X86ISelLowering.cpp revision a5e1362f968568d66d76ddcdcff4ab98e203a48c
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines the interfaces that X86 uses to lower LLVM code into a 11// selection DAG. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "x86-isel" 16#include "X86.h" 17#include "X86InstrBuilder.h" 18#include "X86ISelLowering.h" 19#include "X86ShuffleDecode.h" 20#include "X86TargetMachine.h" 21#include "X86TargetObjectFile.h" 22#include "llvm/CallingConv.h" 23#include "llvm/Constants.h" 24#include "llvm/DerivedTypes.h" 25#include "llvm/GlobalAlias.h" 26#include "llvm/GlobalVariable.h" 27#include "llvm/Function.h" 28#include "llvm/Instructions.h" 29#include "llvm/Intrinsics.h" 30#include "llvm/LLVMContext.h" 31#include "llvm/CodeGen/MachineFrameInfo.h" 32#include "llvm/CodeGen/MachineFunction.h" 33#include "llvm/CodeGen/MachineInstrBuilder.h" 34#include "llvm/CodeGen/MachineJumpTableInfo.h" 35#include "llvm/CodeGen/MachineModuleInfo.h" 36#include "llvm/CodeGen/MachineRegisterInfo.h" 37#include "llvm/CodeGen/PseudoSourceValue.h" 38#include "llvm/MC/MCAsmInfo.h" 39#include "llvm/MC/MCContext.h" 40#include "llvm/MC/MCExpr.h" 41#include "llvm/MC/MCSymbol.h" 42#include "llvm/ADT/BitVector.h" 43#include "llvm/ADT/SmallSet.h" 44#include "llvm/ADT/Statistic.h" 45#include "llvm/ADT/StringExtras.h" 46#include "llvm/ADT/VectorExtras.h" 47#include "llvm/Support/CommandLine.h" 48#include "llvm/Support/Debug.h" 49#include "llvm/Support/Dwarf.h" 50#include "llvm/Support/ErrorHandling.h" 51#include "llvm/Support/MathExtras.h" 52#include "llvm/Support/raw_ostream.h" 53using namespace llvm; 54using namespace dwarf; 55 56STATISTIC(NumTailCalls, "Number of tail calls"); 57 58// Forward declarations. 59static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, 60 SDValue V2); 61 62static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) { 63 64 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit(); 65 66 if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) { 67 if (is64Bit) 68 return new X8664_MachoTargetObjectFile(); 69 return new TargetLoweringObjectFileMachO(); 70 } 71 72 if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){ 73 if (is64Bit) 74 return new X8664_ELFTargetObjectFile(TM); 75 return new X8632_ELFTargetObjectFile(TM); 76 } 77 if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) 78 return new TargetLoweringObjectFileCOFF(); 79 llvm_unreachable("unknown subtarget type"); 80} 81 82X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) 83 : TargetLowering(TM, createTLOF(TM)) { 84 Subtarget = &TM.getSubtarget<X86Subtarget>(); 85 X86ScalarSSEf64 = Subtarget->hasXMMInt(); 86 X86ScalarSSEf32 = Subtarget->hasXMM(); 87 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; 88 89 RegInfo = TM.getRegisterInfo(); 90 TD = getTargetData(); 91 92 // Set up the TargetLowering object. 93 static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }; 94 95 // X86 is weird, it always uses i8 for shift amounts and setcc results. 96 setShiftAmountType(MVT::i8); 97 setBooleanContents(ZeroOrOneBooleanContent); 98 setSchedulingPreference(Sched::RegPressure); 99 setStackPointerRegisterToSaveRestore(X86StackPtr); 100 101 if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) { 102 // Setup Windows compiler runtime calls. 103 setLibcallName(RTLIB::SDIV_I64, "_alldiv"); 104 setLibcallName(RTLIB::UDIV_I64, "_aulldiv"); 105 setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2"); 106 setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2"); 107 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall); 108 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall); 109 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C); 110 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C); 111 } 112 113 if (Subtarget->isTargetDarwin()) { 114 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. 115 setUseUnderscoreSetJmp(false); 116 setUseUnderscoreLongJmp(false); 117 } else if (Subtarget->isTargetMingw()) { 118 // MS runtime is weird: it exports _setjmp, but longjmp! 119 setUseUnderscoreSetJmp(true); 120 setUseUnderscoreLongJmp(false); 121 } else { 122 setUseUnderscoreSetJmp(true); 123 setUseUnderscoreLongJmp(true); 124 } 125 126 // Set up the register classes. 127 addRegisterClass(MVT::i8, X86::GR8RegisterClass); 128 addRegisterClass(MVT::i16, X86::GR16RegisterClass); 129 addRegisterClass(MVT::i32, X86::GR32RegisterClass); 130 if (Subtarget->is64Bit()) 131 addRegisterClass(MVT::i64, X86::GR64RegisterClass); 132 133 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 134 135 // We don't accept any truncstore of integer registers. 136 setTruncStoreAction(MVT::i64, MVT::i32, Expand); 137 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 138 setTruncStoreAction(MVT::i64, MVT::i8 , Expand); 139 setTruncStoreAction(MVT::i32, MVT::i16, Expand); 140 setTruncStoreAction(MVT::i32, MVT::i8 , Expand); 141 setTruncStoreAction(MVT::i16, MVT::i8, Expand); 142 143 // SETOEQ and SETUNE require checking two conditions. 144 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); 145 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); 146 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); 147 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); 148 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); 149 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); 150 151 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this 152 // operation. 153 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); 154 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); 155 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); 156 157 if (Subtarget->is64Bit()) { 158 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); 159 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); 160 } else if (!UseSoftFloat) { 161 // We have an algorithm for SSE2->double, and we turn this into a 162 // 64-bit FILD followed by conditional FADD for other targets. 163 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); 164 // We have an algorithm for SSE2, and we turn this into a 64-bit 165 // FILD for other targets. 166 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); 167 } 168 169 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have 170 // this operation. 171 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); 172 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); 173 174 if (!UseSoftFloat) { 175 // SSE has no i16 to fp conversion, only i32 176 if (X86ScalarSSEf32) { 177 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); 178 // f32 and f64 cases are Legal, f80 case is not 179 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); 180 } else { 181 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); 182 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); 183 } 184 } else { 185 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); 186 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); 187 } 188 189 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 190 // are Legal, f80 is custom lowered. 191 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); 192 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); 193 194 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have 195 // this operation. 196 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); 197 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); 198 199 if (X86ScalarSSEf32) { 200 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); 201 // f32 and f64 cases are Legal, f80 case is not 202 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); 203 } else { 204 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); 205 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); 206 } 207 208 // Handle FP_TO_UINT by promoting the destination to a larger signed 209 // conversion. 210 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); 211 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); 212 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); 213 214 if (Subtarget->is64Bit()) { 215 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); 216 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); 217 } else if (!UseSoftFloat) { 218 if (X86ScalarSSEf32 && !Subtarget->hasSSE3()) 219 // Expand FP_TO_UINT into a select. 220 // FIXME: We would like to use a Custom expander here eventually to do 221 // the optimal thing for SSE vs. the default expansion in the legalizer. 222 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); 223 else 224 // With SSE3 we can use fisttpll to convert to a signed i64; without 225 // SSE, we're stuck with a fistpll. 226 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); 227 } 228 229 // TODO: when we have SSE, these could be more efficient, by using movd/movq. 230 if (!X86ScalarSSEf64) { 231 setOperationAction(ISD::BITCAST , MVT::f32 , Expand); 232 setOperationAction(ISD::BITCAST , MVT::i32 , Expand); 233 if (Subtarget->is64Bit()) { 234 setOperationAction(ISD::BITCAST , MVT::f64 , Expand); 235 // Without SSE, i64->f64 goes through memory. 236 setOperationAction(ISD::BITCAST , MVT::i64 , Expand); 237 } 238 } 239 240 // Scalar integer divide and remainder are lowered to use operations that 241 // produce two results, to match the available instructions. This exposes 242 // the two-result form to trivial CSE, which is able to combine x/y and x%y 243 // into a single instruction. 244 // 245 // Scalar integer multiply-high is also lowered to use two-result 246 // operations, to match the available instructions. However, plain multiply 247 // (low) operations are left as Legal, as there are single-result 248 // instructions for this in x86. Using the two-result multiply instructions 249 // when both high and low results are needed must be arranged by dagcombine. 250 for (unsigned i = 0, e = 4; i != e; ++i) { 251 MVT VT = IntVTs[i]; 252 setOperationAction(ISD::MULHS, VT, Expand); 253 setOperationAction(ISD::MULHU, VT, Expand); 254 setOperationAction(ISD::SDIV, VT, Expand); 255 setOperationAction(ISD::UDIV, VT, Expand); 256 setOperationAction(ISD::SREM, VT, Expand); 257 setOperationAction(ISD::UREM, VT, Expand); 258 259 // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences. 260 setOperationAction(ISD::ADDC, VT, Custom); 261 setOperationAction(ISD::ADDE, VT, Custom); 262 setOperationAction(ISD::SUBC, VT, Custom); 263 setOperationAction(ISD::SUBE, VT, Custom); 264 } 265 266 setOperationAction(ISD::BR_JT , MVT::Other, Expand); 267 setOperationAction(ISD::BRCOND , MVT::Other, Custom); 268 setOperationAction(ISD::BR_CC , MVT::Other, Expand); 269 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); 270 if (Subtarget->is64Bit()) 271 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); 272 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); 273 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); 274 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); 275 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); 276 setOperationAction(ISD::FREM , MVT::f32 , Expand); 277 setOperationAction(ISD::FREM , MVT::f64 , Expand); 278 setOperationAction(ISD::FREM , MVT::f80 , Expand); 279 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); 280 281 setOperationAction(ISD::CTTZ , MVT::i8 , Custom); 282 setOperationAction(ISD::CTLZ , MVT::i8 , Custom); 283 setOperationAction(ISD::CTTZ , MVT::i16 , Custom); 284 setOperationAction(ISD::CTLZ , MVT::i16 , Custom); 285 setOperationAction(ISD::CTTZ , MVT::i32 , Custom); 286 setOperationAction(ISD::CTLZ , MVT::i32 , Custom); 287 if (Subtarget->is64Bit()) { 288 setOperationAction(ISD::CTTZ , MVT::i64 , Custom); 289 setOperationAction(ISD::CTLZ , MVT::i64 , Custom); 290 } 291 292 if (Subtarget->hasPOPCNT()) { 293 setOperationAction(ISD::CTPOP , MVT::i8 , Promote); 294 } else { 295 setOperationAction(ISD::CTPOP , MVT::i8 , Expand); 296 setOperationAction(ISD::CTPOP , MVT::i16 , Expand); 297 setOperationAction(ISD::CTPOP , MVT::i32 , Expand); 298 if (Subtarget->is64Bit()) 299 setOperationAction(ISD::CTPOP , MVT::i64 , Expand); 300 } 301 302 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); 303 setOperationAction(ISD::BSWAP , MVT::i16 , Expand); 304 305 // These should be promoted to a larger select which is supported. 306 setOperationAction(ISD::SELECT , MVT::i1 , Promote); 307 // X86 wants to expand cmov itself. 308 setOperationAction(ISD::SELECT , MVT::i8 , Custom); 309 setOperationAction(ISD::SELECT , MVT::i16 , Custom); 310 setOperationAction(ISD::SELECT , MVT::i32 , Custom); 311 setOperationAction(ISD::SELECT , MVT::f32 , Custom); 312 setOperationAction(ISD::SELECT , MVT::f64 , Custom); 313 setOperationAction(ISD::SELECT , MVT::f80 , Custom); 314 setOperationAction(ISD::SETCC , MVT::i8 , Custom); 315 setOperationAction(ISD::SETCC , MVT::i16 , Custom); 316 setOperationAction(ISD::SETCC , MVT::i32 , Custom); 317 setOperationAction(ISD::SETCC , MVT::f32 , Custom); 318 setOperationAction(ISD::SETCC , MVT::f64 , Custom); 319 setOperationAction(ISD::SETCC , MVT::f80 , Custom); 320 if (Subtarget->is64Bit()) { 321 setOperationAction(ISD::SELECT , MVT::i64 , Custom); 322 setOperationAction(ISD::SETCC , MVT::i64 , Custom); 323 } 324 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); 325 326 // Darwin ABI issue. 327 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); 328 setOperationAction(ISD::JumpTable , MVT::i32 , Custom); 329 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); 330 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); 331 if (Subtarget->is64Bit()) 332 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 333 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); 334 setOperationAction(ISD::BlockAddress , MVT::i32 , Custom); 335 if (Subtarget->is64Bit()) { 336 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); 337 setOperationAction(ISD::JumpTable , MVT::i64 , Custom); 338 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); 339 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); 340 setOperationAction(ISD::BlockAddress , MVT::i64 , Custom); 341 } 342 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) 343 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); 344 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); 345 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); 346 if (Subtarget->is64Bit()) { 347 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); 348 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); 349 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); 350 } 351 352 if (Subtarget->hasXMM()) 353 setOperationAction(ISD::PREFETCH , MVT::Other, Legal); 354 355 // We may not have a libcall for MEMBARRIER so we should lower this. 356 setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom); 357 358 // On X86 and X86-64, atomic operations are lowered to locked instructions. 359 // Locked instructions, in turn, have implicit fence semantics (all memory 360 // operations are flushed before issuing the locked instruction, and they 361 // are not buffered), so we can fold away the common pattern of 362 // fence-atomic-fence. 363 setShouldFoldAtomicFences(true); 364 365 // Expand certain atomics 366 for (unsigned i = 0, e = 4; i != e; ++i) { 367 MVT VT = IntVTs[i]; 368 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom); 369 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 370 } 371 372 if (!Subtarget->is64Bit()) { 373 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); 374 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); 375 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); 376 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); 377 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); 378 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom); 379 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); 380 } 381 382 // FIXME - use subtarget debug flags 383 if (!Subtarget->isTargetDarwin() && 384 !Subtarget->isTargetELF() && 385 !Subtarget->isTargetCygMing()) { 386 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); 387 } 388 389 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); 390 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); 391 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); 392 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); 393 if (Subtarget->is64Bit()) { 394 setExceptionPointerRegister(X86::RAX); 395 setExceptionSelectorRegister(X86::RDX); 396 } else { 397 setExceptionPointerRegister(X86::EAX); 398 setExceptionSelectorRegister(X86::EDX); 399 } 400 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 401 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); 402 403 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); 404 405 setOperationAction(ISD::TRAP, MVT::Other, Legal); 406 407 // VASTART needs to be custom lowered to use the VarArgsFrameIndex 408 setOperationAction(ISD::VASTART , MVT::Other, Custom); 409 setOperationAction(ISD::VAEND , MVT::Other, Expand); 410 if (Subtarget->is64Bit()) { 411 setOperationAction(ISD::VAARG , MVT::Other, Custom); 412 setOperationAction(ISD::VACOPY , MVT::Other, Custom); 413 } else { 414 setOperationAction(ISD::VAARG , MVT::Other, Expand); 415 setOperationAction(ISD::VACOPY , MVT::Other, Expand); 416 } 417 418 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 419 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 420 if (Subtarget->is64Bit()) 421 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 422 if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) 423 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 424 else 425 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 426 427 if (!UseSoftFloat && X86ScalarSSEf64) { 428 // f32 and f64 use SSE. 429 // Set up the FP register classes. 430 addRegisterClass(MVT::f32, X86::FR32RegisterClass); 431 addRegisterClass(MVT::f64, X86::FR64RegisterClass); 432 433 // Use ANDPD to simulate FABS. 434 setOperationAction(ISD::FABS , MVT::f64, Custom); 435 setOperationAction(ISD::FABS , MVT::f32, Custom); 436 437 // Use XORP to simulate FNEG. 438 setOperationAction(ISD::FNEG , MVT::f64, Custom); 439 setOperationAction(ISD::FNEG , MVT::f32, Custom); 440 441 // Use ANDPD and ORPD to simulate FCOPYSIGN. 442 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 443 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 444 445 // We don't support sin/cos/fmod 446 setOperationAction(ISD::FSIN , MVT::f64, Expand); 447 setOperationAction(ISD::FCOS , MVT::f64, Expand); 448 setOperationAction(ISD::FSIN , MVT::f32, Expand); 449 setOperationAction(ISD::FCOS , MVT::f32, Expand); 450 451 // Expand FP immediates into loads from the stack, except for the special 452 // cases we handle. 453 addLegalFPImmediate(APFloat(+0.0)); // xorpd 454 addLegalFPImmediate(APFloat(+0.0f)); // xorps 455 } else if (!UseSoftFloat && X86ScalarSSEf32) { 456 // Use SSE for f32, x87 for f64. 457 // Set up the FP register classes. 458 addRegisterClass(MVT::f32, X86::FR32RegisterClass); 459 addRegisterClass(MVT::f64, X86::RFP64RegisterClass); 460 461 // Use ANDPS to simulate FABS. 462 setOperationAction(ISD::FABS , MVT::f32, Custom); 463 464 // Use XORP to simulate FNEG. 465 setOperationAction(ISD::FNEG , MVT::f32, Custom); 466 467 setOperationAction(ISD::UNDEF, MVT::f64, Expand); 468 469 // Use ANDPS and ORPS to simulate FCOPYSIGN. 470 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 471 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 472 473 // We don't support sin/cos/fmod 474 setOperationAction(ISD::FSIN , MVT::f32, Expand); 475 setOperationAction(ISD::FCOS , MVT::f32, Expand); 476 477 // Special cases we handle for FP constants. 478 addLegalFPImmediate(APFloat(+0.0f)); // xorps 479 addLegalFPImmediate(APFloat(+0.0)); // FLD0 480 addLegalFPImmediate(APFloat(+1.0)); // FLD1 481 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS 482 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS 483 484 if (!UnsafeFPMath) { 485 setOperationAction(ISD::FSIN , MVT::f64 , Expand); 486 setOperationAction(ISD::FCOS , MVT::f64 , Expand); 487 } 488 } else if (!UseSoftFloat) { 489 // f32 and f64 in x87. 490 // Set up the FP register classes. 491 addRegisterClass(MVT::f64, X86::RFP64RegisterClass); 492 addRegisterClass(MVT::f32, X86::RFP32RegisterClass); 493 494 setOperationAction(ISD::UNDEF, MVT::f64, Expand); 495 setOperationAction(ISD::UNDEF, MVT::f32, Expand); 496 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 497 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 498 499 if (!UnsafeFPMath) { 500 setOperationAction(ISD::FSIN , MVT::f64 , Expand); 501 setOperationAction(ISD::FCOS , MVT::f64 , Expand); 502 } 503 addLegalFPImmediate(APFloat(+0.0)); // FLD0 504 addLegalFPImmediate(APFloat(+1.0)); // FLD1 505 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS 506 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS 507 addLegalFPImmediate(APFloat(+0.0f)); // FLD0 508 addLegalFPImmediate(APFloat(+1.0f)); // FLD1 509 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS 510 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS 511 } 512 513 // Long double always uses X87. 514 if (!UseSoftFloat) { 515 addRegisterClass(MVT::f80, X86::RFP80RegisterClass); 516 setOperationAction(ISD::UNDEF, MVT::f80, Expand); 517 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); 518 { 519 APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended); 520 addLegalFPImmediate(TmpFlt); // FLD0 521 TmpFlt.changeSign(); 522 addLegalFPImmediate(TmpFlt); // FLD0/FCHS 523 524 bool ignored; 525 APFloat TmpFlt2(+1.0); 526 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, 527 &ignored); 528 addLegalFPImmediate(TmpFlt2); // FLD1 529 TmpFlt2.changeSign(); 530 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS 531 } 532 533 if (!UnsafeFPMath) { 534 setOperationAction(ISD::FSIN , MVT::f80 , Expand); 535 setOperationAction(ISD::FCOS , MVT::f80 , Expand); 536 } 537 } 538 539 // Always use a library call for pow. 540 setOperationAction(ISD::FPOW , MVT::f32 , Expand); 541 setOperationAction(ISD::FPOW , MVT::f64 , Expand); 542 setOperationAction(ISD::FPOW , MVT::f80 , Expand); 543 544 setOperationAction(ISD::FLOG, MVT::f80, Expand); 545 setOperationAction(ISD::FLOG2, MVT::f80, Expand); 546 setOperationAction(ISD::FLOG10, MVT::f80, Expand); 547 setOperationAction(ISD::FEXP, MVT::f80, Expand); 548 setOperationAction(ISD::FEXP2, MVT::f80, Expand); 549 550 // First set operation action for all vector types to either promote 551 // (for widening) or expand (for scalarization). Then we will selectively 552 // turn on ones that can be effectively codegen'd. 553 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 554 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { 555 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand); 556 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand); 557 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand); 558 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand); 559 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand); 560 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand); 561 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand); 562 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand); 563 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand); 564 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand); 565 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand); 566 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand); 567 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand); 568 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand); 569 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand); 570 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand); 571 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand); 572 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand); 573 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand); 574 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand); 575 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand); 576 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand); 577 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand); 578 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); 579 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 580 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 581 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand); 582 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand); 583 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand); 584 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand); 585 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand); 586 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand); 587 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand); 588 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand); 589 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand); 590 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand); 591 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand); 592 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); 593 setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand); 594 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand); 595 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand); 596 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand); 597 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand); 598 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand); 599 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand); 600 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand); 601 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand); 602 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand); 603 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand); 604 setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand); 605 setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand); 606 setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand); 607 setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand); 608 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 609 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) 610 setTruncStoreAction((MVT::SimpleValueType)VT, 611 (MVT::SimpleValueType)InnerVT, Expand); 612 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); 613 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); 614 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); 615 } 616 617 // FIXME: In order to prevent SSE instructions being expanded to MMX ones 618 // with -msoft-float, disable use of MMX as well. 619 if (!UseSoftFloat && Subtarget->hasMMX()) { 620 addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass); 621 // No operations on x86mmx supported, everything uses intrinsics. 622 } 623 624 // MMX-sized vectors (other than x86mmx) are expected to be expanded 625 // into smaller operations. 626 setOperationAction(ISD::MULHS, MVT::v8i8, Expand); 627 setOperationAction(ISD::MULHS, MVT::v4i16, Expand); 628 setOperationAction(ISD::MULHS, MVT::v2i32, Expand); 629 setOperationAction(ISD::MULHS, MVT::v1i64, Expand); 630 setOperationAction(ISD::AND, MVT::v8i8, Expand); 631 setOperationAction(ISD::AND, MVT::v4i16, Expand); 632 setOperationAction(ISD::AND, MVT::v2i32, Expand); 633 setOperationAction(ISD::AND, MVT::v1i64, Expand); 634 setOperationAction(ISD::OR, MVT::v8i8, Expand); 635 setOperationAction(ISD::OR, MVT::v4i16, Expand); 636 setOperationAction(ISD::OR, MVT::v2i32, Expand); 637 setOperationAction(ISD::OR, MVT::v1i64, Expand); 638 setOperationAction(ISD::XOR, MVT::v8i8, Expand); 639 setOperationAction(ISD::XOR, MVT::v4i16, Expand); 640 setOperationAction(ISD::XOR, MVT::v2i32, Expand); 641 setOperationAction(ISD::XOR, MVT::v1i64, Expand); 642 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand); 643 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand); 644 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand); 645 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand); 646 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand); 647 setOperationAction(ISD::SELECT, MVT::v8i8, Expand); 648 setOperationAction(ISD::SELECT, MVT::v4i16, Expand); 649 setOperationAction(ISD::SELECT, MVT::v2i32, Expand); 650 setOperationAction(ISD::SELECT, MVT::v1i64, Expand); 651 setOperationAction(ISD::BITCAST, MVT::v8i8, Expand); 652 setOperationAction(ISD::BITCAST, MVT::v4i16, Expand); 653 setOperationAction(ISD::BITCAST, MVT::v2i32, Expand); 654 setOperationAction(ISD::BITCAST, MVT::v1i64, Expand); 655 656 if (!UseSoftFloat && Subtarget->hasXMM()) { 657 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); 658 659 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 660 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 661 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 662 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 663 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 664 setOperationAction(ISD::FNEG, MVT::v4f32, Custom); 665 setOperationAction(ISD::LOAD, MVT::v4f32, Legal); 666 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); 667 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); 668 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 669 setOperationAction(ISD::SELECT, MVT::v4f32, Custom); 670 setOperationAction(ISD::VSETCC, MVT::v4f32, Custom); 671 } 672 673 if (!UseSoftFloat && Subtarget->hasXMMInt()) { 674 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); 675 676 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM 677 // registers cannot be used even for integer operations. 678 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); 679 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); 680 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); 681 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); 682 683 setOperationAction(ISD::ADD, MVT::v16i8, Legal); 684 setOperationAction(ISD::ADD, MVT::v8i16, Legal); 685 setOperationAction(ISD::ADD, MVT::v4i32, Legal); 686 setOperationAction(ISD::ADD, MVT::v2i64, Legal); 687 setOperationAction(ISD::MUL, MVT::v2i64, Custom); 688 setOperationAction(ISD::SUB, MVT::v16i8, Legal); 689 setOperationAction(ISD::SUB, MVT::v8i16, Legal); 690 setOperationAction(ISD::SUB, MVT::v4i32, Legal); 691 setOperationAction(ISD::SUB, MVT::v2i64, Legal); 692 setOperationAction(ISD::MUL, MVT::v8i16, Legal); 693 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 694 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 695 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 696 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 697 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 698 setOperationAction(ISD::FNEG, MVT::v2f64, Custom); 699 700 setOperationAction(ISD::VSETCC, MVT::v2f64, Custom); 701 setOperationAction(ISD::VSETCC, MVT::v16i8, Custom); 702 setOperationAction(ISD::VSETCC, MVT::v8i16, Custom); 703 setOperationAction(ISD::VSETCC, MVT::v4i32, Custom); 704 705 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); 706 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); 707 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 708 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 709 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 710 711 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom); 712 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom); 713 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom); 714 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom); 715 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 716 717 // Custom lower build_vector, vector_shuffle, and extract_vector_elt. 718 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) { 719 EVT VT = (MVT::SimpleValueType)i; 720 // Do not attempt to custom lower non-power-of-2 vectors 721 if (!isPowerOf2_32(VT.getVectorNumElements())) 722 continue; 723 // Do not attempt to custom lower non-128-bit vectors 724 if (!VT.is128BitVector()) 725 continue; 726 setOperationAction(ISD::BUILD_VECTOR, 727 VT.getSimpleVT().SimpleTy, Custom); 728 setOperationAction(ISD::VECTOR_SHUFFLE, 729 VT.getSimpleVT().SimpleTy, Custom); 730 setOperationAction(ISD::EXTRACT_VECTOR_ELT, 731 VT.getSimpleVT().SimpleTy, Custom); 732 } 733 734 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); 735 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); 736 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); 737 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); 738 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 739 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 740 741 if (Subtarget->is64Bit()) { 742 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); 743 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); 744 } 745 746 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. 747 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) { 748 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i; 749 EVT VT = SVT; 750 751 // Do not attempt to promote non-128-bit vectors 752 if (!VT.is128BitVector()) 753 continue; 754 755 setOperationAction(ISD::AND, SVT, Promote); 756 AddPromotedToType (ISD::AND, SVT, MVT::v2i64); 757 setOperationAction(ISD::OR, SVT, Promote); 758 AddPromotedToType (ISD::OR, SVT, MVT::v2i64); 759 setOperationAction(ISD::XOR, SVT, Promote); 760 AddPromotedToType (ISD::XOR, SVT, MVT::v2i64); 761 setOperationAction(ISD::LOAD, SVT, Promote); 762 AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64); 763 setOperationAction(ISD::SELECT, SVT, Promote); 764 AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64); 765 } 766 767 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 768 769 // Custom lower v2i64 and v2f64 selects. 770 setOperationAction(ISD::LOAD, MVT::v2f64, Legal); 771 setOperationAction(ISD::LOAD, MVT::v2i64, Legal); 772 setOperationAction(ISD::SELECT, MVT::v2f64, Custom); 773 setOperationAction(ISD::SELECT, MVT::v2i64, Custom); 774 775 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 776 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 777 } 778 779 if (Subtarget->hasSSE41()) { 780 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 781 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 782 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 783 setOperationAction(ISD::FRINT, MVT::f32, Legal); 784 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 785 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 786 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 787 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 788 setOperationAction(ISD::FRINT, MVT::f64, Legal); 789 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 790 791 // FIXME: Do we need to handle scalar-to-vector here? 792 setOperationAction(ISD::MUL, MVT::v4i32, Legal); 793 794 // Can turn SHL into an integer multiply. 795 setOperationAction(ISD::SHL, MVT::v4i32, Custom); 796 setOperationAction(ISD::SHL, MVT::v16i8, Custom); 797 798 // i8 and i16 vectors are custom , because the source register and source 799 // source memory operand types are not the same width. f32 vectors are 800 // custom since the immediate controlling the insert encodes additional 801 // information. 802 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); 803 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); 804 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); 805 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 806 807 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); 808 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); 809 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); 810 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 811 812 if (Subtarget->is64Bit()) { 813 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); 814 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); 815 } 816 } 817 818 if (Subtarget->hasSSE42()) 819 setOperationAction(ISD::VSETCC, MVT::v2i64, Custom); 820 821 if (!UseSoftFloat && Subtarget->hasAVX()) { 822 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass); 823 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass); 824 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass); 825 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass); 826 addRegisterClass(MVT::v32i8, X86::VR256RegisterClass); 827 828 setOperationAction(ISD::LOAD, MVT::v8f32, Legal); 829 setOperationAction(ISD::LOAD, MVT::v8i32, Legal); 830 setOperationAction(ISD::LOAD, MVT::v4f64, Legal); 831 setOperationAction(ISD::LOAD, MVT::v4i64, Legal); 832 setOperationAction(ISD::FADD, MVT::v8f32, Legal); 833 setOperationAction(ISD::FSUB, MVT::v8f32, Legal); 834 setOperationAction(ISD::FMUL, MVT::v8f32, Legal); 835 setOperationAction(ISD::FDIV, MVT::v8f32, Legal); 836 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal); 837 setOperationAction(ISD::FNEG, MVT::v8f32, Custom); 838 setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom); 839 //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom); 840 //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom); 841 //setOperationAction(ISD::SELECT, MVT::v8f32, Custom); 842 //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom); 843 844 // Operations to consider commented out -v16i16 v32i8 845 //setOperationAction(ISD::ADD, MVT::v16i16, Legal); 846 setOperationAction(ISD::ADD, MVT::v8i32, Custom); 847 setOperationAction(ISD::ADD, MVT::v4i64, Custom); 848 //setOperationAction(ISD::SUB, MVT::v32i8, Legal); 849 //setOperationAction(ISD::SUB, MVT::v16i16, Legal); 850 setOperationAction(ISD::SUB, MVT::v8i32, Custom); 851 setOperationAction(ISD::SUB, MVT::v4i64, Custom); 852 //setOperationAction(ISD::MUL, MVT::v16i16, Legal); 853 setOperationAction(ISD::FADD, MVT::v4f64, Legal); 854 setOperationAction(ISD::FSUB, MVT::v4f64, Legal); 855 setOperationAction(ISD::FMUL, MVT::v4f64, Legal); 856 setOperationAction(ISD::FDIV, MVT::v4f64, Legal); 857 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); 858 setOperationAction(ISD::FNEG, MVT::v4f64, Custom); 859 860 setOperationAction(ISD::VSETCC, MVT::v4f64, Custom); 861 // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom); 862 // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom); 863 setOperationAction(ISD::VSETCC, MVT::v8i32, Custom); 864 865 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom); 866 // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom); 867 // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom); 868 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i32, Custom); 869 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8f32, Custom); 870 871 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); 872 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i64, Custom); 873 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f64, Custom); 874 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i64, Custom); 875 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f64, Custom); 876 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom); 877 878#if 0 879 // Not sure we want to do this since there are no 256-bit integer 880 // operations in AVX 881 882 // Custom lower build_vector, vector_shuffle, and extract_vector_elt. 883 // This includes 256-bit vectors 884 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) { 885 EVT VT = (MVT::SimpleValueType)i; 886 887 // Do not attempt to custom lower non-power-of-2 vectors 888 if (!isPowerOf2_32(VT.getVectorNumElements())) 889 continue; 890 891 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 892 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 893 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 894 } 895 896 if (Subtarget->is64Bit()) { 897 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom); 898 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom); 899 } 900#endif 901 902#if 0 903 // Not sure we want to do this since there are no 256-bit integer 904 // operations in AVX 905 906 // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64. 907 // Including 256-bit vectors 908 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) { 909 EVT VT = (MVT::SimpleValueType)i; 910 911 if (!VT.is256BitVector()) { 912 continue; 913 } 914 setOperationAction(ISD::AND, VT, Promote); 915 AddPromotedToType (ISD::AND, VT, MVT::v4i64); 916 setOperationAction(ISD::OR, VT, Promote); 917 AddPromotedToType (ISD::OR, VT, MVT::v4i64); 918 setOperationAction(ISD::XOR, VT, Promote); 919 AddPromotedToType (ISD::XOR, VT, MVT::v4i64); 920 setOperationAction(ISD::LOAD, VT, Promote); 921 AddPromotedToType (ISD::LOAD, VT, MVT::v4i64); 922 setOperationAction(ISD::SELECT, VT, Promote); 923 AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); 924 } 925 926 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 927#endif 928 } 929 930 // We want to custom lower some of our intrinsics. 931 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 932 933 934 // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't 935 // handle type legalization for these operations here. 936 // 937 // FIXME: We really should do custom legalization for addition and 938 // subtraction on x86-32 once PR3203 is fixed. We really can't do much better 939 // than generic legalization for 64-bit multiplication-with-overflow, though. 940 for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) { 941 // Add/Sub/Mul with overflow operations are custom lowered. 942 MVT VT = IntVTs[i]; 943 setOperationAction(ISD::SADDO, VT, Custom); 944 setOperationAction(ISD::UADDO, VT, Custom); 945 setOperationAction(ISD::SSUBO, VT, Custom); 946 setOperationAction(ISD::USUBO, VT, Custom); 947 setOperationAction(ISD::SMULO, VT, Custom); 948 setOperationAction(ISD::UMULO, VT, Custom); 949 } 950 951 // There are no 8-bit 3-address imul/mul instructions 952 setOperationAction(ISD::SMULO, MVT::i8, Expand); 953 setOperationAction(ISD::UMULO, MVT::i8, Expand); 954 955 if (!Subtarget->is64Bit()) { 956 // These libcalls are not available in 32-bit. 957 setLibcallName(RTLIB::SHL_I128, 0); 958 setLibcallName(RTLIB::SRL_I128, 0); 959 setLibcallName(RTLIB::SRA_I128, 0); 960 } 961 962 // We have target-specific dag combine patterns for the following nodes: 963 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 964 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 965 setTargetDAGCombine(ISD::BUILD_VECTOR); 966 setTargetDAGCombine(ISD::SELECT); 967 setTargetDAGCombine(ISD::SHL); 968 setTargetDAGCombine(ISD::SRA); 969 setTargetDAGCombine(ISD::SRL); 970 setTargetDAGCombine(ISD::OR); 971 setTargetDAGCombine(ISD::AND); 972 setTargetDAGCombine(ISD::ADD); 973 setTargetDAGCombine(ISD::SUB); 974 setTargetDAGCombine(ISD::STORE); 975 setTargetDAGCombine(ISD::ZERO_EXTEND); 976 if (Subtarget->is64Bit()) 977 setTargetDAGCombine(ISD::MUL); 978 979 computeRegisterProperties(); 980 981 // On Darwin, -Os means optimize for size without hurting performance, 982 // do not reduce the limit. 983 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores 984 maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8; 985 maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores 986 maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4; 987 maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores 988 maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4; 989 setPrefLoopAlignment(16); 990 benefitFromCodePlacementOpt = true; 991} 992 993 994MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const { 995 return MVT::i8; 996} 997 998 999/// getMaxByValAlign - Helper for getByValTypeAlignment to determine 1000/// the desired ByVal argument alignment. 1001static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) { 1002 if (MaxAlign == 16) 1003 return; 1004 if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { 1005 if (VTy->getBitWidth() == 128) 1006 MaxAlign = 16; 1007 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 1008 unsigned EltAlign = 0; 1009 getMaxByValAlign(ATy->getElementType(), EltAlign); 1010 if (EltAlign > MaxAlign) 1011 MaxAlign = EltAlign; 1012 } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { 1013 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1014 unsigned EltAlign = 0; 1015 getMaxByValAlign(STy->getElementType(i), EltAlign); 1016 if (EltAlign > MaxAlign) 1017 MaxAlign = EltAlign; 1018 if (MaxAlign == 16) 1019 break; 1020 } 1021 } 1022 return; 1023} 1024 1025/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1026/// function arguments in the caller parameter area. For X86, aggregates 1027/// that contain SSE vectors are placed at 16-byte boundaries while the rest 1028/// are at 4-byte boundaries. 1029unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const { 1030 if (Subtarget->is64Bit()) { 1031 // Max of 8 and alignment of type. 1032 unsigned TyAlign = TD->getABITypeAlignment(Ty); 1033 if (TyAlign > 8) 1034 return TyAlign; 1035 return 8; 1036 } 1037 1038 unsigned Align = 4; 1039 if (Subtarget->hasXMM()) 1040 getMaxByValAlign(Ty, Align); 1041 return Align; 1042} 1043 1044/// getOptimalMemOpType - Returns the target specific optimal type for load 1045/// and store operations as a result of memset, memcpy, and memmove 1046/// lowering. If DstAlign is zero that means it's safe to destination 1047/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it 1048/// means there isn't a need to check it against alignment requirement, 1049/// probably because the source does not need to be loaded. If 1050/// 'NonScalarIntSafe' is true, that means it's safe to return a 1051/// non-scalar-integer type, e.g. empty string source, constant, or loaded 1052/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is 1053/// constant so it does not need to be loaded. 1054/// It returns EVT::Other if the type should be determined using generic 1055/// target-independent logic. 1056EVT 1057X86TargetLowering::getOptimalMemOpType(uint64_t Size, 1058 unsigned DstAlign, unsigned SrcAlign, 1059 bool NonScalarIntSafe, 1060 bool MemcpyStrSrc, 1061 MachineFunction &MF) const { 1062 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like 1063 // linux. This is because the stack realignment code can't handle certain 1064 // cases like PR2962. This should be removed when PR2962 is fixed. 1065 const Function *F = MF.getFunction(); 1066 if (NonScalarIntSafe && 1067 !F->hasFnAttr(Attribute::NoImplicitFloat)) { 1068 if (Size >= 16 && 1069 (Subtarget->isUnalignedMemAccessFast() || 1070 ((DstAlign == 0 || DstAlign >= 16) && 1071 (SrcAlign == 0 || SrcAlign >= 16))) && 1072 Subtarget->getStackAlignment() >= 16) { 1073 if (Subtarget->hasSSE2()) 1074 return MVT::v4i32; 1075 if (Subtarget->hasSSE1()) 1076 return MVT::v4f32; 1077 } else if (!MemcpyStrSrc && Size >= 8 && 1078 !Subtarget->is64Bit() && 1079 Subtarget->getStackAlignment() >= 8 && 1080 Subtarget->hasXMMInt()) { 1081 // Do not use f64 to lower memcpy if source is string constant. It's 1082 // better to use i32 to avoid the loads. 1083 return MVT::f64; 1084 } 1085 } 1086 if (Subtarget->is64Bit() && Size >= 8) 1087 return MVT::i64; 1088 return MVT::i32; 1089} 1090 1091/// getJumpTableEncoding - Return the entry encoding for a jump table in the 1092/// current function. The returned value is a member of the 1093/// MachineJumpTableInfo::JTEntryKind enum. 1094unsigned X86TargetLowering::getJumpTableEncoding() const { 1095 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF 1096 // symbol. 1097 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1098 Subtarget->isPICStyleGOT()) 1099 return MachineJumpTableInfo::EK_Custom32; 1100 1101 // Otherwise, use the normal jump table encoding heuristics. 1102 return TargetLowering::getJumpTableEncoding(); 1103} 1104 1105const MCExpr * 1106X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, 1107 const MachineBasicBlock *MBB, 1108 unsigned uid,MCContext &Ctx) const{ 1109 assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ && 1110 Subtarget->isPICStyleGOT()); 1111 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF 1112 // entries. 1113 return MCSymbolRefExpr::Create(MBB->getSymbol(), 1114 MCSymbolRefExpr::VK_GOTOFF, Ctx); 1115} 1116 1117/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC 1118/// jumptable. 1119SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, 1120 SelectionDAG &DAG) const { 1121 if (!Subtarget->is64Bit()) 1122 // This doesn't have DebugLoc associated with it, but is not really the 1123 // same as a Register. 1124 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()); 1125 return Table; 1126} 1127 1128/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 1129/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 1130/// MCExpr. 1131const MCExpr *X86TargetLowering:: 1132getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, 1133 MCContext &Ctx) const { 1134 // X86-64 uses RIP relative addressing based on the jump table label. 1135 if (Subtarget->isPICStyleRIPRel()) 1136 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); 1137 1138 // Otherwise, the reference is relative to the PIC base. 1139 return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx); 1140} 1141 1142/// getFunctionAlignment - Return the Log2 alignment of this function. 1143unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const { 1144 return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4; 1145} 1146 1147std::pair<const TargetRegisterClass*, uint8_t> 1148X86TargetLowering::findRepresentativeClass(EVT VT) const{ 1149 const TargetRegisterClass *RRC = 0; 1150 uint8_t Cost = 1; 1151 switch (VT.getSimpleVT().SimpleTy) { 1152 default: 1153 return TargetLowering::findRepresentativeClass(VT); 1154 case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: 1155 RRC = (Subtarget->is64Bit() 1156 ? X86::GR64RegisterClass : X86::GR32RegisterClass); 1157 break; 1158 case MVT::x86mmx: 1159 RRC = X86::VR64RegisterClass; 1160 break; 1161 case MVT::f32: case MVT::f64: 1162 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: 1163 case MVT::v4f32: case MVT::v2f64: 1164 case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32: 1165 case MVT::v4f64: 1166 RRC = X86::VR128RegisterClass; 1167 break; 1168 } 1169 return std::make_pair(RRC, Cost); 1170} 1171 1172unsigned 1173X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC, 1174 MachineFunction &MF) const { 1175 const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo(); 1176 1177 unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0; 1178 switch (RC->getID()) { 1179 default: 1180 return 0; 1181 case X86::GR32RegClassID: 1182 return 4 - FPDiff; 1183 case X86::GR64RegClassID: 1184 return 8 - FPDiff; 1185 case X86::VR128RegClassID: 1186 return Subtarget->is64Bit() ? 10 : 4; 1187 case X86::VR64RegClassID: 1188 return 4; 1189 } 1190} 1191 1192bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace, 1193 unsigned &Offset) const { 1194 if (!Subtarget->isTargetLinux()) 1195 return false; 1196 1197 if (Subtarget->is64Bit()) { 1198 // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs: 1199 Offset = 0x28; 1200 if (getTargetMachine().getCodeModel() == CodeModel::Kernel) 1201 AddressSpace = 256; 1202 else 1203 AddressSpace = 257; 1204 } else { 1205 // %gs:0x14 on i386 1206 Offset = 0x14; 1207 AddressSpace = 256; 1208 } 1209 return true; 1210} 1211 1212 1213//===----------------------------------------------------------------------===// 1214// Return Value Calling Convention Implementation 1215//===----------------------------------------------------------------------===// 1216 1217#include "X86GenCallingConv.inc" 1218 1219bool 1220X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, 1221 const SmallVectorImpl<ISD::OutputArg> &Outs, 1222 LLVMContext &Context) const { 1223 SmallVector<CCValAssign, 16> RVLocs; 1224 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), 1225 RVLocs, Context); 1226 return CCInfo.CheckReturn(Outs, RetCC_X86); 1227} 1228 1229SDValue 1230X86TargetLowering::LowerReturn(SDValue Chain, 1231 CallingConv::ID CallConv, bool isVarArg, 1232 const SmallVectorImpl<ISD::OutputArg> &Outs, 1233 const SmallVectorImpl<SDValue> &OutVals, 1234 DebugLoc dl, SelectionDAG &DAG) const { 1235 MachineFunction &MF = DAG.getMachineFunction(); 1236 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1237 1238 SmallVector<CCValAssign, 16> RVLocs; 1239 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), 1240 RVLocs, *DAG.getContext()); 1241 CCInfo.AnalyzeReturn(Outs, RetCC_X86); 1242 1243 // Add the regs to the liveout set for the function. 1244 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1245 for (unsigned i = 0; i != RVLocs.size(); ++i) 1246 if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg())) 1247 MRI.addLiveOut(RVLocs[i].getLocReg()); 1248 1249 SDValue Flag; 1250 1251 SmallVector<SDValue, 6> RetOps; 1252 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 1253 // Operand #1 = Bytes To Pop 1254 RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), 1255 MVT::i16)); 1256 1257 // Copy the result values into the output registers. 1258 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1259 CCValAssign &VA = RVLocs[i]; 1260 assert(VA.isRegLoc() && "Can only return in registers!"); 1261 SDValue ValToCopy = OutVals[i]; 1262 EVT ValVT = ValToCopy.getValueType(); 1263 1264 // If this is x86-64, and we disabled SSE, we can't return FP values, 1265 // or SSE or MMX vectors. 1266 if ((ValVT == MVT::f32 || ValVT == MVT::f64 || 1267 VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) && 1268 (Subtarget->is64Bit() && !Subtarget->hasXMM())) { 1269 report_fatal_error("SSE register return with SSE disabled"); 1270 } 1271 // Likewise we can't return F64 values with SSE1 only. gcc does so, but 1272 // llvm-gcc has never done it right and no one has noticed, so this 1273 // should be OK for now. 1274 if (ValVT == MVT::f64 && 1275 (Subtarget->is64Bit() && !Subtarget->hasXMMInt())) 1276 report_fatal_error("SSE2 register return with SSE2 disabled"); 1277 1278 // Returns in ST0/ST1 are handled specially: these are pushed as operands to 1279 // the RET instruction and handled by the FP Stackifier. 1280 if (VA.getLocReg() == X86::ST0 || 1281 VA.getLocReg() == X86::ST1) { 1282 // If this is a copy from an xmm register to ST(0), use an FPExtend to 1283 // change the value to the FP stack register class. 1284 if (isScalarFPTypeInSSEReg(VA.getValVT())) 1285 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); 1286 RetOps.push_back(ValToCopy); 1287 // Don't emit a copytoreg. 1288 continue; 1289 } 1290 1291 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 1292 // which is returned in RAX / RDX. 1293 if (Subtarget->is64Bit()) { 1294 if (ValVT == MVT::x86mmx) { 1295 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { 1296 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy); 1297 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, 1298 ValToCopy); 1299 // If we don't have SSE2 available, convert to v4f32 so the generated 1300 // register is legal. 1301 if (!Subtarget->hasSSE2()) 1302 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy); 1303 } 1304 } 1305 } 1306 1307 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); 1308 Flag = Chain.getValue(1); 1309 } 1310 1311 // The x86-64 ABI for returning structs by value requires that we copy 1312 // the sret argument into %rax for the return. We saved the argument into 1313 // a virtual register in the entry block, so now we copy the value out 1314 // and into %rax. 1315 if (Subtarget->is64Bit() && 1316 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { 1317 MachineFunction &MF = DAG.getMachineFunction(); 1318 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1319 unsigned Reg = FuncInfo->getSRetReturnReg(); 1320 assert(Reg && 1321 "SRetReturnReg should have been set in LowerFormalArguments()."); 1322 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); 1323 1324 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag); 1325 Flag = Chain.getValue(1); 1326 1327 // RAX now acts like a return value. 1328 MRI.addLiveOut(X86::RAX); 1329 } 1330 1331 RetOps[0] = Chain; // Update chain. 1332 1333 // Add the flag if we have it. 1334 if (Flag.getNode()) 1335 RetOps.push_back(Flag); 1336 1337 return DAG.getNode(X86ISD::RET_FLAG, dl, 1338 MVT::Other, &RetOps[0], RetOps.size()); 1339} 1340 1341bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const { 1342 if (N->getNumValues() != 1) 1343 return false; 1344 if (!N->hasNUsesOfValue(1, 0)) 1345 return false; 1346 1347 SDNode *Copy = *N->use_begin(); 1348 if (Copy->getOpcode() != ISD::CopyToReg && 1349 Copy->getOpcode() != ISD::FP_EXTEND) 1350 return false; 1351 1352 bool HasRet = false; 1353 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); 1354 UI != UE; ++UI) { 1355 if (UI->getOpcode() != X86ISD::RET_FLAG) 1356 return false; 1357 HasRet = true; 1358 } 1359 1360 return HasRet; 1361} 1362 1363/// LowerCallResult - Lower the result values of a call into the 1364/// appropriate copies out of appropriate physical registers. 1365/// 1366SDValue 1367X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 1368 CallingConv::ID CallConv, bool isVarArg, 1369 const SmallVectorImpl<ISD::InputArg> &Ins, 1370 DebugLoc dl, SelectionDAG &DAG, 1371 SmallVectorImpl<SDValue> &InVals) const { 1372 1373 // Assign locations to each value returned by this call. 1374 SmallVector<CCValAssign, 16> RVLocs; 1375 bool Is64Bit = Subtarget->is64Bit(); 1376 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), 1377 RVLocs, *DAG.getContext()); 1378 CCInfo.AnalyzeCallResult(Ins, RetCC_X86); 1379 1380 // Copy all of the result registers out of their specified physreg. 