X86ISelLowering.cpp revision a5e1362f968568d66d76ddcdcff4ab98e203a48c
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86ShuffleDecode.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53using namespace llvm;
54using namespace dwarf;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
63
64  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
65
66  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
67    if (is64Bit)
68      return new X8664_MachoTargetObjectFile();
69    return new TargetLoweringObjectFileMachO();
70  }
71
72  if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
73    if (is64Bit)
74      return new X8664_ELFTargetObjectFile(TM);
75    return new X8632_ELFTargetObjectFile(TM);
76  }
77  if (TM.getSubtarget<X86Subtarget>().isTargetCOFF())
78    return new TargetLoweringObjectFileCOFF();
79  llvm_unreachable("unknown subtarget type");
80}
81
82X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
83  : TargetLowering(TM, createTLOF(TM)) {
84  Subtarget = &TM.getSubtarget<X86Subtarget>();
85  X86ScalarSSEf64 = Subtarget->hasXMMInt();
86  X86ScalarSSEf32 = Subtarget->hasXMM();
87  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
88
89  RegInfo = TM.getRegisterInfo();
90  TD = getTargetData();
91
92  // Set up the TargetLowering object.
93  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
94
95  // X86 is weird, it always uses i8 for shift amounts and setcc results.
96  setShiftAmountType(MVT::i8);
97  setBooleanContents(ZeroOrOneBooleanContent);
98  setSchedulingPreference(Sched::RegPressure);
99  setStackPointerRegisterToSaveRestore(X86StackPtr);
100
101  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
102    // Setup Windows compiler runtime calls.
103    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
104    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
105    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
106    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
107    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
108    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
109    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
110    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
111  }
112
113  if (Subtarget->isTargetDarwin()) {
114    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
115    setUseUnderscoreSetJmp(false);
116    setUseUnderscoreLongJmp(false);
117  } else if (Subtarget->isTargetMingw()) {
118    // MS runtime is weird: it exports _setjmp, but longjmp!
119    setUseUnderscoreSetJmp(true);
120    setUseUnderscoreLongJmp(false);
121  } else {
122    setUseUnderscoreSetJmp(true);
123    setUseUnderscoreLongJmp(true);
124  }
125
126  // Set up the register classes.
127  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
128  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
129  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
130  if (Subtarget->is64Bit())
131    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
132
133  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
134
135  // We don't accept any truncstore of integer registers.
136  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
137  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
140  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
141  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
142
143  // SETOEQ and SETUNE require checking two conditions.
144  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
145  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
146  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
148  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
149  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
150
151  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
152  // operation.
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
154  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
155  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
156
157  if (Subtarget->is64Bit()) {
158    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
159    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
160  } else if (!UseSoftFloat) {
161    // We have an algorithm for SSE2->double, and we turn this into a
162    // 64-bit FILD followed by conditional FADD for other targets.
163    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
164    // We have an algorithm for SSE2, and we turn this into a 64-bit
165    // FILD for other targets.
166    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
167  }
168
169  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
170  // this operation.
171  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
172  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
173
174  if (!UseSoftFloat) {
175    // SSE has no i16 to fp conversion, only i32
176    if (X86ScalarSSEf32) {
177      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
178      // f32 and f64 cases are Legal, f80 case is not
179      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
180    } else {
181      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
182      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
183    }
184  } else {
185    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
186    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
187  }
188
189  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
190  // are Legal, f80 is custom lowered.
191  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
192  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
193
194  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
195  // this operation.
196  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
197  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
198
199  if (X86ScalarSSEf32) {
200    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
201    // f32 and f64 cases are Legal, f80 case is not
202    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
203  } else {
204    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
205    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
206  }
207
208  // Handle FP_TO_UINT by promoting the destination to a larger signed
209  // conversion.
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
211  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
212  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
213
214  if (Subtarget->is64Bit()) {
215    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
216    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
217  } else if (!UseSoftFloat) {
218    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
219      // Expand FP_TO_UINT into a select.
220      // FIXME: We would like to use a Custom expander here eventually to do
221      // the optimal thing for SSE vs. the default expansion in the legalizer.
222      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
223    else
224      // With SSE3 we can use fisttpll to convert to a signed i64; without
225      // SSE, we're stuck with a fistpll.
226      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
227  }
228
229  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
230  if (!X86ScalarSSEf64) {
231    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
232    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
233    if (Subtarget->is64Bit()) {
234      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
235      // Without SSE, i64->f64 goes through memory.
236      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
237    }
238  }
239
240  // Scalar integer divide and remainder are lowered to use operations that
241  // produce two results, to match the available instructions. This exposes
242  // the two-result form to trivial CSE, which is able to combine x/y and x%y
243  // into a single instruction.
244  //
245  // Scalar integer multiply-high is also lowered to use two-result
246  // operations, to match the available instructions. However, plain multiply
247  // (low) operations are left as Legal, as there are single-result
248  // instructions for this in x86. Using the two-result multiply instructions
249  // when both high and low results are needed must be arranged by dagcombine.
250  for (unsigned i = 0, e = 4; i != e; ++i) {
251    MVT VT = IntVTs[i];
252    setOperationAction(ISD::MULHS, VT, Expand);
253    setOperationAction(ISD::MULHU, VT, Expand);
254    setOperationAction(ISD::SDIV, VT, Expand);
255    setOperationAction(ISD::UDIV, VT, Expand);
256    setOperationAction(ISD::SREM, VT, Expand);
257    setOperationAction(ISD::UREM, VT, Expand);
258
259    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
260    setOperationAction(ISD::ADDC, VT, Custom);
261    setOperationAction(ISD::ADDE, VT, Custom);
262    setOperationAction(ISD::SUBC, VT, Custom);
263    setOperationAction(ISD::SUBE, VT, Custom);
264  }
265
266  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
267  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
268  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
269  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
270  if (Subtarget->is64Bit())
271    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
272  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
273  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
274  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
275  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
276  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
277  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
278  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
279  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
280
281  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
282  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
283  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
289    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
290  }
291
292  if (Subtarget->hasPOPCNT()) {
293    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
294  } else {
295    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
296    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
297    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
298    if (Subtarget->is64Bit())
299      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
300  }
301
302  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
303  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
304
305  // These should be promoted to a larger select which is supported.
306  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
307  // X86 wants to expand cmov itself.
308  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
309  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
310  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
311  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
312  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
313  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
314  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
315  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
316  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
317  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
318  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
319  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
320  if (Subtarget->is64Bit()) {
321    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
322    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
323  }
324  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
325
326  // Darwin ABI issue.
327  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
328  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
329  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
330  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
331  if (Subtarget->is64Bit())
332    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
333  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
334  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
335  if (Subtarget->is64Bit()) {
336    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
337    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
338    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
339    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
340    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
341  }
342  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
343  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
344  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
345  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
346  if (Subtarget->is64Bit()) {
347    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
348    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
349    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
350  }
351
352  if (Subtarget->hasXMM())
353    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
354
355  // We may not have a libcall for MEMBARRIER so we should lower this.
356  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
357
358  // On X86 and X86-64, atomic operations are lowered to locked instructions.
359  // Locked instructions, in turn, have implicit fence semantics (all memory
360  // operations are flushed before issuing the locked instruction, and they
361  // are not buffered), so we can fold away the common pattern of
362  // fence-atomic-fence.
363  setShouldFoldAtomicFences(true);
364
365  // Expand certain atomics
366  for (unsigned i = 0, e = 4; i != e; ++i) {
367    MVT VT = IntVTs[i];
368    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
370  }
371
372  if (!Subtarget->is64Bit()) {
373    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
375    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
376    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
377    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
378    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
380  }
381
382  // FIXME - use subtarget debug flags
383  if (!Subtarget->isTargetDarwin() &&
384      !Subtarget->isTargetELF() &&
385      !Subtarget->isTargetCygMing()) {
386    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
387  }
388
389  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
390  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
391  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
392  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
393  if (Subtarget->is64Bit()) {
394    setExceptionPointerRegister(X86::RAX);
395    setExceptionSelectorRegister(X86::RDX);
396  } else {
397    setExceptionPointerRegister(X86::EAX);
398    setExceptionSelectorRegister(X86::EDX);
399  }
400  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
401  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
402
403  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
404
405  setOperationAction(ISD::TRAP, MVT::Other, Legal);
406
407  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
408  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
409  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
410  if (Subtarget->is64Bit()) {
411    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
412    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
413  } else {
414    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
415    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
416  }
417
418  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
419  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
420  if (Subtarget->is64Bit())
421    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
422  if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
423    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
424  else
425    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
426
427  if (!UseSoftFloat && X86ScalarSSEf64) {
428    // f32 and f64 use SSE.
429    // Set up the FP register classes.
430    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
431    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
432
433    // Use ANDPD to simulate FABS.
434    setOperationAction(ISD::FABS , MVT::f64, Custom);
435    setOperationAction(ISD::FABS , MVT::f32, Custom);
436
437    // Use XORP to simulate FNEG.
438    setOperationAction(ISD::FNEG , MVT::f64, Custom);
439    setOperationAction(ISD::FNEG , MVT::f32, Custom);
440
441    // Use ANDPD and ORPD to simulate FCOPYSIGN.
442    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
443    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
444
445    // We don't support sin/cos/fmod
446    setOperationAction(ISD::FSIN , MVT::f64, Expand);
447    setOperationAction(ISD::FCOS , MVT::f64, Expand);
448    setOperationAction(ISD::FSIN , MVT::f32, Expand);
449    setOperationAction(ISD::FCOS , MVT::f32, Expand);
450
451    // Expand FP immediates into loads from the stack, except for the special
452    // cases we handle.
453    addLegalFPImmediate(APFloat(+0.0)); // xorpd
454    addLegalFPImmediate(APFloat(+0.0f)); // xorps
455  } else if (!UseSoftFloat && X86ScalarSSEf32) {
456    // Use SSE for f32, x87 for f64.
457    // Set up the FP register classes.
458    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
459    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
460
461    // Use ANDPS to simulate FABS.
462    setOperationAction(ISD::FABS , MVT::f32, Custom);
463
464    // Use XORP to simulate FNEG.
465    setOperationAction(ISD::FNEG , MVT::f32, Custom);
466
467    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
468
469    // Use ANDPS and ORPS to simulate FCOPYSIGN.
470    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
471    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
472
473    // We don't support sin/cos/fmod
474    setOperationAction(ISD::FSIN , MVT::f32, Expand);
475    setOperationAction(ISD::FCOS , MVT::f32, Expand);
476
477    // Special cases we handle for FP constants.
478    addLegalFPImmediate(APFloat(+0.0f)); // xorps
479    addLegalFPImmediate(APFloat(+0.0)); // FLD0
480    addLegalFPImmediate(APFloat(+1.0)); // FLD1
481    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
482    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
483
484    if (!UnsafeFPMath) {
485      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
486      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
487    }
488  } else if (!UseSoftFloat) {
489    // f32 and f64 in x87.
490    // Set up the FP register classes.
491    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
492    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
493
494    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
495    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
496    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
497    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
498
499    if (!UnsafeFPMath) {
500      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
501      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
502    }
503    addLegalFPImmediate(APFloat(+0.0)); // FLD0
504    addLegalFPImmediate(APFloat(+1.0)); // FLD1
505    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
506    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
507    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
508    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
509    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
510    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
511  }
512
513  // Long double always uses X87.
514  if (!UseSoftFloat) {
515    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
516    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
517    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
518    {
519      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
520      addLegalFPImmediate(TmpFlt);  // FLD0
521      TmpFlt.changeSign();
522      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
523
524      bool ignored;
525      APFloat TmpFlt2(+1.0);
526      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527                      &ignored);
528      addLegalFPImmediate(TmpFlt2);  // FLD1
529      TmpFlt2.changeSign();
530      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
531    }
532
533    if (!UnsafeFPMath) {
534      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
535      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
536    }
537  }
538
539  // Always use a library call for pow.
540  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
541  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
542  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
543
544  setOperationAction(ISD::FLOG, MVT::f80, Expand);
545  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
546  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
547  setOperationAction(ISD::FEXP, MVT::f80, Expand);
548  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
549
550  // First set operation action for all vector types to either promote
551  // (for widening) or expand (for scalarization). Then we will selectively
552  // turn on ones that can be effectively codegen'd.
553  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
554       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
555    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
570    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
571    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
604    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
608    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
609         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
610      setTruncStoreAction((MVT::SimpleValueType)VT,
611                          (MVT::SimpleValueType)InnerVT, Expand);
612    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
613    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
614    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
615  }
616
617  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
618  // with -msoft-float, disable use of MMX as well.
619  if (!UseSoftFloat && Subtarget->hasMMX()) {
620    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
621    // No operations on x86mmx supported, everything uses intrinsics.
622  }
623
624  // MMX-sized vectors (other than x86mmx) are expected to be expanded
625  // into smaller operations.
626  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
627  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
628  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
629  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
630  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
631  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
632  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
633  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
634  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
635  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
636  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
637  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
638  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
639  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
640  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
641  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
642  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
643  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
644  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
645  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
646  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
647  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
648  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
649  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
650  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
651  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
652  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
653  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
654  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
655
656  if (!UseSoftFloat && Subtarget->hasXMM()) {
657    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
658
659    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
660    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
661    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
662    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
663    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
664    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
665    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
666    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
667    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
668    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
669    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
670    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
671  }
672
673  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
674    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
675
676    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
677    // registers cannot be used even for integer operations.
678    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
679    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
680    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
681    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
682
683    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
684    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
685    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
686    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
687    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
688    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
689    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
690    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
691    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
692    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
693    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
694    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
695    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
696    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
697    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
698    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
699
700    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
701    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
702    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
703    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
704
705    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
706    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
707    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
708    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
709    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
710
711    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
712    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
713    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
714    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
715    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
716
717    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
718    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
719      EVT VT = (MVT::SimpleValueType)i;
720      // Do not attempt to custom lower non-power-of-2 vectors
721      if (!isPowerOf2_32(VT.getVectorNumElements()))
722        continue;
723      // Do not attempt to custom lower non-128-bit vectors
724      if (!VT.is128BitVector())
725        continue;
726      setOperationAction(ISD::BUILD_VECTOR,
727                         VT.getSimpleVT().SimpleTy, Custom);
728      setOperationAction(ISD::VECTOR_SHUFFLE,
729                         VT.getSimpleVT().SimpleTy, Custom);
730      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
731                         VT.getSimpleVT().SimpleTy, Custom);
732    }
733
734    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
735    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
736    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
737    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
738    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
739    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
740
741    if (Subtarget->is64Bit()) {
742      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
743      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
744    }
745
746    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
747    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
748      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
749      EVT VT = SVT;
750
751      // Do not attempt to promote non-128-bit vectors
752      if (!VT.is128BitVector())
753        continue;
754
755      setOperationAction(ISD::AND,    SVT, Promote);
756      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
757      setOperationAction(ISD::OR,     SVT, Promote);
758      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
759      setOperationAction(ISD::XOR,    SVT, Promote);
760      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
761      setOperationAction(ISD::LOAD,   SVT, Promote);
762      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
763      setOperationAction(ISD::SELECT, SVT, Promote);
764      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
765    }
766
767    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
768
769    // Custom lower v2i64 and v2f64 selects.
770    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
771    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
772    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
773    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
774
775    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
776    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
777  }
778
779  if (Subtarget->hasSSE41()) {
780    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
781    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
782    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
783    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
784    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
785    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
786    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
787    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
788    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
789    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
790
791    // FIXME: Do we need to handle scalar-to-vector here?
792    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
793
794    // Can turn SHL into an integer multiply.
795    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
796    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
797
798    // i8 and i16 vectors are custom , because the source register and source
799    // source memory operand types are not the same width.  f32 vectors are
800    // custom since the immediate controlling the insert encodes additional
801    // information.
802    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
803    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
804    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
805    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
806
807    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
808    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
809    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
810    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
811
812    if (Subtarget->is64Bit()) {
813      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
814      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
815    }
816  }
817
818  if (Subtarget->hasSSE42())
819    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
820
821  if (!UseSoftFloat && Subtarget->hasAVX()) {
822    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
823    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
824    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
825    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
826    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
827
828    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
829    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
830    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
831    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
832    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
833    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
834    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
835    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
836    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
837    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
838    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
839    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
840    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
841    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
842    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
843
844    // Operations to consider commented out -v16i16 v32i8
845    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
846    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
847    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
848    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
849    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
850    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
851    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
852    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
853    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
854    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
855    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
856    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
857    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
858    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
859
860    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
861    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
862    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
863    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
864
865    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
866    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
867    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
869    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
870
871    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
872    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
873    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
874    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
875    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
876    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
877
878#if 0
879    // Not sure we want to do this since there are no 256-bit integer
880    // operations in AVX
881
882    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
883    // This includes 256-bit vectors
884    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
885      EVT VT = (MVT::SimpleValueType)i;
886
887      // Do not attempt to custom lower non-power-of-2 vectors
888      if (!isPowerOf2_32(VT.getVectorNumElements()))
889        continue;
890
891      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
892      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
893      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
894    }
895
896    if (Subtarget->is64Bit()) {
897      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
898      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
899    }
900#endif
901
902#if 0
903    // Not sure we want to do this since there are no 256-bit integer
904    // operations in AVX
905
906    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
907    // Including 256-bit vectors
908    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
909      EVT VT = (MVT::SimpleValueType)i;
910
911      if (!VT.is256BitVector()) {
912        continue;
913      }
914      setOperationAction(ISD::AND,    VT, Promote);
915      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
916      setOperationAction(ISD::OR,     VT, Promote);
917      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
918      setOperationAction(ISD::XOR,    VT, Promote);
919      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
920      setOperationAction(ISD::LOAD,   VT, Promote);
921      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
922      setOperationAction(ISD::SELECT, VT, Promote);
923      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
924    }
925
926    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
927#endif
928  }
929
930  // We want to custom lower some of our intrinsics.
