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; 1445 bool IsTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0 1446 && CC == CallingConv::Fast && PerformTailCallOpt; 1447 SDOperand Callee = Op.getOperand(4); 1448 bool Is64Bit = Subtarget->is64Bit(); 1449 bool IsStructRet = CallIsStructReturn(Op); 1450 1451 assert(!(isVarArg && CC == CallingConv::Fast) && 1452 "Var args not supported with calling convention fastcc"); 1453 1454 // Analyze operands of the call, assigning locations to each operand. 1455 SmallVector<CCValAssign, 16> ArgLocs; 1456 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs); 1457 CCInfo.AnalyzeCallOperands(Op.Val, CCAssignFnForNode(Op)); 1458 1459 // Get a count of how many bytes are to be pushed on the stack. 1460 unsigned NumBytes = CCInfo.getNextStackOffset(); 1461 if (CC == CallingConv::Fast) 1462 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); 1463 1464 // Make sure the instruction takes 8n+4 bytes to make sure the start of the 1465 // arguments and the arguments after the retaddr has been pushed are aligned. 1466 if (!Is64Bit && CC == CallingConv::X86_FastCall && 1467 !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() && 1468 (NumBytes & 7) == 0) 1469 NumBytes += 4; 1470 1471 int FPDiff = 0; 1472 if (IsTailCall) { 1473 // Lower arguments at fp - stackoffset + fpdiff. 1474 unsigned NumBytesCallerPushed = 1475 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn(); 1476 FPDiff = NumBytesCallerPushed - NumBytes; 1477 1478 // Set the delta of movement of the returnaddr stackslot. 1479 // But only set if delta is greater than previous delta. 1480 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta())) 1481 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff); 1482 } 1483 1484 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes)); 1485 1486 SDOperand RetAddrFrIdx; 1487 // Load return adress for tail calls. 1488 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit, 1489 FPDiff); 1490 1491 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass; 1492 SmallVector<SDOperand, 8> MemOpChains; 1493 SDOperand StackPtr; 1494 1495 // Walk the register/memloc assignments, inserting copies/loads. In the case 1496 // of tail call optimization arguments are handle later. 1497 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1498 CCValAssign &VA = ArgLocs[i]; 1499 SDOperand Arg = Op.getOperand(5+2*VA.getValNo()); 1500 bool isByVal = cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))-> 1501 getArgFlags().isByVal(); 1502 1503 // Promote the value if needed. 1504 switch (VA.getLocInfo()) { 1505 default: assert(0 && "Unknown loc info!"); 1506 case CCValAssign::Full: break; 1507 case CCValAssign::SExt: 1508 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg); 1509 break; 1510 case CCValAssign::ZExt: 1511 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg); 1512 break; 1513 case CCValAssign::AExt: 1514 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg); 1515 break; 1516 } 1517 1518 if (VA.isRegLoc()) { 1519 if (Is64Bit) { 1520 MVT RegVT = VA.getLocVT(); 1521 if (RegVT.isVector() && RegVT.getSizeInBits() == 64) 1522 switch (VA.getLocReg()) { 1523 default: 1524 break; 1525 case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX: 1526 case X86::R8: { 1527 // Special case: passing MMX values in GPR registers. 1528 Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg); 1529 break; 1530 } 1531 case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3: 1532 case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: { 1533 // Special case: passing MMX values in XMM registers. 1534 Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg); 1535 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg); 1536 Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64, 1537 DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg, 1538 getMOVLMask(2, DAG)); 1539 break; 1540 } 1541 } 1542 } 1543 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1544 } else { 1545 if (!IsTailCall || (IsTailCall && isByVal)) { 1546 assert(VA.isMemLoc()); 1547 if (StackPtr.Val == 0) 1548 StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy()); 1549 1550 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain, 1551 Arg)); 1552 } 1553 } 1554 } 1555 1556 if (!MemOpChains.empty()) 1557 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 1558 &MemOpChains[0], MemOpChains.size()); 1559 1560 // Build a sequence of copy-to-reg nodes chained together with token chain 1561 // and flag operands which copy the outgoing args into registers. 1562 SDOperand InFlag; 1563 // Tail call byval lowering might overwrite argument registers so in case of 1564 // tail call optimization the copies to registers are lowered later. 1565 if (!IsTailCall) 1566 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1567 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, 1568 InFlag); 1569 InFlag = Chain.getValue(1); 1570 } 1571 1572 // ELF / PIC requires GOT in the EBX register before function calls via PLT 1573 // GOT pointer. 1574 if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) { 1575 Chain = DAG.getCopyToReg(Chain, X86::EBX, 1576 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 1577 InFlag); 1578 InFlag = Chain.getValue(1); 1579 } 1580 // If we are tail calling and generating PIC/GOT style code load the address 1581 // of the callee into ecx. The value in ecx is used as target of the tail 1582 // jump. This is done to circumvent the ebx/callee-saved problem for tail 1583 // calls on PIC/GOT architectures. Normally we would just put the address of 1584 // GOT into ebx and then call target@PLT. But for tail callss ebx would be 1585 // restored (since ebx is callee saved) before jumping to the target@PLT. 1586 if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) { 1587 // Note: The actual moving to ecx is done further down. 1588 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 1589 if (G && !G->getGlobal()->hasHiddenVisibility() && 1590 !G->getGlobal()->hasProtectedVisibility()) 1591 Callee = LowerGlobalAddress(Callee, DAG); 1592 else if (isa<ExternalSymbolSDNode>(Callee)) 1593 Callee = LowerExternalSymbol(Callee,DAG); 1594 } 1595 1596 if (Is64Bit && isVarArg) { 1597 // From AMD64 ABI document: 1598 // For calls that may call functions that use varargs or stdargs 1599 // (prototype-less calls or calls to functions containing ellipsis (...) in 1600 // the declaration) %al is used as hidden argument to specify the number 1601 // of SSE registers used. The contents of %al do not need to match exactly 1602 // the number of registers, but must be an ubound on the number of SSE 1603 // registers used and is in the range 0 - 8 inclusive. 1604 1605 // FIXME: Verify this on Win64 1606 // Count the number of XMM registers allocated. 1607 static const unsigned XMMArgRegs[] = { 1608 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 1609 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 1610 }; 1611 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); 1612 1613 Chain = DAG.getCopyToReg(Chain, X86::AL, 1614 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); 1615 InFlag = Chain.getValue(1); 1616 } 1617 1618 1619 // For tail calls lower the arguments to the 'real' stack slot. 1620 if (IsTailCall) { 1621 SmallVector<SDOperand, 8> MemOpChains2; 1622 SDOperand FIN; 1623 int FI = 0; 1624 // Do not flag preceeding copytoreg stuff together with the following stuff. 1625 InFlag = SDOperand(); 1626 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1627 CCValAssign &VA = ArgLocs[i]; 1628 if (!VA.isRegLoc()) { 1629 assert(VA.isMemLoc()); 1630 SDOperand Arg = Op.getOperand(5+2*VA.getValNo()); 1631 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo()); 1632 ISD::ArgFlagsTy Flags = 1633 cast<ARG_FLAGSSDNode>(FlagsOp)->getArgFlags(); 1634 // Create frame index. 1635 int32_t Offset = VA.getLocMemOffset()+FPDiff; 1636 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; 1637 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset); 1638 FIN = DAG.getFrameIndex(FI, getPointerTy()); 1639 1640 if (Flags.isByVal()) { 1641 // Copy relative to framepointer. 1642 SDOperand Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); 1643 if (StackPtr.Val == 0) 1644 StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy()); 1645 Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source); 1646 1647 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain, 1648 Flags, DAG)); 1649 } else { 1650 // Store relative to framepointer. 1651 MemOpChains2.push_back( 1652 DAG.getStore(Chain, Arg, FIN, 1653 PseudoSourceValue::getFixedStack(FI), 0)); 1654 } 1655 } 1656 } 1657 1658 if (!MemOpChains2.empty()) 1659 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, 1660 &MemOpChains2[0], MemOpChains2.size()); 1661 1662 // Copy arguments to their registers. 1663 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1664 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, 1665 InFlag); 1666 InFlag = Chain.getValue(1); 1667 } 1668 InFlag =SDOperand(); 1669 1670 // Store the return address to the appropriate stack slot. 1671 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit, 1672 FPDiff); 1673 } 1674 1675 // If the callee is a GlobalAddress node (quite common, every direct call is) 1676 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 1677 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1678 // We should use extra load for direct calls to dllimported functions in 1679 // non-JIT mode. 1680 if ((IsTailCall || !Is64Bit || 1681 getTargetMachine().getCodeModel() != CodeModel::Large) 1682 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(), 1683 getTargetMachine(), true)) 1684 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); 1685 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1686 if (IsTailCall || !Is64Bit || 1687 getTargetMachine().getCodeModel() != CodeModel::Large) 1688 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); 1689 } else if (IsTailCall) { 1690 unsigned Opc = Is64Bit ? X86::R9 : X86::ECX; 1691 1692 Chain = DAG.getCopyToReg(Chain, 1693 DAG.getRegister(Opc, getPointerTy()), 1694 Callee,InFlag); 1695 Callee = DAG.getRegister(Opc, getPointerTy()); 1696 // Add register as live out. 1697 DAG.getMachineFunction().getRegInfo().addLiveOut(Opc); 1698 } 1699 1700 // Returns a chain & a flag for retval copy to use. 1701 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 1702 SmallVector<SDOperand, 8> Ops; 1703 1704 if (IsTailCall) { 1705 Ops.push_back(Chain); 1706 Ops.push_back(DAG.getIntPtrConstant(NumBytes)); 1707 Ops.push_back(DAG.getIntPtrConstant(0)); 1708 if (InFlag.Val) 1709 Ops.push_back(InFlag); 1710 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size()); 1711 InFlag = Chain.getValue(1); 1712 1713 // Returns a chain & a flag for retval copy to use. 1714 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 1715 Ops.clear(); 1716 } 1717 1718 Ops.push_back(Chain); 1719 Ops.push_back(Callee); 1720 1721 if (IsTailCall) 1722 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); 1723 1724 // Add argument registers to the end of the list so that they are known live 1725 // into the call. 1726 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1727 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1728 RegsToPass[i].second.getValueType())); 1729 1730 // Add an implicit use GOT pointer in EBX. 1731 if (!IsTailCall && !Is64Bit && 1732 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1733 Subtarget->isPICStyleGOT()) 1734 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); 1735 1736 // Add an implicit use of AL for x86 vararg functions. 1737 if (Is64Bit && isVarArg) 1738 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8)); 1739 1740 if (InFlag.Val) 1741 Ops.push_back(InFlag); 1742 1743 if (IsTailCall) { 1744 assert(InFlag.Val && 1745 "Flag must be set. Depend on flag being set in LowerRET"); 1746 Chain = DAG.getNode(X86ISD::TAILCALL, 1747 Op.Val->getVTList(), &Ops[0], Ops.size()); 1748 1749 return SDOperand(Chain.Val, Op.ResNo); 1750 } 1751 1752 Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size()); 1753 InFlag = Chain.getValue(1); 1754 1755 // Create the CALLSEQ_END node. 1756 unsigned NumBytesForCalleeToPush; 1757 if (IsCalleePop(Op)) 1758 NumBytesForCalleeToPush = NumBytes; // Callee pops everything 1759 else if (!Is64Bit && IsStructRet) 1760 // If this is is a call to a struct-return function, the callee 1761 // pops the hidden struct pointer, so we have to push it back. 1762 // This is common for Darwin/X86, Linux & Mingw32 targets. 1763 NumBytesForCalleeToPush = 4; 1764 else 1765 NumBytesForCalleeToPush = 0; // Callee pops nothing. 1766 1767 // Returns a flag for retval copy to use. 1768 Chain = DAG.getCALLSEQ_END(Chain, 1769 DAG.getIntPtrConstant(NumBytes), 1770 DAG.getIntPtrConstant(NumBytesForCalleeToPush), 1771 InFlag); 1772 InFlag = Chain.getValue(1); 1773 1774 // Handle result values, copying them out of physregs into vregs that we 1775 // return. 1776 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo); 1777} 1778 1779 1780//===----------------------------------------------------------------------===// 1781// Fast Calling Convention (tail call) implementation 1782//===----------------------------------------------------------------------===// 1783 1784// Like std call, callee cleans arguments, convention except that ECX is 1785// reserved for storing the tail called function address. Only 2 registers are 1786// free for argument passing (inreg). Tail call optimization is performed 1787// provided: 1788// * tailcallopt is enabled 1789// * caller/callee are fastcc 1790// On X86_64 architecture with GOT-style position independent code only local 1791// (within module) calls are supported at the moment. 1792// To keep the stack aligned according to platform abi the function 1793// GetAlignedArgumentStackSize ensures that argument delta is always multiples 1794// of stack alignment. (Dynamic linkers need this - darwin's dyld for example) 1795// If a tail called function callee has more arguments than the caller the 1796// caller needs to make sure that there is room to move the RETADDR to. This is 1797// achieved by reserving an area the size of the argument delta right after the 1798// original REtADDR, but before the saved framepointer or the spilled registers 1799// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) 1800// stack layout: 1801// arg1 1802// arg2 1803// RETADDR 1804// [ new RETADDR 1805// move area ] 1806// (possible EBP) 1807// ESI 1808// EDI 1809// local1 .. 1810 1811/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned 1812/// for a 16 byte align requirement. 1813unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, 1814 SelectionDAG& DAG) { 1815 if (PerformTailCallOpt) { 1816 MachineFunction &MF = DAG.getMachineFunction(); 1817 const TargetMachine &TM = MF.getTarget(); 1818 const TargetFrameInfo &TFI = *TM.getFrameInfo(); 1819 unsigned StackAlignment = TFI.getStackAlignment(); 1820 uint64_t AlignMask = StackAlignment - 1; 1821 int64_t Offset = StackSize; 1822 unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4; 1823 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { 1824 // Number smaller than 12 so just add the difference. 1825 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); 1826 } else { 1827 // Mask out lower bits, add stackalignment once plus the 12 bytes. 1828 Offset = ((~AlignMask) & Offset) + StackAlignment + 1829 (StackAlignment-SlotSize); 1830 } 1831 StackSize = Offset; 1832 } 1833 return StackSize; 1834} 1835 1836/// IsEligibleForTailCallElimination - Check to see whether the next instruction 1837/// following the call is a return. A function is eligible if caller/callee 1838/// calling conventions match, currently only fastcc supports tail calls, and 1839/// the function CALL is immediatly followed by a RET. 1840bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call, 1841 SDOperand Ret, 1842 SelectionDAG& DAG) const { 1843 if (!PerformTailCallOpt) 1844 return false; 1845 1846 if (CheckTailCallReturnConstraints(Call, Ret)) { 1847 MachineFunction &MF = DAG.getMachineFunction(); 1848 unsigned CallerCC = MF.getFunction()->getCallingConv(); 1849 unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue(); 1850 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { 1851 SDOperand Callee = Call.getOperand(4); 1852 // On x86/32Bit PIC/GOT tail calls are supported. 1853 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ || 1854 !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit()) 1855 return true; 1856 1857 // Can only do local tail calls (in same module, hidden or protected) on 1858 // x86_64 PIC/GOT at the moment. 1859 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 1860 return G->getGlobal()->hasHiddenVisibility() 1861 || G->getGlobal()->hasProtectedVisibility(); 1862 } 1863 } 1864 1865 return false; 1866} 1867 1868//===----------------------------------------------------------------------===// 1869// Other Lowering Hooks 1870//===----------------------------------------------------------------------===// 1871 1872 1873SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { 1874 MachineFunction &MF = DAG.getMachineFunction(); 1875 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1876 int ReturnAddrIndex = FuncInfo->getRAIndex(); 1877 1878 if (ReturnAddrIndex == 0) { 1879 // Set up a frame object for the return address. 1880 if (Subtarget->is64Bit()) 1881 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8); 1882 else 1883 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); 1884 1885 FuncInfo->setRAIndex(ReturnAddrIndex); 1886 } 1887 1888 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); 1889} 1890 1891 1892 1893/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 1894/// specific condition code. It returns a false if it cannot do a direct 1895/// translation. X86CC is the translated CondCode. LHS/RHS are modified as 1896/// needed. 1897static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP, 1898 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS, 1899 SelectionDAG &DAG) { 1900 X86CC = X86::COND_INVALID; 1901 if (!isFP) { 1902 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 1903 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { 1904 // X > -1 -> X == 0, jump !sign. 1905 RHS = DAG.getConstant(0, RHS.getValueType()); 1906 X86CC = X86::COND_NS; 1907 return true; 1908 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { 1909 // X < 0 -> X == 0, jump on sign. 1910 X86CC = X86::COND_S; 1911 return true; 1912 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) { 1913 // X < 1 -> X <= 0 1914 RHS = DAG.getConstant(0, RHS.getValueType()); 1915 X86CC = X86::COND_LE; 1916 return true; 1917 } 1918 } 1919 1920 switch (SetCCOpcode) { 1921 default: break; 1922 case ISD::SETEQ: X86CC = X86::COND_E; break; 1923 case ISD::SETGT: X86CC = X86::COND_G; break; 1924 case ISD::SETGE: X86CC = X86::COND_GE; break; 1925 case ISD::SETLT: X86CC = X86::COND_L; break; 1926 case ISD::SETLE: X86CC = X86::COND_LE; break; 1927 case ISD::SETNE: X86CC = X86::COND_NE; break; 1928 case ISD::SETULT: X86CC = X86::COND_B; break; 1929 case ISD::SETUGT: X86CC = X86::COND_A; break; 1930 case ISD::SETULE: X86CC = X86::COND_BE; break; 1931 case ISD::SETUGE: X86CC = X86::COND_AE; break; 1932 } 1933 } else { 1934 // On a floating point condition, the flags are set as follows: 1935 // ZF PF CF op 1936 // 0 | 0 | 0 | X > Y 1937 // 0 | 0 | 1 | X < Y 1938 // 1 | 0 | 0 | X == Y 1939 // 1 | 1 | 1 | unordered 1940 bool Flip = false; 1941 switch (SetCCOpcode) { 1942 default: break; 1943 case ISD::SETUEQ: 1944 case ISD::SETEQ: X86CC = X86::COND_E; break; 1945 case ISD::SETOLT: Flip = true; // Fallthrough 1946 case ISD::SETOGT: 1947 case ISD::SETGT: X86CC = X86::COND_A; break; 1948 case ISD::SETOLE: Flip = true; // Fallthrough 1949 case ISD::SETOGE: 1950 case ISD::SETGE: X86CC = X86::COND_AE; break; 1951 case ISD::SETUGT: Flip = true; // Fallthrough 1952 case ISD::SETULT: 1953 case ISD::SETLT: X86CC = X86::COND_B; break; 1954 case ISD::SETUGE: Flip = true; // Fallthrough 1955 case ISD::SETULE: 1956 case ISD::SETLE: X86CC = X86::COND_BE; break; 1957 case ISD::SETONE: 1958 case ISD::SETNE: X86CC = X86::COND_NE; break; 1959 case ISD::SETUO: X86CC = X86::COND_P; break; 1960 case ISD::SETO: X86CC = X86::COND_NP; break; 1961 } 1962 if (Flip) 1963 std::swap(LHS, RHS); 1964 } 1965 1966 return X86CC != X86::COND_INVALID; 1967} 1968 1969/// hasFPCMov - is there a floating point cmov for the specific X86 condition 1970/// code. Current x86 isa includes the following FP cmov instructions: 1971/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. 1972static bool hasFPCMov(unsigned X86CC) { 1973 switch (X86CC) { 1974 default: 1975 return false; 1976 case X86::COND_B: 1977 case X86::COND_BE: 1978 case X86::COND_E: 1979 case X86::COND_P: 1980 case X86::COND_A: 1981 case X86::COND_AE: 1982 case X86::COND_NE: 1983 case X86::COND_NP: 1984 return true; 1985 } 1986} 1987 1988/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return 1989/// true if Op is undef or if its value falls within the specified range (L, H]. 1990static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) { 1991 if (Op.getOpcode() == ISD::UNDEF) 1992 return true; 1993 1994 unsigned Val = cast<ConstantSDNode>(Op)->getValue(); 1995 return (Val >= Low && Val < Hi); 1996} 1997 1998/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return 1999/// true if Op is undef or if its value equal to the specified value. 2000static bool isUndefOrEqual(SDOperand Op, unsigned Val) { 2001 if (Op.getOpcode() == ISD::UNDEF) 2002 return true; 2003 return cast<ConstantSDNode>(Op)->getValue() == Val; 2004} 2005 2006/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand 2007/// specifies a shuffle of elements that is suitable for input to PSHUFD. 2008bool X86::isPSHUFDMask(SDNode *N) { 2009 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2010 2011 if (N->getNumOperands() != 2 && N->getNumOperands() != 4) 2012 return false; 2013 2014 // Check if the value doesn't reference the second vector. 2015 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 2016 SDOperand Arg = N->getOperand(i); 2017 if (Arg.getOpcode() == ISD::UNDEF) continue; 2018 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2019 if (cast<ConstantSDNode>(Arg)->getValue() >= e) 2020 return false; 2021 } 2022 2023 return true; 2024} 2025 2026/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand 2027/// specifies a shuffle of elements that is suitable for input to PSHUFHW. 2028bool X86::isPSHUFHWMask(SDNode *N) { 2029 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2030 2031 if (N->getNumOperands() != 8) 2032 return false; 2033 2034 // Lower quadword copied in order. 2035 for (unsigned i = 0; i != 4; ++i) { 2036 SDOperand Arg = N->getOperand(i); 2037 if (Arg.getOpcode() == ISD::UNDEF) continue; 2038 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2039 if (cast<ConstantSDNode>(Arg)->getValue() != i) 2040 return false; 2041 } 2042 2043 // Upper quadword shuffled. 2044 for (unsigned i = 4; i != 8; ++i) { 2045 SDOperand Arg = N->getOperand(i); 2046 if (Arg.getOpcode() == ISD::UNDEF) continue; 2047 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2048 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2049 if (Val < 4 || Val > 7) 2050 return false; 2051 } 2052 2053 return true; 2054} 2055 2056/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand 2057/// specifies a shuffle of elements that is suitable for input to PSHUFLW. 2058bool X86::isPSHUFLWMask(SDNode *N) { 2059 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2060 2061 if (N->getNumOperands() != 8) 2062 return false; 2063 2064 // Upper quadword copied in order. 2065 for (unsigned i = 4; i != 8; ++i) 2066 if (!isUndefOrEqual(N->getOperand(i), i)) 2067 return false; 2068 2069 // Lower quadword shuffled. 2070 for (unsigned i = 0; i != 4; ++i) 2071 if (!isUndefOrInRange(N->getOperand(i), 0, 4)) 2072 return false; 2073 2074 return true; 2075} 2076 2077/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand 2078/// specifies a shuffle of elements that is suitable for input to SHUFP*. 2079static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) { 2080 if (NumElems != 2 && NumElems != 4) return false; 2081 2082 unsigned Half = NumElems / 2; 2083 for (unsigned i = 0; i < Half; ++i) 2084 if (!isUndefOrInRange(Elems[i], 0, NumElems)) 2085 return false; 2086 for (unsigned i = Half; i < NumElems; ++i) 2087 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2)) 2088 return false; 2089 2090 return true; 2091} 2092 2093bool X86::isSHUFPMask(SDNode *N) { 2094 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2095 return ::isSHUFPMask(N->op_begin(), N->getNumOperands()); 2096} 2097 2098/// isCommutedSHUFP - Returns true if the shuffle mask is exactly 2099/// the reverse of what x86 shuffles want. x86 shuffles requires the lower 2100/// half elements to come from vector 1 (which would equal the dest.) and 2101/// the upper half to come from vector 2. 