1381 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1382 CCValAssign &VA = RVLocs[i]; 1383 EVT CopyVT = VA.getValVT(); 1384 1385 // If this is x86-64, and we disabled SSE, we can't return FP values 1386 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && 1387 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) { 1388 report_fatal_error("SSE register return with SSE disabled"); 1389 } 1390 1391 SDValue Val; 1392 1393 // If this is a call to a function that returns an fp value on the floating 1394 // point stack, we must guarantee the the value is popped from the stack, so 1395 // a CopyFromReg is not good enough - the copy instruction may be eliminated 1396 // if the return value is not used. We use the FpGET_ST0 instructions 1397 // instead. 1398 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) { 1399 // If we prefer to use the value in xmm registers, copy it out as f80 and 1400 // use a truncate to move it from fp stack reg to xmm reg. 1401 if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80; 1402 bool isST0 = VA.getLocReg() == X86::ST0; 1403 unsigned Opc = 0; 1404 if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32; 1405 if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64; 1406 if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80; 1407 SDValue Ops[] = { Chain, InFlag }; 1408 Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue, 1409 Ops, 2), 1); 1410 Val = Chain.getValue(0); 1411 1412 // Round the f80 to the right size, which also moves it to the appropriate 1413 // xmm register. 1414 if (CopyVT != VA.getValVT()) 1415 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, 1416 // This truncation won't change the value. 1417 DAG.getIntPtrConstant(1)); 1418 } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) { 1419 // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64. 1420 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { 1421 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), 1422 MVT::v2i64, InFlag).getValue(1); 1423 Val = Chain.getValue(0); 1424 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, 1425 Val, DAG.getConstant(0, MVT::i64)); 1426 } else { 1427 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), 1428 MVT::i64, InFlag).getValue(1); 1429 Val = Chain.getValue(0); 1430 } 1431 Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val); 1432 } else { 1433 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), 1434 CopyVT, InFlag).getValue(1); 1435 Val = Chain.getValue(0); 1436 } 1437 InFlag = Chain.getValue(2); 1438 InVals.push_back(Val); 1439 } 1440 1441 return Chain; 1442} 1443 1444 1445//===----------------------------------------------------------------------===// 1446// C & StdCall & Fast Calling Convention implementation 1447//===----------------------------------------------------------------------===// 1448// StdCall calling convention seems to be standard for many Windows' API 1449// routines and around. It differs from C calling convention just a little: 1450// callee should clean up the stack, not caller. Symbols should be also 1451// decorated in some fancy way :) It doesn't support any vector arguments. 1452// For info on fast calling convention see Fast Calling Convention (tail call) 1453// implementation LowerX86_32FastCCCallTo. 1454 1455/// CallIsStructReturn - Determines whether a call uses struct return 1456/// semantics. 1457static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1458 if (Outs.empty()) 1459 return false; 1460 1461 return Outs[0].Flags.isSRet(); 1462} 1463 1464/// ArgsAreStructReturn - Determines whether a function uses struct 1465/// return semantics. 1466static bool 1467ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) { 1468 if (Ins.empty()) 1469 return false; 1470 1471 return Ins[0].Flags.isSRet(); 1472} 1473 1474/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified 1475/// by "Src" to address "Dst" with size and alignment information specified by 1476/// the specific parameter attribute. The copy will be passed as a byval 1477/// function parameter. 1478static SDValue 1479CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, 1480 ISD::ArgFlagsTy Flags, SelectionDAG &DAG, 1481 DebugLoc dl) { 1482 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); 1483 1484 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), 1485 /*isVolatile*/false, /*AlwaysInline=*/true, 1486 MachinePointerInfo(), MachinePointerInfo()); 1487} 1488 1489/// IsTailCallConvention - Return true if the calling convention is one that 1490/// supports tail call optimization. 1491static bool IsTailCallConvention(CallingConv::ID CC) { 1492 return (CC == CallingConv::Fast || CC == CallingConv::GHC); 1493} 1494 1495/// FuncIsMadeTailCallSafe - Return true if the function is being made into 1496/// a tailcall target by changing its ABI. 1497static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) { 1498 return GuaranteedTailCallOpt && IsTailCallConvention(CC); 1499} 1500 1501SDValue 1502X86TargetLowering::LowerMemArgument(SDValue Chain, 1503 CallingConv::ID CallConv, 1504 const SmallVectorImpl<ISD::InputArg> &Ins, 1505 DebugLoc dl, SelectionDAG &DAG, 1506 const CCValAssign &VA, 1507 MachineFrameInfo *MFI, 1508 unsigned i) const { 1509 // Create the nodes corresponding to a load from this parameter slot. 1510 ISD::ArgFlagsTy Flags = Ins[i].Flags; 1511 bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv); 1512 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); 1513 EVT ValVT; 1514 1515 // If value is passed by pointer we have address passed instead of the value 1516 // itself. 1517 if (VA.getLocInfo() == CCValAssign::Indirect) 1518 ValVT = VA.getLocVT(); 1519 else 1520 ValVT = VA.getValVT(); 1521 1522 // FIXME: For now, all byval parameter objects are marked mutable. This can be 1523 // changed with more analysis. 1524 // In case of tail call optimization mark all arguments mutable. Since they 1525 // could be overwritten by lowering of arguments in case of a tail call. 1526 if (Flags.isByVal()) { 1527 int FI = MFI->CreateFixedObject(Flags.getByValSize(), 1528 VA.getLocMemOffset(), isImmutable); 1529 return DAG.getFrameIndex(FI, getPointerTy()); 1530 } else { 1531 int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, 1532 VA.getLocMemOffset(), isImmutable); 1533 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 1534 return DAG.getLoad(ValVT, dl, Chain, FIN, 1535 MachinePointerInfo::getFixedStack(FI), 1536 false, false, 0); 1537 } 1538} 1539 1540SDValue 1541X86TargetLowering::LowerFormalArguments(SDValue Chain, 1542 CallingConv::ID CallConv, 1543 bool isVarArg, 1544 const SmallVectorImpl<ISD::InputArg> &Ins, 1545 DebugLoc dl, 1546 SelectionDAG &DAG, 1547 SmallVectorImpl<SDValue> &InVals) 1548 const { 1549 MachineFunction &MF = DAG.getMachineFunction(); 1550 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1551 1552 const Function* Fn = MF.getFunction(); 1553 if (Fn->hasExternalLinkage() && 1554 Subtarget->isTargetCygMing() && 1555 Fn->getName() == "main") 1556 FuncInfo->setForceFramePointer(true); 1557 1558 MachineFrameInfo *MFI = MF.getFrameInfo(); 1559 bool Is64Bit = Subtarget->is64Bit(); 1560 bool IsWin64 = Subtarget->isTargetWin64(); 1561 1562 assert(!(isVarArg && IsTailCallConvention(CallConv)) && 1563 "Var args not supported with calling convention fastcc or ghc"); 1564 1565 // Assign locations to all of the incoming arguments. 1566 SmallVector<CCValAssign, 16> ArgLocs; 1567 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), 1568 ArgLocs, *DAG.getContext()); 1569 CCInfo.AnalyzeFormalArguments(Ins, CC_X86); 1570 1571 unsigned LastVal = ~0U; 1572 SDValue ArgValue; 1573 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1574 CCValAssign &VA = ArgLocs[i]; 1575 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later 1576 // places. 1577 assert(VA.getValNo() != LastVal && 1578 "Don't support value assigned to multiple locs yet"); 1579 LastVal = VA.getValNo(); 1580 1581 if (VA.isRegLoc()) { 1582 EVT RegVT = VA.getLocVT(); 1583 TargetRegisterClass *RC = NULL; 1584 if (RegVT == MVT::i32) 1585 RC = X86::GR32RegisterClass; 1586 else if (Is64Bit && RegVT == MVT::i64) 1587 RC = X86::GR64RegisterClass; 1588 else if (RegVT == MVT::f32) 1589 RC = X86::FR32RegisterClass; 1590 else if (RegVT == MVT::f64) 1591 RC = X86::FR64RegisterClass; 1592 else if (RegVT.isVector() && RegVT.getSizeInBits() == 256) 1593 RC = X86::VR256RegisterClass; 1594 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128) 1595 RC = X86::VR128RegisterClass; 1596 else if (RegVT == MVT::x86mmx) 1597 RC = X86::VR64RegisterClass; 1598 else 1599 llvm_unreachable("Unknown argument type!"); 1600 1601 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 1602 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); 1603 1604 // If this is an 8 or 16-bit value, it is really passed promoted to 32 1605 // bits. Insert an assert[sz]ext to capture this, then truncate to the 1606 // right size. 1607 if (VA.getLocInfo() == CCValAssign::SExt) 1608 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, 1609 DAG.getValueType(VA.getValVT())); 1610 else if (VA.getLocInfo() == CCValAssign::ZExt) 1611 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, 1612 DAG.getValueType(VA.getValVT())); 1613 else if (VA.getLocInfo() == CCValAssign::BCvt) 1614 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); 1615 1616 if (VA.isExtInLoc()) { 1617 // Handle MMX values passed in XMM regs. 1618 if (RegVT.isVector()) { 1619 ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), 1620 ArgValue); 1621 } else 1622 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 1623 } 1624 } else { 1625 assert(VA.isMemLoc()); 1626 ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); 1627 } 1628 1629 // If value is passed via pointer - do a load. 1630 if (VA.getLocInfo() == CCValAssign::Indirect) 1631 ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, 1632 MachinePointerInfo(), false, false, 0); 1633 1634 InVals.push_back(ArgValue); 1635 } 1636 1637 // The x86-64 ABI for returning structs by value requires that we copy 1638 // the sret argument into %rax for the return. Save the argument into 1639 // a virtual register so that we can access it from the return points. 1640 if (Is64Bit && MF.getFunction()->hasStructRetAttr()) { 1641 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 1642 unsigned Reg = FuncInfo->getSRetReturnReg(); 1643 if (!Reg) { 1644 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); 1645 FuncInfo->setSRetReturnReg(Reg); 1646 } 1647 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); 1648 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); 1649 } 1650 1651 unsigned StackSize = CCInfo.getNextStackOffset(); 1652 // Align stack specially for tail calls. 1653 if (FuncIsMadeTailCallSafe(CallConv)) 1654 StackSize = GetAlignedArgumentStackSize(StackSize, DAG); 1655 1656 // If the function takes variable number of arguments, make a frame index for 1657 // the start of the first vararg value... for expansion of llvm.va_start. 1658 if (isVarArg) { 1659 if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall && 1660 CallConv != CallingConv::X86_ThisCall))) { 1661 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true)); 1662 } 1663 if (Is64Bit) { 1664 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; 1665 1666 // FIXME: We should really autogenerate these arrays 1667 static const unsigned GPR64ArgRegsWin64[] = { 1668 X86::RCX, X86::RDX, X86::R8, X86::R9 1669 }; 1670 static const unsigned GPR64ArgRegs64Bit[] = { 1671 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 1672 }; 1673 static const unsigned XMMArgRegs64Bit[] = { 1674 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 1675 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 1676 }; 1677 const unsigned *GPR64ArgRegs; 1678 unsigned NumXMMRegs = 0; 1679 1680 if (IsWin64) { 1681 // The XMM registers which might contain var arg parameters are shadowed 1682 // in their paired GPR. So we only need to save the GPR to their home 1683 // slots. 1684 TotalNumIntRegs = 4; 1685 GPR64ArgRegs = GPR64ArgRegsWin64; 1686 } else { 1687 TotalNumIntRegs = 6; TotalNumXMMRegs = 8; 1688 GPR64ArgRegs = GPR64ArgRegs64Bit; 1689 1690 NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs); 1691 } 1692 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 1693 TotalNumIntRegs); 1694 1695 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat); 1696 assert(!(NumXMMRegs && !Subtarget->hasXMM()) && 1697 "SSE register cannot be used when SSE is disabled!"); 1698 assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) && 1699 "SSE register cannot be used when SSE is disabled!"); 1700 if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM()) 1701 // Kernel mode asks for SSE to be disabled, so don't push them 1702 // on the stack. 1703 TotalNumXMMRegs = 0; 1704 1705 if (IsWin64) { 1706 const TargetFrameInfo &TFI = *getTargetMachine().getFrameInfo(); 1707 // Get to the caller-allocated home save location. Add 8 to account 1708 // for the return address. 1709 int HomeOffset = TFI.getOffsetOfLocalArea() + 8; 1710 FuncInfo->setRegSaveFrameIndex( 1711 MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false)); 1712 FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex()); 1713 } else { 1714 // For X86-64, if there are vararg parameters that are passed via 1715 // registers, then we must store them to their spots on the stack so they 1716 // may be loaded by deferencing the result of va_next. 1717 FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); 1718 FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16); 1719 FuncInfo->setRegSaveFrameIndex( 1720 MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16, 1721 false)); 1722 } 1723 1724 // Store the integer parameter registers. 1725 SmallVector<SDValue, 8> MemOps; 1726 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), 1727 getPointerTy()); 1728 unsigned Offset = FuncInfo->getVarArgsGPOffset(); 1729 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { 1730 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, 1731 DAG.getIntPtrConstant(Offset)); 1732 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs], 1733 X86::GR64RegisterClass); 1734 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); 1735 SDValue Store = 1736 DAG.getStore(Val.getValue(1), dl, Val, FIN, 1737 MachinePointerInfo::getFixedStack( 1738 FuncInfo->getRegSaveFrameIndex(), Offset), 1739 false, false, 0); 1740 MemOps.push_back(Store); 1741 Offset += 8; 1742 } 1743 1744 if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) { 1745 // Now store the XMM (fp + vector) parameter registers. 1746 SmallVector<SDValue, 11> SaveXMMOps; 1747 SaveXMMOps.push_back(Chain); 1748 1749 unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass); 1750 SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8); 1751 SaveXMMOps.push_back(ALVal); 1752 1753 SaveXMMOps.push_back(DAG.getIntPtrConstant( 1754 FuncInfo->getRegSaveFrameIndex())); 1755 SaveXMMOps.push_back(DAG.getIntPtrConstant( 1756 FuncInfo->getVarArgsFPOffset())); 1757 1758 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { 1759 unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs], 1760 X86::VR128RegisterClass); 1761 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32); 1762 SaveXMMOps.push_back(Val); 1763 } 1764 MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, 1765 MVT::Other, 1766 &SaveXMMOps[0], SaveXMMOps.size())); 1767 } 1768 1769 if (!MemOps.empty()) 1770 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1771 &MemOps[0], MemOps.size()); 1772 } 1773 } 1774 1775 // Some CCs need callee pop. 1776 if (Subtarget->IsCalleePop(isVarArg, CallConv)) { 1777 FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. 1778 } else { 1779 FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. 1780 // If this is an sret function, the return should pop the hidden pointer. 1781 if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins)) 1782 FuncInfo->setBytesToPopOnReturn(4); 1783 } 1784 1785 if (!Is64Bit) { 1786 // RegSaveFrameIndex is X86-64 only. 1787 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); 1788 if (CallConv == CallingConv::X86_FastCall || 1789 CallConv == CallingConv::X86_ThisCall) 1790 // fastcc functions can't have varargs. 1791 FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); 1792 } 1793 1794 return Chain; 1795} 1796 1797SDValue 1798X86TargetLowering::LowerMemOpCallTo(SDValue Chain, 1799 SDValue StackPtr, SDValue Arg, 1800 DebugLoc dl, SelectionDAG &DAG, 1801 const CCValAssign &VA, 1802 ISD::ArgFlagsTy Flags) const { 1803 const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0); 1804 unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset(); 1805 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); 1806 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); 1807 if (Flags.isByVal()) 1808 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); 1809 1810 return DAG.getStore(Chain, dl, Arg, PtrOff, 1811 MachinePointerInfo::getStack(LocMemOffset), 1812 false, false, 0); 1813} 1814 1815/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call 1816/// optimization is performed and it is required. 1817SDValue 1818X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, 1819 SDValue &OutRetAddr, SDValue Chain, 1820 bool IsTailCall, bool Is64Bit, 1821 int FPDiff, DebugLoc dl) const { 1822 // Adjust the Return address stack slot. 1823 EVT VT = getPointerTy(); 1824 OutRetAddr = getReturnAddressFrameIndex(DAG); 1825 1826 // Load the "old" Return address. 1827 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(), 1828 false, false, 0); 1829 return SDValue(OutRetAddr.getNode(), 1); 1830} 1831 1832/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call 1833/// optimization is performed and it is required (FPDiff!=0). 1834static SDValue 1835EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, 1836 SDValue Chain, SDValue RetAddrFrIdx, 1837 bool Is64Bit, int FPDiff, DebugLoc dl) { 1838 // Store the return address to the appropriate stack slot. 1839 if (!FPDiff) return Chain; 1840 // Calculate the new stack slot for the return address. 1841 int SlotSize = Is64Bit ? 8 : 4; 1842 int NewReturnAddrFI = 1843 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false); 1844 EVT VT = Is64Bit ? MVT::i64 : MVT::i32; 1845 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); 1846 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, 1847 MachinePointerInfo::getFixedStack(NewReturnAddrFI), 1848 false, false, 0); 1849 return Chain; 1850} 1851 1852SDValue 1853X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, 1854 CallingConv::ID CallConv, bool isVarArg, 1855 bool &isTailCall, 1856 const SmallVectorImpl<ISD::OutputArg> &Outs, 1857 const SmallVectorImpl<SDValue> &OutVals, 1858 const SmallVectorImpl<ISD::InputArg> &Ins, 1859 DebugLoc dl, SelectionDAG &DAG, 1860 SmallVectorImpl<SDValue> &InVals) const { 1861 MachineFunction &MF = DAG.getMachineFunction(); 1862 bool Is64Bit = Subtarget->is64Bit(); 1863 bool IsStructRet = CallIsStructReturn(Outs); 1864 bool IsSibcall = false; 1865 1866 if (isTailCall) { 1867 // Check if it's really possible to do a tail call. 1868 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, 1869 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), 1870 Outs, OutVals, Ins, DAG); 1871 1872 // Sibcalls are automatically detected tailcalls which do not require 1873 // ABI changes. 1874 if (!GuaranteedTailCallOpt && isTailCall) 1875 IsSibcall = true; 1876 1877 if (isTailCall) 1878 ++NumTailCalls; 1879 } 1880 1881 assert(!(isVarArg && IsTailCallConvention(CallConv)) && 1882 "Var args not supported with calling convention fastcc or ghc"); 1883 1884 // Analyze operands of the call, assigning locations to each operand. 1885 SmallVector<CCValAssign, 16> ArgLocs; 1886 CCState CCInfo(CallConv, isVarArg, getTargetMachine(), 1887 ArgLocs, *DAG.getContext()); 1888 CCInfo.AnalyzeCallOperands(Outs, CC_X86); 1889 1890 // Get a count of how many bytes are to be pushed on the stack. 1891 unsigned NumBytes = CCInfo.getNextStackOffset(); 1892 if (IsSibcall) 1893 // This is a sibcall. The memory operands are available in caller's 1894 // own caller's stack. 1895 NumBytes = 0; 1896 else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv)) 1897 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); 1898 1899 int FPDiff = 0; 1900 if (isTailCall && !IsSibcall) { 1901 // Lower arguments at fp - stackoffset + fpdiff. 1902 unsigned NumBytesCallerPushed = 1903 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn(); 1904 FPDiff = NumBytesCallerPushed - NumBytes; 1905 1906 // Set the delta of movement of the returnaddr stackslot. 1907 // But only set if delta is greater than previous delta. 1908 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta())) 1909 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff); 1910 } 1911 1912 if (!IsSibcall) 1913 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); 1914 1915 SDValue RetAddrFrIdx; 1916 // Load return adress for tail calls. 1917 if (isTailCall && FPDiff) 1918 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, 1919 Is64Bit, FPDiff, dl); 1920 1921 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 1922 SmallVector<SDValue, 8> MemOpChains; 1923 SDValue StackPtr; 1924 1925 // Walk the register/memloc assignments, inserting copies/loads. In the case 1926 // of tail call optimization arguments are handle later. 1927 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1928 CCValAssign &VA = ArgLocs[i]; 1929 EVT RegVT = VA.getLocVT(); 1930 SDValue Arg = OutVals[i]; 1931 ISD::ArgFlagsTy Flags = Outs[i].Flags; 1932 bool isByVal = Flags.isByVal(); 1933 1934 // Promote the value if needed. 1935 switch (VA.getLocInfo()) { 1936 default: llvm_unreachable("Unknown loc info!"); 1937 case CCValAssign::Full: break; 1938 case CCValAssign::SExt: 1939 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); 1940 break; 1941 case CCValAssign::ZExt: 1942 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); 1943 break; 1944 case CCValAssign::AExt: 1945 if (RegVT.isVector() && RegVT.getSizeInBits() == 128) { 1946 // Special case: passing MMX values in XMM registers. 1947 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); 1948 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); 1949 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); 1950 } else 1951 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); 1952 break; 1953 case CCValAssign::BCvt: 1954 Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg); 1955 break; 1956 case CCValAssign::Indirect: { 1957 // Store the argument. 1958 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 1959 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1960 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot, 1961 MachinePointerInfo::getFixedStack(FI), 1962 false, false, 0); 1963 Arg = SpillSlot; 1964 break; 1965 } 1966 } 1967 1968 if (VA.isRegLoc()) { 1969 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1970 if (isVarArg && Subtarget->isTargetWin64()) { 1971 // Win64 ABI requires argument XMM reg to be copied to the corresponding 1972 // shadow reg if callee is a varargs function. 1973 unsigned ShadowReg = 0; 1974 switch (VA.getLocReg()) { 1975 case X86::XMM0: ShadowReg = X86::RCX; break; 1976 case X86::XMM1: ShadowReg = X86::RDX; break; 1977 case X86::XMM2: ShadowReg = X86::R8; break; 1978 case X86::XMM3: ShadowReg = X86::R9; break; 1979 } 1980 if (ShadowReg) 1981 RegsToPass.push_back(std::make_pair(ShadowReg, Arg)); 1982 } 1983 } else if (!IsSibcall && (!isTailCall || isByVal)) { 1984 assert(VA.isMemLoc()); 1985 if (StackPtr.getNode() == 0) 1986 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy()); 1987 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, 1988 dl, DAG, VA, Flags)); 1989 } 1990 } 1991 1992 if (!MemOpChains.empty()) 1993 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 1994 &MemOpChains[0], MemOpChains.size()); 1995 1996 // Build a sequence of copy-to-reg nodes chained together with token chain 1997 // and flag operands which copy the outgoing args into registers. 1998 SDValue InFlag; 1999 // Tail call byval lowering might overwrite argument registers so in case of 2000 // tail call optimization the copies to registers are lowered later. 2001 if (!isTailCall) 2002 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 2003 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 2004 RegsToPass[i].second, InFlag); 2005 InFlag = Chain.getValue(1); 2006 } 2007 2008 if (Subtarget->isPICStyleGOT()) { 2009 // ELF / PIC requires GOT in the EBX register before function calls via PLT 2010 // GOT pointer. 2011 if (!isTailCall) { 2012 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX, 2013 DAG.getNode(X86ISD::GlobalBaseReg, 2014 DebugLoc(), getPointerTy()), 2015 InFlag); 2016 InFlag = Chain.getValue(1); 2017 } else { 2018 // If we are tail calling and generating PIC/GOT style code load the 2019 // address of the callee into ECX. The value in ecx is used as target of 2020 // the tail jump. This is done to circumvent the ebx/callee-saved problem 2021 // for tail calls on PIC/GOT architectures. Normally we would just put the 2022 // address of GOT into ebx and then call target@PLT. But for tail calls 2023 // ebx would be restored (since ebx is callee saved) before jumping to the 2024 // target@PLT. 2025 2026 // Note: The actual moving to ECX is done further down. 2027 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); 2028 if (G && !G->getGlobal()->hasHiddenVisibility() && 2029 !G->getGlobal()->hasProtectedVisibility()) 2030 Callee = LowerGlobalAddress(Callee, DAG); 2031 else if (isa<ExternalSymbolSDNode>(Callee)) 2032 Callee = LowerExternalSymbol(Callee, DAG); 2033 } 2034 } 2035 2036 if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) { 2037 // From AMD64 ABI document: 2038 // For calls that may call functions that use varargs or stdargs 2039 // (prototype-less calls or calls to functions containing ellipsis (...) in 2040 // the declaration) %al is used as hidden argument to specify the number 2041 // of SSE registers used. The contents of %al do not need to match exactly 2042 // the number of registers, but must be an ubound on the number of SSE 2043 // registers used and is in the range 0 - 8 inclusive. 2044 2045 // Count the number of XMM registers allocated. 2046 static const unsigned XMMArgRegs[] = { 2047 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, 2048 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 2049 }; 2050 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); 2051 assert((Subtarget->hasXMM() || !NumXMMRegs) 2052 && "SSE registers cannot be used when SSE is disabled"); 2053 2054 Chain = DAG.getCopyToReg(Chain, dl, X86::AL, 2055 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); 2056 InFlag = Chain.getValue(1); 2057 } 2058 2059 2060 // For tail calls lower the arguments to the 'real' stack slot. 2061 if (isTailCall) { 2062 // Force all the incoming stack arguments to be loaded from the stack 2063 // before any new outgoing arguments are stored to the stack, because the 2064 // outgoing stack slots may alias the incoming argument stack slots, and 2065 // the alias isn't otherwise explicit. This is slightly more conservative 2066 // than necessary, because it means that each store effectively depends 2067 // on every argument instead of just those arguments it would clobber. 2068 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); 2069 2070 SmallVector<SDValue, 8> MemOpChains2; 2071 SDValue FIN; 2072 int FI = 0; 2073 // Do not flag preceeding copytoreg stuff together with the following stuff. 2074 InFlag = SDValue(); 2075 if (GuaranteedTailCallOpt) { 2076 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2077 CCValAssign &VA = ArgLocs[i]; 2078 if (VA.isRegLoc()) 2079 continue; 2080 assert(VA.isMemLoc()); 2081 SDValue Arg = OutVals[i]; 2082 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2083 // Create frame index. 2084 int32_t Offset = VA.getLocMemOffset()+FPDiff; 2085 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; 2086 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 2087 FIN = DAG.getFrameIndex(FI, getPointerTy()); 2088 2089 if (Flags.isByVal()) { 2090 // Copy relative to framepointer. 2091 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); 2092 if (StackPtr.getNode() == 0) 2093 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, 2094 getPointerTy()); 2095 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source); 2096 2097 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, 2098 ArgChain, 2099 Flags, DAG, dl)); 2100 } else { 2101 // Store relative to framepointer. 2102 MemOpChains2.push_back( 2103 DAG.getStore(ArgChain, dl, Arg, FIN, 2104 MachinePointerInfo::getFixedStack(FI), 2105 false, false, 0)); 2106 } 2107 } 2108 } 2109 2110 if (!MemOpChains2.empty()) 2111 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2112 &MemOpChains2[0], MemOpChains2.size()); 2113 2114 // Copy arguments to their registers. 2115 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 2116 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 2117 RegsToPass[i].second, InFlag); 2118 InFlag = Chain.getValue(1); 2119 } 2120 InFlag =SDValue(); 2121 2122 // Store the return address to the appropriate stack slot. 2123 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit, 2124 FPDiff, dl); 2125 } 2126 2127 if (getTargetMachine().getCodeModel() == CodeModel::Large) { 2128 assert(Is64Bit && "Large code model is only legal in 64-bit mode."); 2129 // In the 64-bit large code model, we have to make all calls 2130 // through a register, since the call instruction's 32-bit 2131 // pc-relative offset may not be large enough to hold the whole 2132 // address. 2133 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2134 // If the callee is a GlobalAddress node (quite common, every direct call 2135 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack 2136 // it. 2137 2138 // We should use extra load for direct calls to dllimported functions in 2139 // non-JIT mode. 2140 const GlobalValue *GV = G->getGlobal(); 2141 if (!GV->hasDLLImportLinkage()) { 2142 unsigned char OpFlags = 0; 2143 2144 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to 2145 // external symbols most go through the PLT in PIC mode. If the symbol 2146 // has hidden or protected visibility, or if it is static or local, then 2147 // we don't need to use the PLT - we can directly call it. 2148 if (Subtarget->isTargetELF() && 2149 getTargetMachine().getRelocationModel() == Reloc::PIC_ && 2150 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { 2151 OpFlags = X86II::MO_PLT; 2152 } else if (Subtarget->isPICStyleStubAny() && 2153 (GV->isDeclaration() || GV->isWeakForLinker()) && 2154 Subtarget->getDarwinVers() < 9) { 2155 // PC-relative references to external symbols should go through $stub, 2156 // unless we're building with the leopard linker or later, which 2157 // automatically synthesizes these stubs. 2158 OpFlags = X86II::MO_DARWIN_STUB; 2159 } 2160 2161 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 2162 G->getOffset(), OpFlags); 2163 } 2164 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 2165 unsigned char OpFlags = 0; 2166 2167 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to 2168 // external symbols should go through the PLT. 2169 if (Subtarget->isTargetELF() && 2170 getTargetMachine().getRelocationModel() == Reloc::PIC_) { 2171 OpFlags = X86II::MO_PLT; 2172 } else if (Subtarget->isPICStyleStubAny() && 2173 Subtarget->getDarwinVers() < 9) { 2174 // PC-relative references to external symbols should go through $stub, 2175 // unless we're building with the leopard linker or later, which 2176 // automatically synthesizes these stubs. 2177 OpFlags = X86II::MO_DARWIN_STUB; 2178 } 2179 2180 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), 2181 OpFlags); 2182 } 2183 2184 // Returns a chain & a flag for retval copy to use. 2185 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2186 SmallVector<SDValue, 8> Ops; 2187 2188 if (!IsSibcall && isTailCall) { 2189 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 2190 DAG.getIntPtrConstant(0, true), InFlag); 2191 InFlag = Chain.getValue(1); 2192 } 2193 2194 Ops.push_back(Chain); 2195 Ops.push_back(Callee); 2196 2197 if (isTailCall) 2198 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); 2199 2200 // Add argument registers to the end of the list so that they are known live 2201 // into the call. 2202 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 2203 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 2204 RegsToPass[i].second.getValueType())); 2205 2206 // Add an implicit use GOT pointer in EBX. 2207 if (!isTailCall && Subtarget->isPICStyleGOT()) 2208 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); 2209 2210 // Add an implicit use of AL for non-Windows x86 64-bit vararg functions. 2211 if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) 2212 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8)); 2213 2214 if (InFlag.getNode()) 2215 Ops.push_back(InFlag); 2216 2217 if (isTailCall) { 2218 // We used to do: 2219 //// If this is the first return lowered for this function, add the regs 2220 //// to the liveout set for the function. 2221 // This isn't right, although it's probably harmless on x86; liveouts 2222 // should be computed from returns not tail calls. Consider a void 2223 // function making a tail call to a function returning int. 2224 return DAG.getNode(X86ISD::TC_RETURN, dl, 2225 NodeTys, &Ops[0], Ops.size()); 2226 } 2227 2228 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); 2229 InFlag = Chain.getValue(1); 2230 2231 // Create the CALLSEQ_END node. 2232 unsigned NumBytesForCalleeToPush; 2233 if (Subtarget->IsCalleePop(isVarArg, CallConv)) 2234 NumBytesForCalleeToPush = NumBytes; // Callee pops everything 2235 else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet) 2236 // If this is a call to a struct-return function, the callee 2237 // pops the hidden struct pointer, so we have to push it back. 2238 // This is common for Darwin/X86, Linux & Mingw32 targets. 2239 NumBytesForCalleeToPush = 4; 2240 else 2241 NumBytesForCalleeToPush = 0; // Callee pops nothing. 2242 2243 // Returns a flag for retval copy to use. 2244 if (!IsSibcall) { 2245 Chain = DAG.getCALLSEQ_END(Chain, 2246 DAG.getIntPtrConstant(NumBytes, true), 2247 DAG.getIntPtrConstant(NumBytesForCalleeToPush, 2248 true), 2249 InFlag); 2250 InFlag = Chain.getValue(1); 2251 } 2252 2253 // Handle result values, copying them out of physregs into vregs that we 2254 // return. 2255 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, 2256 Ins, dl, DAG, InVals); 2257} 2258 2259 2260//===----------------------------------------------------------------------===// 2261// Fast Calling Convention (tail call) implementation 2262//===----------------------------------------------------------------------===// 2263 2264// Like std call, callee cleans arguments, convention except that ECX is 2265// reserved for storing the tail called function address. Only 2 registers are 2266// free for argument passing (inreg). Tail call optimization is performed 2267// provided: 2268// * tailcallopt is enabled 2269// * caller/callee are fastcc 2270// On X86_64 architecture with GOT-style position independent code only local 2271// (within module) calls are supported at the moment. 2272// To keep the stack aligned according to platform abi the function 2273// GetAlignedArgumentStackSize ensures that argument delta is always multiples 2274// of stack alignment. (Dynamic linkers need this - darwin's dyld for example) 2275// If a tail called function callee has more arguments than the caller the 2276// caller needs to make sure that there is room to move the RETADDR to. This is 2277// achieved by reserving an area the size of the argument delta right after the 2278// original REtADDR, but before the saved framepointer or the spilled registers 2279// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) 2280// stack layout: 2281// arg1 2282// arg2 2283// RETADDR 2284// [ new RETADDR 2285// move area ] 2286// (possible EBP) 2287// ESI 2288// EDI 2289// local1 .. 2290 2291/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned 2292/// for a 16 byte align requirement. 2293unsigned 2294X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, 2295 SelectionDAG& DAG) const { 2296 MachineFunction &MF = DAG.getMachineFunction(); 2297 const TargetMachine &TM = MF.getTarget(); 2298 const TargetFrameInfo &TFI = *TM.getFrameInfo(); 2299 unsigned StackAlignment = TFI.getStackAlignment(); 2300 uint64_t AlignMask = StackAlignment - 1; 2301 int64_t Offset = StackSize; 2302 uint64_t SlotSize = TD->getPointerSize(); 2303 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { 2304 // Number smaller than 12 so just add the difference. 2305 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); 2306 } else { 2307 // Mask out lower bits, add stackalignment once plus the 12 bytes. 2308 Offset = ((~AlignMask) & Offset) + StackAlignment + 2309 (StackAlignment-SlotSize); 2310 } 2311 return Offset; 2312} 2313 2314/// MatchingStackOffset - Return true if the given stack call argument is 2315/// already available in the same position (relatively) of the caller's 2316/// incoming argument stack. 2317static 2318bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, 2319 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, 2320 const X86InstrInfo *TII) { 2321 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; 2322 int FI = INT_MAX; 2323 if (Arg.getOpcode() == ISD::CopyFromReg) { 2324 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); 2325 if (!VR || TargetRegisterInfo::isPhysicalRegister(VR)) 2326 return false; 2327 MachineInstr *Def = MRI->getVRegDef(VR); 2328 if (!Def) 2329 return false; 2330 if (!Flags.isByVal()) { 2331 if (!TII->isLoadFromStackSlot(Def, FI)) 2332 return false; 2333 } else { 2334 unsigned Opcode = Def->getOpcode(); 2335 if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) && 2336 Def->getOperand(1).isFI()) { 2337 FI = Def->getOperand(1).getIndex(); 2338 Bytes = Flags.getByValSize(); 2339 } else 2340 return false; 2341 } 2342 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { 2343 if (Flags.isByVal()) 2344 // ByVal argument is passed in as a pointer but it's now being 2345 // dereferenced. e.g. 2346 // define @foo(%struct.X* %A) { 2347 // tail call @bar(%struct.X* byval %A) 2348 // } 2349 return false; 2350 SDValue Ptr = Ld->getBasePtr(); 2351 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); 2352 if (!FINode) 2353 return false; 2354 FI = FINode->getIndex(); 2355 } else 2356 return false; 2357 2358 assert(FI != INT_MAX); 2359 if (!MFI->isFixedObjectIndex(FI)) 2360 return false; 2361 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); 2362} 2363 2364/// IsEligibleForTailCallOptimization - Check whether the call is eligible 2365/// for tail call optimization. Targets which want to do tail call 2366/// optimization should implement this function. 2367bool 2368X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2369 CallingConv::ID CalleeCC, 2370 bool isVarArg, 2371 bool isCalleeStructRet, 2372 bool isCallerStructRet, 2373 const SmallVectorImpl<ISD::OutputArg> &Outs, 2374 const SmallVectorImpl<SDValue> &OutVals, 2375 const SmallVectorImpl<ISD::InputArg> &Ins, 2376 SelectionDAG& DAG) const { 2377 if (!IsTailCallConvention(CalleeCC) && 2378 CalleeCC != CallingConv::C) 2379 return false; 2380 2381 // If -tailcallopt is specified, make fastcc functions tail-callable. 2382 const MachineFunction &MF = DAG.getMachineFunction(); 2383 const Function *CallerF = DAG.getMachineFunction().getFunction(); 2384 CallingConv::ID CallerCC = CallerF->getCallingConv(); 2385 bool CCMatch = CallerCC == CalleeCC; 2386 2387 if (GuaranteedTailCallOpt) { 2388 if (IsTailCallConvention(CalleeCC) && CCMatch) 2389 return true; 2390 return false; 2391 } 2392 2393 // Look for obvious safe cases to perform tail call optimization that do not 2394 // require ABI changes. This is what gcc calls sibcall. 2395 2396 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to 2397 // emit a special epilogue. 2398 if (RegInfo->needsStackRealignment(MF)) 2399 return false; 2400 2401 // Do not sibcall optimize vararg calls unless the call site is not passing 2402 // any arguments. 2403 if (isVarArg && !Outs.empty()) 2404 return false; 2405 2406 // Also avoid sibcall optimization if either caller or callee uses struct 2407 // return semantics. 2408 if (isCalleeStructRet || isCallerStructRet) 2409 return false; 2410 2411 // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack. 2412 // Therefore if it's not used by the call it is not safe to optimize this into 2413 // a sibcall. 2414 bool Unused = false; 2415 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 2416 if (!Ins[i].Used) { 2417 Unused = true; 2418 break; 2419 } 2420 } 2421 if (Unused) { 2422 SmallVector<CCValAssign, 16> RVLocs; 2423 CCState CCInfo(CalleeCC, false, getTargetMachine(), 2424 RVLocs, *DAG.getContext()); 2425 CCInfo.AnalyzeCallResult(Ins, RetCC_X86); 2426 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 2427 CCValAssign &VA = RVLocs[i]; 2428 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) 2429 return false; 2430 } 2431 } 2432 2433 // If the calling conventions do not match, then we'd better make sure the 2434 // results are returned in the same way as what the caller expects. 2435 if (!CCMatch) { 2436 SmallVector<CCValAssign, 16> RVLocs1; 2437 CCState CCInfo1(CalleeCC, false, getTargetMachine(), 2438 RVLocs1, *DAG.getContext()); 2439 CCInfo1.AnalyzeCallResult(Ins, RetCC_X86); 2440 2441 SmallVector<CCValAssign, 16> RVLocs2; 2442 CCState CCInfo2(CallerCC, false, getTargetMachine(), 2443 RVLocs2, *DAG.getContext()); 2444 CCInfo2.AnalyzeCallResult(Ins, RetCC_X86); 2445 2446 if (RVLocs1.size() != RVLocs2.size()) 2447 return false; 2448 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { 2449 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) 2450 return false; 2451 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) 2452 return false; 2453 if (RVLocs1[i].isRegLoc()) { 2454 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) 2455 return false; 2456 } else { 2457 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) 2458 return false; 2459 } 2460 } 2461 } 2462 2463 // If the callee takes no arguments then go on to check the results of the 2464 // call. 2465 if (!Outs.empty()) { 2466 // Check if stack adjustment is needed. For now, do not do this if any 2467 // argument is passed on the stack. 2468 SmallVector<CCValAssign, 16> ArgLocs; 2469 CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(), 2470 ArgLocs, *DAG.getContext()); 2471 CCInfo.AnalyzeCallOperands(Outs, CC_X86); 2472 if (CCInfo.getNextStackOffset()) { 2473 MachineFunction &MF = DAG.getMachineFunction(); 2474 if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) 2475 return false; 2476 if (Subtarget->isTargetWin64()) 2477 // Win64 ABI has additional complications. 2478 return false; 2479 2480 // Check if the arguments are already laid out in the right way as 2481 // the caller's fixed stack objects. 2482 MachineFrameInfo *MFI = MF.getFrameInfo(); 2483 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 2484 const X86InstrInfo *TII = 2485 ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); 2486 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2487 CCValAssign &VA = ArgLocs[i]; 2488 SDValue Arg = OutVals[i]; 2489 ISD::ArgFlagsTy Flags = Outs[i].Flags; 2490 if (VA.getLocInfo() == CCValAssign::Indirect) 2491 return false; 2492 if (!VA.isRegLoc()) { 2493 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, 2494 MFI, MRI, TII)) 2495 return false; 2496 } 2497 } 2498 } 2499 2500 // If the tailcall address may be in a register, then make sure it's 2501 // possible to register allocate for it. In 32-bit, the call address can 2502 // only target EAX, EDX, or ECX since the tail call must be scheduled after 2503 // callee-saved registers are restored. These happen to be the same 2504 // registers used to pass 'inreg' arguments so watch out for those. 2505 if (!Subtarget->is64Bit() && 2506 !isa<GlobalAddressSDNode>(Callee) && 2507 !isa<ExternalSymbolSDNode>(Callee)) { 2508 unsigned NumInRegs = 0; 2509 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 2510 CCValAssign &VA = ArgLocs[i]; 2511 if (!VA.isRegLoc()) 2512 continue; 2513 unsigned Reg = VA.getLocReg(); 2514 switch (Reg) { 2515 default: break; 2516 case X86::EAX: case X86::EDX: case X86::ECX: 2517 if (++NumInRegs == 3) 2518 return false; 2519 break; 2520 } 2521 } 2522 } 2523 } 2524 2525 // An stdcall caller is expected to clean up its arguments; the callee 2526 // isn't going to do that. 2527 if (!CCMatch && CallerCC==CallingConv::X86_StdCall) 2528 return false; 2529 2530 return true; 2531} 2532 2533FastISel * 2534X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const { 2535 return X86::createFastISel(funcInfo); 2536} 2537 2538 2539//===----------------------------------------------------------------------===// 2540// Other Lowering Hooks 2541//===----------------------------------------------------------------------===// 2542 2543static bool MayFoldLoad(SDValue Op) { 2544 return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); 2545} 2546 2547static bool MayFoldIntoStore(SDValue Op) { 2548 return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); 2549} 2550 2551static bool isTargetShuffle(unsigned Opcode) { 2552 switch(Opcode) { 2553 default: return false; 2554 case X86ISD::PSHUFD: 2555 case X86ISD::PSHUFHW: 2556 case X86ISD::PSHUFLW: 2557 case X86ISD::SHUFPD: 2558 case X86ISD::PALIGN: 2559 case X86ISD::SHUFPS: 2560 case X86ISD::MOVLHPS: 2561 case X86ISD::MOVLHPD: 2562 case X86ISD::MOVHLPS: 2563 case X86ISD::MOVLPS: 2564 case X86ISD::MOVLPD: 2565 case X86ISD::MOVSHDUP: 2566 case X86ISD::MOVSLDUP: 2567 case X86ISD::MOVDDUP: 2568 case X86ISD::MOVSS: 2569 case X86ISD::MOVSD: 2570 case X86ISD::UNPCKLPS: 2571 case X86ISD::UNPCKLPD: 2572 case X86ISD::PUNPCKLWD: 2573 case X86ISD::PUNPCKLBW: 2574 case X86ISD::PUNPCKLDQ: 2575 case X86ISD::PUNPCKLQDQ: 2576 case X86ISD::UNPCKHPS: 2577 case X86ISD::UNPCKHPD: 2578 case X86ISD::PUNPCKHWD: 2579 case X86ISD::PUNPCKHBW: 2580 case X86ISD::PUNPCKHDQ: 2581 case X86ISD::PUNPCKHQDQ: 2582 return true; 2583 } 2584 return false; 2585} 2586 2587static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, 2588 SDValue V1, SelectionDAG &DAG) { 2589 switch(Opc) { 2590 default: llvm_unreachable("Unknown x86 shuffle node"); 2591 case X86ISD::MOVSHDUP: 2592 case X86ISD::MOVSLDUP: 2593 case X86ISD::MOVDDUP: 2594 return DAG.getNode(Opc, dl, VT, V1); 2595 } 2596 2597 return SDValue(); 2598} 2599 2600static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, 2601 SDValue V1, unsigned TargetMask, SelectionDAG &DAG) { 2602 switch(Opc) { 2603 default: llvm_unreachable("Unknown x86 shuffle node"); 2604 case X86ISD::PSHUFD: 2605 case X86ISD::PSHUFHW: 2606 case X86ISD::PSHUFLW: 2607 return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8)); 2608 } 2609 2610 return SDValue(); 2611} 2612 2613static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, 2614 SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) { 2615 switch(Opc) { 2616 default: llvm_unreachable("Unknown x86 shuffle node"); 2617 case X86ISD::PALIGN: 2618 case X86ISD::SHUFPD: 2619 case X86ISD::SHUFPS: 2620 return DAG.getNode(Opc, dl, VT, V1, V2, 2621 DAG.getConstant(TargetMask, MVT::i8)); 2622 } 2623 return SDValue(); 2624} 2625 2626static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT, 2627 SDValue V1, SDValue V2, SelectionDAG &DAG) { 2628 switch(Opc) { 2629 default: llvm_unreachable("Unknown x86 shuffle node"); 2630 case X86ISD::MOVLHPS: 2631 case X86ISD::MOVLHPD: 2632 case X86ISD::MOVHLPS: 2633 case X86ISD::MOVLPS: 2634 case X86ISD::MOVLPD: 2635 case X86ISD::MOVSS: 2636 case X86ISD::MOVSD: 2637 case X86ISD::UNPCKLPS: 2638 case X86ISD::UNPCKLPD: 2639 case X86ISD::PUNPCKLWD: 2640 case X86ISD::PUNPCKLBW: 2641 case X86ISD::PUNPCKLDQ: 2642 case X86ISD::PUNPCKLQDQ: 2643 case X86ISD::UNPCKHPS: 2644 case X86ISD::UNPCKHPD: 2645 case X86ISD::PUNPCKHWD: 2646 case X86ISD::PUNPCKHBW: 2647 case X86ISD::PUNPCKHDQ: 2648 case X86ISD::PUNPCKHQDQ: 2649 return DAG.getNode(Opc, dl, VT, V1, V2); 2650 } 2651 return SDValue(); 2652} 2653 2654SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { 2655 MachineFunction &MF = DAG.getMachineFunction(); 2656 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 2657 int ReturnAddrIndex = FuncInfo->getRAIndex(); 2658 2659 if (ReturnAddrIndex == 0) { 2660 // Set up a frame object for the return address. 2661 uint64_t SlotSize = TD->getPointerSize(); 2662 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, 2663 false); 2664 FuncInfo->setRAIndex(ReturnAddrIndex); 2665 } 2666 2667 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); 2668} 2669 2670 2671bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, 2672 bool hasSymbolicDisplacement) { 2673 // Offset should fit into 32 bit immediate field. 2674 if (!isInt<32>(Offset)) 2675 return false; 2676 2677 // If we don't have a symbolic displacement - we don't have any extra 2678 // restrictions. 2679 if (!hasSymbolicDisplacement) 2680 return true; 2681 2682 // FIXME: Some tweaks might be needed for medium code model. 2683 if (M != CodeModel::Small && M != CodeModel::Kernel) 2684 return false; 2685 2686 // For small code model we assume that latest object is 16MB before end of 31 2687 // bits boundary. We may also accept pretty large negative constants knowing 2688 // that all objects are in the positive half of address space. 2689 if (M == CodeModel::Small && Offset < 16*1024*1024) 2690 return true; 2691 2692 // For kernel code model we know that all object resist in the negative half 2693 // of 32bits address space. We may not accept negative offsets, since they may 2694 // be just off and we may accept pretty large positive ones. 2695 if (M == CodeModel::Kernel && Offset > 0) 2696 return true; 2697 2698 return false; 2699} 2700 2701/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86 2702/// specific condition code, returning the condition code and the LHS/RHS of the 2703/// comparison to make. 2704static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP, 2705 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { 2706 if (!isFP) { 2707 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 2708 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { 2709 // X > -1 -> X == 0, jump !sign. 2710 RHS = DAG.getConstant(0, RHS.getValueType()); 2711 return X86::COND_NS; 2712 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { 2713 // X < 0 -> X == 0, jump on sign. 2714 return X86::COND_S; 2715 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { 2716 // X < 1 -> X <= 0 2717 RHS = DAG.getConstant(0, RHS.getValueType()); 2718 return X86::COND_LE; 2719 } 2720 } 2721 2722 switch (SetCCOpcode) { 2723 default: llvm_unreachable("Invalid integer condition!"); 2724 case ISD::SETEQ: return X86::COND_E; 2725 case ISD::SETGT: return X86::COND_G; 2726 case ISD::SETGE: return X86::COND_GE; 2727 case ISD::SETLT: return X86::COND_L; 2728 case ISD::SETLE: return X86::COND_LE; 2729 case ISD::SETNE: return X86::COND_NE; 2730 case ISD::SETULT: return X86::COND_B; 2731 case ISD::SETUGT: return X86::COND_A; 2732 case ISD::SETULE: return X86::COND_BE; 2733 case ISD::SETUGE: return X86::COND_AE; 2734 } 2735 } 2736 2737 // First determine if it is required or is profitable to flip the operands. 2738 2739 // If LHS is a foldable load, but RHS is not, flip the condition. 2740 if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) && 2741 !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) { 2742 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); 2743 std::swap(LHS, RHS); 2744 } 2745 2746 switch (SetCCOpcode) { 2747 default: break; 2748 case ISD::SETOLT: 2749 case ISD::SETOLE: 2750 case ISD::SETUGT: 2751 case ISD::SETUGE: 2752 std::swap(LHS, RHS); 2753 break; 2754 } 2755 2756 // On a floating point condition, the flags are set as follows: 2757 // ZF PF CF op 2758 // 0 | 0 | 0 | X > Y 2759 // 0 | 0 | 1 | X < Y 2760 // 1 | 0 | 0 | X == Y 2761 // 1 | 1 | 1 | unordered 2762 switch (SetCCOpcode) { 2763 default: llvm_unreachable("Condcode should be pre-legalized away"); 2764 case ISD::SETUEQ: 2765 case ISD::SETEQ: return X86::COND_E; 2766 case ISD::SETOLT: // flipped 2767 case ISD::SETOGT: 2768 case ISD::SETGT: return X86::COND_A; 2769 case ISD::SETOLE: // flipped 2770 case ISD::SETOGE: 2771 case ISD::SETGE: return X86::COND_AE; 2772 case ISD::SETUGT: // flipped 2773 case ISD::SETULT: 2774 case ISD::SETLT: return X86::COND_B; 2775 case ISD::SETUGE: // flipped 2776 case ISD::SETULE: 2777 case ISD::SETLE: return X86::COND_BE; 2778 case ISD::SETONE: 2779 case ISD::SETNE: return X86::COND_NE; 2780 case ISD::SETUO: return X86::COND_P; 2781 case ISD::SETO: return X86::COND_NP; 2782 case ISD::SETOEQ: 2783 case ISD::SETUNE: return X86::COND_INVALID; 2784 } 2785} 2786 2787/// hasFPCMov - is there a floating point cmov for the specific X86 condition 2788/// code. Current x86 isa includes the following FP cmov instructions: 2789/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. 2790static bool hasFPCMov(unsigned X86CC) { 2791 switch (X86CC) { 2792 default: 2793 return false; 2794 case X86::COND_B: 2795 case X86::COND_BE: 2796 case X86::COND_E: 2797 case X86::COND_P: 2798 case X86::COND_A: 2799 case X86::COND_AE: 2800 case X86::COND_NE: 2801 case X86::COND_NP: 2802 return true; 2803 } 2804} 2805 2806/// isFPImmLegal - Returns true if the target can instruction select the 2807/// specified FP immediate natively. If false, the legalizer will 2808/// materialize the FP immediate as a load from a constant pool. 2809bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 2810 for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { 2811 if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) 2812 return true; 2813 } 2814 return false; 2815} 2816 2817/// isUndefOrInRange - Return true if Val is undef or if its value falls within 2818/// the specified range (L, H]. 2819static bool isUndefOrInRange(int Val, int Low, int Hi) { 2820 return (Val < 0) || (Val >= Low && Val < Hi); 2821} 2822 2823/// isUndefOrEqual - Val is either less than zero (undef) or equal to the 2824/// specified value. 2825static bool isUndefOrEqual(int Val, int CmpVal) { 2826 if (Val < 0 || Val == CmpVal) 2827 return true; 2828 return false; 2829} 2830 2831/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that 2832/// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference 2833/// the second operand. 2834static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) { 2835 if (VT == MVT::v4f32 || VT == MVT::v4i32 ) 2836 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4); 2837 if (VT == MVT::v2f64 || VT == MVT::v2i64) 2838 return (Mask[0] < 2 && Mask[1] < 2); 2839 return false; 2840} 2841 2842bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) { 2843 SmallVector<int, 8> M; 2844 N->getMask(M); 2845 return ::isPSHUFDMask(M, N->getValueType(0)); 2846} 2847 2848/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that 2849/// is suitable for input to PSHUFHW. 2850static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) { 2851 if (VT != MVT::v8i16) 2852 return false; 2853 2854 // Lower quadword copied in order or undef. 2855 for (int i = 0; i != 4; ++i) 2856 if (Mask[i] >= 0 && Mask[i] != i) 2857 return false; 2858 2859 // Upper quadword shuffled. 2860 for (int i = 4; i != 8; ++i) 2861 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7)) 2862 return false; 2863 2864 return true; 2865} 2866 2867bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) { 2868 SmallVector<int, 8> M; 2869 N->getMask(M); 2870 return ::isPSHUFHWMask(M, N->getValueType(0)); 2871} 2872 2873/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that 2874/// is suitable for input to PSHUFLW. 2875static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) { 2876 if (VT != MVT::v8i16) 2877 return false; 2878 2879 // Upper quadword copied in order. 2880 for (int i = 4; i != 8; ++i) 2881 if (Mask[i] >= 0 && Mask[i] != i) 2882 return false; 2883 2884 // Lower quadword shuffled. 2885 for (int i = 0; i != 4; ++i) 2886 if (Mask[i] >= 4) 2887 return false; 2888 2889 return true; 2890} 2891 2892bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) { 2893 SmallVector<int, 8> M; 2894 N->getMask(M); 2895 return ::isPSHUFLWMask(M, N->getValueType(0)); 2896} 2897 2898/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that 2899/// is suitable for input to PALIGNR. 2900static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT, 2901 bool hasSSSE3) { 2902 int i, e = VT.getVectorNumElements(); 2903 2904 // Do not handle v2i64 / v2f64 shuffles with palignr. 2905 if (e < 4 || !hasSSSE3) 2906 return false; 2907 2908 for (i = 0; i != e; ++i) 2909 if (Mask[i] >= 0) 2910 break; 2911 2912 // All undef, not a palignr. 2913 if (i == e) 2914 return false; 2915 2916 // Determine if it's ok to perform a palignr with only the LHS, since we 2917 // don't have access to the actual shuffle elements to see if RHS is undef. 2918 bool Unary = Mask[i] < (int)e; 2919 bool NeedsUnary = false; 2920 2921 int s = Mask[i] - i; 2922 2923 // Check the rest of the elements to see if they are consecutive. 