931  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
932
933
934  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
935  // handle type legalization for these operations here.
936  //
937  // FIXME: We really should do custom legalization for addition and
938  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
939  // than generic legalization for 64-bit multiplication-with-overflow, though.
940  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
941    // Add/Sub/Mul with overflow operations are custom lowered.
942    MVT VT = IntVTs[i];
943    setOperationAction(ISD::SADDO, VT, Custom);
944    setOperationAction(ISD::UADDO, VT, Custom);
945    setOperationAction(ISD::SSUBO, VT, Custom);
946    setOperationAction(ISD::USUBO, VT, Custom);
947    setOperationAction(ISD::SMULO, VT, Custom);
948    setOperationAction(ISD::UMULO, VT, Custom);
949  }
950
951  // There are no 8-bit 3-address imul/mul instructions
952  setOperationAction(ISD::SMULO, MVT::i8, Expand);
953  setOperationAction(ISD::UMULO, MVT::i8, Expand);
954
955  if (!Subtarget->is64Bit()) {
956    // These libcalls are not available in 32-bit.
957    setLibcallName(RTLIB::SHL_I128, 0);
958    setLibcallName(RTLIB::SRL_I128, 0);
959    setLibcallName(RTLIB::SRA_I128, 0);
960  }
961
962  // We have target-specific dag combine patterns for the following nodes:
963  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
964  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
965  setTargetDAGCombine(ISD::BUILD_VECTOR);
966  setTargetDAGCombine(ISD::SELECT);
967  setTargetDAGCombine(ISD::SHL);
968  setTargetDAGCombine(ISD::SRA);
969  setTargetDAGCombine(ISD::SRL);
970  setTargetDAGCombine(ISD::OR);
971  setTargetDAGCombine(ISD::AND);
972  setTargetDAGCombine(ISD::ADD);
973  setTargetDAGCombine(ISD::SUB);
974  setTargetDAGCombine(ISD::STORE);
975  setTargetDAGCombine(ISD::ZERO_EXTEND);
976  if (Subtarget->is64Bit())
977    setTargetDAGCombine(ISD::MUL);
978
979  computeRegisterProperties();
980
981  // On Darwin, -Os means optimize for size without hurting performance,
982  // do not reduce the limit.
983  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
984  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
985  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
986  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
987  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
988  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
989  setPrefLoopAlignment(16);
990  benefitFromCodePlacementOpt = true;
991}
992
993
994MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
995  return MVT::i8;
996}
997
998
999/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1000/// the desired ByVal argument alignment.
1001static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1002  if (MaxAlign == 16)
1003    return;
1004  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1005    if (VTy->getBitWidth() == 128)
1006      MaxAlign = 16;
1007  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1008    unsigned EltAlign = 0;
1009    getMaxByValAlign(ATy->getElementType(), EltAlign);
1010    if (EltAlign > MaxAlign)
1011      MaxAlign = EltAlign;
1012  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1013    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1014      unsigned EltAlign = 0;
1015      getMaxByValAlign(STy->getElementType(i), EltAlign);
1016      if (EltAlign > MaxAlign)
1017        MaxAlign = EltAlign;
1018      if (MaxAlign == 16)
1019        break;
1020    }
1021  }
1022  return;
1023}
1024
1025/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1026/// function arguments in the caller parameter area. For X86, aggregates
1027/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1028/// are at 4-byte boundaries.
1029unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1030  if (Subtarget->is64Bit()) {
1031    // Max of 8 and alignment of type.
1032    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1033    if (TyAlign > 8)
1034      return TyAlign;
1035    return 8;
1036  }
1037
1038  unsigned Align = 4;
1039  if (Subtarget->hasXMM())
1040    getMaxByValAlign(Ty, Align);
1041  return Align;
1042}
1043
1044/// getOptimalMemOpType - Returns the target specific optimal type for load
1045/// and store operations as a result of memset, memcpy, and memmove
1046/// lowering. If DstAlign is zero that means it's safe to destination
1047/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1048/// means there isn't a need to check it against alignment requirement,
1049/// probably because the source does not need to be loaded. If
1050/// 'NonScalarIntSafe' is true, that means it's safe to return a
1051/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1052/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1053/// constant so it does not need to be loaded.
1054/// It returns EVT::Other if the type should be determined using generic
1055/// target-independent logic.
1056EVT
1057X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1058                                       unsigned DstAlign, unsigned SrcAlign,
1059                                       bool NonScalarIntSafe,
1060                                       bool MemcpyStrSrc,
1061                                       MachineFunction &MF) const {
1062  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1063  // linux.  This is because the stack realignment code can't handle certain
1064  // cases like PR2962.  This should be removed when PR2962 is fixed.
1065  const Function *F = MF.getFunction();
1066  if (NonScalarIntSafe &&
1067      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1068    if (Size >= 16 &&
1069        (Subtarget->isUnalignedMemAccessFast() ||
1070         ((DstAlign == 0 || DstAlign >= 16) &&
1071          (SrcAlign == 0 || SrcAlign >= 16))) &&
1072        Subtarget->getStackAlignment() >= 16) {
1073      if (Subtarget->hasSSE2())
1074        return MVT::v4i32;
1075      if (Subtarget->hasSSE1())
1076        return MVT::v4f32;
1077    } else if (!MemcpyStrSrc && Size >= 8 &&
1078               !Subtarget->is64Bit() &&
1079               Subtarget->getStackAlignment() >= 8 &&
1080               Subtarget->hasXMMInt()) {
1081      // Do not use f64 to lower memcpy if source is string constant. It's
1082      // better to use i32 to avoid the loads.
1083      return MVT::f64;
1084    }
1085  }
1086  if (Subtarget->is64Bit() && Size >= 8)
1087    return MVT::i64;
1088  return MVT::i32;
1089}
1090
1091/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1092/// current function.  The returned value is a member of the
1093/// MachineJumpTableInfo::JTEntryKind enum.
1094unsigned X86TargetLowering::getJumpTableEncoding() const {
1095  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1096  // symbol.
1097  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1098      Subtarget->isPICStyleGOT())
1099    return MachineJumpTableInfo::EK_Custom32;
1100
1101  // Otherwise, use the normal jump table encoding heuristics.
1102  return TargetLowering::getJumpTableEncoding();
1103}
1104
1105const MCExpr *
1106X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1107                                             const MachineBasicBlock *MBB,
1108                                             unsigned uid,MCContext &Ctx) const{
1109  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1110         Subtarget->isPICStyleGOT());
1111  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1112  // entries.
1113  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1114                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1115}
1116
1117/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1118/// jumptable.
1119SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1120                                                    SelectionDAG &DAG) const {
1121  if (!Subtarget->is64Bit())
1122    // This doesn't have DebugLoc associated with it, but is not really the
1123    // same as a Register.
1124    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1125  return Table;
1126}
1127
1128/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1129/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1130/// MCExpr.
1131const MCExpr *X86TargetLowering::
1132getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1133                             MCContext &Ctx) const {
1134  // X86-64 uses RIP relative addressing based on the jump table label.
1135  if (Subtarget->isPICStyleRIPRel())
1136    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1137
1138  // Otherwise, the reference is relative to the PIC base.
1139  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1140}
1141
1142/// getFunctionAlignment - Return the Log2 alignment of this function.
1143unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1144  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1145}
1146
1147std::pair<const TargetRegisterClass*, uint8_t>
1148X86TargetLowering::findRepresentativeClass(EVT VT) const{
1149  const TargetRegisterClass *RRC = 0;
1150  uint8_t Cost = 1;
1151  switch (VT.getSimpleVT().SimpleTy) {
1152  default:
1153    return TargetLowering::findRepresentativeClass(VT);
1154  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1155    RRC = (Subtarget->is64Bit()
1156           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1157    break;
1158  case MVT::x86mmx:
1159    RRC = X86::VR64RegisterClass;
1160    break;
1161  case MVT::f32: case MVT::f64:
1162  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1163  case MVT::v4f32: case MVT::v2f64:
1164  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1165  case MVT::v4f64:
1166    RRC = X86::VR128RegisterClass;
1167    break;
1168  }
1169  return std::make_pair(RRC, Cost);
1170}
1171
1172unsigned
1173X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1174                                       MachineFunction &MF) const {
1175  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
1176
1177  unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
1178  switch (RC->getID()) {
1179  default:
1180    return 0;
1181  case X86::GR32RegClassID:
1182    return 4 - FPDiff;
1183  case X86::GR64RegClassID:
1184    return 8 - FPDiff;
1185  case X86::VR128RegClassID:
1186    return Subtarget->is64Bit() ? 10 : 4;
1187  case X86::VR64RegClassID:
1188    return 4;
1189  }
1190}
1191
1192bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1193                                               unsigned &Offset) const {
1194  if (!Subtarget->isTargetLinux())
1195    return false;
1196
1197  if (Subtarget->is64Bit()) {
1198    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1199    Offset = 0x28;
1200    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1201      AddressSpace = 256;
1202    else
1203      AddressSpace = 257;
1204  } else {
1205    // %gs:0x14 on i386
1206    Offset = 0x14;
1207    AddressSpace = 256;
1208  }
1209  return true;
1210}
1211
1212
1213//===----------------------------------------------------------------------===//
1214//               Return Value Calling Convention Implementation
1215//===----------------------------------------------------------------------===//
1216
1217#include "X86GenCallingConv.inc"
1218
1219bool
1220X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1221                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1222                        LLVMContext &Context) const {
1223  SmallVector<CCValAssign, 16> RVLocs;
1224  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1225                 RVLocs, Context);
1226  return CCInfo.CheckReturn(Outs, RetCC_X86);
1227}
1228
1229SDValue
1230X86TargetLowering::LowerReturn(SDValue Chain,
1231                               CallingConv::ID CallConv, bool isVarArg,
1232                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1233                               const SmallVectorImpl<SDValue> &OutVals,
1234                               DebugLoc dl, SelectionDAG &DAG) const {
1235  MachineFunction &MF = DAG.getMachineFunction();
1236  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1237
1238  SmallVector<CCValAssign, 16> RVLocs;
1239  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1240                 RVLocs, *DAG.getContext());
1241  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1242
1243  // Add the regs to the liveout set for the function.
1244  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1245  for (unsigned i = 0; i != RVLocs.size(); ++i)
1246    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1247      MRI.addLiveOut(RVLocs[i].getLocReg());
1248
1249  SDValue Flag;
1250
1251  SmallVector<SDValue, 6> RetOps;
1252  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1253  // Operand #1 = Bytes To Pop
1254  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1255                   MVT::i16));
1256
1257  // Copy the result values into the output registers.
1258  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1259    CCValAssign &VA = RVLocs[i];
1260    assert(VA.isRegLoc() && "Can only return in registers!");
1261    SDValue ValToCopy = OutVals[i];
1262    EVT ValVT = ValToCopy.getValueType();
1263
1264    // If this is x86-64, and we disabled SSE, we can't return FP values,
1265    // or SSE or MMX vectors.
1266    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1267         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1268          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1269      report_fatal_error("SSE register return with SSE disabled");
1270    }
1271    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1272    // llvm-gcc has never done it right and no one has noticed, so this
1273    // should be OK for now.
1274    if (ValVT == MVT::f64 &&
1275        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1276      report_fatal_error("SSE2 register return with SSE2 disabled");
1277
1278    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1279    // the RET instruction and handled by the FP Stackifier.
1280    if (VA.getLocReg() == X86::ST0 ||
1281        VA.getLocReg() == X86::ST1) {
1282      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1283      // change the value to the FP stack register class.
1284      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1285        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1286      RetOps.push_back(ValToCopy);
1287      // Don't emit a copytoreg.
1288      continue;
1289    }
1290
1291    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1292    // which is returned in RAX / RDX.
1293    if (Subtarget->is64Bit()) {
1294      if (ValVT == MVT::x86mmx) {
1295        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1296          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1297          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1298                                  ValToCopy);
1299          // If we don't have SSE2 available, convert to v4f32 so the generated
1300          // register is legal.
1301          if (!Subtarget->hasSSE2())
1302            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1303        }
1304      }
1305    }
1306
1307    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1308    Flag = Chain.getValue(1);
1309  }
1310
1311  // The x86-64 ABI for returning structs by value requires that we copy
1312  // the sret argument into %rax for the return. We saved the argument into
1313  // a virtual register in the entry block, so now we copy the value out
1314  // and into %rax.
1315  if (Subtarget->is64Bit() &&
1316      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1317    MachineFunction &MF = DAG.getMachineFunction();
1318    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1319    unsigned Reg = FuncInfo->getSRetReturnReg();
1320    assert(Reg &&
1321           "SRetReturnReg should have been set in LowerFormalArguments().");
1322    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1323
1324    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1325    Flag = Chain.getValue(1);
1326
1327    // RAX now acts like a return value.
1328    MRI.addLiveOut(X86::RAX);
1329  }
1330
1331  RetOps[0] = Chain;  // Update chain.
1332
1333  // Add the flag if we have it.
1334  if (Flag.getNode())
1335    RetOps.push_back(Flag);
1336
1337  return DAG.getNode(X86ISD::RET_FLAG, dl,
1338                     MVT::Other, &RetOps[0], RetOps.size());
1339}
1340
1341bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1342  if (N->getNumValues() != 1)
1343    return false;
1344  if (!N->hasNUsesOfValue(1, 0))
1345    return false;
1346
1347  SDNode *Copy = *N->use_begin();
1348  if (Copy->getOpcode() != ISD::CopyToReg &&
1349      Copy->getOpcode() != ISD::FP_EXTEND)
1350    return false;
1351
1352  bool HasRet = false;
1353  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1354       UI != UE; ++UI) {
1355    if (UI->getOpcode() != X86ISD::RET_FLAG)
1356      return false;
1357    HasRet = true;
1358  }
1359
1360  return HasRet;
1361}
1362
1363/// LowerCallResult - Lower the result values of a call into the
1364/// appropriate copies out of appropriate physical registers.
1365///
1366SDValue
1367X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1368                                   CallingConv::ID CallConv, bool isVarArg,
1369                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1370                                   DebugLoc dl, SelectionDAG &DAG,
1371                                   SmallVectorImpl<SDValue> &InVals) const {
1372
1373  // Assign locations to each value returned by this call.
1374  SmallVector<CCValAssign, 16> RVLocs;
1375  bool Is64Bit = Subtarget->is64Bit();
1376  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1377                 RVLocs, *DAG.getContext());
1378  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1379
1380  // Copy all of the result registers out of their specified physreg.
1381  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1382    CCValAssign &VA = RVLocs[i];
1383    EVT CopyVT = VA.getValVT();
1384
1385    // If this is x86-64, and we disabled SSE, we can't return FP values
1386    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1387        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1388      report_fatal_error("SSE register return with SSE disabled");
1389    }
1390
1391    SDValue Val;
1392
1393    // If this is a call to a function that returns an fp value on the floating
1394    // point stack, we must guarantee the the value is popped from the stack, so
1395    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1396    // if the return value is not used. We use the FpGET_ST0 instructions
1397    // instead.
1398    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1399      // If we prefer to use the value in xmm registers, copy it out as f80 and
1400      // use a truncate to move it from fp stack reg to xmm reg.
1401      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1402      bool isST0 = VA.getLocReg() == X86::ST0;
1403      unsigned Opc = 0;
1404      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1405      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1406      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1407      SDValue Ops[] = { Chain, InFlag };
1408      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
1409                                         Ops, 2), 1);
1410      Val = Chain.getValue(0);
1411
1412      // Round the f80 to the right size, which also moves it to the appropriate
1413      // xmm register.
1414      if (CopyVT != VA.getValVT())
1415        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1416                          // This truncation won't change the value.
1417                          DAG.getIntPtrConstant(1));
1418    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1419      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1420      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1421        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1422                                   MVT::v2i64, InFlag).getValue(1);
1423        Val = Chain.getValue(0);
1424        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1425                          Val, DAG.getConstant(0, MVT::i64));
1426      } else {
1427        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1428                                   MVT::i64, InFlag).getValue(1);
1429        Val = Chain.getValue(0);
1430      }
1431      Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val);
1432    } else {
1433      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1434                                 CopyVT, InFlag).getValue(1);
1435      Val = Chain.getValue(0);
1436    }
1437    InFlag = Chain.getValue(2);
1438    InVals.push_back(Val);
1439  }
1440
1441  return Chain;
1442}
1443
1444
1445//===----------------------------------------------------------------------===//
1446//                C & StdCall & Fast Calling Convention implementation
1447//===----------------------------------------------------------------------===//
1448//  StdCall calling convention seems to be standard for many Windows' API
1449//  routines and around. It differs from C calling convention just a little:
1450//  callee should clean up the stack, not caller. Symbols should be also
1451//  decorated in some fancy way :) It doesn't support any vector arguments.