2102static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) { 2103 if (NumOps != 2 && NumOps != 4) return false; 2104 2105 unsigned Half = NumOps / 2; 2106 for (unsigned i = 0; i < Half; ++i) 2107 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2)) 2108 return false; 2109 for (unsigned i = Half; i < NumOps; ++i) 2110 if (!isUndefOrInRange(Ops[i], 0, NumOps)) 2111 return false; 2112 return true; 2113} 2114 2115static bool isCommutedSHUFP(SDNode *N) { 2116 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2117 return isCommutedSHUFP(N->op_begin(), N->getNumOperands()); 2118} 2119 2120/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand 2121/// specifies a shuffle of elements that is suitable for input to MOVHLPS. 2122bool X86::isMOVHLPSMask(SDNode *N) { 2123 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2124 2125 if (N->getNumOperands() != 4) 2126 return false; 2127 2128 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 2129 return isUndefOrEqual(N->getOperand(0), 6) && 2130 isUndefOrEqual(N->getOperand(1), 7) && 2131 isUndefOrEqual(N->getOperand(2), 2) && 2132 isUndefOrEqual(N->getOperand(3), 3); 2133} 2134 2135/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form 2136/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, 2137/// <2, 3, 2, 3> 2138bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) { 2139 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2140 2141 if (N->getNumOperands() != 4) 2142 return false; 2143 2144 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3 2145 return isUndefOrEqual(N->getOperand(0), 2) && 2146 isUndefOrEqual(N->getOperand(1), 3) && 2147 isUndefOrEqual(N->getOperand(2), 2) && 2148 isUndefOrEqual(N->getOperand(3), 3); 2149} 2150 2151/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand 2152/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. 2153bool X86::isMOVLPMask(SDNode *N) { 2154 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2155 2156 unsigned NumElems = N->getNumOperands(); 2157 if (NumElems != 2 && NumElems != 4) 2158 return false; 2159 2160 for (unsigned i = 0; i < NumElems/2; ++i) 2161 if (!isUndefOrEqual(N->getOperand(i), i + NumElems)) 2162 return false; 2163 2164 for (unsigned i = NumElems/2; i < NumElems; ++i) 2165 if (!isUndefOrEqual(N->getOperand(i), i)) 2166 return false; 2167 2168 return true; 2169} 2170 2171/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand 2172/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} 2173/// and MOVLHPS. 2174bool X86::isMOVHPMask(SDNode *N) { 2175 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2176 2177 unsigned NumElems = N->getNumOperands(); 2178 if (NumElems != 2 && NumElems != 4) 2179 return false; 2180 2181 for (unsigned i = 0; i < NumElems/2; ++i) 2182 if (!isUndefOrEqual(N->getOperand(i), i)) 2183 return false; 2184 2185 for (unsigned i = 0; i < NumElems/2; ++i) { 2186 SDOperand Arg = N->getOperand(i + NumElems/2); 2187 if (!isUndefOrEqual(Arg, i + NumElems)) 2188 return false; 2189 } 2190 2191 return true; 2192} 2193 2194/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand 2195/// specifies a shuffle of elements that is suitable for input to UNPCKL. 2196bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts, 2197 bool V2IsSplat = false) { 2198 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2199 return false; 2200 2201 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { 2202 SDOperand BitI = Elts[i]; 2203 SDOperand BitI1 = Elts[i+1]; 2204 if (!isUndefOrEqual(BitI, j)) 2205 return false; 2206 if (V2IsSplat) { 2207 if (isUndefOrEqual(BitI1, NumElts)) 2208 return false; 2209 } else { 2210 if (!isUndefOrEqual(BitI1, j + NumElts)) 2211 return false; 2212 } 2213 } 2214 2215 return true; 2216} 2217 2218bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) { 2219 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2220 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat); 2221} 2222 2223/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand 2224/// specifies a shuffle of elements that is suitable for input to UNPCKH. 2225bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts, 2226 bool V2IsSplat = false) { 2227 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 2228 return false; 2229 2230 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) { 2231 SDOperand BitI = Elts[i]; 2232 SDOperand BitI1 = Elts[i+1]; 2233 if (!isUndefOrEqual(BitI, j + NumElts/2)) 2234 return false; 2235 if (V2IsSplat) { 2236 if (isUndefOrEqual(BitI1, NumElts)) 2237 return false; 2238 } else { 2239 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) 2240 return false; 2241 } 2242 } 2243 2244 return true; 2245} 2246 2247bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) { 2248 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2249 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat); 2250} 2251 2252/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form 2253/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, 2254/// <0, 0, 1, 1> 2255bool X86::isUNPCKL_v_undef_Mask(SDNode *N) { 2256 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2257 2258 unsigned NumElems = N->getNumOperands(); 2259 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) 2260 return false; 2261 2262 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { 2263 SDOperand BitI = N->getOperand(i); 2264 SDOperand BitI1 = N->getOperand(i+1); 2265 2266 if (!isUndefOrEqual(BitI, j)) 2267 return false; 2268 if (!isUndefOrEqual(BitI1, j)) 2269 return false; 2270 } 2271 2272 return true; 2273} 2274 2275/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form 2276/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, 2277/// <2, 2, 3, 3> 2278bool X86::isUNPCKH_v_undef_Mask(SDNode *N) { 2279 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2280 2281 unsigned NumElems = N->getNumOperands(); 2282 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) 2283 return false; 2284 2285 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { 2286 SDOperand BitI = N->getOperand(i); 2287 SDOperand BitI1 = N->getOperand(i + 1); 2288 2289 if (!isUndefOrEqual(BitI, j)) 2290 return false; 2291 if (!isUndefOrEqual(BitI1, j)) 2292 return false; 2293 } 2294 2295 return true; 2296} 2297 2298/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand 2299/// specifies a shuffle of elements that is suitable for input to MOVSS, 2300/// MOVSD, and MOVD, i.e. setting the lowest element. 2301static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) { 2302 if (NumElts != 2 && NumElts != 4) 2303 return false; 2304 2305 if (!isUndefOrEqual(Elts[0], NumElts)) 2306 return false; 2307 2308 for (unsigned i = 1; i < NumElts; ++i) { 2309 if (!isUndefOrEqual(Elts[i], i)) 2310 return false; 2311 } 2312 2313 return true; 2314} 2315 2316bool X86::isMOVLMask(SDNode *N) { 2317 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2318 return ::isMOVLMask(N->op_begin(), N->getNumOperands()); 2319} 2320 2321/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse 2322/// of what x86 movss want. X86 movs requires the lowest element to be lowest 2323/// element of vector 2 and the other elements to come from vector 1 in order. 2324static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps, 2325 bool V2IsSplat = false, 2326 bool V2IsUndef = false) { 2327 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) 2328 return false; 2329 2330 if (!isUndefOrEqual(Ops[0], 0)) 2331 return false; 2332 2333 for (unsigned i = 1; i < NumOps; ++i) { 2334 SDOperand Arg = Ops[i]; 2335 if (!(isUndefOrEqual(Arg, i+NumOps) || 2336 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) || 2337 (V2IsSplat && isUndefOrEqual(Arg, NumOps)))) 2338 return false; 2339 } 2340 2341 return true; 2342} 2343 2344static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false, 2345 bool V2IsUndef = false) { 2346 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2347 return isCommutedMOVL(N->op_begin(), N->getNumOperands(), 2348 V2IsSplat, V2IsUndef); 2349} 2350 2351/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand 2352/// specifies a shuffle of elements that is suitable for input to MOVSHDUP. 2353bool X86::isMOVSHDUPMask(SDNode *N) { 2354 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2355 2356 if (N->getNumOperands() != 4) 2357 return false; 2358 2359 // Expect 1, 1, 3, 3 2360 for (unsigned i = 0; i < 2; ++i) { 2361 SDOperand Arg = N->getOperand(i); 2362 if (Arg.getOpcode() == ISD::UNDEF) continue; 2363 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2364 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2365 if (Val != 1) return false; 2366 } 2367 2368 bool HasHi = false; 2369 for (unsigned i = 2; i < 4; ++i) { 2370 SDOperand Arg = N->getOperand(i); 2371 if (Arg.getOpcode() == ISD::UNDEF) continue; 2372 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2373 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2374 if (Val != 3) return false; 2375 HasHi = true; 2376 } 2377 2378 // Don't use movshdup if it can be done with a shufps. 2379 return HasHi; 2380} 2381 2382/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand 2383/// specifies a shuffle of elements that is suitable for input to MOVSLDUP. 2384bool X86::isMOVSLDUPMask(SDNode *N) { 2385 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2386 2387 if (N->getNumOperands() != 4) 2388 return false; 2389 2390 // Expect 0, 0, 2, 2 2391 for (unsigned i = 0; i < 2; ++i) { 2392 SDOperand Arg = N->getOperand(i); 2393 if (Arg.getOpcode() == ISD::UNDEF) continue; 2394 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2395 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2396 if (Val != 0) return false; 2397 } 2398 2399 bool HasHi = false; 2400 for (unsigned i = 2; i < 4; ++i) { 2401 SDOperand Arg = N->getOperand(i); 2402 if (Arg.getOpcode() == ISD::UNDEF) continue; 2403 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2404 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2405 if (Val != 2) return false; 2406 HasHi = true; 2407 } 2408 2409 // Don't use movshdup if it can be done with a shufps. 2410 return HasHi; 2411} 2412 2413/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand 2414/// specifies a identity operation on the LHS or RHS. 2415static bool isIdentityMask(SDNode *N, bool RHS = false) { 2416 unsigned NumElems = N->getNumOperands(); 2417 for (unsigned i = 0; i < NumElems; ++i) 2418 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0))) 2419 return false; 2420 return true; 2421} 2422 2423/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies 2424/// a splat of a single element. 2425static bool isSplatMask(SDNode *N) { 2426 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2427 2428 // This is a splat operation if each element of the permute is the same, and 2429 // if the value doesn't reference the second vector. 2430 unsigned NumElems = N->getNumOperands(); 2431 SDOperand ElementBase; 2432 unsigned i = 0; 2433 for (; i != NumElems; ++i) { 2434 SDOperand Elt = N->getOperand(i); 2435 if (isa<ConstantSDNode>(Elt)) { 2436 ElementBase = Elt; 2437 break; 2438 } 2439 } 2440 2441 if (!ElementBase.Val) 2442 return false; 2443 2444 for (; i != NumElems; ++i) { 2445 SDOperand Arg = N->getOperand(i); 2446 if (Arg.getOpcode() == ISD::UNDEF) continue; 2447 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2448 if (Arg != ElementBase) return false; 2449 } 2450 2451 // Make sure it is a splat of the first vector operand. 2452 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems; 2453} 2454 2455/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies 2456/// a splat of a single element and it's a 2 or 4 element mask. 2457bool X86::isSplatMask(SDNode *N) { 2458 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2459 2460 // We can only splat 64-bit, and 32-bit quantities with a single instruction. 2461 if (N->getNumOperands() != 4 && N->getNumOperands() != 2) 2462 return false; 2463 return ::isSplatMask(N); 2464} 2465 2466/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand 2467/// specifies a splat of zero element. 2468bool X86::isSplatLoMask(SDNode *N) { 2469 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2470 2471 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i) 2472 if (!isUndefOrEqual(N->getOperand(i), 0)) 2473 return false; 2474 return true; 2475} 2476 2477/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle 2478/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* 2479/// instructions. 2480unsigned X86::getShuffleSHUFImmediate(SDNode *N) { 2481 unsigned NumOperands = N->getNumOperands(); 2482 unsigned Shift = (NumOperands == 4) ? 2 : 1; 2483 unsigned Mask = 0; 2484 for (unsigned i = 0; i < NumOperands; ++i) { 2485 unsigned Val = 0; 2486 SDOperand Arg = N->getOperand(NumOperands-i-1); 2487 if (Arg.getOpcode() != ISD::UNDEF) 2488 Val = cast<ConstantSDNode>(Arg)->getValue(); 2489 if (Val >= NumOperands) Val -= NumOperands; 2490 Mask |= Val; 2491 if (i != NumOperands - 1) 2492 Mask <<= Shift; 2493 } 2494 2495 return Mask; 2496} 2497 2498/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle 2499/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW 2500/// instructions. 2501unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { 2502 unsigned Mask = 0; 2503 // 8 nodes, but we only care about the last 4. 2504 for (unsigned i = 7; i >= 4; --i) { 2505 unsigned Val = 0; 2506 SDOperand Arg = N->getOperand(i); 2507 if (Arg.getOpcode() != ISD::UNDEF) 2508 Val = cast<ConstantSDNode>(Arg)->getValue(); 2509 Mask |= (Val - 4); 2510 if (i != 4) 2511 Mask <<= 2; 2512 } 2513 2514 return Mask; 2515} 2516 2517/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle 2518/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW 2519/// instructions. 2520unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { 2521 unsigned Mask = 0; 2522 // 8 nodes, but we only care about the first 4. 2523 for (int i = 3; i >= 0; --i) { 2524 unsigned Val = 0; 2525 SDOperand Arg = N->getOperand(i); 2526 if (Arg.getOpcode() != ISD::UNDEF) 2527 Val = cast<ConstantSDNode>(Arg)->getValue(); 2528 Mask |= Val; 2529 if (i != 0) 2530 Mask <<= 2; 2531 } 2532 2533 return Mask; 2534} 2535 2536/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand 2537/// specifies a 8 element shuffle that can be broken into a pair of 2538/// PSHUFHW and PSHUFLW. 2539static bool isPSHUFHW_PSHUFLWMask(SDNode *N) { 2540 assert(N->getOpcode() == ISD::BUILD_VECTOR); 2541 2542 if (N->getNumOperands() != 8) 2543 return false; 2544 2545 // Lower quadword shuffled. 2546 for (unsigned i = 0; i != 4; ++i) { 2547 SDOperand Arg = N->getOperand(i); 2548 if (Arg.getOpcode() == ISD::UNDEF) continue; 2549 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2550 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2551 if (Val >= 4) 2552 return false; 2553 } 2554 2555 // Upper quadword shuffled. 2556 for (unsigned i = 4; i != 8; ++i) { 2557 SDOperand Arg = N->getOperand(i); 2558 if (Arg.getOpcode() == ISD::UNDEF) continue; 2559 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2560 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2561 if (Val < 4 || Val > 7) 2562 return false; 2563 } 2564 2565 return true; 2566} 2567 2568/// CommuteVectorShuffle - Swap vector_shuffle operands as well as 2569/// values in ther permute mask. 2570static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1, 2571 SDOperand &V2, SDOperand &Mask, 2572 SelectionDAG &DAG) { 2573 MVT VT = Op.getValueType(); 2574 MVT MaskVT = Mask.getValueType(); 2575 MVT EltVT = MaskVT.getVectorElementType(); 2576 unsigned NumElems = Mask.getNumOperands(); 2577 SmallVector<SDOperand, 8> MaskVec; 2578 2579 for (unsigned i = 0; i != NumElems; ++i) { 2580 SDOperand Arg = Mask.getOperand(i); 2581 if (Arg.getOpcode() == ISD::UNDEF) { 2582 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 2583 continue; 2584 } 2585 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2586 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2587 if (Val < NumElems) 2588 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); 2589 else 2590 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); 2591 } 2592 2593 std::swap(V1, V2); 2594 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems); 2595 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); 2596} 2597 2598/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming 2599/// the two vector operands have swapped position. 2600static 2601SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) { 2602 MVT MaskVT = Mask.getValueType(); 2603 MVT EltVT = MaskVT.getVectorElementType(); 2604 unsigned NumElems = Mask.getNumOperands(); 2605 SmallVector<SDOperand, 8> MaskVec; 2606 for (unsigned i = 0; i != NumElems; ++i) { 2607 SDOperand Arg = Mask.getOperand(i); 2608 if (Arg.getOpcode() == ISD::UNDEF) { 2609 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); 2610 continue; 2611 } 2612 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); 2613 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2614 if (Val < NumElems) 2615 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); 2616 else 2617 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); 2618 } 2619 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems); 2620} 2621 2622 2623/// ShouldXformToMOVHLPS - Return true if the node should be transformed to 2624/// match movhlps. The lower half elements should come from upper half of 2625/// V1 (and in order), and the upper half elements should come from the upper 2626/// half of V2 (and in order). 2627static bool ShouldXformToMOVHLPS(SDNode *Mask) { 2628 unsigned NumElems = Mask->getNumOperands(); 2629 if (NumElems != 4) 2630 return false; 2631 for (unsigned i = 0, e = 2; i != e; ++i) 2632 if (!isUndefOrEqual(Mask->getOperand(i), i+2)) 2633 return false; 2634 for (unsigned i = 2; i != 4; ++i) 2635 if (!isUndefOrEqual(Mask->getOperand(i), i+4)) 2636 return false; 2637 return true; 2638} 2639 2640/// isScalarLoadToVector - Returns true if the node is a scalar load that 2641/// is promoted to a vector. It also returns the LoadSDNode by reference if 2642/// required. 2643static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { 2644 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) { 2645 N = N->getOperand(0).Val; 2646 if (ISD::isNON_EXTLoad(N)) { 2647 if (LD) 2648 *LD = cast<LoadSDNode>(N); 2649 return true; 2650 } 2651 } 2652 return false; 2653} 2654 2655/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to 2656/// match movlp{s|d}. The lower half elements should come from lower half of 2657/// V1 (and in order), and the upper half elements should come from the upper 2658/// half of V2 (and in order). And since V1 will become the source of the 2659/// MOVLP, it must be either a vector load or a scalar load to vector. 2660static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) { 2661 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) 2662 return false; 2663 // Is V2 is a vector load, don't do this transformation. We will try to use 2664 // load folding shufps op. 2665 if (ISD::isNON_EXTLoad(V2)) 2666 return false; 2667 2668 unsigned NumElems = Mask->getNumOperands(); 2669 if (NumElems != 2 && NumElems != 4) 2670 return false; 2671 for (unsigned i = 0, e = NumElems/2; i != e; ++i) 2672 if (!isUndefOrEqual(Mask->getOperand(i), i)) 2673 return false; 2674 for (unsigned i = NumElems/2; i != NumElems; ++i) 2675 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems)) 2676 return false; 2677 return true; 2678} 2679 2680/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are 2681/// all the same. 2682static bool isSplatVector(SDNode *N) { 2683 if (N->getOpcode() != ISD::BUILD_VECTOR) 2684 return false; 2685 2686 SDOperand SplatValue = N->getOperand(0); 2687 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 2688 if (N->getOperand(i) != SplatValue) 2689 return false; 2690 return true; 2691} 2692 2693/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved 2694/// to an undef. 2695static bool isUndefShuffle(SDNode *N) { 2696 if (N->getOpcode() != ISD::VECTOR_SHUFFLE) 2697 return false; 2698 2699 SDOperand V1 = N->getOperand(0); 2700 SDOperand V2 = N->getOperand(1); 2701 SDOperand Mask = N->getOperand(2); 2702 unsigned NumElems = Mask.getNumOperands(); 2703 for (unsigned i = 0; i != NumElems; ++i) { 2704 SDOperand Arg = Mask.getOperand(i); 2705 if (Arg.getOpcode() != ISD::UNDEF) { 2706 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2707 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF) 2708 return false; 2709 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF) 2710 return false; 2711 } 2712 } 2713 return true; 2714} 2715 2716/// isZeroNode - Returns true if Elt is a constant zero or a floating point 2717/// constant +0.0. 2718static inline bool isZeroNode(SDOperand Elt) { 2719 return ((isa<ConstantSDNode>(Elt) && 2720 cast<ConstantSDNode>(Elt)->getValue() == 0) || 2721 (isa<ConstantFPSDNode>(Elt) && 2722 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); 2723} 2724 2725/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved 2726/// to an zero vector. 2727static bool isZeroShuffle(SDNode *N) { 2728 if (N->getOpcode() != ISD::VECTOR_SHUFFLE) 2729 return false; 2730 2731 SDOperand V1 = N->getOperand(0); 2732 SDOperand V2 = N->getOperand(1); 2733 SDOperand Mask = N->getOperand(2); 2734 unsigned NumElems = Mask.getNumOperands(); 2735 for (unsigned i = 0; i != NumElems; ++i) { 2736 SDOperand Arg = Mask.getOperand(i); 2737 if (Arg.getOpcode() == ISD::UNDEF) 2738 continue; 2739 2740 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue(); 2741 if (Idx < NumElems) { 2742 unsigned Opc = V1.Val->getOpcode(); 2743 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val)) 2744 continue; 2745 if (Opc != ISD::BUILD_VECTOR || 2746 !isZeroNode(V1.Val->getOperand(Idx))) 2747 return false; 2748 } else if (Idx >= NumElems) { 2749 unsigned Opc = V2.Val->getOpcode(); 2750 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val)) 2751 continue; 2752 if (Opc != ISD::BUILD_VECTOR || 2753 !isZeroNode(V2.Val->getOperand(Idx - NumElems))) 2754 return false; 2755 } 2756 } 2757 return true; 2758} 2759 2760/// getZeroVector - Returns a vector of specified type with all zero elements. 2761/// 2762static SDOperand getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) { 2763 assert(VT.isVector() && "Expected a vector type"); 2764 2765 // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest 2766 // type. This ensures they get CSE'd. 2767 SDOperand Vec; 2768 if (VT.getSizeInBits() == 64) { // MMX 2769 SDOperand Cst = DAG.getTargetConstant(0, MVT::i32); 2770 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst); 2771 } else if (HasSSE2) { // SSE2 2772 SDOperand Cst = DAG.getTargetConstant(0, MVT::i32); 2773 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst); 2774 } else { // SSE1 2775 SDOperand Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); 2776 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst); 2777 } 2778 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec); 2779} 2780 2781/// getOnesVector - Returns a vector of specified type with all bits set. 2782/// 2783static SDOperand getOnesVector(MVT VT, SelectionDAG &DAG) { 2784 assert(VT.isVector() && "Expected a vector type"); 2785 2786 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest 2787 // type. This ensures they get CSE'd. 2788 SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32); 2789 SDOperand Vec; 2790 if (VT.getSizeInBits() == 64) // MMX 2791 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst); 2792 else // SSE 2793 Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst); 2794 return DAG.getNode(ISD::BIT_CONVERT, VT, Vec); 2795} 2796 2797 2798/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements 2799/// that point to V2 points to its first element. 2800static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) { 2801 assert(Mask.getOpcode() == ISD::BUILD_VECTOR); 2802 2803 bool Changed = false; 2804 SmallVector<SDOperand, 8> MaskVec; 2805 unsigned NumElems = Mask.getNumOperands(); 2806 for (unsigned i = 0; i != NumElems; ++i) { 2807 SDOperand Arg = Mask.getOperand(i); 2808 if (Arg.getOpcode() != ISD::UNDEF) { 2809 unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); 2810 if (Val > NumElems) { 2811 Arg = DAG.getConstant(NumElems, Arg.getValueType()); 2812 Changed = true; 2813 } 2814 } 2815 MaskVec.push_back(Arg); 2816 } 2817 2818 if (Changed) 2819 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), 2820 &MaskVec[0], MaskVec.size()); 2821 return Mask; 2822} 2823 2824/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd 2825/// operation of specified width. 