2924 for (++i; i != e; ++i) { 2925 int m = Mask[i]; 2926 if (m < 0) 2927 continue; 2928 2929 Unary = Unary && (m < (int)e); 2930 NeedsUnary = NeedsUnary || (m < s); 2931 2932 if (NeedsUnary && !Unary) 2933 return false; 2934 if (Unary && m != ((s+i) & (e-1))) 2935 return false; 2936 if (!Unary && m != (s+i)) 2937 return false; 2938 } 2939 return true; 2940} 2941 2942bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) { 2943 SmallVector<int, 8> M; 2944 N->getMask(M); 2945 return ::isPALIGNRMask(M, N->getValueType(0), true); 2946} 2947 2948/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand 2949/// specifies a shuffle of elements that is suitable for input to SHUFP*. 2950static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) { 2951 int NumElems = VT.getVectorNumElements(); 2952 if (NumElems != 2 && NumElems != 4) 2953 return false; 2954 2955 int Half = NumElems / 2; 2956 for (int i = 0; i < Half; ++i) 2957 if (!isUndefOrInRange(Mask[i], 0, NumElems)) 2958 return false; 2959 for (int i = Half; i < NumElems; ++i) 2960 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) 2961 return false; 2962 2963 return true; 2964} 2965 2966bool X86::isSHUFPMask(ShuffleVectorSDNode *N) { 2967 SmallVector<int, 8> M; 2968 N->getMask(M); 2969 return ::isSHUFPMask(M, N->getValueType(0)); 2970} 2971 2972/// isCommutedSHUFP - Returns true if the shuffle mask is exactly 2973/// the reverse of what x86 shuffles want. x86 shuffles requires the lower 2974/// half elements to come from vector 1 (which would equal the dest.) and 2975/// the upper half to come from vector 2. 2976static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) { 2977 int NumElems = VT.getVectorNumElements(); 2978 2979 if (NumElems != 2 && NumElems != 4) 2980 return false; 2981 2982 int Half = NumElems / 2; 2983 for (int i = 0; i < Half; ++i) 2984 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) 2985 return false; 2986 for (int i = Half; i < NumElems; ++i) 2987 if (!isUndefOrInRange(Mask[i], 0, NumElems)) 2988 return false; 2989 return true; 2990} 2991 2992static bool isCommutedSHUFP(ShuffleVectorSDNode *N) { 2993 SmallVector<int, 8> M; 2994 N->getMask(M); 2995 return isCommutedSHUFPMask(M, N->getValueType(0)); 2996} 2997 2998/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand 2999/// specifies a shuffle of elements that is suitable for input to MOVHLPS. 3000bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) { 3001 if (N->getValueType(0).getVectorNumElements() != 4) 3002 return false; 3003 3004 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 3005 return isUndefOrEqual(N->getMaskElt(0), 6) && 3006 isUndefOrEqual(N->getMaskElt(1), 7) && 3007 isUndefOrEqual(N->getMaskElt(2), 2) && 3008 isUndefOrEqual(N->getMaskElt(3), 3); 3009} 3010 3011/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form 3012/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, 3013/// <2, 3, 2, 3> 3014bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) { 3015 unsigned NumElems = N->getValueType(0).getVectorNumElements(); 3016 3017 if (NumElems != 4) 3018 return false; 3019 3020 return isUndefOrEqual(N->getMaskElt(0), 2) && 3021 isUndefOrEqual(N->getMaskElt(1), 3) && 3022 isUndefOrEqual(N->getMaskElt(2), 2) && 3023 isUndefOrEqual(N->getMaskElt(3), 3); 3024} 3025 3026/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand 3027/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. 3028bool X86::isMOVLPMask(ShuffleVectorSDNode *N) { 3029 unsigned NumElems = N->getValueType(0).getVectorNumElements(); 3030 3031 if (NumElems != 2 && NumElems != 4) 3032 return false; 3033 3034 for (unsigned i = 0; i < NumElems/2; ++i) 3035 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems)) 3036 return false; 3037 3038 for (unsigned i = NumElems/2; i < NumElems; ++i) 3039 if (!isUndefOrEqual(N->getMaskElt(i), i)) 3040 return false; 3041 3042 return true; 3043} 3044 3045/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand 3046/// specifies a shuffle of elements that is suitable for input to MOVLHPS. 3047bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) { 3048 unsigned NumElems = N->getValueType(0).getVectorNumElements(); 3049 3050 if (NumElems != 2 && NumElems != 4) 3051 return false; 3052 3053 for (unsigned i = 0; i < NumElems/2; ++i) 3054 if (!isUndefOrEqual(N->getMaskElt(i), i)) 3055 return false; 3056 3057 for (unsigned i = 0; i < NumElems/2; ++i) 3058 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems)) 3059 return false; 3060 3061 return true; 3062} 3063 3064/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand 3065/// specifies a shuffle of elements that is suitable for input to UNPCKL. 3066static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT, 3067 bool V2IsSplat = false) { 3068 int NumElts = VT.getVectorNumElements(); 3069 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 3070 return false; 3071 3072 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { 3073 int BitI = Mask[i]; 3074 int BitI1 = Mask[i+1]; 3075 if (!isUndefOrEqual(BitI, j)) 3076 return false; 3077 if (V2IsSplat) { 3078 if (!isUndefOrEqual(BitI1, NumElts)) 3079 return false; 3080 } else { 3081 if (!isUndefOrEqual(BitI1, j + NumElts)) 3082 return false; 3083 } 3084 } 3085 return true; 3086} 3087 3088bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) { 3089 SmallVector<int, 8> M; 3090 N->getMask(M); 3091 return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat); 3092} 3093 3094/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand 3095/// specifies a shuffle of elements that is suitable for input to UNPCKH. 3096static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT, 3097 bool V2IsSplat = false) { 3098 int NumElts = VT.getVectorNumElements(); 3099 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) 3100 return false; 3101 3102 for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { 3103 int BitI = Mask[i]; 3104 int BitI1 = Mask[i+1]; 3105 if (!isUndefOrEqual(BitI, j + NumElts/2)) 3106 return false; 3107 if (V2IsSplat) { 3108 if (isUndefOrEqual(BitI1, NumElts)) 3109 return false; 3110 } else { 3111 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) 3112 return false; 3113 } 3114 } 3115 return true; 3116} 3117 3118bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) { 3119 SmallVector<int, 8> M; 3120 N->getMask(M); 3121 return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat); 3122} 3123 3124/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form 3125/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, 3126/// <0, 0, 1, 1> 3127static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) { 3128 int NumElems = VT.getVectorNumElements(); 3129 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) 3130 return false; 3131 3132 for (int i = 0, j = 0; i != NumElems; i += 2, ++j) { 3133 int BitI = Mask[i]; 3134 int BitI1 = Mask[i+1]; 3135 if (!isUndefOrEqual(BitI, j)) 3136 return false; 3137 if (!isUndefOrEqual(BitI1, j)) 3138 return false; 3139 } 3140 return true; 3141} 3142 3143bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) { 3144 SmallVector<int, 8> M; 3145 N->getMask(M); 3146 return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0)); 3147} 3148 3149/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form 3150/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, 3151/// <2, 2, 3, 3> 3152static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) { 3153 int NumElems = VT.getVectorNumElements(); 3154 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) 3155 return false; 3156 3157 for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { 3158 int BitI = Mask[i]; 3159 int BitI1 = Mask[i+1]; 3160 if (!isUndefOrEqual(BitI, j)) 3161 return false; 3162 if (!isUndefOrEqual(BitI1, j)) 3163 return false; 3164 } 3165 return true; 3166} 3167 3168bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) { 3169 SmallVector<int, 8> M; 3170 N->getMask(M); 3171 return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0)); 3172} 3173 3174/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand 3175/// specifies a shuffle of elements that is suitable for input to MOVSS, 3176/// MOVSD, and MOVD, i.e. setting the lowest element. 3177static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) { 3178 if (VT.getVectorElementType().getSizeInBits() < 32) 3179 return false; 3180 3181 int NumElts = VT.getVectorNumElements(); 3182 3183 if (!isUndefOrEqual(Mask[0], NumElts)) 3184 return false; 3185 3186 for (int i = 1; i < NumElts; ++i) 3187 if (!isUndefOrEqual(Mask[i], i)) 3188 return false; 3189 3190 return true; 3191} 3192 3193bool X86::isMOVLMask(ShuffleVectorSDNode *N) { 3194 SmallVector<int, 8> M; 3195 N->getMask(M); 3196 return ::isMOVLMask(M, N->getValueType(0)); 3197} 3198 3199/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse 3200/// of what x86 movss want. X86 movs requires the lowest element to be lowest 3201/// element of vector 2 and the other elements to come from vector 1 in order. 3202static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT, 3203 bool V2IsSplat = false, bool V2IsUndef = false) { 3204 int NumOps = VT.getVectorNumElements(); 3205 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) 3206 return false; 3207 3208 if (!isUndefOrEqual(Mask[0], 0)) 3209 return false; 3210 3211 for (int i = 1; i < NumOps; ++i) 3212 if (!(isUndefOrEqual(Mask[i], i+NumOps) || 3213 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) || 3214 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps)))) 3215 return false; 3216 3217 return true; 3218} 3219 3220static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false, 3221 bool V2IsUndef = false) { 3222 SmallVector<int, 8> M; 3223 N->getMask(M); 3224 return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef); 3225} 3226 3227/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand 3228/// specifies a shuffle of elements that is suitable for input to MOVSHDUP. 3229bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) { 3230 if (N->getValueType(0).getVectorNumElements() != 4) 3231 return false; 3232 3233 // Expect 1, 1, 3, 3 3234 for (unsigned i = 0; i < 2; ++i) { 3235 int Elt = N->getMaskElt(i); 3236 if (Elt >= 0 && Elt != 1) 3237 return false; 3238 } 3239 3240 bool HasHi = false; 3241 for (unsigned i = 2; i < 4; ++i) { 3242 int Elt = N->getMaskElt(i); 3243 if (Elt >= 0 && Elt != 3) 3244 return false; 3245 if (Elt == 3) 3246 HasHi = true; 3247 } 3248 // Don't use movshdup if it can be done with a shufps. 3249 // FIXME: verify that matching u, u, 3, 3 is what we want. 3250 return HasHi; 3251} 3252 3253/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand 3254/// specifies a shuffle of elements that is suitable for input to MOVSLDUP. 3255bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) { 3256 if (N->getValueType(0).getVectorNumElements() != 4) 3257 return false; 3258 3259 // Expect 0, 0, 2, 2 3260 for (unsigned i = 0; i < 2; ++i) 3261 if (N->getMaskElt(i) > 0) 3262 return false; 3263 3264 bool HasHi = false; 3265 for (unsigned i = 2; i < 4; ++i) { 3266 int Elt = N->getMaskElt(i); 3267 if (Elt >= 0 && Elt != 2) 3268 return false; 3269 if (Elt == 2) 3270 HasHi = true; 3271 } 3272 // Don't use movsldup if it can be done with a shufps. 3273 return HasHi; 3274} 3275 3276/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand 3277/// specifies a shuffle of elements that is suitable for input to MOVDDUP. 3278bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) { 3279 int e = N->getValueType(0).getVectorNumElements() / 2; 3280 3281 for (int i = 0; i < e; ++i) 3282 if (!isUndefOrEqual(N->getMaskElt(i), i)) 3283 return false; 3284 for (int i = 0; i < e; ++i) 3285 if (!isUndefOrEqual(N->getMaskElt(e+i), i)) 3286 return false; 3287 return true; 3288} 3289 3290/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle 3291/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions. 3292unsigned X86::getShuffleSHUFImmediate(SDNode *N) { 3293 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 3294 int NumOperands = SVOp->getValueType(0).getVectorNumElements(); 3295 3296 unsigned Shift = (NumOperands == 4) ? 2 : 1; 3297 unsigned Mask = 0; 3298 for (int i = 0; i < NumOperands; ++i) { 3299 int Val = SVOp->getMaskElt(NumOperands-i-1); 3300 if (Val < 0) Val = 0; 3301 if (Val >= NumOperands) Val -= NumOperands; 3302 Mask |= Val; 3303 if (i != NumOperands - 1) 3304 Mask <<= Shift; 3305 } 3306 return Mask; 3307} 3308 3309/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle 3310/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction. 3311unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { 3312 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 3313 unsigned Mask = 0; 3314 // 8 nodes, but we only care about the last 4. 3315 for (unsigned i = 7; i >= 4; --i) { 3316 int Val = SVOp->getMaskElt(i); 3317 if (Val >= 0) 3318 Mask |= (Val - 4); 3319 if (i != 4) 3320 Mask <<= 2; 3321 } 3322 return Mask; 3323} 3324 3325/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle 3326/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction. 3327unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { 3328 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 3329 unsigned Mask = 0; 3330 // 8 nodes, but we only care about the first 4. 3331 for (int i = 3; i >= 0; --i) { 3332 int Val = SVOp->getMaskElt(i); 3333 if (Val >= 0) 3334 Mask |= Val; 3335 if (i != 0) 3336 Mask <<= 2; 3337 } 3338 return Mask; 3339} 3340 3341/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle 3342/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. 3343unsigned X86::getShufflePALIGNRImmediate(SDNode *N) { 3344 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); 3345 EVT VVT = N->getValueType(0); 3346 unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3; 3347 int Val = 0; 3348 3349 unsigned i, e; 3350 for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) { 3351 Val = SVOp->getMaskElt(i); 3352 if (Val >= 0) 3353 break; 3354 } 3355 return (Val - i) * EltSize; 3356} 3357 3358/// isZeroNode - Returns true if Elt is a constant zero or a floating point 3359/// constant +0.0. 3360bool X86::isZeroNode(SDValue Elt) { 3361 return ((isa<ConstantSDNode>(Elt) && 3362 cast<ConstantSDNode>(Elt)->isNullValue()) || 3363 (isa<ConstantFPSDNode>(Elt) && 3364 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); 3365} 3366 3367/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in 3368/// their permute mask. 3369static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, 3370 SelectionDAG &DAG) { 3371 EVT VT = SVOp->getValueType(0); 3372 unsigned NumElems = VT.getVectorNumElements(); 3373 SmallVector<int, 8> MaskVec; 3374 3375 for (unsigned i = 0; i != NumElems; ++i) { 3376 int idx = SVOp->getMaskElt(i); 3377 if (idx < 0) 3378 MaskVec.push_back(idx); 3379 else if (idx < (int)NumElems) 3380 MaskVec.push_back(idx + NumElems); 3381 else 3382 MaskVec.push_back(idx - NumElems); 3383 } 3384 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1), 3385 SVOp->getOperand(0), &MaskVec[0]); 3386} 3387 3388/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming 3389/// the two vector operands have swapped position. 3390static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) { 3391 unsigned NumElems = VT.getVectorNumElements(); 3392 for (unsigned i = 0; i != NumElems; ++i) { 3393 int idx = Mask[i]; 3394 if (idx < 0) 3395 continue; 3396 else if (idx < (int)NumElems) 3397 Mask[i] = idx + NumElems; 3398 else 3399 Mask[i] = idx - NumElems; 3400 } 3401} 3402 3403/// ShouldXformToMOVHLPS - Return true if the node should be transformed to 3404/// match movhlps. The lower half elements should come from upper half of 3405/// V1 (and in order), and the upper half elements should come from the upper 3406/// half of V2 (and in order). 3407static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) { 3408 if (Op->getValueType(0).getVectorNumElements() != 4) 3409 return false; 3410 for (unsigned i = 0, e = 2; i != e; ++i) 3411 if (!isUndefOrEqual(Op->getMaskElt(i), i+2)) 3412 return false; 3413 for (unsigned i = 2; i != 4; ++i) 3414 if (!isUndefOrEqual(Op->getMaskElt(i), i+4)) 3415 return false; 3416 return true; 3417} 3418 3419/// isScalarLoadToVector - Returns true if the node is a scalar load that 3420/// is promoted to a vector. It also returns the LoadSDNode by reference if 3421/// required. 3422static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { 3423 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) 3424 return false; 3425 N = N->getOperand(0).getNode(); 3426 if (!ISD::isNON_EXTLoad(N)) 3427 return false; 3428 if (LD) 3429 *LD = cast<LoadSDNode>(N); 3430 return true; 3431} 3432 3433/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to 3434/// match movlp{s|d}. The lower half elements should come from lower half of 3435/// V1 (and in order), and the upper half elements should come from the upper 3436/// half of V2 (and in order). And since V1 will become the source of the 3437/// MOVLP, it must be either a vector load or a scalar load to vector. 3438static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, 3439 ShuffleVectorSDNode *Op) { 3440 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) 3441 return false; 3442 // Is V2 is a vector load, don't do this transformation. We will try to use 3443 // load folding shufps op. 3444 if (ISD::isNON_EXTLoad(V2)) 3445 return false; 3446 3447 unsigned NumElems = Op->getValueType(0).getVectorNumElements(); 3448 3449 if (NumElems != 2 && NumElems != 4) 3450 return false; 3451 for (unsigned i = 0, e = NumElems/2; i != e; ++i) 3452 if (!isUndefOrEqual(Op->getMaskElt(i), i)) 3453 return false; 3454 for (unsigned i = NumElems/2; i != NumElems; ++i) 3455 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems)) 3456 return false; 3457 return true; 3458} 3459 3460/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are 3461/// all the same. 3462static bool isSplatVector(SDNode *N) { 3463 if (N->getOpcode() != ISD::BUILD_VECTOR) 3464 return false; 3465 3466 SDValue SplatValue = N->getOperand(0); 3467 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) 3468 if (N->getOperand(i) != SplatValue) 3469 return false; 3470 return true; 3471} 3472 3473/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved 3474/// to an zero vector. 3475/// FIXME: move to dag combiner / method on ShuffleVectorSDNode 3476static bool isZeroShuffle(ShuffleVectorSDNode *N) { 3477 SDValue V1 = N->getOperand(0); 3478 SDValue V2 = N->getOperand(1); 3479 unsigned NumElems = N->getValueType(0).getVectorNumElements(); 3480 for (unsigned i = 0; i != NumElems; ++i) { 3481 int Idx = N->getMaskElt(i); 3482 if (Idx >= (int)NumElems) { 3483 unsigned Opc = V2.getOpcode(); 3484 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) 3485 continue; 3486 if (Opc != ISD::BUILD_VECTOR || 3487 !X86::isZeroNode(V2.getOperand(Idx-NumElems))) 3488 return false; 3489 } else if (Idx >= 0) { 3490 unsigned Opc = V1.getOpcode(); 3491 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) 3492 continue; 3493 if (Opc != ISD::BUILD_VECTOR || 3494 !X86::isZeroNode(V1.getOperand(Idx))) 3495 return false; 3496 } 3497 } 3498 return true; 3499} 3500 3501/// getZeroVector - Returns a vector of specified type with all zero elements. 3502/// 3503static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG, 3504 DebugLoc dl) { 3505 assert(VT.isVector() && "Expected a vector type"); 3506 3507 // Always build SSE zero vectors as <4 x i32> bitcasted 3508 // to their dest type. This ensures they get CSE'd. 3509 SDValue Vec; 3510 if (VT.getSizeInBits() == 128) { // SSE 3511 if (HasSSE2) { // SSE2 3512 SDValue Cst = DAG.getTargetConstant(0, MVT::i32); 3513 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); 3514 } else { // SSE1 3515 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); 3516 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); 3517 } 3518 } else if (VT.getSizeInBits() == 256) { // AVX 3519 // 256-bit logic and arithmetic instructions in AVX are 3520 // all floating-point, no support for integer ops. Default 3521 // to emitting fp zeroed vectors then. 3522 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); 3523 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst }; 3524 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8); 3525 } 3526 return DAG.getNode(ISD::BITCAST, dl, VT, Vec); 3527} 3528 3529/// getOnesVector - Returns a vector of specified type with all bits set. 3530/// 3531static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) { 3532 assert(VT.isVector() && "Expected a vector type"); 3533 3534 // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest 3535 // type. This ensures they get CSE'd. 3536 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); 3537 SDValue Vec; 3538 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); 3539 return DAG.getNode(ISD::BITCAST, dl, VT, Vec); 3540} 3541 3542 3543/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements 3544/// that point to V2 points to its first element. 3545static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { 3546 EVT VT = SVOp->getValueType(0); 3547 unsigned NumElems = VT.getVectorNumElements(); 3548 3549 bool Changed = false; 3550 SmallVector<int, 8> MaskVec; 3551 SVOp->getMask(MaskVec); 3552 3553 for (unsigned i = 0; i != NumElems; ++i) { 3554 if (MaskVec[i] > (int)NumElems) { 3555 MaskVec[i] = NumElems; 3556 Changed = true; 3557 } 3558 } 3559 if (Changed) 3560 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0), 3561 SVOp->getOperand(1), &MaskVec[0]); 3562 return SDValue(SVOp, 0); 3563} 3564 3565/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd 3566/// operation of specified width. 3567static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, 3568 SDValue V2) { 3569 unsigned NumElems = VT.getVectorNumElements(); 3570 SmallVector<int, 8> Mask; 3571 Mask.push_back(NumElems); 3572 for (unsigned i = 1; i != NumElems; ++i) 3573 Mask.push_back(i); 3574 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); 3575} 3576 3577/// getUnpackl - Returns a vector_shuffle node for an unpackl operation. 3578static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, 3579 SDValue V2) { 3580 unsigned NumElems = VT.getVectorNumElements(); 3581 SmallVector<int, 8> Mask; 3582 for (unsigned i = 0, e = NumElems/2; i != e; ++i) { 3583 Mask.push_back(i); 3584 Mask.push_back(i + NumElems); 3585 } 3586 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); 3587} 3588 3589/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation. 3590static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, 3591 SDValue V2) { 3592 unsigned NumElems = VT.getVectorNumElements(); 3593 unsigned Half = NumElems/2; 3594 SmallVector<int, 8> Mask; 3595 for (unsigned i = 0; i != Half; ++i) { 3596 Mask.push_back(i + Half); 3597 Mask.push_back(i + NumElems + Half); 3598 } 3599 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); 3600} 3601 3602/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32. 3603static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) { 3604 EVT PVT = MVT::v4f32; 3605 EVT VT = SV->getValueType(0); 3606 DebugLoc dl = SV->getDebugLoc(); 3607 SDValue V1 = SV->getOperand(0); 3608 int NumElems = VT.getVectorNumElements(); 3609 int EltNo = SV->getSplatIndex(); 3610 3611 // unpack elements to the correct location 3612 while (NumElems > 4) { 3613 if (EltNo < NumElems/2) { 3614 V1 = getUnpackl(DAG, dl, VT, V1, V1); 3615 } else { 3616 V1 = getUnpackh(DAG, dl, VT, V1, V1); 3617 EltNo -= NumElems/2; 3618 } 3619 NumElems >>= 1; 3620 } 3621 3622 // Perform the splat. 3623 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; 3624 V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1); 3625 V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]); 3626 return DAG.getNode(ISD::BITCAST, dl, VT, V1); 3627} 3628 3629/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified 3630/// vector of zero or undef vector. This produces a shuffle where the low 3631/// element of V2 is swizzled into the zero/undef vector, landing at element 3632/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). 3633static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, 3634 bool isZero, bool HasSSE2, 3635 SelectionDAG &DAG) { 3636 EVT VT = V2.getValueType(); 3637 SDValue V1 = isZero 3638 ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT); 3639 unsigned NumElems = VT.getVectorNumElements(); 3640 SmallVector<int, 16> MaskVec; 3641 for (unsigned i = 0; i != NumElems; ++i) 3642 // If this is the insertion idx, put the low elt of V2 here. 3643 MaskVec.push_back(i == Idx ? NumElems : i); 3644 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]); 3645} 3646 3647/// getShuffleScalarElt - Returns the scalar element that will make up the ith 3648/// element of the result of the vector shuffle. 3649SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG, 3650 unsigned Depth) { 3651 if (Depth == 6) 3652 return SDValue(); // Limit search depth. 3653 3654 SDValue V = SDValue(N, 0); 3655 EVT VT = V.getValueType(); 3656 unsigned Opcode = V.getOpcode(); 3657 3658 // Recurse into ISD::VECTOR_SHUFFLE node to find scalars. 3659 if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) { 3660 Index = SV->getMaskElt(Index); 3661 3662 if (Index < 0) 3663 return DAG.getUNDEF(VT.getVectorElementType()); 3664 3665 int NumElems = VT.getVectorNumElements(); 3666 SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1); 3667 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1); 3668 } 3669 3670 // Recurse into target specific vector shuffles to find scalars. 3671 if (isTargetShuffle(Opcode)) { 3672 int NumElems = VT.getVectorNumElements(); 3673 SmallVector<unsigned, 16> ShuffleMask; 3674 SDValue ImmN; 3675 3676 switch(Opcode) { 3677 case X86ISD::SHUFPS: 3678 case X86ISD::SHUFPD: 3679 ImmN = N->getOperand(N->getNumOperands()-1); 3680 DecodeSHUFPSMask(NumElems, 3681 cast<ConstantSDNode>(ImmN)->getZExtValue(), 3682 ShuffleMask); 3683 break; 3684 case X86ISD::PUNPCKHBW: 3685 case X86ISD::PUNPCKHWD: 3686 case X86ISD::PUNPCKHDQ: 3687 case X86ISD::PUNPCKHQDQ: 3688 DecodePUNPCKHMask(NumElems, ShuffleMask); 3689 break; 3690 case X86ISD::UNPCKHPS: 3691 case X86ISD::UNPCKHPD: 3692 DecodeUNPCKHPMask(NumElems, ShuffleMask); 3693 break; 3694 case X86ISD::PUNPCKLBW: 3695 case X86ISD::PUNPCKLWD: 3696 case X86ISD::PUNPCKLDQ: 3697 case X86ISD::PUNPCKLQDQ: 3698 DecodePUNPCKLMask(NumElems, ShuffleMask); 3699 break; 3700 case X86ISD::UNPCKLPS: 3701 case X86ISD::UNPCKLPD: 3702 DecodeUNPCKLPMask(NumElems, ShuffleMask); 3703 break; 3704 case X86ISD::MOVHLPS: 3705 DecodeMOVHLPSMask(NumElems, ShuffleMask); 3706 break; 3707 case X86ISD::MOVLHPS: 3708 DecodeMOVLHPSMask(NumElems, ShuffleMask); 3709 break; 3710 case X86ISD::PSHUFD: 3711 ImmN = N->getOperand(N->getNumOperands()-1); 3712 DecodePSHUFMask(NumElems, 3713 cast<ConstantSDNode>(ImmN)->getZExtValue(), 3714 ShuffleMask); 3715 break; 3716 case X86ISD::PSHUFHW: 3717 ImmN = N->getOperand(N->getNumOperands()-1); 3718 DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), 3719 ShuffleMask); 3720 break; 3721 case X86ISD::PSHUFLW: 3722 ImmN = N->getOperand(N->getNumOperands()-1); 3723 DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), 3724 ShuffleMask); 3725 break; 3726 case X86ISD::MOVSS: 3727 case X86ISD::MOVSD: { 3728 // The index 0 always comes from the first element of the second source, 3729 // this is why MOVSS and MOVSD are used in the first place. The other 3730 // elements come from the other positions of the first source vector. 3731 unsigned OpNum = (Index == 0) ? 1 : 0; 3732 return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG, 3733 Depth+1); 3734 } 3735 default: 3736 assert("not implemented for target shuffle node"); 3737 return SDValue(); 3738 } 3739 3740 Index = ShuffleMask[Index]; 3741 if (Index < 0) 3742 return DAG.getUNDEF(VT.getVectorElementType()); 3743 3744 SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1); 3745 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, 3746 Depth+1); 3747 } 3748 3749 // Actual nodes that may contain scalar elements 3750 if (Opcode == ISD::BITCAST) { 3751 V = V.getOperand(0); 3752 EVT SrcVT = V.getValueType(); 3753 unsigned NumElems = VT.getVectorNumElements(); 3754 3755 if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems) 3756 return SDValue(); 3757 } 3758 3759 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) 3760 return (Index == 0) ? V.getOperand(0) 3761 : DAG.getUNDEF(VT.getVectorElementType()); 3762 3763 if (V.getOpcode() == ISD::BUILD_VECTOR) 3764 return V.getOperand(Index); 3765 3766 return SDValue(); 3767} 3768 3769/// getNumOfConsecutiveZeros - Return the number of elements of a vector 3770/// shuffle operation which come from a consecutively from a zero. The 3771/// search can start in two diferent directions, from left or right. 3772static 3773unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems, 3774 bool ZerosFromLeft, SelectionDAG &DAG) { 3775 int i = 0; 3776 3777 while (i < NumElems) { 3778 unsigned Index = ZerosFromLeft ? i : NumElems-i-1; 3779 SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0); 3780 if (!(Elt.getNode() && 3781 (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt)))) 3782 break; 3783 ++i; 3784 } 3785 3786 return i; 3787} 3788 3789/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to 3790/// MaskE correspond consecutively to elements from one of the vector operands, 3791/// starting from its index OpIdx. Also tell OpNum which source vector operand. 3792static 3793bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE, 3794 int OpIdx, int NumElems, unsigned &OpNum) { 3795 bool SeenV1 = false; 3796 bool SeenV2 = false; 3797 3798 for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) { 3799 int Idx = SVOp->getMaskElt(i); 3800 // Ignore undef indicies 3801 if (Idx < 0) 3802 continue; 3803 3804 if (Idx < NumElems) 3805 SeenV1 = true; 3806 else 3807 SeenV2 = true; 3808 3809 // Only accept consecutive elements from the same vector 3810 if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2)) 3811 return false; 3812 } 3813 3814 OpNum = SeenV1 ? 0 : 1; 3815 return true; 3816} 3817 3818/// isVectorShiftRight - Returns true if the shuffle can be implemented as a 3819/// logical left shift of a vector. 3820static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, 3821 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { 3822 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements(); 3823 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, 3824 false /* check zeros from right */, DAG); 3825 unsigned OpSrc; 3826 3827 if (!NumZeros) 3828 return false; 3829 3830 // Considering the elements in the mask that are not consecutive zeros, 3831 // check if they consecutively come from only one of the source vectors. 3832 // 3833 // V1 = {X, A, B, C} 0 3834 // \ \ \ / 3835 // vector_shuffle V1, V2 <1, 2, 3, X> 3836 // 3837 if (!isShuffleMaskConsecutive(SVOp, 3838 0, // Mask Start Index 3839 NumElems-NumZeros-1, // Mask End Index 3840 NumZeros, // Where to start looking in the src vector 3841 NumElems, // Number of elements in vector 3842 OpSrc)) // Which source operand ? 3843 return false; 3844 3845 isLeft = false; 3846 ShAmt = NumZeros; 3847 ShVal = SVOp->getOperand(OpSrc); 3848 return true; 3849} 3850 3851/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a 3852/// logical left shift of a vector. 3853static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, 3854 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { 3855 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements(); 3856 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, 3857 true /* check zeros from left */, DAG); 3858 unsigned OpSrc; 3859 3860 if (!NumZeros) 3861 return false; 3862 3863 // Considering the elements in the mask that are not consecutive zeros, 3864 // check if they consecutively come from only one of the source vectors. 3865 // 3866 // 0 { A, B, X, X } = V2 3867 // / \ / / 3868 // vector_shuffle V1, V2 <X, X, 4, 5> 3869 // 3870 if (!isShuffleMaskConsecutive(SVOp, 3871 NumZeros, // Mask Start Index 3872 NumElems-1, // Mask End Index 3873 0, // Where to start looking in the src vector 3874 NumElems, // Number of elements in vector 3875 OpSrc)) // Which source operand ? 3876 return false; 3877 3878 isLeft = true; 3879 ShAmt = NumZeros; 3880 ShVal = SVOp->getOperand(OpSrc); 3881 return true; 3882} 3883 3884/// isVectorShift - Returns true if the shuffle can be implemented as a 3885/// logical left or right shift of a vector. 3886static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, 3887 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { 3888 if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) || 3889 isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt)) 3890 return true; 3891 3892 return false; 3893} 3894 3895/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. 3896/// 3897static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, 3898 unsigned NumNonZero, unsigned NumZero, 3899 SelectionDAG &DAG, 3900 const TargetLowering &TLI) { 3901 if (NumNonZero > 8) 3902 return SDValue(); 3903 3904 DebugLoc dl = Op.getDebugLoc(); 3905 SDValue V(0, 0); 3906 bool First = true; 3907 for (unsigned i = 0; i < 16; ++i) { 3908 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; 3909 if (ThisIsNonZero && First) { 3910 if (NumZero) 3911 V = getZeroVector(MVT::v8i16, true, DAG, dl); 3912 else 3913 V = DAG.getUNDEF(MVT::v8i16); 3914 First = false; 3915 } 3916 3917 if ((i & 1) != 0) { 3918 SDValue ThisElt(0, 0), LastElt(0, 0); 3919 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; 3920 if (LastIsNonZero) { 3921 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, 3922 MVT::i16, Op.getOperand(i-1)); 3923 } 3924 if (ThisIsNonZero) { 3925 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); 3926 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, 3927 ThisElt, DAG.getConstant(8, MVT::i8)); 3928 if (LastIsNonZero) 3929 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); 3930 } else 3931 ThisElt = LastElt; 3932 3933 if (ThisElt.getNode()) 3934 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, 3935 DAG.getIntPtrConstant(i/2)); 3936 } 3937 } 3938 3939 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V); 3940} 3941 3942/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. 3943/// 3944static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, 3945 unsigned NumNonZero, unsigned NumZero, 3946 SelectionDAG &DAG, 3947 const TargetLowering &TLI) { 3948 if (NumNonZero > 4) 3949 return SDValue(); 3950 3951 DebugLoc dl = Op.getDebugLoc(); 3952 SDValue V(0, 0); 3953 bool First = true; 3954 for (unsigned i = 0; i < 8; ++i) { 3955 bool isNonZero = (NonZeros & (1 << i)) != 0; 3956 if (isNonZero) { 3957 if (First) { 3958 if (NumZero) 3959 V = getZeroVector(MVT::v8i16, true, DAG, dl); 3960 else 3961 V = DAG.getUNDEF(MVT::v8i16); 3962 First = false; 3963 } 3964 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, 3965 MVT::v8i16, V, Op.getOperand(i), 3966 DAG.getIntPtrConstant(i)); 3967 } 3968 } 3969 3970 return V; 3971} 3972 3973/// getVShift - Return a vector logical shift node. 3974/// 3975static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, 3976 unsigned NumBits, SelectionDAG &DAG, 3977 const TargetLowering &TLI, DebugLoc dl) { 3978 EVT ShVT = MVT::v2i64; 3979 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL; 3980 SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp); 3981 return DAG.getNode(ISD::BITCAST, dl, VT, 3982 DAG.getNode(Opc, dl, ShVT, SrcOp, 3983 DAG.getConstant(NumBits, TLI.getShiftAmountTy()))); 3984} 3985 3986SDValue 3987X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl, 3988 SelectionDAG &DAG) const { 3989 3990 // Check if the scalar load can be widened into a vector load. And if 3991 // the address is "base + cst" see if the cst can be "absorbed" into 3992 // the shuffle mask. 3993 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { 3994 SDValue Ptr = LD->getBasePtr(); 3995 if (!ISD::isNormalLoad(LD) || LD->isVolatile()) 3996 return SDValue(); 3997 EVT PVT = LD->getValueType(0); 3998 if (PVT != MVT::i32 && PVT != MVT::f32) 3999 return SDValue(); 4000 4001 int FI = -1; 4002 int64_t Offset = 0; 4003 if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { 4004 FI = FINode->getIndex(); 4005 Offset = 0; 4006 } else if (Ptr.getOpcode() == ISD::ADD && 4007 isa<ConstantSDNode>(Ptr.getOperand(1)) && 4008 isa<FrameIndexSDNode>(Ptr.getOperand(0))) { 4009 FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); 4010 Offset = Ptr.getConstantOperandVal(1); 4011 Ptr = Ptr.getOperand(0); 4012 } else { 4013 return SDValue(); 4014 } 4015 4016 SDValue Chain = LD->getChain(); 4017 // Make sure the stack object alignment is at least 16. 4018 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4019 if (DAG.InferPtrAlignment(Ptr) < 16) { 4020 if (MFI->isFixedObjectIndex(FI)) { 4021 // Can't change the alignment. FIXME: It's possible to compute 4022 // the exact stack offset and reference FI + adjust offset instead. 4023 // If someone *really* cares about this. That's the way to implement it. 4024 return SDValue(); 4025 } else { 4026 MFI->setObjectAlignment(FI, 16); 4027 } 4028 } 4029 4030 // (Offset % 16) must be multiple of 4. Then address is then 4031 // Ptr + (Offset & ~15). 4032 if (Offset < 0) 4033 return SDValue(); 4034 if ((Offset % 16) & 3) 4035 return SDValue(); 4036 int64_t StartOffset = Offset & ~15; 4037 if (StartOffset) 4038 Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(), 4039 Ptr,DAG.getConstant(StartOffset, Ptr.getValueType())); 4040 4041 int EltNo = (Offset - StartOffset) >> 2; 4042 int Mask[4] = { EltNo, EltNo, EltNo, EltNo }; 4043 EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32; 4044 SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr, 4045 LD->getPointerInfo().getWithOffset(StartOffset), 4046 false, false, 0); 4047 // Canonicalize it to a v4i32 shuffle. 4048 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); 4049 return DAG.getNode(ISD::BITCAST, dl, VT, 4050 DAG.getVectorShuffle(MVT::v4i32, dl, V1, 4051 DAG.getUNDEF(MVT::v4i32),&Mask[0])); 4052 } 4053 4054 return SDValue(); 4055} 4056 4057/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a 4058/// vector of type 'VT', see if the elements can be replaced by a single large 4059/// load which has the same value as a build_vector whose operands are 'elts'. 4060/// 4061/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a 4062/// 4063/// FIXME: we'd also like to handle the case where the last elements are zero 4064/// rather than undef via VZEXT_LOAD, but we do not detect that case today. 4065/// There's even a handy isZeroNode for that purpose. 4066static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts, 4067 DebugLoc &DL, SelectionDAG &DAG) { 4068 EVT EltVT = VT.getVectorElementType(); 4069 unsigned NumElems = Elts.size(); 4070 4071 LoadSDNode *LDBase = NULL; 4072 unsigned LastLoadedElt = -1U; 4073 4074 // For each element in the initializer, see if we've found a load or an undef. 4075 // If we don't find an initial load element, or later load elements are 4076 // non-consecutive, bail out. 4077 for (unsigned i = 0; i < NumElems; ++i) { 4078 SDValue Elt = Elts[i]; 4079 4080 if (!Elt.getNode() || 4081 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) 4082 return SDValue(); 4083 if (!LDBase) { 4084 if (Elt.getNode()->getOpcode() == ISD::UNDEF) 4085 return SDValue(); 4086 LDBase = cast<LoadSDNode>(Elt.getNode()); 4087 LastLoadedElt = i; 4088 continue; 4089 } 4090 if (Elt.getOpcode() == ISD::UNDEF) 4091 continue; 4092 4093 LoadSDNode *LD = cast<LoadSDNode>(Elt); 4094 if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i)) 4095 return SDValue(); 4096 LastLoadedElt = i; 4097 } 4098 4099 // If we have found an entire vector of loads and undefs, then return a large 4100 // load of the entire vector width starting at the base pointer. If we found 4101 // consecutive loads for the low half, generate a vzext_load node. 4102 if (LastLoadedElt == NumElems - 1) { 4103 if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16) 4104 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), 4105 LDBase->getPointerInfo(), 4106 LDBase->isVolatile(), LDBase->isNonTemporal(), 0); 4107 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(), 4108 LDBase->getPointerInfo(), 4109 LDBase->isVolatile(), LDBase->isNonTemporal(), 4110 LDBase->getAlignment()); 4111 } else if (NumElems == 4 && LastLoadedElt == 1) { 4112 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); 4113 SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; 4114 SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, 4115 Ops, 2, MVT::i32, 4116 LDBase->getMemOperand()); 4117 return DAG.getNode(ISD::BITCAST, DL, VT, ResNode); 4118 } 4119 return SDValue(); 4120} 4121 4122SDValue 4123X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { 4124 DebugLoc dl = Op.getDebugLoc(); 4125 // All zero's are handled with pxor in SSE2 and above, xorps in SSE1. 4126 // All one's are handled with pcmpeqd. In AVX, zero's are handled with 4127 // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd 4128 // is present, so AllOnes is ignored. 4129 if (ISD::isBuildVectorAllZeros(Op.getNode()) || 4130 (Op.getValueType().getSizeInBits() != 256 && 4131 ISD::isBuildVectorAllOnes(Op.getNode()))) { 4132 // Canonicalize this to <4 x i32> (SSE) to 4133 // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are 4134 // eliminated on x86-32 hosts. 4135 if (Op.getValueType() == MVT::v4i32) 4136 return Op; 4137 4138 if (ISD::isBuildVectorAllOnes(Op.getNode())) 4139 return getOnesVector(Op.getValueType(), DAG, dl); 4140 return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl); 4141 } 4142 4143 EVT VT = Op.getValueType(); 4144 EVT ExtVT = VT.getVectorElementType(); 4145 unsigned EVTBits = ExtVT.getSizeInBits(); 4146 4147 unsigned NumElems = Op.getNumOperands(); 4148 unsigned NumZero = 0; 4149 unsigned NumNonZero = 0; 4150 unsigned NonZeros = 0; 4151 bool IsAllConstants = true; 4152 SmallSet<SDValue, 8> Values; 4153 for (unsigned i = 0; i < NumElems; ++i) { 4154 SDValue Elt = Op.getOperand(i); 4155 if (Elt.getOpcode() == ISD::UNDEF) 4156 continue; 4157 Values.insert(Elt); 4158 if (Elt.getOpcode() != ISD::Constant && 4159 Elt.getOpcode() != ISD::ConstantFP) 4160 IsAllConstants = false; 4161 if (X86::isZeroNode(Elt)) 4162 NumZero++; 4163 else { 4164 NonZeros |= (1 << i); 4165 NumNonZero++; 4166 } 4167 } 4168 4169 // All undef vector. Return an UNDEF. All zero vectors were handled above. 4170 if (NumNonZero == 0) 4171 return DAG.getUNDEF(VT); 4172 4173 // Special case for single non-zero, non-undef, element. 4174 if (NumNonZero == 1) { 4175 unsigned Idx = CountTrailingZeros_32(NonZeros); 4176 SDValue Item = Op.getOperand(Idx); 4177 4178 // If this is an insertion of an i64 value on x86-32, and if the top bits of 4179 // the value are obviously zero, truncate the value to i32 and do the 4180 // insertion that way. Only do this if the value is non-constant or if the 4181 // value is a constant being inserted into element 0. It is cheaper to do 4182 // a constant pool load than it is to do a movd + shuffle. 4183 if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && 4184 (!IsAllConstants || Idx == 0)) { 4185 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { 4186 // Handle SSE only. 4187 assert(VT == MVT::v2i64 && "Expected an SSE value type!"); 4188 EVT VecVT = MVT::v4i32; 4189 unsigned VecElts = 4; 4190 4191 // Truncate the value (which may itself be a constant) to i32, and 4192 // convert it to a vector with movd (S2V+shuffle to zero extend). 4193 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); 4194 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); 4195 Item = getShuffleVectorZeroOrUndef(Item, 0, true, 4196 Subtarget->hasSSE2(), DAG); 4197 4198 // Now we have our 32-bit value zero extended in the low element of 4199 // a vector. If Idx != 0, swizzle it into place. 4200 if (Idx != 0) { 4201 SmallVector<int, 4> Mask; 4202 Mask.push_back(Idx); 4203 for (unsigned i = 1; i != VecElts; ++i) 4204 Mask.push_back(i); 4205 Item = DAG.getVectorShuffle(VecVT, dl, Item, 4206 DAG.getUNDEF(Item.getValueType()), 4207 &Mask[0]); 4208 } 4209 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item); 4210 } 4211 } 4212 4213 // If we have a constant or non-constant insertion into the low element of 4214 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into 4215 // the rest of the elements. This will be matched as movd/movq/movss/movsd 4216 // depending on what the source datatype is. 4217 if (Idx == 0) { 4218 if (NumZero == 0) { 4219 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); 4220 } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || 4221 (ExtVT == MVT::i64 && Subtarget->is64Bit())) { 4222 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); 4223 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. 4224 return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(), 4225 DAG); 4226 } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { 4227 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); 4228 assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!"); 4229 EVT MiddleVT = MVT::v4i32; 4230 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item); 4231 Item = getShuffleVectorZeroOrUndef(Item, 0, true, 4232 Subtarget->hasSSE2(), DAG); 4233 return DAG.getNode(ISD::BITCAST, dl, VT, Item); 4234 } 4235 } 4236 4237 // Is it a vector logical left shift? 4238 if (NumElems == 2 && Idx == 1 && 4239 X86::isZeroNode(Op.getOperand(0)) && 4240 !X86::isZeroNode(Op.getOperand(1))) { 4241 unsigned NumBits = VT.getSizeInBits(); 4242 return getVShift(true, VT, 4243 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 4244 VT, Op.getOperand(1)), 4245 NumBits/2, DAG, *this, dl); 4246 } 4247 4248 if (IsAllConstants) // Otherwise, it's better to do a constpool load. 4249 return SDValue(); 4250 4251 // Otherwise, if this is a vector with i32 or f32 elements, and the element 4252 // is a non-constant being inserted into an element other than the low one, 4253 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka 4254 // movd/movss) to move this into the low element, then shuffle it into 4255 // place. 4256 if (EVTBits == 32) { 4257 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); 4258 4259 // Turn it into a shuffle of zero and zero-extended scalar to vector. 4260 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, 4261 Subtarget->hasSSE2(), DAG); 4262 SmallVector<int, 8> MaskVec; 4263 for (unsigned i = 0; i < NumElems; i++) 4264 MaskVec.push_back(i == Idx ? 0 : 1); 4265 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]); 4266 } 4267 } 4268 4269 // Splat is obviously ok. Let legalizer expand it to a shuffle. 4270 if (Values.size() == 1) { 4271 if (EVTBits == 32) { 4272 // Instead of a shuffle like this: 4273 // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> 4274 // Check if it's possible to issue this instead. 4275 // shuffle (vload ptr)), undef, <1, 1, 1, 1> 4276 unsigned Idx = CountTrailingZeros_32(NonZeros); 4277 SDValue Item = Op.getOperand(Idx); 4278 if (Op.getNode()->isOnlyUserOf(Item.getNode())) 4279 return LowerAsSplatVectorLoad(Item, VT, dl, DAG); 4280 } 4281 return SDValue(); 4282 } 4283 4284 // A vector full of immediates; various special cases are already 4285 // handled, so this is best done with a single constant-pool load. 4286 if (IsAllConstants) 4287 return SDValue(); 4288 4289 // Let legalizer expand 2-wide build_vectors. 4290 if (EVTBits == 64) { 4291 if (NumNonZero == 1) { 4292 // One half is zero or undef. 4293 unsigned Idx = CountTrailingZeros_32(NonZeros); 4294 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, 4295 Op.getOperand(Idx)); 4296 return getShuffleVectorZeroOrUndef(V2, Idx, true, 4297 Subtarget->hasSSE2(), DAG); 4298 } 4299 return SDValue(); 4300 } 4301 4302 // If element VT is < 32 bits, convert it to inserts into a zero vector. 4303 if (EVTBits == 8 && NumElems == 16) { 4304 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, 4305 *this); 4306 if (V.getNode()) return V; 4307 } 4308 4309 if (EVTBits == 16 && NumElems == 8) { 4310 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, 4311 *this); 4312 if (V.getNode()) return V; 4313 } 4314 4315 // If element VT is == 32 bits, turn it into a number of shuffles. 4316 SmallVector<SDValue, 8> V; 4317 V.resize(NumElems); 4318 if (NumElems == 4 && NumZero > 0) { 4319 for (unsigned i = 0; i < 4; ++i) { 4320 bool isZero = !(NonZeros & (1 << i)); 4321 if (isZero) 4322 V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); 4323 else 4324 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); 4325 } 4326 4327 for (unsigned i = 0; i < 2; ++i) { 4328 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { 4329 default: break; 4330 case 0: 4331 V[i] = V[i*2]; // Must be a zero vector. 4332 break; 4333 case 1: 4334 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); 4335 break; 4336 case 2: 4337 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); 4338 break; 4339 case 3: 4340 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); 4341 break; 4342 } 4343 } 4344 4345 SmallVector<int, 8> MaskVec; 4346 bool Reverse = (NonZeros & 0x3) == 2; 4347 for (unsigned i = 0; i < 2; ++i) 4348 MaskVec.push_back(Reverse ? 1-i : i); 4349 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; 4350 for (unsigned i = 0; i < 2; ++i) 4351 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems); 4352 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); 4353 } 4354 4355 if (Values.size() > 1 && VT.getSizeInBits() == 128) { 4356 // Check for a build vector of consecutive loads. 4357 for (unsigned i = 0; i < NumElems; ++i) 4358 V[i] = Op.getOperand(i); 4359 4360 // Check for elements which are consecutive loads. 4361 SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG); 4362 if (LD.getNode()) 4363 return LD; 4364 4365 // For SSE 4.1, use insertps to put the high elements into the low element. 4366 if (getSubtarget()->hasSSE41()) { 4367 SDValue Result; 4368 if (Op.getOperand(0).getOpcode() != ISD::UNDEF) 4369 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0)); 4370 else 4371 Result = DAG.getUNDEF(VT); 4372 4373 for (unsigned i = 1; i < NumElems; ++i) { 4374 if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue; 4375 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result, 4376 Op.getOperand(i), DAG.getIntPtrConstant(i)); 4377 } 4378 return Result; 4379 } 4380 4381 // Otherwise, expand into a number of unpckl*, start by extending each of 4382 // our (non-undef) elements to the full vector width with the element in the 4383 // bottom slot of the vector (which generates no code for SSE). 4384 for (unsigned i = 0; i < NumElems; ++i) { 4385 if (Op.getOperand(i).getOpcode() != ISD::UNDEF) 4386 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); 4387 else 4388 V[i] = DAG.getUNDEF(VT); 4389 } 4390 4391 // Next, we iteratively mix elements, e.g. for v4f32: 4392 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> 4393 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> 4394 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> 4395 unsigned EltStride = NumElems >> 1; 4396 while (EltStride != 0) { 4397 for (unsigned i = 0; i < EltStride; ++i) { 4398 // If V[i+EltStride] is undef and this is the first round of mixing, 4399 // then it is safe to just drop this shuffle: V[i] is already in the 4400 // right place, the one element (since it's the first round) being 4401 // inserted as undef can be dropped. This isn't safe for successive 4402 // rounds because they will permute elements within both vectors. 4403 if (V[i+EltStride].getOpcode() == ISD::UNDEF && 4404 EltStride == NumElems/2) 4405 continue; 4406 4407 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]); 4408 } 4409 EltStride >>= 1; 4410 } 4411 return V[0]; 4412 } 4413 return SDValue(); 4414} 4415 4416SDValue 4417X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { 4418 // We support concatenate two MMX registers and place them in a MMX 4419 // register. This is better than doing a stack convert. 4420 DebugLoc dl = Op.getDebugLoc(); 4421 EVT ResVT = Op.getValueType(); 4422 assert(Op.getNumOperands() == 2); 4423 assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 || 4424 ResVT == MVT::v8i16 || ResVT == MVT::v16i8); 4425 int Mask[2]; 4426 SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0)); 4427 SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec); 4428 InVec = Op.getOperand(1); 4429 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { 4430 unsigned NumElts = ResVT.getVectorNumElements(); 4431 VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp); 4432 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp, 4433 InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1)); 4434 } else { 4435 InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec); 4436 SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec); 4437 Mask[0] = 0; Mask[1] = 2; 4438 VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask); 4439 } 4440 return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp); 4441} 4442 4443// v8i16 shuffles - Prefer shuffles in the following order: 4444// 1. [all] pshuflw, pshufhw, optional move 4445// 2. [ssse3] 1 x pshufb 4446// 3. [ssse3] 2 x pshufb + 1 x por 4447// 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw) 4448SDValue 4449X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op, 4450 SelectionDAG &DAG) const { 4451 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 4452 SDValue V1 = SVOp->getOperand(0); 4453 SDValue V2 = SVOp->getOperand(1); 4454 DebugLoc dl = SVOp->getDebugLoc(); 4455 SmallVector<int, 8> MaskVals; 4456 4457 // Determine if more than 1 of the words in each of the low and high quadwords 4458 // of the result come from the same quadword of one of the two inputs. Undef 4459 // mask values count as coming from any quadword, for better codegen. 4460 SmallVector<unsigned, 4> LoQuad(4); 4461 SmallVector<unsigned, 4> HiQuad(4); 4462 BitVector InputQuads(4); 4463 for (unsigned i = 0; i < 8; ++i) { 4464 SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad; 4465 int EltIdx = SVOp->getMaskElt(i); 4466 MaskVals.push_back(EltIdx); 4467 if (EltIdx < 0) { 4468 ++Quad[0]; 4469 ++Quad[1]; 4470 ++Quad[2]; 4471 ++Quad[3]; 4472 continue; 4473 } 4474 ++Quad[EltIdx / 4]; 4475 InputQuads.set(EltIdx / 4); 4476 } 4477 4478 int BestLoQuad = -1; 4479 unsigned MaxQuad = 1; 4480 for (unsigned i = 0; i < 4; ++i) { 4481 if (LoQuad[i] > MaxQuad) { 4482 BestLoQuad = i; 4483 MaxQuad = LoQuad[i]; 4484 } 4485 } 4486 4487 int BestHiQuad = -1; 4488 MaxQuad = 1; 4489 for (unsigned i = 0; i < 4; ++i) { 4490 if (HiQuad[i] > MaxQuad) { 4491 BestHiQuad = i; 4492 MaxQuad = HiQuad[i]; 4493 } 4494 } 4495 4496 // For SSSE3, If all 8 words of the result come from only 1 quadword of each 4497 // of the two input vectors, shuffle them into one input vector so only a 4498 // single pshufb instruction is necessary. If There are more than 2 input 4499 // quads, disable the next transformation since it does not help SSSE3. 4500 bool V1Used = InputQuads[0] || InputQuads[1]; 4501 bool V2Used = InputQuads[2] || InputQuads[3]; 4502 if (Subtarget->hasSSSE3()) { 4503 if (InputQuads.count() == 2 && V1Used && V2Used) { 4504 BestLoQuad = InputQuads.find_first(); 4505 BestHiQuad = InputQuads.find_next(BestLoQuad); 4506 } 4507 if (InputQuads.count() > 2) { 4508 BestLoQuad = -1; 4509 BestHiQuad = -1; 4510 } 4511 } 4512 4513 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update 4514 // the shuffle mask. If a quad is scored as -1, that means that it contains 4515 // words from all 4 input quadwords. 4516 SDValue NewV; 4517 if (BestLoQuad >= 0 || BestHiQuad >= 0) { 4518 SmallVector<int, 8> MaskV; 4519 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad); 4520 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad); 4521 NewV = DAG.getVectorShuffle(MVT::v2i64, dl, 4522 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1), 4523 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]); 4524 NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV); 4525 4526 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the 4527 // source words for the shuffle, to aid later transformations. 4528 bool AllWordsInNewV = true; 4529 bool InOrder[2] = { true, true }; 4530 for (unsigned i = 0; i != 8; ++i) { 4531 int idx = MaskVals[i]; 4532 if (idx != (int)i) 4533 InOrder[i/4] = false; 4534 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad) 4535 continue; 4536 AllWordsInNewV = false; 4537 break; 4538 } 4539 4540 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV; 4541 if (AllWordsInNewV) { 4542 for (int i = 0; i != 8; ++i) { 4543 int idx = MaskVals[i]; 4544 if (idx < 0) 4545 continue; 4546 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; 4547 if ((idx != i) && idx < 4) 4548 pshufhw = false; 4549 if ((idx != i) && idx > 3) 4550 pshuflw = false; 4551 } 4552 V1 = NewV; 4553 V2Used = false; 4554 BestLoQuad = 0; 4555 BestHiQuad = 1; 4556 } 4557 4558 // If we've eliminated the use of V2, and the new mask is a pshuflw or 4559 // pshufhw, that's as cheap as it gets. Return the new shuffle. 4560 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) { 4561 unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW; 4562 unsigned TargetMask = 0; 4563 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, 4564 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]); 4565 TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()): 4566 X86::getShufflePSHUFLWImmediate(NewV.getNode()); 4567 V1 = NewV.getOperand(0); 4568 return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG); 4569 } 4570 } 4571 4572 // If we have SSSE3, and all words of the result are from 1 input vector, 4573 // case 2 is generated, otherwise case 3 is generated. If no SSSE3 4574 // is present, fall back to case 4. 