1452//  For info on fast calling convention see Fast Calling Convention (tail call)
1453//  implementation LowerX86_32FastCCCallTo.
1454
1455/// CallIsStructReturn - Determines whether a call uses struct return
1456/// semantics.
1457static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1458  if (Outs.empty())
1459    return false;
1460
1461  return Outs[0].Flags.isSRet();
1462}
1463
1464/// ArgsAreStructReturn - Determines whether a function uses struct
1465/// return semantics.
1466static bool
1467ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1468  if (Ins.empty())
1469    return false;
1470
1471  return Ins[0].Flags.isSRet();
1472}
1473
1474/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1475/// by "Src" to address "Dst" with size and alignment information specified by
1476/// the specific parameter attribute. The copy will be passed as a byval
1477/// function parameter.
1478static SDValue
1479CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1480                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1481                          DebugLoc dl) {
1482  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1483
1484  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1485                       /*isVolatile*/false, /*AlwaysInline=*/true,
1486                       MachinePointerInfo(), MachinePointerInfo());
1487}
1488
1489/// IsTailCallConvention - Return true if the calling convention is one that
1490/// supports tail call optimization.
1491static bool IsTailCallConvention(CallingConv::ID CC) {
1492  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1493}
1494
1495/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1496/// a tailcall target by changing its ABI.
1497static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1498  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1499}
1500
1501SDValue
1502X86TargetLowering::LowerMemArgument(SDValue Chain,
1503                                    CallingConv::ID CallConv,
1504                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1505                                    DebugLoc dl, SelectionDAG &DAG,
1506                                    const CCValAssign &VA,
1507                                    MachineFrameInfo *MFI,
1508                                    unsigned i) const {
1509  // Create the nodes corresponding to a load from this parameter slot.
1510  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1511  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1512  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1513  EVT ValVT;
1514
1515  // If value is passed by pointer we have address passed instead of the value
1516  // itself.
1517  if (VA.getLocInfo() == CCValAssign::Indirect)
1518    ValVT = VA.getLocVT();
1519  else
1520    ValVT = VA.getValVT();
1521
1522  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1523  // changed with more analysis.
1524  // In case of tail call optimization mark all arguments mutable. Since they
1525  // could be overwritten by lowering of arguments in case of a tail call.
1526  if (Flags.isByVal()) {
1527    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1528                                    VA.getLocMemOffset(), isImmutable);
1529    return DAG.getFrameIndex(FI, getPointerTy());
1530  } else {
1531    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1532                                    VA.getLocMemOffset(), isImmutable);
1533    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1534    return DAG.getLoad(ValVT, dl, Chain, FIN,
1535                       MachinePointerInfo::getFixedStack(FI),
1536                       false, false, 0);
1537  }
1538}
1539
1540SDValue
1541X86TargetLowering::LowerFormalArguments(SDValue Chain,
1542                                        CallingConv::ID CallConv,
1543                                        bool isVarArg,
1544                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1545                                        DebugLoc dl,
1546                                        SelectionDAG &DAG,
1547                                        SmallVectorImpl<SDValue> &InVals)
1548                                          const {
1549  MachineFunction &MF = DAG.getMachineFunction();
1550  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1551
1552  const Function* Fn = MF.getFunction();
1553  if (Fn->hasExternalLinkage() &&
1554      Subtarget->isTargetCygMing() &&
1555      Fn->getName() == "main")
1556    FuncInfo->setForceFramePointer(true);
1557
1558  MachineFrameInfo *MFI = MF.getFrameInfo();
1559  bool Is64Bit = Subtarget->is64Bit();
1560  bool IsWin64 = Subtarget->isTargetWin64();
1561
1562  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1563         "Var args not supported with calling convention fastcc or ghc");
1564
1565  // Assign locations to all of the incoming arguments.
1566  SmallVector<CCValAssign, 16> ArgLocs;
1567  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1568                 ArgLocs, *DAG.getContext());
1569  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1570
1571  unsigned LastVal = ~0U;
1572  SDValue ArgValue;
1573  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1574    CCValAssign &VA = ArgLocs[i];
1575    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1576    // places.
1577    assert(VA.getValNo() != LastVal &&
1578           "Don't support value assigned to multiple locs yet");
1579    LastVal = VA.getValNo();
1580
1581    if (VA.isRegLoc()) {
1582      EVT RegVT = VA.getLocVT();
1583      TargetRegisterClass *RC = NULL;
1584      if (RegVT == MVT::i32)
1585        RC = X86::GR32RegisterClass;
1586      else if (Is64Bit && RegVT == MVT::i64)
1587        RC = X86::GR64RegisterClass;
1588      else if (RegVT == MVT::f32)
1589        RC = X86::FR32RegisterClass;
1590      else if (RegVT == MVT::f64)
1591        RC = X86::FR64RegisterClass;
1592      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1593        RC = X86::VR256RegisterClass;
1594      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1595        RC = X86::VR128RegisterClass;
1596      else if (RegVT == MVT::x86mmx)
1597        RC = X86::VR64RegisterClass;
1598      else
1599        llvm_unreachable("Unknown argument type!");
1600
1601      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1602      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1603
1604      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1605      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1606      // right size.
1607      if (VA.getLocInfo() == CCValAssign::SExt)
1608        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1609                               DAG.getValueType(VA.getValVT()));
1610      else if (VA.getLocInfo() == CCValAssign::ZExt)
1611        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1612                               DAG.getValueType(VA.getValVT()));
1613      else if (VA.getLocInfo() == CCValAssign::BCvt)
1614        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1615
1616      if (VA.isExtInLoc()) {
1617        // Handle MMX values passed in XMM regs.
1618        if (RegVT.isVector()) {
1619          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1620                                 ArgValue);
1621        } else
1622          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1623      }
1624    } else {
1625      assert(VA.isMemLoc());
1626      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1627    }
1628
1629    // If value is passed via pointer - do a load.
1630    if (VA.getLocInfo() == CCValAssign::Indirect)
1631      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1632                             MachinePointerInfo(), false, false, 0);
1633
1634    InVals.push_back(ArgValue);
1635  }
1636
1637  // The x86-64 ABI for returning structs by value requires that we copy
1638  // the sret argument into %rax for the return. Save the argument into
1639  // a virtual register so that we can access it from the return points.
1640  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1641    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1642    unsigned Reg = FuncInfo->getSRetReturnReg();
1643    if (!Reg) {
1644      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1645      FuncInfo->setSRetReturnReg(Reg);
1646    }
1647    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1648    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1649  }
1650
1651  unsigned StackSize = CCInfo.getNextStackOffset();
1652  // Align stack specially for tail calls.
1653  if (FuncIsMadeTailCallSafe(CallConv))
1654    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1655
1656  // If the function takes variable number of arguments, make a frame index for
1657  // the start of the first vararg value... for expansion of llvm.va_start.
1658  if (isVarArg) {
1659    if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1660                    CallConv != CallingConv::X86_ThisCall))) {
1661      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1662    }
1663    if (Is64Bit) {
1664      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1665
1666      // FIXME: We should really autogenerate these arrays
1667      static const unsigned GPR64ArgRegsWin64[] = {
1668        X86::RCX, X86::RDX, X86::R8,  X86::R9
1669      };
1670      static const unsigned GPR64ArgRegs64Bit[] = {
1671        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1672      };
1673      static const unsigned XMMArgRegs64Bit[] = {
1674        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1675        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1676      };
1677      const unsigned *GPR64ArgRegs;
1678      unsigned NumXMMRegs = 0;
1679
1680      if (IsWin64) {
1681        // The XMM registers which might contain var arg parameters are shadowed
1682        // in their paired GPR.  So we only need to save the GPR to their home
1683        // slots.
1684        TotalNumIntRegs = 4;
1685        GPR64ArgRegs = GPR64ArgRegsWin64;
1686      } else {
1687        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1688        GPR64ArgRegs = GPR64ArgRegs64Bit;
1689
1690        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1691      }
1692      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1693                                                       TotalNumIntRegs);
1694
1695      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1696      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1697             "SSE register cannot be used when SSE is disabled!");
1698      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1699             "SSE register cannot be used when SSE is disabled!");
1700      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1701        // Kernel mode asks for SSE to be disabled, so don't push them
1702        // on the stack.
1703        TotalNumXMMRegs = 0;
1704
1705      if (IsWin64) {
1706        const TargetFrameInfo &TFI = *getTargetMachine().getFrameInfo();
1707        // Get to the caller-allocated home save location.  Add 8 to account
1708        // for the return address.
1709        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1710        FuncInfo->setRegSaveFrameIndex(
1711          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1712        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1713      } else {
1714        // For X86-64, if there are vararg parameters that are passed via
1715        // registers, then we must store them to their spots on the stack so they
1716        // may be loaded by deferencing the result of va_next.
1717        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1718        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1719        FuncInfo->setRegSaveFrameIndex(
1720          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1721                               false));
1722      }
1723
1724      // Store the integer parameter registers.
1725      SmallVector<SDValue, 8> MemOps;
1726      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1727                                        getPointerTy());
1728      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1729      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1730        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1731                                  DAG.getIntPtrConstant(Offset));
1732        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1733                                     X86::GR64RegisterClass);
1734        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1735        SDValue Store =
1736          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1737                       MachinePointerInfo::getFixedStack(
1738                         FuncInfo->getRegSaveFrameIndex(), Offset),
1739                       false, false, 0);
1740        MemOps.push_back(Store);
1741        Offset += 8;
1742      }
1743
1744      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1745        // Now store the XMM (fp + vector) parameter registers.
1746        SmallVector<SDValue, 11> SaveXMMOps;
1747        SaveXMMOps.push_back(Chain);
1748
1749        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1750        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1751        SaveXMMOps.push_back(ALVal);
1752
1753        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1754                               FuncInfo->getRegSaveFrameIndex()));
1755        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1756                               FuncInfo->getVarArgsFPOffset()));
1757
1758        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1759          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1760                                       X86::VR128RegisterClass);
1761          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1762          SaveXMMOps.push_back(Val);
1763        }
1764        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1765                                     MVT::Other,
1766                                     &SaveXMMOps[0], SaveXMMOps.size()));
1767      }
1768
1769      if (!MemOps.empty())
1770        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1771                            &MemOps[0], MemOps.size());
1772    }
1773  }
1774
1775  // Some CCs need callee pop.
1776  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1777    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1778  } else {
1779    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1780    // If this is an sret function, the return should pop the hidden pointer.
1781    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1782      FuncInfo->setBytesToPopOnReturn(4);
1783  }
1784
1785  if (!Is64Bit) {
1786    // RegSaveFrameIndex is X86-64 only.
1787    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1788    if (CallConv == CallingConv::X86_FastCall ||
1789        CallConv == CallingConv::X86_ThisCall)
1790      // fastcc functions can't have varargs.
1791      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1792  }
1793
1794  return Chain;
1795}
1796
1797SDValue
1798X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1799                                    SDValue StackPtr, SDValue Arg,
1800                                    DebugLoc dl, SelectionDAG &DAG,
1801                                    const CCValAssign &VA,
1802                                    ISD::ArgFlagsTy Flags) const {
1803  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1804  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1805  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1806  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1807  if (Flags.isByVal())
1808    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1809
1810  return DAG.getStore(Chain, dl, Arg, PtrOff,
1811                      MachinePointerInfo::getStack(LocMemOffset),
1812                      false, false, 0);
1813}
1814
1815/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1816/// optimization is performed and it is required.
1817SDValue
1818X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1819                                           SDValue &OutRetAddr, SDValue Chain,
1820                                           bool IsTailCall, bool Is64Bit,
1821                                           int FPDiff, DebugLoc dl) const {
1822  // Adjust the Return address stack slot.
1823  EVT VT = getPointerTy();
1824  OutRetAddr = getReturnAddressFrameIndex(DAG);
1825
1826  // Load the "old" Return address.
1827  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1828                           false, false, 0);
1829  return SDValue(OutRetAddr.getNode(), 1);
1830}
1831
1832/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1833/// optimization is performed and it is required (FPDiff!=0).
1834static SDValue
1835EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1836                         SDValue Chain, SDValue RetAddrFrIdx,
1837                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1838  // Store the return address to the appropriate stack slot.
1839  if (!FPDiff) return Chain;
1840  // Calculate the new stack slot for the return address.
1841  int SlotSize = Is64Bit ? 8 : 4;
1842  int NewReturnAddrFI =
1843    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1844  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1845  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1846  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1847                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1848                       false, false, 0);
1849  return Chain;
1850}
1851
1852SDValue
1853X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1854                             CallingConv::ID CallConv, bool isVarArg,
1855                             bool &isTailCall,
1856                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1857                             const SmallVectorImpl<SDValue> &OutVals,
1858                             const SmallVectorImpl<ISD::InputArg> &Ins,
1859                             DebugLoc dl, SelectionDAG &DAG,
1860                             SmallVectorImpl<SDValue> &InVals) const {
1861  MachineFunction &MF = DAG.getMachineFunction();
1862  bool Is64Bit        = Subtarget->is64Bit();
1863  bool IsStructRet    = CallIsStructReturn(Outs);
1864  bool IsSibcall      = false;
1865
1866  if (isTailCall) {
1867    // Check if it's really possible to do a tail call.
1868    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1869                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1870                                                   Outs, OutVals, Ins, DAG);
1871
1872    // Sibcalls are automatically detected tailcalls which do not require
1873    // ABI changes.
1874    if (!GuaranteedTailCallOpt && isTailCall)
1875      IsSibcall = true;
1876
1877    if (isTailCall)
1878      ++NumTailCalls;
1879  }
1880
1881  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1882         "Var args not supported with calling convention fastcc or ghc");
1883
1884  // Analyze operands of the call, assigning locations to each operand.
1885  SmallVector<CCValAssign, 16> ArgLocs;
1886  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1887                 ArgLocs, *DAG.getContext());
1888  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1889
1890  // Get a count of how many bytes are to be pushed on the stack.
1891  unsigned NumBytes = CCInfo.getNextStackOffset();
1892  if (IsSibcall)
1893    // This is a sibcall. The memory operands are available in caller's
1894    // own caller's stack.
1895    NumBytes = 0;
1896  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1897    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1898
1899  int FPDiff = 0;
1900  if (isTailCall && !IsSibcall) {
1901    // Lower arguments at fp - stackoffset + fpdiff.
1902    unsigned NumBytesCallerPushed =
1903      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1904    FPDiff = NumBytesCallerPushed - NumBytes;
1905
1906    // Set the delta of movement of the returnaddr stackslot.
1907    // But only set if delta is greater than previous delta.
1908    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1909      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1910  }
1911
1912  if (!IsSibcall)
1913    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1914
1915  SDValue RetAddrFrIdx;
1916  // Load return adress for tail calls.
1917  if (isTailCall && FPDiff)
1918    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1919                                    Is64Bit, FPDiff, dl);
1920
1921  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1922  SmallVector<SDValue, 8> MemOpChains;
1923  SDValue StackPtr;
1924
1925  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1926  // of tail call optimization arguments are handle later.
1927  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1928    CCValAssign &VA = ArgLocs[i];
1929    EVT RegVT = VA.getLocVT();
1930    SDValue Arg = OutVals[i];
1931    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1932    bool isByVal = Flags.isByVal();
1933
1934    // Promote the value if needed.
1935    switch (VA.getLocInfo()) {
1936    default: llvm_unreachable("Unknown loc info!");
1937    case CCValAssign::Full: break;
1938    case CCValAssign::SExt:
1939      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1940      break;
1941    case CCValAssign::ZExt:
1942      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1943      break;
1944    case CCValAssign::AExt:
1945      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1946        // Special case: passing MMX values in XMM registers.
1947        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
1948        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1949        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1950      } else
1951        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1952      break;
1953    case CCValAssign::BCvt:
1954      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
1955      break;
1956    case CCValAssign::Indirect: {
1957      // Store the argument.
1958      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1959      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1960      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1961                           MachinePointerInfo::getFixedStack(FI),
1962                           false, false, 0);
1963      Arg = SpillSlot;
1964      break;
1965    }
1966    }
1967
1968    if (VA.isRegLoc()) {
1969      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1970      if (isVarArg && Subtarget->isTargetWin64()) {
1971        // Win64 ABI requires argument XMM reg to be copied to the corresponding
1972        // shadow reg if callee is a varargs function.
1973        unsigned ShadowReg = 0;
1974        switch (VA.getLocReg()) {
1975        case X86::XMM0: ShadowReg = X86::RCX; break;
1976        case X86::XMM1: ShadowReg = X86::RDX; break;
1977        case X86::XMM2: ShadowReg = X86::R8; break;
1978        case X86::XMM3: ShadowReg = X86::R9; break;
1979        }
1980        if (ShadowReg)
1981          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
1982      }
1983    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1984      assert(VA.isMemLoc());
1985      if (StackPtr.getNode() == 0)
1986        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1987      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1988                                             dl, DAG, VA, Flags));
1989    }
1990  }
1991
1992  if (!MemOpChains.empty())
1993    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1994                        &MemOpChains[0], MemOpChains.size());
1995
1996  // Build a sequence of copy-to-reg nodes chained together with token chain
1997  // and flag operands which copy the outgoing args into registers.
1998  SDValue InFlag;
1999  // Tail call byval lowering might overwrite argument registers so in case of
2000  // tail call optimization the copies to registers are lowered later.