2826static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) { 2827 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2828 MVT BaseVT = MaskVT.getVectorElementType(); 2829 2830 SmallVector<SDOperand, 8> MaskVec; 2831 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT)); 2832 for (unsigned i = 1; i != NumElems; ++i) 2833 MaskVec.push_back(DAG.getConstant(i, BaseVT)); 2834 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2835} 2836 2837/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation 2838/// of specified width. 2839static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) { 2840 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2841 MVT BaseVT = MaskVT.getVectorElementType(); 2842 SmallVector<SDOperand, 8> MaskVec; 2843 for (unsigned i = 0, e = NumElems/2; i != e; ++i) { 2844 MaskVec.push_back(DAG.getConstant(i, BaseVT)); 2845 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT)); 2846 } 2847 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2848} 2849 2850/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation 2851/// of specified width. 2852static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) { 2853 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2854 MVT BaseVT = MaskVT.getVectorElementType(); 2855 unsigned Half = NumElems/2; 2856 SmallVector<SDOperand, 8> MaskVec; 2857 for (unsigned i = 0; i != Half; ++i) { 2858 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT)); 2859 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT)); 2860 } 2861 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2862} 2863 2864/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps 2865/// element #0 of a vector with the specified index, leaving the rest of the 2866/// elements in place. 2867static SDOperand getSwapEltZeroMask(unsigned NumElems, unsigned DestElt, 2868 SelectionDAG &DAG) { 2869 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2870 MVT BaseVT = MaskVT.getVectorElementType(); 2871 SmallVector<SDOperand, 8> MaskVec; 2872 // Element #0 of the result gets the elt we are replacing. 2873 MaskVec.push_back(DAG.getConstant(DestElt, BaseVT)); 2874 for (unsigned i = 1; i != NumElems; ++i) 2875 MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT)); 2876 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size()); 2877} 2878 2879/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32. 2880static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG, bool HasSSE2) { 2881 MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32; 2882 MVT VT = Op.getValueType(); 2883 if (PVT == VT) 2884 return Op; 2885 SDOperand V1 = Op.getOperand(0); 2886 SDOperand Mask = Op.getOperand(2); 2887 unsigned NumElems = Mask.getNumOperands(); 2888 // Special handling of v4f32 -> v4i32. 2889 if (VT != MVT::v4f32) { 2890 Mask = getUnpacklMask(NumElems, DAG); 2891 while (NumElems > 4) { 2892 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask); 2893 NumElems >>= 1; 2894 } 2895 Mask = getZeroVector(MVT::v4i32, true, DAG); 2896 } 2897 2898 V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1); 2899 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1, 2900 DAG.getNode(ISD::UNDEF, PVT), Mask); 2901 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); 2902} 2903 2904/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified 2905/// vector of zero or undef vector. This produces a shuffle where the low 2906/// element of V2 is swizzled into the zero/undef vector, landing at element 2907/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). 2908static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx, 2909 bool isZero, bool HasSSE2, 2910 SelectionDAG &DAG) { 2911 MVT VT = V2.getValueType(); 2912 SDOperand V1 = isZero 2913 ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT); 2914 unsigned NumElems = V2.getValueType().getVectorNumElements(); 2915 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 2916 MVT EVT = MaskVT.getVectorElementType(); 2917 SmallVector<SDOperand, 16> MaskVec; 2918 for (unsigned i = 0; i != NumElems; ++i) 2919 if (i == Idx) // If this is the insertion idx, put the low elt of V2 here. 2920 MaskVec.push_back(DAG.getConstant(NumElems, EVT)); 2921 else 2922 MaskVec.push_back(DAG.getConstant(i, EVT)); 2923 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 2924 &MaskVec[0], MaskVec.size()); 2925 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); 2926} 2927 2928/// getNumOfConsecutiveZeros - Return the number of elements in a result of 2929/// a shuffle that is zero. 2930static 2931unsigned getNumOfConsecutiveZeros(SDOperand Op, SDOperand Mask, 2932 unsigned NumElems, bool Low, 2933 SelectionDAG &DAG) { 2934 unsigned NumZeros = 0; 2935 for (unsigned i = 0; i < NumElems; ++i) { 2936 unsigned Index = Low ? i : NumElems-i-1; 2937 SDOperand Idx = Mask.getOperand(Index); 2938 if (Idx.getOpcode() == ISD::UNDEF) { 2939 ++NumZeros; 2940 continue; 2941 } 2942 SDOperand Elt = DAG.getShuffleScalarElt(Op.Val, Index); 2943 if (Elt.Val && isZeroNode(Elt)) 2944 ++NumZeros; 2945 else 2946 break; 2947 } 2948 return NumZeros; 2949} 2950 2951/// isVectorShift - Returns true if the shuffle can be implemented as a 2952/// logical left or right shift of a vector. 2953static bool isVectorShift(SDOperand Op, SDOperand Mask, SelectionDAG &DAG, 2954 bool &isLeft, SDOperand &ShVal, unsigned &ShAmt) { 2955 unsigned NumElems = Mask.getNumOperands(); 2956 2957 isLeft = true; 2958 unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG); 2959 if (!NumZeros) { 2960 isLeft = false; 2961 NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG); 2962 if (!NumZeros) 2963 return false; 2964 } 2965 2966 bool SeenV1 = false; 2967 bool SeenV2 = false; 2968 for (unsigned i = NumZeros; i < NumElems; ++i) { 2969 unsigned Val = isLeft ? (i - NumZeros) : i; 2970 SDOperand Idx = Mask.getOperand(isLeft ? i : (i - NumZeros)); 2971 if (Idx.getOpcode() == ISD::UNDEF) 2972 continue; 2973 unsigned Index = cast<ConstantSDNode>(Idx)->getValue(); 2974 if (Index < NumElems) 2975 SeenV1 = true; 2976 else { 2977 Index -= NumElems; 2978 SeenV2 = true; 2979 } 2980 if (Index != Val) 2981 return false; 2982 } 2983 if (SeenV1 && SeenV2) 2984 return false; 2985 2986 ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1); 2987 ShAmt = NumZeros; 2988 return true; 2989} 2990 2991 2992/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. 2993/// 2994static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros, 2995 unsigned NumNonZero, unsigned NumZero, 2996 SelectionDAG &DAG, TargetLowering &TLI) { 2997 if (NumNonZero > 8) 2998 return SDOperand(); 2999 3000 SDOperand V(0, 0); 3001 bool First = true; 3002 for (unsigned i = 0; i < 16; ++i) { 3003 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; 3004 if (ThisIsNonZero && First) { 3005 if (NumZero) 3006 V = getZeroVector(MVT::v8i16, true, DAG); 3007 else 3008 V = DAG.getNode(ISD::UNDEF, MVT::v8i16); 3009 First = false; 3010 } 3011 3012 if ((i & 1) != 0) { 3013 SDOperand ThisElt(0, 0), LastElt(0, 0); 3014 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; 3015 if (LastIsNonZero) { 3016 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1)); 3017 } 3018 if (ThisIsNonZero) { 3019 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i)); 3020 ThisElt = DAG.getNode(ISD::SHL, MVT::i16, 3021 ThisElt, DAG.getConstant(8, MVT::i8)); 3022 if (LastIsNonZero) 3023 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt); 3024 } else 3025 ThisElt = LastElt; 3026 3027 if (ThisElt.Val) 3028 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt, 3029 DAG.getIntPtrConstant(i/2)); 3030 } 3031 } 3032 3033 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V); 3034} 3035 3036/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. 3037/// 3038static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros, 3039 unsigned NumNonZero, unsigned NumZero, 3040 SelectionDAG &DAG, TargetLowering &TLI) { 3041 if (NumNonZero > 4) 3042 return SDOperand(); 3043 3044 SDOperand V(0, 0); 3045 bool First = true; 3046 for (unsigned i = 0; i < 8; ++i) { 3047 bool isNonZero = (NonZeros & (1 << i)) != 0; 3048 if (isNonZero) { 3049 if (First) { 3050 if (NumZero) 3051 V = getZeroVector(MVT::v8i16, true, DAG); 3052 else 3053 V = DAG.getNode(ISD::UNDEF, MVT::v8i16); 3054 First = false; 3055 } 3056 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i), 3057 DAG.getIntPtrConstant(i)); 3058 } 3059 } 3060 3061 return V; 3062} 3063 3064/// getVShift - Return a vector logical shift node. 3065/// 3066static SDOperand getVShift(bool isLeft, MVT VT, SDOperand SrcOp, 3067 unsigned NumBits, SelectionDAG &DAG, 3068 const TargetLowering &TLI) { 3069 bool isMMX = VT.getSizeInBits() == 64; 3070 MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64; 3071 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL; 3072 SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp); 3073 return DAG.getNode(ISD::BIT_CONVERT, VT, 3074 DAG.getNode(Opc, ShVT, SrcOp, 3075 DAG.getConstant(NumBits, TLI.getShiftAmountTy()))); 3076} 3077 3078SDOperand 3079X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { 3080 // All zero's are handled with pxor, all one's are handled with pcmpeqd. 3081 if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) { 3082 // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to 3083 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are 3084 // eliminated on x86-32 hosts. 3085 if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32) 3086 return Op; 3087 3088 if (ISD::isBuildVectorAllOnes(Op.Val)) 3089 return getOnesVector(Op.getValueType(), DAG); 3090 return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG); 3091 } 3092 3093 MVT VT = Op.getValueType(); 3094 MVT EVT = VT.getVectorElementType(); 3095 unsigned EVTBits = EVT.getSizeInBits(); 3096 3097 unsigned NumElems = Op.getNumOperands(); 3098 unsigned NumZero = 0; 3099 unsigned NumNonZero = 0; 3100 unsigned NonZeros = 0; 3101 bool IsAllConstants = true; 3102 SmallSet<SDOperand, 8> Values; 3103 for (unsigned i = 0; i < NumElems; ++i) { 3104 SDOperand Elt = Op.getOperand(i); 3105 if (Elt.getOpcode() == ISD::UNDEF) 3106 continue; 3107 Values.insert(Elt); 3108 if (Elt.getOpcode() != ISD::Constant && 3109 Elt.getOpcode() != ISD::ConstantFP) 3110 IsAllConstants = false; 3111 if (isZeroNode(Elt)) 3112 NumZero++; 3113 else { 3114 NonZeros |= (1 << i); 3115 NumNonZero++; 3116 } 3117 } 3118 3119 if (NumNonZero == 0) { 3120 // All undef vector. Return an UNDEF. All zero vectors were handled above. 3121 return DAG.getNode(ISD::UNDEF, VT); 3122 } 3123 3124 // Special case for single non-zero, non-undef, element. 3125 if (NumNonZero == 1 && NumElems <= 4) { 3126 unsigned Idx = CountTrailingZeros_32(NonZeros); 3127 SDOperand Item = Op.getOperand(Idx); 3128 3129 // If this is an insertion of an i64 value on x86-32, and if the top bits of 3130 // the value are obviously zero, truncate the value to i32 and do the 3131 // insertion that way. Only do this if the value is non-constant or if the 3132 // value is a constant being inserted into element 0. It is cheaper to do 3133 // a constant pool load than it is to do a movd + shuffle. 3134 if (EVT == MVT::i64 && !Subtarget->is64Bit() && 3135 (!IsAllConstants || Idx == 0)) { 3136 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { 3137 // Handle MMX and SSE both. 3138 MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32; 3139 unsigned VecElts = VT == MVT::v2i64 ? 4 : 2; 3140 3141 // Truncate the value (which may itself be a constant) to i32, and 3142 // convert it to a vector with movd (S2V+shuffle to zero extend). 3143 Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item); 3144 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item); 3145 Item = getShuffleVectorZeroOrUndef(Item, 0, true, 3146 Subtarget->hasSSE2(), DAG); 3147 3148 // Now we have our 32-bit value zero extended in the low element of 3149 // a vector. If Idx != 0, swizzle it into place. 3150 if (Idx != 0) { 3151 SDOperand Ops[] = { 3152 Item, DAG.getNode(ISD::UNDEF, Item.getValueType()), 3153 getSwapEltZeroMask(VecElts, Idx, DAG) 3154 }; 3155 Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3); 3156 } 3157 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item); 3158 } 3159 } 3160 3161 // If we have a constant or non-constant insertion into the low element of 3162 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into 3163 // the rest of the elements. This will be matched as movd/movq/movss/movsd 3164 // depending on what the source datatype is. Because we can only get here 3165 // when NumElems <= 4, this only needs to handle i32/f32/i64/f64. 3166 if (Idx == 0 && 3167 // Don't do this for i64 values on x86-32. 3168 (EVT != MVT::i64 || Subtarget->is64Bit())) { 3169 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); 3170 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. 3171 return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, 3172 Subtarget->hasSSE2(), DAG); 3173 } 3174 3175 // Is it a vector logical left shift? 3176 if (NumElems == 2 && Idx == 1 && 3177 isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) { 3178 unsigned NumBits = VT.getSizeInBits(); 3179 return getVShift(true, VT, 3180 DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)), 3181 NumBits/2, DAG, *this); 3182 } 3183 3184 if (IsAllConstants) // Otherwise, it's better to do a constpool load. 3185 return SDOperand(); 3186 3187 // Otherwise, if this is a vector with i32 or f32 elements, and the element 3188 // is a non-constant being inserted into an element other than the low one, 3189 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka 3190 // movd/movss) to move this into the low element, then shuffle it into 3191 // place. 3192 if (EVTBits == 32) { 3193 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); 3194 3195 // Turn it into a shuffle of zero and zero-extended scalar to vector. 3196 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, 3197 Subtarget->hasSSE2(), DAG); 3198 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 3199 MVT MaskEVT = MaskVT.getVectorElementType(); 3200 SmallVector<SDOperand, 8> MaskVec; 3201 for (unsigned i = 0; i < NumElems; i++) 3202 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT)); 3203 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3204 &MaskVec[0], MaskVec.size()); 3205 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item, 3206 DAG.getNode(ISD::UNDEF, VT), Mask); 3207 } 3208 } 3209 3210 // Splat is obviously ok. Let legalizer expand it to a shuffle. 3211 if (Values.size() == 1) 3212 return SDOperand(); 3213 3214 // A vector full of immediates; various special cases are already 3215 // handled, so this is best done with a single constant-pool load. 3216 if (IsAllConstants) 3217 return SDOperand(); 3218 3219 // Let legalizer expand 2-wide build_vectors. 3220 if (EVTBits == 64) { 3221 if (NumNonZero == 1) { 3222 // One half is zero or undef. 3223 unsigned Idx = CountTrailingZeros_32(NonZeros); 3224 SDOperand V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, 3225 Op.getOperand(Idx)); 3226 return getShuffleVectorZeroOrUndef(V2, Idx, true, 3227 Subtarget->hasSSE2(), DAG); 3228 } 3229 return SDOperand(); 3230 } 3231 3232 // If element VT is < 32 bits, convert it to inserts into a zero vector. 3233 if (EVTBits == 8 && NumElems == 16) { 3234 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, 3235 *this); 3236 if (V.Val) return V; 3237 } 3238 3239 if (EVTBits == 16 && NumElems == 8) { 3240 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, 3241 *this); 3242 if (V.Val) return V; 3243 } 3244 3245 // If element VT is == 32 bits, turn it into a number of shuffles. 3246 SmallVector<SDOperand, 8> V; 3247 V.resize(NumElems); 3248 if (NumElems == 4 && NumZero > 0) { 3249 for (unsigned i = 0; i < 4; ++i) { 3250 bool isZero = !(NonZeros & (1 << i)); 3251 if (isZero) 3252 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG); 3253 else 3254 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); 3255 } 3256 3257 for (unsigned i = 0; i < 2; ++i) { 3258 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { 3259 default: break; 3260 case 0: 3261 V[i] = V[i*2]; // Must be a zero vector. 3262 break; 3263 case 1: 3264 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2], 3265 getMOVLMask(NumElems, DAG)); 3266 break; 3267 case 2: 3268 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], 3269 getMOVLMask(NumElems, DAG)); 3270 break; 3271 case 3: 3272 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], 3273 getUnpacklMask(NumElems, DAG)); 3274 break; 3275 } 3276 } 3277 3278 MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems); 3279 MVT EVT = MaskVT.getVectorElementType(); 3280 SmallVector<SDOperand, 8> MaskVec; 3281 bool Reverse = (NonZeros & 0x3) == 2; 3282 for (unsigned i = 0; i < 2; ++i) 3283 if (Reverse) 3284 MaskVec.push_back(DAG.getConstant(1-i, EVT)); 3285 else 3286 MaskVec.push_back(DAG.getConstant(i, EVT)); 3287 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; 3288 for (unsigned i = 0; i < 2; ++i) 3289 if (Reverse) 3290 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT)); 3291 else 3292 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT)); 3293 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3294 &MaskVec[0], MaskVec.size()); 3295 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask); 3296 } 3297 3298 if (Values.size() > 2) { 3299 // Expand into a number of unpckl*. 3300 // e.g. for v4f32 3301 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> 3302 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> 3303 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> 3304 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG); 3305 for (unsigned i = 0; i < NumElems; ++i) 3306 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); 3307 NumElems >>= 1; 3308 while (NumElems != 0) { 3309 for (unsigned i = 0; i < NumElems; ++i) 3310 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems], 3311 UnpckMask); 3312 NumElems >>= 1; 3313 } 3314 return V[0]; 3315 } 3316 3317 return SDOperand(); 3318} 3319 3320static 3321SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2, 3322 SDOperand PermMask, SelectionDAG &DAG, 3323 TargetLowering &TLI) { 3324 SDOperand NewV; 3325 MVT MaskVT = MVT::getIntVectorWithNumElements(8); 3326 MVT MaskEVT = MaskVT.getVectorElementType(); 3327 MVT PtrVT = TLI.getPointerTy(); 3328 SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(), 3329 PermMask.Val->op_end()); 3330 3331 // First record which half of which vector the low elements come from. 3332 SmallVector<unsigned, 4> LowQuad(4); 3333 for (unsigned i = 0; i < 4; ++i) { 3334 SDOperand Elt = MaskElts[i]; 3335 if (Elt.getOpcode() == ISD::UNDEF) 3336 continue; 3337 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3338 int QuadIdx = EltIdx / 4; 3339 ++LowQuad[QuadIdx]; 3340 } 3341 int BestLowQuad = -1; 3342 unsigned MaxQuad = 1; 3343 for (unsigned i = 0; i < 4; ++i) { 3344 if (LowQuad[i] > MaxQuad) { 3345 BestLowQuad = i; 3346 MaxQuad = LowQuad[i]; 3347 } 3348 } 3349 3350 // Record which half of which vector the high elements come from. 3351 SmallVector<unsigned, 4> HighQuad(4); 3352 for (unsigned i = 4; i < 8; ++i) { 3353 SDOperand Elt = MaskElts[i]; 3354 if (Elt.getOpcode() == ISD::UNDEF) 3355 continue; 3356 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3357 int QuadIdx = EltIdx / 4; 3358 ++HighQuad[QuadIdx]; 3359 } 3360 int BestHighQuad = -1; 3361 MaxQuad = 1; 3362 for (unsigned i = 0; i < 4; ++i) { 3363 if (HighQuad[i] > MaxQuad) { 3364 BestHighQuad = i; 3365 MaxQuad = HighQuad[i]; 3366 } 3367 } 3368 3369 // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it. 3370 if (BestLowQuad != -1 || BestHighQuad != -1) { 3371 // First sort the 4 chunks in order using shufpd. 3372 SmallVector<SDOperand, 8> MaskVec; 3373 if (BestLowQuad != -1) 3374 MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32)); 3375 else 3376 MaskVec.push_back(DAG.getConstant(0, MVT::i32)); 3377 if (BestHighQuad != -1) 3378 MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32)); 3379 else 3380 MaskVec.push_back(DAG.getConstant(1, MVT::i32)); 3381 SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2); 3382 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64, 3383 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1), 3384 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask); 3385 NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV); 3386 3387 // Now sort high and low parts separately. 3388 BitVector InOrder(8); 3389 if (BestLowQuad != -1) { 3390 // Sort lower half in order using PSHUFLW. 3391 MaskVec.clear(); 3392 bool AnyOutOrder = false; 3393 for (unsigned i = 0; i != 4; ++i) { 3394 SDOperand Elt = MaskElts[i]; 3395 if (Elt.getOpcode() == ISD::UNDEF) { 3396 MaskVec.push_back(Elt); 3397 InOrder.set(i); 3398 } else { 3399 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3400 if (EltIdx != i) 3401 AnyOutOrder = true; 3402 MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT)); 3403 // If this element is in the right place after this shuffle, then 3404 // remember it. 3405 if ((int)(EltIdx / 4) == BestLowQuad) 3406 InOrder.set(i); 3407 } 3408 } 3409 if (AnyOutOrder) { 3410 for (unsigned i = 4; i != 8; ++i) 3411 MaskVec.push_back(DAG.getConstant(i, MaskEVT)); 3412 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3413 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask); 3414 } 3415 } 3416 3417 if (BestHighQuad != -1) { 3418 // Sort high half in order using PSHUFHW if possible. 3419 MaskVec.clear(); 3420 for (unsigned i = 0; i != 4; ++i) 3421 MaskVec.push_back(DAG.getConstant(i, MaskEVT)); 3422 bool AnyOutOrder = false; 3423 for (unsigned i = 4; i != 8; ++i) { 3424 SDOperand Elt = MaskElts[i]; 3425 if (Elt.getOpcode() == ISD::UNDEF) { 3426 MaskVec.push_back(Elt); 3427 InOrder.set(i); 3428 } else { 3429 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3430 if (EltIdx != i) 3431 AnyOutOrder = true; 3432 MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT)); 3433 // If this element is in the right place after this shuffle, then 3434 // remember it. 3435 if ((int)(EltIdx / 4) == BestHighQuad) 3436 InOrder.set(i); 3437 } 3438 } 3439 if (AnyOutOrder) { 3440 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3441 NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask); 3442 } 3443 } 3444 3445 // The other elements are put in the right place using pextrw and pinsrw. 3446 for (unsigned i = 0; i != 8; ++i) { 3447 if (InOrder[i]) 3448 continue; 3449 SDOperand Elt = MaskElts[i]; 3450 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3451 SDOperand ExtOp = (EltIdx < 8) 3452 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1, 3453 DAG.getConstant(EltIdx, PtrVT)) 3454 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2, 3455 DAG.getConstant(EltIdx - 8, PtrVT)); 3456 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3457 DAG.getConstant(i, PtrVT)); 3458 } 3459 return NewV; 3460 } 3461 3462 // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use 3463 ///as few as possible. 3464 // First, let's find out how many elements are already in the right order. 3465 unsigned V1InOrder = 0; 3466 unsigned V1FromV1 = 0; 3467 unsigned V2InOrder = 0; 3468 unsigned V2FromV2 = 0; 3469 SmallVector<SDOperand, 8> V1Elts; 3470 SmallVector<SDOperand, 8> V2Elts; 3471 for (unsigned i = 0; i < 8; ++i) { 3472 SDOperand Elt = MaskElts[i]; 3473 if (Elt.getOpcode() == ISD::UNDEF) { 3474 V1Elts.push_back(Elt); 3475 V2Elts.push_back(Elt); 3476 ++V1InOrder; 3477 ++V2InOrder; 3478 continue; 3479 } 3480 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3481 if (EltIdx == i) { 3482 V1Elts.push_back(Elt); 3483 V2Elts.push_back(DAG.getConstant(i+8, MaskEVT)); 3484 ++V1InOrder; 3485 } else if (EltIdx == i+8) { 3486 V1Elts.push_back(Elt); 3487 V2Elts.push_back(DAG.getConstant(i, MaskEVT)); 3488 ++V2InOrder; 3489 } else if (EltIdx < 8) { 3490 V1Elts.push_back(Elt); 3491 ++V1FromV1; 3492 } else { 3493 V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT)); 3494 ++V2FromV2; 3495 } 3496 } 3497 3498 if (V2InOrder > V1InOrder) { 3499 PermMask = CommuteVectorShuffleMask(PermMask, DAG); 3500 std::swap(V1, V2); 3501 std::swap(V1Elts, V2Elts); 3502 std::swap(V1FromV1, V2FromV2); 3503 } 3504 3505 if ((V1FromV1 + V1InOrder) != 8) { 3506 // Some elements are from V2. 