4575 if (Subtarget->hasSSSE3()) { 4576 SmallVector<SDValue,16> pshufbMask; 4577 4578 // If we have elements from both input vectors, set the high bit of the 4579 // shuffle mask element to zero out elements that come from V2 in the V1 4580 // mask, and elements that come from V1 in the V2 mask, so that the two 4581 // results can be OR'd together. 4582 bool TwoInputs = V1Used && V2Used; 4583 for (unsigned i = 0; i != 8; ++i) { 4584 int EltIdx = MaskVals[i] * 2; 4585 if (TwoInputs && (EltIdx >= 16)) { 4586 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); 4587 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); 4588 continue; 4589 } 4590 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); 4591 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8)); 4592 } 4593 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1); 4594 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, 4595 DAG.getNode(ISD::BUILD_VECTOR, dl, 4596 MVT::v16i8, &pshufbMask[0], 16)); 4597 if (!TwoInputs) 4598 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 4599 4600 // Calculate the shuffle mask for the second input, shuffle it, and 4601 // OR it with the first shuffled input. 4602 pshufbMask.clear(); 4603 for (unsigned i = 0; i != 8; ++i) { 4604 int EltIdx = MaskVals[i] * 2; 4605 if (EltIdx < 16) { 4606 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); 4607 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); 4608 continue; 4609 } 4610 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); 4611 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8)); 4612 } 4613 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2); 4614 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, 4615 DAG.getNode(ISD::BUILD_VECTOR, dl, 4616 MVT::v16i8, &pshufbMask[0], 16)); 4617 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); 4618 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 4619 } 4620 4621 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order, 4622 // and update MaskVals with new element order. 4623 BitVector InOrder(8); 4624 if (BestLoQuad >= 0) { 4625 SmallVector<int, 8> MaskV; 4626 for (int i = 0; i != 4; ++i) { 4627 int idx = MaskVals[i]; 4628 if (idx < 0) { 4629 MaskV.push_back(-1); 4630 InOrder.set(i); 4631 } else if ((idx / 4) == BestLoQuad) { 4632 MaskV.push_back(idx & 3); 4633 InOrder.set(i); 4634 } else { 4635 MaskV.push_back(-1); 4636 } 4637 } 4638 for (unsigned i = 4; i != 8; ++i) 4639 MaskV.push_back(i); 4640 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), 4641 &MaskV[0]); 4642 4643 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) 4644 NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16, 4645 NewV.getOperand(0), 4646 X86::getShufflePSHUFLWImmediate(NewV.getNode()), 4647 DAG); 4648 } 4649 4650 // If BestHi >= 0, generate a pshufhw to put the high elements in order, 4651 // and update MaskVals with the new element order. 4652 if (BestHiQuad >= 0) { 4653 SmallVector<int, 8> MaskV; 4654 for (unsigned i = 0; i != 4; ++i) 4655 MaskV.push_back(i); 4656 for (unsigned i = 4; i != 8; ++i) { 4657 int idx = MaskVals[i]; 4658 if (idx < 0) { 4659 MaskV.push_back(-1); 4660 InOrder.set(i); 4661 } else if ((idx / 4) == BestHiQuad) { 4662 MaskV.push_back((idx & 3) + 4); 4663 InOrder.set(i); 4664 } else { 4665 MaskV.push_back(-1); 4666 } 4667 } 4668 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), 4669 &MaskV[0]); 4670 4671 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) 4672 NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16, 4673 NewV.getOperand(0), 4674 X86::getShufflePSHUFHWImmediate(NewV.getNode()), 4675 DAG); 4676 } 4677 4678 // In case BestHi & BestLo were both -1, which means each quadword has a word 4679 // from each of the four input quadwords, calculate the InOrder bitvector now 4680 // before falling through to the insert/extract cleanup. 4681 if (BestLoQuad == -1 && BestHiQuad == -1) { 4682 NewV = V1; 4683 for (int i = 0; i != 8; ++i) 4684 if (MaskVals[i] < 0 || MaskVals[i] == i) 4685 InOrder.set(i); 4686 } 4687 4688 // The other elements are put in the right place using pextrw and pinsrw. 4689 for (unsigned i = 0; i != 8; ++i) { 4690 if (InOrder[i]) 4691 continue; 4692 int EltIdx = MaskVals[i]; 4693 if (EltIdx < 0) 4694 continue; 4695 SDValue ExtOp = (EltIdx < 8) 4696 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1, 4697 DAG.getIntPtrConstant(EltIdx)) 4698 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2, 4699 DAG.getIntPtrConstant(EltIdx - 8)); 4700 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp, 4701 DAG.getIntPtrConstant(i)); 4702 } 4703 return NewV; 4704} 4705 4706// v16i8 shuffles - Prefer shuffles in the following order: 4707// 1. [ssse3] 1 x pshufb 4708// 2. [ssse3] 2 x pshufb + 1 x por 4709// 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw 4710static 4711SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, 4712 SelectionDAG &DAG, 4713 const X86TargetLowering &TLI) { 4714 SDValue V1 = SVOp->getOperand(0); 4715 SDValue V2 = SVOp->getOperand(1); 4716 DebugLoc dl = SVOp->getDebugLoc(); 4717 SmallVector<int, 16> MaskVals; 4718 SVOp->getMask(MaskVals); 4719 4720 // If we have SSSE3, case 1 is generated when all result bytes come from 4721 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is 4722 // present, fall back to case 3. 4723 // FIXME: kill V2Only once shuffles are canonizalized by getNode. 4724 bool V1Only = true; 4725 bool V2Only = true; 4726 for (unsigned i = 0; i < 16; ++i) { 4727 int EltIdx = MaskVals[i]; 4728 if (EltIdx < 0) 4729 continue; 4730 if (EltIdx < 16) 4731 V2Only = false; 4732 else 4733 V1Only = false; 4734 } 4735 4736 // If SSSE3, use 1 pshufb instruction per vector with elements in the result. 4737 if (TLI.getSubtarget()->hasSSSE3()) { 4738 SmallVector<SDValue,16> pshufbMask; 4739 4740 // If all result elements are from one input vector, then only translate 4741 // undef mask values to 0x80 (zero out result) in the pshufb mask. 4742 // 4743 // Otherwise, we have elements from both input vectors, and must zero out 4744 // elements that come from V2 in the first mask, and V1 in the second mask 4745 // so that we can OR them together. 4746 bool TwoInputs = !(V1Only || V2Only); 4747 for (unsigned i = 0; i != 16; ++i) { 4748 int EltIdx = MaskVals[i]; 4749 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) { 4750 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); 4751 continue; 4752 } 4753 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); 4754 } 4755 // If all the elements are from V2, assign it to V1 and return after 4756 // building the first pshufb. 4757 if (V2Only) 4758 V1 = V2; 4759 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, 4760 DAG.getNode(ISD::BUILD_VECTOR, dl, 4761 MVT::v16i8, &pshufbMask[0], 16)); 4762 if (!TwoInputs) 4763 return V1; 4764 4765 // Calculate the shuffle mask for the second input, shuffle it, and 4766 // OR it with the first shuffled input. 4767 pshufbMask.clear(); 4768 for (unsigned i = 0; i != 16; ++i) { 4769 int EltIdx = MaskVals[i]; 4770 if (EltIdx < 16) { 4771 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); 4772 continue; 4773 } 4774 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); 4775 } 4776 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, 4777 DAG.getNode(ISD::BUILD_VECTOR, dl, 4778 MVT::v16i8, &pshufbMask[0], 16)); 4779 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); 4780 } 4781 4782 // No SSSE3 - Calculate in place words and then fix all out of place words 4783 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from 4784 // the 16 different words that comprise the two doublequadword input vectors. 4785 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); 4786 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); 4787 SDValue NewV = V2Only ? V2 : V1; 4788 for (int i = 0; i != 8; ++i) { 4789 int Elt0 = MaskVals[i*2]; 4790 int Elt1 = MaskVals[i*2+1]; 4791 4792 // This word of the result is all undef, skip it. 4793 if (Elt0 < 0 && Elt1 < 0) 4794 continue; 4795 4796 // This word of the result is already in the correct place, skip it. 4797 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1)) 4798 continue; 4799 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17)) 4800 continue; 4801 4802 SDValue Elt0Src = Elt0 < 16 ? V1 : V2; 4803 SDValue Elt1Src = Elt1 < 16 ? V1 : V2; 4804 SDValue InsElt; 4805 4806 // If Elt0 and Elt1 are defined, are consecutive, and can be load 4807 // using a single extract together, load it and store it. 4808 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) { 4809 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, 4810 DAG.getIntPtrConstant(Elt1 / 2)); 4811 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, 4812 DAG.getIntPtrConstant(i)); 4813 continue; 4814 } 4815 4816 // If Elt1 is defined, extract it from the appropriate source. If the 4817 // source byte is not also odd, shift the extracted word left 8 bits 4818 // otherwise clear the bottom 8 bits if we need to do an or. 4819 if (Elt1 >= 0) { 4820 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, 4821 DAG.getIntPtrConstant(Elt1 / 2)); 4822 if ((Elt1 & 1) == 0) 4823 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt, 4824 DAG.getConstant(8, TLI.getShiftAmountTy())); 4825 else if (Elt0 >= 0) 4826 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt, 4827 DAG.getConstant(0xFF00, MVT::i16)); 4828 } 4829 // If Elt0 is defined, extract it from the appropriate source. If the 4830 // source byte is not also even, shift the extracted word right 8 bits. If 4831 // Elt1 was also defined, OR the extracted values together before 4832 // inserting them in the result. 4833 if (Elt0 >= 0) { 4834 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, 4835 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2)); 4836 if ((Elt0 & 1) != 0) 4837 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0, 4838 DAG.getConstant(8, TLI.getShiftAmountTy())); 4839 else if (Elt1 >= 0) 4840 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0, 4841 DAG.getConstant(0x00FF, MVT::i16)); 4842 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0) 4843 : InsElt0; 4844 } 4845 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, 4846 DAG.getIntPtrConstant(i)); 4847 } 4848 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV); 4849} 4850 4851/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide 4852/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be 4853/// done when every pair / quad of shuffle mask elements point to elements in 4854/// the right sequence. e.g. 4855/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15> 4856static 4857SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, 4858 SelectionDAG &DAG, DebugLoc dl) { 4859 EVT VT = SVOp->getValueType(0); 4860 SDValue V1 = SVOp->getOperand(0); 4861 SDValue V2 = SVOp->getOperand(1); 4862 unsigned NumElems = VT.getVectorNumElements(); 4863 unsigned NewWidth = (NumElems == 4) ? 2 : 4; 4864 EVT NewVT; 4865 switch (VT.getSimpleVT().SimpleTy) { 4866 default: assert(false && "Unexpected!"); 4867 case MVT::v4f32: NewVT = MVT::v2f64; break; 4868 case MVT::v4i32: NewVT = MVT::v2i64; break; 4869 case MVT::v8i16: NewVT = MVT::v4i32; break; 4870 case MVT::v16i8: NewVT = MVT::v4i32; break; 4871 } 4872 4873 int Scale = NumElems / NewWidth; 4874 SmallVector<int, 8> MaskVec; 4875 for (unsigned i = 0; i < NumElems; i += Scale) { 4876 int StartIdx = -1; 4877 for (int j = 0; j < Scale; ++j) { 4878 int EltIdx = SVOp->getMaskElt(i+j); 4879 if (EltIdx < 0) 4880 continue; 4881 if (StartIdx == -1) 4882 StartIdx = EltIdx - (EltIdx % Scale); 4883 if (EltIdx != StartIdx + j) 4884 return SDValue(); 4885 } 4886 if (StartIdx == -1) 4887 MaskVec.push_back(-1); 4888 else 4889 MaskVec.push_back(StartIdx / Scale); 4890 } 4891 4892 V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1); 4893 V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2); 4894 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]); 4895} 4896 4897/// getVZextMovL - Return a zero-extending vector move low node. 4898/// 4899static SDValue getVZextMovL(EVT VT, EVT OpVT, 4900 SDValue SrcOp, SelectionDAG &DAG, 4901 const X86Subtarget *Subtarget, DebugLoc dl) { 4902 if (VT == MVT::v2f64 || VT == MVT::v4f32) { 4903 LoadSDNode *LD = NULL; 4904 if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) 4905 LD = dyn_cast<LoadSDNode>(SrcOp); 4906 if (!LD) { 4907 // movssrr and movsdrr do not clear top bits. Try to use movd, movq 4908 // instead. 4909 MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; 4910 if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) && 4911 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && 4912 SrcOp.getOperand(0).getOpcode() == ISD::BITCAST && 4913 SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) { 4914 // PR2108 4915 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; 4916 return DAG.getNode(ISD::BITCAST, dl, VT, 4917 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, 4918 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 4919 OpVT, 4920 SrcOp.getOperand(0) 4921 .getOperand(0)))); 4922 } 4923 } 4924 } 4925 4926 return DAG.getNode(ISD::BITCAST, dl, VT, 4927 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, 4928 DAG.getNode(ISD::BITCAST, dl, 4929 OpVT, SrcOp))); 4930} 4931 4932/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of 4933/// shuffles. 4934static SDValue 4935LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { 4936 SDValue V1 = SVOp->getOperand(0); 4937 SDValue V2 = SVOp->getOperand(1); 4938 DebugLoc dl = SVOp->getDebugLoc(); 4939 EVT VT = SVOp->getValueType(0); 4940 4941 SmallVector<std::pair<int, int>, 8> Locs; 4942 Locs.resize(4); 4943 SmallVector<int, 8> Mask1(4U, -1); 4944 SmallVector<int, 8> PermMask; 4945 SVOp->getMask(PermMask); 4946 4947 unsigned NumHi = 0; 4948 unsigned NumLo = 0; 4949 for (unsigned i = 0; i != 4; ++i) { 4950 int Idx = PermMask[i]; 4951 if (Idx < 0) { 4952 Locs[i] = std::make_pair(-1, -1); 4953 } else { 4954 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!"); 4955 if (Idx < 4) { 4956 Locs[i] = std::make_pair(0, NumLo); 4957 Mask1[NumLo] = Idx; 4958 NumLo++; 4959 } else { 4960 Locs[i] = std::make_pair(1, NumHi); 4961 if (2+NumHi < 4) 4962 Mask1[2+NumHi] = Idx; 4963 NumHi++; 4964 } 4965 } 4966 } 4967 4968 if (NumLo <= 2 && NumHi <= 2) { 4969 // If no more than two elements come from either vector. This can be 4970 // implemented with two shuffles. First shuffle gather the elements. 4971 // The second shuffle, which takes the first shuffle as both of its 4972 // vector operands, put the elements into the right order. 4973 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); 4974 4975 SmallVector<int, 8> Mask2(4U, -1); 4976 4977 for (unsigned i = 0; i != 4; ++i) { 4978 if (Locs[i].first == -1) 4979 continue; 4980 else { 4981 unsigned Idx = (i < 2) ? 0 : 4; 4982 Idx += Locs[i].first * 2 + Locs[i].second; 4983 Mask2[i] = Idx; 4984 } 4985 } 4986 4987 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]); 4988 } else if (NumLo == 3 || NumHi == 3) { 4989 // Otherwise, we must have three elements from one vector, call it X, and 4990 // one element from the other, call it Y. First, use a shufps to build an 4991 // intermediate vector with the one element from Y and the element from X 4992 // that will be in the same half in the final destination (the indexes don't 4993 // matter). Then, use a shufps to build the final vector, taking the half 4994 // containing the element from Y from the intermediate, and the other half 4995 // from X. 4996 if (NumHi == 3) { 4997 // Normalize it so the 3 elements come from V1. 4998 CommuteVectorShuffleMask(PermMask, VT); 4999 std::swap(V1, V2); 5000 } 5001 5002 // Find the element from V2. 5003 unsigned HiIndex; 5004 for (HiIndex = 0; HiIndex < 3; ++HiIndex) { 5005 int Val = PermMask[HiIndex]; 5006 if (Val < 0) 5007 continue; 5008 if (Val >= 4) 5009 break; 5010 } 5011 5012 Mask1[0] = PermMask[HiIndex]; 5013 Mask1[1] = -1; 5014 Mask1[2] = PermMask[HiIndex^1]; 5015 Mask1[3] = -1; 5016 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); 5017 5018 if (HiIndex >= 2) { 5019 Mask1[0] = PermMask[0]; 5020 Mask1[1] = PermMask[1]; 5021 Mask1[2] = HiIndex & 1 ? 6 : 4; 5022 Mask1[3] = HiIndex & 1 ? 4 : 6; 5023 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); 5024 } else { 5025 Mask1[0] = HiIndex & 1 ? 2 : 0; 5026 Mask1[1] = HiIndex & 1 ? 0 : 2; 5027 Mask1[2] = PermMask[2]; 5028 Mask1[3] = PermMask[3]; 5029 if (Mask1[2] >= 0) 5030 Mask1[2] += 4; 5031 if (Mask1[3] >= 0) 5032 Mask1[3] += 4; 5033 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]); 5034 } 5035 } 5036 5037 // Break it into (shuffle shuffle_hi, shuffle_lo). 5038 Locs.clear(); 5039 SmallVector<int,8> LoMask(4U, -1); 5040 SmallVector<int,8> HiMask(4U, -1); 5041 5042 SmallVector<int,8> *MaskPtr = &LoMask; 5043 unsigned MaskIdx = 0; 5044 unsigned LoIdx = 0; 5045 unsigned HiIdx = 2; 5046 for (unsigned i = 0; i != 4; ++i) { 5047 if (i == 2) { 5048 MaskPtr = &HiMask; 5049 MaskIdx = 1; 5050 LoIdx = 0; 5051 HiIdx = 2; 5052 } 5053 int Idx = PermMask[i]; 5054 if (Idx < 0) { 5055 Locs[i] = std::make_pair(-1, -1); 5056 } else if (Idx < 4) { 5057 Locs[i] = std::make_pair(MaskIdx, LoIdx); 5058 (*MaskPtr)[LoIdx] = Idx; 5059 LoIdx++; 5060 } else { 5061 Locs[i] = std::make_pair(MaskIdx, HiIdx); 5062 (*MaskPtr)[HiIdx] = Idx; 5063 HiIdx++; 5064 } 5065 } 5066 5067 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]); 5068 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]); 5069 SmallVector<int, 8> MaskOps; 5070 for (unsigned i = 0; i != 4; ++i) { 5071 if (Locs[i].first == -1) { 5072 MaskOps.push_back(-1); 5073 } else { 5074 unsigned Idx = Locs[i].first * 4 + Locs[i].second; 5075 MaskOps.push_back(Idx); 5076 } 5077 } 5078 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]); 5079} 5080 5081static bool MayFoldVectorLoad(SDValue V) { 5082 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST) 5083 V = V.getOperand(0); 5084 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR) 5085 V = V.getOperand(0); 5086 if (MayFoldLoad(V)) 5087 return true; 5088 return false; 5089} 5090 5091// FIXME: the version above should always be used. Since there's 5092// a bug where several vector shuffles can't be folded because the 5093// DAG is not updated during lowering and a node claims to have two 5094// uses while it only has one, use this version, and let isel match 5095// another instruction if the load really happens to have more than 5096// one use. Remove this version after this bug get fixed. 5097// rdar://8434668, PR8156 5098static bool RelaxedMayFoldVectorLoad(SDValue V) { 5099 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST) 5100 V = V.getOperand(0); 5101 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR) 5102 V = V.getOperand(0); 5103 if (ISD::isNormalLoad(V.getNode())) 5104 return true; 5105 return false; 5106} 5107 5108/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by 5109/// a vector extract, and if both can be later optimized into a single load. 5110/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked 5111/// here because otherwise a target specific shuffle node is going to be 5112/// emitted for this shuffle, and the optimization not done. 5113/// FIXME: This is probably not the best approach, but fix the problem 5114/// until the right path is decided. 5115static 5116bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG, 5117 const TargetLowering &TLI) { 5118 EVT VT = V.getValueType(); 5119 ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V); 5120 5121 // Be sure that the vector shuffle is present in a pattern like this: 5122 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr) 5123 if (!V.hasOneUse()) 5124 return false; 5125 5126 SDNode *N = *V.getNode()->use_begin(); 5127 if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 5128 return false; 5129 5130 SDValue EltNo = N->getOperand(1); 5131 if (!isa<ConstantSDNode>(EltNo)) 5132 return false; 5133 5134 // If the bit convert changed the number of elements, it is unsafe 5135 // to examine the mask. 5136 bool HasShuffleIntoBitcast = false; 5137 if (V.getOpcode() == ISD::BITCAST) { 5138 EVT SrcVT = V.getOperand(0).getValueType(); 5139 if (SrcVT.getVectorNumElements() != VT.getVectorNumElements()) 5140 return false; 5141 V = V.getOperand(0); 5142 HasShuffleIntoBitcast = true; 5143 } 5144 5145 // Select the input vector, guarding against out of range extract vector. 5146 unsigned NumElems = VT.getVectorNumElements(); 5147 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); 5148 int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt); 5149 V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1); 5150 5151 // Skip one more bit_convert if necessary 5152 if (V.getOpcode() == ISD::BITCAST) 5153 V = V.getOperand(0); 5154 5155 if (ISD::isNormalLoad(V.getNode())) { 5156 // Is the original load suitable? 5157 LoadSDNode *LN0 = cast<LoadSDNode>(V); 5158 5159 // FIXME: avoid the multi-use bug that is preventing lots of 5160 // of foldings to be detected, this is still wrong of course, but 5161 // give the temporary desired behavior, and if it happens that 5162 // the load has real more uses, during isel it will not fold, and 5163 // will generate poor code. 5164 if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse() 5165 return false; 5166 5167 if (!HasShuffleIntoBitcast) 5168 return true; 5169 5170 // If there's a bitcast before the shuffle, check if the load type and 5171 // alignment is valid. 5172 unsigned Align = LN0->getAlignment(); 5173 unsigned NewAlign = 5174 TLI.getTargetData()->getABITypeAlignment( 5175 VT.getTypeForEVT(*DAG.getContext())); 5176 5177 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT)) 5178 return false; 5179 } 5180 5181 return true; 5182} 5183 5184static 5185SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) { 5186 EVT VT = Op.getValueType(); 5187 5188 // Canonizalize to v2f64. 5189 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); 5190 return DAG.getNode(ISD::BITCAST, dl, VT, 5191 getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64, 5192 V1, DAG)); 5193} 5194 5195static 5196SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, 5197 bool HasSSE2) { 5198 SDValue V1 = Op.getOperand(0); 5199 SDValue V2 = Op.getOperand(1); 5200 EVT VT = Op.getValueType(); 5201 5202 assert(VT != MVT::v2i64 && "unsupported shuffle type"); 5203 5204 if (HasSSE2 && VT == MVT::v2f64) 5205 return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG); 5206 5207 // v4f32 or v4i32 5208 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG); 5209} 5210 5211static 5212SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) { 5213 SDValue V1 = Op.getOperand(0); 5214 SDValue V2 = Op.getOperand(1); 5215 EVT VT = Op.getValueType(); 5216 5217 assert((VT == MVT::v4i32 || VT == MVT::v4f32) && 5218 "unsupported shuffle type"); 5219 5220 if (V2.getOpcode() == ISD::UNDEF) 5221 V2 = V1; 5222 5223 // v4i32 or v4f32 5224 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG); 5225} 5226 5227static 5228SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) { 5229 SDValue V1 = Op.getOperand(0); 5230 SDValue V2 = Op.getOperand(1); 5231 EVT VT = Op.getValueType(); 5232 unsigned NumElems = VT.getVectorNumElements(); 5233 5234 // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second 5235 // operand of these instructions is only memory, so check if there's a 5236 // potencial load folding here, otherwise use SHUFPS or MOVSD to match the 5237 // same masks. 5238 bool CanFoldLoad = false; 5239 5240 // Trivial case, when V2 comes from a load. 5241 if (MayFoldVectorLoad(V2)) 5242 CanFoldLoad = true; 5243 5244 // When V1 is a load, it can be folded later into a store in isel, example: 5245 // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1) 5246 // turns into: 5247 // (MOVLPSmr addr:$src1, VR128:$src2) 5248 // So, recognize this potential and also use MOVLPS or MOVLPD 5249 if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op)) 5250 CanFoldLoad = true; 5251 5252 if (CanFoldLoad) { 5253 if (HasSSE2 && NumElems == 2) 5254 return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG); 5255 5256 if (NumElems == 4) 5257 return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG); 5258 } 5259 5260 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 5261 // movl and movlp will both match v2i64, but v2i64 is never matched by 5262 // movl earlier because we make it strict to avoid messing with the movlp load 5263 // folding logic (see the code above getMOVLP call). Match it here then, 5264 // this is horrible, but will stay like this until we move all shuffle 5265 // matching to x86 specific nodes. Note that for the 1st condition all 5266 // types are matched with movsd. 5267 if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp)) 5268 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); 5269 else if (HasSSE2) 5270 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); 5271 5272 5273 assert(VT != MVT::v4i32 && "unsupported shuffle type"); 5274 5275 // Invert the operand order and use SHUFPS to match it. 5276 return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1, 5277 X86::getShuffleSHUFImmediate(SVOp), DAG); 5278} 5279 5280static inline unsigned getUNPCKLOpcode(EVT VT) { 5281 switch(VT.getSimpleVT().SimpleTy) { 5282 case MVT::v4i32: return X86ISD::PUNPCKLDQ; 5283 case MVT::v2i64: return X86ISD::PUNPCKLQDQ; 5284 case MVT::v4f32: return X86ISD::UNPCKLPS; 5285 case MVT::v2f64: return X86ISD::UNPCKLPD; 5286 case MVT::v16i8: return X86ISD::PUNPCKLBW; 5287 case MVT::v8i16: return X86ISD::PUNPCKLWD; 5288 default: 5289 llvm_unreachable("Unknow type for unpckl"); 5290 } 5291 return 0; 5292} 5293 5294static inline unsigned getUNPCKHOpcode(EVT VT) { 5295 switch(VT.getSimpleVT().SimpleTy) { 5296 case MVT::v4i32: return X86ISD::PUNPCKHDQ; 5297 case MVT::v2i64: return X86ISD::PUNPCKHQDQ; 5298 case MVT::v4f32: return X86ISD::UNPCKHPS; 5299 case MVT::v2f64: return X86ISD::UNPCKHPD; 5300 case MVT::v16i8: return X86ISD::PUNPCKHBW; 5301 case MVT::v8i16: return X86ISD::PUNPCKHWD; 5302 default: 5303 llvm_unreachable("Unknow type for unpckh"); 5304 } 5305 return 0; 5306} 5307 5308static 5309SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG, 5310 const TargetLowering &TLI, 5311 const X86Subtarget *Subtarget) { 5312 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 5313 EVT VT = Op.getValueType(); 5314 DebugLoc dl = Op.getDebugLoc(); 5315 SDValue V1 = Op.getOperand(0); 5316 SDValue V2 = Op.getOperand(1); 5317 5318 if (isZeroShuffle(SVOp)) 5319 return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); 5320 5321 // Handle splat operations 5322 if (SVOp->isSplat()) { 5323 // Special case, this is the only place now where it's 5324 // allowed to return a vector_shuffle operation without 5325 // using a target specific node, because *hopefully* it 5326 // will be optimized away by the dag combiner. 5327 if (VT.getVectorNumElements() <= 4 && 5328 CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI)) 5329 return Op; 5330 5331 // Handle splats by matching through known masks 5332 if (VT.getVectorNumElements() <= 4) 5333 return SDValue(); 5334 5335 // Canonicalize all of the remaining to v4f32. 5336 return PromoteSplat(SVOp, DAG); 5337 } 5338 5339 // If the shuffle can be profitably rewritten as a narrower shuffle, then 5340 // do it! 5341 if (VT == MVT::v8i16 || VT == MVT::v16i8) { 5342 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); 5343 if (NewOp.getNode()) 5344 return DAG.getNode(ISD::BITCAST, dl, VT, NewOp); 5345 } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { 5346 // FIXME: Figure out a cleaner way to do this. 5347 // Try to make use of movq to zero out the top part. 5348 if (ISD::isBuildVectorAllZeros(V2.getNode())) { 5349 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); 5350 if (NewOp.getNode()) { 5351 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false)) 5352 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0), 5353 DAG, Subtarget, dl); 5354 } 5355 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { 5356 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl); 5357 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp))) 5358 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1), 5359 DAG, Subtarget, dl); 5360 } 5361 } 5362 return SDValue(); 5363} 5364 5365SDValue 5366X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { 5367 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); 5368 SDValue V1 = Op.getOperand(0); 5369 SDValue V2 = Op.getOperand(1); 5370 EVT VT = Op.getValueType(); 5371 DebugLoc dl = Op.getDebugLoc(); 5372 unsigned NumElems = VT.getVectorNumElements(); 5373 bool isMMX = VT.getSizeInBits() == 64; 5374 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; 5375 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; 5376 bool V1IsSplat = false; 5377 bool V2IsSplat = false; 5378 bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX(); 5379 bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX(); 5380 bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX(); 5381 MachineFunction &MF = DAG.getMachineFunction(); 5382 bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize); 5383 5384 // Shuffle operations on MMX not supported. 5385 if (isMMX) 5386 return Op; 5387 5388 // Vector shuffle lowering takes 3 steps: 5389 // 5390 // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable 5391 // narrowing and commutation of operands should be handled. 5392 // 2) Matching of shuffles with known shuffle masks to x86 target specific 5393 // shuffle nodes. 5394 // 3) Rewriting of unmatched masks into new generic shuffle operations, 5395 // so the shuffle can be broken into other shuffles and the legalizer can 5396 // try the lowering again. 5397 // 5398 // The general ideia is that no vector_shuffle operation should be left to 5399 // be matched during isel, all of them must be converted to a target specific 5400 // node here. 5401 5402 // Normalize the input vectors. Here splats, zeroed vectors, profitable 5403 // narrowing and commutation of operands should be handled. The actual code 5404 // doesn't include all of those, work in progress... 5405 SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget); 5406 if (NewOp.getNode()) 5407 return NewOp; 5408 5409 // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and 5410 // unpckh_undef). Only use pshufd if speed is more important than size. 5411 if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp)) 5412 if (VT != MVT::v2i64 && VT != MVT::v2f64) 5413 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG); 5414 if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp)) 5415 if (VT != MVT::v2i64 && VT != MVT::v2f64) 5416 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG); 5417 5418 if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef && 5419 RelaxedMayFoldVectorLoad(V1)) 5420 return getMOVDDup(Op, dl, V1, DAG); 5421 5422 if (X86::isMOVHLPS_v_undef_Mask(SVOp)) 5423 return getMOVHighToLow(Op, dl, DAG); 5424 5425 // Use to match splats 5426 if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef && 5427 (VT == MVT::v2f64 || VT == MVT::v2i64)) 5428 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG); 5429 5430 if (X86::isPSHUFDMask(SVOp)) { 5431 // The actual implementation will match the mask in the if above and then 5432 // during isel it can match several different instructions, not only pshufd 5433 // as its name says, sad but true, emulate the behavior for now... 5434 if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64))) 5435 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG); 5436 5437 unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp); 5438 5439 if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32)) 5440 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG); 5441 5442 if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64)) 5443 return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1, 5444 TargetMask, DAG); 5445 5446 if (VT == MVT::v4f32) 5447 return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1, 5448 TargetMask, DAG); 5449 } 5450 5451 // Check if this can be converted into a logical shift. 5452 bool isLeft = false; 5453 unsigned ShAmt = 0; 5454 SDValue ShVal; 5455 bool isShift = getSubtarget()->hasSSE2() && 5456 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt); 5457 if (isShift && ShVal.hasOneUse()) { 5458 // If the shifted value has multiple uses, it may be cheaper to use 5459 // v_set0 + movlhps or movhlps, etc. 5460 EVT EltVT = VT.getVectorElementType(); 5461 ShAmt *= EltVT.getSizeInBits(); 5462 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); 5463 } 5464 5465 if (X86::isMOVLMask(SVOp)) { 5466 if (V1IsUndef) 5467 return V2; 5468 if (ISD::isBuildVectorAllZeros(V1.getNode())) 5469 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl); 5470 if (!X86::isMOVLPMask(SVOp)) { 5471 if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64)) 5472 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG); 5473 5474 if (VT == MVT::v4i32 || VT == MVT::v4f32) 5475 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG); 5476 } 5477 } 5478 5479 // FIXME: fold these into legal mask. 5480 if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp)) 5481 return getMOVLowToHigh(Op, dl, DAG, HasSSE2); 5482 5483 if (X86::isMOVHLPSMask(SVOp)) 5484 return getMOVHighToLow(Op, dl, DAG); 5485 5486 if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4) 5487 return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG); 5488 5489 if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4) 5490 return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG); 5491 5492 if (X86::isMOVLPMask(SVOp)) 5493 return getMOVLP(Op, dl, DAG, HasSSE2); 5494 5495 if (ShouldXformToMOVHLPS(SVOp) || 5496 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp)) 5497 return CommuteVectorShuffle(SVOp, DAG); 5498 5499 if (isShift) { 5500 // No better options. Use a vshl / vsrl. 5501 EVT EltVT = VT.getVectorElementType(); 5502 ShAmt *= EltVT.getSizeInBits(); 5503 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); 5504 } 5505 5506 bool Commuted = false; 5507 // FIXME: This should also accept a bitcast of a splat? Be careful, not 5508 // 1,1,1,1 -> v8i16 though. 5509 V1IsSplat = isSplatVector(V1.getNode()); 5510 V2IsSplat = isSplatVector(V2.getNode()); 5511 5512 // Canonicalize the splat or undef, if present, to be on the RHS. 5513 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { 5514 Op = CommuteVectorShuffle(SVOp, DAG); 5515 SVOp = cast<ShuffleVectorSDNode>(Op); 5516 V1 = SVOp->getOperand(0); 5517 V2 = SVOp->getOperand(1); 5518 std::swap(V1IsSplat, V2IsSplat); 5519 std::swap(V1IsUndef, V2IsUndef); 5520 Commuted = true; 5521 } 5522 5523 if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) { 5524 // Shuffling low element of v1 into undef, just return v1. 5525 if (V2IsUndef) 5526 return V1; 5527 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which 5528 // the instruction selector will not match, so get a canonical MOVL with 5529 // swapped operands to undo the commute. 5530 return getMOVL(DAG, dl, VT, V2, V1); 5531 } 5532 5533 if (X86::isUNPCKLMask(SVOp)) 5534 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG); 5535 5536 if (X86::isUNPCKHMask(SVOp)) 5537 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG); 5538 5539 if (V2IsSplat) { 5540 // Normalize mask so all entries that point to V2 points to its first 5541 // element then try to match unpck{h|l} again. If match, return a 5542 // new vector_shuffle with the corrected mask. 5543 SDValue NewMask = NormalizeMask(SVOp, DAG); 5544 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask); 5545 if (NSVOp != SVOp) { 5546 if (X86::isUNPCKLMask(NSVOp, true)) { 5547 return NewMask; 5548 } else if (X86::isUNPCKHMask(NSVOp, true)) { 5549 return NewMask; 5550 } 5551 } 5552 } 5553 5554 if (Commuted) { 5555 // Commute is back and try unpck* again. 5556 // FIXME: this seems wrong. 5557 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG); 5558 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp); 5559 5560 if (X86::isUNPCKLMask(NewSVOp)) 5561 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG); 5562 5563 if (X86::isUNPCKHMask(NewSVOp)) 5564 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG); 5565 } 5566 5567 // Normalize the node to match x86 shuffle ops if needed 5568 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp)) 5569 return CommuteVectorShuffle(SVOp, DAG); 5570 5571 // The checks below are all present in isShuffleMaskLegal, but they are 5572 // inlined here right now to enable us to directly emit target specific 5573 // nodes, and remove one by one until they don't return Op anymore. 5574 SmallVector<int, 16> M; 5575 SVOp->getMask(M); 5576 5577 if (isPALIGNRMask(M, VT, HasSSSE3)) 5578 return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2, 5579 X86::getShufflePALIGNRImmediate(SVOp), 5580 DAG); 5581 5582 if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) && 5583 SVOp->getSplatIndex() == 0 && V2IsUndef) { 5584 if (VT == MVT::v2f64) 5585 return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG); 5586 if (VT == MVT::v2i64) 5587 return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG); 5588 } 5589 5590 if (isPSHUFHWMask(M, VT)) 5591 return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1, 5592 X86::getShufflePSHUFHWImmediate(SVOp), 5593 DAG); 5594 5595 if (isPSHUFLWMask(M, VT)) 5596 return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1, 5597 X86::getShufflePSHUFLWImmediate(SVOp), 5598 DAG); 5599 5600 if (isSHUFPMask(M, VT)) { 5601 unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp); 5602 if (VT == MVT::v4f32 || VT == MVT::v4i32) 5603 return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2, 5604 TargetMask, DAG); 5605 if (VT == MVT::v2f64 || VT == MVT::v2i64) 5606 return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2, 5607 TargetMask, DAG); 5608 } 5609 5610 if (X86::isUNPCKL_v_undef_Mask(SVOp)) 5611 if (VT != MVT::v2i64 && VT != MVT::v2f64) 5612 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG); 5613 if (X86::isUNPCKH_v_undef_Mask(SVOp)) 5614 if (VT != MVT::v2i64 && VT != MVT::v2f64) 5615 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG); 5616 5617 // Handle v8i16 specifically since SSE can do byte extraction and insertion. 5618 if (VT == MVT::v8i16) { 5619 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG); 5620 if (NewOp.getNode()) 5621 return NewOp; 5622 } 5623 5624 if (VT == MVT::v16i8) { 5625 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this); 5626 if (NewOp.getNode()) 5627 return NewOp; 5628 } 5629 5630 // Handle all 4 wide cases with a number of shuffles. 5631 if (NumElems == 4) 5632 return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG); 5633 5634 return SDValue(); 5635} 5636 5637SDValue 5638X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, 5639 SelectionDAG &DAG) const { 5640 EVT VT = Op.getValueType(); 5641 DebugLoc dl = Op.getDebugLoc(); 5642 if (VT.getSizeInBits() == 8) { 5643 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, 5644 Op.getOperand(0), Op.getOperand(1)); 5645 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, 5646 DAG.getValueType(VT)); 5647 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); 5648 } else if (VT.getSizeInBits() == 16) { 5649 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5650 // If Idx is 0, it's cheaper to do a move instead of a pextrw. 5651 if (Idx == 0) 5652 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, 5653 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 5654 DAG.getNode(ISD::BITCAST, dl, 5655 MVT::v4i32, 5656 Op.getOperand(0)), 5657 Op.getOperand(1))); 5658 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, 5659 Op.getOperand(0), Op.getOperand(1)); 5660 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, 5661 DAG.getValueType(VT)); 5662 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); 5663 } else if (VT == MVT::f32) { 5664 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy 5665 // the result back to FR32 register. It's only worth matching if the 5666 // result has a single use which is a store or a bitcast to i32. And in 5667 // the case of a store, it's not worth it if the index is a constant 0, 5668 // because a MOVSSmr can be used instead, which is smaller and faster. 5669 if (!Op.hasOneUse()) 5670 return SDValue(); 5671 SDNode *User = *Op.getNode()->use_begin(); 5672 if ((User->getOpcode() != ISD::STORE || 5673 (isa<ConstantSDNode>(Op.getOperand(1)) && 5674 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) && 5675 (User->getOpcode() != ISD::BITCAST || 5676 User->getValueType(0) != MVT::i32)) 5677 return SDValue(); 5678 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 5679 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, 5680 Op.getOperand(0)), 5681 Op.getOperand(1)); 5682 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract); 5683 } else if (VT == MVT::i32) { 5684 // ExtractPS works with constant index. 5685 if (isa<ConstantSDNode>(Op.getOperand(1))) 5686 return Op; 5687 } 5688 return SDValue(); 5689} 5690 5691 5692SDValue 5693X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 5694 SelectionDAG &DAG) const { 5695 if (!isa<ConstantSDNode>(Op.getOperand(1))) 5696 return SDValue(); 5697 5698 if (Subtarget->hasSSE41()) { 5699 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); 5700 if (Res.getNode()) 5701 return Res; 5702 } 5703 5704 EVT VT = Op.getValueType(); 5705 DebugLoc dl = Op.getDebugLoc(); 5706 // TODO: handle v16i8. 5707 if (VT.getSizeInBits() == 16) { 5708 SDValue Vec = Op.getOperand(0); 5709 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5710 if (Idx == 0) 5711 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, 5712 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, 5713 DAG.getNode(ISD::BITCAST, dl, 5714 MVT::v4i32, Vec), 5715 Op.getOperand(1))); 5716 // Transform it so it match pextrw which produces a 32-bit result. 5717 EVT EltVT = MVT::i32; 5718 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, 5719 Op.getOperand(0), Op.getOperand(1)); 5720 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, 5721 DAG.getValueType(VT)); 5722 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); 5723 } else if (VT.getSizeInBits() == 32) { 5724 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5725 if (Idx == 0) 5726 return Op; 5727 5728 // SHUFPS the element to the lowest double word, then movss. 5729 int Mask[4] = { Idx, -1, -1, -1 }; 5730 EVT VVT = Op.getOperand(0).getValueType(); 5731 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), 5732 DAG.getUNDEF(VVT), Mask); 5733 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, 5734 DAG.getIntPtrConstant(0)); 5735 } else if (VT.getSizeInBits() == 64) { 5736 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b 5737 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught 5738 // to match extract_elt for f64. 5739 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5740 if (Idx == 0) 5741 return Op; 5742 5743 // UNPCKHPD the element to the lowest double word, then movsd. 5744 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored 5745 // to a f64mem, the whole operation is folded into a single MOVHPDmr. 5746 int Mask[2] = { 1, -1 }; 5747 EVT VVT = Op.getOperand(0).getValueType(); 5748 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), 5749 DAG.getUNDEF(VVT), Mask); 5750 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, 5751 DAG.getIntPtrConstant(0)); 5752 } 5753 5754 return SDValue(); 5755} 5756 5757SDValue 5758X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, 5759 SelectionDAG &DAG) const { 5760 EVT VT = Op.getValueType(); 5761 EVT EltVT = VT.getVectorElementType(); 5762 DebugLoc dl = Op.getDebugLoc(); 5763 5764 SDValue N0 = Op.getOperand(0); 5765 SDValue N1 = Op.getOperand(1); 5766 SDValue N2 = Op.getOperand(2); 5767 5768 if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) && 5769 isa<ConstantSDNode>(N2)) { 5770 unsigned Opc; 5771 if (VT == MVT::v8i16) 5772 Opc = X86ISD::PINSRW; 5773 else if (VT == MVT::v16i8) 5774 Opc = X86ISD::PINSRB; 5775 else 5776 Opc = X86ISD::PINSRB; 5777 5778 // Transform it so it match pinsr{b,w} which expects a GR32 as its second 5779 // argument. 5780 if (N1.getValueType() != MVT::i32) 5781 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); 5782 if (N2.getValueType() != MVT::i32) 5783 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); 5784 return DAG.getNode(Opc, dl, VT, N0, N1, N2); 5785 } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) { 5786 // Bits [7:6] of the constant are the source select. This will always be 5787 // zero here. The DAG Combiner may combine an extract_elt index into these 5788 // bits. For example (insert (extract, 3), 2) could be matched by putting 5789 // the '3' into bits [7:6] of X86ISD::INSERTPS. 5790 // Bits [5:4] of the constant are the destination select. This is the 5791 // value of the incoming immediate. 5792 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may 5793 // combine either bitwise AND or insert of float 0.0 to set these bits. 5794 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4); 5795 // Create this as a scalar to vector.. 5796 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); 5797 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); 5798 } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) { 5799 // PINSR* works with constant index. 5800 return Op; 5801 } 5802 return SDValue(); 5803} 5804 5805SDValue 5806X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { 5807 EVT VT = Op.getValueType(); 5808 EVT EltVT = VT.getVectorElementType(); 5809 5810 if (Subtarget->hasSSE41()) 5811 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); 5812 5813 if (EltVT == MVT::i8) 5814 return SDValue(); 5815 5816 DebugLoc dl = Op.getDebugLoc(); 5817 SDValue N0 = Op.getOperand(0); 5818 SDValue N1 = Op.getOperand(1); 5819 SDValue N2 = Op.getOperand(2); 5820 5821 if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) { 5822 // Transform it so it match pinsrw which expects a 16-bit value in a GR32 5823 // as its second argument. 5824 if (N1.getValueType() != MVT::i32) 5825 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); 5826 if (N2.getValueType() != MVT::i32) 5827 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); 5828 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2); 5829 } 5830 return SDValue(); 5831} 5832 5833SDValue 5834X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { 5835 DebugLoc dl = Op.getDebugLoc(); 5836 5837 if (Op.getValueType() == MVT::v1i64 && 5838 Op.getOperand(0).getValueType() == MVT::i64) 5839 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); 5840 5841 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); 5842 assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 && 5843 "Expected an SSE type!"); 5844 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), 5845 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt)); 5846} 5847 5848// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as 5849// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is 5850// one of the above mentioned nodes. It has to be wrapped because otherwise 5851// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only 5852// be used to form addressing mode. These wrapped nodes will be selected 5853// into MOV32ri. 5854SDValue 5855X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { 5856 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 5857 5858 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the 5859 // global base reg. 5860 unsigned char OpFlag = 0; 5861 unsigned WrapperKind = X86ISD::Wrapper; 5862 CodeModel::Model M = getTargetMachine().getCodeModel(); 5863 5864 if (Subtarget->isPICStyleRIPRel() && 5865 (M == CodeModel::Small || M == CodeModel::Kernel)) 5866 WrapperKind = X86ISD::WrapperRIP; 5867 else if (Subtarget->isPICStyleGOT()) 5868 OpFlag = X86II::MO_GOTOFF; 5869 else if (Subtarget->isPICStyleStubPIC()) 5870 OpFlag = X86II::MO_PIC_BASE_OFFSET; 5871 5872 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), 5873 CP->getAlignment(), 5874 CP->getOffset(), OpFlag); 5875 DebugLoc DL = CP->getDebugLoc(); 5876 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); 5877 // With PIC, the address is actually $g + Offset. 5878 if (OpFlag) { 5879 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), 5880 DAG.getNode(X86ISD::GlobalBaseReg, 5881 DebugLoc(), getPointerTy()), 5882 Result); 5883 } 5884 5885 return Result; 5886} 5887 5888SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { 5889 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 5890 5891 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the 5892 // global base reg. 5893 unsigned char OpFlag = 0; 5894 unsigned WrapperKind = X86ISD::Wrapper; 5895 CodeModel::Model M = getTargetMachine().getCodeModel(); 5896 5897 if (Subtarget->isPICStyleRIPRel() && 5898 (M == CodeModel::Small || M == CodeModel::Kernel)) 5899 WrapperKind = X86ISD::WrapperRIP; 5900 else if (Subtarget->isPICStyleGOT()) 5901 OpFlag = X86II::MO_GOTOFF; 5902 else if (Subtarget->isPICStyleStubPIC()) 5903 OpFlag = X86II::MO_PIC_BASE_OFFSET; 5904 5905 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), 5906 OpFlag); 5907 DebugLoc DL = JT->getDebugLoc(); 5908 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); 5909 5910 // With PIC, the address is actually $g + Offset. 5911 if (OpFlag) 5912 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), 5913 DAG.getNode(X86ISD::GlobalBaseReg, 5914 DebugLoc(), getPointerTy()), 5915 Result); 5916 5917 return Result; 5918} 5919 5920SDValue 5921X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { 5922 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); 5923 5924 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the 5925 // global base reg. 5926 unsigned char OpFlag = 0; 5927 unsigned WrapperKind = X86ISD::Wrapper; 5928 CodeModel::Model M = getTargetMachine().getCodeModel(); 5929 5930 if (Subtarget->isPICStyleRIPRel() && 5931 (M == CodeModel::Small || M == CodeModel::Kernel)) 5932 WrapperKind = X86ISD::WrapperRIP; 5933 else if (Subtarget->isPICStyleGOT()) 5934 OpFlag = X86II::MO_GOTOFF; 5935 else if (Subtarget->isPICStyleStubPIC()) 5936 OpFlag = X86II::MO_PIC_BASE_OFFSET; 5937 5938 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag); 5939 5940 DebugLoc DL = Op.getDebugLoc(); 5941 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); 5942 5943 5944 // With PIC, the address is actually $g + Offset. 5945 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && 5946 !Subtarget->is64Bit()) { 5947 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), 5948 DAG.getNode(X86ISD::GlobalBaseReg, 5949 DebugLoc(), getPointerTy()), 5950 Result); 5951 } 5952 5953 return Result; 5954} 5955 5956SDValue 5957X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { 5958 // Create the TargetBlockAddressAddress node. 5959 unsigned char OpFlags = 5960 Subtarget->ClassifyBlockAddressReference(); 5961 CodeModel::Model M = getTargetMachine().getCodeModel(); 5962 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 5963 DebugLoc dl = Op.getDebugLoc(); 5964 SDValue Result = DAG.getBlockAddress(BA, getPointerTy(), 5965 /*isTarget=*/true, OpFlags); 5966 5967 if (Subtarget->isPICStyleRIPRel() && 5968 (M == CodeModel::Small || M == CodeModel::Kernel)) 5969 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); 5970 else 5971 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); 5972 5973 // With PIC, the address is actually $g + Offset. 5974 if (isGlobalRelativeToPICBase(OpFlags)) { 5975 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), 5976 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), 5977 Result); 5978 } 5979 5980 return Result; 5981} 5982 5983SDValue 5984X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, 5985 int64_t Offset, 5986 SelectionDAG &DAG) const { 5987 // Create the TargetGlobalAddress node, folding in the constant 5988 // offset if it is legal. 5989 unsigned char OpFlags = 5990 Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); 5991 CodeModel::Model M = getTargetMachine().getCodeModel(); 5992 SDValue Result; 5993 if (OpFlags == X86II::MO_NO_FLAG && 5994 X86::isOffsetSuitableForCodeModel(Offset, M)) { 5995 // A direct static reference to a global. 5996 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset); 5997 Offset = 0; 5998 } else { 5999 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags); 6000 } 6001 6002 if (Subtarget->isPICStyleRIPRel() && 6003 (M == CodeModel::Small || M == CodeModel::Kernel)) 6004 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); 6005 else 6006 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); 6007 6008 // With PIC, the address is actually $g + Offset. 6009 if (isGlobalRelativeToPICBase(OpFlags)) { 6010 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), 6011 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), 6012 Result); 6013 } 6014 6015 // For globals that require a load from a stub to get the address, emit the 6016 // load. 6017 if (isGlobalStubReference(OpFlags)) 6018 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result, 6019 MachinePointerInfo::getGOT(), false, false, 0); 6020 6021 // If there was a non-zero offset that we didn't fold, create an explicit 6022 // addition for it. 6023 if (Offset != 0) 6024 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result, 6025 DAG.getConstant(Offset, getPointerTy())); 6026 6027 return Result; 6028} 6029 6030SDValue 6031X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { 6032 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 6033 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); 6034 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); 6035} 6036 6037static SDValue 6038GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, 6039 SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, 6040 unsigned char OperandFlags) { 6041 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 6042 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6043 DebugLoc dl = GA->getDebugLoc(); 6044 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, 6045 GA->getValueType(0), 6046 GA->getOffset(), 6047 OperandFlags); 6048 if (InFlag) { 6049 SDValue Ops[] = { Chain, TGA, *InFlag }; 6050 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3); 6051 } else { 6052 SDValue Ops[] = { Chain, TGA }; 6053 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2); 6054 } 6055 6056 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 6057 MFI->setAdjustsStack(true); 6058 6059 SDValue Flag = Chain.getValue(1); 6060 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); 6061} 6062 6063// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit 6064static SDValue 6065LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, 6066 const EVT PtrVT) { 6067 SDValue InFlag; 6068 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better 6069 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, 6070 DAG.getNode(X86ISD::GlobalBaseReg, 6071 DebugLoc(), PtrVT), InFlag); 6072 InFlag = Chain.getValue(1); 6073 6074 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); 6075} 6076 6077// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit 6078static SDValue 6079LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, 6080 const EVT PtrVT) { 6081 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, 6082 X86::RAX, X86II::MO_TLSGD); 6083} 6084 6085// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or 6086// "local exec" model. 6087static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, 6088 const EVT PtrVT, TLSModel::Model model, 6089 bool is64Bit) { 6090 DebugLoc dl = GA->getDebugLoc(); 6091 6092 // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit). 6093 Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(), 6094 is64Bit ? 257 : 256)); 6095 6096 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), 6097 DAG.getIntPtrConstant(0), 6098 MachinePointerInfo(Ptr), false, false, 0); 6099 6100 unsigned char OperandFlags = 0; 6101 // Most TLS accesses are not RIP relative, even on x86-64. One exception is 6102 // initialexec. 6103 unsigned WrapperKind = X86ISD::Wrapper; 6104 if (model == TLSModel::LocalExec) { 6105 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; 6106 } else if (is64Bit) { 6107 assert(model == TLSModel::InitialExec); 6108 OperandFlags = X86II::MO_GOTTPOFF; 6109 WrapperKind = X86ISD::WrapperRIP; 6110 } else { 6111 assert(model == TLSModel::InitialExec); 6112 OperandFlags = X86II::MO_INDNTPOFF; 6113 } 6114 6115 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial 6116 // exec) 6117 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, 6118 GA->getValueType(0), 6119 GA->getOffset(), OperandFlags); 6120 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); 6121 6122 if (model == TLSModel::InitialExec) 6123 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, 6124 MachinePointerInfo::getGOT(), false, false, 0); 6125 6126 // The address of the thread local variable is the add of the thread 6127 // pointer with the offset of the variable. 6128 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); 6129} 6130 6131SDValue 6132X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { 6133 6134 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 6135 const GlobalValue *GV = GA->getGlobal(); 6136 6137 if (Subtarget->isTargetELF()) { 6138 // TODO: implement the "local dynamic" model 6139 // TODO: implement the "initial exec"model for pic executables 6140 6141 // If GV is an alias then use the aliasee for determining 6142 // thread-localness. 