2001  if (!isTailCall)
2002    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2003      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2004                               RegsToPass[i].second, InFlag);
2005      InFlag = Chain.getValue(1);
2006    }
2007
2008  if (Subtarget->isPICStyleGOT()) {
2009    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2010    // GOT pointer.
2011    if (!isTailCall) {
2012      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2013                               DAG.getNode(X86ISD::GlobalBaseReg,
2014                                           DebugLoc(), getPointerTy()),
2015                               InFlag);
2016      InFlag = Chain.getValue(1);
2017    } else {
2018      // If we are tail calling and generating PIC/GOT style code load the
2019      // address of the callee into ECX. The value in ecx is used as target of
2020      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2021      // for tail calls on PIC/GOT architectures. Normally we would just put the
2022      // address of GOT into ebx and then call target@PLT. But for tail calls
2023      // ebx would be restored (since ebx is callee saved) before jumping to the
2024      // target@PLT.
2025
2026      // Note: The actual moving to ECX is done further down.
2027      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2028      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2029          !G->getGlobal()->hasProtectedVisibility())
2030        Callee = LowerGlobalAddress(Callee, DAG);
2031      else if (isa<ExternalSymbolSDNode>(Callee))
2032        Callee = LowerExternalSymbol(Callee, DAG);
2033    }
2034  }
2035
2036  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2037    // From AMD64 ABI document:
2038    // For calls that may call functions that use varargs or stdargs
2039    // (prototype-less calls or calls to functions containing ellipsis (...) in
2040    // the declaration) %al is used as hidden argument to specify the number
2041    // of SSE registers used. The contents of %al do not need to match exactly
2042    // the number of registers, but must be an ubound on the number of SSE
2043    // registers used and is in the range 0 - 8 inclusive.
2044
2045    // Count the number of XMM registers allocated.
2046    static const unsigned XMMArgRegs[] = {
2047      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2048      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2049    };
2050    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2051    assert((Subtarget->hasXMM() || !NumXMMRegs)
2052           && "SSE registers cannot be used when SSE is disabled");
2053
2054    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2055                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2056    InFlag = Chain.getValue(1);
2057  }
2058
2059
2060  // For tail calls lower the arguments to the 'real' stack slot.
2061  if (isTailCall) {
2062    // Force all the incoming stack arguments to be loaded from the stack
2063    // before any new outgoing arguments are stored to the stack, because the
2064    // outgoing stack slots may alias the incoming argument stack slots, and
2065    // the alias isn't otherwise explicit. This is slightly more conservative
2066    // than necessary, because it means that each store effectively depends
2067    // on every argument instead of just those arguments it would clobber.
2068    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2069
2070    SmallVector<SDValue, 8> MemOpChains2;
2071    SDValue FIN;
2072    int FI = 0;
2073    // Do not flag preceeding copytoreg stuff together with the following stuff.
2074    InFlag = SDValue();
2075    if (GuaranteedTailCallOpt) {
2076      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2077        CCValAssign &VA = ArgLocs[i];
2078        if (VA.isRegLoc())
2079          continue;
2080        assert(VA.isMemLoc());
2081        SDValue Arg = OutVals[i];
2082        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2083        // Create frame index.
2084        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2085        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2086        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2087        FIN = DAG.getFrameIndex(FI, getPointerTy());
2088
2089        if (Flags.isByVal()) {
2090          // Copy relative to framepointer.
2091          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2092          if (StackPtr.getNode() == 0)
2093            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2094                                          getPointerTy());
2095          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2096
2097          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2098                                                           ArgChain,
2099                                                           Flags, DAG, dl));
2100        } else {
2101          // Store relative to framepointer.
2102          MemOpChains2.push_back(
2103            DAG.getStore(ArgChain, dl, Arg, FIN,
2104                         MachinePointerInfo::getFixedStack(FI),
2105                         false, false, 0));
2106        }
2107      }
2108    }
2109
2110    if (!MemOpChains2.empty())
2111      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2112                          &MemOpChains2[0], MemOpChains2.size());
2113
2114    // Copy arguments to their registers.
2115    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2116      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2117                               RegsToPass[i].second, InFlag);
2118      InFlag = Chain.getValue(1);
2119    }
2120    InFlag =SDValue();
2121
2122    // Store the return address to the appropriate stack slot.
2123    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2124                                     FPDiff, dl);
2125  }
2126
2127  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2128    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2129    // In the 64-bit large code model, we have to make all calls
2130    // through a register, since the call instruction's 32-bit
2131    // pc-relative offset may not be large enough to hold the whole
2132    // address.
2133  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2134    // If the callee is a GlobalAddress node (quite common, every direct call
2135    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2136    // it.
2137
2138    // We should use extra load for direct calls to dllimported functions in
2139    // non-JIT mode.
2140    const GlobalValue *GV = G->getGlobal();
2141    if (!GV->hasDLLImportLinkage()) {
2142      unsigned char OpFlags = 0;
2143
2144      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2145      // external symbols most go through the PLT in PIC mode.  If the symbol
2146      // has hidden or protected visibility, or if it is static or local, then
2147      // we don't need to use the PLT - we can directly call it.
2148      if (Subtarget->isTargetELF() &&
2149          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2150          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2151        OpFlags = X86II::MO_PLT;
2152      } else if (Subtarget->isPICStyleStubAny() &&
2153                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2154                 Subtarget->getDarwinVers() < 9) {
2155        // PC-relative references to external symbols should go through $stub,
2156        // unless we're building with the leopard linker or later, which
2157        // automatically synthesizes these stubs.
2158        OpFlags = X86II::MO_DARWIN_STUB;
2159      }
2160
2161      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2162                                          G->getOffset(), OpFlags);
2163    }
2164  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2165    unsigned char OpFlags = 0;
2166
2167    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2168    // external symbols should go through the PLT.
2169    if (Subtarget->isTargetELF() &&
2170        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2171      OpFlags = X86II::MO_PLT;
2172    } else if (Subtarget->isPICStyleStubAny() &&
2173               Subtarget->getDarwinVers() < 9) {
2174      // PC-relative references to external symbols should go through $stub,
2175      // unless we're building with the leopard linker or later, which
2176      // automatically synthesizes these stubs.
2177      OpFlags = X86II::MO_DARWIN_STUB;
2178    }
2179
2180    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2181                                         OpFlags);
2182  }
2183
2184  // Returns a chain & a flag for retval copy to use.
2185  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2186  SmallVector<SDValue, 8> Ops;
2187
2188  if (!IsSibcall && isTailCall) {
2189    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2190                           DAG.getIntPtrConstant(0, true), InFlag);
2191    InFlag = Chain.getValue(1);
2192  }
2193
2194  Ops.push_back(Chain);
2195  Ops.push_back(Callee);
2196
2197  if (isTailCall)
2198    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2199
2200  // Add argument registers to the end of the list so that they are known live
2201  // into the call.
2202  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2203    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2204                                  RegsToPass[i].second.getValueType()));
2205
2206  // Add an implicit use GOT pointer in EBX.
2207  if (!isTailCall && Subtarget->isPICStyleGOT())
2208    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2209
2210  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2211  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2212    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2213
2214  if (InFlag.getNode())
2215    Ops.push_back(InFlag);
2216
2217  if (isTailCall) {
2218    // We used to do:
2219    //// If this is the first return lowered for this function, add the regs
2220    //// to the liveout set for the function.
2221    // This isn't right, although it's probably harmless on x86; liveouts
2222    // should be computed from returns not tail calls.  Consider a void
2223    // function making a tail call to a function returning int.
2224    return DAG.getNode(X86ISD::TC_RETURN, dl,
2225                       NodeTys, &Ops[0], Ops.size());
2226  }
2227
2228  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2229  InFlag = Chain.getValue(1);
2230
2231  // Create the CALLSEQ_END node.
2232  unsigned NumBytesForCalleeToPush;
2233  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2234    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2235  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2236    // If this is a call to a struct-return function, the callee
2237    // pops the hidden struct pointer, so we have to push it back.
2238    // This is common for Darwin/X86, Linux & Mingw32 targets.
2239    NumBytesForCalleeToPush = 4;
2240  else
2241    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2242
2243  // Returns a flag for retval copy to use.
2244  if (!IsSibcall) {
2245    Chain = DAG.getCALLSEQ_END(Chain,
2246                               DAG.getIntPtrConstant(NumBytes, true),
2247                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2248                                                     true),
2249                               InFlag);
2250    InFlag = Chain.getValue(1);
2251  }
2252
2253  // Handle result values, copying them out of physregs into vregs that we
2254  // return.
2255  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2256                         Ins, dl, DAG, InVals);
2257}
2258
2259
2260//===----------------------------------------------------------------------===//
2261//                Fast Calling Convention (tail call) implementation
2262//===----------------------------------------------------------------------===//
2263
2264//  Like std call, callee cleans arguments, convention except that ECX is
2265//  reserved for storing the tail called function address. Only 2 registers are
2266//  free for argument passing (inreg). Tail call optimization is performed
2267//  provided:
2268//                * tailcallopt is enabled
2269//                * caller/callee are fastcc
2270//  On X86_64 architecture with GOT-style position independent code only local
2271//  (within module) calls are supported at the moment.
2272//  To keep the stack aligned according to platform abi the function
2273//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2274//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2275//  If a tail called function callee has more arguments than the caller the
2276//  caller needs to make sure that there is room to move the RETADDR to. This is
2277//  achieved by reserving an area the size of the argument delta right after the
2278//  original REtADDR, but before the saved framepointer or the spilled registers
2279//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2280//  stack layout:
2281//    arg1
2282//    arg2
2283//    RETADDR
2284//    [ new RETADDR
2285//      move area ]
2286//    (possible EBP)
2287//    ESI
2288//    EDI
2289//    local1 ..
2290
2291/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2292/// for a 16 byte align requirement.
2293unsigned
2294X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2295                                               SelectionDAG& DAG) const {
2296  MachineFunction &MF = DAG.getMachineFunction();
2297  const TargetMachine &TM = MF.getTarget();
2298  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2299  unsigned StackAlignment = TFI.getStackAlignment();
2300  uint64_t AlignMask = StackAlignment - 1;
2301  int64_t Offset = StackSize;
2302  uint64_t SlotSize = TD->getPointerSize();
2303  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2304    // Number smaller than 12 so just add the difference.
2305    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2306  } else {
2307    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2308    Offset = ((~AlignMask) & Offset) + StackAlignment +
2309      (StackAlignment-SlotSize);
2310  }
2311  return Offset;
2312}
2313
2314/// MatchingStackOffset - Return true if the given stack call argument is
2315/// already available in the same position (relatively) of the caller's
2316/// incoming argument stack.
2317static
2318bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2319                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2320                         const X86InstrInfo *TII) {
2321  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2322  int FI = INT_MAX;
2323  if (Arg.getOpcode() == ISD::CopyFromReg) {
2324    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2325    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2326      return false;
2327    MachineInstr *Def = MRI->getVRegDef(VR);
2328    if (!Def)
2329      return false;
2330    if (!Flags.isByVal()) {
2331      if (!TII->isLoadFromStackSlot(Def, FI))
2332        return false;
2333    } else {
2334      unsigned Opcode = Def->getOpcode();
2335      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2336          Def->getOperand(1).isFI()) {
2337        FI = Def->getOperand(1).getIndex();
2338        Bytes = Flags.getByValSize();
2339      } else
2340        return false;
2341    }
2342  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2343    if (Flags.isByVal())
2344      // ByVal argument is passed in as a pointer but it's now being
2345      // dereferenced. e.g.
2346      // define @foo(%struct.X* %A) {
2347      //   tail call @bar(%struct.X* byval %A)
2348      // }
2349      return false;
2350    SDValue Ptr = Ld->getBasePtr();
2351    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2352    if (!FINode)
2353      return false;
2354    FI = FINode->getIndex();
2355  } else
2356    return false;
2357
2358  assert(FI != INT_MAX);
2359  if (!MFI->isFixedObjectIndex(FI))
2360    return false;
2361  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2362}
2363
2364/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2365/// for tail call optimization. Targets which want to do tail call
2366/// optimization should implement this function.
2367bool
2368X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2369                                                     CallingConv::ID CalleeCC,
2370                                                     bool isVarArg,
2371                                                     bool isCalleeStructRet,
2372                                                     bool isCallerStructRet,
2373                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2374                                    const SmallVectorImpl<SDValue> &OutVals,
2375                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2376                                                     SelectionDAG& DAG) const {
2377  if (!IsTailCallConvention(CalleeCC) &&
2378      CalleeCC != CallingConv::C)
2379    return false;
2380
2381  // If -tailcallopt is specified, make fastcc functions tail-callable.
2382  const MachineFunction &MF = DAG.getMachineFunction();
2383  const Function *CallerF = DAG.getMachineFunction().getFunction();
2384  CallingConv::ID CallerCC = CallerF->getCallingConv();
2385  bool CCMatch = CallerCC == CalleeCC;
2386
2387  if (GuaranteedTailCallOpt) {
2388    if (IsTailCallConvention(CalleeCC) && CCMatch)
2389      return true;
2390    return false;
2391  }
2392
2393  // Look for obvious safe cases to perform tail call optimization that do not
2394  // require ABI changes. This is what gcc calls sibcall.
2395
2396  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2397  // emit a special epilogue.
2398  if (RegInfo->needsStackRealignment(MF))
2399    return false;
2400
2401  // Do not sibcall optimize vararg calls unless the call site is not passing
2402  // any arguments.
2403  if (isVarArg && !Outs.empty())
2404    return false;
2405
2406  // Also avoid sibcall optimization if either caller or callee uses struct
2407  // return semantics.
2408  if (isCalleeStructRet || isCallerStructRet)
2409    return false;
2410
2411  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2412  // Therefore if it's not used by the call it is not safe to optimize this into
2413  // a sibcall.
2414  bool Unused = false;
2415  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2416    if (!Ins[i].Used) {
2417      Unused = true;
2418      break;
2419    }
2420  }
2421  if (Unused) {
2422    SmallVector<CCValAssign, 16> RVLocs;
2423    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2424                   RVLocs, *DAG.getContext());
2425    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2426    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2427      CCValAssign &VA = RVLocs[i];
2428      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2429        return false;
2430    }
2431  }
2432
2433  // If the calling conventions do not match, then we'd better make sure the
2434  // results are returned in the same way as what the caller expects.
2435  if (!CCMatch) {
2436    SmallVector<CCValAssign, 16> RVLocs1;
2437    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2438                    RVLocs1, *DAG.getContext());
2439    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2440
2441    SmallVector<CCValAssign, 16> RVLocs2;
2442    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2443                    RVLocs2, *DAG.getContext());
2444    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2445
2446    if (RVLocs1.size() != RVLocs2.size())
2447      return false;
2448    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2449      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2450        return false;
2451      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2452        return false;
2453      if (RVLocs1[i].isRegLoc()) {
2454        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2455          return false;
2456      } else {
2457        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2458          return false;
2459      }
2460    }
2461  }
2462
2463  // If the callee takes no arguments then go on to check the results of the
2464  // call.
2465  if (!Outs.empty()) {
2466    // Check if stack adjustment is needed. For now, do not do this if any
2467    // argument is passed on the stack.
2468    SmallVector<CCValAssign, 16> ArgLocs;
2469    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2470                   ArgLocs, *DAG.getContext());
2471    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2472    if (CCInfo.getNextStackOffset()) {
2473      MachineFunction &MF = DAG.getMachineFunction();
2474      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2475        return false;
2476      if (Subtarget->isTargetWin64())
2477        // Win64 ABI has additional complications.
2478        return false;
2479
2480      // Check if the arguments are already laid out in the right way as
2481      // the caller's fixed stack objects.
2482      MachineFrameInfo *MFI = MF.getFrameInfo();
2483      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2484      const X86InstrInfo *TII =
2485        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2486      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2487        CCValAssign &VA = ArgLocs[i];
2488        SDValue Arg = OutVals[i];
2489        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2490        if (VA.getLocInfo() == CCValAssign::Indirect)
2491          return false;
2492        if (!VA.isRegLoc()) {
2493          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2494                                   MFI, MRI, TII))
2495            return false;
2496        }
2497      }
2498    }
2499
2500    // If the tailcall address may be in a register, then make sure it's
2501    // possible to register allocate for it. In 32-bit, the call address can
2502    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2503    // callee-saved registers are restored. These happen to be the same
2504    // registers used to pass 'inreg' arguments so watch out for those.
2505    if (!Subtarget->is64Bit() &&
2506        !isa<GlobalAddressSDNode>(Callee) &&
2507        !isa<ExternalSymbolSDNode>(Callee)) {
2508      unsigned NumInRegs = 0;
2509      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2510        CCValAssign &VA = ArgLocs[i];
2511        if (!VA.isRegLoc())
2512          continue;
2513        unsigned Reg = VA.getLocReg();
2514        switch (Reg) {
2515        default: break;
2516        case X86::EAX: case X86::EDX: case X86::ECX:
2517          if (++NumInRegs == 3)
2518            return false;
2519          break;
2520        }
2521      }
2522    }
2523  }
2524
2525  // An stdcall caller is expected to clean up its arguments; the callee
2526  // isn't going to do that.