3507 if (V1FromV1) { 3508 // If there are elements that are from V1 but out of place, 3509 // then first sort them in place 3510 SmallVector<SDOperand, 8> MaskVec; 3511 for (unsigned i = 0; i < 8; ++i) { 3512 SDOperand Elt = V1Elts[i]; 3513 if (Elt.getOpcode() == ISD::UNDEF) { 3514 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3515 continue; 3516 } 3517 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3518 if (EltIdx >= 8) 3519 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3520 else 3521 MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT)); 3522 } 3523 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8); 3524 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask); 3525 } 3526 3527 NewV = V1; 3528 for (unsigned i = 0; i < 8; ++i) { 3529 SDOperand Elt = V1Elts[i]; 3530 if (Elt.getOpcode() == ISD::UNDEF) 3531 continue; 3532 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3533 if (EltIdx < 8) 3534 continue; 3535 SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2, 3536 DAG.getConstant(EltIdx - 8, PtrVT)); 3537 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3538 DAG.getConstant(i, PtrVT)); 3539 } 3540 return NewV; 3541 } else { 3542 // All elements are from V1. 3543 NewV = V1; 3544 for (unsigned i = 0; i < 8; ++i) { 3545 SDOperand Elt = V1Elts[i]; 3546 if (Elt.getOpcode() == ISD::UNDEF) 3547 continue; 3548 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3549 SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1, 3550 DAG.getConstant(EltIdx, PtrVT)); 3551 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp, 3552 DAG.getConstant(i, PtrVT)); 3553 } 3554 return NewV; 3555 } 3556} 3557 3558/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide 3559/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be 3560/// done when every pair / quad of shuffle mask elements point to elements in 3561/// the right sequence. e.g. 3562/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15> 3563static 3564SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2, 3565 MVT VT, 3566 SDOperand PermMask, SelectionDAG &DAG, 3567 TargetLowering &TLI) { 3568 unsigned NumElems = PermMask.getNumOperands(); 3569 unsigned NewWidth = (NumElems == 4) ? 2 : 4; 3570 MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth); 3571 MVT NewVT = MaskVT; 3572 switch (VT.getSimpleVT()) { 3573 default: assert(false && "Unexpected!"); 3574 case MVT::v4f32: NewVT = MVT::v2f64; break; 3575 case MVT::v4i32: NewVT = MVT::v2i64; break; 3576 case MVT::v8i16: NewVT = MVT::v4i32; break; 3577 case MVT::v16i8: NewVT = MVT::v4i32; break; 3578 } 3579 3580 if (NewWidth == 2) { 3581 if (VT.isInteger()) 3582 NewVT = MVT::v2i64; 3583 else 3584 NewVT = MVT::v2f64; 3585 } 3586 unsigned Scale = NumElems / NewWidth; 3587 SmallVector<SDOperand, 8> MaskVec; 3588 for (unsigned i = 0; i < NumElems; i += Scale) { 3589 unsigned StartIdx = ~0U; 3590 for (unsigned j = 0; j < Scale; ++j) { 3591 SDOperand Elt = PermMask.getOperand(i+j); 3592 if (Elt.getOpcode() == ISD::UNDEF) 3593 continue; 3594 unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue(); 3595 if (StartIdx == ~0U) 3596 StartIdx = EltIdx - (EltIdx % Scale); 3597 if (EltIdx != StartIdx + j) 3598 return SDOperand(); 3599 } 3600 if (StartIdx == ~0U) 3601 MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32)); 3602 else 3603 MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32)); 3604 } 3605 3606 V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1); 3607 V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2); 3608 return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2, 3609 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3610 &MaskVec[0], MaskVec.size())); 3611} 3612 3613/// getVZextMovL - Return a zero-extending vector move low node. 3614/// 3615static SDOperand getVZextMovL(MVT VT, MVT OpVT, 3616 SDOperand SrcOp, SelectionDAG &DAG, 3617 const X86Subtarget *Subtarget) { 3618 if (VT == MVT::v2f64 || VT == MVT::v4f32) { 3619 LoadSDNode *LD = NULL; 3620 if (!isScalarLoadToVector(SrcOp.Val, &LD)) 3621 LD = dyn_cast<LoadSDNode>(SrcOp); 3622 if (!LD) { 3623 // movssrr and movsdrr do not clear top bits. Try to use movd, movq 3624 // instead. 3625 MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; 3626 if ((EVT != MVT::i64 || Subtarget->is64Bit()) && 3627 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 3628 SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT && 3629 SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) { 3630 // PR2108 3631 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; 3632 return DAG.getNode(ISD::BIT_CONVERT, VT, 3633 DAG.getNode(X86ISD::VZEXT_MOVL, OpVT, 3634 DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT, 3635 SrcOp.getOperand(0).getOperand(0)))); 3636 } 3637 } 3638 } 3639 3640 return DAG.getNode(ISD::BIT_CONVERT, VT, 3641 DAG.getNode(X86ISD::VZEXT_MOVL, OpVT, 3642 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp))); 3643} 3644 3645SDOperand 3646X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { 3647 SDOperand V1 = Op.getOperand(0); 3648 SDOperand V2 = Op.getOperand(1); 3649 SDOperand PermMask = Op.getOperand(2); 3650 MVT VT = Op.getValueType(); 3651 unsigned NumElems = PermMask.getNumOperands(); 3652 bool isMMX = VT.getSizeInBits() == 64; 3653 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; 3654 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; 3655 bool V1IsSplat = false; 3656 bool V2IsSplat = false; 3657 3658 if (isUndefShuffle(Op.Val)) 3659 return DAG.getNode(ISD::UNDEF, VT); 3660 3661 if (isZeroShuffle(Op.Val)) 3662 return getZeroVector(VT, Subtarget->hasSSE2(), DAG); 3663 3664 if (isIdentityMask(PermMask.Val)) 3665 return V1; 3666 else if (isIdentityMask(PermMask.Val, true)) 3667 return V2; 3668 3669 if (isSplatMask(PermMask.Val)) { 3670 if (isMMX || NumElems < 4) return Op; 3671 // Promote it to a v4{if}32 splat. 3672 return PromoteSplat(Op, DAG, Subtarget->hasSSE2()); 3673 } 3674 3675 // If the shuffle can be profitably rewritten as a narrower shuffle, then 3676 // do it! 3677 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 3678 SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this); 3679 if (NewOp.Val) 3680 return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG)); 3681 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { 3682 // FIXME: Figure out a cleaner way to do this. 3683 // Try to make use of movq to zero out the top part. 3684 if (ISD::isBuildVectorAllZeros(V2.Val)) { 3685 SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, 3686 DAG, *this); 3687 if (NewOp.Val) { 3688 SDOperand NewV1 = NewOp.getOperand(0); 3689 SDOperand NewV2 = NewOp.getOperand(1); 3690 SDOperand NewMask = NewOp.getOperand(2); 3691 if (isCommutedMOVL(NewMask.Val, true, false)) { 3692 NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG); 3693 return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget); 3694 } 3695 } 3696 } else if (ISD::isBuildVectorAllZeros(V1.Val)) { 3697 SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, 3698 DAG, *this); 3699 if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val)) 3700 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1), 3701 DAG, Subtarget); 3702 } 3703 } 3704 3705 // Check if this can be converted into a logical shift. 3706 bool isLeft = false; 3707 unsigned ShAmt = 0; 3708 SDOperand ShVal; 3709 bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt); 3710 if (isShift && ShVal.hasOneUse()) { 3711 // If the shifted value has multiple uses, it may be cheaper to use 3712 // v_set0 + movlhps or movhlps, etc. 3713 MVT EVT = VT.getVectorElementType(); 3714 ShAmt *= EVT.getSizeInBits(); 3715 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this); 3716 } 3717 3718 if (X86::isMOVLMask(PermMask.Val)) { 3719 if (V1IsUndef) 3720 return V2; 3721 if (ISD::isBuildVectorAllZeros(V1.Val)) 3722 return getVZextMovL(VT, VT, V2, DAG, Subtarget); 3723 return Op; 3724 } 3725 3726 if (X86::isMOVSHDUPMask(PermMask.Val) || 3727 X86::isMOVSLDUPMask(PermMask.Val) || 3728 X86::isMOVHLPSMask(PermMask.Val) || 3729 X86::isMOVHPMask(PermMask.Val) || 3730 X86::isMOVLPMask(PermMask.Val)) 3731 return Op; 3732 3733 if (ShouldXformToMOVHLPS(PermMask.Val) || 3734 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val)) 3735 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3736 3737 if (isShift) { 3738 // No better options. Use a vshl / vsrl. 3739 MVT EVT = VT.getVectorElementType(); 3740 ShAmt *= EVT.getSizeInBits(); 3741 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this); 3742 } 3743 3744 bool Commuted = false; 3745 // FIXME: This should also accept a bitcast of a splat? Be careful, not 3746 // 1,1,1,1 -> v8i16 though. 3747 V1IsSplat = isSplatVector(V1.Val); 3748 V2IsSplat = isSplatVector(V2.Val); 3749 3750 // Canonicalize the splat or undef, if present, to be on the RHS. 3751 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { 3752 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3753 std::swap(V1IsSplat, V2IsSplat); 3754 std::swap(V1IsUndef, V2IsUndef); 3755 Commuted = true; 3756 } 3757 3758 // FIXME: Figure out a cleaner way to do this. 3759 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) { 3760 if (V2IsUndef) return V1; 3761 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3762 if (V2IsSplat) { 3763 // V2 is a splat, so the mask may be malformed. That is, it may point 3764 // to any V2 element. The instruction selectior won't like this. Get 3765 // a corrected mask and commute to form a proper MOVS{S|D}. 3766 SDOperand NewMask = getMOVLMask(NumElems, DAG); 3767 if (NewMask.Val != PermMask.Val) 3768 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 3769 } 3770 return Op; 3771 } 3772 3773 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || 3774 X86::isUNPCKH_v_undef_Mask(PermMask.Val) || 3775 X86::isUNPCKLMask(PermMask.Val) || 3776 X86::isUNPCKHMask(PermMask.Val)) 3777 return Op; 3778 3779 if (V2IsSplat) { 3780 // Normalize mask so all entries that point to V2 points to its first 3781 // element then try to match unpck{h|l} again. If match, return a 3782 // new vector_shuffle with the corrected mask. 3783 SDOperand NewMask = NormalizeMask(PermMask, DAG); 3784 if (NewMask.Val != PermMask.Val) { 3785 if (X86::isUNPCKLMask(PermMask.Val, true)) { 3786 SDOperand NewMask = getUnpacklMask(NumElems, DAG); 3787 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 3788 } else if (X86::isUNPCKHMask(PermMask.Val, true)) { 3789 SDOperand NewMask = getUnpackhMask(NumElems, DAG); 3790 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); 3791 } 3792 } 3793 } 3794 3795 // Normalize the node to match x86 shuffle ops if needed 3796 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val)) 3797 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3798 3799 if (Commuted) { 3800 // Commute is back and try unpck* again. 3801 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG); 3802 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || 3803 X86::isUNPCKH_v_undef_Mask(PermMask.Val) || 3804 X86::isUNPCKLMask(PermMask.Val) || 3805 X86::isUNPCKHMask(PermMask.Val)) 3806 return Op; 3807 } 3808 3809 // Try PSHUF* first, then SHUFP*. 3810 // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically 3811 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented. 3812 if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.Val)) { 3813 if (V2.getOpcode() != ISD::UNDEF) 3814 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, 3815 DAG.getNode(ISD::UNDEF, VT), PermMask); 3816 return Op; 3817 } 3818 3819 if (!isMMX) { 3820 if (Subtarget->hasSSE2() && 3821 (X86::isPSHUFDMask(PermMask.Val) || 3822 X86::isPSHUFHWMask(PermMask.Val) || 3823 X86::isPSHUFLWMask(PermMask.Val))) { 3824 MVT RVT = VT; 3825 if (VT == MVT::v4f32) { 3826 RVT = MVT::v4i32; 3827 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, 3828 DAG.getNode(ISD::BIT_CONVERT, RVT, V1), 3829 DAG.getNode(ISD::UNDEF, RVT), PermMask); 3830 } else if (V2.getOpcode() != ISD::UNDEF) 3831 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1, 3832 DAG.getNode(ISD::UNDEF, RVT), PermMask); 3833 if (RVT != VT) 3834 Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op); 3835 return Op; 3836 } 3837 3838 // Binary or unary shufps. 3839 if (X86::isSHUFPMask(PermMask.Val) || 3840 (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.Val))) 3841 return Op; 3842 } 3843 3844 // Handle v8i16 specifically since SSE can do byte extraction and insertion. 3845 if (VT == MVT::v8i16) { 3846 SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this); 3847 if (NewOp.Val) 3848 return NewOp; 3849 } 3850 3851 // Handle all 4 wide cases with a number of shuffles. 3852 if (NumElems == 4 && !isMMX) { 3853 // Don't do this for MMX. 3854 MVT MaskVT = PermMask.getValueType(); 3855 MVT MaskEVT = MaskVT.getVectorElementType(); 3856 SmallVector<std::pair<int, int>, 8> Locs; 3857 Locs.reserve(NumElems); 3858 SmallVector<SDOperand, 8> Mask1(NumElems, 3859 DAG.getNode(ISD::UNDEF, MaskEVT)); 3860 SmallVector<SDOperand, 8> Mask2(NumElems, 3861 DAG.getNode(ISD::UNDEF, MaskEVT)); 3862 unsigned NumHi = 0; 3863 unsigned NumLo = 0; 3864 // If no more than two elements come from either vector. This can be 3865 // implemented with two shuffles. First shuffle gather the elements. 3866 // The second shuffle, which takes the first shuffle as both of its 3867 // vector operands, put the elements into the right order. 3868 for (unsigned i = 0; i != NumElems; ++i) { 3869 SDOperand Elt = PermMask.getOperand(i); 3870 if (Elt.getOpcode() == ISD::UNDEF) { 3871 Locs[i] = std::make_pair(-1, -1); 3872 } else { 3873 unsigned Val = cast<ConstantSDNode>(Elt)->getValue(); 3874 if (Val < NumElems) { 3875 Locs[i] = std::make_pair(0, NumLo); 3876 Mask1[NumLo] = Elt; 3877 NumLo++; 3878 } else { 3879 Locs[i] = std::make_pair(1, NumHi); 3880 if (2+NumHi < NumElems) 3881 Mask1[2+NumHi] = Elt; 3882 NumHi++; 3883 } 3884 } 3885 } 3886 if (NumLo <= 2 && NumHi <= 2) { 3887 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3888 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3889 &Mask1[0], Mask1.size())); 3890 for (unsigned i = 0; i != NumElems; ++i) { 3891 if (Locs[i].first == -1) 3892 continue; 3893 else { 3894 unsigned Idx = (i < NumElems/2) ? 0 : NumElems; 3895 Idx += Locs[i].first * (NumElems/2) + Locs[i].second; 3896 Mask2[i] = DAG.getConstant(Idx, MaskEVT); 3897 } 3898 } 3899 3900 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, 3901 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3902 &Mask2[0], Mask2.size())); 3903 } 3904 3905 // Break it into (shuffle shuffle_hi, shuffle_lo). 3906 Locs.clear(); 3907 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); 3908 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); 3909 SmallVector<SDOperand,8> *MaskPtr = &LoMask; 3910 unsigned MaskIdx = 0; 3911 unsigned LoIdx = 0; 3912 unsigned HiIdx = NumElems/2; 3913 for (unsigned i = 0; i != NumElems; ++i) { 3914 if (i == NumElems/2) { 3915 MaskPtr = &HiMask; 3916 MaskIdx = 1; 3917 LoIdx = 0; 3918 HiIdx = NumElems/2; 3919 } 3920 SDOperand Elt = PermMask.getOperand(i); 3921 if (Elt.getOpcode() == ISD::UNDEF) { 3922 Locs[i] = std::make_pair(-1, -1); 3923 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) { 3924 Locs[i] = std::make_pair(MaskIdx, LoIdx); 3925 (*MaskPtr)[LoIdx] = Elt; 3926 LoIdx++; 3927 } else { 3928 Locs[i] = std::make_pair(MaskIdx, HiIdx); 3929 (*MaskPtr)[HiIdx] = Elt; 3930 HiIdx++; 3931 } 3932 } 3933 3934 SDOperand LoShuffle = 3935 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3936 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3937 &LoMask[0], LoMask.size())); 3938 SDOperand HiShuffle = 3939 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, 3940 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3941 &HiMask[0], HiMask.size())); 3942 SmallVector<SDOperand, 8> MaskOps; 3943 for (unsigned i = 0; i != NumElems; ++i) { 3944 if (Locs[i].first == -1) { 3945 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); 3946 } else { 3947 unsigned Idx = Locs[i].first * NumElems + Locs[i].second; 3948 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT)); 3949 } 3950 } 3951 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle, 3952 DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 3953 &MaskOps[0], MaskOps.size())); 3954 } 3955 3956 return SDOperand(); 3957} 3958 3959SDOperand 3960X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op, 3961 SelectionDAG &DAG) { 3962 MVT VT = Op.getValueType(); 3963 if (VT.getSizeInBits() == 8) { 3964 SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32, 3965 Op.getOperand(0), Op.getOperand(1)); 3966 SDOperand Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract, 3967 DAG.getValueType(VT)); 3968 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 3969 } else if (VT.getSizeInBits() == 16) { 3970 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32, 3971 Op.getOperand(0), Op.getOperand(1)); 3972 SDOperand Assert = DAG.getNode(ISD::AssertZext, MVT::i32, Extract, 3973 DAG.getValueType(VT)); 3974 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 3975 } else if (VT == MVT::f32) { 3976 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy 3977 // the result back to FR32 register. It's only worth matching if the 3978 // result has a single use which is a store or a bitcast to i32. 3979 if (!Op.hasOneUse()) 3980 return SDOperand(); 3981 SDNode *User = Op.Val->use_begin()->getUser(); 3982 if (User->getOpcode() != ISD::STORE && 3983 (User->getOpcode() != ISD::BIT_CONVERT || 3984 User->getValueType(0) != MVT::i32)) 3985 return SDOperand(); 3986 SDOperand Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, 3987 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)), 3988 Op.getOperand(1)); 3989 return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract); 3990 } 3991 return SDOperand(); 3992} 3993 3994 3995SDOperand 3996X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { 3997 if (!isa<ConstantSDNode>(Op.getOperand(1))) 3998 return SDOperand(); 3999 4000 if (Subtarget->hasSSE41()) { 4001 SDOperand Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); 4002 if (Res.Val) 4003 return Res; 4004 } 4005 4006 MVT VT = Op.getValueType(); 4007 // TODO: handle v16i8. 4008 if (VT.getSizeInBits() == 16) { 4009 SDOperand Vec = Op.getOperand(0); 4010 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 4011 if (Idx == 0) 4012 return DAG.getNode(ISD::TRUNCATE, MVT::i16, 4013 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4014 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec), 4015 Op.getOperand(1))); 4016 // Transform it so it match pextrw which produces a 32-bit result. 4017 MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1); 4018 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT, 4019 Op.getOperand(0), Op.getOperand(1)); 4020 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract, 4021 DAG.getValueType(VT)); 4022 return DAG.getNode(ISD::TRUNCATE, VT, Assert); 4023 } else if (VT.getSizeInBits() == 32) { 4024 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 4025 if (Idx == 0) 4026 return Op; 4027 // SHUFPS the element to the lowest double word, then movss. 4028 MVT MaskVT = MVT::getIntVectorWithNumElements(4); 4029 SmallVector<SDOperand, 8> IdxVec; 4030 IdxVec. 4031 push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType())); 4032 IdxVec. 4033 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4034 IdxVec. 4035 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4036 IdxVec. 4037 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4038 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4039 &IdxVec[0], IdxVec.size()); 4040 SDOperand Vec = Op.getOperand(0); 4041 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), 4042 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); 4043 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, 4044 DAG.getIntPtrConstant(0)); 4045 } else if (VT.getSizeInBits() == 64) { 4046 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b 4047 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught 4048 // to match extract_elt for f64. 4049 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); 4050 if (Idx == 0) 4051 return Op; 4052 4053 // UNPCKHPD the element to the lowest double word, then movsd. 4054 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored 4055 // to a f64mem, the whole operation is folded into a single MOVHPDmr. 4056 MVT MaskVT = MVT::getIntVectorWithNumElements(4); 4057 SmallVector<SDOperand, 8> IdxVec; 4058 IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType())); 4059 IdxVec. 4060 push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType())); 4061 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, 4062 &IdxVec[0], IdxVec.size()); 4063 SDOperand Vec = Op.getOperand(0); 4064 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), 4065 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); 4066 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, 4067 DAG.getIntPtrConstant(0)); 4068 } 4069 4070 return SDOperand(); 4071} 4072 4073SDOperand 4074X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){ 4075 MVT VT = Op.getValueType(); 4076 MVT EVT = VT.getVectorElementType(); 4077 4078 SDOperand N0 = Op.getOperand(0); 4079 SDOperand N1 = Op.getOperand(1); 4080 SDOperand N2 = Op.getOperand(2); 4081 4082 if ((EVT.getSizeInBits() == 8) || (EVT.getSizeInBits() == 16)) { 4083 unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB 4084 : X86ISD::PINSRW; 4085 // Transform it so it match pinsr{b,w} which expects a GR32 as its second 4086 // argument. 4087 if (N1.getValueType() != MVT::i32) 4088 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); 4089 if (N2.getValueType() != MVT::i32) 4090 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue()); 4091 return DAG.getNode(Opc, VT, N0, N1, N2); 4092 } else if (EVT == MVT::f32) { 4093 // Bits [7:6] of the constant are the source select. This will always be 4094 // zero here. The DAG Combiner may combine an extract_elt index into these 4095 // bits. For example (insert (extract, 3), 2) could be matched by putting 4096 // the '3' into bits [7:6] of X86ISD::INSERTPS. 4097 // Bits [5:4] of the constant are the destination select. This is the 4098 // value of the incoming immediate. 4099 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may 4100 // combine either bitwise AND or insert of float 0.0 to set these bits. 4101 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4); 4102 return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2); 4103 } 4104 return SDOperand(); 4105} 4106 4107SDOperand 4108X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { 4109 MVT VT = Op.getValueType(); 4110 MVT EVT = VT.getVectorElementType(); 4111 4112 if (Subtarget->hasSSE41()) 4113 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); 4114 4115 if (EVT == MVT::i8) 4116 return SDOperand(); 4117 4118 SDOperand N0 = Op.getOperand(0); 4119 SDOperand N1 = Op.getOperand(1); 4120 SDOperand N2 = Op.getOperand(2); 4121 4122 if (EVT.getSizeInBits() == 16) { 4123 // Transform it so it match pinsrw which expects a 16-bit value in a GR32 4124 // as its second argument. 4125 if (N1.getValueType() != MVT::i32) 4126 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); 4127 if (N2.getValueType() != MVT::i32) 4128 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue()); 4129 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2); 4130 } 4131 return SDOperand(); 4132} 4133 4134SDOperand 4135X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { 4136 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0)); 4137 MVT VT = MVT::v2i32; 4138 switch (Op.getValueType().getSimpleVT()) { 4139 default: break; 4140 case MVT::v16i8: 4141 case MVT::v8i16: 4142 VT = MVT::v4i32; 4143 break; 4144 } 4145 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), 4146 DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt)); 4147} 4148 4149// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as 4150// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is 4151// one of the above mentioned nodes. It has to be wrapped because otherwise 4152// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only 4153// be used to form addressing mode. These wrapped nodes will be selected 4154// into MOV32ri. 4155SDOperand 4156X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { 4157 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 4158 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(), 4159 getPointerTy(), 4160 CP->getAlignment()); 4161 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4162 // With PIC, the address is actually $g + Offset. 4163 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4164 !Subtarget->isPICStyleRIPRel()) { 4165 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4166 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4167 Result); 4168 } 4169 4170 return Result; 4171} 4172 4173SDOperand 4174X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { 4175 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 4176 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy()); 4177 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4178 // With PIC, the address is actually $g + Offset. 