6143 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) 6144 GV = GA->resolveAliasedGlobal(false); 6145 6146 TLSModel::Model model 6147 = getTLSModel(GV, getTargetMachine().getRelocationModel()); 6148 6149 switch (model) { 6150 case TLSModel::GeneralDynamic: 6151 case TLSModel::LocalDynamic: // not implemented 6152 if (Subtarget->is64Bit()) 6153 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); 6154 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); 6155 6156 case TLSModel::InitialExec: 6157 case TLSModel::LocalExec: 6158 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, 6159 Subtarget->is64Bit()); 6160 } 6161 } else if (Subtarget->isTargetDarwin()) { 6162 // Darwin only has one model of TLS. Lower to that. 6163 unsigned char OpFlag = 0; 6164 unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ? 6165 X86ISD::WrapperRIP : X86ISD::Wrapper; 6166 6167 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the 6168 // global base reg. 6169 bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) && 6170 !Subtarget->is64Bit(); 6171 if (PIC32) 6172 OpFlag = X86II::MO_TLVP_PIC_BASE; 6173 else 6174 OpFlag = X86II::MO_TLVP; 6175 DebugLoc DL = Op.getDebugLoc(); 6176 SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 6177 GA->getValueType(0), 6178 GA->getOffset(), OpFlag); 6179 SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); 6180 6181 // With PIC32, the address is actually $g + Offset. 6182 if (PIC32) 6183 Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(), 6184 DAG.getNode(X86ISD::GlobalBaseReg, 6185 DebugLoc(), getPointerTy()), 6186 Offset); 6187 6188 // Lowering the machine isd will make sure everything is in the right 6189 // location. 6190 SDValue Chain = DAG.getEntryNode(); 6191 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6192 SDValue Args[] = { Chain, Offset }; 6193 Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2); 6194 6195 // TLSCALL will be codegen'ed as call. Inform MFI that function has calls. 6196 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 6197 MFI->setAdjustsStack(true); 6198 6199 // And our return value (tls address) is in the standard call return value 6200 // location. 6201 unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; 6202 return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy()); 6203 } 6204 6205 assert(false && 6206 "TLS not implemented for this target."); 6207 6208 llvm_unreachable("Unreachable"); 6209 return SDValue(); 6210} 6211 6212 6213/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and 6214/// take a 2 x i32 value to shift plus a shift amount. 6215SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { 6216 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 6217 EVT VT = Op.getValueType(); 6218 unsigned VTBits = VT.getSizeInBits(); 6219 DebugLoc dl = Op.getDebugLoc(); 6220 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; 6221 SDValue ShOpLo = Op.getOperand(0); 6222 SDValue ShOpHi = Op.getOperand(1); 6223 SDValue ShAmt = Op.getOperand(2); 6224 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6225 DAG.getConstant(VTBits - 1, MVT::i8)) 6226 : DAG.getConstant(0, VT); 6227 6228 SDValue Tmp2, Tmp3; 6229 if (Op.getOpcode() == ISD::SHL_PARTS) { 6230 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); 6231 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 6232 } else { 6233 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); 6234 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt); 6235 } 6236 6237 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, 6238 DAG.getConstant(VTBits, MVT::i8)); 6239 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, 6240 AndNode, DAG.getConstant(0, MVT::i8)); 6241 6242 SDValue Hi, Lo; 6243 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); 6244 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; 6245 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; 6246 6247 if (Op.getOpcode() == ISD::SHL_PARTS) { 6248 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); 6249 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); 6250 } else { 6251 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); 6252 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); 6253 } 6254 6255 SDValue Ops[2] = { Lo, Hi }; 6256 return DAG.getMergeValues(Ops, 2, dl); 6257} 6258 6259SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, 6260 SelectionDAG &DAG) const { 6261 EVT SrcVT = Op.getOperand(0).getValueType(); 6262 6263 if (SrcVT.isVector()) 6264 return SDValue(); 6265 6266 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && 6267 "Unknown SINT_TO_FP to lower!"); 6268 6269 // These are really Legal; return the operand so the caller accepts it as 6270 // Legal. 6271 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) 6272 return Op; 6273 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && 6274 Subtarget->is64Bit()) { 6275 return Op; 6276 } 6277 6278 DebugLoc dl = Op.getDebugLoc(); 6279 unsigned Size = SrcVT.getSizeInBits()/8; 6280 MachineFunction &MF = DAG.getMachineFunction(); 6281 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); 6282 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 6283 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), 6284 StackSlot, 6285 MachinePointerInfo::getFixedStack(SSFI), 6286 false, false, 0); 6287 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); 6288} 6289 6290SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, 6291 SDValue StackSlot, 6292 SelectionDAG &DAG) const { 6293 // Build the FILD 6294 DebugLoc DL = Op.getDebugLoc(); 6295 SDVTList Tys; 6296 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); 6297 if (useSSE) 6298 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue); 6299 else 6300 Tys = DAG.getVTList(Op.getValueType(), MVT::Other); 6301 6302 unsigned ByteSize = SrcVT.getSizeInBits()/8; 6303 6304 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); 6305 MachineMemOperand *MMO = 6306 DAG.getMachineFunction() 6307 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), 6308 MachineMemOperand::MOLoad, ByteSize, ByteSize); 6309 6310 SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; 6311 SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG : 6312 X86ISD::FILD, DL, 6313 Tys, Ops, array_lengthof(Ops), 6314 SrcVT, MMO); 6315 6316 if (useSSE) { 6317 Chain = Result.getValue(1); 6318 SDValue InFlag = Result.getValue(2); 6319 6320 // FIXME: Currently the FST is flagged to the FILD_FLAG. This 6321 // shouldn't be necessary except that RFP cannot be live across 6322 // multiple blocks. When stackifier is fixed, they can be uncoupled. 6323 MachineFunction &MF = DAG.getMachineFunction(); 6324 unsigned SSFISize = Op.getValueType().getSizeInBits()/8; 6325 int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false); 6326 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 6327 Tys = DAG.getVTList(MVT::Other); 6328 SDValue Ops[] = { 6329 Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag 6330 }; 6331 MachineMemOperand *MMO = 6332 DAG.getMachineFunction() 6333 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), 6334 MachineMemOperand::MOStore, SSFISize, SSFISize); 6335 6336 Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys, 6337 Ops, array_lengthof(Ops), 6338 Op.getValueType(), MMO); 6339 Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot, 6340 MachinePointerInfo::getFixedStack(SSFI), 6341 false, false, 0); 6342 } 6343 6344 return Result; 6345} 6346 6347// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. 6348SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, 6349 SelectionDAG &DAG) const { 6350 // This algorithm is not obvious. Here it is in C code, more or less: 6351 /* 6352 double uint64_to_double( uint32_t hi, uint32_t lo ) { 6353 static const __m128i exp = { 0x4330000045300000ULL, 0 }; 6354 static const __m128d bias = { 0x1.0p84, 0x1.0p52 }; 6355 6356 // Copy ints to xmm registers. 6357 __m128i xh = _mm_cvtsi32_si128( hi ); 6358 __m128i xl = _mm_cvtsi32_si128( lo ); 6359 6360 // Combine into low half of a single xmm register. 6361 __m128i x = _mm_unpacklo_epi32( xh, xl ); 6362 __m128d d; 6363 double sd; 6364 6365 // Merge in appropriate exponents to give the integer bits the right 6366 // magnitude. 6367 x = _mm_unpacklo_epi32( x, exp ); 6368 6369 // Subtract away the biases to deal with the IEEE-754 double precision 6370 // implicit 1. 6371 d = _mm_sub_pd( (__m128d) x, bias ); 6372 6373 // All conversions up to here are exact. The correctly rounded result is 6374 // calculated using the current rounding mode using the following 6375 // horizontal add. 6376 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) ); 6377 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this 6378 // store doesn't really need to be here (except 6379 // maybe to zero the other double) 6380 return sd; 6381 } 6382 */ 6383 6384 DebugLoc dl = Op.getDebugLoc(); 6385 LLVMContext *Context = DAG.getContext(); 6386 6387 // Build some magic constants. 6388 std::vector<Constant*> CV0; 6389 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000))); 6390 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000))); 6391 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); 6392 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); 6393 Constant *C0 = ConstantVector::get(CV0); 6394 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16); 6395 6396 std::vector<Constant*> CV1; 6397 CV1.push_back( 6398 ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL)))); 6399 CV1.push_back( 6400 ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL)))); 6401 Constant *C1 = ConstantVector::get(CV1); 6402 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); 6403 6404 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, 6405 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 6406 Op.getOperand(0), 6407 DAG.getIntPtrConstant(1))); 6408 SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, 6409 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 6410 Op.getOperand(0), 6411 DAG.getIntPtrConstant(0))); 6412 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2); 6413 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, 6414 MachinePointerInfo::getConstantPool(), 6415 false, false, 16); 6416 SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0); 6417 SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2); 6418 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, 6419 MachinePointerInfo::getConstantPool(), 6420 false, false, 16); 6421 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); 6422 6423 // Add the halves; easiest way is to swap them into another reg first. 6424 int ShufMask[2] = { 1, -1 }; 6425 SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub, 6426 DAG.getUNDEF(MVT::v2f64), ShufMask); 6427 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub); 6428 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add, 6429 DAG.getIntPtrConstant(0)); 6430} 6431 6432// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. 6433SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, 6434 SelectionDAG &DAG) const { 6435 DebugLoc dl = Op.getDebugLoc(); 6436 // FP constant to bias correct the final result. 6437 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), 6438 MVT::f64); 6439 6440 // Load the 32-bit value into an XMM register. 6441 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, 6442 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 6443 Op.getOperand(0), 6444 DAG.getIntPtrConstant(0))); 6445 6446 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, 6447 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load), 6448 DAG.getIntPtrConstant(0)); 6449 6450 // Or the load with the bias. 6451 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, 6452 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 6453 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 6454 MVT::v2f64, Load)), 6455 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 6456 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 6457 MVT::v2f64, Bias))); 6458 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, 6459 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or), 6460 DAG.getIntPtrConstant(0)); 6461 6462 // Subtract the bias. 6463 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); 6464 6465 // Handle final rounding. 6466 EVT DestVT = Op.getValueType(); 6467 6468 if (DestVT.bitsLT(MVT::f64)) { 6469 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 6470 DAG.getIntPtrConstant(0)); 6471 } else if (DestVT.bitsGT(MVT::f64)) { 6472 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 6473 } 6474 6475 // Handle final rounding. 6476 return Sub; 6477} 6478 6479SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, 6480 SelectionDAG &DAG) const { 6481 SDValue N0 = Op.getOperand(0); 6482 DebugLoc dl = Op.getDebugLoc(); 6483 6484 // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't 6485 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform 6486 // the optimization here. 6487 if (DAG.SignBitIsZero(N0)) 6488 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); 6489 6490 EVT SrcVT = N0.getValueType(); 6491 EVT DstVT = Op.getValueType(); 6492 if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) 6493 return LowerUINT_TO_FP_i64(Op, DAG); 6494 else if (SrcVT == MVT::i32 && X86ScalarSSEf64) 6495 return LowerUINT_TO_FP_i32(Op, DAG); 6496 6497 // Make a 64-bit buffer, and use it to build an FILD. 6498 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); 6499 if (SrcVT == MVT::i32) { 6500 SDValue WordOff = DAG.getConstant(4, getPointerTy()); 6501 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, 6502 getPointerTy(), StackSlot, WordOff); 6503 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), 6504 StackSlot, MachinePointerInfo(), 6505 false, false, 0); 6506 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32), 6507 OffsetSlot, MachinePointerInfo(), 6508 false, false, 0); 6509 SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); 6510 return Fild; 6511 } 6512 6513 assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); 6514 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), 6515 StackSlot, MachinePointerInfo(), 6516 false, false, 0); 6517 // For i64 source, we need to add the appropriate power of 2 if the input 6518 // was negative. This is the same as the optimization in 6519 // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, 6520 // we must be careful to do the computation in x87 extended precision, not 6521 // in SSE. (The generic code can't know it's OK to do this, or how to.) 6522 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex(); 6523 MachineMemOperand *MMO = 6524 DAG.getMachineFunction() 6525 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), 6526 MachineMemOperand::MOLoad, 8, 8); 6527 6528 SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); 6529 SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; 6530 SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3, 6531 MVT::i64, MMO); 6532 6533 APInt FF(32, 0x5F800000ULL); 6534 6535 // Check whether the sign bit is set. 6536 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), 6537 Op.getOperand(0), DAG.getConstant(0, MVT::i64), 6538 ISD::SETLT); 6539 6540 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. 6541 SDValue FudgePtr = DAG.getConstantPool( 6542 ConstantInt::get(*DAG.getContext(), FF.zext(64)), 6543 getPointerTy()); 6544 6545 // Get a pointer to FF if the sign bit was set, or to 0 otherwise. 6546 SDValue Zero = DAG.getIntPtrConstant(0); 6547 SDValue Four = DAG.getIntPtrConstant(4); 6548 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, 6549 Zero, Four); 6550 FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset); 6551 6552 // Load the value out, extending it from f32 to f80. 6553 // FIXME: Avoid the extend by constructing the right constant pool? 6554 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(), 6555 FudgePtr, MachinePointerInfo::getConstantPool(), 6556 MVT::f32, false, false, 4); 6557 // Extend everything to 80 bits to force it to be done on x87. 6558 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); 6559 return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0)); 6560} 6561 6562std::pair<SDValue,SDValue> X86TargetLowering:: 6563FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const { 6564 DebugLoc DL = Op.getDebugLoc(); 6565 6566 EVT DstTy = Op.getValueType(); 6567 6568 if (!IsSigned) { 6569 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); 6570 DstTy = MVT::i64; 6571 } 6572 6573 assert(DstTy.getSimpleVT() <= MVT::i64 && 6574 DstTy.getSimpleVT() >= MVT::i16 && 6575 "Unknown FP_TO_SINT to lower!"); 6576 6577 // These are really Legal. 6578 if (DstTy == MVT::i32 && 6579 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) 6580 return std::make_pair(SDValue(), SDValue()); 6581 if (Subtarget->is64Bit() && 6582 DstTy == MVT::i64 && 6583 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) 6584 return std::make_pair(SDValue(), SDValue()); 6585 6586 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary 6587 // stack slot. 6588 MachineFunction &MF = DAG.getMachineFunction(); 6589 unsigned MemSize = DstTy.getSizeInBits()/8; 6590 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); 6591 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 6592 6593 6594 6595 unsigned Opc; 6596 switch (DstTy.getSimpleVT().SimpleTy) { 6597 default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); 6598 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; 6599 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; 6600 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; 6601 } 6602 6603 SDValue Chain = DAG.getEntryNode(); 6604 SDValue Value = Op.getOperand(0); 6605 EVT TheVT = Op.getOperand(0).getValueType(); 6606 if (isScalarFPTypeInSSEReg(TheVT)) { 6607 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); 6608 Chain = DAG.getStore(Chain, DL, Value, StackSlot, 6609 MachinePointerInfo::getFixedStack(SSFI), 6610 false, false, 0); 6611 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); 6612 SDValue Ops[] = { 6613 Chain, StackSlot, DAG.getValueType(TheVT) 6614 }; 6615 6616 MachineMemOperand *MMO = 6617 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), 6618 MachineMemOperand::MOLoad, MemSize, MemSize); 6619 Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3, 6620 DstTy, MMO); 6621 Chain = Value.getValue(1); 6622 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); 6623 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 6624 } 6625 6626 MachineMemOperand *MMO = 6627 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), 6628 MachineMemOperand::MOStore, MemSize, MemSize); 6629 6630 // Build the FP_TO_INT*_IN_MEM 6631 SDValue Ops[] = { Chain, Value, StackSlot }; 6632 SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other), 6633 Ops, 3, DstTy, MMO); 6634 6635 return std::make_pair(FIST, StackSlot); 6636} 6637 6638SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, 6639 SelectionDAG &DAG) const { 6640 if (Op.getValueType().isVector()) 6641 return SDValue(); 6642 6643 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true); 6644 SDValue FIST = Vals.first, StackSlot = Vals.second; 6645 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. 6646 if (FIST.getNode() == 0) return Op; 6647 6648 // Load the result. 6649 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), 6650 FIST, StackSlot, MachinePointerInfo(), false, false, 0); 6651} 6652 6653SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, 6654 SelectionDAG &DAG) const { 6655 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false); 6656 SDValue FIST = Vals.first, StackSlot = Vals.second; 6657 assert(FIST.getNode() && "Unexpected failure"); 6658 6659 // Load the result. 6660 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), 6661 FIST, StackSlot, MachinePointerInfo(), false, false, 0); 6662} 6663 6664SDValue X86TargetLowering::LowerFABS(SDValue Op, 6665 SelectionDAG &DAG) const { 6666 LLVMContext *Context = DAG.getContext(); 6667 DebugLoc dl = Op.getDebugLoc(); 6668 EVT VT = Op.getValueType(); 6669 EVT EltVT = VT; 6670 if (VT.isVector()) 6671 EltVT = VT.getVectorElementType(); 6672 std::vector<Constant*> CV; 6673 if (EltVT == MVT::f64) { 6674 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))); 6675 CV.push_back(C); 6676 CV.push_back(C); 6677 } else { 6678 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))); 6679 CV.push_back(C); 6680 CV.push_back(C); 6681 CV.push_back(C); 6682 CV.push_back(C); 6683 } 6684 Constant *C = ConstantVector::get(CV); 6685 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); 6686 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 6687 MachinePointerInfo::getConstantPool(), 6688 false, false, 16); 6689 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask); 6690} 6691 6692SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const { 6693 LLVMContext *Context = DAG.getContext(); 6694 DebugLoc dl = Op.getDebugLoc(); 6695 EVT VT = Op.getValueType(); 6696 EVT EltVT = VT; 6697 if (VT.isVector()) 6698 EltVT = VT.getVectorElementType(); 6699 std::vector<Constant*> CV; 6700 if (EltVT == MVT::f64) { 6701 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))); 6702 CV.push_back(C); 6703 CV.push_back(C); 6704 } else { 6705 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))); 6706 CV.push_back(C); 6707 CV.push_back(C); 6708 CV.push_back(C); 6709 CV.push_back(C); 6710 } 6711 Constant *C = ConstantVector::get(CV); 6712 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); 6713 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 6714 MachinePointerInfo::getConstantPool(), 6715 false, false, 16); 6716 if (VT.isVector()) { 6717 return DAG.getNode(ISD::BITCAST, dl, VT, 6718 DAG.getNode(ISD::XOR, dl, MVT::v2i64, 6719 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, 6720 Op.getOperand(0)), 6721 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask))); 6722 } else { 6723 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask); 6724 } 6725} 6726 6727SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { 6728 LLVMContext *Context = DAG.getContext(); 6729 SDValue Op0 = Op.getOperand(0); 6730 SDValue Op1 = Op.getOperand(1); 6731 DebugLoc dl = Op.getDebugLoc(); 6732 EVT VT = Op.getValueType(); 6733 EVT SrcVT = Op1.getValueType(); 6734 6735 // If second operand is smaller, extend it first. 6736 if (SrcVT.bitsLT(VT)) { 6737 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); 6738 SrcVT = VT; 6739 } 6740 // And if it is bigger, shrink it first. 6741 if (SrcVT.bitsGT(VT)) { 6742 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1)); 6743 SrcVT = VT; 6744 } 6745 6746 // At this point the operands and the result should have the same 6747 // type, and that won't be f80 since that is not custom lowered. 6748 6749 // First get the sign bit of second operand. 6750 std::vector<Constant*> CV; 6751 if (SrcVT == MVT::f64) { 6752 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)))); 6753 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); 6754 } else { 6755 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)))); 6756 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); 6757 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); 6758 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); 6759 } 6760 Constant *C = ConstantVector::get(CV); 6761 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); 6762 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx, 6763 MachinePointerInfo::getConstantPool(), 6764 false, false, 16); 6765 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1); 6766 6767 // Shift sign bit right or left if the two operands have different types. 6768 if (SrcVT.bitsGT(VT)) { 6769 // Op0 is MVT::f32, Op1 is MVT::f64. 6770 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit); 6771 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit, 6772 DAG.getConstant(32, MVT::i32)); 6773 SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit); 6774 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit, 6775 DAG.getIntPtrConstant(0)); 6776 } 6777 6778 // Clear first operand sign bit. 6779 CV.clear(); 6780 if (VT == MVT::f64) { 6781 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))))); 6782 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); 6783 } else { 6784 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))))); 6785 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); 6786 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); 6787 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); 6788 } 6789 C = ConstantVector::get(CV); 6790 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); 6791 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 6792 MachinePointerInfo::getConstantPool(), 6793 false, false, 16); 6794 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2); 6795 6796 // Or the value with the sign bit. 6797 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit); 6798} 6799 6800/// Emit nodes that will be selected as "test Op0,Op0", or something 6801/// equivalent. 6802SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, 6803 SelectionDAG &DAG) const { 6804 DebugLoc dl = Op.getDebugLoc(); 6805 6806 // CF and OF aren't always set the way we want. Determine which 6807 // of these we need. 6808 bool NeedCF = false; 6809 bool NeedOF = false; 6810 switch (X86CC) { 6811 default: break; 6812 case X86::COND_A: case X86::COND_AE: 6813 case X86::COND_B: case X86::COND_BE: 6814 NeedCF = true; 6815 break; 6816 case X86::COND_G: case X86::COND_GE: 6817 case X86::COND_L: case X86::COND_LE: 6818 case X86::COND_O: case X86::COND_NO: 6819 NeedOF = true; 6820 break; 6821 } 6822 6823 // See if we can use the EFLAGS value from the operand instead of 6824 // doing a separate TEST. TEST always sets OF and CF to 0, so unless 6825 // we prove that the arithmetic won't overflow, we can't use OF or CF. 6826 if (Op.getResNo() != 0 || NeedOF || NeedCF) 6827 // Emit a CMP with 0, which is the TEST pattern. 6828 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, 6829 DAG.getConstant(0, Op.getValueType())); 6830 6831 unsigned Opcode = 0; 6832 unsigned NumOperands = 0; 6833 switch (Op.getNode()->getOpcode()) { 6834 case ISD::ADD: 6835 // Due to an isel shortcoming, be conservative if this add is likely to be 6836 // selected as part of a load-modify-store instruction. When the root node 6837 // in a match is a store, isel doesn't know how to remap non-chain non-flag 6838 // uses of other nodes in the match, such as the ADD in this case. This 6839 // leads to the ADD being left around and reselected, with the result being 6840 // two adds in the output. Alas, even if none our users are stores, that 6841 // doesn't prove we're O.K. Ergo, if we have any parents that aren't 6842 // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require 6843 // climbing the DAG back to the root, and it doesn't seem to be worth the 6844 // effort. 6845 for (SDNode::use_iterator UI = Op.getNode()->use_begin(), 6846 UE = Op.getNode()->use_end(); UI != UE; ++UI) 6847 if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC) 6848 goto default_case; 6849 6850 if (ConstantSDNode *C = 6851 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) { 6852 // An add of one will be selected as an INC. 6853 if (C->getAPIntValue() == 1) { 6854 Opcode = X86ISD::INC; 6855 NumOperands = 1; 6856 break; 6857 } 6858 6859 // An add of negative one (subtract of one) will be selected as a DEC. 6860 if (C->getAPIntValue().isAllOnesValue()) { 6861 Opcode = X86ISD::DEC; 6862 NumOperands = 1; 6863 break; 6864 } 6865 } 6866 6867 // Otherwise use a regular EFLAGS-setting add. 6868 Opcode = X86ISD::ADD; 6869 NumOperands = 2; 6870 break; 6871 case ISD::AND: { 6872 // If the primary and result isn't used, don't bother using X86ISD::AND, 6873 // because a TEST instruction will be better. 6874 bool NonFlagUse = false; 6875 for (SDNode::use_iterator UI = Op.getNode()->use_begin(), 6876 UE = Op.getNode()->use_end(); UI != UE; ++UI) { 6877 SDNode *User = *UI; 6878 unsigned UOpNo = UI.getOperandNo(); 6879 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { 6880 // Look pass truncate. 6881 UOpNo = User->use_begin().getOperandNo(); 6882 User = *User->use_begin(); 6883 } 6884 6885 if (User->getOpcode() != ISD::BRCOND && 6886 User->getOpcode() != ISD::SETCC && 6887 (User->getOpcode() != ISD::SELECT || UOpNo != 0)) { 6888 NonFlagUse = true; 6889 break; 6890 } 6891 } 6892 6893 if (!NonFlagUse) 6894 break; 6895 } 6896 // FALL THROUGH 6897 case ISD::SUB: 6898 case ISD::OR: 6899 case ISD::XOR: 6900 // Due to the ISEL shortcoming noted above, be conservative if this op is 6901 // likely to be selected as part of a load-modify-store instruction. 6902 for (SDNode::use_iterator UI = Op.getNode()->use_begin(), 6903 UE = Op.getNode()->use_end(); UI != UE; ++UI) 6904 if (UI->getOpcode() == ISD::STORE) 6905 goto default_case; 6906 6907 // Otherwise use a regular EFLAGS-setting instruction. 6908 switch (Op.getNode()->getOpcode()) { 6909 default: llvm_unreachable("unexpected operator!"); 6910 case ISD::SUB: Opcode = X86ISD::SUB; break; 6911 case ISD::OR: Opcode = X86ISD::OR; break; 6912 case ISD::XOR: Opcode = X86ISD::XOR; break; 6913 case ISD::AND: Opcode = X86ISD::AND; break; 6914 } 6915 6916 NumOperands = 2; 6917 break; 6918 case X86ISD::ADD: 6919 case X86ISD::SUB: 6920 case X86ISD::INC: 6921 case X86ISD::DEC: 6922 case X86ISD::OR: 6923 case X86ISD::XOR: 6924 case X86ISD::AND: 6925 return SDValue(Op.getNode(), 1); 6926 default: 6927 default_case: 6928 break; 6929 } 6930 6931 if (Opcode == 0) 6932 // Emit a CMP with 0, which is the TEST pattern. 6933 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, 6934 DAG.getConstant(0, Op.getValueType())); 6935 6936 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); 6937 SmallVector<SDValue, 4> Ops; 6938 for (unsigned i = 0; i != NumOperands; ++i) 6939 Ops.push_back(Op.getOperand(i)); 6940 6941 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); 6942 DAG.ReplaceAllUsesWith(Op, New); 6943 return SDValue(New.getNode(), 1); 6944} 6945 6946/// Emit nodes that will be selected as "cmp Op0,Op1", or something 6947/// equivalent. 6948SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, 6949 SelectionDAG &DAG) const { 6950 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) 6951 if (C->getAPIntValue() == 0) 6952 return EmitTest(Op0, X86CC, DAG); 6953 6954 DebugLoc dl = Op0.getDebugLoc(); 6955 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); 6956} 6957 6958/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node 6959/// if it's possible. 6960SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, 6961 DebugLoc dl, SelectionDAG &DAG) const { 6962 SDValue Op0 = And.getOperand(0); 6963 SDValue Op1 = And.getOperand(1); 6964 if (Op0.getOpcode() == ISD::TRUNCATE) 6965 Op0 = Op0.getOperand(0); 6966 if (Op1.getOpcode() == ISD::TRUNCATE) 6967 Op1 = Op1.getOperand(0); 6968 6969 SDValue LHS, RHS; 6970 if (Op1.getOpcode() == ISD::SHL) 6971 std::swap(Op0, Op1); 6972 if (Op0.getOpcode() == ISD::SHL) { 6973 if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0))) 6974 if (And00C->getZExtValue() == 1) { 6975 // If we looked past a truncate, check that it's only truncating away 6976 // known zeros. 6977 unsigned BitWidth = Op0.getValueSizeInBits(); 6978 unsigned AndBitWidth = And.getValueSizeInBits(); 6979 if (BitWidth > AndBitWidth) { 6980 APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones; 6981 DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones); 6982 if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth) 6983 return SDValue(); 6984 } 6985 LHS = Op1; 6986 RHS = Op0.getOperand(1); 6987 } 6988 } else if (Op1.getOpcode() == ISD::Constant) { 6989 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); 6990 SDValue AndLHS = Op0; 6991 if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) { 6992 LHS = AndLHS.getOperand(0); 6993 RHS = AndLHS.getOperand(1); 6994 } 6995 } 6996 6997 if (LHS.getNode()) { 6998 // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT 6999 // instruction. Since the shift amount is in-range-or-undefined, we know 7000 // that doing a bittest on the i32 value is ok. We extend to i32 because 7001 // the encoding for the i16 version is larger than the i32 version. 7002 // Also promote i16 to i32 for performance / code size reason. 7003 if (LHS.getValueType() == MVT::i8 || 7004 LHS.getValueType() == MVT::i16) 7005 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); 7006 7007 // If the operand types disagree, extend the shift amount to match. Since 7008 // BT ignores high bits (like shifts) we can use anyextend. 7009 if (LHS.getValueType() != RHS.getValueType()) 7010 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); 7011 7012 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); 7013 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; 7014 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, 7015 DAG.getConstant(Cond, MVT::i8), BT); 7016 } 7017 7018 return SDValue(); 7019} 7020 7021SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 7022 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); 7023 SDValue Op0 = Op.getOperand(0); 7024 SDValue Op1 = Op.getOperand(1); 7025 DebugLoc dl = Op.getDebugLoc(); 7026 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7027 7028 // Optimize to BT if possible. 7029 // Lower (X & (1 << N)) == 0 to BT(X, N). 7030 // Lower ((X >>u N) & 1) != 0 to BT(X, N). 7031 // Lower ((X >>s N) & 1) != 0 to BT(X, N). 7032 if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() && 7033 Op1.getOpcode() == ISD::Constant && 7034 cast<ConstantSDNode>(Op1)->isNullValue() && 7035 (CC == ISD::SETEQ || CC == ISD::SETNE)) { 7036 SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); 7037 if (NewSetCC.getNode()) 7038 return NewSetCC; 7039 } 7040 7041 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of 7042 // these. 7043 if (Op1.getOpcode() == ISD::Constant && 7044 (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 || 7045 cast<ConstantSDNode>(Op1)->isNullValue()) && 7046 (CC == ISD::SETEQ || CC == ISD::SETNE)) { 7047 7048 // If the input is a setcc, then reuse the input setcc or use a new one with 7049 // the inverted condition. 7050 if (Op0.getOpcode() == X86ISD::SETCC) { 7051 X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); 7052 bool Invert = (CC == ISD::SETNE) ^ 7053 cast<ConstantSDNode>(Op1)->isNullValue(); 7054 if (!Invert) return Op0; 7055 7056 CCode = X86::GetOppositeBranchCondition(CCode); 7057 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, 7058 DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1)); 7059 } 7060 } 7061 7062 bool isFP = Op1.getValueType().isFloatingPoint(); 7063 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); 7064 if (X86CC == X86::COND_INVALID) 7065 return SDValue(); 7066 7067 SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG); 7068 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, 7069 DAG.getConstant(X86CC, MVT::i8), EFLAGS); 7070} 7071 7072SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { 7073 SDValue Cond; 7074 SDValue Op0 = Op.getOperand(0); 7075 SDValue Op1 = Op.getOperand(1); 7076 SDValue CC = Op.getOperand(2); 7077 EVT VT = Op.getValueType(); 7078 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 7079 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); 7080 DebugLoc dl = Op.getDebugLoc(); 7081 7082 if (isFP) { 7083 unsigned SSECC = 8; 7084 EVT VT0 = Op0.getValueType(); 7085 assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64); 7086 unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD; 7087 bool Swap = false; 7088 7089 switch (SetCCOpcode) { 7090 default: break; 7091 case ISD::SETOEQ: 7092 case ISD::SETEQ: SSECC = 0; break; 7093 case ISD::SETOGT: 7094 case ISD::SETGT: Swap = true; // Fallthrough 7095 case ISD::SETLT: 7096 case ISD::SETOLT: SSECC = 1; break; 7097 case ISD::SETOGE: 7098 case ISD::SETGE: Swap = true; // Fallthrough 7099 case ISD::SETLE: 7100 case ISD::SETOLE: SSECC = 2; break; 7101 case ISD::SETUO: SSECC = 3; break; 7102 case ISD::SETUNE: 7103 case ISD::SETNE: SSECC = 4; break; 7104 case ISD::SETULE: Swap = true; 7105 case ISD::SETUGE: SSECC = 5; break; 7106 case ISD::SETULT: Swap = true; 7107 case ISD::SETUGT: SSECC = 6; break; 7108 case ISD::SETO: SSECC = 7; break; 7109 } 7110 if (Swap) 7111 std::swap(Op0, Op1); 7112 7113 // In the two special cases we can't handle, emit two comparisons. 7114 if (SSECC == 8) { 7115 if (SetCCOpcode == ISD::SETUEQ) { 7116 SDValue UNORD, EQ; 7117 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8)); 7118 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8)); 7119 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ); 7120 } 7121 else if (SetCCOpcode == ISD::SETONE) { 7122 SDValue ORD, NEQ; 7123 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8)); 7124 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8)); 7125 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ); 7126 } 7127 llvm_unreachable("Illegal FP comparison"); 7128 } 7129 // Handle all other FP comparisons here. 7130 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8)); 7131 } 7132 7133 // We are handling one of the integer comparisons here. Since SSE only has 7134 // GT and EQ comparisons for integer, swapping operands and multiple 7135 // operations may be required for some comparisons. 7136 unsigned Opc = 0, EQOpc = 0, GTOpc = 0; 7137 bool Swap = false, Invert = false, FlipSigns = false; 7138 7139 switch (VT.getSimpleVT().SimpleTy) { 7140 default: break; 7141 case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break; 7142 case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break; 7143 case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break; 7144 case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break; 7145 } 7146 7147 switch (SetCCOpcode) { 7148 default: break; 7149 case ISD::SETNE: Invert = true; 7150 case ISD::SETEQ: Opc = EQOpc; break; 7151 case ISD::SETLT: Swap = true; 7152 case ISD::SETGT: Opc = GTOpc; break; 7153 case ISD::SETGE: Swap = true; 7154 case ISD::SETLE: Opc = GTOpc; Invert = true; break; 7155 case ISD::SETULT: Swap = true; 7156 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break; 7157 case ISD::SETUGE: Swap = true; 7158 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break; 7159 } 7160 if (Swap) 7161 std::swap(Op0, Op1); 7162 7163 // Since SSE has no unsigned integer comparisons, we need to flip the sign 7164 // bits of the inputs before performing those operations. 7165 if (FlipSigns) { 7166 EVT EltVT = VT.getVectorElementType(); 7167 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), 7168 EltVT); 7169 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit); 7170 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0], 7171 SignBits.size()); 7172 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec); 7173 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec); 7174 } 7175 7176 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); 7177 7178 // If the logical-not of the result is required, perform that now. 7179 if (Invert) 7180 Result = DAG.getNOT(dl, Result, VT); 7181 7182 return Result; 7183} 7184 7185// isX86LogicalCmp - Return true if opcode is a X86 logical comparison. 7186static bool isX86LogicalCmp(SDValue Op) { 7187 unsigned Opc = Op.getNode()->getOpcode(); 7188 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) 7189 return true; 7190 if (Op.getResNo() == 1 && 7191 (Opc == X86ISD::ADD || 7192 Opc == X86ISD::SUB || 7193 Opc == X86ISD::ADC || 7194 Opc == X86ISD::SBB || 7195 Opc == X86ISD::SMUL || 7196 Opc == X86ISD::UMUL || 7197 Opc == X86ISD::INC || 7198 Opc == X86ISD::DEC || 7199 Opc == X86ISD::OR || 7200 Opc == X86ISD::XOR || 7201 Opc == X86ISD::AND)) 7202 return true; 7203 7204 if (Op.getResNo() == 2 && Opc == X86ISD::UMUL) 7205 return true; 7206 7207 return false; 7208} 7209 7210static bool isZero(SDValue V) { 7211 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); 7212 return C && C->isNullValue(); 7213} 7214 7215static bool isAllOnes(SDValue V) { 7216 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V); 7217 return C && C->isAllOnesValue(); 7218} 7219 7220SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 7221 bool addTest = true; 7222 SDValue Cond = Op.getOperand(0); 7223 SDValue Op1 = Op.getOperand(1); 7224 SDValue Op2 = Op.getOperand(2); 7225 DebugLoc DL = Op.getDebugLoc(); 7226 SDValue CC; 7227 7228 if (Cond.getOpcode() == ISD::SETCC) { 7229 SDValue NewCond = LowerSETCC(Cond, DAG); 7230 if (NewCond.getNode()) 7231 Cond = NewCond; 7232 } 7233 7234 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y 7235 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y 7236 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y 7237 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y 7238 if (Cond.getOpcode() == X86ISD::SETCC && 7239 Cond.getOperand(1).getOpcode() == X86ISD::CMP && 7240 isZero(Cond.getOperand(1).getOperand(1))) { 7241 SDValue Cmp = Cond.getOperand(1); 7242 7243 unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue(); 7244 7245 if ((isAllOnes(Op1) || isAllOnes(Op2)) && 7246 (CondCode == X86::COND_E || CondCode == X86::COND_NE)) { 7247 SDValue Y = isAllOnes(Op2) ? Op1 : Op2; 7248 7249 SDValue CmpOp0 = Cmp.getOperand(0); 7250 Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, 7251 CmpOp0, DAG.getConstant(1, CmpOp0.getValueType())); 7252 7253 SDValue Res = // Res = 0 or -1. 7254 DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), 7255 DAG.getConstant(X86::COND_B, MVT::i8), Cmp); 7256 7257 if (isAllOnes(Op1) != (CondCode == X86::COND_E)) 7258 Res = DAG.getNOT(DL, Res, Res.getValueType()); 7259 7260 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2); 7261 if (N2C == 0 || !N2C->isNullValue()) 7262 Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y); 7263 return Res; 7264 } 7265 } 7266 7267 // Look past (and (setcc_carry (cmp ...)), 1). 7268 if (Cond.getOpcode() == ISD::AND && 7269 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { 7270 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 7271 if (C && C->getAPIntValue() == 1) 7272 Cond = Cond.getOperand(0); 7273 } 7274 7275 // If condition flag is set by a X86ISD::CMP, then use it as the condition 7276 // setting operand in place of the X86ISD::SETCC. 7277 if (Cond.getOpcode() == X86ISD::SETCC || 7278 Cond.getOpcode() == X86ISD::SETCC_CARRY) { 7279 CC = Cond.getOperand(0); 7280 7281 SDValue Cmp = Cond.getOperand(1); 7282 unsigned Opc = Cmp.getOpcode(); 7283 EVT VT = Op.getValueType(); 7284 7285 bool IllegalFPCMov = false; 7286 if (VT.isFloatingPoint() && !VT.isVector() && 7287 !isScalarFPTypeInSSEReg(VT)) // FPStack? 7288 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); 7289 7290 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || 7291 Opc == X86ISD::BT) { // FIXME 7292 Cond = Cmp; 7293 addTest = false; 7294 } 7295 } 7296 7297 if (addTest) { 7298 // Look pass the truncate. 7299 if (Cond.getOpcode() == ISD::TRUNCATE) 7300 Cond = Cond.getOperand(0); 7301 7302 // We know the result of AND is compared against zero. Try to match 7303 // it to BT. 7304 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { 7305 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG); 7306 if (NewSetCC.getNode()) { 7307 CC = NewSetCC.getOperand(0); 7308 Cond = NewSetCC.getOperand(1); 7309 addTest = false; 7310 } 7311 } 7312 } 7313 7314 if (addTest) { 7315 CC = DAG.getConstant(X86::COND_NE, MVT::i8); 7316 Cond = EmitTest(Cond, X86::COND_NE, DAG); 7317 } 7318 7319 // a < b ? -1 : 0 -> RES = ~setcc_carry 7320 // a < b ? 0 : -1 -> RES = setcc_carry 7321 // a >= b ? -1 : 0 -> RES = setcc_carry 7322 // a >= b ? 0 : -1 -> RES = ~setcc_carry 7323 if (Cond.getOpcode() == X86ISD::CMP) { 7324 unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue(); 7325 7326 if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) && 7327 (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) { 7328 SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(), 7329 DAG.getConstant(X86::COND_B, MVT::i8), Cond); 7330 if (isAllOnes(Op1) != (CondCode == X86::COND_B)) 7331 return DAG.getNOT(DL, Res, Res.getValueType()); 7332 return Res; 7333 } 7334 } 7335 7336 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if 7337 // condition is true. 7338 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 7339 SDValue Ops[] = { Op2, Op1, CC, Cond }; 7340 return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops)); 7341} 7342 7343// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or 7344// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart 7345// from the AND / OR. 7346static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { 7347 Opc = Op.getOpcode(); 7348 if (Opc != ISD::OR && Opc != ISD::AND) 7349 return false; 7350 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && 7351 Op.getOperand(0).hasOneUse() && 7352 Op.getOperand(1).getOpcode() == X86ISD::SETCC && 7353 Op.getOperand(1).hasOneUse()); 7354} 7355 7356// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and 7357// 1 and that the SETCC node has a single use. 7358static bool isXor1OfSetCC(SDValue Op) { 7359 if (Op.getOpcode() != ISD::XOR) 7360 return false; 7361 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 7362 if (N1C && N1C->getAPIntValue() == 1) { 7363 return Op.getOperand(0).getOpcode() == X86ISD::SETCC && 7364 Op.getOperand(0).hasOneUse(); 7365 } 7366 return false; 7367} 7368 7369SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { 7370 bool addTest = true; 7371 SDValue Chain = Op.getOperand(0); 7372 SDValue Cond = Op.getOperand(1); 7373 SDValue Dest = Op.getOperand(2); 7374 DebugLoc dl = Op.getDebugLoc(); 7375 SDValue CC; 7376 7377 if (Cond.getOpcode() == ISD::SETCC) { 7378 SDValue NewCond = LowerSETCC(Cond, DAG); 7379 if (NewCond.getNode()) 7380 Cond = NewCond; 7381 } 7382#if 0 7383 // FIXME: LowerXALUO doesn't handle these!! 7384 else if (Cond.getOpcode() == X86ISD::ADD || 7385 Cond.getOpcode() == X86ISD::SUB || 7386 Cond.getOpcode() == X86ISD::SMUL || 7387 Cond.getOpcode() == X86ISD::UMUL) 7388 Cond = LowerXALUO(Cond, DAG); 7389#endif 7390 7391 // Look pass (and (setcc_carry (cmp ...)), 1). 7392 if (Cond.getOpcode() == ISD::AND && 7393 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { 7394 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 7395 if (C && C->getAPIntValue() == 1) 7396 Cond = Cond.getOperand(0); 7397 } 7398 7399 // If condition flag is set by a X86ISD::CMP, then use it as the condition 7400 // setting operand in place of the X86ISD::SETCC. 7401 if (Cond.getOpcode() == X86ISD::SETCC || 7402 Cond.getOpcode() == X86ISD::SETCC_CARRY) { 7403 CC = Cond.getOperand(0); 7404 7405 SDValue Cmp = Cond.getOperand(1); 7406 unsigned Opc = Cmp.getOpcode(); 7407 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? 7408 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { 7409 Cond = Cmp; 7410 addTest = false; 7411 } else { 7412 switch (cast<ConstantSDNode>(CC)->getZExtValue()) { 7413 default: break; 7414 case X86::COND_O: 7415 case X86::COND_B: 7416 // These can only come from an arithmetic instruction with overflow, 7417 // e.g. SADDO, UADDO. 7418 Cond = Cond.getNode()->getOperand(1); 7419 addTest = false; 7420 break; 7421 } 7422 } 7423 } else { 7424 unsigned CondOpc; 7425 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { 7426 SDValue Cmp = Cond.getOperand(0).getOperand(1); 7427 if (CondOpc == ISD::OR) { 7428 // Also, recognize the pattern generated by an FCMP_UNE. We can emit 7429 // two branches instead of an explicit OR instruction with a 7430 // separate test. 7431 if (Cmp == Cond.getOperand(1).getOperand(1) && 7432 isX86LogicalCmp(Cmp)) { 7433 CC = Cond.getOperand(0).getOperand(0); 7434 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), 7435 Chain, Dest, CC, Cmp); 7436 CC = Cond.getOperand(1).getOperand(0); 7437 Cond = Cmp; 7438 addTest = false; 7439 } 7440 } else { // ISD::AND 7441 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit 7442 // two branches instead of an explicit AND instruction with a 7443 // separate test. However, we only do this if this block doesn't 7444 // have a fall-through edge, because this requires an explicit 7445 // jmp when the condition is false. 7446 if (Cmp == Cond.getOperand(1).getOperand(1) && 7447 isX86LogicalCmp(Cmp) && 7448 Op.getNode()->hasOneUse()) { 7449 X86::CondCode CCode = 7450 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); 7451 CCode = X86::GetOppositeBranchCondition(CCode); 7452 CC = DAG.getConstant(CCode, MVT::i8); 7453 SDNode *User = *Op.getNode()->use_begin(); 7454 // Look for an unconditional branch following this conditional branch. 7455 // We need this because we need to reverse the successors in order 7456 // to implement FCMP_OEQ. 7457 if (User->getOpcode() == ISD::BR) { 7458 SDValue FalseBB = User->getOperand(1); 7459 SDNode *NewBR = 7460 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest); 7461 assert(NewBR == User); 7462 (void)NewBR; 7463 Dest = FalseBB; 7464 7465 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), 7466 Chain, Dest, CC, Cmp); 7467 X86::CondCode CCode = 7468 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); 7469 CCode = X86::GetOppositeBranchCondition(CCode); 7470 CC = DAG.getConstant(CCode, MVT::i8); 7471 Cond = Cmp; 7472 addTest = false; 7473 } 7474 } 7475 } 7476 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { 7477 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. 7478 // It should be transformed during dag combiner except when the condition 7479 // is set by a arithmetics with overflow node. 7480 X86::CondCode CCode = 7481 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); 7482 CCode = X86::GetOppositeBranchCondition(CCode); 7483 CC = DAG.getConstant(CCode, MVT::i8); 7484 Cond = Cond.getOperand(0).getOperand(1); 7485 addTest = false; 7486 } 7487 } 7488 7489 if (addTest) { 7490 // Look pass the truncate. 7491 if (Cond.getOpcode() == ISD::TRUNCATE) 7492 Cond = Cond.getOperand(0); 7493 7494 // We know the result of AND is compared against zero. Try to match 7495 // it to BT. 7496 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { 7497 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); 7498 if (NewSetCC.getNode()) { 7499 CC = NewSetCC.getOperand(0); 7500 Cond = NewSetCC.getOperand(1); 7501 addTest = false; 7502 } 7503 } 7504 } 7505 7506 if (addTest) { 7507 CC = DAG.getConstant(X86::COND_NE, MVT::i8); 7508 Cond = EmitTest(Cond, X86::COND_NE, DAG); 7509 } 7510 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), 7511 Chain, Dest, CC, Cond); 7512} 7513 7514 7515// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. 7516// Calls to _alloca is needed to probe the stack when allocating more than 4k 7517// bytes in one go. Touching the stack at 4K increments is necessary to ensure 7518// that the guard pages used by the OS virtual memory manager are allocated in 7519// correct sequence. 7520SDValue 7521X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 7522 SelectionDAG &DAG) const { 7523 assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) && 7524 "This should be used only on Windows targets"); 7525 DebugLoc dl = Op.getDebugLoc(); 7526 7527 // Get the inputs. 7528 SDValue Chain = Op.getOperand(0); 7529 SDValue Size = Op.getOperand(1); 7530 // FIXME: Ensure alignment here 7531 7532 SDValue Flag; 7533 7534 EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; 7535 7536 Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag); 7537 Flag = Chain.getValue(1); 7538 7539 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7540 7541 Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag); 7542 Flag = Chain.getValue(1); 7543 7544 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1); 7545 7546 SDValue Ops1[2] = { Chain.getValue(0), Chain }; 7547 return DAG.getMergeValues(Ops1, 2, dl); 7548} 7549 7550SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { 7551 MachineFunction &MF = DAG.getMachineFunction(); 7552 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); 7553 7554 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 7555 DebugLoc DL = Op.getDebugLoc(); 7556 7557 if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) { 7558 // vastart just stores the address of the VarArgsFrameIndex slot into the 7559 // memory location argument. 7560 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 7561 getPointerTy()); 7562 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 7563 MachinePointerInfo(SV), false, false, 0); 7564 } 7565 7566 // __va_list_tag: 7567 // gp_offset (0 - 6 * 8) 7568 // fp_offset (48 - 48 + 8 * 16) 7569 // overflow_arg_area (point to parameters coming in memory). 7570 // reg_save_area 7571 SmallVector<SDValue, 8> MemOps; 7572 SDValue FIN = Op.getOperand(1); 7573 // Store gp_offset 7574 SDValue Store = DAG.getStore(Op.getOperand(0), DL, 7575 DAG.getConstant(FuncInfo->getVarArgsGPOffset(), 7576 MVT::i32), 7577 FIN, MachinePointerInfo(SV), false, false, 0); 7578 MemOps.push_back(Store); 7579 7580 // Store fp_offset 7581 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), 7582 FIN, DAG.getIntPtrConstant(4)); 7583 Store = DAG.getStore(Op.getOperand(0), DL, 7584 DAG.getConstant(FuncInfo->getVarArgsFPOffset(), 7585 MVT::i32), 7586 FIN, MachinePointerInfo(SV, 4), false, false, 0); 7587 MemOps.push_back(Store); 7588 7589 // Store ptr to overflow_arg_area 7590 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), 7591 FIN, DAG.getIntPtrConstant(4)); 7592 SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), 7593 getPointerTy()); 7594 Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN, 7595 MachinePointerInfo(SV, 8), 7596 false, false, 0); 7597 MemOps.push_back(Store); 7598 7599 // Store ptr to reg_save_area. 7600 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), 7601 FIN, DAG.getIntPtrConstant(8)); 7602 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), 7603 getPointerTy()); 7604 Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, 7605 MachinePointerInfo(SV, 16), false, false, 0); 7606 MemOps.push_back(Store); 7607 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 7608 &MemOps[0], MemOps.size()); 7609} 7610 7611SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 7612 assert(Subtarget->is64Bit() && 7613 "LowerVAARG only handles 64-bit va_arg!"); 7614 assert((Subtarget->isTargetLinux() || 7615 Subtarget->isTargetDarwin()) && 7616 "Unhandled target in LowerVAARG"); 7617 assert(Op.getNode()->getNumOperands() == 4); 7618 SDValue Chain = Op.getOperand(0); 7619 SDValue SrcPtr = Op.getOperand(1); 7620 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 7621 unsigned Align = Op.getConstantOperandVal(3); 7622 DebugLoc dl = Op.getDebugLoc(); 7623 7624 EVT ArgVT = Op.getNode()->getValueType(0); 7625 const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 7626 uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy); 7627 uint8_t ArgMode; 7628 7629 // Decide which area this value should be read from. 7630 // TODO: Implement the AMD64 ABI in its entirety. This simple 7631 // selection mechanism works only for the basic types. 7632 if (ArgVT == MVT::f80) { 7633 llvm_unreachable("va_arg for f80 not yet implemented"); 7634 } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) { 7635 ArgMode = 2; // Argument passed in XMM register. Use fp_offset. 7636 } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) { 7637 ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset. 7638 } else { 7639 llvm_unreachable("Unhandled argument type in LowerVAARG"); 7640 } 7641 7642 if (ArgMode == 2) { 7643 // Sanity Check: Make sure using fp_offset makes sense. 7644 assert(!UseSoftFloat && 7645 !(DAG.getMachineFunction() 7646 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) && 7647 Subtarget->hasXMM()); 7648 } 7649 7650 // Insert VAARG_64 node into the DAG 7651 // VAARG_64 returns two values: Variable Argument Address, Chain 7652 SmallVector<SDValue, 11> InstOps; 7653 InstOps.push_back(Chain); 7654 InstOps.push_back(SrcPtr); 7655 InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32)); 7656 InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8)); 7657 InstOps.push_back(DAG.getConstant(Align, MVT::i32)); 7658 SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other); 7659 SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl, 7660 VTs, &InstOps[0], InstOps.size(), 7661 MVT::i64, 7662 MachinePointerInfo(SV), 7663 /*Align=*/0, 7664 /*Volatile=*/false, 7665 /*ReadMem=*/true, 7666 /*WriteMem=*/true); 7667 Chain = VAARG.getValue(1); 7668 7669 // Load the next argument and return it 7670 return DAG.getLoad(ArgVT, dl, 7671 Chain, 7672 VAARG, 7673 MachinePointerInfo(), 7674 false, false, 0); 7675} 7676 7677SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { 7678 // X86-64 va_list is a struct { i32, i32, i8*, i8* }. 7679 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); 7680 SDValue Chain = Op.getOperand(0); 7681 SDValue DstPtr = Op.getOperand(1); 7682 SDValue SrcPtr = Op.getOperand(2); 7683 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 7684 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 7685 DebugLoc DL = Op.getDebugLoc(); 7686 7687 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, 7688 DAG.getIntPtrConstant(24), 8, /*isVolatile*/false, 7689 false, 7690 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 7691} 7692 7693SDValue 7694X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { 7695 DebugLoc dl = Op.getDebugLoc(); 7696 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7697 switch (IntNo) { 7698 default: return SDValue(); // Don't custom lower most intrinsics. 