2527  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2528    return false;
2529
2530  return true;
2531}
2532
2533FastISel *
2534X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2535  return X86::createFastISel(funcInfo);
2536}
2537
2538
2539//===----------------------------------------------------------------------===//
2540//                           Other Lowering Hooks
2541//===----------------------------------------------------------------------===//
2542
2543static bool MayFoldLoad(SDValue Op) {
2544  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2545}
2546
2547static bool MayFoldIntoStore(SDValue Op) {
2548  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2549}
2550
2551static bool isTargetShuffle(unsigned Opcode) {
2552  switch(Opcode) {
2553  default: return false;
2554  case X86ISD::PSHUFD:
2555  case X86ISD::PSHUFHW:
2556  case X86ISD::PSHUFLW:
2557  case X86ISD::SHUFPD:
2558  case X86ISD::PALIGN:
2559  case X86ISD::SHUFPS:
2560  case X86ISD::MOVLHPS:
2561  case X86ISD::MOVLHPD:
2562  case X86ISD::MOVHLPS:
2563  case X86ISD::MOVLPS:
2564  case X86ISD::MOVLPD:
2565  case X86ISD::MOVSHDUP:
2566  case X86ISD::MOVSLDUP:
2567  case X86ISD::MOVDDUP:
2568  case X86ISD::MOVSS:
2569  case X86ISD::MOVSD:
2570  case X86ISD::UNPCKLPS:
2571  case X86ISD::UNPCKLPD:
2572  case X86ISD::PUNPCKLWD:
2573  case X86ISD::PUNPCKLBW:
2574  case X86ISD::PUNPCKLDQ:
2575  case X86ISD::PUNPCKLQDQ:
2576  case X86ISD::UNPCKHPS:
2577  case X86ISD::UNPCKHPD:
2578  case X86ISD::PUNPCKHWD:
2579  case X86ISD::PUNPCKHBW:
2580  case X86ISD::PUNPCKHDQ:
2581  case X86ISD::PUNPCKHQDQ:
2582    return true;
2583  }
2584  return false;
2585}
2586
2587static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2588                                               SDValue V1, SelectionDAG &DAG) {
2589  switch(Opc) {
2590  default: llvm_unreachable("Unknown x86 shuffle node");
2591  case X86ISD::MOVSHDUP:
2592  case X86ISD::MOVSLDUP:
2593  case X86ISD::MOVDDUP:
2594    return DAG.getNode(Opc, dl, VT, V1);
2595  }
2596
2597  return SDValue();
2598}
2599
2600static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2601                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2602  switch(Opc) {
2603  default: llvm_unreachable("Unknown x86 shuffle node");
2604  case X86ISD::PSHUFD:
2605  case X86ISD::PSHUFHW:
2606  case X86ISD::PSHUFLW:
2607    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2608  }
2609
2610  return SDValue();
2611}
2612
2613static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2614               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2615  switch(Opc) {
2616  default: llvm_unreachable("Unknown x86 shuffle node");
2617  case X86ISD::PALIGN:
2618  case X86ISD::SHUFPD:
2619  case X86ISD::SHUFPS:
2620    return DAG.getNode(Opc, dl, VT, V1, V2,
2621                       DAG.getConstant(TargetMask, MVT::i8));
2622  }
2623  return SDValue();
2624}
2625
2626static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2627                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2628  switch(Opc) {
2629  default: llvm_unreachable("Unknown x86 shuffle node");
2630  case X86ISD::MOVLHPS:
2631  case X86ISD::MOVLHPD:
2632  case X86ISD::MOVHLPS:
2633  case X86ISD::MOVLPS:
2634  case X86ISD::MOVLPD:
2635  case X86ISD::MOVSS:
2636  case X86ISD::MOVSD:
2637  case X86ISD::UNPCKLPS:
2638  case X86ISD::UNPCKLPD:
2639  case X86ISD::PUNPCKLWD:
2640  case X86ISD::PUNPCKLBW:
2641  case X86ISD::PUNPCKLDQ:
2642  case X86ISD::PUNPCKLQDQ:
2643  case X86ISD::UNPCKHPS:
2644  case X86ISD::UNPCKHPD:
2645  case X86ISD::PUNPCKHWD:
2646  case X86ISD::PUNPCKHBW:
2647  case X86ISD::PUNPCKHDQ:
2648  case X86ISD::PUNPCKHQDQ:
2649    return DAG.getNode(Opc, dl, VT, V1, V2);
2650  }
2651  return SDValue();
2652}
2653
2654SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2655  MachineFunction &MF = DAG.getMachineFunction();
2656  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2657  int ReturnAddrIndex = FuncInfo->getRAIndex();
2658
2659  if (ReturnAddrIndex == 0) {
2660    // Set up a frame object for the return address.
2661    uint64_t SlotSize = TD->getPointerSize();
2662    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2663                                                           false);
2664    FuncInfo->setRAIndex(ReturnAddrIndex);
2665  }
2666
2667  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2668}
2669
2670
2671bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2672                                       bool hasSymbolicDisplacement) {
2673  // Offset should fit into 32 bit immediate field.
2674  if (!isInt<32>(Offset))
2675    return false;
2676
2677  // If we don't have a symbolic displacement - we don't have any extra
2678  // restrictions.
2679  if (!hasSymbolicDisplacement)
2680    return true;
2681
2682  // FIXME: Some tweaks might be needed for medium code model.
2683  if (M != CodeModel::Small && M != CodeModel::Kernel)
2684    return false;
2685
2686  // For small code model we assume that latest object is 16MB before end of 31
2687  // bits boundary. We may also accept pretty large negative constants knowing
2688  // that all objects are in the positive half of address space.
2689  if (M == CodeModel::Small && Offset < 16*1024*1024)
2690    return true;
2691
2692  // For kernel code model we know that all object resist in the negative half
2693  // of 32bits address space. We may not accept negative offsets, since they may
2694  // be just off and we may accept pretty large positive ones.
2695  if (M == CodeModel::Kernel && Offset > 0)
2696    return true;
2697
2698  return false;
2699}
2700
2701/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2702/// specific condition code, returning the condition code and the LHS/RHS of the
2703/// comparison to make.
2704static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2705                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2706  if (!isFP) {
2707    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2708      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2709        // X > -1   -> X == 0, jump !sign.
2710        RHS = DAG.getConstant(0, RHS.getValueType());
2711        return X86::COND_NS;
2712      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2713        // X < 0   -> X == 0, jump on sign.
2714        return X86::COND_S;
2715      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2716        // X < 1   -> X <= 0
2717        RHS = DAG.getConstant(0, RHS.getValueType());
2718        return X86::COND_LE;
2719      }
2720    }
2721
2722    switch (SetCCOpcode) {
2723    default: llvm_unreachable("Invalid integer condition!");
2724    case ISD::SETEQ:  return X86::COND_E;
2725    case ISD::SETGT:  return X86::COND_G;
2726    case ISD::SETGE:  return X86::COND_GE;
2727    case ISD::SETLT:  return X86::COND_L;
2728    case ISD::SETLE:  return X86::COND_LE;
2729    case ISD::SETNE:  return X86::COND_NE;
2730    case ISD::SETULT: return X86::COND_B;
2731    case ISD::SETUGT: return X86::COND_A;
2732    case ISD::SETULE: return X86::COND_BE;
2733    case ISD::SETUGE: return X86::COND_AE;
2734    }
2735  }
2736
2737  // First determine if it is required or is profitable to flip the operands.
2738
2739  // If LHS is a foldable load, but RHS is not, flip the condition.
2740  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2741      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2742    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2743    std::swap(LHS, RHS);
2744  }
2745
2746  switch (SetCCOpcode) {
2747  default: break;
2748  case ISD::SETOLT:
2749  case ISD::SETOLE:
2750  case ISD::SETUGT:
2751  case ISD::SETUGE:
2752    std::swap(LHS, RHS);
2753    break;
2754  }
2755
2756  // On a floating point condition, the flags are set as follows:
2757  // ZF  PF  CF   op
2758  //  0 | 0 | 0 | X > Y
2759  //  0 | 0 | 1 | X < Y
2760  //  1 | 0 | 0 | X == Y
2761  //  1 | 1 | 1 | unordered
2762  switch (SetCCOpcode) {
2763  default: llvm_unreachable("Condcode should be pre-legalized away");
2764  case ISD::SETUEQ:
2765  case ISD::SETEQ:   return X86::COND_E;
2766  case ISD::SETOLT:              // flipped
2767  case ISD::SETOGT:
2768  case ISD::SETGT:   return X86::COND_A;
2769  case ISD::SETOLE:              // flipped
2770  case ISD::SETOGE:
2771  case ISD::SETGE:   return X86::COND_AE;
2772  case ISD::SETUGT:              // flipped
2773  case ISD::SETULT:
2774  case ISD::SETLT:   return X86::COND_B;
2775  case ISD::SETUGE:              // flipped
2776  case ISD::SETULE:
2777  case ISD::SETLE:   return X86::COND_BE;
2778  case ISD::SETONE:
2779  case ISD::SETNE:   return X86::COND_NE;
2780  case ISD::SETUO:   return X86::COND_P;
2781  case ISD::SETO:    return X86::COND_NP;
2782  case ISD::SETOEQ:
2783  case ISD::SETUNE:  return X86::COND_INVALID;
2784  }
2785}
2786
2787/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2788/// code. Current x86 isa includes the following FP cmov instructions:
2789/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2790static bool hasFPCMov(unsigned X86CC) {
2791  switch (X86CC) {
2792  default:
2793    return false;
2794  case X86::COND_B:
2795  case X86::COND_BE:
2796  case X86::COND_E:
2797  case X86::COND_P:
2798  case X86::COND_A:
2799  case X86::COND_AE:
2800  case X86::COND_NE:
2801  case X86::COND_NP:
2802    return true;
2803  }
2804}
2805
2806/// isFPImmLegal - Returns true if the target can instruction select the
2807/// specified FP immediate natively. If false, the legalizer will
2808/// materialize the FP immediate as a load from a constant pool.
2809bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2810  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2811    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2812      return true;
2813  }
2814  return false;
2815}
2816
2817/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2818/// the specified range (L, H].
2819static bool isUndefOrInRange(int Val, int Low, int Hi) {
2820  return (Val < 0) || (Val >= Low && Val < Hi);
2821}
2822
2823/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2824/// specified value.
2825static bool isUndefOrEqual(int Val, int CmpVal) {
2826  if (Val < 0 || Val == CmpVal)
2827    return true;
2828  return false;
2829}
2830
2831/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2832/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2833/// the second operand.
2834static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2835  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2836    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2837  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2838    return (Mask[0] < 2 && Mask[1] < 2);
2839  return false;
2840}
2841
2842bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2843  SmallVector<int, 8> M;
2844  N->getMask(M);
2845  return ::isPSHUFDMask(M, N->getValueType(0));
2846}
2847
2848/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2849/// is suitable for input to PSHUFHW.
2850static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2851  if (VT != MVT::v8i16)
2852    return false;
2853
2854  // Lower quadword copied in order or undef.
2855  for (int i = 0; i != 4; ++i)
2856    if (Mask[i] >= 0 && Mask[i] != i)
2857      return false;
2858
2859  // Upper quadword shuffled.
2860  for (int i = 4; i != 8; ++i)
2861    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2862      return false;
2863
2864  return true;
2865}
2866
2867bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2868  SmallVector<int, 8> M;
2869  N->getMask(M);
2870  return ::isPSHUFHWMask(M, N->getValueType(0));
2871}
2872
2873/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2874/// is suitable for input to PSHUFLW.
2875static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2876  if (VT != MVT::v8i16)
2877    return false;
2878
2879  // Upper quadword copied in order.
2880  for (int i = 4; i != 8; ++i)
2881    if (Mask[i] >= 0 && Mask[i] != i)
2882      return false;
2883
2884  // Lower quadword shuffled.
2885  for (int i = 0; i != 4; ++i)
2886    if (Mask[i] >= 4)
2887      return false;
2888
2889  return true;
2890}
2891
2892bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2893  SmallVector<int, 8> M;
2894  N->getMask(M);
2895  return ::isPSHUFLWMask(M, N->getValueType(0));
2896}
2897
2898/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2899/// is suitable for input to PALIGNR.
2900static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2901                          bool hasSSSE3) {
2902  int i, e = VT.getVectorNumElements();
2903
2904  // Do not handle v2i64 / v2f64 shuffles with palignr.
2905  if (e < 4 || !hasSSSE3)
2906    return false;
2907
2908  for (i = 0; i != e; ++i)
2909    if (Mask[i] >= 0)
2910      break;
2911
2912  // All undef, not a palignr.
2913  if (i == e)
2914    return false;
2915
2916  // Determine if it's ok to perform a palignr with only the LHS, since we
2917  // don't have access to the actual shuffle elements to see if RHS is undef.
2918  bool Unary = Mask[i] < (int)e;
2919  bool NeedsUnary = false;
2920
2921  int s = Mask[i] - i;
2922
2923  // Check the rest of the elements to see if they are consecutive.
2924  for (++i; i != e; ++i) {
2925    int m = Mask[i];
2926    if (m < 0)
2927      continue;
2928
2929    Unary = Unary && (m < (int)e);
2930    NeedsUnary = NeedsUnary || (m < s);
2931
2932    if (NeedsUnary && !Unary)
2933      return false;
2934    if (Unary && m != ((s+i) & (e-1)))
2935      return false;
2936    if (!Unary && m != (s+i))
2937      return false;
2938  }
2939  return true;
2940}
2941
2942bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2943  SmallVector<int, 8> M;
2944  N->getMask(M);
2945  return ::isPALIGNRMask(M, N->getValueType(0), true);
2946}
2947
2948/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2949/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2950static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2951  int NumElems = VT.getVectorNumElements();
2952  if (NumElems != 2 && NumElems != 4)
2953    return false;
2954
2955  int Half = NumElems / 2;
2956  for (int i = 0; i < Half; ++i)
2957    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2958      return false;
2959  for (int i = Half; i < NumElems; ++i)
2960    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2961      return false;
2962
2963  return true;
2964}
2965
2966bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2967  SmallVector<int, 8> M;
2968  N->getMask(M);
2969  return ::isSHUFPMask(M, N->getValueType(0));
2970}
2971
2972/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2973/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2974/// half elements to come from vector 1 (which would equal the dest.) and
2975/// the upper half to come from vector 2.
2976static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2977  int NumElems = VT.getVectorNumElements();
2978
2979  if (NumElems != 2 && NumElems != 4)
2980    return false;
2981
2982  int Half = NumElems / 2;
2983  for (int i = 0; i < Half; ++i)
2984    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2985      return false;
2986  for (int i = Half; i < NumElems; ++i)
2987    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2988      return false;
2989  return true;
2990}
2991
2992static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2993  SmallVector<int, 8> M;
2994  N->getMask(M);
2995  return isCommutedSHUFPMask(M, N->getValueType(0));
2996}
2997
2998/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2999/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3000bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3001  if (N->getValueType(0).getVectorNumElements() != 4)
3002    return false;
3003
3004  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3005  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3006         isUndefOrEqual(N->getMaskElt(1), 7) &&
3007         isUndefOrEqual(N->getMaskElt(2), 2) &&
3008         isUndefOrEqual(N->getMaskElt(3), 3);
3009}
3010
3011/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3012/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3013/// <2, 3, 2, 3>
3014bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3015  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3016
3017  if (NumElems != 4)
3018    return false;
3019
3020  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3021  isUndefOrEqual(N->getMaskElt(1), 3) &&
3022  isUndefOrEqual(N->getMaskElt(2), 2) &&
3023  isUndefOrEqual(N->getMaskElt(3), 3);
3024}
3025
3026/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3027/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3028bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3029  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3030
3031  if (NumElems != 2 && NumElems != 4)
3032    return false;
3033
3034  for (unsigned i = 0; i < NumElems/2; ++i)
3035    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3036      return false;
3037
3038  for (unsigned i = NumElems/2; i < NumElems; ++i)
3039    if (!isUndefOrEqual(N->getMaskElt(i), i))
3040      return false;
3041
3042  return true;
3043}
3044
3045/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3046/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3047bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3048  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3049
3050  if (NumElems != 2 && NumElems != 4)
3051    return false;
3052
3053  for (unsigned i = 0; i < NumElems/2; ++i)
3054    if (!isUndefOrEqual(N->getMaskElt(i), i))
3055      return false;
3056
3057  for (unsigned i = 0; i < NumElems/2; ++i)
3058    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3059      return false;
3060
3061  return true;
3062}
3063
3064/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3065/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3066static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3067                         bool V2IsSplat = false) {
3068  int NumElts = VT.getVectorNumElements();
3069  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3070    return false;
3071
3072  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3073    int BitI  = Mask[i];
3074    int BitI1 = Mask[i+1];
3075    if (!isUndefOrEqual(BitI, j))
3076      return false;
3077    if (V2IsSplat) {
3078      if (!isUndefOrEqual(BitI1, NumElts))
3079        return false;
3080    } else {
3081      if (!isUndefOrEqual(BitI1, j + NumElts))
3082        return false;
3083    }
3084  }
3085  return true;
3086}
3087
3088bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3089  SmallVector<int, 8> M;
3090  N->getMask(M);
3091  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3092}
3093
3094/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3095/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3096static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3097                         bool V2IsSplat = false) {
3098  int NumElts = VT.getVectorNumElements();
3099  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3100    return false;
3101
3102  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3103    int BitI  = Mask[i];
3104    int BitI1 = Mask[i+1];
3105    if (!isUndefOrEqual(BitI, j + NumElts/2))
3106      return false;
3107    if (V2IsSplat) {
3108      if (isUndefOrEqual(BitI1, NumElts))
3109        return false;
3110    } else {
3111      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3112        return false;
3113    }
3114  }
3115  return true;
3116}
3117
3118bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3119  SmallVector<int, 8> M;
3120  N->getMask(M);
3121  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3122}
3123
3124/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3125/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3126/// <0, 0, 1, 1>
3127static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3128  int NumElems = VT.getVectorNumElements();
3129  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3130    return false;
3131
3132  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3133    int BitI  = Mask[i];
3134    int BitI1 = Mask[i+1];
3135    if (!isUndefOrEqual(BitI, j))
3136      return false;
3137    if (!isUndefOrEqual(BitI1, j))
3138      return false;
3139  }
3140  return true;
3141}
3142
3143bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3144  SmallVector<int, 8> M;
3145  N->getMask(M);
3146  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3147}
3148
3149/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3150/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3151/// <2, 2, 3, 3>
3152static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3153  int NumElems = VT.getVectorNumElements();
3154  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3155    return false;
3156
3157  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3158    int BitI  = Mask[i];
3159    int BitI1 = Mask[i+1];
3160    if (!isUndefOrEqual(BitI, j))
3161      return false;
3162    if (!isUndefOrEqual(BitI1, j))
3163      return false;
3164  }
3165  return true;
3166}
3167
3168bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3169  SmallVector<int, 8> M;
3170  N->getMask(M);
3171  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3172}
3173
3174/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3175/// specifies a shuffle of elements that is suitable for input to MOVSS,
3176/// MOVSD, and MOVD, i.e. setting the lowest element.