4179 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4180 !Subtarget->isPICStyleRIPRel()) { 4181 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4182 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4183 Result); 4184 } 4185 4186 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to 4187 // load the value at address GV, not the value of GV itself. This means that 4188 // the GlobalAddress must be in the base or index register of the address, not 4189 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call 4190 // The same applies for external symbols during PIC codegen 4191 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false)) 4192 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, 4193 PseudoSourceValue::getGOT(), 0); 4194 4195 return Result; 4196} 4197 4198// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit 4199static SDOperand 4200LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, 4201 const MVT PtrVT) { 4202 SDOperand InFlag; 4203 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX, 4204 DAG.getNode(X86ISD::GlobalBaseReg, 4205 PtrVT), InFlag); 4206 InFlag = Chain.getValue(1); 4207 4208 // emit leal symbol@TLSGD(,%ebx,1), %eax 4209 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag); 4210 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), 4211 GA->getValueType(0), 4212 GA->getOffset()); 4213 SDOperand Ops[] = { Chain, TGA, InFlag }; 4214 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3); 4215 InFlag = Result.getValue(2); 4216 Chain = Result.getValue(1); 4217 4218 // call ___tls_get_addr. This function receives its argument in 4219 // the register EAX. 4220 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag); 4221 InFlag = Chain.getValue(1); 4222 4223 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 4224 SDOperand Ops1[] = { Chain, 4225 DAG.getTargetExternalSymbol("___tls_get_addr", 4226 PtrVT), 4227 DAG.getRegister(X86::EAX, PtrVT), 4228 DAG.getRegister(X86::EBX, PtrVT), 4229 InFlag }; 4230 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5); 4231 InFlag = Chain.getValue(1); 4232 4233 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag); 4234} 4235 4236// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit 4237static SDOperand 4238LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, 4239 const MVT PtrVT) { 4240 SDOperand InFlag, Chain; 4241 4242 // emit leaq symbol@TLSGD(%rip), %rdi 4243 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag); 4244 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), 4245 GA->getValueType(0), 4246 GA->getOffset()); 4247 SDOperand Ops[] = { DAG.getEntryNode(), TGA}; 4248 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2); 4249 Chain = Result.getValue(1); 4250 InFlag = Result.getValue(2); 4251 4252 // call ___tls_get_addr. This function receives its argument in 4253 // the register RDI. 4254 Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag); 4255 InFlag = Chain.getValue(1); 4256 4257 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 4258 SDOperand Ops1[] = { Chain, 4259 DAG.getTargetExternalSymbol("___tls_get_addr", 4260 PtrVT), 4261 DAG.getRegister(X86::RDI, PtrVT), 4262 InFlag }; 4263 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4); 4264 InFlag = Chain.getValue(1); 4265 4266 return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag); 4267} 4268 4269// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or 4270// "local exec" model. 4271static SDOperand LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, 4272 const MVT PtrVT) { 4273 // Get the Thread Pointer 4274 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT); 4275 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial 4276 // exec) 4277 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), 4278 GA->getValueType(0), 4279 GA->getOffset()); 4280 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA); 4281 4282 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model 4283 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, 4284 PseudoSourceValue::getGOT(), 0); 4285 4286 // The address of the thread local variable is the add of the thread 4287 // pointer with the offset of the variable. 4288 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset); 4289} 4290 4291SDOperand 4292X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) { 4293 // TODO: implement the "local dynamic" model 4294 // TODO: implement the "initial exec"model for pic executables 4295 assert(Subtarget->isTargetELF() && 4296 "TLS not implemented for non-ELF targets"); 4297 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 4298 // If the relocation model is PIC, use the "General Dynamic" TLS Model, 4299 // otherwise use the "Local Exec"TLS Model 4300 if (Subtarget->is64Bit()) { 4301 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); 4302 } else { 4303 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) 4304 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); 4305 else 4306 return LowerToTLSExecModel(GA, DAG, getPointerTy()); 4307 } 4308} 4309 4310SDOperand 4311X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) { 4312 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 4313 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy()); 4314 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4315 // With PIC, the address is actually $g + Offset. 4316 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4317 !Subtarget->isPICStyleRIPRel()) { 4318 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4319 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4320 Result); 4321 } 4322 4323 return Result; 4324} 4325 4326SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { 4327 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 4328 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy()); 4329 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result); 4330 // With PIC, the address is actually $g + Offset. 4331 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 4332 !Subtarget->isPICStyleRIPRel()) { 4333 Result = DAG.getNode(ISD::ADD, getPointerTy(), 4334 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), 4335 Result); 4336 } 4337 4338 return Result; 4339} 4340 4341/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and 4342/// take a 2 x i32 value to shift plus a shift amount. 4343SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) { 4344 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 4345 MVT VT = Op.getValueType(); 4346 unsigned VTBits = VT.getSizeInBits(); 4347 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; 4348 SDOperand ShOpLo = Op.getOperand(0); 4349 SDOperand ShOpHi = Op.getOperand(1); 4350 SDOperand ShAmt = Op.getOperand(2); 4351 SDOperand Tmp1 = isSRA ? 4352 DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) : 4353 DAG.getConstant(0, VT); 4354 4355 SDOperand Tmp2, Tmp3; 4356 if (Op.getOpcode() == ISD::SHL_PARTS) { 4357 Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt); 4358 Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt); 4359 } else { 4360 Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt); 4361 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt); 4362 } 4363 4364 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt, 4365 DAG.getConstant(VTBits, MVT::i8)); 4366 SDOperand Cond = DAG.getNode(X86ISD::CMP, VT, 4367 AndNode, DAG.getConstant(0, MVT::i8)); 4368 4369 SDOperand Hi, Lo; 4370 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8); 4371 SDOperand Ops0[4] = { Tmp2, Tmp3, CC, Cond }; 4372 SDOperand Ops1[4] = { Tmp3, Tmp1, CC, Cond }; 4373 4374 if (Op.getOpcode() == ISD::SHL_PARTS) { 4375 Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4); 4376 Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4); 4377 } else { 4378 Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4); 4379 Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4); 4380 } 4381 4382 SDOperand Ops[2] = { Lo, Hi }; 4383 return DAG.getMergeValues(Ops, 2); 4384} 4385 4386SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { 4387 MVT SrcVT = Op.getOperand(0).getValueType(); 4388 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && 4389 "Unknown SINT_TO_FP to lower!"); 4390 4391 // These are really Legal; caller falls through into that case. 4392 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) 4393 return SDOperand(); 4394 if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 && 4395 Subtarget->is64Bit()) 4396 return SDOperand(); 4397 4398 unsigned Size = SrcVT.getSizeInBits()/8; 4399 MachineFunction &MF = DAG.getMachineFunction(); 4400 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); 4401 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4402 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0), 4403 StackSlot, 4404 PseudoSourceValue::getFixedStack(SSFI), 0); 4405 4406 // Build the FILD 4407 SDVTList Tys; 4408 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); 4409 if (useSSE) 4410 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag); 4411 else 4412 Tys = DAG.getVTList(Op.getValueType(), MVT::Other); 4413 SmallVector<SDOperand, 8> Ops; 4414 Ops.push_back(Chain); 4415 Ops.push_back(StackSlot); 4416 Ops.push_back(DAG.getValueType(SrcVT)); 4417 SDOperand Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, 4418 Tys, &Ops[0], Ops.size()); 4419 4420 if (useSSE) { 4421 Chain = Result.getValue(1); 4422 SDOperand InFlag = Result.getValue(2); 4423 4424 // FIXME: Currently the FST is flagged to the FILD_FLAG. This 4425 // shouldn't be necessary except that RFP cannot be live across 4426 // multiple blocks. When stackifier is fixed, they can be uncoupled. 4427 MachineFunction &MF = DAG.getMachineFunction(); 4428 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); 4429 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4430 Tys = DAG.getVTList(MVT::Other); 4431 SmallVector<SDOperand, 8> Ops; 4432 Ops.push_back(Chain); 4433 Ops.push_back(Result); 4434 Ops.push_back(StackSlot); 4435 Ops.push_back(DAG.getValueType(Op.getValueType())); 4436 Ops.push_back(InFlag); 4437 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size()); 4438 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, 4439 PseudoSourceValue::getFixedStack(SSFI), 0); 4440 } 4441 4442 return Result; 4443} 4444 4445std::pair<SDOperand,SDOperand> X86TargetLowering:: 4446FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) { 4447 assert(Op.getValueType().getSimpleVT() <= MVT::i64 && 4448 Op.getValueType().getSimpleVT() >= MVT::i16 && 4449 "Unknown FP_TO_SINT to lower!"); 4450 4451 // These are really Legal. 4452 if (Op.getValueType() == MVT::i32 && 4453 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) 4454 return std::make_pair(SDOperand(), SDOperand()); 4455 if (Subtarget->is64Bit() && 4456 Op.getValueType() == MVT::i64 && 4457 Op.getOperand(0).getValueType() != MVT::f80) 4458 return std::make_pair(SDOperand(), SDOperand()); 4459 4460 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary 4461 // stack slot. 4462 MachineFunction &MF = DAG.getMachineFunction(); 4463 unsigned MemSize = Op.getValueType().getSizeInBits()/8; 4464 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); 4465 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4466 unsigned Opc; 4467 switch (Op.getValueType().getSimpleVT()) { 4468 default: assert(0 && "Invalid FP_TO_SINT to lower!"); 4469 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; 4470 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; 4471 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; 4472 } 4473 4474 SDOperand Chain = DAG.getEntryNode(); 4475 SDOperand Value = Op.getOperand(0); 4476 if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) { 4477 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); 4478 Chain = DAG.getStore(Chain, Value, StackSlot, 4479 PseudoSourceValue::getFixedStack(SSFI), 0); 4480 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); 4481 SDOperand Ops[] = { 4482 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType()) 4483 }; 4484 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3); 4485 Chain = Value.getValue(1); 4486 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); 4487 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 4488 } 4489 4490 // Build the FP_TO_INT*_IN_MEM 4491 SDOperand Ops[] = { Chain, Value, StackSlot }; 4492 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3); 4493 4494 return std::make_pair(FIST, StackSlot); 4495} 4496 4497SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { 4498 std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG); 4499 SDOperand FIST = Vals.first, StackSlot = Vals.second; 4500 if (FIST.Val == 0) return SDOperand(); 4501 4502 // Load the result. 4503 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0); 4504} 4505 4506SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) { 4507 std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG); 4508 SDOperand FIST = Vals.first, StackSlot = Vals.second; 4509 if (FIST.Val == 0) return 0; 4510 4511 MVT VT = N->getValueType(0); 4512 4513 // Return a load from the stack slot. 4514 SDOperand Res = DAG.getLoad(VT, FIST, StackSlot, NULL, 0); 4515 4516 // Use MERGE_VALUES to drop the chain result value and get a node with one 4517 // result. This requires turning off getMergeValues simplification, since 4518 // otherwise it will give us Res back. 4519 return DAG.getMergeValues(&Res, 1, false).Val; 4520} 4521 4522SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) { 4523 MVT VT = Op.getValueType(); 4524 MVT EltVT = VT; 4525 if (VT.isVector()) 4526 EltVT = VT.getVectorElementType(); 4527 std::vector<Constant*> CV; 4528 if (EltVT == MVT::f64) { 4529 Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))); 4530 CV.push_back(C); 4531 CV.push_back(C); 4532 } else { 4533 Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))); 4534 CV.push_back(C); 4535 CV.push_back(C); 4536 CV.push_back(C); 4537 CV.push_back(C); 4538 } 4539 Constant *C = ConstantVector::get(CV); 4540 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4541 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4542 PseudoSourceValue::getConstantPool(), 0, 4543 false, 16); 4544 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); 4545} 4546 4547SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) { 4548 MVT VT = Op.getValueType(); 4549 MVT EltVT = VT; 4550 unsigned EltNum = 1; 4551 if (VT.isVector()) { 4552 EltVT = VT.getVectorElementType(); 4553 EltNum = VT.getVectorNumElements(); 4554 } 4555 std::vector<Constant*> CV; 4556 if (EltVT == MVT::f64) { 4557 Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63))); 4558 CV.push_back(C); 4559 CV.push_back(C); 4560 } else { 4561 Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31))); 4562 CV.push_back(C); 4563 CV.push_back(C); 4564 CV.push_back(C); 4565 CV.push_back(C); 4566 } 4567 Constant *C = ConstantVector::get(CV); 4568 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4569 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4570 PseudoSourceValue::getConstantPool(), 0, 4571 false, 16); 4572 if (VT.isVector()) { 4573 return DAG.getNode(ISD::BIT_CONVERT, VT, 4574 DAG.getNode(ISD::XOR, MVT::v2i64, 4575 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)), 4576 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask))); 4577 } else { 4578 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); 4579 } 4580} 4581 4582SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) { 4583 SDOperand Op0 = Op.getOperand(0); 4584 SDOperand Op1 = Op.getOperand(1); 4585 MVT VT = Op.getValueType(); 4586 MVT SrcVT = Op1.getValueType(); 4587 4588 // If second operand is smaller, extend it first. 4589 if (SrcVT.bitsLT(VT)) { 4590 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1); 4591 SrcVT = VT; 4592 } 4593 // And if it is bigger, shrink it first. 4594 if (SrcVT.bitsGT(VT)) { 4595 Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1)); 4596 SrcVT = VT; 4597 } 4598 4599 // At this point the operands and the result should have the same 4600 // type, and that won't be f80 since that is not custom lowered. 4601 4602 // First get the sign bit of second operand. 4603 std::vector<Constant*> CV; 4604 if (SrcVT == MVT::f64) { 4605 CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63)))); 4606 CV.push_back(ConstantFP::get(APFloat(APInt(64, 0)))); 4607 } else { 4608 CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31)))); 4609 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4610 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4611 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4612 } 4613 Constant *C = ConstantVector::get(CV); 4614 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4615 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, 4616 PseudoSourceValue::getConstantPool(), 0, 4617 false, 16); 4618 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1); 4619 4620 // Shift sign bit right or left if the two operands have different types. 4621 if (SrcVT.bitsGT(VT)) { 4622 // Op0 is MVT::f32, Op1 is MVT::f64. 4623 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit); 4624 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit, 4625 DAG.getConstant(32, MVT::i32)); 4626 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit); 4627 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit, 4628 DAG.getIntPtrConstant(0)); 4629 } 4630 4631 // Clear first operand sign bit. 4632 CV.clear(); 4633 if (VT == MVT::f64) { 4634 CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))))); 4635 CV.push_back(ConstantFP::get(APFloat(APInt(64, 0)))); 4636 } else { 4637 CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31))))); 4638 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4639 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4640 CV.push_back(ConstantFP::get(APFloat(APInt(32, 0)))); 4641 } 4642 C = ConstantVector::get(CV); 4643 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4); 4644 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, 4645 PseudoSourceValue::getConstantPool(), 0, 4646 false, 16); 4647 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2); 4648 4649 // Or the value with the sign bit. 4650 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit); 4651} 4652 4653SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) { 4654 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); 4655 SDOperand Cond; 4656 SDOperand Op0 = Op.getOperand(0); 4657 SDOperand Op1 = Op.getOperand(1); 4658 SDOperand CC = Op.getOperand(2); 4659 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 4660 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); 4661 unsigned X86CC; 4662 4663 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC, 4664 Op0, Op1, DAG)) { 4665 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1); 4666 return DAG.getNode(X86ISD::SETCC, MVT::i8, 4667 DAG.getConstant(X86CC, MVT::i8), Cond); 4668 } 4669 4670 assert(isFP && "Illegal integer SetCC!"); 4671 4672 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1); 4673 switch (SetCCOpcode) { 4674 default: assert(false && "Illegal floating point SetCC!"); 4675 case ISD::SETOEQ: { // !PF & ZF 4676 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4677 DAG.getConstant(X86::COND_NP, MVT::i8), Cond); 4678 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4679 DAG.getConstant(X86::COND_E, MVT::i8), Cond); 4680 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); 4681 } 4682 case ISD::SETUNE: { // PF | !ZF 4683 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4684 DAG.getConstant(X86::COND_P, MVT::i8), Cond); 4685 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, 4686 DAG.getConstant(X86::COND_NE, MVT::i8), Cond); 4687 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); 4688 } 4689 } 4690} 4691 4692 4693SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) { 4694 bool addTest = true; 4695 SDOperand Cond = Op.getOperand(0); 4696 SDOperand CC; 4697 4698 if (Cond.getOpcode() == ISD::SETCC) 4699 Cond = LowerSETCC(Cond, DAG); 4700 4701 // If condition flag is set by a X86ISD::CMP, then use it as the condition 4702 // setting operand in place of the X86ISD::SETCC. 4703 if (Cond.getOpcode() == X86ISD::SETCC) { 4704 CC = Cond.getOperand(0); 4705 4706 SDOperand Cmp = Cond.getOperand(1); 4707 unsigned Opc = Cmp.getOpcode(); 4708 MVT VT = Op.getValueType(); 4709 4710 bool IllegalFPCMov = false; 4711 if (VT.isFloatingPoint() && !VT.isVector() && 4712 !isScalarFPTypeInSSEReg(VT)) // FPStack? 4713 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); 4714 4715 if ((Opc == X86ISD::CMP || 4716 Opc == X86ISD::COMI || 4717 Opc == X86ISD::UCOMI) && !IllegalFPCMov) { 4718 Cond = Cmp; 4719 addTest = false; 4720 } 4721 } 4722 4723 if (addTest) { 4724 CC = DAG.getConstant(X86::COND_NE, MVT::i8); 4725 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8)); 4726 } 4727 4728 const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(), 4729 MVT::Flag); 4730 SmallVector<SDOperand, 4> Ops; 4731 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if 4732 // condition is true. 4733 Ops.push_back(Op.getOperand(2)); 4734 Ops.push_back(Op.getOperand(1)); 4735 Ops.push_back(CC); 4736 Ops.push_back(Cond); 4737 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size()); 4738} 4739 4740SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) { 4741 bool addTest = true; 4742 SDOperand Chain = Op.getOperand(0); 4743 SDOperand Cond = Op.getOperand(1); 4744 SDOperand Dest = Op.getOperand(2); 4745 SDOperand CC; 4746 4747 if (Cond.getOpcode() == ISD::SETCC) 4748 Cond = LowerSETCC(Cond, DAG); 4749 4750 // If condition flag is set by a X86ISD::CMP, then use it as the condition 4751 // setting operand in place of the X86ISD::SETCC. 4752 if (Cond.getOpcode() == X86ISD::SETCC) { 4753 CC = Cond.getOperand(0); 4754 4755 SDOperand Cmp = Cond.getOperand(1); 4756 unsigned Opc = Cmp.getOpcode(); 4757 if (Opc == X86ISD::CMP || 4758 Opc == X86ISD::COMI || 4759 Opc == X86ISD::UCOMI) { 4760 Cond = Cmp; 4761 addTest = false; 4762 } 4763 } 4764 4765 if (addTest) { 4766 CC = DAG.getConstant(X86::COND_NE, MVT::i8); 4767 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8)); 4768 } 4769 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), 4770 Chain, Op.getOperand(2), CC, Cond); 4771} 4772 4773 4774// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. 4775// Calls to _alloca is needed to probe the stack when allocating more than 4k 4776// bytes in one go. Touching the stack at 4K increments is necessary to ensure 4777// that the guard pages used by the OS virtual memory manager are allocated in 4778// correct sequence. 4779SDOperand 4780X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op, 4781 SelectionDAG &DAG) { 4782 assert(Subtarget->isTargetCygMing() && 4783 "This should be used only on Cygwin/Mingw targets"); 4784 4785 // Get the inputs. 4786 SDOperand Chain = Op.getOperand(0); 4787 SDOperand Size = Op.getOperand(1); 4788 // FIXME: Ensure alignment here 4789 4790 SDOperand Flag; 4791 4792 MVT IntPtr = getPointerTy(); 4793 MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; 4794 4795 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0)); 4796 4797 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag); 4798 Flag = Chain.getValue(1); 4799 4800 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); 4801 SDOperand Ops[] = { Chain, 4802 DAG.getTargetExternalSymbol("_alloca", IntPtr), 4803 DAG.getRegister(X86::EAX, IntPtr), 4804 DAG.getRegister(X86StackPtr, SPTy), 4805 Flag }; 4806 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5); 4807 Flag = Chain.getValue(1); 4808 4809 Chain = DAG.getCALLSEQ_END(Chain, 4810 DAG.getIntPtrConstant(0), 4811 DAG.getIntPtrConstant(0), 4812 Flag); 4813 4814 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1); 4815 4816 SDOperand Ops1[2] = { Chain.getValue(0), Chain }; 4817 return DAG.getMergeValues(Ops1, 2); 4818} 4819 4820SDOperand 4821X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG, 4822 SDOperand Chain, 4823 SDOperand Dst, SDOperand Src, 4824 SDOperand Size, unsigned Align, 4825 const Value *DstSV, uint64_t DstSVOff) { 4826 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4827 4828 /// If not DWORD aligned or size is more than the threshold, call the library. 4829 /// The libc version is likely to be faster for these cases. It can use the 4830 /// address value and run time information about the CPU. 4831 if ((Align & 3) == 0 || 4832 !ConstantSize || 4833 ConstantSize->getValue() > getSubtarget()->getMaxInlineSizeThreshold()) { 4834 SDOperand InFlag(0, 0); 4835 4836 // Check to see if there is a specialized entry-point for memory zeroing. 