7699 // Comparison intrinsics. 7700 case Intrinsic::x86_sse_comieq_ss: 7701 case Intrinsic::x86_sse_comilt_ss: 7702 case Intrinsic::x86_sse_comile_ss: 7703 case Intrinsic::x86_sse_comigt_ss: 7704 case Intrinsic::x86_sse_comige_ss: 7705 case Intrinsic::x86_sse_comineq_ss: 7706 case Intrinsic::x86_sse_ucomieq_ss: 7707 case Intrinsic::x86_sse_ucomilt_ss: 7708 case Intrinsic::x86_sse_ucomile_ss: 7709 case Intrinsic::x86_sse_ucomigt_ss: 7710 case Intrinsic::x86_sse_ucomige_ss: 7711 case Intrinsic::x86_sse_ucomineq_ss: 7712 case Intrinsic::x86_sse2_comieq_sd: 7713 case Intrinsic::x86_sse2_comilt_sd: 7714 case Intrinsic::x86_sse2_comile_sd: 7715 case Intrinsic::x86_sse2_comigt_sd: 7716 case Intrinsic::x86_sse2_comige_sd: 7717 case Intrinsic::x86_sse2_comineq_sd: 7718 case Intrinsic::x86_sse2_ucomieq_sd: 7719 case Intrinsic::x86_sse2_ucomilt_sd: 7720 case Intrinsic::x86_sse2_ucomile_sd: 7721 case Intrinsic::x86_sse2_ucomigt_sd: 7722 case Intrinsic::x86_sse2_ucomige_sd: 7723 case Intrinsic::x86_sse2_ucomineq_sd: { 7724 unsigned Opc = 0; 7725 ISD::CondCode CC = ISD::SETCC_INVALID; 7726 switch (IntNo) { 7727 default: break; 7728 case Intrinsic::x86_sse_comieq_ss: 7729 case Intrinsic::x86_sse2_comieq_sd: 7730 Opc = X86ISD::COMI; 7731 CC = ISD::SETEQ; 7732 break; 7733 case Intrinsic::x86_sse_comilt_ss: 7734 case Intrinsic::x86_sse2_comilt_sd: 7735 Opc = X86ISD::COMI; 7736 CC = ISD::SETLT; 7737 break; 7738 case Intrinsic::x86_sse_comile_ss: 7739 case Intrinsic::x86_sse2_comile_sd: 7740 Opc = X86ISD::COMI; 7741 CC = ISD::SETLE; 7742 break; 7743 case Intrinsic::x86_sse_comigt_ss: 7744 case Intrinsic::x86_sse2_comigt_sd: 7745 Opc = X86ISD::COMI; 7746 CC = ISD::SETGT; 7747 break; 7748 case Intrinsic::x86_sse_comige_ss: 7749 case Intrinsic::x86_sse2_comige_sd: 7750 Opc = X86ISD::COMI; 7751 CC = ISD::SETGE; 7752 break; 7753 case Intrinsic::x86_sse_comineq_ss: 7754 case Intrinsic::x86_sse2_comineq_sd: 7755 Opc = X86ISD::COMI; 7756 CC = ISD::SETNE; 7757 break; 7758 case Intrinsic::x86_sse_ucomieq_ss: 7759 case Intrinsic::x86_sse2_ucomieq_sd: 7760 Opc = X86ISD::UCOMI; 7761 CC = ISD::SETEQ; 7762 break; 7763 case Intrinsic::x86_sse_ucomilt_ss: 7764 case Intrinsic::x86_sse2_ucomilt_sd: 7765 Opc = X86ISD::UCOMI; 7766 CC = ISD::SETLT; 7767 break; 7768 case Intrinsic::x86_sse_ucomile_ss: 7769 case Intrinsic::x86_sse2_ucomile_sd: 7770 Opc = X86ISD::UCOMI; 7771 CC = ISD::SETLE; 7772 break; 7773 case Intrinsic::x86_sse_ucomigt_ss: 7774 case Intrinsic::x86_sse2_ucomigt_sd: 7775 Opc = X86ISD::UCOMI; 7776 CC = ISD::SETGT; 7777 break; 7778 case Intrinsic::x86_sse_ucomige_ss: 7779 case Intrinsic::x86_sse2_ucomige_sd: 7780 Opc = X86ISD::UCOMI; 7781 CC = ISD::SETGE; 7782 break; 7783 case Intrinsic::x86_sse_ucomineq_ss: 7784 case Intrinsic::x86_sse2_ucomineq_sd: 7785 Opc = X86ISD::UCOMI; 7786 CC = ISD::SETNE; 7787 break; 7788 } 7789 7790 SDValue LHS = Op.getOperand(1); 7791 SDValue RHS = Op.getOperand(2); 7792 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG); 7793 assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); 7794 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS); 7795 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, 7796 DAG.getConstant(X86CC, MVT::i8), Cond); 7797 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); 7798 } 7799 // ptest and testp intrinsics. The intrinsic these come from are designed to 7800 // return an integer value, not just an instruction so lower it to the ptest 7801 // or testp pattern and a setcc for the result. 7802 case Intrinsic::x86_sse41_ptestz: 7803 case Intrinsic::x86_sse41_ptestc: 7804 case Intrinsic::x86_sse41_ptestnzc: 7805 case Intrinsic::x86_avx_ptestz_256: 7806 case Intrinsic::x86_avx_ptestc_256: 7807 case Intrinsic::x86_avx_ptestnzc_256: 7808 case Intrinsic::x86_avx_vtestz_ps: 7809 case Intrinsic::x86_avx_vtestc_ps: 7810 case Intrinsic::x86_avx_vtestnzc_ps: 7811 case Intrinsic::x86_avx_vtestz_pd: 7812 case Intrinsic::x86_avx_vtestc_pd: 7813 case Intrinsic::x86_avx_vtestnzc_pd: 7814 case Intrinsic::x86_avx_vtestz_ps_256: 7815 case Intrinsic::x86_avx_vtestc_ps_256: 7816 case Intrinsic::x86_avx_vtestnzc_ps_256: 7817 case Intrinsic::x86_avx_vtestz_pd_256: 7818 case Intrinsic::x86_avx_vtestc_pd_256: 7819 case Intrinsic::x86_avx_vtestnzc_pd_256: { 7820 bool IsTestPacked = false; 7821 unsigned X86CC = 0; 7822 switch (IntNo) { 7823 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); 7824 case Intrinsic::x86_avx_vtestz_ps: 7825 case Intrinsic::x86_avx_vtestz_pd: 7826 case Intrinsic::x86_avx_vtestz_ps_256: 7827 case Intrinsic::x86_avx_vtestz_pd_256: 7828 IsTestPacked = true; // Fallthrough 7829 case Intrinsic::x86_sse41_ptestz: 7830 case Intrinsic::x86_avx_ptestz_256: 7831 // ZF = 1 7832 X86CC = X86::COND_E; 7833 break; 7834 case Intrinsic::x86_avx_vtestc_ps: 7835 case Intrinsic::x86_avx_vtestc_pd: 7836 case Intrinsic::x86_avx_vtestc_ps_256: 7837 case Intrinsic::x86_avx_vtestc_pd_256: 7838 IsTestPacked = true; // Fallthrough 7839 case Intrinsic::x86_sse41_ptestc: 7840 case Intrinsic::x86_avx_ptestc_256: 7841 // CF = 1 7842 X86CC = X86::COND_B; 7843 break; 7844 case Intrinsic::x86_avx_vtestnzc_ps: 7845 case Intrinsic::x86_avx_vtestnzc_pd: 7846 case Intrinsic::x86_avx_vtestnzc_ps_256: 7847 case Intrinsic::x86_avx_vtestnzc_pd_256: 7848 IsTestPacked = true; // Fallthrough 7849 case Intrinsic::x86_sse41_ptestnzc: 7850 case Intrinsic::x86_avx_ptestnzc_256: 7851 // ZF and CF = 0 7852 X86CC = X86::COND_A; 7853 break; 7854 } 7855 7856 SDValue LHS = Op.getOperand(1); 7857 SDValue RHS = Op.getOperand(2); 7858 unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST; 7859 SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS); 7860 SDValue CC = DAG.getConstant(X86CC, MVT::i8); 7861 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); 7862 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); 7863 } 7864 7865 // Fix vector shift instructions where the last operand is a non-immediate 7866 // i32 value. 7867 case Intrinsic::x86_sse2_pslli_w: 7868 case Intrinsic::x86_sse2_pslli_d: 7869 case Intrinsic::x86_sse2_pslli_q: 7870 case Intrinsic::x86_sse2_psrli_w: 7871 case Intrinsic::x86_sse2_psrli_d: 7872 case Intrinsic::x86_sse2_psrli_q: 7873 case Intrinsic::x86_sse2_psrai_w: 7874 case Intrinsic::x86_sse2_psrai_d: 7875 case Intrinsic::x86_mmx_pslli_w: 7876 case Intrinsic::x86_mmx_pslli_d: 7877 case Intrinsic::x86_mmx_pslli_q: 7878 case Intrinsic::x86_mmx_psrli_w: 7879 case Intrinsic::x86_mmx_psrli_d: 7880 case Intrinsic::x86_mmx_psrli_q: 7881 case Intrinsic::x86_mmx_psrai_w: 7882 case Intrinsic::x86_mmx_psrai_d: { 7883 SDValue ShAmt = Op.getOperand(2); 7884 if (isa<ConstantSDNode>(ShAmt)) 7885 return SDValue(); 7886 7887 unsigned NewIntNo = 0; 7888 EVT ShAmtVT = MVT::v4i32; 7889 switch (IntNo) { 7890 case Intrinsic::x86_sse2_pslli_w: 7891 NewIntNo = Intrinsic::x86_sse2_psll_w; 7892 break; 7893 case Intrinsic::x86_sse2_pslli_d: 7894 NewIntNo = Intrinsic::x86_sse2_psll_d; 7895 break; 7896 case Intrinsic::x86_sse2_pslli_q: 7897 NewIntNo = Intrinsic::x86_sse2_psll_q; 7898 break; 7899 case Intrinsic::x86_sse2_psrli_w: 7900 NewIntNo = Intrinsic::x86_sse2_psrl_w; 7901 break; 7902 case Intrinsic::x86_sse2_psrli_d: 7903 NewIntNo = Intrinsic::x86_sse2_psrl_d; 7904 break; 7905 case Intrinsic::x86_sse2_psrli_q: 7906 NewIntNo = Intrinsic::x86_sse2_psrl_q; 7907 break; 7908 case Intrinsic::x86_sse2_psrai_w: 7909 NewIntNo = Intrinsic::x86_sse2_psra_w; 7910 break; 7911 case Intrinsic::x86_sse2_psrai_d: 7912 NewIntNo = Intrinsic::x86_sse2_psra_d; 7913 break; 7914 default: { 7915 ShAmtVT = MVT::v2i32; 7916 switch (IntNo) { 7917 case Intrinsic::x86_mmx_pslli_w: 7918 NewIntNo = Intrinsic::x86_mmx_psll_w; 7919 break; 7920 case Intrinsic::x86_mmx_pslli_d: 7921 NewIntNo = Intrinsic::x86_mmx_psll_d; 7922 break; 7923 case Intrinsic::x86_mmx_pslli_q: 7924 NewIntNo = Intrinsic::x86_mmx_psll_q; 7925 break; 7926 case Intrinsic::x86_mmx_psrli_w: 7927 NewIntNo = Intrinsic::x86_mmx_psrl_w; 7928 break; 7929 case Intrinsic::x86_mmx_psrli_d: 7930 NewIntNo = Intrinsic::x86_mmx_psrl_d; 7931 break; 7932 case Intrinsic::x86_mmx_psrli_q: 7933 NewIntNo = Intrinsic::x86_mmx_psrl_q; 7934 break; 7935 case Intrinsic::x86_mmx_psrai_w: 7936 NewIntNo = Intrinsic::x86_mmx_psra_w; 7937 break; 7938 case Intrinsic::x86_mmx_psrai_d: 7939 NewIntNo = Intrinsic::x86_mmx_psra_d; 7940 break; 7941 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7942 } 7943 break; 7944 } 7945 } 7946 7947 // The vector shift intrinsics with scalars uses 32b shift amounts but 7948 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 7949 // to be zero. 7950 SDValue ShOps[4]; 7951 ShOps[0] = ShAmt; 7952 ShOps[1] = DAG.getConstant(0, MVT::i32); 7953 if (ShAmtVT == MVT::v4i32) { 7954 ShOps[2] = DAG.getUNDEF(MVT::i32); 7955 ShOps[3] = DAG.getUNDEF(MVT::i32); 7956 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4); 7957 } else { 7958 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 7959// FIXME this must be lowered to get rid of the invalid type. 7960 } 7961 7962 EVT VT = Op.getValueType(); 7963 ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt); 7964 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 7965 DAG.getConstant(NewIntNo, MVT::i32), 7966 Op.getOperand(1), ShAmt); 7967 } 7968 } 7969} 7970 7971SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, 7972 SelectionDAG &DAG) const { 7973 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 7974 MFI->setReturnAddressIsTaken(true); 7975 7976 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7977 DebugLoc dl = Op.getDebugLoc(); 7978 7979 if (Depth > 0) { 7980 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 7981 SDValue Offset = 7982 DAG.getConstant(TD->getPointerSize(), 7983 Subtarget->is64Bit() ? MVT::i64 : MVT::i32); 7984 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 7985 DAG.getNode(ISD::ADD, dl, getPointerTy(), 7986 FrameAddr, Offset), 7987 MachinePointerInfo(), false, false, 0); 7988 } 7989 7990 // Just load the return address. 7991 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); 7992 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), 7993 RetAddrFI, MachinePointerInfo(), false, false, 0); 7994} 7995 7996SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 7997 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 7998 MFI->setFrameAddressIsTaken(true); 7999 8000 EVT VT = Op.getValueType(); 8001 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful 8002 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 8003 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP; 8004 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); 8005 while (Depth--) 8006 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 8007 MachinePointerInfo(), 8008 false, false, 0); 8009 return FrameAddr; 8010} 8011 8012SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, 8013 SelectionDAG &DAG) const { 8014 return DAG.getIntPtrConstant(2*TD->getPointerSize()); 8015} 8016 8017SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 8018 MachineFunction &MF = DAG.getMachineFunction(); 8019 SDValue Chain = Op.getOperand(0); 8020 SDValue Offset = Op.getOperand(1); 8021 SDValue Handler = Op.getOperand(2); 8022 DebugLoc dl = Op.getDebugLoc(); 8023 8024 SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 8025 Subtarget->is64Bit() ? X86::RBP : X86::EBP, 8026 getPointerTy()); 8027 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX); 8028 8029 SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame, 8030 DAG.getIntPtrConstant(TD->getPointerSize())); 8031 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset); 8032 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), 8033 false, false, 0); 8034 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); 8035 MF.getRegInfo().addLiveOut(StoreAddrReg); 8036 8037 return DAG.getNode(X86ISD::EH_RETURN, dl, 8038 MVT::Other, 8039 Chain, DAG.getRegister(StoreAddrReg, getPointerTy())); 8040} 8041 8042SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op, 8043 SelectionDAG &DAG) const { 8044 SDValue Root = Op.getOperand(0); 8045 SDValue Trmp = Op.getOperand(1); // trampoline 8046 SDValue FPtr = Op.getOperand(2); // nested function 8047 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 8048 DebugLoc dl = Op.getDebugLoc(); 8049 8050 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 8051 8052 if (Subtarget->is64Bit()) { 8053 SDValue OutChains[6]; 8054 8055 // Large code-model. 8056 const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode. 8057 const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. 8058 8059 const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10); 8060 const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11); 8061 8062 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix 8063 8064 // Load the pointer to the nested function into R11. 8065 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 8066 SDValue Addr = Trmp; 8067 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), 8068 Addr, MachinePointerInfo(TrmpAddr), 8069 false, false, 0); 8070 8071 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, 8072 DAG.getConstant(2, MVT::i64)); 8073 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, 8074 MachinePointerInfo(TrmpAddr, 2), 8075 false, false, 2); 8076 8077 // Load the 'nest' parameter value into R10. 8078 // R10 is specified in X86CallingConv.td 8079 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 8080 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, 8081 DAG.getConstant(10, MVT::i64)); 8082 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), 8083 Addr, MachinePointerInfo(TrmpAddr, 10), 8084 false, false, 0); 8085 8086 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, 8087 DAG.getConstant(12, MVT::i64)); 8088 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, 8089 MachinePointerInfo(TrmpAddr, 12), 8090 false, false, 2); 8091 8092 // Jump to the nested function. 8093 OpCode = (JMP64r << 8) | REX_WB; // jmpq *... 8094 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, 8095 DAG.getConstant(20, MVT::i64)); 8096 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), 8097 Addr, MachinePointerInfo(TrmpAddr, 20), 8098 false, false, 0); 8099 8100 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 8101 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, 8102 DAG.getConstant(22, MVT::i64)); 8103 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr, 8104 MachinePointerInfo(TrmpAddr, 22), 8105 false, false, 0); 8106 8107 SDValue Ops[] = 8108 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) }; 8109 return DAG.getMergeValues(Ops, 2, dl); 8110 } else { 8111 const Function *Func = 8112 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); 8113 CallingConv::ID CC = Func->getCallingConv(); 8114 unsigned NestReg; 8115 8116 switch (CC) { 8117 default: 8118 llvm_unreachable("Unsupported calling convention"); 8119 case CallingConv::C: 8120 case CallingConv::X86_StdCall: { 8121 // Pass 'nest' parameter in ECX. 8122 // Must be kept in sync with X86CallingConv.td 8123 NestReg = X86::ECX; 8124 8125 // Check that ECX wasn't needed by an 'inreg' parameter. 8126 const FunctionType *FTy = Func->getFunctionType(); 8127 const AttrListPtr &Attrs = Func->getAttributes(); 8128 8129 if (!Attrs.isEmpty() && !Func->isVarArg()) { 8130 unsigned InRegCount = 0; 8131 unsigned Idx = 1; 8132 8133 for (FunctionType::param_iterator I = FTy->param_begin(), 8134 E = FTy->param_end(); I != E; ++I, ++Idx) 8135 if (Attrs.paramHasAttr(Idx, Attribute::InReg)) 8136 // FIXME: should only count parameters that are lowered to integers. 8137 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; 8138 8139 if (InRegCount > 2) { 8140 report_fatal_error("Nest register in use - reduce number of inreg" 8141 " parameters!"); 8142 } 8143 } 8144 break; 8145 } 8146 case CallingConv::X86_FastCall: 8147 case CallingConv::X86_ThisCall: 8148 case CallingConv::Fast: 8149 // Pass 'nest' parameter in EAX. 8150 // Must be kept in sync with X86CallingConv.td 8151 NestReg = X86::EAX; 8152 break; 8153 } 8154 8155 SDValue OutChains[4]; 8156 SDValue Addr, Disp; 8157 8158 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 8159 DAG.getConstant(10, MVT::i32)); 8160 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); 8161 8162 // This is storing the opcode for MOV32ri. 8163 const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. 8164 const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg); 8165 OutChains[0] = DAG.getStore(Root, dl, 8166 DAG.getConstant(MOV32ri|N86Reg, MVT::i8), 8167 Trmp, MachinePointerInfo(TrmpAddr), 8168 false, false, 0); 8169 8170 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 8171 DAG.getConstant(1, MVT::i32)); 8172 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, 8173 MachinePointerInfo(TrmpAddr, 1), 8174 false, false, 1); 8175 8176 const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. 8177 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 8178 DAG.getConstant(5, MVT::i32)); 8179 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr, 8180 MachinePointerInfo(TrmpAddr, 5), 8181 false, false, 1); 8182 8183 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 8184 DAG.getConstant(6, MVT::i32)); 8185 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, 8186 MachinePointerInfo(TrmpAddr, 6), 8187 false, false, 1); 8188 8189 SDValue Ops[] = 8190 { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) }; 8191 return DAG.getMergeValues(Ops, 2, dl); 8192 } 8193} 8194 8195SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, 8196 SelectionDAG &DAG) const { 8197 /* 8198 The rounding mode is in bits 11:10 of FPSR, and has the following 8199 settings: 8200 00 Round to nearest 8201 01 Round to -inf 8202 10 Round to +inf 8203 11 Round to 0 8204 8205 FLT_ROUNDS, on the other hand, expects the following: 8206 -1 Undefined 8207 0 Round to 0 8208 1 Round to nearest 8209 2 Round to +inf 8210 3 Round to -inf 8211 8212 To perform the conversion, we do: 8213 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) 8214 */ 8215 8216 MachineFunction &MF = DAG.getMachineFunction(); 8217 const TargetMachine &TM = MF.getTarget(); 8218 const TargetFrameInfo &TFI = *TM.getFrameInfo(); 8219 unsigned StackAlignment = TFI.getStackAlignment(); 8220 EVT VT = Op.getValueType(); 8221 DebugLoc DL = Op.getDebugLoc(); 8222 8223 // Save FP Control Word to stack slot 8224 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); 8225 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); 8226 8227 8228 MachineMemOperand *MMO = 8229 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI), 8230 MachineMemOperand::MOStore, 2, 2); 8231 8232 SDValue Ops[] = { DAG.getEntryNode(), StackSlot }; 8233 SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL, 8234 DAG.getVTList(MVT::Other), 8235 Ops, 2, MVT::i16, MMO); 8236 8237 // Load FP Control Word from stack slot 8238 SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot, 8239 MachinePointerInfo(), false, false, 0); 8240 8241 // Transform as necessary 8242 SDValue CWD1 = 8243 DAG.getNode(ISD::SRL, DL, MVT::i16, 8244 DAG.getNode(ISD::AND, DL, MVT::i16, 8245 CWD, DAG.getConstant(0x800, MVT::i16)), 8246 DAG.getConstant(11, MVT::i8)); 8247 SDValue CWD2 = 8248 DAG.getNode(ISD::SRL, DL, MVT::i16, 8249 DAG.getNode(ISD::AND, DL, MVT::i16, 8250 CWD, DAG.getConstant(0x400, MVT::i16)), 8251 DAG.getConstant(9, MVT::i8)); 8252 8253 SDValue RetVal = 8254 DAG.getNode(ISD::AND, DL, MVT::i16, 8255 DAG.getNode(ISD::ADD, DL, MVT::i16, 8256 DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2), 8257 DAG.getConstant(1, MVT::i16)), 8258 DAG.getConstant(3, MVT::i16)); 8259 8260 8261 return DAG.getNode((VT.getSizeInBits() < 16 ? 8262 ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal); 8263} 8264 8265SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { 8266 EVT VT = Op.getValueType(); 8267 EVT OpVT = VT; 8268 unsigned NumBits = VT.getSizeInBits(); 8269 DebugLoc dl = Op.getDebugLoc(); 8270 8271 Op = Op.getOperand(0); 8272 if (VT == MVT::i8) { 8273 // Zero extend to i32 since there is not an i8 bsr. 8274 OpVT = MVT::i32; 8275 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); 8276 } 8277 8278 // Issue a bsr (scan bits in reverse) which also sets EFLAGS. 8279 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); 8280 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); 8281 8282 // If src is zero (i.e. bsr sets ZF), returns NumBits. 8283 SDValue Ops[] = { 8284 Op, 8285 DAG.getConstant(NumBits+NumBits-1, OpVT), 8286 DAG.getConstant(X86::COND_E, MVT::i8), 8287 Op.getValue(1) 8288 }; 8289 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); 8290 8291 // Finally xor with NumBits-1. 8292 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); 8293 8294 if (VT == MVT::i8) 8295 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); 8296 return Op; 8297} 8298 8299SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const { 8300 EVT VT = Op.getValueType(); 8301 EVT OpVT = VT; 8302 unsigned NumBits = VT.getSizeInBits(); 8303 DebugLoc dl = Op.getDebugLoc(); 8304 8305 Op = Op.getOperand(0); 8306 if (VT == MVT::i8) { 8307 OpVT = MVT::i32; 8308 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); 8309 } 8310 8311 // Issue a bsf (scan bits forward) which also sets EFLAGS. 8312 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); 8313 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op); 8314 8315 // If src is zero (i.e. bsf sets ZF), returns NumBits. 8316 SDValue Ops[] = { 8317 Op, 8318 DAG.getConstant(NumBits, OpVT), 8319 DAG.getConstant(X86::COND_E, MVT::i8), 8320 Op.getValue(1) 8321 }; 8322 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); 8323 8324 if (VT == MVT::i8) 8325 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); 8326 return Op; 8327} 8328 8329SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const { 8330 EVT VT = Op.getValueType(); 8331 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply"); 8332 DebugLoc dl = Op.getDebugLoc(); 8333 8334 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32); 8335 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32); 8336 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b ); 8337 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi ); 8338 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b ); 8339 // 8340 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 ); 8341 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 ); 8342 // return AloBlo + AloBhi + AhiBlo; 8343 8344 SDValue A = Op.getOperand(0); 8345 SDValue B = Op.getOperand(1); 8346 8347 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 8348 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), 8349 A, DAG.getConstant(32, MVT::i32)); 8350 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 8351 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), 8352 B, DAG.getConstant(32, MVT::i32)); 8353 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 8354 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), 8355 A, B); 8356 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 8357 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), 8358 A, Bhi); 8359 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 8360 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), 8361 Ahi, B); 8362 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 8363 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), 8364 AloBhi, DAG.getConstant(32, MVT::i32)); 8365 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 8366 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), 8367 AhiBlo, DAG.getConstant(32, MVT::i32)); 8368 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); 8369 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); 8370 return Res; 8371} 8372 8373SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const { 8374 EVT VT = Op.getValueType(); 8375 DebugLoc dl = Op.getDebugLoc(); 8376 SDValue R = Op.getOperand(0); 8377 8378 LLVMContext *Context = DAG.getContext(); 8379 8380 assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later"); 8381 8382 if (VT == MVT::v4i32) { 8383 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 8384 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32), 8385 Op.getOperand(1), DAG.getConstant(23, MVT::i32)); 8386 8387 ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U)); 8388 8389 std::vector<Constant*> CV(4, CI); 8390 Constant *C = ConstantVector::get(CV); 8391 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); 8392 SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 8393 MachinePointerInfo::getConstantPool(), 8394 false, false, 16); 8395 8396 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend); 8397 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op); 8398 Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op); 8399 return DAG.getNode(ISD::MUL, dl, VT, Op, R); 8400 } 8401 if (VT == MVT::v16i8) { 8402 // a = a << 5; 8403 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 8404 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), 8405 Op.getOperand(1), DAG.getConstant(5, MVT::i32)); 8406 8407 ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15)); 8408 ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63)); 8409 8410 std::vector<Constant*> CVM1(16, CM1); 8411 std::vector<Constant*> CVM2(16, CM2); 8412 Constant *C = ConstantVector::get(CVM1); 8413 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); 8414 SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 8415 MachinePointerInfo::getConstantPool(), 8416 false, false, 16); 8417 8418 // r = pblendv(r, psllw(r & (char16)15, 4), a); 8419 M = DAG.getNode(ISD::AND, dl, VT, R, M); 8420 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 8421 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M, 8422 DAG.getConstant(4, MVT::i32)); 8423 R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op); 8424 // a += a 8425 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); 8426 8427 C = ConstantVector::get(CVM2); 8428 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); 8429 M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 8430 MachinePointerInfo::getConstantPool(), 8431 false, false, 16); 8432 8433 // r = pblendv(r, psllw(r & (char16)63, 2), a); 8434 M = DAG.getNode(ISD::AND, dl, VT, R, M); 8435 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 8436 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M, 8437 DAG.getConstant(2, MVT::i32)); 8438 R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op); 8439 // a += a 8440 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op); 8441 8442 // return pblendv(r, r+r, a); 8443 R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, 8444 R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op); 8445 return R; 8446 } 8447 return SDValue(); 8448} 8449 8450SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const { 8451 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus 8452 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering 8453 // looks for this combo and may remove the "setcc" instruction if the "setcc" 8454 // has only one use. 8455 SDNode *N = Op.getNode(); 8456 SDValue LHS = N->getOperand(0); 8457 SDValue RHS = N->getOperand(1); 8458 unsigned BaseOp = 0; 8459 unsigned Cond = 0; 8460 DebugLoc DL = Op.getDebugLoc(); 8461 switch (Op.getOpcode()) { 8462 default: llvm_unreachable("Unknown ovf instruction!"); 8463 case ISD::SADDO: 8464 // A subtract of one will be selected as a INC. Note that INC doesn't 8465 // set CF, so we can't do this for UADDO. 8466 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 8467 if (C->getAPIntValue() == 1) { 8468 BaseOp = X86ISD::INC; 8469 Cond = X86::COND_O; 8470 break; 8471 } 8472 BaseOp = X86ISD::ADD; 8473 Cond = X86::COND_O; 8474 break; 8475 case ISD::UADDO: 8476 BaseOp = X86ISD::ADD; 8477 Cond = X86::COND_B; 8478 break; 8479 case ISD::SSUBO: 8480 // A subtract of one will be selected as a DEC. Note that DEC doesn't 8481 // set CF, so we can't do this for USUBO. 8482 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 8483 if (C->getAPIntValue() == 1) { 8484 BaseOp = X86ISD::DEC; 8485 Cond = X86::COND_O; 8486 break; 8487 } 8488 BaseOp = X86ISD::SUB; 8489 Cond = X86::COND_O; 8490 break; 8491 case ISD::USUBO: 8492 BaseOp = X86ISD::SUB; 8493 Cond = X86::COND_B; 8494 break; 8495 case ISD::SMULO: 8496 BaseOp = X86ISD::SMUL; 8497 Cond = X86::COND_O; 8498 break; 8499 case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs 8500 SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0), 8501 MVT::i32); 8502 SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS); 8503 8504 SDValue SetCC = 8505 DAG.getNode(X86ISD::SETCC, DL, MVT::i8, 8506 DAG.getConstant(X86::COND_O, MVT::i32), 8507 SDValue(Sum.getNode(), 2)); 8508 8509 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC); 8510 return Sum; 8511 } 8512 } 8513 8514 // Also sets EFLAGS. 8515 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 8516 SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 8517 8518 SDValue SetCC = 8519 DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1), 8520 DAG.getConstant(Cond, MVT::i32), 8521 SDValue(Sum.getNode(), 1)); 8522 8523 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC); 8524 return Sum; 8525} 8526 8527SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{ 8528 DebugLoc dl = Op.getDebugLoc(); 8529 8530 if (!Subtarget->hasSSE2()) { 8531 SDValue Chain = Op.getOperand(0); 8532 SDValue Zero = DAG.getConstant(0, 8533 Subtarget->is64Bit() ? MVT::i64 : MVT::i32); 8534 SDValue Ops[] = { 8535 DAG.getRegister(X86::ESP, MVT::i32), // Base 8536 DAG.getTargetConstant(1, MVT::i8), // Scale 8537 DAG.getRegister(0, MVT::i32), // Index 8538 DAG.getTargetConstant(0, MVT::i32), // Disp 8539 DAG.getRegister(0, MVT::i32), // Segment. 8540 Zero, 8541 Chain 8542 }; 8543 SDNode *Res = 8544 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops, 8545 array_lengthof(Ops)); 8546 return SDValue(Res, 0); 8547 } 8548 8549 unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue(); 8550 if (!isDev) 8551 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); 8552 8553 unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 8554 unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 8555 unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 8556 unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 8557 8558 // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>; 8559 if (!Op1 && !Op2 && !Op3 && Op4) 8560 return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0)); 8561 8562 // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>; 8563 if (Op1 && !Op2 && !Op3 && !Op4) 8564 return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0)); 8565 8566 // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)), 8567 // (MFENCE)>; 8568 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0)); 8569} 8570 8571SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const { 8572 EVT T = Op.getValueType(); 8573 DebugLoc DL = Op.getDebugLoc(); 8574 unsigned Reg = 0; 8575 unsigned size = 0; 8576 switch(T.getSimpleVT().SimpleTy) { 8577 default: 8578 assert(false && "Invalid value type!"); 8579 case MVT::i8: Reg = X86::AL; size = 1; break; 8580 case MVT::i16: Reg = X86::AX; size = 2; break; 8581 case MVT::i32: Reg = X86::EAX; size = 4; break; 8582 case MVT::i64: 8583 assert(Subtarget->is64Bit() && "Node not type legal!"); 8584 Reg = X86::RAX; size = 8; 8585 break; 8586 } 8587 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg, 8588 Op.getOperand(2), SDValue()); 8589 SDValue Ops[] = { cpIn.getValue(0), 8590 Op.getOperand(1), 8591 Op.getOperand(3), 8592 DAG.getTargetConstant(size, MVT::i8), 8593 cpIn.getValue(1) }; 8594 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); 8595 MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand(); 8596 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys, 8597 Ops, 5, T, MMO); 8598 SDValue cpOut = 8599 DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1)); 8600 return cpOut; 8601} 8602 8603SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op, 8604 SelectionDAG &DAG) const { 8605 assert(Subtarget->is64Bit() && "Result not type legalized?"); 8606 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); 8607 SDValue TheChain = Op.getOperand(0); 8608 DebugLoc dl = Op.getDebugLoc(); 8609 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); 8610 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1)); 8611 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64, 8612 rax.getValue(2)); 8613 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx, 8614 DAG.getConstant(32, MVT::i8)); 8615 SDValue Ops[] = { 8616 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp), 8617 rdx.getValue(1) 8618 }; 8619 return DAG.getMergeValues(Ops, 2, dl); 8620} 8621 8622SDValue X86TargetLowering::LowerBITCAST(SDValue Op, 8623 SelectionDAG &DAG) const { 8624 EVT SrcVT = Op.getOperand(0).getValueType(); 8625 EVT DstVT = Op.getValueType(); 8626 assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() && 8627 Subtarget->hasMMX() && "Unexpected custom BITCAST"); 8628 assert((DstVT == MVT::i64 || 8629 (DstVT.isVector() && DstVT.getSizeInBits()==64)) && 8630 "Unexpected custom BITCAST"); 8631 // i64 <=> MMX conversions are Legal. 8632 if (SrcVT==MVT::i64 && DstVT.isVector()) 8633 return Op; 8634 if (DstVT==MVT::i64 && SrcVT.isVector()) 8635 return Op; 8636 // MMX <=> MMX conversions are Legal. 8637 if (SrcVT.isVector() && DstVT.isVector()) 8638 return Op; 8639 // All other conversions need to be expanded. 8640 return SDValue(); 8641} 8642 8643SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const { 8644 SDNode *Node = Op.getNode(); 8645 DebugLoc dl = Node->getDebugLoc(); 8646 EVT T = Node->getValueType(0); 8647 SDValue negOp = DAG.getNode(ISD::SUB, dl, T, 8648 DAG.getConstant(0, T), Node->getOperand(2)); 8649 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, 8650 cast<AtomicSDNode>(Node)->getMemoryVT(), 8651 Node->getOperand(0), 8652 Node->getOperand(1), negOp, 8653 cast<AtomicSDNode>(Node)->getSrcValue(), 8654 cast<AtomicSDNode>(Node)->getAlignment()); 8655} 8656 8657static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 8658 EVT VT = Op.getNode()->getValueType(0); 8659 8660 // Let legalize expand this if it isn't a legal type yet. 8661 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 8662 return SDValue(); 8663 8664 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 8665 8666 unsigned Opc; 8667 bool ExtraOp = false; 8668 switch (Op.getOpcode()) { 8669 default: assert(0 && "Invalid code"); 8670 case ISD::ADDC: Opc = X86ISD::ADD; break; 8671 case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break; 8672 case ISD::SUBC: Opc = X86ISD::SUB; break; 8673 case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break; 8674 } 8675 8676 if (!ExtraOp) 8677 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), 8678 Op.getOperand(1)); 8679 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0), 8680 Op.getOperand(1), Op.getOperand(2)); 8681} 8682 8683/// LowerOperation - Provide custom lowering hooks for some operations. 8684/// 8685SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8686 switch (Op.getOpcode()) { 8687 default: llvm_unreachable("Should not custom lower this!"); 8688 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG); 8689 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG); 8690 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG); 8691 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); 8692 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 8693 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 8694 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 8695 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 8696 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); 8697 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 8698 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 8699 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 8700 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); 8701 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 8702 case ISD::SHL_PARTS: 8703 case ISD::SRA_PARTS: 8704 case ISD::SRL_PARTS: return LowerShift(Op, DAG); 8705 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 8706 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 8707 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 8708 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 8709 case ISD::FABS: return LowerFABS(Op, DAG); 8710 case ISD::FNEG: return LowerFNEG(Op, DAG); 8711 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); 8712 case ISD::SETCC: return LowerSETCC(Op, DAG); 8713 case ISD::VSETCC: return LowerVSETCC(Op, DAG); 8714 case ISD::SELECT: return LowerSELECT(Op, DAG); 8715 case ISD::BRCOND: return LowerBRCOND(Op, DAG); 8716 case ISD::JumpTable: return LowerJumpTable(Op, DAG); 8717 case ISD::VASTART: return LowerVASTART(Op, DAG); 8718 case ISD::VAARG: return LowerVAARG(Op, DAG); 8719 case ISD::VACOPY: return LowerVACOPY(Op, DAG); 8720 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 8721 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 8722 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 8723 case ISD::FRAME_TO_ARGS_OFFSET: 8724 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 8725 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 8726 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 8727 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); 8728 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 8729 case ISD::CTLZ: return LowerCTLZ(Op, DAG); 8730 case ISD::CTTZ: return LowerCTTZ(Op, DAG); 8731 case ISD::MUL: return LowerMUL_V2I64(Op, DAG); 8732 case ISD::SHL: return LowerSHL(Op, DAG); 8733 case ISD::SADDO: 8734 case ISD::UADDO: 8735 case ISD::SSUBO: 8736 case ISD::USUBO: 8737 case ISD::SMULO: 8738 case ISD::UMULO: return LowerXALUO(Op, DAG); 8739 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG); 8740 case ISD::BITCAST: return LowerBITCAST(Op, DAG); 8741 case ISD::ADDC: 8742 case ISD::ADDE: 8743 case ISD::SUBC: 8744 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 8745 } 8746} 8747 8748void X86TargetLowering:: 8749ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results, 8750 SelectionDAG &DAG, unsigned NewOp) const { 8751 EVT T = Node->getValueType(0); 8752 DebugLoc dl = Node->getDebugLoc(); 8753 assert (T == MVT::i64 && "Only know how to expand i64 atomics"); 8754 8755 SDValue Chain = Node->getOperand(0); 8756 SDValue In1 = Node->getOperand(1); 8757 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 8758 Node->getOperand(2), DAG.getIntPtrConstant(0)); 8759 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 8760 Node->getOperand(2), DAG.getIntPtrConstant(1)); 8761 SDValue Ops[] = { Chain, In1, In2L, In2H }; 8762 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); 8763 SDValue Result = 8764 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64, 8765 cast<MemSDNode>(Node)->getMemOperand()); 8766 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)}; 8767 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); 8768 Results.push_back(Result.getValue(2)); 8769} 8770 8771/// ReplaceNodeResults - Replace a node with an illegal result type 8772/// with a new node built out of custom code. 8773void X86TargetLowering::ReplaceNodeResults(SDNode *N, 8774 SmallVectorImpl<SDValue>&Results, 8775 SelectionDAG &DAG) const { 8776 DebugLoc dl = N->getDebugLoc(); 8777 switch (N->getOpcode()) { 8778 default: 8779 assert(false && "Do not know how to custom type legalize this operation!"); 8780 return; 8781 case ISD::ADDC: 8782 case ISD::ADDE: 8783 case ISD::SUBC: 8784 case ISD::SUBE: 8785 // We don't want to expand or promote these. 8786 return; 8787 case ISD::FP_TO_SINT: { 8788 std::pair<SDValue,SDValue> Vals = 8789 FP_TO_INTHelper(SDValue(N, 0), DAG, true); 8790 SDValue FIST = Vals.first, StackSlot = Vals.second; 8791 if (FIST.getNode() != 0) { 8792 EVT VT = N->getValueType(0); 8793 // Return a load from the stack slot. 8794 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, 8795 MachinePointerInfo(), false, false, 0)); 8796 } 8797 return; 8798 } 8799 case ISD::READCYCLECOUNTER: { 8800 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); 8801 SDValue TheChain = N->getOperand(0); 8802 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); 8803 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32, 8804 rd.getValue(1)); 8805 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32, 8806 eax.getValue(2)); 8807 // Use a buildpair to merge the two 32-bit values into a 64-bit one. 8808 SDValue Ops[] = { eax, edx }; 8809 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2)); 8810 Results.push_back(edx.getValue(1)); 8811 return; 8812 } 8813 case ISD::ATOMIC_CMP_SWAP: { 8814 EVT T = N->getValueType(0); 8815 assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap"); 8816 SDValue cpInL, cpInH; 8817 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), 8818 DAG.getConstant(0, MVT::i32)); 8819 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), 8820 DAG.getConstant(1, MVT::i32)); 8821 cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue()); 8822 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH, 8823 cpInL.getValue(1)); 8824 SDValue swapInL, swapInH; 8825 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), 8826 DAG.getConstant(0, MVT::i32)); 8827 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), 8828 DAG.getConstant(1, MVT::i32)); 8829 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL, 8830 cpInH.getValue(1)); 8831 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH, 8832 swapInL.getValue(1)); 8833 SDValue Ops[] = { swapInH.getValue(0), 8834 N->getOperand(1), 8835 swapInH.getValue(1) }; 8836 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue); 8837 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 8838 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, 8839 Ops, 3, T, MMO); 8840 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX, 8841 MVT::i32, Result.getValue(1)); 8842 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX, 8843 MVT::i32, cpOutL.getValue(2)); 8844 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; 8845 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); 8846 Results.push_back(cpOutH.getValue(1)); 8847 return; 8848 } 8849 case ISD::ATOMIC_LOAD_ADD: 8850 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG); 8851 return; 8852 case ISD::ATOMIC_LOAD_AND: 8853 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG); 8854 return; 8855 case ISD::ATOMIC_LOAD_NAND: 8856 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG); 8857 return; 8858 case ISD::ATOMIC_LOAD_OR: 8859 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG); 8860 return; 8861 case ISD::ATOMIC_LOAD_SUB: 8862 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG); 8863 return; 8864 case ISD::ATOMIC_LOAD_XOR: 8865 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG); 8866 return; 8867 case ISD::ATOMIC_SWAP: 8868 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG); 8869 return; 8870 } 8871} 8872 8873const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { 8874 switch (Opcode) { 8875 default: return NULL; 8876 case X86ISD::BSF: return "X86ISD::BSF"; 8877 case X86ISD::BSR: return "X86ISD::BSR"; 8878 case X86ISD::SHLD: return "X86ISD::SHLD"; 8879 case X86ISD::SHRD: return "X86ISD::SHRD"; 8880 case X86ISD::FAND: return "X86ISD::FAND"; 8881 case X86ISD::FOR: return "X86ISD::FOR"; 8882 case X86ISD::FXOR: return "X86ISD::FXOR"; 8883 case X86ISD::FSRL: return "X86ISD::FSRL"; 8884 case X86ISD::FILD: return "X86ISD::FILD"; 8885 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; 8886 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; 8887 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; 8888 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; 8889 case X86ISD::FLD: return "X86ISD::FLD"; 8890 case X86ISD::FST: return "X86ISD::FST"; 8891 case X86ISD::CALL: return "X86ISD::CALL"; 8892 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; 8893 case X86ISD::BT: return "X86ISD::BT"; 8894 case X86ISD::CMP: return "X86ISD::CMP"; 8895 case X86ISD::COMI: return "X86ISD::COMI"; 8896 case X86ISD::UCOMI: return "X86ISD::UCOMI"; 8897 case X86ISD::SETCC: return "X86ISD::SETCC"; 8898 case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; 8899 case X86ISD::CMOV: return "X86ISD::CMOV"; 8900 case X86ISD::BRCOND: return "X86ISD::BRCOND"; 8901 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; 8902 case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; 8903 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; 8904 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; 8905 case X86ISD::Wrapper: return "X86ISD::Wrapper"; 8906 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; 8907 case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; 8908 case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; 8909 case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; 8910 case X86ISD::PINSRB: return "X86ISD::PINSRB"; 8911 case X86ISD::PINSRW: return "X86ISD::PINSRW"; 8912 case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; 8913 case X86ISD::PANDN: return "X86ISD::PANDN"; 8914 case X86ISD::PSIGNB: return "X86ISD::PSIGNB"; 8915 case X86ISD::PSIGNW: return "X86ISD::PSIGNW"; 8916 case X86ISD::PSIGND: return "X86ISD::PSIGND"; 8917 case X86ISD::PBLENDVB: return "X86ISD::PBLENDVB"; 8918 case X86ISD::FMAX: return "X86ISD::FMAX"; 8919 case X86ISD::FMIN: return "X86ISD::FMIN"; 8920 case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; 8921 case X86ISD::FRCP: return "X86ISD::FRCP"; 8922 case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; 8923 case X86ISD::TLSCALL: return "X86ISD::TLSCALL"; 8924 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; 8925 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; 8926 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; 8927 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; 8928 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; 8929 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG"; 8930 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG"; 8931 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG"; 8932 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG"; 8933 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG"; 8934 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG"; 8935 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; 8936 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; 8937 case X86ISD::VSHL: return "X86ISD::VSHL"; 8938 case X86ISD::VSRL: return "X86ISD::VSRL"; 8939 case X86ISD::CMPPD: return "X86ISD::CMPPD"; 8940 case X86ISD::CMPPS: return "X86ISD::CMPPS"; 8941 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB"; 8942 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW"; 8943 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD"; 8944 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ"; 8945 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB"; 8946 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW"; 8947 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD"; 8948 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ"; 8949 case X86ISD::ADD: return "X86ISD::ADD"; 8950 case X86ISD::SUB: return "X86ISD::SUB"; 8951 case X86ISD::ADC: return "X86ISD::ADC"; 8952 case X86ISD::SBB: return "X86ISD::SBB"; 8953 case X86ISD::SMUL: return "X86ISD::SMUL"; 8954 case X86ISD::UMUL: return "X86ISD::UMUL"; 8955 case X86ISD::INC: return "X86ISD::INC"; 8956 case X86ISD::DEC: return "X86ISD::DEC"; 8957 case X86ISD::OR: return "X86ISD::OR"; 8958 case X86ISD::XOR: return "X86ISD::XOR"; 8959 case X86ISD::AND: return "X86ISD::AND"; 8960 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; 8961 case X86ISD::PTEST: return "X86ISD::PTEST"; 8962 case X86ISD::TESTP: return "X86ISD::TESTP"; 8963 case X86ISD::PALIGN: return "X86ISD::PALIGN"; 8964 case X86ISD::PSHUFD: return "X86ISD::PSHUFD"; 8965 case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW"; 8966 case X86ISD::PSHUFHW_LD: return "X86ISD::PSHUFHW_LD"; 8967 case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW"; 8968 case X86ISD::PSHUFLW_LD: return "X86ISD::PSHUFLW_LD"; 8969 case X86ISD::SHUFPS: return "X86ISD::SHUFPS"; 8970 case X86ISD::SHUFPD: return "X86ISD::SHUFPD"; 8971 case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS"; 8972 case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD"; 8973 case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS"; 8974 case X86ISD::MOVHLPD: return "X86ISD::MOVHLPD"; 8975 case X86ISD::MOVLPS: return "X86ISD::MOVLPS"; 8976 case X86ISD::MOVLPD: return "X86ISD::MOVLPD"; 8977 case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP"; 8978 case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP"; 8979 case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP"; 8980 case X86ISD::MOVSHDUP_LD: return "X86ISD::MOVSHDUP_LD"; 8981 case X86ISD::MOVSLDUP_LD: return "X86ISD::MOVSLDUP_LD"; 8982 case X86ISD::MOVSD: return "X86ISD::MOVSD"; 8983 case X86ISD::MOVSS: return "X86ISD::MOVSS"; 8984 case X86ISD::UNPCKLPS: return "X86ISD::UNPCKLPS"; 8985 case X86ISD::UNPCKLPD: return "X86ISD::UNPCKLPD"; 8986 case X86ISD::UNPCKHPS: return "X86ISD::UNPCKHPS"; 8987 case X86ISD::UNPCKHPD: return "X86ISD::UNPCKHPD"; 8988 case X86ISD::PUNPCKLBW: return "X86ISD::PUNPCKLBW"; 8989 case X86ISD::PUNPCKLWD: return "X86ISD::PUNPCKLWD"; 8990 case X86ISD::PUNPCKLDQ: return "X86ISD::PUNPCKLDQ"; 8991 case X86ISD::PUNPCKLQDQ: return "X86ISD::PUNPCKLQDQ"; 8992 case X86ISD::PUNPCKHBW: return "X86ISD::PUNPCKHBW"; 8993 case X86ISD::PUNPCKHWD: return "X86ISD::PUNPCKHWD"; 8994 case X86ISD::PUNPCKHDQ: return "X86ISD::PUNPCKHDQ"; 8995 case X86ISD::PUNPCKHQDQ: return "X86ISD::PUNPCKHQDQ"; 8996 case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; 8997 case X86ISD::VAARG_64: return "X86ISD::VAARG_64"; 8998 case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA"; 8999 } 9000} 9001 9002// isLegalAddressingMode - Return true if the addressing mode represented 9003// by AM is legal for this target, for a load/store of the specified type. 9004bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, 9005 const Type *Ty) const { 9006 // X86 supports extremely general addressing modes. 9007 CodeModel::Model M = getTargetMachine().getCodeModel(); 9008 Reloc::Model R = getTargetMachine().getRelocationModel(); 9009 9010 // X86 allows a sign-extended 32-bit immediate field as a displacement. 9011 if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL)) 9012 return false; 9013 9014 if (AM.BaseGV) { 9015 unsigned GVFlags = 9016 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); 9017 9018 // If a reference to this global requires an extra load, we can't fold it. 9019 if (isGlobalStubReference(GVFlags)) 9020 return false; 9021 9022 // If BaseGV requires a register for the PIC base, we cannot also have a 9023 // BaseReg specified. 9024 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) 9025 return false; 9026 9027 // If lower 4G is not available, then we must use rip-relative addressing. 9028 if ((M != CodeModel::Small || R != Reloc::Static) && 9029 Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) 9030 return false; 9031 } 9032 9033 switch (AM.Scale) { 9034 case 0: 9035 case 1: 9036 case 2: 9037 case 4: 9038 case 8: 9039 // These scales always work. 9040 break; 9041 case 3: 9042 case 5: 9043 case 9: 9044 // These scales are formed with basereg+scalereg. Only accept if there is 9045 // no basereg yet. 9046 if (AM.HasBaseReg) 9047 return false; 9048 break; 9049 default: // Other stuff never works. 9050 return false; 9051 } 9052 9053 return true; 9054} 9055 9056 9057bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { 9058 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 9059 return false; 9060 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 9061 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 9062 if (NumBits1 <= NumBits2) 9063 return false; 9064 return true; 9065} 9066 9067bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 9068 if (!VT1.isInteger() || !VT2.isInteger()) 9069 return false; 9070 unsigned NumBits1 = VT1.getSizeInBits(); 9071 unsigned NumBits2 = VT2.getSizeInBits(); 9072 if (NumBits1 <= NumBits2) 9073 return false; 9074 return true; 9075} 9076 9077bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const { 9078 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. 9079 return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit(); 9080} 9081 9082bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { 9083 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. 9084 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); 9085} 9086 9087bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { 9088 // i16 instructions are longer (0x66 prefix) and potentially slower. 9089 return !(VT1 == MVT::i32 && VT2 == MVT::i16); 9090} 9091 9092/// isShuffleMaskLegal - Targets can use this to indicate that they only 9093/// support *some* VECTOR_SHUFFLE operations, those with specific masks. 9094/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values 9095/// are assumed to be legal. 9096bool 9097X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, 9098 EVT VT) const { 9099 // Very little shuffling can be done for 64-bit vectors right now. 9100 if (VT.getSizeInBits() == 64) 9101 return isPALIGNRMask(M, VT, Subtarget->hasSSSE3()); 9102 9103 // FIXME: pshufb, blends, shifts. 9104 return (VT.getVectorNumElements() == 2 || 9105 ShuffleVectorSDNode::isSplatMask(&M[0], VT) || 9106 isMOVLMask(M, VT) || 9107 isSHUFPMask(M, VT) || 9108 isPSHUFDMask(M, VT) || 9109 isPSHUFHWMask(M, VT) || 9110 isPSHUFLWMask(M, VT) || 9111 isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) || 9112 isUNPCKLMask(M, VT) || 9113 isUNPCKHMask(M, VT) || 9114 isUNPCKL_v_undef_Mask(M, VT) || 9115 isUNPCKH_v_undef_Mask(M, VT)); 9116} 9117 9118bool 9119X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, 9120 EVT VT) const { 9121 unsigned NumElts = VT.getVectorNumElements(); 9122 // FIXME: This collection of masks seems suspect. 9123 if (NumElts == 2) 9124 return true; 9125 if (NumElts == 4 && VT.getSizeInBits() == 128) { 9126 return (isMOVLMask(Mask, VT) || 9127 isCommutedMOVLMask(Mask, VT, true) || 9128 isSHUFPMask(Mask, VT) || 9129 isCommutedSHUFPMask(Mask, VT)); 9130 } 9131 return false; 9132} 9133 9134//===----------------------------------------------------------------------===// 9135// X86 Scheduler Hooks 9136//===----------------------------------------------------------------------===// 9137 9138// private utility function 9139MachineBasicBlock * 9140X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, 9141 MachineBasicBlock *MBB, 9142 unsigned regOpc, 9143 unsigned immOpc, 9144 unsigned LoadOpc, 9145 unsigned CXchgOpc, 9146 unsigned notOpc, 9147 unsigned EAXreg, 9148 TargetRegisterClass *RC, 9149 bool invSrc) const { 9150 // For the atomic bitwise operator, we generate 9151 // thisMBB: 9152 // newMBB: 9153 // ld t1 = [bitinstr.addr] 9154 // op t2 = t1, [bitinstr.val] 9155 // mov EAX = t1 9156 // lcs dest = [bitinstr.addr], t2 [EAX is implicit] 9157 // bz newMBB 9158 // fallthrough -->nextMBB 9159 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 9160 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 9161 MachineFunction::iterator MBBIter = MBB; 9162 ++MBBIter; 9163 9164 /// First build the CFG 9165 MachineFunction *F = MBB->getParent(); 9166 MachineBasicBlock *thisMBB = MBB; 9167 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); 9168 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); 9169 F->insert(MBBIter, newMBB); 9170 F->insert(MBBIter, nextMBB); 9171 9172 // Transfer the remainder of thisMBB and its successor edges to nextMBB. 