3177static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3178  if (VT.getVectorElementType().getSizeInBits() < 32)
3179    return false;
3180
3181  int NumElts = VT.getVectorNumElements();
3182
3183  if (!isUndefOrEqual(Mask[0], NumElts))
3184    return false;
3185
3186  for (int i = 1; i < NumElts; ++i)
3187    if (!isUndefOrEqual(Mask[i], i))
3188      return false;
3189
3190  return true;
3191}
3192
3193bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3194  SmallVector<int, 8> M;
3195  N->getMask(M);
3196  return ::isMOVLMask(M, N->getValueType(0));
3197}
3198
3199/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3200/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3201/// element of vector 2 and the other elements to come from vector 1 in order.
3202static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3203                               bool V2IsSplat = false, bool V2IsUndef = false) {
3204  int NumOps = VT.getVectorNumElements();
3205  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3206    return false;
3207
3208  if (!isUndefOrEqual(Mask[0], 0))
3209    return false;
3210
3211  for (int i = 1; i < NumOps; ++i)
3212    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3213          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3214          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3215      return false;
3216
3217  return true;
3218}
3219
3220static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3221                           bool V2IsUndef = false) {
3222  SmallVector<int, 8> M;
3223  N->getMask(M);
3224  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3225}
3226
3227/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3228/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3229bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3230  if (N->getValueType(0).getVectorNumElements() != 4)
3231    return false;
3232
3233  // Expect 1, 1, 3, 3
3234  for (unsigned i = 0; i < 2; ++i) {
3235    int Elt = N->getMaskElt(i);
3236    if (Elt >= 0 && Elt != 1)
3237      return false;
3238  }
3239
3240  bool HasHi = false;
3241  for (unsigned i = 2; i < 4; ++i) {
3242    int Elt = N->getMaskElt(i);
3243    if (Elt >= 0 && Elt != 3)
3244      return false;
3245    if (Elt == 3)
3246      HasHi = true;
3247  }
3248  // Don't use movshdup if it can be done with a shufps.
3249  // FIXME: verify that matching u, u, 3, 3 is what we want.
3250  return HasHi;
3251}
3252
3253/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3254/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3255bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3256  if (N->getValueType(0).getVectorNumElements() != 4)
3257    return false;
3258
3259  // Expect 0, 0, 2, 2
3260  for (unsigned i = 0; i < 2; ++i)
3261    if (N->getMaskElt(i) > 0)
3262      return false;
3263
3264  bool HasHi = false;
3265  for (unsigned i = 2; i < 4; ++i) {
3266    int Elt = N->getMaskElt(i);
3267    if (Elt >= 0 && Elt != 2)
3268      return false;
3269    if (Elt == 2)
3270      HasHi = true;
3271  }
3272  // Don't use movsldup if it can be done with a shufps.
3273  return HasHi;
3274}
3275
3276/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3277/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3278bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3279  int e = N->getValueType(0).getVectorNumElements() / 2;
3280
3281  for (int i = 0; i < e; ++i)
3282    if (!isUndefOrEqual(N->getMaskElt(i), i))
3283      return false;
3284  for (int i = 0; i < e; ++i)
3285    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3286      return false;
3287  return true;
3288}
3289
3290/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3291/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3292unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3293  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3294  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3295
3296  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3297  unsigned Mask = 0;
3298  for (int i = 0; i < NumOperands; ++i) {
3299    int Val = SVOp->getMaskElt(NumOperands-i-1);
3300    if (Val < 0) Val = 0;
3301    if (Val >= NumOperands) Val -= NumOperands;
3302    Mask |= Val;
3303    if (i != NumOperands - 1)
3304      Mask <<= Shift;
3305  }
3306  return Mask;
3307}
3308
3309/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3310/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3311unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3312  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3313  unsigned Mask = 0;
3314  // 8 nodes, but we only care about the last 4.
3315  for (unsigned i = 7; i >= 4; --i) {
3316    int Val = SVOp->getMaskElt(i);
3317    if (Val >= 0)
3318      Mask |= (Val - 4);
3319    if (i != 4)
3320      Mask <<= 2;
3321  }
3322  return Mask;
3323}
3324
3325/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3326/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3327unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3328  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3329  unsigned Mask = 0;
3330  // 8 nodes, but we only care about the first 4.
3331  for (int i = 3; i >= 0; --i) {
3332    int Val = SVOp->getMaskElt(i);
3333    if (Val >= 0)
3334      Mask |= Val;
3335    if (i != 0)
3336      Mask <<= 2;
3337  }
3338  return Mask;
3339}
3340
3341/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3342/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3343unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3344  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3345  EVT VVT = N->getValueType(0);
3346  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3347  int Val = 0;
3348
3349  unsigned i, e;
3350  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3351    Val = SVOp->getMaskElt(i);
3352    if (Val >= 0)
3353      break;
3354  }
3355  return (Val - i) * EltSize;
3356}
3357
3358/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3359/// constant +0.0.
3360bool X86::isZeroNode(SDValue Elt) {
3361  return ((isa<ConstantSDNode>(Elt) &&
3362           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3363          (isa<ConstantFPSDNode>(Elt) &&
3364           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3365}
3366
3367/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3368/// their permute mask.
3369static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3370                                    SelectionDAG &DAG) {
3371  EVT VT = SVOp->getValueType(0);
3372  unsigned NumElems = VT.getVectorNumElements();
3373  SmallVector<int, 8> MaskVec;
3374
3375  for (unsigned i = 0; i != NumElems; ++i) {
3376    int idx = SVOp->getMaskElt(i);
3377    if (idx < 0)
3378      MaskVec.push_back(idx);
3379    else if (idx < (int)NumElems)
3380      MaskVec.push_back(idx + NumElems);
3381    else
3382      MaskVec.push_back(idx - NumElems);
3383  }
3384  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3385                              SVOp->getOperand(0), &MaskVec[0]);
3386}
3387
3388/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3389/// the two vector operands have swapped position.
3390static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3391  unsigned NumElems = VT.getVectorNumElements();
3392  for (unsigned i = 0; i != NumElems; ++i) {
3393    int idx = Mask[i];
3394    if (idx < 0)
3395      continue;
3396    else if (idx < (int)NumElems)
3397      Mask[i] = idx + NumElems;
3398    else
3399      Mask[i] = idx - NumElems;
3400  }
3401}
3402
3403/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3404/// match movhlps. The lower half elements should come from upper half of
3405/// V1 (and in order), and the upper half elements should come from the upper
3406/// half of V2 (and in order).
3407static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3408  if (Op->getValueType(0).getVectorNumElements() != 4)
3409    return false;
3410  for (unsigned i = 0, e = 2; i != e; ++i)
3411    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3412      return false;
3413  for (unsigned i = 2; i != 4; ++i)
3414    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3415      return false;
3416  return true;
3417}
3418
3419/// isScalarLoadToVector - Returns true if the node is a scalar load that
3420/// is promoted to a vector. It also returns the LoadSDNode by reference if
3421/// required.
3422static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3423  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3424    return false;
3425  N = N->getOperand(0).getNode();
3426  if (!ISD::isNON_EXTLoad(N))
3427    return false;
3428  if (LD)
3429    *LD = cast<LoadSDNode>(N);
3430  return true;
3431}
3432
3433/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3434/// match movlp{s|d}. The lower half elements should come from lower half of
3435/// V1 (and in order), and the upper half elements should come from the upper
3436/// half of V2 (and in order). And since V1 will become the source of the
3437/// MOVLP, it must be either a vector load or a scalar load to vector.
3438static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3439                               ShuffleVectorSDNode *Op) {
3440  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3441    return false;
3442  // Is V2 is a vector load, don't do this transformation. We will try to use
3443  // load folding shufps op.
3444  if (ISD::isNON_EXTLoad(V2))
3445    return false;
3446
3447  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3448
3449  if (NumElems != 2 && NumElems != 4)
3450    return false;
3451  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3452    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3453      return false;
3454  for (unsigned i = NumElems/2; i != NumElems; ++i)
3455    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3456      return false;
3457  return true;
3458}
3459
3460/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3461/// all the same.
3462static bool isSplatVector(SDNode *N) {
3463  if (N->getOpcode() != ISD::BUILD_VECTOR)
3464    return false;
3465
3466  SDValue SplatValue = N->getOperand(0);
3467  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3468    if (N->getOperand(i) != SplatValue)
3469      return false;
3470  return true;
3471}
3472
3473/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3474/// to an zero vector.
3475/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3476static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3477  SDValue V1 = N->getOperand(0);
3478  SDValue V2 = N->getOperand(1);
3479  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3480  for (unsigned i = 0; i != NumElems; ++i) {
3481    int Idx = N->getMaskElt(i);
3482    if (Idx >= (int)NumElems) {
3483      unsigned Opc = V2.getOpcode();
3484      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3485        continue;
3486      if (Opc != ISD::BUILD_VECTOR ||
3487          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3488        return false;
3489    } else if (Idx >= 0) {
3490      unsigned Opc = V1.getOpcode();
3491      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3492        continue;
3493      if (Opc != ISD::BUILD_VECTOR ||
3494          !X86::isZeroNode(V1.getOperand(Idx)))
3495        return false;
3496    }
3497  }
3498  return true;
3499}
3500
3501/// getZeroVector - Returns a vector of specified type with all zero elements.
3502///
3503static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3504                             DebugLoc dl) {
3505  assert(VT.isVector() && "Expected a vector type");
3506
3507  // Always build SSE zero vectors as <4 x i32> bitcasted
3508  // to their dest type. This ensures they get CSE'd.
3509  SDValue Vec;
3510  if (VT.getSizeInBits() == 128) {  // SSE
3511    if (HasSSE2) {  // SSE2
3512      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3513      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3514    } else { // SSE1
3515      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3516      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3517    }
3518  } else if (VT.getSizeInBits() == 256) { // AVX
3519    // 256-bit logic and arithmetic instructions in AVX are
3520    // all floating-point, no support for integer ops. Default
3521    // to emitting fp zeroed vectors then.
3522    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3523    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3524    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3525  }
3526  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3527}
3528
3529/// getOnesVector - Returns a vector of specified type with all bits set.
3530///
3531static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3532  assert(VT.isVector() && "Expected a vector type");
3533
3534  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3535  // type.  This ensures they get CSE'd.
3536  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3537  SDValue Vec;
3538  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3539  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3540}
3541
3542
3543/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3544/// that point to V2 points to its first element.
3545static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3546  EVT VT = SVOp->getValueType(0);
3547  unsigned NumElems = VT.getVectorNumElements();
3548
3549  bool Changed = false;
3550  SmallVector<int, 8> MaskVec;
3551  SVOp->getMask(MaskVec);
3552
3553  for (unsigned i = 0; i != NumElems; ++i) {
3554    if (MaskVec[i] > (int)NumElems) {
3555      MaskVec[i] = NumElems;
3556      Changed = true;
3557    }
3558  }
3559  if (Changed)
3560    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3561                                SVOp->getOperand(1), &MaskVec[0]);
3562  return SDValue(SVOp, 0);
3563}
3564
3565/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3566/// operation of specified width.
3567static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3568                       SDValue V2) {
3569  unsigned NumElems = VT.getVectorNumElements();
3570  SmallVector<int, 8> Mask;
3571  Mask.push_back(NumElems);
3572  for (unsigned i = 1; i != NumElems; ++i)
3573    Mask.push_back(i);
3574  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3575}
3576
3577/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3578static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3579                          SDValue V2) {
3580  unsigned NumElems = VT.getVectorNumElements();
3581  SmallVector<int, 8> Mask;
3582  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3583    Mask.push_back(i);
3584    Mask.push_back(i + NumElems);
3585  }
3586  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3587}
3588
3589/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3590static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3591                          SDValue V2) {
3592  unsigned NumElems = VT.getVectorNumElements();
3593  unsigned Half = NumElems/2;
3594  SmallVector<int, 8> Mask;
3595  for (unsigned i = 0; i != Half; ++i) {
3596    Mask.push_back(i + Half);
3597    Mask.push_back(i + NumElems + Half);
3598  }
3599  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3600}
3601
3602/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3603static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3604  EVT PVT = MVT::v4f32;
3605  EVT VT = SV->getValueType(0);
3606  DebugLoc dl = SV->getDebugLoc();
3607  SDValue V1 = SV->getOperand(0);
3608  int NumElems = VT.getVectorNumElements();
3609  int EltNo = SV->getSplatIndex();
3610
3611  // unpack elements to the correct location
3612  while (NumElems > 4) {
3613    if (EltNo < NumElems/2) {
3614      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3615    } else {
3616      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3617      EltNo -= NumElems/2;
3618    }
3619    NumElems >>= 1;
3620  }
3621
3622  // Perform the splat.
3623  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3624  V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3625  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3626  return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3627}
3628
3629/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3630/// vector of zero or undef vector.  This produces a shuffle where the low
3631/// element of V2 is swizzled into the zero/undef vector, landing at element
3632/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3633static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3634                                             bool isZero, bool HasSSE2,
3635                                             SelectionDAG &DAG) {
3636  EVT VT = V2.getValueType();
3637  SDValue V1 = isZero
3638    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3639  unsigned NumElems = VT.getVectorNumElements();
3640  SmallVector<int, 16> MaskVec;
3641  for (unsigned i = 0; i != NumElems; ++i)
3642    // If this is the insertion idx, put the low elt of V2 here.
3643    MaskVec.push_back(i == Idx ? NumElems : i);
3644  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3645}
3646
3647/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3648/// element of the result of the vector shuffle.
3649SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3650                            unsigned Depth) {
3651  if (Depth == 6)
3652    return SDValue();  // Limit search depth.
3653
3654  SDValue V = SDValue(N, 0);
3655  EVT VT = V.getValueType();
3656  unsigned Opcode = V.getOpcode();
3657
3658  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3659  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3660    Index = SV->getMaskElt(Index);
3661
3662    if (Index < 0)
3663      return DAG.getUNDEF(VT.getVectorElementType());
3664
3665    int NumElems = VT.getVectorNumElements();
3666    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3667    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3668  }
3669
3670  // Recurse into target specific vector shuffles to find scalars.
3671  if (isTargetShuffle(Opcode)) {
3672    int NumElems = VT.getVectorNumElements();
3673    SmallVector<unsigned, 16> ShuffleMask;
3674    SDValue ImmN;
3675
3676    switch(Opcode) {
3677    case X86ISD::SHUFPS:
3678    case X86ISD::SHUFPD:
3679      ImmN = N->getOperand(N->getNumOperands()-1);
3680      DecodeSHUFPSMask(NumElems,
3681                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3682                       ShuffleMask);
3683      break;
3684    case X86ISD::PUNPCKHBW:
3685    case X86ISD::PUNPCKHWD:
3686    case X86ISD::PUNPCKHDQ:
3687    case X86ISD::PUNPCKHQDQ:
3688      DecodePUNPCKHMask(NumElems, ShuffleMask);
3689      break;
3690    case X86ISD::UNPCKHPS:
3691    case X86ISD::UNPCKHPD:
3692      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3693      break;
3694    case X86ISD::PUNPCKLBW:
3695    case X86ISD::PUNPCKLWD:
3696    case X86ISD::PUNPCKLDQ:
3697    case X86ISD::PUNPCKLQDQ:
3698      DecodePUNPCKLMask(NumElems, ShuffleMask);
3699      break;
3700    case X86ISD::UNPCKLPS:
3701    case X86ISD::UNPCKLPD:
3702      DecodeUNPCKLPMask(NumElems, ShuffleMask);
3703      break;
3704    case X86ISD::MOVHLPS:
3705      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3706      break;
3707    case X86ISD::MOVLHPS:
3708      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3709      break;
3710    case X86ISD::PSHUFD:
3711      ImmN = N->getOperand(N->getNumOperands()-1);
3712      DecodePSHUFMask(NumElems,
3713                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3714                      ShuffleMask);
3715      break;
3716    case X86ISD::PSHUFHW:
3717      ImmN = N->getOperand(N->getNumOperands()-1);
3718      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3719                        ShuffleMask);
3720      break;
3721    case X86ISD::PSHUFLW:
3722      ImmN = N->getOperand(N->getNumOperands()-1);
3723      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3724                        ShuffleMask);
3725      break;
3726    case X86ISD::MOVSS:
3727    case X86ISD::MOVSD: {
3728      // The index 0 always comes from the first element of the second source,
3729      // this is why MOVSS and MOVSD are used in the first place. The other
3730      // elements come from the other positions of the first source vector.