4837 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src); 4838 if (const char *bzeroEntry = 4839 V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) { 4840 MVT IntPtr = getPointerTy(); 4841 const Type *IntPtrTy = getTargetData()->getIntPtrType(); 4842 TargetLowering::ArgListTy Args; 4843 TargetLowering::ArgListEntry Entry; 4844 Entry.Node = Dst; 4845 Entry.Ty = IntPtrTy; 4846 Args.push_back(Entry); 4847 Entry.Node = Size; 4848 Args.push_back(Entry); 4849 std::pair<SDOperand,SDOperand> CallResult = 4850 LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C, 4851 false, DAG.getExternalSymbol(bzeroEntry, IntPtr), 4852 Args, DAG); 4853 return CallResult.second; 4854 } 4855 4856 // Otherwise have the target-independent code call memset. 4857 return SDOperand(); 4858 } 4859 4860 uint64_t SizeVal = ConstantSize->getValue(); 4861 SDOperand InFlag(0, 0); 4862 MVT AVT; 4863 SDOperand Count; 4864 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src); 4865 unsigned BytesLeft = 0; 4866 bool TwoRepStos = false; 4867 if (ValC) { 4868 unsigned ValReg; 4869 uint64_t Val = ValC->getValue() & 255; 4870 4871 // If the value is a constant, then we can potentially use larger sets. 4872 switch (Align & 3) { 4873 case 2: // WORD aligned 4874 AVT = MVT::i16; 4875 ValReg = X86::AX; 4876 Val = (Val << 8) | Val; 4877 break; 4878 case 0: // DWORD aligned 4879 AVT = MVT::i32; 4880 ValReg = X86::EAX; 4881 Val = (Val << 8) | Val; 4882 Val = (Val << 16) | Val; 4883 if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned 4884 AVT = MVT::i64; 4885 ValReg = X86::RAX; 4886 Val = (Val << 32) | Val; 4887 } 4888 break; 4889 default: // Byte aligned 4890 AVT = MVT::i8; 4891 ValReg = X86::AL; 4892 Count = DAG.getIntPtrConstant(SizeVal); 4893 break; 4894 } 4895 4896 if (AVT.bitsGT(MVT::i8)) { 4897 unsigned UBytes = AVT.getSizeInBits() / 8; 4898 Count = DAG.getIntPtrConstant(SizeVal / UBytes); 4899 BytesLeft = SizeVal % UBytes; 4900 } 4901 4902 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), 4903 InFlag); 4904 InFlag = Chain.getValue(1); 4905 } else { 4906 AVT = MVT::i8; 4907 Count = DAG.getIntPtrConstant(SizeVal); 4908 Chain = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag); 4909 InFlag = Chain.getValue(1); 4910 } 4911 4912 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, 4913 Count, InFlag); 4914 InFlag = Chain.getValue(1); 4915 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, 4916 Dst, InFlag); 4917 InFlag = Chain.getValue(1); 4918 4919 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 4920 SmallVector<SDOperand, 8> Ops; 4921 Ops.push_back(Chain); 4922 Ops.push_back(DAG.getValueType(AVT)); 4923 Ops.push_back(InFlag); 4924 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); 4925 4926 if (TwoRepStos) { 4927 InFlag = Chain.getValue(1); 4928 Count = Size; 4929 MVT CVT = Count.getValueType(); 4930 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, 4931 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT)); 4932 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX, 4933 Left, InFlag); 4934 InFlag = Chain.getValue(1); 4935 Tys = DAG.getVTList(MVT::Other, MVT::Flag); 4936 Ops.clear(); 4937 Ops.push_back(Chain); 4938 Ops.push_back(DAG.getValueType(MVT::i8)); 4939 Ops.push_back(InFlag); 4940 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size()); 4941 } else if (BytesLeft) { 4942 // Handle the last 1 - 7 bytes. 4943 unsigned Offset = SizeVal - BytesLeft; 4944 MVT AddrVT = Dst.getValueType(); 4945 MVT SizeVT = Size.getValueType(); 4946 4947 Chain = DAG.getMemset(Chain, 4948 DAG.getNode(ISD::ADD, AddrVT, Dst, 4949 DAG.getConstant(Offset, AddrVT)), 4950 Src, 4951 DAG.getConstant(BytesLeft, SizeVT), 4952 Align, DstSV, DstSVOff + Offset); 4953 } 4954 4955 // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain. 4956 return Chain; 4957} 4958 4959SDOperand 4960X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG, 4961 SDOperand Chain, 4962 SDOperand Dst, SDOperand Src, 4963 SDOperand Size, unsigned Align, 4964 bool AlwaysInline, 4965 const Value *DstSV, uint64_t DstSVOff, 4966 const Value *SrcSV, uint64_t SrcSVOff){ 4967 4968 // This requires the copy size to be a constant, preferrably 4969 // within a subtarget-specific limit. 4970 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size); 4971 if (!ConstantSize) 4972 return SDOperand(); 4973 uint64_t SizeVal = ConstantSize->getValue(); 4974 if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold()) 4975 return SDOperand(); 4976 4977 MVT AVT; 4978 unsigned BytesLeft = 0; 4979 if (Align >= 8 && Subtarget->is64Bit()) 4980 AVT = MVT::i64; 4981 else if (Align >= 4) 4982 AVT = MVT::i32; 4983 else if (Align >= 2) 4984 AVT = MVT::i16; 4985 else 4986 AVT = MVT::i8; 4987 4988 unsigned UBytes = AVT.getSizeInBits() / 8; 4989 unsigned CountVal = SizeVal / UBytes; 4990 SDOperand Count = DAG.getIntPtrConstant(CountVal); 4991 BytesLeft = SizeVal % UBytes; 4992 4993 SDOperand InFlag(0, 0); 4994 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX, 4995 Count, InFlag); 4996 InFlag = Chain.getValue(1); 4997 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI, 4998 Dst, InFlag); 4999 InFlag = Chain.getValue(1); 5000 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI, 5001 Src, InFlag); 5002 InFlag = Chain.getValue(1); 5003 5004 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5005 SmallVector<SDOperand, 8> Ops; 5006 Ops.push_back(Chain); 5007 Ops.push_back(DAG.getValueType(AVT)); 5008 Ops.push_back(InFlag); 5009 SDOperand RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size()); 5010 5011 SmallVector<SDOperand, 4> Results; 5012 Results.push_back(RepMovs); 5013 if (BytesLeft) { 5014 // Handle the last 1 - 7 bytes. 5015 unsigned Offset = SizeVal - BytesLeft; 5016 MVT DstVT = Dst.getValueType(); 5017 MVT SrcVT = Src.getValueType(); 5018 MVT SizeVT = Size.getValueType(); 5019 Results.push_back(DAG.getMemcpy(Chain, 5020 DAG.getNode(ISD::ADD, DstVT, Dst, 5021 DAG.getConstant(Offset, DstVT)), 5022 DAG.getNode(ISD::ADD, SrcVT, Src, 5023 DAG.getConstant(Offset, SrcVT)), 5024 DAG.getConstant(BytesLeft, SizeVT), 5025 Align, AlwaysInline, 5026 DstSV, DstSVOff + Offset, 5027 SrcSV, SrcSVOff + Offset)); 5028 } 5029 5030 return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size()); 5031} 5032 5033/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain 5034SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){ 5035 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5036 SDOperand TheChain = N->getOperand(0); 5037 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1); 5038 if (Subtarget->is64Bit()) { 5039 SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1)); 5040 SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX, 5041 MVT::i64, rax.getValue(2)); 5042 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx, 5043 DAG.getConstant(32, MVT::i8)); 5044 SDOperand Ops[] = { 5045 DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1) 5046 }; 5047 5048 return DAG.getMergeValues(Ops, 2).Val; 5049 } 5050 5051 SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1)); 5052 SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX, 5053 MVT::i32, eax.getValue(2)); 5054 // Use a buildpair to merge the two 32-bit values into a 64-bit one. 5055 SDOperand Ops[] = { eax, edx }; 5056 Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2); 5057 5058 // Use a MERGE_VALUES to return the value and chain. 5059 Ops[1] = edx.getValue(1); 5060 return DAG.getMergeValues(Ops, 2).Val; 5061} 5062 5063SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) { 5064 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 5065 5066 if (!Subtarget->is64Bit()) { 5067 // vastart just stores the address of the VarArgsFrameIndex slot into the 5068 // memory location argument. 5069 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); 5070 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0); 5071 } 5072 5073 // __va_list_tag: 5074 // gp_offset (0 - 6 * 8) 5075 // fp_offset (48 - 48 + 8 * 16) 5076 // overflow_arg_area (point to parameters coming in memory). 5077 // reg_save_area 5078 SmallVector<SDOperand, 8> MemOps; 5079 SDOperand FIN = Op.getOperand(1); 5080 // Store gp_offset 5081 SDOperand Store = DAG.getStore(Op.getOperand(0), 5082 DAG.getConstant(VarArgsGPOffset, MVT::i32), 5083 FIN, SV, 0); 5084 MemOps.push_back(Store); 5085 5086 // Store fp_offset 5087 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); 5088 Store = DAG.getStore(Op.getOperand(0), 5089 DAG.getConstant(VarArgsFPOffset, MVT::i32), 5090 FIN, SV, 0); 5091 MemOps.push_back(Store); 5092 5093 // Store ptr to overflow_arg_area 5094 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4)); 5095 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); 5096 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0); 5097 MemOps.push_back(Store); 5098 5099 // Store ptr to reg_save_area. 5100 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8)); 5101 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy()); 5102 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0); 5103 MemOps.push_back(Store); 5104 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size()); 5105} 5106 5107SDOperand X86TargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG) { 5108 // X86-64 va_list is a struct { i32, i32, i8*, i8* }. 5109 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!"); 5110 SDOperand Chain = Op.getOperand(0); 5111 SDOperand SrcPtr = Op.getOperand(1); 5112 SDOperand SrcSV = Op.getOperand(2); 5113 5114 assert(0 && "VAArgInst is not yet implemented for x86-64!"); 5115 abort(); 5116 return SDOperand(); 5117} 5118 5119SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) { 5120 // X86-64 va_list is a struct { i32, i32, i8*, i8* }. 5121 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); 5122 SDOperand Chain = Op.getOperand(0); 5123 SDOperand DstPtr = Op.getOperand(1); 5124 SDOperand SrcPtr = Op.getOperand(2); 5125 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 5126 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 5127 5128 return DAG.getMemcpy(Chain, DstPtr, SrcPtr, 5129 DAG.getIntPtrConstant(24), 8, false, 5130 DstSV, 0, SrcSV, 0); 5131} 5132 5133SDOperand 5134X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { 5135 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue(); 5136 switch (IntNo) { 5137 default: return SDOperand(); // Don't custom lower most intrinsics. 5138 // Comparison intrinsics. 5139 case Intrinsic::x86_sse_comieq_ss: 5140 case Intrinsic::x86_sse_comilt_ss: 5141 case Intrinsic::x86_sse_comile_ss: 5142 case Intrinsic::x86_sse_comigt_ss: 5143 case Intrinsic::x86_sse_comige_ss: 5144 case Intrinsic::x86_sse_comineq_ss: 5145 case Intrinsic::x86_sse_ucomieq_ss: 5146 case Intrinsic::x86_sse_ucomilt_ss: 5147 case Intrinsic::x86_sse_ucomile_ss: 5148 case Intrinsic::x86_sse_ucomigt_ss: 5149 case Intrinsic::x86_sse_ucomige_ss: 5150 case Intrinsic::x86_sse_ucomineq_ss: 5151 case Intrinsic::x86_sse2_comieq_sd: 5152 case Intrinsic::x86_sse2_comilt_sd: 5153 case Intrinsic::x86_sse2_comile_sd: 5154 case Intrinsic::x86_sse2_comigt_sd: 5155 case Intrinsic::x86_sse2_comige_sd: 5156 case Intrinsic::x86_sse2_comineq_sd: 5157 case Intrinsic::x86_sse2_ucomieq_sd: 5158 case Intrinsic::x86_sse2_ucomilt_sd: 5159 case Intrinsic::x86_sse2_ucomile_sd: 5160 case Intrinsic::x86_sse2_ucomigt_sd: 5161 case Intrinsic::x86_sse2_ucomige_sd: 5162 case Intrinsic::x86_sse2_ucomineq_sd: { 5163 unsigned Opc = 0; 5164 ISD::CondCode CC = ISD::SETCC_INVALID; 5165 switch (IntNo) { 5166 default: break; 5167 case Intrinsic::x86_sse_comieq_ss: 5168 case Intrinsic::x86_sse2_comieq_sd: 5169 Opc = X86ISD::COMI; 5170 CC = ISD::SETEQ; 5171 break; 5172 case Intrinsic::x86_sse_comilt_ss: 5173 case Intrinsic::x86_sse2_comilt_sd: 5174 Opc = X86ISD::COMI; 5175 CC = ISD::SETLT; 5176 break; 5177 case Intrinsic::x86_sse_comile_ss: 5178 case Intrinsic::x86_sse2_comile_sd: 5179 Opc = X86ISD::COMI; 5180 CC = ISD::SETLE; 5181 break; 5182 case Intrinsic::x86_sse_comigt_ss: 5183 case Intrinsic::x86_sse2_comigt_sd: 5184 Opc = X86ISD::COMI; 5185 CC = ISD::SETGT; 5186 break; 5187 case Intrinsic::x86_sse_comige_ss: 5188 case Intrinsic::x86_sse2_comige_sd: 5189 Opc = X86ISD::COMI; 5190 CC = ISD::SETGE; 5191 break; 5192 case Intrinsic::x86_sse_comineq_ss: 5193 case Intrinsic::x86_sse2_comineq_sd: 5194 Opc = X86ISD::COMI; 5195 CC = ISD::SETNE; 5196 break; 5197 case Intrinsic::x86_sse_ucomieq_ss: 5198 case Intrinsic::x86_sse2_ucomieq_sd: 5199 Opc = X86ISD::UCOMI; 5200 CC = ISD::SETEQ; 5201 break; 5202 case Intrinsic::x86_sse_ucomilt_ss: 5203 case Intrinsic::x86_sse2_ucomilt_sd: 5204 Opc = X86ISD::UCOMI; 5205 CC = ISD::SETLT; 5206 break; 5207 case Intrinsic::x86_sse_ucomile_ss: 5208 case Intrinsic::x86_sse2_ucomile_sd: 5209 Opc = X86ISD::UCOMI; 5210 CC = ISD::SETLE; 5211 break; 5212 case Intrinsic::x86_sse_ucomigt_ss: 5213 case Intrinsic::x86_sse2_ucomigt_sd: 5214 Opc = X86ISD::UCOMI; 5215 CC = ISD::SETGT; 5216 break; 5217 case Intrinsic::x86_sse_ucomige_ss: 5218 case Intrinsic::x86_sse2_ucomige_sd: 5219 Opc = X86ISD::UCOMI; 5220 CC = ISD::SETGE; 5221 break; 5222 case Intrinsic::x86_sse_ucomineq_ss: 5223 case Intrinsic::x86_sse2_ucomineq_sd: 5224 Opc = X86ISD::UCOMI; 5225 CC = ISD::SETNE; 5226 break; 5227 } 5228 5229 unsigned X86CC; 5230 SDOperand LHS = Op.getOperand(1); 5231 SDOperand RHS = Op.getOperand(2); 5232 translateX86CC(CC, true, X86CC, LHS, RHS, DAG); 5233 5234 SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS); 5235 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8, 5236 DAG.getConstant(X86CC, MVT::i8), Cond); 5237 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC); 5238 } 5239 5240 // Fix vector shift instructions where the last operand is a non-immediate 5241 // i32 value. 5242 case Intrinsic::x86_sse2_pslli_w: 5243 case Intrinsic::x86_sse2_pslli_d: 5244 case Intrinsic::x86_sse2_pslli_q: 5245 case Intrinsic::x86_sse2_psrli_w: 5246 case Intrinsic::x86_sse2_psrli_d: 5247 case Intrinsic::x86_sse2_psrli_q: 5248 case Intrinsic::x86_sse2_psrai_w: 5249 case Intrinsic::x86_sse2_psrai_d: 5250 case Intrinsic::x86_mmx_pslli_w: 5251 case Intrinsic::x86_mmx_pslli_d: 5252 case Intrinsic::x86_mmx_pslli_q: 5253 case Intrinsic::x86_mmx_psrli_w: 5254 case Intrinsic::x86_mmx_psrli_d: 5255 case Intrinsic::x86_mmx_psrli_q: 5256 case Intrinsic::x86_mmx_psrai_w: 5257 case Intrinsic::x86_mmx_psrai_d: { 5258 SDOperand ShAmt = Op.getOperand(2); 5259 if (isa<ConstantSDNode>(ShAmt)) 5260 return SDOperand(); 5261 5262 unsigned NewIntNo = 0; 5263 MVT ShAmtVT = MVT::v4i32; 5264 switch (IntNo) { 5265 case Intrinsic::x86_sse2_pslli_w: 5266 NewIntNo = Intrinsic::x86_sse2_psll_w; 5267 break; 5268 case Intrinsic::x86_sse2_pslli_d: 5269 NewIntNo = Intrinsic::x86_sse2_psll_d; 5270 break; 5271 case Intrinsic::x86_sse2_pslli_q: 5272 NewIntNo = Intrinsic::x86_sse2_psll_q; 5273 break; 5274 case Intrinsic::x86_sse2_psrli_w: 5275 NewIntNo = Intrinsic::x86_sse2_psrl_w; 5276 break; 5277 case Intrinsic::x86_sse2_psrli_d: 5278 NewIntNo = Intrinsic::x86_sse2_psrl_d; 5279 break; 5280 case Intrinsic::x86_sse2_psrli_q: 5281 NewIntNo = Intrinsic::x86_sse2_psrl_q; 5282 break; 5283 case Intrinsic::x86_sse2_psrai_w: 5284 NewIntNo = Intrinsic::x86_sse2_psra_w; 5285 break; 5286 case Intrinsic::x86_sse2_psrai_d: 5287 NewIntNo = Intrinsic::x86_sse2_psra_d; 5288 break; 5289 default: { 5290 ShAmtVT = MVT::v2i32; 5291 switch (IntNo) { 5292 case Intrinsic::x86_mmx_pslli_w: 5293 NewIntNo = Intrinsic::x86_mmx_psll_w; 5294 break; 5295 case Intrinsic::x86_mmx_pslli_d: 5296 NewIntNo = Intrinsic::x86_mmx_psll_d; 5297 break; 5298 case Intrinsic::x86_mmx_pslli_q: 5299 NewIntNo = Intrinsic::x86_mmx_psll_q; 5300 break; 5301 case Intrinsic::x86_mmx_psrli_w: 5302 NewIntNo = Intrinsic::x86_mmx_psrl_w; 5303 break; 5304 case Intrinsic::x86_mmx_psrli_d: 5305 NewIntNo = Intrinsic::x86_mmx_psrl_d; 5306 break; 5307 case Intrinsic::x86_mmx_psrli_q: 5308 NewIntNo = Intrinsic::x86_mmx_psrl_q; 5309 break; 5310 case Intrinsic::x86_mmx_psrai_w: 5311 NewIntNo = Intrinsic::x86_mmx_psra_w; 5312 break; 5313 case Intrinsic::x86_mmx_psrai_d: 5314 NewIntNo = Intrinsic::x86_mmx_psra_d; 5315 break; 5316 default: abort(); // Can't reach here. 5317 } 5318 break; 5319 } 5320 } 5321 MVT VT = Op.getValueType(); 5322 ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT, 5323 DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt)); 5324 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT, 5325 DAG.getConstant(NewIntNo, MVT::i32), 5326 Op.getOperand(1), ShAmt); 5327 } 5328 } 5329} 5330 5331SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) { 5332 // Depths > 0 not supported yet! 5333 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) 5334 return SDOperand(); 5335 5336 // Just load the return address 5337 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); 5338 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0); 5339} 5340 5341SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) { 5342 // Depths > 0 not supported yet! 5343 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0) 5344 return SDOperand(); 5345 5346 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); 5347 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI, 5348 DAG.getIntPtrConstant(!Subtarget->is64Bit() ? 4 : 8)); 5349} 5350 5351SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op, 5352 SelectionDAG &DAG) { 5353 // Is not yet supported on x86-64 5354 if (Subtarget->is64Bit()) 5355 return SDOperand(); 5356 5357 return DAG.getIntPtrConstant(8); 5358} 5359 5360SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG) 5361{ 5362 assert(!Subtarget->is64Bit() && 5363 "Lowering of eh_return builtin is not supported yet on x86-64"); 5364 5365 MachineFunction &MF = DAG.getMachineFunction(); 5366 SDOperand Chain = Op.getOperand(0); 5367 SDOperand Offset = Op.getOperand(1); 5368 SDOperand Handler = Op.getOperand(2); 5369 5370 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF), 5371 getPointerTy()); 5372 5373 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame, 5374 DAG.getIntPtrConstant(-4UL)); 5375 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset); 5376 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0); 5377 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr); 5378 MF.getRegInfo().addLiveOut(X86::ECX); 5379 5380 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other, 5381 Chain, DAG.getRegister(X86::ECX, getPointerTy())); 5382} 5383 5384SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op, 5385 SelectionDAG &DAG) { 5386 SDOperand Root = Op.getOperand(0); 5387 SDOperand Trmp = Op.getOperand(1); // trampoline 5388 SDOperand FPtr = Op.getOperand(2); // nested function 5389 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value 5390 5391 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 5392 5393 const X86InstrInfo *TII = 5394 ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); 5395 5396 if (Subtarget->is64Bit()) { 5397 SDOperand OutChains[6]; 5398 5399 // Large code-model. 5400 5401 const unsigned char JMP64r = TII->getBaseOpcodeFor(X86::JMP64r); 5402 const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri); 5403 5404 const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10); 5405 const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11); 5406 5407 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix 5408 5409 // Load the pointer to the nested function into R11. 5410 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 5411 SDOperand Addr = Trmp; 5412 OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5413 TrmpAddr, 0); 5414 5415 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64)); 5416 OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2); 5417 5418 // Load the 'nest' parameter value into R10. 5419 // R10 is specified in X86CallingConv.td 5420 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 5421 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64)); 5422 OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5423 TrmpAddr, 10); 5424 5425 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64)); 5426 OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2); 5427 5428 // Jump to the nested function. 5429 OpCode = (JMP64r << 8) | REX_WB; // jmpq *... 5430 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64)); 5431 OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr, 5432 TrmpAddr, 20); 5433 5434 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 5435 Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64)); 5436 OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr, 5437 TrmpAddr, 22); 5438 5439 SDOperand Ops[] = 5440 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) }; 5441 return DAG.getMergeValues(Ops, 2); 5442 } else { 5443 const Function *Func = 5444 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); 5445 unsigned CC = Func->getCallingConv(); 5446 unsigned NestReg; 5447 5448 switch (CC) { 5449 default: 5450 assert(0 && "Unsupported calling convention"); 5451 case CallingConv::C: 5452 case CallingConv::X86_StdCall: { 5453 // Pass 'nest' parameter in ECX. 5454 // Must be kept in sync with X86CallingConv.td 5455 NestReg = X86::ECX; 5456 5457 // Check that ECX wasn't needed by an 'inreg' parameter. 5458 const FunctionType *FTy = Func->getFunctionType(); 5459 const PAListPtr &Attrs = Func->getParamAttrs(); 5460 5461 if (!Attrs.isEmpty() && !Func->isVarArg()) { 5462 unsigned InRegCount = 0; 5463 unsigned Idx = 1; 5464 5465 for (FunctionType::param_iterator I = FTy->param_begin(), 5466 E = FTy->param_end(); I != E; ++I, ++Idx) 5467 if (Attrs.paramHasAttr(Idx, ParamAttr::InReg)) 5468 // FIXME: should only count parameters that are lowered to integers. 5469 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32; 5470 5471 if (InRegCount > 2) { 5472 cerr << "Nest register in use - reduce number of inreg parameters!\n"; 5473 abort(); 5474 } 5475 } 5476 break; 5477 } 5478 case CallingConv::X86_FastCall: 5479 // Pass 'nest' parameter in EAX. 5480 // Must be kept in sync with X86CallingConv.td 5481 NestReg = X86::EAX; 5482 break; 5483 } 5484 5485 SDOperand OutChains[4]; 5486 SDOperand Addr, Disp; 5487 5488 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32)); 5489 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr); 5490 5491 const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri); 5492 const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg); 5493 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8), 5494 Trmp, TrmpAddr, 0); 5495 5496 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32)); 5497 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1); 5498 5499 const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP); 5500 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32)); 5501 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr, 5502 TrmpAddr, 5, false, 1); 5503 5504 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32)); 5505 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1); 5506 5507 SDOperand Ops[] = 5508 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) }; 5509 return DAG.getMergeValues(Ops, 2); 5510 } 5511} 5512 5513SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) { 5514 /* 5515 The rounding mode is in bits 11:10 of FPSR, and has the following 5516 settings: 5517 00 Round to nearest 5518 01 Round to -inf 5519 10 Round to +inf 5520 11 Round to 0 5521 5522 FLT_ROUNDS, on the other hand, expects the following: 5523 -1 Undefined 5524 0 Round to 0 5525 1 Round to nearest 5526 2 Round to +inf 5527 3 Round to -inf 5528 5529 To perform the conversion, we do: 5530 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) 5531 */ 5532 5533 MachineFunction &MF = DAG.getMachineFunction(); 5534 const TargetMachine &TM = MF.getTarget(); 5535 const TargetFrameInfo &TFI = *TM.getFrameInfo(); 5536 unsigned StackAlignment = TFI.getStackAlignment(); 5537 MVT VT = Op.getValueType(); 5538 5539 // Save FP Control Word to stack slot 5540 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment); 5541 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 5542 5543 SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other, 5544 DAG.getEntryNode(), StackSlot); 5545 5546 // Load FP Control Word from stack slot 5547 SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0); 5548 5549 // Transform as necessary 5550 SDOperand CWD1 = 5551 DAG.getNode(ISD::SRL, MVT::i16, 5552 DAG.getNode(ISD::AND, MVT::i16, 5553 CWD, DAG.getConstant(0x800, MVT::i16)), 5554 DAG.getConstant(11, MVT::i8)); 5555 SDOperand CWD2 = 5556 DAG.getNode(ISD::SRL, MVT::i16, 5557 DAG.getNode(ISD::AND, MVT::i16, 5558 CWD, DAG.getConstant(0x400, MVT::i16)), 5559 DAG.getConstant(9, MVT::i8)); 5560 5561 SDOperand RetVal = 5562 DAG.getNode(ISD::AND, MVT::i16, 5563 DAG.getNode(ISD::ADD, MVT::i16, 5564 DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2), 5565 DAG.getConstant(1, MVT::i16)), 5566 DAG.getConstant(3, MVT::i16)); 5567 5568 5569 return DAG.getNode((VT.getSizeInBits() < 16 ? 