9173 nextMBB->splice(nextMBB->begin(), thisMBB, 9174 llvm::next(MachineBasicBlock::iterator(bInstr)), 9175 thisMBB->end()); 9176 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); 9177 9178 // Update thisMBB to fall through to newMBB 9179 thisMBB->addSuccessor(newMBB); 9180 9181 // newMBB jumps to itself and fall through to nextMBB 9182 newMBB->addSuccessor(nextMBB); 9183 newMBB->addSuccessor(newMBB); 9184 9185 // Insert instructions into newMBB based on incoming instruction 9186 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 && 9187 "unexpected number of operands"); 9188 DebugLoc dl = bInstr->getDebugLoc(); 9189 MachineOperand& destOper = bInstr->getOperand(0); 9190 MachineOperand* argOpers[2 + X86::AddrNumOperands]; 9191 int numArgs = bInstr->getNumOperands() - 1; 9192 for (int i=0; i < numArgs; ++i) 9193 argOpers[i] = &bInstr->getOperand(i+1); 9194 9195 // x86 address has 4 operands: base, index, scale, and displacement 9196 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] 9197 int valArgIndx = lastAddrIndx + 1; 9198 9199 unsigned t1 = F->getRegInfo().createVirtualRegister(RC); 9200 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1); 9201 for (int i=0; i <= lastAddrIndx; ++i) 9202 (*MIB).addOperand(*argOpers[i]); 9203 9204 unsigned tt = F->getRegInfo().createVirtualRegister(RC); 9205 if (invSrc) { 9206 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1); 9207 } 9208 else 9209 tt = t1; 9210 9211 unsigned t2 = F->getRegInfo().createVirtualRegister(RC); 9212 assert((argOpers[valArgIndx]->isReg() || 9213 argOpers[valArgIndx]->isImm()) && 9214 "invalid operand"); 9215 if (argOpers[valArgIndx]->isReg()) 9216 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2); 9217 else 9218 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2); 9219 MIB.addReg(tt); 9220 (*MIB).addOperand(*argOpers[valArgIndx]); 9221 9222 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg); 9223 MIB.addReg(t1); 9224 9225 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc)); 9226 for (int i=0; i <= lastAddrIndx; ++i) 9227 (*MIB).addOperand(*argOpers[i]); 9228 MIB.addReg(t2); 9229 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); 9230 (*MIB).setMemRefs(bInstr->memoperands_begin(), 9231 bInstr->memoperands_end()); 9232 9233 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg()); 9234 MIB.addReg(EAXreg); 9235 9236 // insert branch 9237 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); 9238 9239 bInstr->eraseFromParent(); // The pseudo instruction is gone now. 9240 return nextMBB; 9241} 9242 9243// private utility function: 64 bit atomics on 32 bit host. 9244MachineBasicBlock * 9245X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr, 9246 MachineBasicBlock *MBB, 9247 unsigned regOpcL, 9248 unsigned regOpcH, 9249 unsigned immOpcL, 9250 unsigned immOpcH, 9251 bool invSrc) const { 9252 // For the atomic bitwise operator, we generate 9253 // thisMBB (instructions are in pairs, except cmpxchg8b) 9254 // ld t1,t2 = [bitinstr.addr] 9255 // newMBB: 9256 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4) 9257 // op t5, t6 <- out1, out2, [bitinstr.val] 9258 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val]) 9259 // mov ECX, EBX <- t5, t6 9260 // mov EAX, EDX <- t1, t2 9261 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit] 9262 // mov t3, t4 <- EAX, EDX 9263 // bz newMBB 9264 // result in out1, out2 9265 // fallthrough -->nextMBB 9266 9267 const TargetRegisterClass *RC = X86::GR32RegisterClass; 9268 const unsigned LoadOpc = X86::MOV32rm; 9269 const unsigned NotOpc = X86::NOT32r; 9270 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 9271 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 9272 MachineFunction::iterator MBBIter = MBB; 9273 ++MBBIter; 9274 9275 /// First build the CFG 9276 MachineFunction *F = MBB->getParent(); 9277 MachineBasicBlock *thisMBB = MBB; 9278 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); 9279 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); 9280 F->insert(MBBIter, newMBB); 9281 F->insert(MBBIter, nextMBB); 9282 9283 // Transfer the remainder of thisMBB and its successor edges to nextMBB. 9284 nextMBB->splice(nextMBB->begin(), thisMBB, 9285 llvm::next(MachineBasicBlock::iterator(bInstr)), 9286 thisMBB->end()); 9287 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); 9288 9289 // Update thisMBB to fall through to newMBB 9290 thisMBB->addSuccessor(newMBB); 9291 9292 // newMBB jumps to itself and fall through to nextMBB 9293 newMBB->addSuccessor(nextMBB); 9294 newMBB->addSuccessor(newMBB); 9295 9296 DebugLoc dl = bInstr->getDebugLoc(); 9297 // Insert instructions into newMBB based on incoming instruction 9298 // There are 8 "real" operands plus 9 implicit def/uses, ignored here. 9299 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 && 9300 "unexpected number of operands"); 9301 MachineOperand& dest1Oper = bInstr->getOperand(0); 9302 MachineOperand& dest2Oper = bInstr->getOperand(1); 9303 MachineOperand* argOpers[2 + X86::AddrNumOperands]; 9304 for (int i=0; i < 2 + X86::AddrNumOperands; ++i) { 9305 argOpers[i] = &bInstr->getOperand(i+2); 9306 9307 // We use some of the operands multiple times, so conservatively just 9308 // clear any kill flags that might be present. 9309 if (argOpers[i]->isReg() && argOpers[i]->isUse()) 9310 argOpers[i]->setIsKill(false); 9311 } 9312 9313 // x86 address has 5 operands: base, index, scale, displacement, and segment. 9314 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] 9315 9316 unsigned t1 = F->getRegInfo().createVirtualRegister(RC); 9317 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1); 9318 for (int i=0; i <= lastAddrIndx; ++i) 9319 (*MIB).addOperand(*argOpers[i]); 9320 unsigned t2 = F->getRegInfo().createVirtualRegister(RC); 9321 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2); 9322 // add 4 to displacement. 9323 for (int i=0; i <= lastAddrIndx-2; ++i) 9324 (*MIB).addOperand(*argOpers[i]); 9325 MachineOperand newOp3 = *(argOpers[3]); 9326 if (newOp3.isImm()) 9327 newOp3.setImm(newOp3.getImm()+4); 9328 else 9329 newOp3.setOffset(newOp3.getOffset()+4); 9330 (*MIB).addOperand(newOp3); 9331 (*MIB).addOperand(*argOpers[lastAddrIndx]); 9332 9333 // t3/4 are defined later, at the bottom of the loop 9334 unsigned t3 = F->getRegInfo().createVirtualRegister(RC); 9335 unsigned t4 = F->getRegInfo().createVirtualRegister(RC); 9336 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg()) 9337 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB); 9338 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg()) 9339 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB); 9340 9341 // The subsequent operations should be using the destination registers of 9342 //the PHI instructions. 9343 if (invSrc) { 9344 t1 = F->getRegInfo().createVirtualRegister(RC); 9345 t2 = F->getRegInfo().createVirtualRegister(RC); 9346 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg()); 9347 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg()); 9348 } else { 9349 t1 = dest1Oper.getReg(); 9350 t2 = dest2Oper.getReg(); 9351 } 9352 9353 int valArgIndx = lastAddrIndx + 1; 9354 assert((argOpers[valArgIndx]->isReg() || 9355 argOpers[valArgIndx]->isImm()) && 9356 "invalid operand"); 9357 unsigned t5 = F->getRegInfo().createVirtualRegister(RC); 9358 unsigned t6 = F->getRegInfo().createVirtualRegister(RC); 9359 if (argOpers[valArgIndx]->isReg()) 9360 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5); 9361 else 9362 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5); 9363 if (regOpcL != X86::MOV32rr) 9364 MIB.addReg(t1); 9365 (*MIB).addOperand(*argOpers[valArgIndx]); 9366 assert(argOpers[valArgIndx + 1]->isReg() == 9367 argOpers[valArgIndx]->isReg()); 9368 assert(argOpers[valArgIndx + 1]->isImm() == 9369 argOpers[valArgIndx]->isImm()); 9370 if (argOpers[valArgIndx + 1]->isReg()) 9371 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6); 9372 else 9373 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6); 9374 if (regOpcH != X86::MOV32rr) 9375 MIB.addReg(t2); 9376 (*MIB).addOperand(*argOpers[valArgIndx + 1]); 9377 9378 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX); 9379 MIB.addReg(t1); 9380 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX); 9381 MIB.addReg(t2); 9382 9383 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX); 9384 MIB.addReg(t5); 9385 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX); 9386 MIB.addReg(t6); 9387 9388 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B)); 9389 for (int i=0; i <= lastAddrIndx; ++i) 9390 (*MIB).addOperand(*argOpers[i]); 9391 9392 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); 9393 (*MIB).setMemRefs(bInstr->memoperands_begin(), 9394 bInstr->memoperands_end()); 9395 9396 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3); 9397 MIB.addReg(X86::EAX); 9398 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4); 9399 MIB.addReg(X86::EDX); 9400 9401 // insert branch 9402 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); 9403 9404 bInstr->eraseFromParent(); // The pseudo instruction is gone now. 9405 return nextMBB; 9406} 9407 9408// private utility function 9409MachineBasicBlock * 9410X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, 9411 MachineBasicBlock *MBB, 9412 unsigned cmovOpc) const { 9413 // For the atomic min/max operator, we generate 9414 // thisMBB: 9415 // newMBB: 9416 // ld t1 = [min/max.addr] 9417 // mov t2 = [min/max.val] 9418 // cmp t1, t2 9419 // cmov[cond] t2 = t1 9420 // mov EAX = t1 9421 // lcs dest = [bitinstr.addr], t2 [EAX is implicit] 9422 // bz newMBB 9423 // fallthrough -->nextMBB 9424 // 9425 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 9426 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 9427 MachineFunction::iterator MBBIter = MBB; 9428 ++MBBIter; 9429 9430 /// First build the CFG 9431 MachineFunction *F = MBB->getParent(); 9432 MachineBasicBlock *thisMBB = MBB; 9433 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); 9434 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); 9435 F->insert(MBBIter, newMBB); 9436 F->insert(MBBIter, nextMBB); 9437 9438 // Transfer the remainder of thisMBB and its successor edges to nextMBB. 9439 nextMBB->splice(nextMBB->begin(), thisMBB, 9440 llvm::next(MachineBasicBlock::iterator(mInstr)), 9441 thisMBB->end()); 9442 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB); 9443 9444 // Update thisMBB to fall through to newMBB 9445 thisMBB->addSuccessor(newMBB); 9446 9447 // newMBB jumps to newMBB and fall through to nextMBB 9448 newMBB->addSuccessor(nextMBB); 9449 newMBB->addSuccessor(newMBB); 9450 9451 DebugLoc dl = mInstr->getDebugLoc(); 9452 // Insert instructions into newMBB based on incoming instruction 9453 assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 && 9454 "unexpected number of operands"); 9455 MachineOperand& destOper = mInstr->getOperand(0); 9456 MachineOperand* argOpers[2 + X86::AddrNumOperands]; 9457 int numArgs = mInstr->getNumOperands() - 1; 9458 for (int i=0; i < numArgs; ++i) 9459 argOpers[i] = &mInstr->getOperand(i+1); 9460 9461 // x86 address has 4 operands: base, index, scale, and displacement 9462 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3] 9463 int valArgIndx = lastAddrIndx + 1; 9464 9465 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 9466 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1); 9467 for (int i=0; i <= lastAddrIndx; ++i) 9468 (*MIB).addOperand(*argOpers[i]); 9469 9470 // We only support register and immediate values 9471 assert((argOpers[valArgIndx]->isReg() || 9472 argOpers[valArgIndx]->isImm()) && 9473 "invalid operand"); 9474 9475 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 9476 if (argOpers[valArgIndx]->isReg()) 9477 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2); 9478 else 9479 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2); 9480 (*MIB).addOperand(*argOpers[valArgIndx]); 9481 9482 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX); 9483 MIB.addReg(t1); 9484 9485 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr)); 9486 MIB.addReg(t1); 9487 MIB.addReg(t2); 9488 9489 // Generate movc 9490 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); 9491 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3); 9492 MIB.addReg(t2); 9493 MIB.addReg(t1); 9494 9495 // Cmp and exchange if none has modified the memory location 9496 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32)); 9497 for (int i=0; i <= lastAddrIndx; ++i) 9498 (*MIB).addOperand(*argOpers[i]); 9499 MIB.addReg(t3); 9500 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand"); 9501 (*MIB).setMemRefs(mInstr->memoperands_begin(), 9502 mInstr->memoperands_end()); 9503 9504 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg()); 9505 MIB.addReg(X86::EAX); 9506 9507 // insert branch 9508 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); 9509 9510 mInstr->eraseFromParent(); // The pseudo instruction is gone now. 9511 return nextMBB; 9512} 9513 9514// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 9515// or XMM0_V32I8 in AVX all of this code can be replaced with that 9516// in the .td file. 9517MachineBasicBlock * 9518X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB, 9519 unsigned numArgs, bool memArg) const { 9520 assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) && 9521 "Target must have SSE4.2 or AVX features enabled"); 9522 9523 DebugLoc dl = MI->getDebugLoc(); 9524 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 9525 unsigned Opc; 9526 if (!Subtarget->hasAVX()) { 9527 if (memArg) 9528 Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm; 9529 else 9530 Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr; 9531 } else { 9532 if (memArg) 9533 Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm; 9534 else 9535 Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr; 9536 } 9537 9538 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc)); 9539 for (unsigned i = 0; i < numArgs; ++i) { 9540 MachineOperand &Op = MI->getOperand(i+1); 9541 if (!(Op.isReg() && Op.isImplicit())) 9542 MIB.addOperand(Op); 9543 } 9544 BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg()) 9545 .addReg(X86::XMM0); 9546 9547 MI->eraseFromParent(); 9548 return BB; 9549} 9550 9551MachineBasicBlock * 9552X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const { 9553 DebugLoc dl = MI->getDebugLoc(); 9554 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 9555 9556 // Address into RAX/EAX, other two args into ECX, EDX. 9557 unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; 9558 unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX; 9559 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg); 9560 for (int i = 0; i < X86::AddrNumOperands; ++i) 9561 MIB.addOperand(MI->getOperand(i)); 9562 9563 unsigned ValOps = X86::AddrNumOperands; 9564 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) 9565 .addReg(MI->getOperand(ValOps).getReg()); 9566 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX) 9567 .addReg(MI->getOperand(ValOps+1).getReg()); 9568 9569 // The instruction doesn't actually take any operands though. 9570 BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr)); 9571 9572 MI->eraseFromParent(); // The pseudo is gone now. 9573 return BB; 9574} 9575 9576MachineBasicBlock * 9577X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const { 9578 DebugLoc dl = MI->getDebugLoc(); 9579 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 9580 9581 // First arg in ECX, the second in EAX. 9582 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX) 9583 .addReg(MI->getOperand(0).getReg()); 9584 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX) 9585 .addReg(MI->getOperand(1).getReg()); 9586 9587 // The instruction doesn't actually take any operands though. 9588 BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr)); 9589 9590 MI->eraseFromParent(); // The pseudo is gone now. 9591 return BB; 9592} 9593 9594MachineBasicBlock * 9595X86TargetLowering::EmitVAARG64WithCustomInserter( 9596 MachineInstr *MI, 9597 MachineBasicBlock *MBB) const { 9598 // Emit va_arg instruction on X86-64. 9599 9600 // Operands to this pseudo-instruction: 9601 // 0 ) Output : destination address (reg) 9602 // 1-5) Input : va_list address (addr, i64mem) 9603 // 6 ) ArgSize : Size (in bytes) of vararg type 9604 // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset 9605 // 8 ) Align : Alignment of type 9606 // 9 ) EFLAGS (implicit-def) 9607 9608 assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!"); 9609 assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands"); 9610 9611 unsigned DestReg = MI->getOperand(0).getReg(); 9612 MachineOperand &Base = MI->getOperand(1); 9613 MachineOperand &Scale = MI->getOperand(2); 9614 MachineOperand &Index = MI->getOperand(3); 9615 MachineOperand &Disp = MI->getOperand(4); 9616 MachineOperand &Segment = MI->getOperand(5); 9617 unsigned ArgSize = MI->getOperand(6).getImm(); 9618 unsigned ArgMode = MI->getOperand(7).getImm(); 9619 unsigned Align = MI->getOperand(8).getImm(); 9620 9621 // Memory Reference 9622 assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand"); 9623 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); 9624 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); 9625 9626 // Machine Information 9627 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 9628 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 9629 const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64); 9630 const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32); 9631 DebugLoc DL = MI->getDebugLoc(); 9632 9633 // struct va_list { 9634 // i32 gp_offset 9635 // i32 fp_offset 9636 // i64 overflow_area (address) 9637 // i64 reg_save_area (address) 9638 // } 9639 // sizeof(va_list) = 24 9640 // alignment(va_list) = 8 9641 9642 unsigned TotalNumIntRegs = 6; 9643 unsigned TotalNumXMMRegs = 8; 9644 bool UseGPOffset = (ArgMode == 1); 9645 bool UseFPOffset = (ArgMode == 2); 9646 unsigned MaxOffset = TotalNumIntRegs * 8 + 9647 (UseFPOffset ? TotalNumXMMRegs * 16 : 0); 9648 9649 /* Align ArgSize to a multiple of 8 */ 9650 unsigned ArgSizeA8 = (ArgSize + 7) & ~7; 9651 bool NeedsAlign = (Align > 8); 9652 9653 MachineBasicBlock *thisMBB = MBB; 9654 MachineBasicBlock *overflowMBB; 9655 MachineBasicBlock *offsetMBB; 9656 MachineBasicBlock *endMBB; 9657 9658 unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB 9659 unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB 9660 unsigned OffsetReg = 0; 9661 9662 if (!UseGPOffset && !UseFPOffset) { 9663 // If we only pull from the overflow region, we don't create a branch. 9664 // We don't need to alter control flow. 9665 OffsetDestReg = 0; // unused 9666 OverflowDestReg = DestReg; 9667 9668 offsetMBB = NULL; 9669 overflowMBB = thisMBB; 9670 endMBB = thisMBB; 9671 } else { 9672 // First emit code to check if gp_offset (or fp_offset) is below the bound. 9673 // If so, pull the argument from reg_save_area. (branch to offsetMBB) 9674 // If not, pull from overflow_area. (branch to overflowMBB) 9675 // 9676 // thisMBB 9677 // | . 9678 // | . 9679 // offsetMBB overflowMBB 9680 // | . 9681 // | . 9682 // endMBB 9683 9684 // Registers for the PHI in endMBB 9685 OffsetDestReg = MRI.createVirtualRegister(AddrRegClass); 9686 OverflowDestReg = MRI.createVirtualRegister(AddrRegClass); 9687 9688 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 9689 MachineFunction *MF = MBB->getParent(); 9690 overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB); 9691 offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB); 9692 endMBB = MF->CreateMachineBasicBlock(LLVM_BB); 9693 9694 MachineFunction::iterator MBBIter = MBB; 9695 ++MBBIter; 9696 9697 // Insert the new basic blocks 9698 MF->insert(MBBIter, offsetMBB); 9699 MF->insert(MBBIter, overflowMBB); 9700 MF->insert(MBBIter, endMBB); 9701 9702 // Transfer the remainder of MBB and its successor edges to endMBB. 9703 endMBB->splice(endMBB->begin(), thisMBB, 9704 llvm::next(MachineBasicBlock::iterator(MI)), 9705 thisMBB->end()); 9706 endMBB->transferSuccessorsAndUpdatePHIs(thisMBB); 9707 9708 // Make offsetMBB and overflowMBB successors of thisMBB 9709 thisMBB->addSuccessor(offsetMBB); 9710 thisMBB->addSuccessor(overflowMBB); 9711 9712 // endMBB is a successor of both offsetMBB and overflowMBB 9713 offsetMBB->addSuccessor(endMBB); 9714 overflowMBB->addSuccessor(endMBB); 9715 9716 // Load the offset value into a register 9717 OffsetReg = MRI.createVirtualRegister(OffsetRegClass); 9718 BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg) 9719 .addOperand(Base) 9720 .addOperand(Scale) 9721 .addOperand(Index) 9722 .addDisp(Disp, UseFPOffset ? 4 : 0) 9723 .addOperand(Segment) 9724 .setMemRefs(MMOBegin, MMOEnd); 9725 9726 // Check if there is enough room left to pull this argument. 9727 BuildMI(thisMBB, DL, TII->get(X86::CMP32ri)) 9728 .addReg(OffsetReg) 9729 .addImm(MaxOffset + 8 - ArgSizeA8); 9730 9731 // Branch to "overflowMBB" if offset >= max 9732 // Fall through to "offsetMBB" otherwise 9733 BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE))) 9734 .addMBB(overflowMBB); 9735 } 9736 9737 // In offsetMBB, emit code to use the reg_save_area. 9738 if (offsetMBB) { 9739 assert(OffsetReg != 0); 9740 9741 // Read the reg_save_area address. 9742 unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass); 9743 BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg) 9744 .addOperand(Base) 9745 .addOperand(Scale) 9746 .addOperand(Index) 9747 .addDisp(Disp, 16) 9748 .addOperand(Segment) 9749 .setMemRefs(MMOBegin, MMOEnd); 9750 9751 // Zero-extend the offset 9752 unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass); 9753 BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64) 9754 .addImm(0) 9755 .addReg(OffsetReg) 9756 .addImm(X86::sub_32bit); 9757 9758 // Add the offset to the reg_save_area to get the final address. 9759 BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg) 9760 .addReg(OffsetReg64) 9761 .addReg(RegSaveReg); 9762 9763 // Compute the offset for the next argument 9764 unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass); 9765 BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg) 9766 .addReg(OffsetReg) 9767 .addImm(UseFPOffset ? 16 : 8); 9768 9769 // Store it back into the va_list. 9770 BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr)) 9771 .addOperand(Base) 9772 .addOperand(Scale) 9773 .addOperand(Index) 9774 .addDisp(Disp, UseFPOffset ? 4 : 0) 9775 .addOperand(Segment) 9776 .addReg(NextOffsetReg) 9777 .setMemRefs(MMOBegin, MMOEnd); 9778 9779 // Jump to endMBB 9780 BuildMI(offsetMBB, DL, TII->get(X86::JMP_4)) 9781 .addMBB(endMBB); 9782 } 9783 9784 // 9785 // Emit code to use overflow area 9786 // 9787 9788 // Load the overflow_area address into a register. 9789 unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass); 9790 BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg) 9791 .addOperand(Base) 9792 .addOperand(Scale) 9793 .addOperand(Index) 9794 .addDisp(Disp, 8) 9795 .addOperand(Segment) 9796 .setMemRefs(MMOBegin, MMOEnd); 9797 9798 // If we need to align it, do so. Otherwise, just copy the address 9799 // to OverflowDestReg. 9800 if (NeedsAlign) { 9801 // Align the overflow address 9802 assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2"); 9803 unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass); 9804 9805 // aligned_addr = (addr + (align-1)) & ~(align-1) 9806 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg) 9807 .addReg(OverflowAddrReg) 9808 .addImm(Align-1); 9809 9810 BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg) 9811 .addReg(TmpReg) 9812 .addImm(~(uint64_t)(Align-1)); 9813 } else { 9814 BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg) 9815 .addReg(OverflowAddrReg); 9816 } 9817 9818 // Compute the next overflow address after this argument. 9819 // (the overflow address should be kept 8-byte aligned) 9820 unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass); 9821 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg) 9822 .addReg(OverflowDestReg) 9823 .addImm(ArgSizeA8); 9824 9825 // Store the new overflow address. 9826 BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr)) 9827 .addOperand(Base) 9828 .addOperand(Scale) 9829 .addOperand(Index) 9830 .addDisp(Disp, 8) 9831 .addOperand(Segment) 9832 .addReg(NextAddrReg) 9833 .setMemRefs(MMOBegin, MMOEnd); 9834 9835 // If we branched, emit the PHI to the front of endMBB. 9836 if (offsetMBB) { 9837 BuildMI(*endMBB, endMBB->begin(), DL, 9838 TII->get(X86::PHI), DestReg) 9839 .addReg(OffsetDestReg).addMBB(offsetMBB) 9840 .addReg(OverflowDestReg).addMBB(overflowMBB); 9841 } 9842 9843 // Erase the pseudo instruction 9844 MI->eraseFromParent(); 9845 9846 return endMBB; 9847} 9848 9849MachineBasicBlock * 9850X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( 9851 MachineInstr *MI, 9852 MachineBasicBlock *MBB) const { 9853 // Emit code to save XMM registers to the stack. The ABI says that the 9854 // number of registers to save is given in %al, so it's theoretically 9855 // possible to do an indirect jump trick to avoid saving all of them, 9856 // however this code takes a simpler approach and just executes all 9857 // of the stores if %al is non-zero. It's less code, and it's probably 9858 // easier on the hardware branch predictor, and stores aren't all that 9859 // expensive anyway. 9860 9861 // Create the new basic blocks. One block contains all the XMM stores, 9862 // and one block is the final destination regardless of whether any 9863 // stores were performed. 9864 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 9865 MachineFunction *F = MBB->getParent(); 9866 MachineFunction::iterator MBBIter = MBB; 9867 ++MBBIter; 9868 MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); 9869 MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); 9870 F->insert(MBBIter, XMMSaveMBB); 9871 F->insert(MBBIter, EndMBB); 9872 9873 // Transfer the remainder of MBB and its successor edges to EndMBB. 9874 EndMBB->splice(EndMBB->begin(), MBB, 9875 llvm::next(MachineBasicBlock::iterator(MI)), 9876 MBB->end()); 9877 EndMBB->transferSuccessorsAndUpdatePHIs(MBB); 9878 9879 // The original block will now fall through to the XMM save block. 9880 MBB->addSuccessor(XMMSaveMBB); 9881 // The XMMSaveMBB will fall through to the end block. 9882 XMMSaveMBB->addSuccessor(EndMBB); 9883 9884 // Now add the instructions. 9885 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 9886 DebugLoc DL = MI->getDebugLoc(); 9887 9888 unsigned CountReg = MI->getOperand(0).getReg(); 9889 int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); 9890 int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); 9891 9892 if (!Subtarget->isTargetWin64()) { 9893 // If %al is 0, branch around the XMM save block. 9894 BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); 9895 BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB); 9896 MBB->addSuccessor(EndMBB); 9897 } 9898 9899 // In the XMM save block, save all the XMM argument registers. 9900 for (int i = 3, e = MI->getNumOperands(); i != e; ++i) { 9901 int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; 9902 MachineMemOperand *MMO = 9903 F->getMachineMemOperand( 9904 MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset), 9905 MachineMemOperand::MOStore, 9906 /*Size=*/16, /*Align=*/16); 9907 BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr)) 9908 .addFrameIndex(RegSaveFrameIndex) 9909 .addImm(/*Scale=*/1) 9910 .addReg(/*IndexReg=*/0) 9911 .addImm(/*Disp=*/Offset) 9912 .addReg(/*Segment=*/0) 9913 .addReg(MI->getOperand(i).getReg()) 9914 .addMemOperand(MMO); 9915 } 9916 9917 MI->eraseFromParent(); // The pseudo instruction is gone now. 9918 9919 return EndMBB; 9920} 9921 9922MachineBasicBlock * 9923X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, 9924 MachineBasicBlock *BB) const { 9925 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 9926 DebugLoc DL = MI->getDebugLoc(); 9927 9928 // To "insert" a SELECT_CC instruction, we actually have to insert the 9929 // diamond control-flow pattern. The incoming instruction knows the 9930 // destination vreg to set, the condition code register to branch on, the 9931 // true/false values to select between, and a branch opcode to use. 9932 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 9933 MachineFunction::iterator It = BB; 9934 ++It; 9935 9936 // thisMBB: 9937 // ... 9938 // TrueVal = ... 9939 // cmpTY ccX, r1, r2 9940 // bCC copy1MBB 9941 // fallthrough --> copy0MBB 9942 MachineBasicBlock *thisMBB = BB; 9943 MachineFunction *F = BB->getParent(); 9944 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 9945 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 9946 F->insert(It, copy0MBB); 9947 F->insert(It, sinkMBB); 9948 9949 // If the EFLAGS register isn't dead in the terminator, then claim that it's 9950 // live into the sink and copy blocks. 9951 const MachineFunction *MF = BB->getParent(); 9952 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo(); 9953 BitVector ReservedRegs = TRI->getReservedRegs(*MF); 9954 9955 for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { 9956 const MachineOperand &MO = MI->getOperand(I); 9957 if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue; 9958 unsigned Reg = MO.getReg(); 9959 if (Reg != X86::EFLAGS) continue; 9960 copy0MBB->addLiveIn(Reg); 9961 sinkMBB->addLiveIn(Reg); 9962 } 9963 9964 // Transfer the remainder of BB and its successor edges to sinkMBB. 9965 sinkMBB->splice(sinkMBB->begin(), BB, 9966 llvm::next(MachineBasicBlock::iterator(MI)), 9967 BB->end()); 9968 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 9969 9970 // Add the true and fallthrough blocks as its successors. 9971 BB->addSuccessor(copy0MBB); 9972 BB->addSuccessor(sinkMBB); 9973 9974 // Create the conditional branch instruction. 9975 unsigned Opc = 9976 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); 9977 BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); 9978 9979 // copy0MBB: 9980 // %FalseValue = ... 9981 // # fallthrough to sinkMBB 9982 copy0MBB->addSuccessor(sinkMBB); 9983 9984 // sinkMBB: 9985 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 9986 // ... 9987 BuildMI(*sinkMBB, sinkMBB->begin(), DL, 9988 TII->get(X86::PHI), MI->getOperand(0).getReg()) 9989 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) 9990 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 9991 9992 MI->eraseFromParent(); // The pseudo instruction is gone now. 9993 return sinkMBB; 9994} 9995 9996MachineBasicBlock * 9997X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI, 9998 MachineBasicBlock *BB) const { 9999 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 10000 DebugLoc DL = MI->getDebugLoc(); 10001 10002 // The lowering is pretty easy: we're just emitting the call to _alloca. The 10003 // non-trivial part is impdef of ESP. 10004 // FIXME: The code should be tweaked as soon as we'll try to do codegen for 10005 // mingw-w64. 10006 10007 const char *StackProbeSymbol = 10008 Subtarget->isTargetWindows() ? "_chkstk" : "_alloca"; 10009 10010 BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32)) 10011 .addExternalSymbol(StackProbeSymbol) 10012 .addReg(X86::EAX, RegState::Implicit) 10013 .addReg(X86::ESP, RegState::Implicit) 10014 .addReg(X86::EAX, RegState::Define | RegState::Implicit) 10015 .addReg(X86::ESP, RegState::Define | RegState::Implicit) 10016 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit); 10017 10018 MI->eraseFromParent(); // The pseudo instruction is gone now. 10019 return BB; 10020} 10021 10022MachineBasicBlock * 10023X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI, 10024 MachineBasicBlock *BB) const { 10025 // This is pretty easy. We're taking the value that we received from 10026 // our load from the relocation, sticking it in either RDI (x86-64) 10027 // or EAX and doing an indirect call. The return value will then 10028 // be in the normal return register. 10029 const X86InstrInfo *TII 10030 = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo()); 10031 DebugLoc DL = MI->getDebugLoc(); 10032 MachineFunction *F = BB->getParent(); 10033 10034 assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?"); 10035 assert(MI->getOperand(3).isGlobal() && "This should be a global"); 10036 10037 if (Subtarget->is64Bit()) { 10038 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, 10039 TII->get(X86::MOV64rm), X86::RDI) 10040 .addReg(X86::RIP) 10041 .addImm(0).addReg(0) 10042 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, 10043 MI->getOperand(3).getTargetFlags()) 10044 .addReg(0); 10045 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m)); 10046 addDirectMem(MIB, X86::RDI); 10047 } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) { 10048 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, 10049 TII->get(X86::MOV32rm), X86::EAX) 10050 .addReg(0) 10051 .addImm(0).addReg(0) 10052 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, 10053 MI->getOperand(3).getTargetFlags()) 10054 .addReg(0); 10055 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); 10056 addDirectMem(MIB, X86::EAX); 10057 } else { 10058 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL, 10059 TII->get(X86::MOV32rm), X86::EAX) 10060 .addReg(TII->getGlobalBaseReg(F)) 10061 .addImm(0).addReg(0) 10062 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0, 10063 MI->getOperand(3).getTargetFlags()) 10064 .addReg(0); 10065 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m)); 10066 addDirectMem(MIB, X86::EAX); 10067 } 10068 10069 MI->eraseFromParent(); // The pseudo instruction is gone now. 10070 return BB; 10071} 10072 10073MachineBasicBlock * 10074X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 10075 MachineBasicBlock *BB) const { 10076 switch (MI->getOpcode()) { 10077 default: assert(false && "Unexpected instr type to insert"); 10078 case X86::WIN_ALLOCA: 10079 return EmitLoweredWinAlloca(MI, BB); 10080 case X86::TLSCall_32: 10081 case X86::TLSCall_64: 10082 return EmitLoweredTLSCall(MI, BB); 10083 case X86::CMOV_GR8: 10084 case X86::CMOV_FR32: 10085 case X86::CMOV_FR64: 10086 case X86::CMOV_V4F32: 10087 case X86::CMOV_V2F64: 10088 case X86::CMOV_V2I64: 10089 case X86::CMOV_GR16: 10090 case X86::CMOV_GR32: 10091 case X86::CMOV_RFP32: 10092 case X86::CMOV_RFP64: 10093 case X86::CMOV_RFP80: 10094 return EmitLoweredSelect(MI, BB); 10095 10096 case X86::FP32_TO_INT16_IN_MEM: 10097 case X86::FP32_TO_INT32_IN_MEM: 10098 case X86::FP32_TO_INT64_IN_MEM: 10099 case X86::FP64_TO_INT16_IN_MEM: 10100 case X86::FP64_TO_INT32_IN_MEM: 10101 case X86::FP64_TO_INT64_IN_MEM: 10102 case X86::FP80_TO_INT16_IN_MEM: 10103 case X86::FP80_TO_INT32_IN_MEM: 10104 case X86::FP80_TO_INT64_IN_MEM: { 10105 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); 10106 DebugLoc DL = MI->getDebugLoc(); 10107 10108 // Change the floating point control register to use "round towards zero" 10109 // mode when truncating to an integer value. 10110 MachineFunction *F = BB->getParent(); 10111 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); 10112 addFrameReference(BuildMI(*BB, MI, DL, 10113 TII->get(X86::FNSTCW16m)), CWFrameIdx); 10114 10115 // Load the old value of the high byte of the control word... 10116 unsigned OldCW = 10117 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); 10118 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW), 10119 CWFrameIdx); 10120 10121 // Set the high part to be round to zero... 10122 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx) 10123 .addImm(0xC7F); 10124 10125 // Reload the modified control word now... 10126 addFrameReference(BuildMI(*BB, MI, DL, 10127 TII->get(X86::FLDCW16m)), CWFrameIdx); 10128 10129 // Restore the memory image of control word to original value 10130 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx) 10131 .addReg(OldCW); 10132 10133 // Get the X86 opcode to use. 10134 unsigned Opc; 10135 switch (MI->getOpcode()) { 10136 default: llvm_unreachable("illegal opcode!"); 10137 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; 10138 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; 10139 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; 10140 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; 10141 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; 10142 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; 10143 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; 10144 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; 10145 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; 10146 } 10147 10148 X86AddressMode AM; 10149 MachineOperand &Op = MI->getOperand(0); 10150 if (Op.isReg()) { 10151 AM.BaseType = X86AddressMode::RegBase; 10152 AM.Base.Reg = Op.getReg(); 10153 } else { 10154 AM.BaseType = X86AddressMode::FrameIndexBase; 10155 AM.Base.FrameIndex = Op.getIndex(); 10156 } 10157 Op = MI->getOperand(1); 10158 if (Op.isImm()) 10159 AM.Scale = Op.getImm(); 10160 Op = MI->getOperand(2); 10161 if (Op.isImm()) 10162 AM.IndexReg = Op.getImm(); 10163 Op = MI->getOperand(3); 10164 if (Op.isGlobal()) { 10165 AM.GV = Op.getGlobal(); 10166 } else { 10167 AM.Disp = Op.getImm(); 10168 } 10169 addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM) 10170 .addReg(MI->getOperand(X86::AddrNumOperands).getReg()); 10171 10172 // Reload the original control word now. 10173 addFrameReference(BuildMI(*BB, MI, DL, 10174 TII->get(X86::FLDCW16m)), CWFrameIdx); 10175 10176 MI->eraseFromParent(); // The pseudo instruction is gone now. 10177 return BB; 10178 } 10179 // String/text processing lowering. 10180 case X86::PCMPISTRM128REG: 10181 case X86::VPCMPISTRM128REG: 10182 return EmitPCMP(MI, BB, 3, false /* in-mem */); 10183 case X86::PCMPISTRM128MEM: 10184 case X86::VPCMPISTRM128MEM: 10185 return EmitPCMP(MI, BB, 3, true /* in-mem */); 10186 case X86::PCMPESTRM128REG: 10187 case X86::VPCMPESTRM128REG: 10188 return EmitPCMP(MI, BB, 5, false /* in mem */); 10189 case X86::PCMPESTRM128MEM: 10190 case X86::VPCMPESTRM128MEM: 10191 return EmitPCMP(MI, BB, 5, true /* in mem */); 10192 10193 // Thread synchronization. 10194 case X86::MONITOR: 10195 return EmitMonitor(MI, BB); 10196 case X86::MWAIT: 10197 return EmitMwait(MI, BB); 10198 10199 // Atomic Lowering. 10200 case X86::ATOMAND32: 10201 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, 10202 X86::AND32ri, X86::MOV32rm, 10203 X86::LCMPXCHG32, 10204 X86::NOT32r, X86::EAX, 10205 X86::GR32RegisterClass); 10206 case X86::ATOMOR32: 10207 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr, 10208 X86::OR32ri, X86::MOV32rm, 10209 X86::LCMPXCHG32, 10210 X86::NOT32r, X86::EAX, 10211 X86::GR32RegisterClass); 10212 case X86::ATOMXOR32: 10213 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr, 10214 X86::XOR32ri, X86::MOV32rm, 10215 X86::LCMPXCHG32, 10216 X86::NOT32r, X86::EAX, 10217 X86::GR32RegisterClass); 10218 case X86::ATOMNAND32: 10219 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, 10220 X86::AND32ri, X86::MOV32rm, 10221 X86::LCMPXCHG32, 10222 X86::NOT32r, X86::EAX, 10223 X86::GR32RegisterClass, true); 10224 case X86::ATOMMIN32: 10225 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr); 10226 case X86::ATOMMAX32: 10227 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr); 10228 case X86::ATOMUMIN32: 10229 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr); 10230 case X86::ATOMUMAX32: 10231 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr); 10232 10233 case X86::ATOMAND16: 10234 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, 10235 X86::AND16ri, X86::MOV16rm, 10236 X86::LCMPXCHG16, 10237 X86::NOT16r, X86::AX, 10238 X86::GR16RegisterClass); 10239 case X86::ATOMOR16: 10240 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr, 10241 X86::OR16ri, X86::MOV16rm, 10242 X86::LCMPXCHG16, 10243 X86::NOT16r, X86::AX, 10244 X86::GR16RegisterClass); 10245 case X86::ATOMXOR16: 10246 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr, 10247 X86::XOR16ri, X86::MOV16rm, 10248 X86::LCMPXCHG16, 10249 X86::NOT16r, X86::AX, 10250 X86::GR16RegisterClass); 10251 case X86::ATOMNAND16: 10252 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, 10253 X86::AND16ri, X86::MOV16rm, 10254 X86::LCMPXCHG16, 10255 X86::NOT16r, X86::AX, 10256 X86::GR16RegisterClass, true); 10257 case X86::ATOMMIN16: 10258 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr); 10259 case X86::ATOMMAX16: 10260 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr); 10261 case X86::ATOMUMIN16: 10262 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr); 10263 case X86::ATOMUMAX16: 10264 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr); 10265 10266 case X86::ATOMAND8: 10267 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, 10268 X86::AND8ri, X86::MOV8rm, 10269 X86::LCMPXCHG8, 10270 X86::NOT8r, X86::AL, 10271 X86::GR8RegisterClass); 10272 case X86::ATOMOR8: 10273 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr, 10274 X86::OR8ri, X86::MOV8rm, 10275 X86::LCMPXCHG8, 10276 X86::NOT8r, X86::AL, 10277 X86::GR8RegisterClass); 10278 case X86::ATOMXOR8: 10279 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr, 10280 X86::XOR8ri, X86::MOV8rm, 10281 X86::LCMPXCHG8, 10282 X86::NOT8r, X86::AL, 10283 X86::GR8RegisterClass); 10284 case X86::ATOMNAND8: 10285 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, 10286 X86::AND8ri, X86::MOV8rm, 10287 X86::LCMPXCHG8, 10288 X86::NOT8r, X86::AL, 10289 X86::GR8RegisterClass, true); 10290 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way. 10291 // This group is for 64-bit host. 10292 case X86::ATOMAND64: 10293 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, 10294 X86::AND64ri32, X86::MOV64rm, 10295 X86::LCMPXCHG64, 10296 X86::NOT64r, X86::RAX, 10297 X86::GR64RegisterClass); 10298 case X86::ATOMOR64: 10299 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr, 10300 X86::OR64ri32, X86::MOV64rm, 10301 X86::LCMPXCHG64, 10302 X86::NOT64r, X86::RAX, 10303 X86::GR64RegisterClass); 10304 case X86::ATOMXOR64: 10305 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr, 10306 X86::XOR64ri32, X86::MOV64rm, 10307 X86::LCMPXCHG64, 10308 X86::NOT64r, X86::RAX, 10309 X86::GR64RegisterClass); 10310 case X86::ATOMNAND64: 10311 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, 10312 X86::AND64ri32, X86::MOV64rm, 10313 X86::LCMPXCHG64, 10314 X86::NOT64r, X86::RAX, 10315 X86::GR64RegisterClass, true); 10316 case X86::ATOMMIN64: 10317 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr); 10318 case X86::ATOMMAX64: 10319 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr); 10320 case X86::ATOMUMIN64: 10321 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr); 10322 case X86::ATOMUMAX64: 10323 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr); 10324 10325 // This group does 64-bit operations on a 32-bit host. 10326 case X86::ATOMAND6432: 10327 return EmitAtomicBit6432WithCustomInserter(MI, BB, 10328 X86::AND32rr, X86::AND32rr, 10329 X86::AND32ri, X86::AND32ri, 10330 false); 10331 case X86::ATOMOR6432: 10332 return EmitAtomicBit6432WithCustomInserter(MI, BB, 10333 X86::OR32rr, X86::OR32rr, 10334 X86::OR32ri, X86::OR32ri, 10335 false); 10336 case X86::ATOMXOR6432: 10337 return EmitAtomicBit6432WithCustomInserter(MI, BB, 10338 X86::XOR32rr, X86::XOR32rr, 10339 X86::XOR32ri, X86::XOR32ri, 10340 false); 10341 case X86::ATOMNAND6432: 10342 return EmitAtomicBit6432WithCustomInserter(MI, BB, 10343 X86::AND32rr, X86::AND32rr, 10344 X86::AND32ri, X86::AND32ri, 10345 true); 10346 case X86::ATOMADD6432: 10347 return EmitAtomicBit6432WithCustomInserter(MI, BB, 10348 X86::ADD32rr, X86::ADC32rr, 10349 X86::ADD32ri, X86::ADC32ri, 10350 false); 10351 case X86::ATOMSUB6432: 10352 return EmitAtomicBit6432WithCustomInserter(MI, BB, 10353 X86::SUB32rr, X86::SBB32rr, 10354 X86::SUB32ri, X86::SBB32ri, 10355 false); 10356 case X86::ATOMSWAP6432: 10357 return EmitAtomicBit6432WithCustomInserter(MI, BB, 10358 X86::MOV32rr, X86::MOV32rr, 10359 X86::MOV32ri, X86::MOV32ri, 10360 false); 10361 case X86::VASTART_SAVE_XMM_REGS: 10362 return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); 10363 10364 case X86::VAARG_64: 10365 return EmitVAARG64WithCustomInserter(MI, BB); 10366 } 10367} 10368 10369//===----------------------------------------------------------------------===// 10370// X86 Optimization Hooks 10371//===----------------------------------------------------------------------===// 10372 10373void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 10374 const APInt &Mask, 10375 APInt &KnownZero, 10376 APInt &KnownOne, 10377 const SelectionDAG &DAG, 10378 unsigned Depth) const { 10379 unsigned Opc = Op.getOpcode(); 10380 assert((Opc >= ISD::BUILTIN_OP_END || 10381 Opc == ISD::INTRINSIC_WO_CHAIN || 10382 Opc == ISD::INTRINSIC_W_CHAIN || 10383 Opc == ISD::INTRINSIC_VOID) && 10384 "Should use MaskedValueIsZero if you don't know whether Op" 10385 " is a target node!"); 10386 10387 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything. 10388 switch (Opc) { 10389 default: break; 10390 case X86ISD::ADD: 10391 case X86ISD::SUB: 10392 case X86ISD::ADC: 10393 case X86ISD::SBB: 10394 case X86ISD::SMUL: 10395 case X86ISD::UMUL: 10396 case X86ISD::INC: 10397 case X86ISD::DEC: 10398 case X86ISD::OR: 10399 case X86ISD::XOR: 10400 case X86ISD::AND: 10401 // These nodes' second result is a boolean. 10402 if (Op.getResNo() == 0) 10403 break; 10404 // Fallthrough 10405 case X86ISD::SETCC: 10406 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(), 10407 Mask.getBitWidth() - 1); 10408 break; 10409 } 10410} 10411 10412unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 10413 unsigned Depth) const { 10414 // SETCC_CARRY sets the dest to ~0 for true or 0 for false. 10415 if (Op.getOpcode() == X86ISD::SETCC_CARRY) 10416 return Op.getValueType().getScalarType().getSizeInBits(); 10417 10418 // Fallback case. 10419 return 1; 10420} 10421 10422/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 10423/// node is a GlobalAddress + offset. 10424bool X86TargetLowering::isGAPlusOffset(SDNode *N, 10425 const GlobalValue* &GA, 10426 int64_t &Offset) const { 10427 if (N->getOpcode() == X86ISD::Wrapper) { 10428 if (isa<GlobalAddressSDNode>(N->getOperand(0))) { 10429 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); 10430 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); 10431 return true; 10432 } 10433 } 10434 return TargetLowering::isGAPlusOffset(N, GA, Offset); 10435} 10436 10437/// PerformShuffleCombine - Combine a vector_shuffle that is equal to 10438/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load 10439/// if the load addresses are consecutive, non-overlapping, and in the right 10440/// order. 10441static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, 10442 TargetLowering::DAGCombinerInfo &DCI) { 10443 DebugLoc dl = N->getDebugLoc(); 10444 EVT VT = N->getValueType(0); 10445 10446 if (VT.getSizeInBits() != 128) 10447 return SDValue(); 10448 10449 // Don't create instructions with illegal types after legalize types has run. 10450 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10451 if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType())) 10452 return SDValue(); 10453 10454 SmallVector<SDValue, 16> Elts; 10455 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) 10456 Elts.push_back(getShuffleScalarElt(N, i, DAG, 0)); 10457 10458 return EltsFromConsecutiveLoads(VT, Elts, dl, DAG); 10459} 10460 10461/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index 10462/// generation and convert it from being a bunch of shuffles and extracts 10463/// to a simple store and scalar loads to extract the elements. 10464static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, 10465 const TargetLowering &TLI) { 10466 SDValue InputVector = N->getOperand(0); 10467 10468 // Only operate on vectors of 4 elements, where the alternative shuffling 10469 // gets to be more expensive. 10470 if (InputVector.getValueType() != MVT::v4i32) 10471 return SDValue(); 10472 10473 // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a 10474 // single use which is a sign-extend or zero-extend, and all elements are 10475 // used. 10476 SmallVector<SDNode *, 4> Uses; 10477 unsigned ExtractedElements = 0; 10478 for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), 10479 UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { 10480 if (UI.getUse().getResNo() != InputVector.getResNo()) 10481 return SDValue(); 10482 10483 SDNode *Extract = *UI; 10484 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 10485 return SDValue(); 10486 10487 if (Extract->getValueType(0) != MVT::i32) 10488 return SDValue(); 10489 if (!Extract->hasOneUse()) 10490 return SDValue(); 10491 if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && 10492 Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) 10493 return SDValue(); 10494 if (!isa<ConstantSDNode>(Extract->getOperand(1))) 10495 return SDValue(); 10496 10497 // Record which element was extracted. 10498 ExtractedElements |= 10499 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue(); 10500 10501 Uses.push_back(Extract); 10502 } 10503 10504 // If not all the elements were used, this may not be worthwhile. 10505 if (ExtractedElements != 15) 10506 return SDValue(); 10507 10508 // Ok, we've now decided to do the transformation. 10509 DebugLoc dl = InputVector.getDebugLoc(); 10510 10511 // Store the value to a temporary stack slot. 10512 SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType()); 10513 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, 10514 MachinePointerInfo(), false, false, 0); 10515 10516 // Replace each use (extract) with a load of the appropriate element. 10517 for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(), 10518 UE = Uses.end(); UI != UE; ++UI) { 10519 SDNode *Extract = *UI; 10520 10521 // Compute the element's address. 10522 SDValue Idx = Extract->getOperand(1); 10523 unsigned EltSize = 10524 InputVector.getValueType().getVectorElementType().getSizeInBits()/8; 10525 uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue(); 10526 SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy()); 10527 10528 SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), 10529 StackPtr, OffsetVal); 10530 10531 // Load the scalar. 10532 SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, 10533 ScalarAddr, MachinePointerInfo(), 10534 false, false, 0); 10535 10536 // Replace the exact with the load. 10537 DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar); 10538 } 10539 10540 // The replacement was made in place; don't return anything. 10541 return SDValue(); 10542} 10543 10544/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. 10545static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, 10546 const X86Subtarget *Subtarget) { 10547 DebugLoc DL = N->getDebugLoc(); 10548 SDValue Cond = N->getOperand(0); 10549 // Get the LHS/RHS of the select. 10550 SDValue LHS = N->getOperand(1); 10551 SDValue RHS = N->getOperand(2); 10552 10553 // If we have SSE[12] support, try to form min/max nodes. SSE min/max 10554 // instructions match the semantics of the common C idiom x<y?x:y but not 10555 // x<=y?x:y, because of how they handle negative zero (which can be 10556 // ignored in unsafe-math mode). 10557 if (Subtarget->hasSSE2() && 10558 (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) && 10559 Cond.getOpcode() == ISD::SETCC) { 10560 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); 10561 10562 unsigned Opcode = 0; 10563 // Check for x CC y ? x : y. 10564 if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && 10565 DAG.isEqualTo(RHS, Cond.getOperand(1))) { 10566 switch (CC) { 10567 default: break; 10568 case ISD::SETULT: 10569 // Converting this to a min would handle NaNs incorrectly, and swapping 10570 // the operands would cause it to handle comparisons between positive 10571 // and negative zero incorrectly. 10572 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { 10573 if (!UnsafeFPMath && 10574 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) 10575 break; 10576 std::swap(LHS, RHS); 10577 } 10578 Opcode = X86ISD::FMIN; 10579 break; 10580 case ISD::SETOLE: 10581 // Converting this to a min would handle comparisons between positive 10582 // and negative zero incorrectly. 10583 if (!UnsafeFPMath && 10584 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) 10585 break; 10586 Opcode = X86ISD::FMIN; 10587 break; 10588 case ISD::SETULE: 10589 // Converting this to a min would handle both negative zeros and NaNs 10590 // incorrectly, but we can swap the operands to fix both. 10591 std::swap(LHS, RHS); 10592 case ISD::SETOLT: 10593 case ISD::SETLT: 10594 case ISD::SETLE: 10595 Opcode = X86ISD::FMIN; 10596 break; 10597 10598 case ISD::SETOGE: 10599 // Converting this to a max would handle comparisons between positive 10600 // and negative zero incorrectly. 10601 if (!UnsafeFPMath && 10602 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS)) 10603 break; 10604 Opcode = X86ISD::FMAX; 10605 break; 10606 case ISD::SETUGT: 10607 // Converting this to a max would handle NaNs incorrectly, and swapping 10608 // the operands would cause it to handle comparisons between positive 10609 // and negative zero incorrectly. 10610 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) { 10611 if (!UnsafeFPMath && 10612 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) 10613 break; 10614 std::swap(LHS, RHS); 10615 } 10616 Opcode = X86ISD::FMAX; 10617 break; 10618 case ISD::SETUGE: 10619 // Converting this to a max would handle both negative zeros and NaNs 10620 // incorrectly, but we can swap the operands to fix both. 10621 std::swap(LHS, RHS); 10622 case ISD::SETOGT: 10623 case ISD::SETGT: 10624 case ISD::SETGE: 10625 Opcode = X86ISD::FMAX; 10626 break; 10627 } 10628 // Check for x CC y ? y : x -- a min/max with reversed arms. 10629 } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && 10630 DAG.isEqualTo(RHS, Cond.getOperand(0))) { 10631 switch (CC) { 10632 default: break; 10633 case ISD::SETOGE: 10634 // Converting this to a min would handle comparisons between positive 10635 // and negative zero incorrectly, and swapping the operands would 10636 // cause it to handle NaNs incorrectly. 10637 if (!UnsafeFPMath && 10638 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { 10639 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) 10640 break; 10641 std::swap(LHS, RHS); 10642 } 10643 Opcode = X86ISD::FMIN; 10644 break; 10645 case ISD::SETUGT: 10646 // Converting this to a min would handle NaNs incorrectly. 10647 if (!UnsafeFPMath && 10648 (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) 10649 break; 10650 Opcode = X86ISD::FMIN; 10651 break; 10652 case ISD::SETUGE: 10653 // Converting this to a min would handle both negative zeros and NaNs 10654 // incorrectly, but we can swap the operands to fix both. 10655 std::swap(LHS, RHS); 10656 case ISD::SETOGT: 10657 case ISD::SETGT: 10658 case ISD::SETGE: 10659 Opcode = X86ISD::FMIN; 10660 break; 10661 10662 case ISD::SETULT: 10663 // Converting this to a max would handle NaNs incorrectly. 10664 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) 10665 break; 10666 Opcode = X86ISD::FMAX; 10667 break; 10668 case ISD::SETOLE: 10669 // Converting this to a max would handle comparisons between positive 10670 // and negative zero incorrectly, and swapping the operands would 10671 // cause it to handle NaNs incorrectly. 10672 if (!UnsafeFPMath && 10673 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { 10674 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) 10675 break; 10676 std::swap(LHS, RHS); 10677 } 10678 Opcode = X86ISD::FMAX; 10679 break; 10680 case ISD::SETULE: 10681 // Converting this to a max would handle both negative zeros and NaNs 10682 // incorrectly, but we can swap the operands to fix both. 10683 std::swap(LHS, RHS); 10684 case ISD::SETOLT: 10685 case ISD::SETLT: 10686 case ISD::SETLE: 10687 Opcode = X86ISD::FMAX; 10688 break; 10689 } 10690 } 10691 10692 if (Opcode) 10693 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); 10694 } 10695 10696 // If this is a select between two integer constants, try to do some 10697 // optimizations. 10698 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) { 10699 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS)) 10700 // Don't do this for crazy integer types. 10701 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { 10702 // If this is efficiently invertible, canonicalize the LHSC/RHSC values 10703 // so that TrueC (the true value) is larger than FalseC. 10704 bool NeedsCondInvert = false; 10705 10706 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && 10707 // Efficiently invertible. 10708 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible. 10709 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible. 10710 isa<ConstantSDNode>(Cond.getOperand(1))))) { 10711 NeedsCondInvert = true; 10712 std::swap(TrueC, FalseC); 10713 } 10714 10715 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0. 10716 if (FalseC->getAPIntValue() == 0 && 10717 TrueC->getAPIntValue().isPowerOf2()) { 10718 if (NeedsCondInvert) // Invert the condition if needed. 10719 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, 10720 DAG.getConstant(1, Cond.getValueType())); 10721 10722 // Zero extend the condition if needed. 10723 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); 10724 10725 unsigned ShAmt = TrueC->getAPIntValue().logBase2(); 10726 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, 10727 DAG.getConstant(ShAmt, MVT::i8)); 10728 } 10729 10730 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. 10731 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { 10732 if (NeedsCondInvert) // Invert the condition if needed. 10733 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, 10734 DAG.getConstant(1, Cond.getValueType())); 10735 10736 // Zero extend the condition if needed. 10737 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, 10738 FalseC->getValueType(0), Cond); 10739 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, 10740 SDValue(FalseC, 0)); 10741 } 10742 10743 // Optimize cases that will turn into an LEA instruction. This requires 10744 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). 10745 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { 10746 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); 10747 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; 10748 10749 bool isFastMultiplier = false; 10750 if (Diff < 10) { 10751 switch ((unsigned char)Diff) { 10752 default: break; 10753 case 1: // result = add base, cond 10754 case 2: // result = lea base( , cond*2) 10755 case 3: // result = lea base(cond, cond*2) 10756 case 4: // result = lea base( , cond*4) 10757 case 5: // result = lea base(cond, cond*4) 10758 case 8: // result = lea base( , cond*8) 10759 case 9: // result = lea base(cond, cond*8) 10760 isFastMultiplier = true; 10761 break; 10762 } 10763 } 10764 10765 if (isFastMultiplier) { 10766 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); 10767 if (NeedsCondInvert) // Invert the condition if needed. 10768 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, 10769 DAG.getConstant(1, Cond.getValueType())); 10770 10771 // Zero extend the condition if needed. 10772 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), 10773 Cond); 10774 // Scale the condition by the difference. 