3731      unsigned OpNum = (Index == 0) ? 1 : 0;
3732      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3733                                 Depth+1);
3734    }
3735    default:
3736      assert("not implemented for target shuffle node");
3737      return SDValue();
3738    }
3739
3740    Index = ShuffleMask[Index];
3741    if (Index < 0)
3742      return DAG.getUNDEF(VT.getVectorElementType());
3743
3744    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3745    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3746                               Depth+1);
3747  }
3748
3749  // Actual nodes that may contain scalar elements
3750  if (Opcode == ISD::BITCAST) {
3751    V = V.getOperand(0);
3752    EVT SrcVT = V.getValueType();
3753    unsigned NumElems = VT.getVectorNumElements();
3754
3755    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3756      return SDValue();
3757  }
3758
3759  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3760    return (Index == 0) ? V.getOperand(0)
3761                          : DAG.getUNDEF(VT.getVectorElementType());
3762
3763  if (V.getOpcode() == ISD::BUILD_VECTOR)
3764    return V.getOperand(Index);
3765
3766  return SDValue();
3767}
3768
3769/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3770/// shuffle operation which come from a consecutively from a zero. The
3771/// search can start in two diferent directions, from left or right.
3772static
3773unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3774                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3775  int i = 0;
3776
3777  while (i < NumElems) {
3778    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3779    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3780    if (!(Elt.getNode() &&
3781         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3782      break;
3783    ++i;
3784  }
3785
3786  return i;
3787}
3788
3789/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3790/// MaskE correspond consecutively to elements from one of the vector operands,
3791/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3792static
3793bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3794                              int OpIdx, int NumElems, unsigned &OpNum) {
3795  bool SeenV1 = false;
3796  bool SeenV2 = false;
3797
3798  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3799    int Idx = SVOp->getMaskElt(i);
3800    // Ignore undef indicies
3801    if (Idx < 0)
3802      continue;
3803
3804    if (Idx < NumElems)
3805      SeenV1 = true;
3806    else
3807      SeenV2 = true;
3808
3809    // Only accept consecutive elements from the same vector
3810    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3811      return false;
3812  }
3813
3814  OpNum = SeenV1 ? 0 : 1;
3815  return true;
3816}
3817
3818/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3819/// logical left shift of a vector.
3820static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3821                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3822  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3823  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3824              false /* check zeros from right */, DAG);
3825  unsigned OpSrc;
3826
3827  if (!NumZeros)
3828    return false;
3829
3830  // Considering the elements in the mask that are not consecutive zeros,
3831  // check if they consecutively come from only one of the source vectors.
3832  //
3833  //               V1 = {X, A, B, C}     0
3834  //                         \  \  \    /
3835  //   vector_shuffle V1, V2 <1, 2, 3, X>
3836  //
3837  if (!isShuffleMaskConsecutive(SVOp,
3838            0,                   // Mask Start Index
3839            NumElems-NumZeros-1, // Mask End Index
3840            NumZeros,            // Where to start looking in the src vector
3841            NumElems,            // Number of elements in vector
3842            OpSrc))              // Which source operand ?
3843    return false;
3844
3845  isLeft = false;
3846  ShAmt = NumZeros;
3847  ShVal = SVOp->getOperand(OpSrc);
3848  return true;
3849}
3850
3851/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3852/// logical left shift of a vector.
3853static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3854                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3855  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3856  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3857              true /* check zeros from left */, DAG);
3858  unsigned OpSrc;
3859
3860  if (!NumZeros)
3861    return false;
3862
3863  // Considering the elements in the mask that are not consecutive zeros,
3864  // check if they consecutively come from only one of the source vectors.
3865  //
3866  //                           0    { A, B, X, X } = V2
3867  //                          / \    /  /
3868  //   vector_shuffle V1, V2 <X, X, 4, 5>
3869  //
3870  if (!isShuffleMaskConsecutive(SVOp,
3871            NumZeros,     // Mask Start Index
3872            NumElems-1,   // Mask End Index
3873            0,            // Where to start looking in the src vector
3874            NumElems,     // Number of elements in vector
3875            OpSrc))       // Which source operand ?
3876    return false;
3877
3878  isLeft = true;
3879  ShAmt = NumZeros;
3880  ShVal = SVOp->getOperand(OpSrc);
3881  return true;
3882}
3883
3884/// isVectorShift - Returns true if the shuffle can be implemented as a
3885/// logical left or right shift of a vector.
3886static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3887                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3888  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3889      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3890    return true;
3891
3892  return false;
3893}
3894
3895/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3896///
3897static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3898                                       unsigned NumNonZero, unsigned NumZero,
3899                                       SelectionDAG &DAG,
3900                                       const TargetLowering &TLI) {
3901  if (NumNonZero > 8)
3902    return SDValue();
3903
3904  DebugLoc dl = Op.getDebugLoc();
3905  SDValue V(0, 0);
3906  bool First = true;
3907  for (unsigned i = 0; i < 16; ++i) {
3908    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3909    if (ThisIsNonZero && First) {
3910      if (NumZero)
3911        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3912      else
3913        V = DAG.getUNDEF(MVT::v8i16);
3914      First = false;
3915    }
3916
3917    if ((i & 1) != 0) {
3918      SDValue ThisElt(0, 0), LastElt(0, 0);
3919      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3920      if (LastIsNonZero) {
3921        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3922                              MVT::i16, Op.getOperand(i-1));
3923      }
3924      if (ThisIsNonZero) {
3925        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3926        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3927                              ThisElt, DAG.getConstant(8, MVT::i8));
3928        if (LastIsNonZero)
3929          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3930      } else
3931        ThisElt = LastElt;
3932
3933      if (ThisElt.getNode())
3934        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3935                        DAG.getIntPtrConstant(i/2));
3936    }
3937  }
3938
3939  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
3940}
3941
3942/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3943///
3944static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3945                                     unsigned NumNonZero, unsigned NumZero,
3946                                     SelectionDAG &DAG,
3947                                     const TargetLowering &TLI) {
3948  if (NumNonZero > 4)
3949    return SDValue();
3950
3951  DebugLoc dl = Op.getDebugLoc();
3952  SDValue V(0, 0);
3953  bool First = true;
3954  for (unsigned i = 0; i < 8; ++i) {
3955    bool isNonZero = (NonZeros & (1 << i)) != 0;
3956    if (isNonZero) {
3957      if (First) {
3958        if (NumZero)
3959          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3960        else
3961          V = DAG.getUNDEF(MVT::v8i16);
3962        First = false;
3963      }
3964      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3965                      MVT::v8i16, V, Op.getOperand(i),
3966                      DAG.getIntPtrConstant(i));
3967    }
3968  }
3969
3970  return V;
3971}
3972
3973/// getVShift - Return a vector logical shift node.
3974///
3975static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3976                         unsigned NumBits, SelectionDAG &DAG,
3977                         const TargetLowering &TLI, DebugLoc dl) {
3978  EVT ShVT = MVT::v2i64;
3979  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3980  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
3981  return DAG.getNode(ISD::BITCAST, dl, VT,
3982                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3983                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3984}
3985
3986SDValue
3987X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3988                                          SelectionDAG &DAG) const {
3989
3990  // Check if the scalar load can be widened into a vector load. And if
3991  // the address is "base + cst" see if the cst can be "absorbed" into
3992  // the shuffle mask.
3993  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3994    SDValue Ptr = LD->getBasePtr();
3995    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3996      return SDValue();
3997    EVT PVT = LD->getValueType(0);
3998    if (PVT != MVT::i32 && PVT != MVT::f32)
3999      return SDValue();
4000
4001    int FI = -1;
4002    int64_t Offset = 0;
4003    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4004      FI = FINode->getIndex();
4005      Offset = 0;
4006    } else if (Ptr.getOpcode() == ISD::ADD &&
4007               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
4008               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4009      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4010      Offset = Ptr.getConstantOperandVal(1);
4011      Ptr = Ptr.getOperand(0);
4012    } else {
4013      return SDValue();
4014    }
4015
4016    SDValue Chain = LD->getChain();
4017    // Make sure the stack object alignment is at least 16.
4018    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4019    if (DAG.InferPtrAlignment(Ptr) < 16) {
4020      if (MFI->isFixedObjectIndex(FI)) {
4021        // Can't change the alignment. FIXME: It's possible to compute
4022        // the exact stack offset and reference FI + adjust offset instead.
4023        // If someone *really* cares about this. That's the way to implement it.
4024        return SDValue();
4025      } else {
4026        MFI->setObjectAlignment(FI, 16);
4027      }
4028    }
4029
4030    // (Offset % 16) must be multiple of 4. Then address is then
4031    // Ptr + (Offset & ~15).
4032    if (Offset < 0)
4033      return SDValue();
4034    if ((Offset % 16) & 3)
4035      return SDValue();
4036    int64_t StartOffset = Offset & ~15;
4037    if (StartOffset)
4038      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4039                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4040
4041    int EltNo = (Offset - StartOffset) >> 2;
4042    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4043    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4044    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4045                             LD->getPointerInfo().getWithOffset(StartOffset),
4046                             false, false, 0);
4047    // Canonicalize it to a v4i32 shuffle.
4048    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4049    return DAG.getNode(ISD::BITCAST, dl, VT,
4050                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4051                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4052  }
4053
4054  return SDValue();
4055}
4056
4057/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4058/// vector of type 'VT', see if the elements can be replaced by a single large
4059/// load which has the same value as a build_vector whose operands are 'elts'.
4060///
4061/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4062///
4063/// FIXME: we'd also like to handle the case where the last elements are zero
4064/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4065/// There's even a handy isZeroNode for that purpose.
4066static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4067                                        DebugLoc &DL, SelectionDAG &DAG) {
4068  EVT EltVT = VT.getVectorElementType();
4069  unsigned NumElems = Elts.size();
4070
4071  LoadSDNode *LDBase = NULL;
4072  unsigned LastLoadedElt = -1U;
4073
4074  // For each element in the initializer, see if we've found a load or an undef.
4075  // If we don't find an initial load element, or later load elements are
4076  // non-consecutive, bail out.
4077  for (unsigned i = 0; i < NumElems; ++i) {
4078    SDValue Elt = Elts[i];
4079
4080    if (!Elt.getNode() ||
4081        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4082      return SDValue();
4083    if (!LDBase) {
4084      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4085        return SDValue();
4086      LDBase = cast<LoadSDNode>(Elt.getNode());
4087      LastLoadedElt = i;
4088      continue;
4089    }
4090    if (Elt.getOpcode() == ISD::UNDEF)
4091      continue;
4092
4093    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4094    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4095      return SDValue();
4096    LastLoadedElt = i;
4097  }
4098
4099  // If we have found an entire vector of loads and undefs, then return a large
4100  // load of the entire vector width starting at the base pointer.  If we found
4101  // consecutive loads for the low half, generate a vzext_load node.
4102  if (LastLoadedElt == NumElems - 1) {
4103    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4104      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4105                         LDBase->getPointerInfo(),
4106                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4107    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4108                       LDBase->getPointerInfo(),
4109                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4110                       LDBase->getAlignment());
4111  } else if (NumElems == 4 && LastLoadedElt == 1) {
4112    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4113    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4114    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4115                                              Ops, 2, MVT::i32,
4116                                              LDBase->getMemOperand());
4117    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4118  }
4119  return SDValue();
4120}
4121
4122SDValue
4123X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4124  DebugLoc dl = Op.getDebugLoc();
4125  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4126  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4127  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4128  // is present, so AllOnes is ignored.
4129  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4130      (Op.getValueType().getSizeInBits() != 256 &&
4131       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4132    // Canonicalize this to <4 x i32> (SSE) to
4133    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4134    // eliminated on x86-32 hosts.
4135    if (Op.getValueType() == MVT::v4i32)
4136      return Op;
4137
4138    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4139      return getOnesVector(Op.getValueType(), DAG, dl);
4140    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4141  }
4142
4143  EVT VT = Op.getValueType();
4144  EVT ExtVT = VT.getVectorElementType();
4145  unsigned EVTBits = ExtVT.getSizeInBits();
4146
4147  unsigned NumElems = Op.getNumOperands();
4148  unsigned NumZero  = 0;
4149  unsigned NumNonZero = 0;
4150  unsigned NonZeros = 0;
4151  bool IsAllConstants = true;
4152  SmallSet<SDValue, 8> Values;
4153  for (unsigned i = 0; i < NumElems; ++i) {
4154    SDValue Elt = Op.getOperand(i);
4155    if (Elt.getOpcode() == ISD::UNDEF)
4156      continue;
4157    Values.insert(Elt);
4158    if (Elt.getOpcode() != ISD::Constant &&
4159        Elt.getOpcode() != ISD::ConstantFP)
4160      IsAllConstants = false;
4161    if (X86::isZeroNode(Elt))
4162      NumZero++;
4163    else {
4164      NonZeros |= (1 << i);
4165      NumNonZero++;
4166    }
4167  }
4168
4169  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4170  if (NumNonZero == 0)
4171    return DAG.getUNDEF(VT);
4172
4173  // Special case for single non-zero, non-undef, element.
4174  if (NumNonZero == 1) {
4175    unsigned Idx = CountTrailingZeros_32(NonZeros);
4176    SDValue Item = Op.getOperand(Idx);
4177
4178    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4179    // the value are obviously zero, truncate the value to i32 and do the
4180    // insertion that way.  Only do this if the value is non-constant or if the
4181    // value is a constant being inserted into element 0.  It is cheaper to do
4182    // a constant pool load than it is to do a movd + shuffle.
4183    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4184        (!IsAllConstants || Idx == 0)) {
4185      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4186        // Handle SSE only.
4187        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4188        EVT VecVT = MVT::v4i32;
4189        unsigned VecElts = 4;
4190
4191        // Truncate the value (which may itself be a constant) to i32, and
4192        // convert it to a vector with movd (S2V+shuffle to zero extend).
4193        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4194        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4195        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4196                                           Subtarget->hasSSE2(), DAG);
4197
4198        // Now we have our 32-bit value zero extended in the low element of
4199        // a vector.  If Idx != 0, swizzle it into place.
4200        if (Idx != 0) {
4201          SmallVector<int, 4> Mask;
4202          Mask.push_back(Idx);
4203          for (unsigned i = 1; i != VecElts; ++i)
4204            Mask.push_back(i);
4205          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4206                                      DAG.getUNDEF(Item.getValueType()),
4207                                      &Mask[0]);
4208        }
4209        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4210      }
4211    }
4212
4213    // If we have a constant or non-constant insertion into the low element of
4214    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4215    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4216    // depending on what the source datatype is.
4217    if (Idx == 0) {
4218      if (NumZero == 0) {
4219        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4220      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4221          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4222        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4223        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4224        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4225                                           DAG);
4226      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4227        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4228        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4229        EVT MiddleVT = MVT::v4i32;
4230        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4231        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4232                                           Subtarget->hasSSE2(), DAG);
4233        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4234      }
4235    }
4236
4237    // Is it a vector logical left shift?
4238    if (NumElems == 2 && Idx == 1 &&
4239        X86::isZeroNode(Op.getOperand(0)) &&
4240        !X86::isZeroNode(Op.getOperand(1))) {
4241      unsigned NumBits = VT.getSizeInBits();
4242      return getVShift(true, VT,
4243                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4244                                   VT, Op.getOperand(1)),
4245                       NumBits/2, DAG, *this, dl);
4246    }
4247
4248    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4249      return SDValue();
4250
4251    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4252    // is a non-constant being inserted into an element other than the low one,
4253    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4254    // movd/movss) to move this into the low element, then shuffle it into
4255    // place.
4256    if (EVTBits == 32) {
4257      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4258
4259      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4260      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4261                                         Subtarget->hasSSE2(), DAG);
4262      SmallVector<int, 8> MaskVec;
4263      for (unsigned i = 0; i < NumElems; i++)
4264        MaskVec.push_back(i == Idx ? 0 : 1);
4265      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4266    }
4267  }
4268
4269  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4270  if (Values.size() == 1) {
4271    if (EVTBits == 32) {
4272      // Instead of a shuffle like this:
4273      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4274      // Check if it's possible to issue this instead.
4275      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4276      unsigned Idx = CountTrailingZeros_32(NonZeros);
4277      SDValue Item = Op.getOperand(Idx);
4278      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4279        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4280    }
4281    return SDValue();
4282  }
4283
4284  // A vector full of immediates; various special cases are already
4285  // handled, so this is best done with a single constant-pool load.
4286  if (IsAllConstants)
4287    return SDValue();
4288
4289  // Let legalizer expand 2-wide build_vectors.
4290  if (EVTBits == 64) {
4291    if (NumNonZero == 1) {
4292      // One half is zero or undef.