5570 ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal); 5571} 5572 5573SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) { 5574 MVT VT = Op.getValueType(); 5575 MVT OpVT = VT; 5576 unsigned NumBits = VT.getSizeInBits(); 5577 5578 Op = Op.getOperand(0); 5579 if (VT == MVT::i8) { 5580 // Zero extend to i32 since there is not an i8 bsr. 5581 OpVT = MVT::i32; 5582 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op); 5583 } 5584 5585 // Issue a bsr (scan bits in reverse) which also sets EFLAGS. 5586 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); 5587 Op = DAG.getNode(X86ISD::BSR, VTs, Op); 5588 5589 // If src is zero (i.e. bsr sets ZF), returns NumBits. 5590 SmallVector<SDOperand, 4> Ops; 5591 Ops.push_back(Op); 5592 Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT)); 5593 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); 5594 Ops.push_back(Op.getValue(1)); 5595 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4); 5596 5597 // Finally xor with NumBits-1. 5598 Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); 5599 5600 if (VT == MVT::i8) 5601 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op); 5602 return Op; 5603} 5604 5605SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) { 5606 MVT VT = Op.getValueType(); 5607 MVT OpVT = VT; 5608 unsigned NumBits = VT.getSizeInBits(); 5609 5610 Op = Op.getOperand(0); 5611 if (VT == MVT::i8) { 5612 OpVT = MVT::i32; 5613 Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op); 5614 } 5615 5616 // Issue a bsf (scan bits forward) which also sets EFLAGS. 5617 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); 5618 Op = DAG.getNode(X86ISD::BSF, VTs, Op); 5619 5620 // If src is zero (i.e. bsf sets ZF), returns NumBits. 5621 SmallVector<SDOperand, 4> Ops; 5622 Ops.push_back(Op); 5623 Ops.push_back(DAG.getConstant(NumBits, OpVT)); 5624 Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8)); 5625 Ops.push_back(Op.getValue(1)); 5626 Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4); 5627 5628 if (VT == MVT::i8) 5629 Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op); 5630 return Op; 5631} 5632 5633SDOperand X86TargetLowering::LowerCMP_SWAP(SDOperand Op, SelectionDAG &DAG) { 5634 MVT T = Op.getValueType(); 5635 unsigned Reg = 0; 5636 unsigned size = 0; 5637 switch(T.getSimpleVT()) { 5638 default: 5639 assert(false && "Invalid value type!"); 5640 case MVT::i8: Reg = X86::AL; size = 1; break; 5641 case MVT::i16: Reg = X86::AX; size = 2; break; 5642 case MVT::i32: Reg = X86::EAX; size = 4; break; 5643 case MVT::i64: 5644 if (Subtarget->is64Bit()) { 5645 Reg = X86::RAX; size = 8; 5646 } else //Should go away when LowerType stuff lands 5647 return SDOperand(ExpandATOMIC_CMP_SWAP(Op.Val, DAG), 0); 5648 break; 5649 }; 5650 SDOperand cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg, 5651 Op.getOperand(3), SDOperand()); 5652 SDOperand Ops[] = { cpIn.getValue(0), 5653 Op.getOperand(1), 5654 Op.getOperand(2), 5655 DAG.getTargetConstant(size, MVT::i8), 5656 cpIn.getValue(1) }; 5657 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5658 SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5); 5659 SDOperand cpOut = 5660 DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1)); 5661 return cpOut; 5662} 5663 5664SDNode* X86TargetLowering::ExpandATOMIC_CMP_SWAP(SDNode* Op, SelectionDAG &DAG) { 5665 MVT T = Op->getValueType(0); 5666 assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap"); 5667 SDOperand cpInL, cpInH; 5668 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3), 5669 DAG.getConstant(0, MVT::i32)); 5670 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3), 5671 DAG.getConstant(1, MVT::i32)); 5672 cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX, 5673 cpInL, SDOperand()); 5674 cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX, 5675 cpInH, cpInL.getValue(1)); 5676 SDOperand swapInL, swapInH; 5677 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2), 5678 DAG.getConstant(0, MVT::i32)); 5679 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2), 5680 DAG.getConstant(1, MVT::i32)); 5681 swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX, 5682 swapInL, cpInH.getValue(1)); 5683 swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX, 5684 swapInH, swapInL.getValue(1)); 5685 SDOperand Ops[] = { swapInH.getValue(0), 5686 Op->getOperand(1), 5687 swapInH.getValue(1)}; 5688 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); 5689 SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3); 5690 SDOperand cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32, 5691 Result.getValue(1)); 5692 SDOperand cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32, 5693 cpOutL.getValue(2)); 5694 SDOperand OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; 5695 SDOperand ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2); 5696 SDOperand Vals[2] = { ResultVal, cpOutH.getValue(1) }; 5697 return DAG.getMergeValues(Vals, 2).Val; 5698} 5699 5700SDNode* X86TargetLowering::ExpandATOMIC_LOAD_SUB(SDNode* Op, SelectionDAG &DAG) { 5701 MVT T = Op->getValueType(0); 5702 assert (T == MVT::i32 && "Only know how to expand i32 Atomic Load Sub"); 5703 SDOperand negOp = DAG.getNode(ISD::SUB, T, 5704 DAG.getConstant(0, T), Op->getOperand(2)); 5705 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, Op->getOperand(0), 5706 Op->getOperand(1), negOp, 5707 cast<AtomicSDNode>(Op)->getSrcValue(), 5708 cast<AtomicSDNode>(Op)->getAlignment()).Val; 5709} 5710 5711/// LowerOperation - Provide custom lowering hooks for some operations. 5712/// 5713SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { 5714 switch (Op.getOpcode()) { 5715 default: assert(0 && "Should not custom lower this!"); 5716 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG); 5717 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 5718 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 5719 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 5720 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 5721 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 5722 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 5723 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 5724 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 5725 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); 5726 case ISD::SHL_PARTS: 5727 case ISD::SRA_PARTS: 5728 case ISD::SRL_PARTS: return LowerShift(Op, DAG); 5729 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 5730 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 5731 case ISD::FABS: return LowerFABS(Op, DAG); 5732 case ISD::FNEG: return LowerFNEG(Op, DAG); 5733 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); 5734 case ISD::SETCC: return LowerSETCC(Op, DAG); 5735 case ISD::SELECT: return LowerSELECT(Op, DAG); 5736 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 5737 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 5738 case ISD::CALL: return LowerCALL(Op, DAG); 5739 case ISD::RET: return LowerRET(Op, DAG); 5740 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); 5741 case ISD::VASTART: return LowerVASTART(Op, DAG); 5742 case ISD::VAARG: return LowerVAARG(Op, DAG); 5743 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 5744 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 5745 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 5746 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 5747 case ISD::FRAME_TO_ARGS_OFFSET: 5748 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 5749 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 5750 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 5751 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); 5752 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 5753 case ISD::CTLZ: return LowerCTLZ(Op, DAG); 5754 case ISD::CTTZ: return LowerCTTZ(Op, DAG); 5755 5756 // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands. 5757 case ISD::READCYCLECOUNTER: 5758 return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0); 5759 } 5760} 5761 5762/// ReplaceNodeResults - Replace a node with an illegal result type 5763/// with a new node built out of custom code. 5764SDNode *X86TargetLowering::ReplaceNodeResults(SDNode *N, SelectionDAG &DAG) { 5765 switch (N->getOpcode()) { 5766 default: assert(0 && "Should not custom lower this!"); 5767 case ISD::FP_TO_SINT: return ExpandFP_TO_SINT(N, DAG); 5768 case ISD::READCYCLECOUNTER: return ExpandREADCYCLECOUNTER(N, DAG); 5769 case ISD::ATOMIC_CMP_SWAP: return ExpandATOMIC_CMP_SWAP(N, DAG); 5770 case ISD::ATOMIC_LOAD_SUB: return ExpandATOMIC_LOAD_SUB(N,DAG); 5771 } 5772} 5773 5774const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { 5775 switch (Opcode) { 5776 default: return NULL; 5777 case X86ISD::BSF: return "X86ISD::BSF"; 5778 case X86ISD::BSR: return "X86ISD::BSR"; 5779 case X86ISD::SHLD: return "X86ISD::SHLD"; 5780 case X86ISD::SHRD: return "X86ISD::SHRD"; 5781 case X86ISD::FAND: return "X86ISD::FAND"; 5782 case X86ISD::FOR: return "X86ISD::FOR"; 5783 case X86ISD::FXOR: return "X86ISD::FXOR"; 5784 case X86ISD::FSRL: return "X86ISD::FSRL"; 5785 case X86ISD::FILD: return "X86ISD::FILD"; 5786 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; 5787 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; 5788 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; 5789 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; 5790 case X86ISD::FLD: return "X86ISD::FLD"; 5791 case X86ISD::FST: return "X86ISD::FST"; 5792 case X86ISD::CALL: return "X86ISD::CALL"; 5793 case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; 5794 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; 5795 case X86ISD::CMP: return "X86ISD::CMP"; 5796 case X86ISD::COMI: return "X86ISD::COMI"; 5797 case X86ISD::UCOMI: return "X86ISD::UCOMI"; 5798 case X86ISD::SETCC: return "X86ISD::SETCC"; 5799 case X86ISD::CMOV: return "X86ISD::CMOV"; 5800 case X86ISD::BRCOND: return "X86ISD::BRCOND"; 5801 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; 5802 case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; 5803 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; 5804 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; 5805 case X86ISD::Wrapper: return "X86ISD::Wrapper"; 5806 case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; 5807 case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; 5808 case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; 5809 case X86ISD::PINSRB: return "X86ISD::PINSRB"; 5810 case X86ISD::PINSRW: return "X86ISD::PINSRW"; 5811 case X86ISD::FMAX: return "X86ISD::FMAX"; 5812 case X86ISD::FMIN: return "X86ISD::FMIN"; 5813 case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; 5814 case X86ISD::FRCP: return "X86ISD::FRCP"; 5815 case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; 5816 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER"; 5817 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; 5818 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; 5819 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; 5820 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; 5821 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; 5822 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; 5823 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; 5824 case X86ISD::VSHL: return "X86ISD::VSHL"; 5825 case X86ISD::VSRL: return "X86ISD::VSRL"; 5826 } 5827} 5828 5829// isLegalAddressingMode - Return true if the addressing mode represented 5830// by AM is legal for this target, for a load/store of the specified type. 5831bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, 5832 const Type *Ty) const { 5833 // X86 supports extremely general addressing modes. 5834 5835 // X86 allows a sign-extended 32-bit immediate field as a displacement. 5836 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1) 5837 return false; 5838 5839 if (AM.BaseGV) { 5840 // We can only fold this if we don't need an extra load. 5841 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false)) 5842 return false; 5843 5844 // X86-64 only supports addr of globals in small code model. 5845 if (Subtarget->is64Bit()) { 5846 if (getTargetMachine().getCodeModel() != CodeModel::Small) 5847 return false; 5848 // If lower 4G is not available, then we must use rip-relative addressing. 5849 if (AM.BaseOffs || AM.Scale > 1) 5850 return false; 5851 } 5852 } 5853 5854 switch (AM.Scale) { 5855 case 0: 5856 case 1: 5857 case 2: 5858 case 4: 5859 case 8: 5860 // These scales always work. 5861 break; 5862 case 3: 5863 case 5: 5864 case 9: 5865 // These scales are formed with basereg+scalereg. Only accept if there is 5866 // no basereg yet. 5867 if (AM.HasBaseReg) 5868 return false; 5869 break; 5870 default: // Other stuff never works. 5871 return false; 5872 } 5873 5874 return true; 5875} 5876 5877 5878bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { 5879 if (!Ty1->isInteger() || !Ty2->isInteger()) 5880 return false; 5881 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 5882 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 5883 if (NumBits1 <= NumBits2) 5884 return false; 5885 return Subtarget->is64Bit() || NumBits1 < 64; 5886} 5887 5888bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const { 5889 if (!VT1.isInteger() || !VT2.isInteger()) 5890 return false; 5891 unsigned NumBits1 = VT1.getSizeInBits(); 5892 unsigned NumBits2 = VT2.getSizeInBits(); 5893 if (NumBits1 <= NumBits2) 5894 return false; 5895 return Subtarget->is64Bit() || NumBits1 < 64; 5896} 5897 5898/// isShuffleMaskLegal - Targets can use this to indicate that they only 5899/// support *some* VECTOR_SHUFFLE operations, those with specific masks. 5900/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values 5901/// are assumed to be legal. 5902bool 5903X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT VT) const { 5904 // Only do shuffles on 128-bit vector types for now. 5905 if (VT.getSizeInBits() == 64) return false; 5906 return (Mask.Val->getNumOperands() <= 4 || 5907 isIdentityMask(Mask.Val) || 5908 isIdentityMask(Mask.Val, true) || 5909 isSplatMask(Mask.Val) || 5910 isPSHUFHW_PSHUFLWMask(Mask.Val) || 5911 X86::isUNPCKLMask(Mask.Val) || 5912 X86::isUNPCKHMask(Mask.Val) || 5913 X86::isUNPCKL_v_undef_Mask(Mask.Val) || 5914 X86::isUNPCKH_v_undef_Mask(Mask.Val)); 5915} 5916 5917bool 5918X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDOperand> &BVOps, 5919 MVT EVT, SelectionDAG &DAG) const { 5920 unsigned NumElts = BVOps.size(); 5921 // Only do shuffles on 128-bit vector types for now. 5922 if (EVT.getSizeInBits() * NumElts == 64) return false; 5923 if (NumElts == 2) return true; 5924 if (NumElts == 4) { 5925 return (isMOVLMask(&BVOps[0], 4) || 5926 isCommutedMOVL(&BVOps[0], 4, true) || 5927 isSHUFPMask(&BVOps[0], 4) || 5928 isCommutedSHUFP(&BVOps[0], 4)); 5929 } 5930 return false; 5931} 5932 5933//===----------------------------------------------------------------------===// 5934// X86 Scheduler Hooks 5935//===----------------------------------------------------------------------===// 5936 5937// private utility function 5938MachineBasicBlock * 5939X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, 5940 MachineBasicBlock *MBB, 5941 unsigned regOpc, 5942 unsigned immOpc, 5943 bool invSrc) { 5944 // For the atomic bitwise operator, we generate 5945 // thisMBB: 5946 // newMBB: 5947 // ld t1 = [bitinstr.addr] 5948 // op t2 = t1, [bitinstr.val] 5949 // mov EAX = t1 5950 // lcs dest = [bitinstr.addr], t2 [EAX is implicit] 5951 // bz newMBB 5952 // fallthrough -->nextMBB 5953 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 5954 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 5955 MachineFunction::iterator MBBIter = MBB; 5956 ++MBBIter; 5957 5958 /// First build the CFG 5959 MachineFunction *F = MBB->getParent(); 5960 MachineBasicBlock *thisMBB = MBB; 5961 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); 5962 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); 5963 F->insert(MBBIter, newMBB); 5964 F->insert(MBBIter, nextMBB); 5965 5966 // Move all successors to thisMBB to nextMBB 5967 nextMBB->transferSuccessors(thisMBB); 5968 5969 // Update thisMBB to fall through to newMBB 5970 thisMBB->addSuccessor(newMBB); 5971 5972 // newMBB jumps to itself and fall through to nextMBB 5973 newMBB->addSuccessor(nextMBB); 5974 newMBB->addSuccessor(newMBB); 5975 5976 // Insert instructions into newMBB based on incoming instruction 5977 assert(bInstr->getNumOperands() < 8 && "unexpected number of operands"); 5978 MachineOperand& destOper = bInstr->getOperand(0); 5979 MachineOperand* argOpers[6]; 5980 int numArgs = bInstr->getNumOperands() - 1; 5981 for (int i=0; i < numArgs; ++i) 5982 argOpers[i] = &bInstr->getOperand(i+1); 5983 5984 // x86 address has 4 operands: base, index, scale, and displacement 5985 int lastAddrIndx = 3; // [0,3] 5986 int valArgIndx = 4; 5987 5988 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 5989 MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1); 5990 for (int i=0; i <= lastAddrIndx; ++i) 5991 (*MIB).addOperand(*argOpers[i]); 5992 5993 unsigned tt = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 5994 if (invSrc) { 5995 MIB = BuildMI(newMBB, TII->get(X86::NOT32r), tt).addReg(t1); 5996 } 5997 else 5998 tt = t1; 5999 6000 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 6001 assert( (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm()) 6002 && "invalid operand"); 6003 if (argOpers[valArgIndx]->isReg()) 6004 MIB = BuildMI(newMBB, TII->get(regOpc), t2); 6005 else 6006 MIB = BuildMI(newMBB, TII->get(immOpc), t2); 6007 MIB.addReg(tt); 6008 (*MIB).addOperand(*argOpers[valArgIndx]); 6009 6010 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX); 6011 MIB.addReg(t1); 6012 6013 MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32)); 6014 for (int i=0; i <= lastAddrIndx; ++i) 6015 (*MIB).addOperand(*argOpers[i]); 6016 MIB.addReg(t2); 6017 6018 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg()); 6019 MIB.addReg(X86::EAX); 6020 6021 // insert branch 6022 BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB); 6023 6024 F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now. 6025 return nextMBB; 6026} 6027 6028// private utility function 6029MachineBasicBlock * 6030X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, 6031 MachineBasicBlock *MBB, 6032 unsigned cmovOpc) { 6033 // For the atomic min/max operator, we generate 6034 // thisMBB: 6035 // newMBB: 6036 // ld t1 = [min/max.addr] 6037 // mov t2 = [min/max.val] 6038 // cmp t1, t2 6039 // cmov[cond] t2 = t1 6040 // mov EAX = t1 6041 // lcs dest = [bitinstr.addr], t2 [EAX is implicit] 6042 // bz newMBB 6043 // fallthrough -->nextMBB 6044 // 6045 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6046 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 6047 MachineFunction::iterator MBBIter = MBB; 6048 ++MBBIter; 6049 6050 /// First build the CFG 6051 MachineFunction *F = MBB->getParent(); 6052 MachineBasicBlock *thisMBB = MBB; 6053 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); 6054 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); 6055 F->insert(MBBIter, newMBB); 6056 F->insert(MBBIter, nextMBB); 6057 6058 // Move all successors to thisMBB to nextMBB 6059 nextMBB->transferSuccessors(thisMBB); 6060 6061 // Update thisMBB to fall through to newMBB 6062 thisMBB->addSuccessor(newMBB); 6063 6064 // newMBB jumps to newMBB and fall through to nextMBB 6065 newMBB->addSuccessor(nextMBB); 6066 newMBB->addSuccessor(newMBB); 6067 6068 // Insert instructions into newMBB based on incoming instruction 6069 assert(mInstr->getNumOperands() < 8 && "unexpected number of operands"); 6070 MachineOperand& destOper = mInstr->getOperand(0); 6071 MachineOperand* argOpers[6]; 6072 int numArgs = mInstr->getNumOperands() - 1; 6073 for (int i=0; i < numArgs; ++i) 6074 argOpers[i] = &mInstr->getOperand(i+1); 6075 6076 // x86 address has 4 operands: base, index, scale, and displacement 6077 int lastAddrIndx = 3; // [0,3] 6078 int valArgIndx = 4; 6079 6080 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 6081 MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1); 6082 for (int i=0; i <= lastAddrIndx; ++i) 6083 (*MIB).addOperand(*argOpers[i]); 6084 6085 // We only support register and immediate values 6086 assert( (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm()) 6087 && "invalid operand"); 6088 6089 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 6090 if (argOpers[valArgIndx]->isReg()) 6091 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2); 6092 else 6093 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2); 6094 (*MIB).addOperand(*argOpers[valArgIndx]); 6095 6096 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX); 6097 MIB.addReg(t1); 6098 6099 MIB = BuildMI(newMBB, TII->get(X86::CMP32rr)); 6100 MIB.addReg(t1); 6101 MIB.addReg(t2); 6102 6103 // Generate movc 6104 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 6105 MIB = BuildMI(newMBB, TII->get(cmovOpc),t3); 6106 MIB.addReg(t2); 6107 MIB.addReg(t1); 6108 6109 // Cmp and exchange if none has modified the memory location 6110 MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32)); 6111 for (int i=0; i <= lastAddrIndx; ++i) 6112 (*MIB).addOperand(*argOpers[i]); 6113 MIB.addReg(t3); 6114 6115 MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg()); 6116 MIB.addReg(X86::EAX); 6117 6118 // insert branch 6119 BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB); 6120 6121 F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now. 6122 return nextMBB; 6123} 6124 6125 6126MachineBasicBlock * 6127X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 6128 MachineBasicBlock *BB) { 6129 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 6130 switch (MI->getOpcode()) { 6131 default: assert(false && "Unexpected instr type to insert"); 6132 case X86::CMOV_FR32: 6133 case X86::CMOV_FR64: 6134 case X86::CMOV_V4F32: 6135 case X86::CMOV_V2F64: 6136 case X86::CMOV_V2I64: { 6137 // To "insert" a SELECT_CC instruction, we actually have to insert the 6138 // diamond control-flow pattern. The incoming instruction knows the 6139 // destination vreg to set, the condition code register to branch on, the 6140 // true/false values to select between, and a branch opcode to use. 6141 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 6142 MachineFunction::iterator It = BB; 6143 ++It; 6144 6145 // thisMBB: 6146 // ... 6147 // TrueVal = ... 6148 // cmpTY ccX, r1, r2 6149 // bCC copy1MBB 6150 // fallthrough --> copy0MBB 6151 MachineBasicBlock *thisMBB = BB; 6152 MachineFunction *F = BB->getParent(); 6153 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 6154 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 6155 unsigned Opc = 6156 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); 6157 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB); 6158 F->insert(It, copy0MBB); 6159 F->insert(It, sinkMBB); 6160 // Update machine-CFG edges by transferring all successors of the current 6161 // block to the new block which will contain the Phi node for the select. 6162 sinkMBB->transferSuccessors(BB); 6163 6164 // Add the true and fallthrough blocks as its successors. 6165 BB->addSuccessor(copy0MBB); 6166 BB->addSuccessor(sinkMBB); 6167 6168 // copy0MBB: 6169 // %FalseValue = ... 6170 // # fallthrough to sinkMBB 6171 BB = copy0MBB; 6172 6173 // Update machine-CFG edges 6174 BB->addSuccessor(sinkMBB); 6175 6176 // sinkMBB: 6177 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 6178 // ... 6179 BB = sinkMBB; 6180 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg()) 6181 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) 6182 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 6183 6184 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. 6185 return BB; 6186 } 6187 6188 case X86::FP32_TO_INT16_IN_MEM: 6189 case X86::FP32_TO_INT32_IN_MEM: 6190 case X86::FP32_TO_INT64_IN_MEM: 6191 case X86::FP64_TO_INT16_IN_MEM: 6192 case X86::FP64_TO_INT32_IN_MEM: 6193 case X86::FP64_TO_INT64_IN_MEM: 6194 case X86::FP80_TO_INT16_IN_MEM: 6195 case X86::FP80_TO_INT32_IN_MEM: 6196 case X86::FP80_TO_INT64_IN_MEM: { 6197 // Change the floating point control register to use "round towards zero" 6198 // mode when truncating to an integer value. 