10775 if (Diff != 1) 10776 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, 10777 DAG.getConstant(Diff, Cond.getValueType())); 10778 10779 // Add the base if non-zero. 10780 if (FalseC->getAPIntValue() != 0) 10781 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, 10782 SDValue(FalseC, 0)); 10783 return Cond; 10784 } 10785 } 10786 } 10787 } 10788 10789 return SDValue(); 10790} 10791 10792/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] 10793static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, 10794 TargetLowering::DAGCombinerInfo &DCI) { 10795 DebugLoc DL = N->getDebugLoc(); 10796 10797 // If the flag operand isn't dead, don't touch this CMOV. 10798 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) 10799 return SDValue(); 10800 10801 // If this is a select between two integer constants, try to do some 10802 // optimizations. Note that the operands are ordered the opposite of SELECT 10803 // operands. 10804 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 10805 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) { 10806 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is 10807 // larger than FalseC (the false value). 10808 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); 10809 10810 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { 10811 CC = X86::GetOppositeBranchCondition(CC); 10812 std::swap(TrueC, FalseC); 10813 } 10814 10815 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. 10816 // This is efficient for any integer data type (including i8/i16) and 10817 // shift amount. 10818 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { 10819 SDValue Cond = N->getOperand(3); 10820 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, 10821 DAG.getConstant(CC, MVT::i8), Cond); 10822 10823 // Zero extend the condition if needed. 10824 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); 10825 10826 unsigned ShAmt = TrueC->getAPIntValue().logBase2(); 10827 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, 10828 DAG.getConstant(ShAmt, MVT::i8)); 10829 if (N->getNumValues() == 2) // Dead flag value? 10830 return DCI.CombineTo(N, Cond, SDValue()); 10831 return Cond; 10832 } 10833 10834 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient 10835 // for any integer data type, including i8/i16. 10836 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { 10837 SDValue Cond = N->getOperand(3); 10838 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, 10839 DAG.getConstant(CC, MVT::i8), Cond); 10840 10841 // Zero extend the condition if needed. 10842 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, 10843 FalseC->getValueType(0), Cond); 10844 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, 10845 SDValue(FalseC, 0)); 10846 10847 if (N->getNumValues() == 2) // Dead flag value? 10848 return DCI.CombineTo(N, Cond, SDValue()); 10849 return Cond; 10850 } 10851 10852 // Optimize cases that will turn into an LEA instruction. This requires 10853 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). 10854 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { 10855 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); 10856 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; 10857 10858 bool isFastMultiplier = false; 10859 if (Diff < 10) { 10860 switch ((unsigned char)Diff) { 10861 default: break; 10862 case 1: // result = add base, cond 10863 case 2: // result = lea base( , cond*2) 10864 case 3: // result = lea base(cond, cond*2) 10865 case 4: // result = lea base( , cond*4) 10866 case 5: // result = lea base(cond, cond*4) 10867 case 8: // result = lea base( , cond*8) 10868 case 9: // result = lea base(cond, cond*8) 10869 isFastMultiplier = true; 10870 break; 10871 } 10872 } 10873 10874 if (isFastMultiplier) { 10875 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); 10876 SDValue Cond = N->getOperand(3); 10877 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, 10878 DAG.getConstant(CC, MVT::i8), Cond); 10879 // Zero extend the condition if needed. 10880 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), 10881 Cond); 10882 // Scale the condition by the difference. 10883 if (Diff != 1) 10884 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, 10885 DAG.getConstant(Diff, Cond.getValueType())); 10886 10887 // Add the base if non-zero. 10888 if (FalseC->getAPIntValue() != 0) 10889 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, 10890 SDValue(FalseC, 0)); 10891 if (N->getNumValues() == 2) // Dead flag value? 10892 return DCI.CombineTo(N, Cond, SDValue()); 10893 return Cond; 10894 } 10895 } 10896 } 10897 } 10898 return SDValue(); 10899} 10900 10901 10902/// PerformMulCombine - Optimize a single multiply with constant into two 10903/// in order to implement it with two cheaper instructions, e.g. 10904/// LEA + SHL, LEA + LEA. 10905static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, 10906 TargetLowering::DAGCombinerInfo &DCI) { 10907 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 10908 return SDValue(); 10909 10910 EVT VT = N->getValueType(0); 10911 if (VT != MVT::i64) 10912 return SDValue(); 10913 10914 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 10915 if (!C) 10916 return SDValue(); 10917 uint64_t MulAmt = C->getZExtValue(); 10918 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) 10919 return SDValue(); 10920 10921 uint64_t MulAmt1 = 0; 10922 uint64_t MulAmt2 = 0; 10923 if ((MulAmt % 9) == 0) { 10924 MulAmt1 = 9; 10925 MulAmt2 = MulAmt / 9; 10926 } else if ((MulAmt % 5) == 0) { 10927 MulAmt1 = 5; 10928 MulAmt2 = MulAmt / 5; 10929 } else if ((MulAmt % 3) == 0) { 10930 MulAmt1 = 3; 10931 MulAmt2 = MulAmt / 3; 10932 } 10933 if (MulAmt2 && 10934 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ 10935 DebugLoc DL = N->getDebugLoc(); 10936 10937 if (isPowerOf2_64(MulAmt2) && 10938 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) 10939 // If second multiplifer is pow2, issue it first. We want the multiply by 10940 // 3, 5, or 9 to be folded into the addressing mode unless the lone use 10941 // is an add. 10942 std::swap(MulAmt1, MulAmt2); 10943 10944 SDValue NewMul; 10945 if (isPowerOf2_64(MulAmt1)) 10946 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), 10947 DAG.getConstant(Log2_64(MulAmt1), MVT::i8)); 10948 else 10949 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), 10950 DAG.getConstant(MulAmt1, VT)); 10951 10952 if (isPowerOf2_64(MulAmt2)) 10953 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, 10954 DAG.getConstant(Log2_64(MulAmt2), MVT::i8)); 10955 else 10956 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, 10957 DAG.getConstant(MulAmt2, VT)); 10958 10959 // Do not add new nodes to DAG combiner worklist. 10960 DCI.CombineTo(N, NewMul, false); 10961 } 10962 return SDValue(); 10963} 10964 10965static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { 10966 SDValue N0 = N->getOperand(0); 10967 SDValue N1 = N->getOperand(1); 10968 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 10969 EVT VT = N0.getValueType(); 10970 10971 // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) 10972 // since the result of setcc_c is all zero's or all ones. 10973 if (N1C && N0.getOpcode() == ISD::AND && 10974 N0.getOperand(1).getOpcode() == ISD::Constant) { 10975 SDValue N00 = N0.getOperand(0); 10976 if (N00.getOpcode() == X86ISD::SETCC_CARRY || 10977 ((N00.getOpcode() == ISD::ANY_EXTEND || 10978 N00.getOpcode() == ISD::ZERO_EXTEND) && 10979 N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) { 10980 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 10981 APInt ShAmt = N1C->getAPIntValue(); 10982 Mask = Mask.shl(ShAmt); 10983 if (Mask != 0) 10984 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, 10985 N00, DAG.getConstant(Mask, VT)); 10986 } 10987 } 10988 10989 return SDValue(); 10990} 10991 10992/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts 10993/// when possible. 10994static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, 10995 const X86Subtarget *Subtarget) { 10996 EVT VT = N->getValueType(0); 10997 if (!VT.isVector() && VT.isInteger() && 10998 N->getOpcode() == ISD::SHL) 10999 return PerformSHLCombine(N, DAG); 11000 11001 // On X86 with SSE2 support, we can transform this to a vector shift if 11002 // all elements are shifted by the same amount. We can't do this in legalize 11003 // because the a constant vector is typically transformed to a constant pool 11004 // so we have no knowledge of the shift amount. 11005 if (!Subtarget->hasSSE2()) 11006 return SDValue(); 11007 11008 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16) 11009 return SDValue(); 11010 11011 SDValue ShAmtOp = N->getOperand(1); 11012 EVT EltVT = VT.getVectorElementType(); 11013 DebugLoc DL = N->getDebugLoc(); 11014 SDValue BaseShAmt = SDValue(); 11015 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) { 11016 unsigned NumElts = VT.getVectorNumElements(); 11017 unsigned i = 0; 11018 for (; i != NumElts; ++i) { 11019 SDValue Arg = ShAmtOp.getOperand(i); 11020 if (Arg.getOpcode() == ISD::UNDEF) continue; 11021 BaseShAmt = Arg; 11022 break; 11023 } 11024 for (; i != NumElts; ++i) { 11025 SDValue Arg = ShAmtOp.getOperand(i); 11026 if (Arg.getOpcode() == ISD::UNDEF) continue; 11027 if (Arg != BaseShAmt) { 11028 return SDValue(); 11029 } 11030 } 11031 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE && 11032 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) { 11033 SDValue InVec = ShAmtOp.getOperand(0); 11034 if (InVec.getOpcode() == ISD::BUILD_VECTOR) { 11035 unsigned NumElts = InVec.getValueType().getVectorNumElements(); 11036 unsigned i = 0; 11037 for (; i != NumElts; ++i) { 11038 SDValue Arg = InVec.getOperand(i); 11039 if (Arg.getOpcode() == ISD::UNDEF) continue; 11040 BaseShAmt = Arg; 11041 break; 11042 } 11043 } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { 11044 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { 11045 unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex(); 11046 if (C->getZExtValue() == SplatIdx) 11047 BaseShAmt = InVec.getOperand(1); 11048 } 11049 } 11050 if (BaseShAmt.getNode() == 0) 11051 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp, 11052 DAG.getIntPtrConstant(0)); 11053 } else 11054 return SDValue(); 11055 11056 // The shift amount is an i32. 11057 if (EltVT.bitsGT(MVT::i32)) 11058 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt); 11059 else if (EltVT.bitsLT(MVT::i32)) 11060 BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt); 11061 11062 // The shift amount is identical so we can do a vector shift. 11063 SDValue ValOp = N->getOperand(0); 11064 switch (N->getOpcode()) { 11065 default: 11066 llvm_unreachable("Unknown shift opcode!"); 11067 break; 11068 case ISD::SHL: 11069 if (VT == MVT::v2i64) 11070 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 11071 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), 11072 ValOp, BaseShAmt); 11073 if (VT == MVT::v4i32) 11074 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 11075 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32), 11076 ValOp, BaseShAmt); 11077 if (VT == MVT::v8i16) 11078 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 11079 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), 11080 ValOp, BaseShAmt); 11081 break; 11082 case ISD::SRA: 11083 if (VT == MVT::v4i32) 11084 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 11085 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32), 11086 ValOp, BaseShAmt); 11087 if (VT == MVT::v8i16) 11088 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 11089 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32), 11090 ValOp, BaseShAmt); 11091 break; 11092 case ISD::SRL: 11093 if (VT == MVT::v2i64) 11094 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 11095 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), 11096 ValOp, BaseShAmt); 11097 if (VT == MVT::v4i32) 11098 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 11099 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32), 11100 ValOp, BaseShAmt); 11101 if (VT == MVT::v8i16) 11102 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 11103 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32), 11104 ValOp, BaseShAmt); 11105 break; 11106 } 11107 return SDValue(); 11108} 11109 11110 11111static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG, 11112 TargetLowering::DAGCombinerInfo &DCI, 11113 const X86Subtarget *Subtarget) { 11114 if (DCI.isBeforeLegalizeOps()) 11115 return SDValue(); 11116 11117 // Want to form PANDN nodes, in the hopes of then easily combining them with 11118 // OR and AND nodes to form PBLEND/PSIGN. 11119 EVT VT = N->getValueType(0); 11120 if (VT != MVT::v2i64) 11121 return SDValue(); 11122 11123 SDValue N0 = N->getOperand(0); 11124 SDValue N1 = N->getOperand(1); 11125 DebugLoc DL = N->getDebugLoc(); 11126 11127 // Check LHS for vnot 11128 if (N0.getOpcode() == ISD::XOR && 11129 ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode())) 11130 return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1); 11131 11132 // Check RHS for vnot 11133 if (N1.getOpcode() == ISD::XOR && 11134 ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode())) 11135 return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0); 11136 11137 return SDValue(); 11138} 11139 11140static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, 11141 TargetLowering::DAGCombinerInfo &DCI, 11142 const X86Subtarget *Subtarget) { 11143 if (DCI.isBeforeLegalizeOps()) 11144 return SDValue(); 11145 11146 EVT VT = N->getValueType(0); 11147 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64) 11148 return SDValue(); 11149 11150 SDValue N0 = N->getOperand(0); 11151 SDValue N1 = N->getOperand(1); 11152 11153 // look for psign/blend 11154 if (Subtarget->hasSSSE3()) { 11155 if (VT == MVT::v2i64) { 11156 // Canonicalize pandn to RHS 11157 if (N0.getOpcode() == X86ISD::PANDN) 11158 std::swap(N0, N1); 11159 // or (and (m, x), (pandn m, y)) 11160 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) { 11161 SDValue Mask = N1.getOperand(0); 11162 SDValue X = N1.getOperand(1); 11163 SDValue Y; 11164 if (N0.getOperand(0) == Mask) 11165 Y = N0.getOperand(1); 11166 if (N0.getOperand(1) == Mask) 11167 Y = N0.getOperand(0); 11168 11169 // Check to see if the mask appeared in both the AND and PANDN and 11170 if (!Y.getNode()) 11171 return SDValue(); 11172 11173 // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them. 11174 if (Mask.getOpcode() != ISD::BITCAST || 11175 X.getOpcode() != ISD::BITCAST || 11176 Y.getOpcode() != ISD::BITCAST) 11177 return SDValue(); 11178 11179 // Look through mask bitcast. 11180 Mask = Mask.getOperand(0); 11181 EVT MaskVT = Mask.getValueType(); 11182 11183 // Validate that the Mask operand is a vector sra node. The sra node 11184 // will be an intrinsic. 11185 if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN) 11186 return SDValue(); 11187 11188 // FIXME: what to do for bytes, since there is a psignb/pblendvb, but 11189 // there is no psrai.b 11190 switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) { 11191 case Intrinsic::x86_sse2_psrai_w: 11192 case Intrinsic::x86_sse2_psrai_d: 11193 break; 11194 default: return SDValue(); 11195 } 11196 11197 // Check that the SRA is all signbits. 11198 SDValue SraC = Mask.getOperand(2); 11199 unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue(); 11200 unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits(); 11201 if ((SraAmt + 1) != EltBits) 11202 return SDValue(); 11203 11204 DebugLoc DL = N->getDebugLoc(); 11205 11206 // Now we know we at least have a plendvb with the mask val. See if 11207 // we can form a psignb/w/d. 11208 // psign = x.type == y.type == mask.type && y = sub(0, x); 11209 X = X.getOperand(0); 11210 Y = Y.getOperand(0); 11211 if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X && 11212 ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) && 11213 X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){ 11214 unsigned Opc = 0; 11215 switch (EltBits) { 11216 case 8: Opc = X86ISD::PSIGNB; break; 11217 case 16: Opc = X86ISD::PSIGNW; break; 11218 case 32: Opc = X86ISD::PSIGND; break; 11219 default: break; 11220 } 11221 if (Opc) { 11222 SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1)); 11223 return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign); 11224 } 11225 } 11226 // PBLENDVB only available on SSE 4.1 11227 if (!Subtarget->hasSSE41()) 11228 return SDValue(); 11229 11230 X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X); 11231 Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y); 11232 Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask); 11233 Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask); 11234 return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask); 11235 } 11236 } 11237 } 11238 11239 // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) 11240 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) 11241 std::swap(N0, N1); 11242 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) 11243 return SDValue(); 11244 if (!N0.hasOneUse() || !N1.hasOneUse()) 11245 return SDValue(); 11246 11247 SDValue ShAmt0 = N0.getOperand(1); 11248 if (ShAmt0.getValueType() != MVT::i8) 11249 return SDValue(); 11250 SDValue ShAmt1 = N1.getOperand(1); 11251 if (ShAmt1.getValueType() != MVT::i8) 11252 return SDValue(); 11253 if (ShAmt0.getOpcode() == ISD::TRUNCATE) 11254 ShAmt0 = ShAmt0.getOperand(0); 11255 if (ShAmt1.getOpcode() == ISD::TRUNCATE) 11256 ShAmt1 = ShAmt1.getOperand(0); 11257 11258 DebugLoc DL = N->getDebugLoc(); 11259 unsigned Opc = X86ISD::SHLD; 11260 SDValue Op0 = N0.getOperand(0); 11261 SDValue Op1 = N1.getOperand(0); 11262 if (ShAmt0.getOpcode() == ISD::SUB) { 11263 Opc = X86ISD::SHRD; 11264 std::swap(Op0, Op1); 11265 std::swap(ShAmt0, ShAmt1); 11266 } 11267 11268 unsigned Bits = VT.getSizeInBits(); 11269 if (ShAmt1.getOpcode() == ISD::SUB) { 11270 SDValue Sum = ShAmt1.getOperand(0); 11271 if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { 11272 SDValue ShAmt1Op1 = ShAmt1.getOperand(1); 11273 if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE) 11274 ShAmt1Op1 = ShAmt1Op1.getOperand(0); 11275 if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0) 11276 return DAG.getNode(Opc, DL, VT, 11277 Op0, Op1, 11278 DAG.getNode(ISD::TRUNCATE, DL, 11279 MVT::i8, ShAmt0)); 11280 } 11281 } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { 11282 ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); 11283 if (ShAmt0C && 11284 ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits) 11285 return DAG.getNode(Opc, DL, VT, 11286 N0.getOperand(0), N1.getOperand(0), 11287 DAG.getNode(ISD::TRUNCATE, DL, 11288 MVT::i8, ShAmt0)); 11289 } 11290 11291 return SDValue(); 11292} 11293 11294/// PerformSTORECombine - Do target-specific dag combines on STORE nodes. 11295static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, 11296 const X86Subtarget *Subtarget) { 11297 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering 11298 // the FP state in cases where an emms may be missing. 11299 // A preferable solution to the general problem is to figure out the right 11300 // places to insert EMMS. This qualifies as a quick hack. 11301 11302 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. 11303 StoreSDNode *St = cast<StoreSDNode>(N); 11304 EVT VT = St->getValue().getValueType(); 11305 if (VT.getSizeInBits() != 64) 11306 return SDValue(); 11307 11308 const Function *F = DAG.getMachineFunction().getFunction(); 11309 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat); 11310 bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps 11311 && Subtarget->hasSSE2(); 11312 if ((VT.isVector() || 11313 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && 11314 isa<LoadSDNode>(St->getValue()) && 11315 !cast<LoadSDNode>(St->getValue())->isVolatile() && 11316 St->getChain().hasOneUse() && !St->isVolatile()) { 11317 SDNode* LdVal = St->getValue().getNode(); 11318 LoadSDNode *Ld = 0; 11319 int TokenFactorIndex = -1; 11320 SmallVector<SDValue, 8> Ops; 11321 SDNode* ChainVal = St->getChain().getNode(); 11322 // Must be a store of a load. We currently handle two cases: the load 11323 // is a direct child, and it's under an intervening TokenFactor. It is 11324 // possible to dig deeper under nested TokenFactors. 11325 if (ChainVal == LdVal) 11326 Ld = cast<LoadSDNode>(St->getChain()); 11327 else if (St->getValue().hasOneUse() && 11328 ChainVal->getOpcode() == ISD::TokenFactor) { 11329 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) { 11330 if (ChainVal->getOperand(i).getNode() == LdVal) { 11331 TokenFactorIndex = i; 11332 Ld = cast<LoadSDNode>(St->getValue()); 11333 } else 11334 Ops.push_back(ChainVal->getOperand(i)); 11335 } 11336 } 11337 11338 if (!Ld || !ISD::isNormalLoad(Ld)) 11339 return SDValue(); 11340 11341 // If this is not the MMX case, i.e. we are just turning i64 load/store 11342 // into f64 load/store, avoid the transformation if there are multiple 11343 // uses of the loaded value. 11344 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) 11345 return SDValue(); 11346 11347 DebugLoc LdDL = Ld->getDebugLoc(); 11348 DebugLoc StDL = N->getDebugLoc(); 11349 // If we are a 64-bit capable x86, lower to a single movq load/store pair. 11350 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store 11351 // pair instead. 11352 if (Subtarget->is64Bit() || F64IsLegal) { 11353 EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; 11354 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(), 11355 Ld->getPointerInfo(), Ld->isVolatile(), 11356 Ld->isNonTemporal(), Ld->getAlignment()); 11357 SDValue NewChain = NewLd.getValue(1); 11358 if (TokenFactorIndex != -1) { 11359 Ops.push_back(NewChain); 11360 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], 11361 Ops.size()); 11362 } 11363 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), 11364 St->getPointerInfo(), 11365 St->isVolatile(), St->isNonTemporal(), 11366 St->getAlignment()); 11367 } 11368 11369 // Otherwise, lower to two pairs of 32-bit loads / stores. 11370 SDValue LoAddr = Ld->getBasePtr(); 11371 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, 11372 DAG.getConstant(4, MVT::i32)); 11373 11374 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, 11375 Ld->getPointerInfo(), 11376 Ld->isVolatile(), Ld->isNonTemporal(), 11377 Ld->getAlignment()); 11378 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, 11379 Ld->getPointerInfo().getWithOffset(4), 11380 Ld->isVolatile(), Ld->isNonTemporal(), 11381 MinAlign(Ld->getAlignment(), 4)); 11382 11383 SDValue NewChain = LoLd.getValue(1); 11384 if (TokenFactorIndex != -1) { 11385 Ops.push_back(LoLd); 11386 Ops.push_back(HiLd); 11387 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], 11388 Ops.size()); 11389 } 11390 11391 LoAddr = St->getBasePtr(); 11392 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, 11393 DAG.getConstant(4, MVT::i32)); 11394 11395 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, 11396 St->getPointerInfo(), 11397 St->isVolatile(), St->isNonTemporal(), 11398 St->getAlignment()); 11399 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, 11400 St->getPointerInfo().getWithOffset(4), 11401 St->isVolatile(), 11402 St->isNonTemporal(), 11403 MinAlign(St->getAlignment(), 4)); 11404 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); 11405 } 11406 return SDValue(); 11407} 11408 11409/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and 11410/// X86ISD::FXOR nodes. 11411static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { 11412 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); 11413 // F[X]OR(0.0, x) -> x 11414 // F[X]OR(x, 0.0) -> x 11415 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 11416 if (C->getValueAPF().isPosZero()) 11417 return N->getOperand(1); 11418 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) 11419 if (C->getValueAPF().isPosZero()) 11420 return N->getOperand(0); 11421 return SDValue(); 11422} 11423 11424/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. 11425static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { 11426 // FAND(0.0, x) -> 0.0 11427 // FAND(x, 0.0) -> 0.0 11428 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) 11429 if (C->getValueAPF().isPosZero()) 11430 return N->getOperand(0); 11431 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) 11432 if (C->getValueAPF().isPosZero()) 11433 return N->getOperand(1); 11434 return SDValue(); 11435} 11436 11437static SDValue PerformBTCombine(SDNode *N, 11438 SelectionDAG &DAG, 11439 TargetLowering::DAGCombinerInfo &DCI) { 11440 // BT ignores high bits in the bit index operand. 11441 SDValue Op1 = N->getOperand(1); 11442 if (Op1.hasOneUse()) { 11443 unsigned BitWidth = Op1.getValueSizeInBits(); 11444 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); 11445 APInt KnownZero, KnownOne; 11446 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 11447 !DCI.isBeforeLegalizeOps()); 11448 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11449 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || 11450 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) 11451 DCI.CommitTargetLoweringOpt(TLO); 11452 } 11453 return SDValue(); 11454} 11455 11456static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { 11457 SDValue Op = N->getOperand(0); 11458 if (Op.getOpcode() == ISD::BITCAST) 11459 Op = Op.getOperand(0); 11460 EVT VT = N->getValueType(0), OpVT = Op.getValueType(); 11461 if (Op.getOpcode() == X86ISD::VZEXT_LOAD && 11462 VT.getVectorElementType().getSizeInBits() == 11463 OpVT.getVectorElementType().getSizeInBits()) { 11464 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op); 11465 } 11466 return SDValue(); 11467} 11468 11469static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) { 11470 // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> 11471 // (and (i32 x86isd::setcc_carry), 1) 11472 // This eliminates the zext. This transformation is necessary because 11473 // ISD::SETCC is always legalized to i8. 11474 DebugLoc dl = N->getDebugLoc(); 11475 SDValue N0 = N->getOperand(0); 11476 EVT VT = N->getValueType(0); 11477 if (N0.getOpcode() == ISD::AND && 11478 N0.hasOneUse() && 11479 N0.getOperand(0).hasOneUse()) { 11480 SDValue N00 = N0.getOperand(0); 11481 if (N00.getOpcode() != X86ISD::SETCC_CARRY) 11482 return SDValue(); 11483 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 11484 if (!C || C->getZExtValue() != 1) 11485 return SDValue(); 11486 return DAG.getNode(ISD::AND, dl, VT, 11487 DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, 11488 N00.getOperand(0), N00.getOperand(1)), 11489 DAG.getConstant(1, VT)); 11490 } 11491 11492 return SDValue(); 11493} 11494 11495// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT 11496static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) { 11497 unsigned X86CC = N->getConstantOperandVal(0); 11498 SDValue EFLAG = N->getOperand(1); 11499 DebugLoc DL = N->getDebugLoc(); 11500 11501 // Materialize "setb reg" as "sbb reg,reg", since it can be extended without 11502 // a zext and produces an all-ones bit which is more useful than 0/1 in some 11503 // cases. 11504 if (X86CC == X86::COND_B) 11505 return DAG.getNode(ISD::AND, DL, MVT::i8, 11506 DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8, 11507 DAG.getConstant(X86CC, MVT::i8), EFLAG), 11508 DAG.getConstant(1, MVT::i8)); 11509 11510 return SDValue(); 11511} 11512 11513// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS 11514static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG, 11515 X86TargetLowering::DAGCombinerInfo &DCI) { 11516 // If the LHS and RHS of the ADC node are zero, then it can't overflow and 11517 // the result is either zero or one (depending on the input carry bit). 11518 // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1. 11519 if (X86::isZeroNode(N->getOperand(0)) && 11520 X86::isZeroNode(N->getOperand(1)) && 11521 // We don't have a good way to replace an EFLAGS use, so only do this when 11522 // dead right now. 11523 SDValue(N, 1).use_empty()) { 11524 DebugLoc DL = N->getDebugLoc(); 11525 EVT VT = N->getValueType(0); 11526 SDValue CarryOut = DAG.getConstant(0, N->getValueType(1)); 11527 SDValue Res1 = DAG.getNode(ISD::AND, DL, VT, 11528 DAG.getNode(X86ISD::SETCC_CARRY, DL, VT, 11529 DAG.getConstant(X86::COND_B,MVT::i8), 11530 N->getOperand(2)), 11531 DAG.getConstant(1, VT)); 11532 return DCI.CombineTo(N, Res1, CarryOut); 11533 } 11534 11535 return SDValue(); 11536} 11537 11538// fold (add Y, (sete X, 0)) -> adc 0, Y 11539// (add Y, (setne X, 0)) -> sbb -1, Y 11540// (sub (sete X, 0), Y) -> sbb 0, Y 11541// (sub (setne X, 0), Y) -> adc -1, Y 11542static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) { 11543 DebugLoc DL = N->getDebugLoc(); 11544 11545 // Look through ZExts. 11546 SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0); 11547 if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse()) 11548 return SDValue(); 11549 11550 SDValue SetCC = Ext.getOperand(0); 11551 if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse()) 11552 return SDValue(); 11553 11554 X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0); 11555 if (CC != X86::COND_E && CC != X86::COND_NE) 11556 return SDValue(); 11557 11558 SDValue Cmp = SetCC.getOperand(1); 11559 if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() || 11560 !X86::isZeroNode(Cmp.getOperand(1))) 11561 return SDValue(); 11562 11563 SDValue CmpOp0 = Cmp.getOperand(0); 11564 SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0, 11565 DAG.getConstant(1, CmpOp0.getValueType())); 11566 11567 SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1); 11568 if (CC == X86::COND_NE) 11569 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB, 11570 DL, OtherVal.getValueType(), OtherVal, 11571 DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp); 11572 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC, 11573 DL, OtherVal.getValueType(), OtherVal, 11574 DAG.getConstant(0, OtherVal.getValueType()), NewCmp); 11575} 11576 11577SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, 11578 DAGCombinerInfo &DCI) const { 11579 SelectionDAG &DAG = DCI.DAG; 11580 switch (N->getOpcode()) { 11581 default: break; 11582 case ISD::EXTRACT_VECTOR_ELT: 11583 return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this); 11584 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget); 11585 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI); 11586 case ISD::ADD: 11587 case ISD::SUB: return OptimizeConditonalInDecrement(N, DAG); 11588 case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI); 11589 case ISD::MUL: return PerformMulCombine(N, DAG, DCI); 11590 case ISD::SHL: 11591 case ISD::SRA: 11592 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget); 11593 case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget); 11594 case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget); 11595 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); 11596 case X86ISD::FXOR: 11597 case X86ISD::FOR: return PerformFORCombine(N, DAG); 11598 case X86ISD::FAND: return PerformFANDCombine(N, DAG); 11599 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI); 11600 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG); 11601 case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG); 11602 case X86ISD::SETCC: return PerformSETCCCombine(N, DAG); 11603 case X86ISD::SHUFPS: // Handle all target specific shuffles 11604 case X86ISD::SHUFPD: 11605 case X86ISD::PALIGN: 11606 case X86ISD::PUNPCKHBW: 11607 case X86ISD::PUNPCKHWD: 11608 case X86ISD::PUNPCKHDQ: 11609 case X86ISD::PUNPCKHQDQ: 11610 case X86ISD::UNPCKHPS: 11611 case X86ISD::UNPCKHPD: 11612 case X86ISD::PUNPCKLBW: 11613 case X86ISD::PUNPCKLWD: 11614 case X86ISD::PUNPCKLDQ: 11615 case X86ISD::PUNPCKLQDQ: 11616 case X86ISD::UNPCKLPS: 11617 case X86ISD::UNPCKLPD: 11618 case X86ISD::MOVHLPS: 11619 case X86ISD::MOVLHPS: 11620 case X86ISD::PSHUFD: 11621 case X86ISD::PSHUFHW: 11622 case X86ISD::PSHUFLW: 11623 case X86ISD::MOVSS: 11624 case X86ISD::MOVSD: 11625 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI); 11626 } 11627 11628 return SDValue(); 11629} 11630 11631/// isTypeDesirableForOp - Return true if the target has native support for 11632/// the specified value type and it is 'desirable' to use the type for the 11633/// given node type. e.g. On x86 i16 is legal, but undesirable since i16 11634/// instruction encodings are longer and some i16 instructions are slow. 11635bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { 11636 if (!isTypeLegal(VT)) 11637 return false; 11638 if (VT != MVT::i16) 11639 return true; 11640 11641 switch (Opc) { 11642 default: 11643 return true; 11644 case ISD::LOAD: 11645 case ISD::SIGN_EXTEND: 11646 case ISD::ZERO_EXTEND: 11647 case ISD::ANY_EXTEND: 11648 case ISD::SHL: 11649 case ISD::SRL: 11650 case ISD::SUB: 11651 case ISD::ADD: 11652 case ISD::MUL: 11653 case ISD::AND: 11654 case ISD::OR: 11655 case ISD::XOR: 11656 return false; 11657 } 11658} 11659 11660/// IsDesirableToPromoteOp - This method query the target whether it is 11661/// beneficial for dag combiner to promote the specified node. If true, it 11662/// should return the desired promotion type by reference. 11663bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { 11664 EVT VT = Op.getValueType(); 11665 if (VT != MVT::i16) 11666 return false; 11667 11668 bool Promote = false; 11669 bool Commute = false; 11670 switch (Op.getOpcode()) { 11671 default: break; 11672 case ISD::LOAD: { 11673 LoadSDNode *LD = cast<LoadSDNode>(Op); 11674 // If the non-extending load has a single use and it's not live out, then it 11675 // might be folded. 11676 if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&& 11677 Op.hasOneUse()*/) { 11678 for (SDNode::use_iterator UI = Op.getNode()->use_begin(), 11679 UE = Op.getNode()->use_end(); UI != UE; ++UI) { 11680 // The only case where we'd want to promote LOAD (rather then it being 11681 // promoted as an operand is when it's only use is liveout. 11682 if (UI->getOpcode() != ISD::CopyToReg) 11683 return false; 11684 } 11685 } 11686 Promote = true; 11687 break; 11688 } 11689 case ISD::SIGN_EXTEND: 11690 case ISD::ZERO_EXTEND: 11691 case ISD::ANY_EXTEND: 11692 Promote = true; 11693 break; 11694 case ISD::SHL: 11695 case ISD::SRL: { 11696 SDValue N0 = Op.getOperand(0); 11697 // Look out for (store (shl (load), x)). 11698 if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) 11699 return false; 11700 Promote = true; 11701 break; 11702 } 11703 case ISD::ADD: 11704 case ISD::MUL: 11705 case ISD::AND: 11706 case ISD::OR: 11707 case ISD::XOR: 11708 Commute = true; 11709 // fallthrough 11710 case ISD::SUB: { 11711 SDValue N0 = Op.getOperand(0); 11712 SDValue N1 = Op.getOperand(1); 11713 if (!Commute && MayFoldLoad(N1)) 11714 return false; 11715 // Avoid disabling potential load folding opportunities. 11716 if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op))) 11717 return false; 11718 if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op))) 11719 return false; 11720 Promote = true; 11721 } 11722 } 11723 11724 PVT = MVT::i32; 11725 return Promote; 11726} 11727 11728//===----------------------------------------------------------------------===// 11729// X86 Inline Assembly Support 11730//===----------------------------------------------------------------------===// 11731 11732static bool LowerToBSwap(CallInst *CI) { 11733 // FIXME: this should verify that we are targetting a 486 or better. If not, 11734 // we will turn this bswap into something that will be lowered to logical ops 11735 // instead of emitting the bswap asm. For now, we don't support 486 or lower 11736 // so don't worry about this. 11737 11738 // Verify this is a simple bswap. 11739 if (CI->getNumArgOperands() != 1 || 11740 CI->getType() != CI->getArgOperand(0)->getType() || 11741 !CI->getType()->isIntegerTy()) 11742 return false; 11743 11744 const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); 11745 if (!Ty || Ty->getBitWidth() % 16 != 0) 11746 return false; 11747 11748 // Okay, we can do this xform, do so now. 11749 const Type *Tys[] = { Ty }; 11750 Module *M = CI->getParent()->getParent()->getParent(); 11751 Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1); 11752 11753 Value *Op = CI->getArgOperand(0); 11754 Op = CallInst::Create(Int, Op, CI->getName(), CI); 11755 11756 CI->replaceAllUsesWith(Op); 11757 CI->eraseFromParent(); 11758 return true; 11759} 11760 11761bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { 11762 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); 11763 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); 11764 11765 std::string AsmStr = IA->getAsmString(); 11766 11767 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" 11768 SmallVector<StringRef, 4> AsmPieces; 11769 SplitString(AsmStr, AsmPieces, ";\n"); 11770 11771 switch (AsmPieces.size()) { 11772 default: return false; 11773 case 1: 11774 AsmStr = AsmPieces[0]; 11775 AsmPieces.clear(); 11776 SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace. 11777 11778 // bswap $0 11779 if (AsmPieces.size() == 2 && 11780 (AsmPieces[0] == "bswap" || 11781 AsmPieces[0] == "bswapq" || 11782 AsmPieces[0] == "bswapl") && 11783 (AsmPieces[1] == "$0" || 11784 AsmPieces[1] == "${0:q}")) { 11785 // No need to check constraints, nothing other than the equivalent of 11786 // "=r,0" would be valid here. 11787 return LowerToBSwap(CI); 11788 } 11789 // rorw $$8, ${0:w} --> llvm.bswap.i16 11790 if (CI->getType()->isIntegerTy(16) && 11791 AsmPieces.size() == 3 && 11792 (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") && 11793 AsmPieces[1] == "$$8," && 11794 AsmPieces[2] == "${0:w}" && 11795 IA->getConstraintString().compare(0, 5, "=r,0,") == 0) { 11796 AsmPieces.clear(); 11797 const std::string &Constraints = IA->getConstraintString(); 11798 SplitString(StringRef(Constraints).substr(5), AsmPieces, ","); 11799 std::sort(AsmPieces.begin(), AsmPieces.end()); 11800 if (AsmPieces.size() == 4 && 11801 AsmPieces[0] == "~{cc}" && 11802 AsmPieces[1] == "~{dirflag}" && 11803 AsmPieces[2] == "~{flags}" && 11804 AsmPieces[3] == "~{fpsr}") { 11805 return LowerToBSwap(CI); 11806 } 11807 } 11808 break; 11809 case 3: 11810 if (CI->getType()->isIntegerTy(32) && 11811 IA->getConstraintString().compare(0, 5, "=r,0,") == 0) { 11812 SmallVector<StringRef, 4> Words; 11813 SplitString(AsmPieces[0], Words, " \t,"); 11814 if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" && 11815 Words[2] == "${0:w}") { 11816 Words.clear(); 11817 SplitString(AsmPieces[1], Words, " \t,"); 11818 if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" && 11819 Words[2] == "$0") { 11820 Words.clear(); 11821 SplitString(AsmPieces[2], Words, " \t,"); 11822 if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" && 11823 Words[2] == "${0:w}") { 11824 AsmPieces.clear(); 11825 const std::string &Constraints = IA->getConstraintString(); 11826 SplitString(StringRef(Constraints).substr(5), AsmPieces, ","); 11827 std::sort(AsmPieces.begin(), AsmPieces.end()); 11828 if (AsmPieces.size() == 4 && 11829 AsmPieces[0] == "~{cc}" && 11830 AsmPieces[1] == "~{dirflag}" && 11831 AsmPieces[2] == "~{flags}" && 11832 AsmPieces[3] == "~{fpsr}") { 11833 return LowerToBSwap(CI); 11834 } 11835 } 11836 } 11837 } 11838 } 11839 if (CI->getType()->isIntegerTy(64) && 11840 Constraints.size() >= 2 && 11841 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && 11842 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { 11843 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 11844 SmallVector<StringRef, 4> Words; 11845 SplitString(AsmPieces[0], Words, " \t"); 11846 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") { 11847 Words.clear(); 11848 SplitString(AsmPieces[1], Words, " \t"); 11849 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") { 11850 Words.clear(); 11851 SplitString(AsmPieces[2], Words, " \t,"); 11852 if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" && 11853 Words[2] == "%edx") { 11854 return LowerToBSwap(CI); 11855 } 11856 } 11857 } 11858 } 11859 break; 11860 } 11861 return false; 11862} 11863 11864 11865 11866/// getConstraintType - Given a constraint letter, return the type of 11867/// constraint it is for this target. 11868X86TargetLowering::ConstraintType 11869X86TargetLowering::getConstraintType(const std::string &Constraint) const { 11870 if (Constraint.size() == 1) { 11871 switch (Constraint[0]) { 11872 case 'R': 11873 case 'q': 11874 case 'Q': 11875 case 'f': 11876 case 't': 11877 case 'u': 11878 case 'y': 11879 case 'x': 11880 case 'Y': 11881 return C_RegisterClass; 11882 case 'a': 11883 case 'b': 11884 case 'c': 11885 case 'd': 11886 case 'S': 11887 case 'D': 11888 case 'A': 11889 return C_Register; 11890 case 'I': 11891 case 'J': 11892 case 'K': 11893 case 'L': 11894 case 'M': 11895 case 'N': 11896 case 'G': 11897 case 'C': 11898 case 'e': 11899 case 'Z': 11900 return C_Other; 11901 default: 11902 break; 11903 } 11904 } 11905 return TargetLowering::getConstraintType(Constraint); 11906} 11907 11908/// Examine constraint type and operand type and determine a weight value. 11909/// This object must already have been set up with the operand type 11910/// and the current alternative constraint selected. 11911TargetLowering::ConstraintWeight 11912 X86TargetLowering::getSingleConstraintMatchWeight( 11913 AsmOperandInfo &info, const char *constraint) const { 11914 ConstraintWeight weight = CW_Invalid; 11915 Value *CallOperandVal = info.CallOperandVal; 11916 // If we don't have a value, we can't do a match, 11917 // but allow it at the lowest weight. 11918 if (CallOperandVal == NULL) 11919 return CW_Default; 11920 const Type *type = CallOperandVal->getType(); 11921 // Look at the constraint type. 11922 switch (*constraint) { 11923 default: 11924 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 11925 case 'R': 11926 case 'q': 11927 case 'Q': 11928 case 'a': 11929 case 'b': 11930 case 'c': 11931 case 'd': 11932 case 'S': 11933 case 'D': 11934 case 'A': 11935 if (CallOperandVal->getType()->isIntegerTy()) 11936 weight = CW_SpecificReg; 11937 break; 11938 case 'f': 11939 case 't': 11940 case 'u': 11941 if (type->isFloatingPointTy()) 11942 weight = CW_SpecificReg; 11943 break; 11944 case 'y': 11945 if (type->isX86_MMXTy() && Subtarget->hasMMX()) 11946 weight = CW_SpecificReg; 11947 break; 11948 case 'x': 11949 case 'Y': 11950 if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM()) 11951 weight = CW_Register; 11952 break; 11953 case 'I': 11954 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) { 11955 if (C->getZExtValue() <= 31) 11956 weight = CW_Constant; 11957 } 11958 break; 11959 case 'J': 11960 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { 11961 if (C->getZExtValue() <= 63) 11962 weight = CW_Constant; 11963 } 11964 break; 11965 case 'K': 11966 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { 11967 if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f)) 11968 weight = CW_Constant; 11969 } 11970 break; 11971 case 'L': 11972 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { 11973 if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff)) 11974 weight = CW_Constant; 11975 } 11976 break; 11977 case 'M': 11978 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { 11979 if (C->getZExtValue() <= 3) 11980 weight = CW_Constant; 11981 } 11982 break; 11983 case 'N': 11984 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { 11985 if (C->getZExtValue() <= 0xff) 11986 weight = CW_Constant; 11987 } 11988 break; 11989 case 'G': 11990 case 'C': 11991 if (dyn_cast<ConstantFP>(CallOperandVal)) { 11992 weight = CW_Constant; 11993 } 11994 break; 11995 case 'e': 11996 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { 11997 if ((C->getSExtValue() >= -0x80000000LL) && 11998 (C->getSExtValue() <= 0x7fffffffLL)) 11999 weight = CW_Constant; 12000 } 12001 break; 12002 case 'Z': 12003 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) { 12004 if (C->getZExtValue() <= 0xffffffff) 12005 weight = CW_Constant; 12006 } 12007 break; 12008 } 12009 return weight; 12010} 12011 12012/// LowerXConstraint - try to replace an X constraint, which matches anything, 12013/// with another that has more specific requirements based on the type of the 12014/// corresponding operand. 12015const char *X86TargetLowering:: 12016LowerXConstraint(EVT ConstraintVT) const { 12017 // FP X constraints get lowered to SSE1/2 registers if available, otherwise 12018 // 'f' like normal targets. 12019 if (ConstraintVT.isFloatingPoint()) { 12020 if (Subtarget->hasXMMInt()) 12021 return "Y"; 12022 if (Subtarget->hasXMM()) 12023 return "x"; 12024 } 12025 12026 return TargetLowering::LowerXConstraint(ConstraintVT); 12027} 12028 12029/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 12030/// vector. If it is invalid, don't add anything to Ops. 12031void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 12032 char Constraint, 12033 std::vector<SDValue>&Ops, 12034 SelectionDAG &DAG) const { 12035 SDValue Result(0, 0); 12036 12037 switch (Constraint) { 12038 default: break; 12039 case 'I': 12040 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 12041 if (C->getZExtValue() <= 31) { 12042 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); 12043 break; 12044 } 12045 } 12046 return; 12047 case 'J': 12048 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 12049 if (C->getZExtValue() <= 63) { 12050 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); 12051 break; 12052 } 12053 } 12054 return; 12055 case 'K': 12056 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 12057 if ((int8_t)C->getSExtValue() == C->getSExtValue()) { 12058 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); 12059 break; 12060 } 12061 } 12062 return; 12063 case 'N': 12064 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 12065 if (C->getZExtValue() <= 255) { 12066 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); 12067 break; 12068 } 12069 } 12070 return; 12071 case 'e': { 12072 // 32-bit signed value 12073 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 12074 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), 12075 C->getSExtValue())) { 12076 // Widen to 64 bits here to get it sign extended. 12077 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); 12078 break; 12079 } 12080 // FIXME gcc accepts some relocatable values here too, but only in certain 12081 // memory models; it's complicated. 12082 } 12083 return; 12084 } 12085 case 'Z': { 12086 // 32-bit unsigned value 12087 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { 12088 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()), 12089 C->getZExtValue())) { 12090 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); 12091 break; 12092 } 12093 } 12094 // FIXME gcc accepts some relocatable values here too, but only in certain 12095 // memory models; it's complicated. 12096 return; 12097 } 12098 case 'i': { 12099 // Literal immediates are always ok. 12100 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { 12101 // Widen to 64 bits here to get it sign extended. 12102 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64); 12103 break; 12104 } 12105 12106 // In any sort of PIC mode addresses need to be computed at runtime by 12107 // adding in a register or some sort of table lookup. These can't 12108 // be used as immediates. 12109 if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC()) 12110 return; 12111 12112 // If we are in non-pic codegen mode, we allow the address of a global (with 12113 // an optional displacement) to be used with 'i'. 12114 GlobalAddressSDNode *GA = 0; 12115 int64_t Offset = 0; 12116 12117 // Match either (GA), (GA+C), (GA+C1+C2), etc. 12118 while (1) { 12119 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { 12120 Offset += GA->getOffset(); 12121 break; 12122 } else if (Op.getOpcode() == ISD::ADD) { 12123 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 12124 Offset += C->getZExtValue(); 12125 Op = Op.getOperand(0); 12126 continue; 12127 } 12128 } else if (Op.getOpcode() == ISD::SUB) { 12129 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 12130 Offset += -C->getZExtValue(); 12131 Op = Op.getOperand(0); 12132 continue; 12133 } 12134 } 12135 12136 // Otherwise, this isn't something we can handle, reject it. 12137 return; 12138 } 12139 12140 const GlobalValue *GV = GA->getGlobal(); 12141 // If we require an extra load to get this address, as in PIC mode, we 12142 // can't accept it. 12143 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV, 12144 getTargetMachine()))) 12145 return; 12146 12147 Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(), 12148 GA->getValueType(0), Offset); 12149 break; 12150 } 12151 } 12152 12153 if (Result.getNode()) { 12154 Ops.push_back(Result); 12155 return; 12156 } 12157 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 12158} 12159 12160std::vector<unsigned> X86TargetLowering:: 12161getRegClassForInlineAsmConstraint(const std::string &Constraint, 12162 EVT VT) const { 12163 if (Constraint.size() == 1) { 12164 // FIXME: not handling fp-stack yet! 12165 switch (Constraint[0]) { // GCC X86 Constraint Letters 12166 default: break; // Unknown constraint letter 12167 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. 12168 if (Subtarget->is64Bit()) { 12169 if (VT == MVT::i32) 12170 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 12171 X86::ESI, X86::EDI, X86::R8D, X86::R9D, 12172 X86::R10D,X86::R11D,X86::R12D, 12173 X86::R13D,X86::R14D,X86::R15D, 12174 X86::EBP, X86::ESP, 0); 12175 else if (VT == MVT::i16) 12176 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 12177 X86::SI, X86::DI, X86::R8W,X86::R9W, 12178 X86::R10W,X86::R11W,X86::R12W, 12179 X86::R13W,X86::R14W,X86::R15W, 12180 X86::BP, X86::SP, 0); 12181 else if (VT == MVT::i8) 12182 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 12183 X86::SIL, X86::DIL, X86::R8B,X86::R9B, 12184 X86::R10B,X86::R11B,X86::R12B, 12185 X86::R13B,X86::R14B,X86::R15B, 12186 X86::BPL, X86::SPL, 0); 12187 12188 else if (VT == MVT::i64) 12189 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 12190 X86::RSI, X86::RDI, X86::R8, X86::R9, 12191 X86::R10, X86::R11, X86::R12, 12192 X86::R13, X86::R14, X86::R15, 12193 X86::RBP, X86::RSP, 0); 12194 12195 break; 12196 } 12197 // 32-bit fallthrough 12198 case 'Q': // Q_REGS 12199 if (VT == MVT::i32) 12200 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); 12201 else if (VT == MVT::i16) 12202 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); 12203 else if (VT == MVT::i8) 12204 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); 12205 else if (VT == MVT::i64) 12206 return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0); 12207 break; 12208 } 12209 } 12210 12211 return std::vector<unsigned>(); 12212} 12213 12214std::pair<unsigned, const TargetRegisterClass*> 12215X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, 12216 EVT VT) const { 12217 // First, see if this is a constraint that directly corresponds to an LLVM 12218 // register class. 12219 if (Constraint.size() == 1) { 12220 // GCC Constraint Letters 12221 switch (Constraint[0]) { 12222 default: break; 12223 case 'r': // GENERAL_REGS 12224 case 'l': // INDEX_REGS 12225 if (VT == MVT::i8) 12226 return std::make_pair(0U, X86::GR8RegisterClass); 12227 if (VT == MVT::i16) 12228 return std::make_pair(0U, X86::GR16RegisterClass); 12229 if (VT == MVT::i32 || !Subtarget->is64Bit()) 12230 return std::make_pair(0U, X86::GR32RegisterClass); 12231 return std::make_pair(0U, X86::GR64RegisterClass); 12232 case 'R': // LEGACY_REGS 12233 if (VT == MVT::i8) 12234 return std::make_pair(0U, X86::GR8_NOREXRegisterClass); 12235 if (VT == MVT::i16) 12236 return std::make_pair(0U, X86::GR16_NOREXRegisterClass); 12237 if (VT == MVT::i32 || !Subtarget->is64Bit()) 12238 return std::make_pair(0U, X86::GR32_NOREXRegisterClass); 12239 return std::make_pair(0U, X86::GR64_NOREXRegisterClass); 12240 case 'f': // FP Stack registers. 12241 // If SSE is enabled for this VT, use f80 to ensure the isel moves the 12242 // value to the correct fpstack register class. 12243 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) 12244 return std::make_pair(0U, X86::RFP32RegisterClass); 12245 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) 12246 return std::make_pair(0U, X86::RFP64RegisterClass); 12247 return std::make_pair(0U, X86::RFP80RegisterClass); 12248 case 'y': // MMX_REGS if MMX allowed. 12249 if (!Subtarget->hasMMX()) break; 12250 return std::make_pair(0U, X86::VR64RegisterClass); 12251 case 'Y': // SSE_REGS if SSE2 allowed 12252 if (!Subtarget->hasXMMInt()) break; 12253 // FALL THROUGH. 12254 case 'x': // SSE_REGS if SSE1 allowed 12255 if (!Subtarget->hasXMM()) break; 12256 12257 switch (VT.getSimpleVT().SimpleTy) { 12258 default: break; 12259 // Scalar SSE types. 12260 case MVT::f32: 12261 case MVT::i32: 12262 return std::make_pair(0U, X86::FR32RegisterClass); 12263 case MVT::f64: 12264 case MVT::i64: 12265 return std::make_pair(0U, X86::FR64RegisterClass); 12266 // Vector types. 12267 case MVT::v16i8: 12268 case MVT::v8i16: 12269 case MVT::v4i32: 12270 case MVT::v2i64: 12271 case MVT::v4f32: 12272 case MVT::v2f64: 12273 return std::make_pair(0U, X86::VR128RegisterClass); 12274 } 12275 break; 12276 } 12277 } 12278 12279 // Use the default implementation in TargetLowering to convert the register 12280 // constraint into a member of a register class. 12281 std::pair<unsigned, const TargetRegisterClass*> Res; 12282 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 12283 12284 // Not found as a standard register? 12285 if (Res.second == 0) { 12286 // Map st(0) -> st(7) -> ST0 12287 if (Constraint.size() == 7 && Constraint[0] == '{' && 12288 tolower(Constraint[1]) == 's' && 12289 tolower(Constraint[2]) == 't' && 12290 Constraint[3] == '(' && 12291 (Constraint[4] >= '0' && Constraint[4] <= '7') && 12292 Constraint[5] == ')' && 12293 Constraint[6] == '}') { 12294 12295 Res.first = X86::ST0+Constraint[4]-'0'; 12296 Res.second = X86::RFP80RegisterClass; 12297 return Res; 12298 } 12299 12300 // GCC allows "st(0)" to be called just plain "st". 12301 if (StringRef("{st}").equals_lower(Constraint)) { 12302 Res.first = X86::ST0; 12303 Res.second = X86::RFP80RegisterClass; 12304 return Res; 12305 } 12306 12307 // flags -> EFLAGS 12308 if (StringRef("{flags}").equals_lower(Constraint)) { 12309 Res.first = X86::EFLAGS; 12310 Res.second = X86::CCRRegisterClass; 12311 return Res; 12312 } 12313 12314 // 'A' means EAX + EDX. 12315 if (Constraint == "A") { 12316 Res.first = X86::EAX; 12317 Res.second = X86::GR32_ADRegisterClass; 12318 return Res; 12319 } 12320 return Res; 12321 } 12322 12323 // Otherwise, check to see if this is a register class of the wrong value 12324 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to 12325 // turn into {ax},{dx}. 12326 if (Res.second->hasType(VT)) 12327 return Res; // Correct type already, nothing to do. 12328 12329 // All of the single-register GCC register classes map their values onto 12330 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we 12331 // really want an 8-bit or 32-bit register, map to the appropriate register 12332 // class and return the appropriate register. 12333 if (Res.second == X86::GR16RegisterClass) { 12334 if (VT == MVT::i8) { 12335 unsigned DestReg = 0; 12336 switch (Res.first) { 12337 default: break; 12338 case X86::AX: DestReg = X86::AL; break; 12339 case X86::DX: DestReg = X86::DL; break; 12340 case X86::CX: DestReg = X86::CL; break; 12341 case X86::BX: DestReg = X86::BL; break; 12342 } 12343 if (DestReg) { 12344 Res.first = DestReg; 12345 Res.second = X86::GR8RegisterClass; 12346 } 12347 } else if (VT == MVT::i32) { 12348 unsigned DestReg = 0; 12349 switch (Res.first) { 12350 default: break; 12351 case X86::AX: DestReg = X86::EAX; break; 12352 case X86::DX: DestReg = X86::EDX; break; 12353 case X86::CX: DestReg = X86::ECX; break; 12354 case X86::BX: DestReg = X86::EBX; break; 12355 case X86::SI: DestReg = X86::ESI; break; 12356 case X86::DI: DestReg = X86::EDI; break; 12357 case X86::BP: DestReg = X86::EBP; break; 12358 case X86::SP: DestReg = X86::ESP; break; 12359 } 12360 if (DestReg) { 12361 Res.first = DestReg; 12362 Res.second = X86::GR32RegisterClass; 12363 } 12364 } else if (VT == MVT::i64) { 12365 unsigned DestReg = 0; 12366 switch (Res.first) { 12367 default: break; 12368 case X86::AX: DestReg = X86::RAX; break; 12369 case X86::DX: DestReg = X86::RDX; break; 12370 case X86::CX: DestReg = X86::RCX; break; 12371 case X86::BX: DestReg = X86::RBX; break; 12372 case X86::SI: DestReg = X86::RSI; break; 12373 case X86::DI: DestReg = X86::RDI; break; 12374 case X86::BP: DestReg = X86::RBP; break; 12375 case X86::SP: DestReg = X86::RSP; break; 12376 } 12377 if (DestReg) { 12378 Res.first = DestReg; 12379 Res.second = X86::GR64RegisterClass; 12380 } 12381 } 12382 } else if (Res.second == X86::FR32RegisterClass || 12383 Res.second == X86::FR64RegisterClass || 12384 Res.second == X86::VR128RegisterClass) { 12385 // Handle references to XMM physical registers that got mapped into the 12386 // wrong class. This can happen with constraints like {xmm0} where the 12387 // target independent register mapper will just pick the first match it can 12388 // find, ignoring the required type. 12389 if (VT == MVT::f32) 12390 Res.second = X86::FR32RegisterClass; 12391 else if (VT == MVT::f64) 12392 Res.second = X86::FR64RegisterClass; 12393 else if (X86::VR128RegisterClass->hasType(VT)) 12394 Res.second = X86::VR128RegisterClass; 12395 } 12396 12397 return Res; 12398} 12399