6199 MachineFunction *F = BB->getParent(); 6200 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); 6201 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx); 6202 6203 // Load the old value of the high byte of the control word... 6204 unsigned OldCW = 6205 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); 6206 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx); 6207 6208 // Set the high part to be round to zero... 6209 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx) 6210 .addImm(0xC7F); 6211 6212 // Reload the modified control word now... 6213 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); 6214 6215 // Restore the memory image of control word to original value 6216 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx) 6217 .addReg(OldCW); 6218 6219 // Get the X86 opcode to use. 6220 unsigned Opc; 6221 switch (MI->getOpcode()) { 6222 default: assert(0 && "illegal opcode!"); 6223 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; 6224 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; 6225 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; 6226 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; 6227 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; 6228 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; 6229 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; 6230 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; 6231 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; 6232 } 6233 6234 X86AddressMode AM; 6235 MachineOperand &Op = MI->getOperand(0); 6236 if (Op.isRegister()) { 6237 AM.BaseType = X86AddressMode::RegBase; 6238 AM.Base.Reg = Op.getReg(); 6239 } else { 6240 AM.BaseType = X86AddressMode::FrameIndexBase; 6241 AM.Base.FrameIndex = Op.getIndex(); 6242 } 6243 Op = MI->getOperand(1); 6244 if (Op.isImmediate()) 6245 AM.Scale = Op.getImm(); 6246 Op = MI->getOperand(2); 6247 if (Op.isImmediate()) 6248 AM.IndexReg = Op.getImm(); 6249 Op = MI->getOperand(3); 6250 if (Op.isGlobalAddress()) { 6251 AM.GV = Op.getGlobal(); 6252 } else { 6253 AM.Disp = Op.getImm(); 6254 } 6255 addFullAddress(BuildMI(BB, TII->get(Opc)), AM) 6256 .addReg(MI->getOperand(4).getReg()); 6257 6258 // Reload the original control word now. 6259 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx); 6260 6261 F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. 6262 return BB; 6263 } 6264 case X86::ATOMAND32: 6265 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, 6266 X86::AND32ri); 6267 case X86::ATOMOR32: 6268 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr, 6269 X86::OR32ri); 6270 case X86::ATOMXOR32: 6271 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr, 6272 X86::XOR32ri); 6273 case X86::ATOMNAND32: 6274 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, 6275 X86::AND32ri, true); 6276 case X86::ATOMMIN32: 6277 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr); 6278 case X86::ATOMMAX32: 6279 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr); 6280 case X86::ATOMUMIN32: 6281 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr); 6282 case X86::ATOMUMAX32: 6283 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr); 6284 } 6285} 6286 6287//===----------------------------------------------------------------------===// 6288// X86 Optimization Hooks 6289//===----------------------------------------------------------------------===// 6290 6291void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, 6292 const APInt &Mask, 6293 APInt &KnownZero, 6294 APInt &KnownOne, 6295 const SelectionDAG &DAG, 6296 unsigned Depth) const { 6297 unsigned Opc = Op.getOpcode(); 6298 assert((Opc >= ISD::BUILTIN_OP_END || 6299 Opc == ISD::INTRINSIC_WO_CHAIN || 6300 Opc == ISD::INTRINSIC_W_CHAIN || 6301 Opc == ISD::INTRINSIC_VOID) && 6302 "Should use MaskedValueIsZero if you don't know whether Op" 6303 " is a target node!"); 6304 6305 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything. 6306 switch (Opc) { 6307 default: break; 6308 case X86ISD::SETCC: 6309 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(), 6310 Mask.getBitWidth() - 1); 6311 break; 6312 } 6313} 6314 6315/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 6316/// node is a GlobalAddress + offset. 6317bool X86TargetLowering::isGAPlusOffset(SDNode *N, 6318 GlobalValue* &GA, int64_t &Offset) const{ 6319 if (N->getOpcode() == X86ISD::Wrapper) { 6320 if (isa<GlobalAddressSDNode>(N->getOperand(0))) { 6321 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); 6322 return true; 6323 } 6324 } 6325 return TargetLowering::isGAPlusOffset(N, GA, Offset); 6326} 6327 6328static bool isBaseAlignmentOfN(unsigned N, SDNode *Base, 6329 const TargetLowering &TLI) { 6330 GlobalValue *GV; 6331 int64_t Offset = 0; 6332 if (TLI.isGAPlusOffset(Base, GV, Offset)) 6333 return (GV->getAlignment() >= N && (Offset % N) == 0); 6334 // DAG combine handles the stack object case. 6335 return false; 6336} 6337 6338static bool EltsFromConsecutiveLoads(SDNode *N, SDOperand PermMask, 6339 unsigned NumElems, MVT EVT, 6340 SDNode *&Base, 6341 SelectionDAG &DAG, MachineFrameInfo *MFI, 6342 const TargetLowering &TLI) { 6343 Base = NULL; 6344 for (unsigned i = 0; i < NumElems; ++i) { 6345 SDOperand Idx = PermMask.getOperand(i); 6346 if (Idx.getOpcode() == ISD::UNDEF) { 6347 if (!Base) 6348 return false; 6349 continue; 6350 } 6351 6352 SDOperand Elt = DAG.getShuffleScalarElt(N, i); 6353 if (!Elt.Val || 6354 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.Val))) 6355 return false; 6356 if (!Base) { 6357 Base = Elt.Val; 6358 if (Base->getOpcode() == ISD::UNDEF) 6359 return false; 6360 continue; 6361 } 6362 if (Elt.getOpcode() == ISD::UNDEF) 6363 continue; 6364 6365 if (!TLI.isConsecutiveLoad(Elt.Val, Base, 6366 EVT.getSizeInBits()/8, i, MFI)) 6367 return false; 6368 } 6369 return true; 6370} 6371 6372/// PerformShuffleCombine - Combine a vector_shuffle that is equal to 6373/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load 6374/// if the load addresses are consecutive, non-overlapping, and in the right 6375/// order. 6376static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, 6377 const TargetLowering &TLI) { 6378 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 6379 MVT VT = N->getValueType(0); 6380 MVT EVT = VT.getVectorElementType(); 6381 SDOperand PermMask = N->getOperand(2); 6382 unsigned NumElems = PermMask.getNumOperands(); 6383 SDNode *Base = NULL; 6384 if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base, 6385 DAG, MFI, TLI)) 6386 return SDOperand(); 6387 6388 LoadSDNode *LD = cast<LoadSDNode>(Base); 6389 if (isBaseAlignmentOfN(16, Base->getOperand(1).Val, TLI)) 6390 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), 6391 LD->getSrcValueOffset(), LD->isVolatile()); 6392 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(), 6393 LD->getSrcValueOffset(), LD->isVolatile(), 6394 LD->getAlignment()); 6395} 6396 6397/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd. 6398static SDOperand PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG, 6399 const X86Subtarget *Subtarget, 6400 const TargetLowering &TLI) { 6401 unsigned NumOps = N->getNumOperands(); 6402 6403 // Ignore single operand BUILD_VECTOR. 6404 if (NumOps == 1) 6405 return SDOperand(); 6406 6407 MVT VT = N->getValueType(0); 6408 MVT EVT = VT.getVectorElementType(); 6409 if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit()) 6410 // We are looking for load i64 and zero extend. We want to transform 6411 // it before legalizer has a chance to expand it. Also look for i64 6412 // BUILD_PAIR bit casted to f64. 6413 return SDOperand(); 6414 // This must be an insertion into a zero vector. 6415 SDOperand HighElt = N->getOperand(1); 6416 if (!isZeroNode(HighElt)) 6417 return SDOperand(); 6418 6419 // Value must be a load. 6420 SDNode *Base = N->getOperand(0).Val; 6421 if (!isa<LoadSDNode>(Base)) { 6422 if (Base->getOpcode() != ISD::BIT_CONVERT) 6423 return SDOperand(); 6424 Base = Base->getOperand(0).Val; 6425 if (!isa<LoadSDNode>(Base)) 6426 return SDOperand(); 6427 } 6428 6429 // Transform it into VZEXT_LOAD addr. 6430 LoadSDNode *LD = cast<LoadSDNode>(Base); 6431 6432 // Load must not be an extload. 6433 if (LD->getExtensionType() != ISD::NON_EXTLOAD) 6434 return SDOperand(); 6435 6436 return DAG.getNode(X86ISD::VZEXT_LOAD, VT, LD->getChain(), LD->getBasePtr()); 6437} 6438 6439/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. 6440static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, 6441 const X86Subtarget *Subtarget) { 6442 SDOperand Cond = N->getOperand(0); 6443 6444 // If we have SSE[12] support, try to form min/max nodes. 6445 if (Subtarget->hasSSE2() && 6446 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) { 6447 if (Cond.getOpcode() == ISD::SETCC) { 6448 // Get the LHS/RHS of the select. 6449 SDOperand LHS = N->getOperand(1); 6450 SDOperand RHS = N->getOperand(2); 6451 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 6452 6453 unsigned Opcode = 0; 6454 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) { 6455 switch (CC) { 6456 default: break; 6457 case ISD::SETOLE: // (X <= Y) ? X : Y -> min 6458 case ISD::SETULE: 6459 case ISD::SETLE: 6460 if (!UnsafeFPMath) break; 6461 // FALL THROUGH. 6462 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min 6463 case ISD::SETLT: 6464 Opcode = X86ISD::FMIN; 6465 break; 6466 6467 case ISD::SETOGT: // (X > Y) ? X : Y -> max 6468 case ISD::SETUGT: 6469 case ISD::SETGT: 6470 if (!UnsafeFPMath) break; 6471 // FALL THROUGH. 6472 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max 6473 case ISD::SETGE: 6474 Opcode = X86ISD::FMAX; 6475 break; 6476 } 6477 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) { 6478 switch (CC) { 6479 default: break; 6480 case ISD::SETOGT: // (X > Y) ? Y : X -> min 6481 case ISD::SETUGT: 6482 case ISD::SETGT: 6483 if (!UnsafeFPMath) break; 6484 // FALL THROUGH. 6485 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min 6486 case ISD::SETGE: 6487 Opcode = X86ISD::FMIN; 6488 break; 6489 6490 case ISD::SETOLE: // (X <= Y) ? Y : X -> max 6491 case ISD::SETULE: 6492 case ISD::SETLE: 6493 if (!UnsafeFPMath) break; 6494 // FALL THROUGH. 6495 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max 6496 case ISD::SETLT: 6497 Opcode = X86ISD::FMAX; 6498 break; 6499 } 6500 } 6501 6502 if (Opcode) 6503 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS); 6504 } 6505 6506 } 6507 6508 return SDOperand(); 6509} 6510 6511/// PerformSTORECombine - Do target-specific dag combines on STORE nodes. 6512static SDOperand PerformSTORECombine(SDNode *N, SelectionDAG &DAG, 6513 const X86Subtarget *Subtarget) { 6514 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering 6515 // the FP state in cases where an emms may be missing. 6516 // A preferable solution to the general problem is to figure out the right 6517 // places to insert EMMS. This qualifies as a quick hack. 6518 StoreSDNode *St = cast<StoreSDNode>(N); 6519 if (St->getValue().getValueType().isVector() && 6520 St->getValue().getValueType().getSizeInBits() == 64 && 6521 isa<LoadSDNode>(St->getValue()) && 6522 !cast<LoadSDNode>(St->getValue())->isVolatile() && 6523 St->getChain().hasOneUse() && !St->isVolatile()) { 6524 SDNode* LdVal = St->getValue().Val; 6525 LoadSDNode *Ld = 0; 6526 int TokenFactorIndex = -1; 6527 SmallVector<SDOperand, 8> Ops; 6528 SDNode* ChainVal = St->getChain().Val; 6529 // Must be a store of a load. We currently handle two cases: the load 6530 // is a direct child, and it's under an intervening TokenFactor. It is 6531 // possible to dig deeper under nested TokenFactors. 6532 if (ChainVal == LdVal) 6533 Ld = cast<LoadSDNode>(St->getChain()); 6534 else if (St->getValue().hasOneUse() && 6535 ChainVal->getOpcode() == ISD::TokenFactor) { 6536 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) { 6537 if (ChainVal->getOperand(i).Val == LdVal) { 6538 TokenFactorIndex = i; 6539 Ld = cast<LoadSDNode>(St->getValue()); 6540 } else 6541 Ops.push_back(ChainVal->getOperand(i)); 6542 } 6543 } 6544 if (Ld) { 6545 // If we are a 64-bit capable x86, lower to a single movq load/store pair. 6546 if (Subtarget->is64Bit()) { 6547 SDOperand NewLd = DAG.getLoad(MVT::i64, Ld->getChain(), 6548 Ld->getBasePtr(), Ld->getSrcValue(), 6549 Ld->getSrcValueOffset(), Ld->isVolatile(), 6550 Ld->getAlignment()); 6551 SDOperand NewChain = NewLd.getValue(1); 6552 if (TokenFactorIndex != -1) { 6553 Ops.push_back(NewChain); 6554 NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], 6555 Ops.size()); 6556 } 6557 return DAG.getStore(NewChain, NewLd, St->getBasePtr(), 6558 St->getSrcValue(), St->getSrcValueOffset(), 6559 St->isVolatile(), St->getAlignment()); 6560 } 6561 6562 // Otherwise, lower to two 32-bit copies. 6563 SDOperand LoAddr = Ld->getBasePtr(); 6564 SDOperand HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr, 6565 DAG.getConstant(4, MVT::i32)); 6566 6567 SDOperand LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr, 6568 Ld->getSrcValue(), Ld->getSrcValueOffset(), 6569 Ld->isVolatile(), Ld->getAlignment()); 6570 SDOperand HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr, 6571 Ld->getSrcValue(), Ld->getSrcValueOffset()+4, 6572 Ld->isVolatile(), 6573 MinAlign(Ld->getAlignment(), 4)); 6574 6575 SDOperand NewChain = LoLd.getValue(1); 6576 if (TokenFactorIndex != -1) { 6577 Ops.push_back(LoLd); 6578 Ops.push_back(HiLd); 6579 NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0], 6580 Ops.size()); 6581 } 6582 6583 LoAddr = St->getBasePtr(); 6584 HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr, 6585 DAG.getConstant(4, MVT::i32)); 6586 6587 SDOperand LoSt = DAG.getStore(NewChain, LoLd, LoAddr, 6588 St->getSrcValue(), St->getSrcValueOffset(), 6589 St->isVolatile(), St->getAlignment()); 6590 SDOperand HiSt = DAG.getStore(NewChain, HiLd, HiAddr, 6591 St->getSrcValue(), St->getSrcValueOffset()+4, 6592 St->isVolatile(), 6593 MinAlign(St->getAlignment(), 4)); 6594 return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt); 6595 } 6596 } 6597 return SDOperand(); 6598} 6599 6600/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and 6601/// X86ISD::FXOR nodes. 6602static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) { 6603 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); 6604 // F[X]OR(0.0, x) -> x 6605 // F[X]OR(x, 0.0) -> x 6606 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 6607 if (C->getValueAPF().isPosZero()) 6608 return N->getOperand(1); 6609 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) 6610 if (C->getValueAPF().isPosZero()) 6611 return N->getOperand(0); 6612 return SDOperand(); 6613} 6614 6615/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. 6616static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { 6617 // FAND(0.0, x) -> 0.0 6618 // FAND(x, 0.0) -> 0.0 6619 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 6620 if (C->getValueAPF().isPosZero()) 6621 return N->getOperand(0); 6622 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) 6623 if (C->getValueAPF().isPosZero()) 6624 return N->getOperand(1); 6625 return SDOperand(); 6626} 6627 6628 6629SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N, 6630 DAGCombinerInfo &DCI) const { 6631 SelectionDAG &DAG = DCI.DAG; 6632 switch (N->getOpcode()) { 6633 default: break; 6634 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this); 6635 case ISD::BUILD_VECTOR: 6636 return PerformBuildVectorCombine(N, DAG, Subtarget, *this); 6637 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget); 6638 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); 6639 case X86ISD::FXOR: 6640 case X86ISD::FOR: return PerformFORCombine(N, DAG); 6641 case X86ISD::FAND: return PerformFANDCombine(N, DAG); 6642 } 6643 6644 return SDOperand(); 6645} 6646 6647//===----------------------------------------------------------------------===// 6648// X86 Inline Assembly Support 6649//===----------------------------------------------------------------------===// 6650 6651/// getConstraintType - Given a constraint letter, return the type of 6652/// constraint it is for this target. 6653X86TargetLowering::ConstraintType 6654X86TargetLowering::getConstraintType(const std::string &Constraint) const { 6655 if (Constraint.size() == 1) { 6656 switch (Constraint[0]) { 6657 case 'A': 6658 case 'f': 6659 case 'r': 6660 case 'R': 6661 case 'l': 6662 case 'q': 6663 case 'Q': 6664 case 'x': 6665 case 'y': 6666 case 'Y': 6667 return C_RegisterClass; 6668 default: 6669 break; 6670 } 6671 } 6672 return TargetLowering::getConstraintType(Constraint); 6673} 6674 6675/// LowerXConstraint - try to replace an X constraint, which matches anything, 6676/// with another that has more specific requirements based on the type of the 6677/// corresponding operand. 6678const char *X86TargetLowering:: 6679LowerXConstraint(MVT ConstraintVT) const { 6680 // FP X constraints get lowered to SSE1/2 registers if available, otherwise 6681 // 'f' like normal targets. 6682 if (ConstraintVT.isFloatingPoint()) { 6683 if (Subtarget->hasSSE2()) 6684 return "Y"; 6685 if (Subtarget->hasSSE1()) 6686 return "x"; 6687 } 6688 6689 return TargetLowering::LowerXConstraint(ConstraintVT); 6690} 6691 6692/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 6693/// vector. If it is invalid, don't add anything to Ops. 6694void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op, 6695 char Constraint, 6696 std::vector<SDOperand>&Ops, 6697 SelectionDAG &DAG) const { 6698 SDOperand Result(0, 0); 6699 6700 switch (Constraint) { 6701 default: break; 6702 case 'I': 6703 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 6704 if (C->getValue() <= 31) { 6705 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType()); 6706 break; 6707 } 6708 } 6709 return; 6710 case 'N': 6711 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 6712 if (C->getValue() <= 255) { 6713 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType()); 6714 break; 6715 } 6716 } 6717 return; 6718 case 'i': { 6719 // Literal immediates are always ok. 6720 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { 6721 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType()); 6722 break; 6723 } 6724 6725 // If we are in non-pic codegen mode, we allow the address of a global (with 6726 // an optional displacement) to be used with 'i'. 6727 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 6728 int64_t Offset = 0; 6729 6730 // Match either (GA) or (GA+C) 6731 if (GA) { 6732 Offset = GA->getOffset(); 6733 } else if (Op.getOpcode() == ISD::ADD) { 6734 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6735 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 6736 if (C && GA) { 6737 Offset = GA->getOffset()+C->getValue(); 6738 } else { 6739 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 6740 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 6741 if (C && GA) 6742 Offset = GA->getOffset()+C->getValue(); 6743 else 6744 C = 0, GA = 0; 6745 } 6746 } 6747 6748 if (GA) { 6749 // If addressing this global requires a load (e.g. in PIC mode), we can't 6750 // match. 6751 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(), 6752 false)) 6753 return; 6754 6755 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), 6756 Offset); 6757 Result = Op; 6758 break; 6759 } 6760 6761 // Otherwise, not valid for this mode. 6762 return; 6763 } 6764 } 6765 6766 if (Result.Val) { 6767 Ops.push_back(Result); 6768 return; 6769 } 6770 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 6771} 6772 6773std::vector<unsigned> X86TargetLowering:: 6774getRegClassForInlineAsmConstraint(const std::string &Constraint, 6775 MVT VT) const { 6776 if (Constraint.size() == 1) { 6777 // FIXME: not handling fp-stack yet! 6778 switch (Constraint[0]) { // GCC X86 Constraint Letters 6779 default: break; // Unknown constraint letter 6780 case 'A': // EAX/EDX 6781 if (VT == MVT::i32 || VT == MVT::i64) 6782 return make_vector<unsigned>(X86::EAX, X86::EDX, 0); 6783 break; 6784 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) 6785 case 'Q': // Q_REGS 6786 if (VT == MVT::i32) 6787 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); 6788 else if (VT == MVT::i16) 6789 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); 6790 else if (VT == MVT::i8) 6791 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); 6792 else if (VT == MVT::i64) 6793 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0); 6794 break; 6795 } 6796 } 6797 6798 return std::vector<unsigned>(); 6799} 6800 6801std::pair<unsigned, const TargetRegisterClass*> 6802X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 6803 MVT VT) const { 6804 // First, see if this is a constraint that directly corresponds to an LLVM 6805 // register class. 6806 if (Constraint.size() == 1) { 6807 // GCC Constraint Letters 6808 switch (Constraint[0]) { 6809 default: break; 6810 case 'r': // GENERAL_REGS 6811 case 'R': // LEGACY_REGS 6812 case 'l': // INDEX_REGS 6813 if (VT == MVT::i64 && Subtarget->is64Bit()) 6814 return std::make_pair(0U, X86::GR64RegisterClass); 6815 if (VT == MVT::i32) 6816 return std::make_pair(0U, X86::GR32RegisterClass); 6817 else if (VT == MVT::i16) 6818 return std::make_pair(0U, X86::GR16RegisterClass); 6819 else if (VT == MVT::i8) 6820 return std::make_pair(0U, X86::GR8RegisterClass); 6821 break; 6822 case 'f': // FP Stack registers. 6823 // If SSE is enabled for this VT, use f80 to ensure the isel moves the 6824 // value to the correct fpstack register class. 6825 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) 6826 return std::make_pair(0U, X86::RFP32RegisterClass); 6827 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) 6828 return std::make_pair(0U, X86::RFP64RegisterClass); 6829 return std::make_pair(0U, X86::RFP80RegisterClass); 6830 case 'y': // MMX_REGS if MMX allowed. 6831 if (!Subtarget->hasMMX()) break; 6832 return std::make_pair(0U, X86::VR64RegisterClass); 6833 break; 6834 case 'Y': // SSE_REGS if SSE2 allowed 6835 if (!Subtarget->hasSSE2()) break; 6836 // FALL THROUGH. 6837 case 'x': // SSE_REGS if SSE1 allowed 6838 if (!Subtarget->hasSSE1()) break; 6839 6840 switch (VT.getSimpleVT()) { 6841 default: break; 6842 // Scalar SSE types. 6843 case MVT::f32: 6844 case MVT::i32: 6845 return std::make_pair(0U, X86::FR32RegisterClass); 6846 case MVT::f64: 6847 case MVT::i64: 6848 return std::make_pair(0U, X86::FR64RegisterClass); 6849 // Vector types. 6850 case MVT::v16i8: 6851 case MVT::v8i16: 6852 case MVT::v4i32: 6853 case MVT::v2i64: 6854 case MVT::v4f32: 6855 case MVT::v2f64: 6856 return std::make_pair(0U, X86::VR128RegisterClass); 6857 } 6858 break; 6859 } 6860 } 6861 6862 // Use the default implementation in TargetLowering to convert the register 6863 // constraint into a member of a register class. 6864 std::pair<unsigned, const TargetRegisterClass*> Res; 6865 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 6866 6867 // Not found as a standard register? 6868 if (Res.second == 0) { 6869 // GCC calls "st(0)" just plain "st". 6870 if (StringsEqualNoCase("{st}", Constraint)) { 6871 Res.first = X86::ST0; 6872 Res.second = X86::RFP80RegisterClass; 6873 } 6874 6875 return Res; 6876 } 6877 6878 // Otherwise, check to see if this is a register class of the wrong value 6879 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to 6880 // turn into {ax},{dx}. 6881 if (Res.second->hasType(VT)) 6882 return Res; // Correct type already, nothing to do. 6883 6884 // All of the single-register GCC register classes map their values onto 6885 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we 6886 // really want an 8-bit or 32-bit register, map to the appropriate register 6887 // class and return the appropriate register. 6888 if (Res.second != X86::GR16RegisterClass) 6889 return Res; 6890 6891 if (VT == MVT::i8) { 6892 unsigned DestReg = 0; 6893 switch (Res.first) { 6894 default: break; 6895 case X86::AX: DestReg = X86::AL; break; 6896 case X86::DX: DestReg = X86::DL; break; 6897 case X86::CX: DestReg = X86::CL; break; 6898 case X86::BX: DestReg = X86::BL; break; 6899 } 6900 if (DestReg) { 6901 Res.first = DestReg; 6902 Res.second = Res.second = X86::GR8RegisterClass; 6903 } 6904 } else if (VT == MVT::i32) { 6905 unsigned DestReg = 0; 6906 switch (Res.first) { 6907 default: break; 6908 case X86::AX: DestReg = X86::EAX; break; 6909 case X86::DX: DestReg = X86::EDX; break; 6910 case X86::CX: DestReg = X86::ECX; break; 6911 case X86::BX: DestReg = X86::EBX; break; 6912 case X86::SI: DestReg = X86::ESI; break; 6913 case X86::DI: DestReg = X86::EDI; break; 6914 case X86::BP: DestReg = X86::EBP; break; 6915 case X86::SP: DestReg = X86::ESP; break; 6916 } 6917 if (DestReg) { 6918 Res.first = DestReg; 6919 Res.second = Res.second = X86::GR32RegisterClass; 6920 } 6921 } else if (VT == MVT::i64) { 6922 unsigned DestReg = 0; 6923 switch (Res.first) { 6924 default: break; 6925 case X86::AX: DestReg = X86::RAX; break; 6926 case X86::DX: DestReg = X86::RDX; break; 6927 case X86::CX: DestReg = X86::RCX; break; 6928 case X86::BX: DestReg = X86::RBX; break; 6929 case X86::SI: DestReg = X86::RSI; break; 6930 case X86::DI: DestReg = X86::RDI; break; 6931 case X86::BP: DestReg = X86::RBP; break; 6932 case X86::SP: DestReg = X86::RSP; break; 6933 } 6934 if (DestReg) { 6935 Res.first = DestReg; 6936 Res.second = Res.second = X86::GR64RegisterClass; 6937 } 6938 } 6939 6940 return Res; 6941} 6942