4293      unsigned Idx = CountTrailingZeros_32(NonZeros);
4294      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4295                                 Op.getOperand(Idx));
4296      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4297                                         Subtarget->hasSSE2(), DAG);
4298    }
4299    return SDValue();
4300  }
4301
4302  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4303  if (EVTBits == 8 && NumElems == 16) {
4304    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4305                                        *this);
4306    if (V.getNode()) return V;
4307  }
4308
4309  if (EVTBits == 16 && NumElems == 8) {
4310    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4311                                      *this);
4312    if (V.getNode()) return V;
4313  }
4314
4315  // If element VT is == 32 bits, turn it into a number of shuffles.
4316  SmallVector<SDValue, 8> V;
4317  V.resize(NumElems);
4318  if (NumElems == 4 && NumZero > 0) {
4319    for (unsigned i = 0; i < 4; ++i) {
4320      bool isZero = !(NonZeros & (1 << i));
4321      if (isZero)
4322        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4323      else
4324        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4325    }
4326
4327    for (unsigned i = 0; i < 2; ++i) {
4328      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4329        default: break;
4330        case 0:
4331          V[i] = V[i*2];  // Must be a zero vector.
4332          break;
4333        case 1:
4334          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4335          break;
4336        case 2:
4337          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4338          break;
4339        case 3:
4340          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4341          break;
4342      }
4343    }
4344
4345    SmallVector<int, 8> MaskVec;
4346    bool Reverse = (NonZeros & 0x3) == 2;
4347    for (unsigned i = 0; i < 2; ++i)
4348      MaskVec.push_back(Reverse ? 1-i : i);
4349    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4350    for (unsigned i = 0; i < 2; ++i)
4351      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4352    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4353  }
4354
4355  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4356    // Check for a build vector of consecutive loads.
4357    for (unsigned i = 0; i < NumElems; ++i)
4358      V[i] = Op.getOperand(i);
4359
4360    // Check for elements which are consecutive loads.
4361    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4362    if (LD.getNode())
4363      return LD;
4364
4365    // For SSE 4.1, use insertps to put the high elements into the low element.
4366    if (getSubtarget()->hasSSE41()) {
4367      SDValue Result;
4368      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4369        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4370      else
4371        Result = DAG.getUNDEF(VT);
4372
4373      for (unsigned i = 1; i < NumElems; ++i) {
4374        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4375        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4376                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4377      }
4378      return Result;
4379    }
4380
4381    // Otherwise, expand into a number of unpckl*, start by extending each of
4382    // our (non-undef) elements to the full vector width with the element in the
4383    // bottom slot of the vector (which generates no code for SSE).
4384    for (unsigned i = 0; i < NumElems; ++i) {
4385      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4386        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4387      else
4388        V[i] = DAG.getUNDEF(VT);
4389    }
4390
4391    // Next, we iteratively mix elements, e.g. for v4f32:
4392    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4393    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4394    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4395    unsigned EltStride = NumElems >> 1;
4396    while (EltStride != 0) {
4397      for (unsigned i = 0; i < EltStride; ++i) {
4398        // If V[i+EltStride] is undef and this is the first round of mixing,
4399        // then it is safe to just drop this shuffle: V[i] is already in the
4400        // right place, the one element (since it's the first round) being
4401        // inserted as undef can be dropped.  This isn't safe for successive
4402        // rounds because they will permute elements within both vectors.
4403        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4404            EltStride == NumElems/2)
4405          continue;
4406
4407        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4408      }
4409      EltStride >>= 1;
4410    }
4411    return V[0];
4412  }
4413  return SDValue();
4414}
4415
4416SDValue
4417X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4418  // We support concatenate two MMX registers and place them in a MMX
4419  // register.  This is better than doing a stack convert.
4420  DebugLoc dl = Op.getDebugLoc();
4421  EVT ResVT = Op.getValueType();
4422  assert(Op.getNumOperands() == 2);
4423  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4424         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4425  int Mask[2];
4426  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4427  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4428  InVec = Op.getOperand(1);
4429  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4430    unsigned NumElts = ResVT.getVectorNumElements();
4431    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4432    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4433                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4434  } else {
4435    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4436    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4437    Mask[0] = 0; Mask[1] = 2;
4438    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4439  }
4440  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4441}
4442
4443// v8i16 shuffles - Prefer shuffles in the following order:
4444// 1. [all]   pshuflw, pshufhw, optional move
4445// 2. [ssse3] 1 x pshufb
4446// 3. [ssse3] 2 x pshufb + 1 x por
4447// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4448SDValue
4449X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4450                                            SelectionDAG &DAG) const {
4451  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4452  SDValue V1 = SVOp->getOperand(0);
4453  SDValue V2 = SVOp->getOperand(1);
4454  DebugLoc dl = SVOp->getDebugLoc();
4455  SmallVector<int, 8> MaskVals;
4456
4457  // Determine if more than 1 of the words in each of the low and high quadwords
4458  // of the result come from the same quadword of one of the two inputs.  Undef
4459  // mask values count as coming from any quadword, for better codegen.
4460  SmallVector<unsigned, 4> LoQuad(4);
4461  SmallVector<unsigned, 4> HiQuad(4);
4462  BitVector InputQuads(4);
4463  for (unsigned i = 0; i < 8; ++i) {
4464    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4465    int EltIdx = SVOp->getMaskElt(i);
4466    MaskVals.push_back(EltIdx);
4467    if (EltIdx < 0) {
4468      ++Quad[0];
4469      ++Quad[1];
4470      ++Quad[2];
4471      ++Quad[3];
4472      continue;
4473    }
4474    ++Quad[EltIdx / 4];
4475    InputQuads.set(EltIdx / 4);
4476  }
4477
4478  int BestLoQuad = -1;
4479  unsigned MaxQuad = 1;
4480  for (unsigned i = 0; i < 4; ++i) {
4481    if (LoQuad[i] > MaxQuad) {
4482      BestLoQuad = i;
4483      MaxQuad = LoQuad[i];
4484    }
4485  }
4486
4487  int BestHiQuad = -1;
4488  MaxQuad = 1;
4489  for (unsigned i = 0; i < 4; ++i) {
4490    if (HiQuad[i] > MaxQuad) {
4491      BestHiQuad = i;
4492      MaxQuad = HiQuad[i];
4493    }
4494  }
4495
4496  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4497  // of the two input vectors, shuffle them into one input vector so only a
4498  // single pshufb instruction is necessary. If There are more than 2 input
4499  // quads, disable the next transformation since it does not help SSSE3.
4500  bool V1Used = InputQuads[0] || InputQuads[1];
4501  bool V2Used = InputQuads[2] || InputQuads[3];
4502  if (Subtarget->hasSSSE3()) {
4503    if (InputQuads.count() == 2 && V1Used && V2Used) {
4504      BestLoQuad = InputQuads.find_first();
4505      BestHiQuad = InputQuads.find_next(BestLoQuad);
4506    }
4507    if (InputQuads.count() > 2) {
4508      BestLoQuad = -1;
4509      BestHiQuad = -1;
4510    }
4511  }
4512
4513  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4514  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4515  // words from all 4 input quadwords.
4516  SDValue NewV;
4517  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4518    SmallVector<int, 8> MaskV;
4519    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4520    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4521    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4522                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4523                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4524    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4525
4526    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4527    // source words for the shuffle, to aid later transformations.
4528    bool AllWordsInNewV = true;
4529    bool InOrder[2] = { true, true };
4530    for (unsigned i = 0; i != 8; ++i) {
4531      int idx = MaskVals[i];
4532      if (idx != (int)i)
4533        InOrder[i/4] = false;
4534      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4535        continue;
4536      AllWordsInNewV = false;
4537      break;
4538    }
4539
4540    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4541    if (AllWordsInNewV) {
4542      for (int i = 0; i != 8; ++i) {
4543        int idx = MaskVals[i];
4544        if (idx < 0)
4545          continue;
4546        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4547        if ((idx != i) && idx < 4)
4548          pshufhw = false;
4549        if ((idx != i) && idx > 3)
4550          pshuflw = false;
4551      }
4552      V1 = NewV;
4553      V2Used = false;
4554      BestLoQuad = 0;
4555      BestHiQuad = 1;
4556    }
4557
4558    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4559    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4560    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4561      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4562      unsigned TargetMask = 0;
4563      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4564                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4565      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4566                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4567      V1 = NewV.getOperand(0);
4568      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4569    }
4570  }
4571
4572  // If we have SSSE3, and all words of the result are from 1 input vector,
4573  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4574  // is present, fall back to case 4.
4575  if (Subtarget->hasSSSE3()) {
4576    SmallVector<SDValue,16> pshufbMask;
4577
4578    // If we have elements from both input vectors, set the high bit of the
4579    // shuffle mask element to zero out elements that come from V2 in the V1
4580    // mask, and elements that come from V1 in the V2 mask, so that the two
4581    // results can be OR'd together.
4582    bool TwoInputs = V1Used && V2Used;
4583    for (unsigned i = 0; i != 8; ++i) {
4584      int EltIdx = MaskVals[i] * 2;
4585      if (TwoInputs && (EltIdx >= 16)) {
4586        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4587        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4588        continue;
4589      }
4590      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4591      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4592    }
4593    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4594    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4595                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4596                                 MVT::v16i8, &pshufbMask[0], 16));
4597    if (!TwoInputs)
4598      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4599
4600    // Calculate the shuffle mask for the second input, shuffle it, and
4601    // OR it with the first shuffled input.
4602    pshufbMask.clear();
4603    for (unsigned i = 0; i != 8; ++i) {
4604      int EltIdx = MaskVals[i] * 2;
4605      if (EltIdx < 16) {
4606        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4607        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4608        continue;
4609      }
4610      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4611      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4612    }
4613    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4614    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4615                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4616                                 MVT::v16i8, &pshufbMask[0], 16));
4617    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4618    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4619  }
4620
4621  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4622  // and update MaskVals with new element order.
4623  BitVector InOrder(8);
4624  if (BestLoQuad >= 0) {
4625    SmallVector<int, 8> MaskV;
4626    for (int i = 0; i != 4; ++i) {
4627      int idx = MaskVals[i];
4628      if (idx < 0) {
4629        MaskV.push_back(-1);
4630        InOrder.set(i);
4631      } else if ((idx / 4) == BestLoQuad) {
4632        MaskV.push_back(idx & 3);
4633        InOrder.set(i);
4634      } else {
4635        MaskV.push_back(-1);
4636      }
4637    }
4638    for (unsigned i = 4; i != 8; ++i)
4639      MaskV.push_back(i);
4640    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4641                                &MaskV[0]);
4642
4643    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4644      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4645                               NewV.getOperand(0),
4646                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4647                               DAG);
4648  }
4649
4650  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4651  // and update MaskVals with the new element order.
4652  if (BestHiQuad >= 0) {
4653    SmallVector<int, 8> MaskV;
4654    for (unsigned i = 0; i != 4; ++i)
4655      MaskV.push_back(i);
4656    for (unsigned i = 4; i != 8; ++i) {
4657      int idx = MaskVals[i];
4658      if (idx < 0) {
4659        MaskV.push_back(-1);
4660        InOrder.set(i);
4661      } else if ((idx / 4) == BestHiQuad) {
4662        MaskV.push_back((idx & 3) + 4);
4663        InOrder.set(i);
4664      } else {
4665        MaskV.push_back(-1);
4666      }
4667    }
4668    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4669                                &MaskV[0]);
4670
4671    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4672      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4673                              NewV.getOperand(0),
4674                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4675                              DAG);
4676  }
4677
4678  // In case BestHi & BestLo were both -1, which means each quadword has a word
4679  // from each of the four input quadwords, calculate the InOrder bitvector now
4680  // before falling through to the insert/extract cleanup.
4681  if (BestLoQuad == -1 && BestHiQuad == -1) {
4682    NewV = V1;
4683    for (int i = 0; i != 8; ++i)
4684      if (MaskVals[i] < 0 || MaskVals[i] == i)
4685        InOrder.set(i);
4686  }
4687
4688  // The other elements are put in the right place using pextrw and pinsrw.
4689  for (unsigned i = 0; i != 8; ++i) {
4690    if (InOrder[i])
4691      continue;
4692    int EltIdx = MaskVals[i];
4693    if (EltIdx < 0)
4694      continue;
4695    SDValue ExtOp = (EltIdx < 8)
4696    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4697                  DAG.getIntPtrConstant(EltIdx))
4698    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4699                  DAG.getIntPtrConstant(EltIdx - 8));
4700    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4701                       DAG.getIntPtrConstant(i));
4702  }
4703  return NewV;
4704}
4705
4706// v16i8 shuffles - Prefer shuffles in the following order:
4707// 1. [ssse3] 1 x pshufb
4708// 2. [ssse3] 2 x pshufb + 1 x por
4709// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4710static
4711SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4712                                 SelectionDAG &DAG,
4713                                 const X86TargetLowering &TLI) {
4714  SDValue V1 = SVOp->getOperand(0);
4715  SDValue V2 = SVOp->getOperand(1);
4716  DebugLoc dl = SVOp->getDebugLoc();
4717  SmallVector<int, 16> MaskVals;
4718  SVOp->getMask(MaskVals);
4719
4720  // If we have SSSE3, case 1 is generated when all result bytes come from
4721  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4722  // present, fall back to case 3.
4723  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4724  bool V1Only = true;
4725  bool V2Only = true;
4726  for (unsigned i = 0; i < 16; ++i) {
4727    int EltIdx = MaskVals[i];
4728    if (EltIdx < 0)
4729      continue;
4730    if (EltIdx < 16)
4731      V2Only = false;
4732    else
4733      V1Only = false;
4734  }
4735
4736  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4737  if (TLI.getSubtarget()->hasSSSE3()) {
4738    SmallVector<SDValue,16> pshufbMask;
4739
4740    // If all result elements are from one input vector, then only translate
4741    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4742    //
4743    // Otherwise, we have elements from both input vectors, and must zero out
4744    // elements that come from V2 in the first mask, and V1 in the second mask
4745    // so that we can OR them together.
4746    bool TwoInputs = !(V1Only || V2Only);
4747    for (unsigned i = 0; i != 16; ++i) {
4748      int EltIdx = MaskVals[i];
4749      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4750        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4751        continue;
4752      }
4753      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4754    }
4755    // If all the elements are from V2, assign it to V1 and return after
4756    // building the first pshufb.
4757    if (V2Only)
4758      V1 = V2;
4759    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4760                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4761                                 MVT::v16i8, &pshufbMask[0], 16));
4762    if (!TwoInputs)
4763      return V1;
4764
4765    // Calculate the shuffle mask for the second input, shuffle it, and
4766    // OR it with the first shuffled input.
4767    pshufbMask.clear();
4768    for (unsigned i = 0; i != 16; ++i) {
4769      int EltIdx = MaskVals[i];
4770      if (EltIdx < 16) {
4771        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4772        continue;
4773      }
4774      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4775    }
4776    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4777                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4778                                 MVT::v16i8, &pshufbMask[0], 16));
4779    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4780  }
4781
4782  // No SSSE3 - Calculate in place words and then fix all out of place words
4783  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4784  // the 16 different words that comprise the two doublequadword input vectors.
4785  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4786  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
4787  SDValue NewV = V2Only ? V2 : V1;
4788  for (int i = 0; i != 8; ++i) {
4789    int Elt0 = MaskVals[i*2];
4790    int Elt1 = MaskVals[i*2+1];
4791
4792    // This word of the result is all undef, skip it.
4793    if (Elt0 < 0 && Elt1 < 0)
4794      continue;
4795
4796    // This word of the result is already in the correct place, skip it.
4797    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4798      continue;
4799    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4800      continue;
4801
4802    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4803    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4804    SDValue InsElt;
4805
4806    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4807    // using a single extract together, load it and store it.
4808    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4809      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4810                           DAG.getIntPtrConstant(Elt1 / 2));
4811      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4812                        DAG.getIntPtrConstant(i));
4813      continue;
4814    }
4815
4816    // If Elt1 is defined, extract it from the appropriate source.  If the
4817    // source byte is not also odd, shift the extracted word left 8 bits
4818    // otherwise clear the bottom 8 bits if we need to do an or.
4819    if (Elt1 >= 0) {
4820      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4821                           DAG.getIntPtrConstant(Elt1 / 2));
4822      if ((Elt1 & 1) == 0)
4823        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4824                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4825      else if (Elt0 >= 0)
4826        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4827                             DAG.getConstant(0xFF00, MVT::i16));
4828    }
4829    // If Elt0 is defined, extract it from the appropriate source.  If the
4830    // source byte is not also even, shift the extracted word right 8 bits. If
4831    // Elt1 was also defined, OR the extracted values together before
4832    // inserting them in the result.
4833    if (Elt0 >= 0) {
4834      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4835                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4836      if ((Elt0 & 1) != 0)
4837        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4838                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4839      else if (Elt1 >= 0)
4840        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4841                             DAG.getConstant(0x00FF, MVT::i16));
4842      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4843                         : InsElt0;
4844    }
4845    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4846                       DAG.getIntPtrConstant(i));
4847  }
4848  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
4849}
4850
4851/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4852/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
4853/// done when every pair / quad of shuffle mask elements point to elements in
4854/// the right sequence. e.g.
4855/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
4856static
4857SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4858                                 SelectionDAG &DAG, DebugLoc dl) {
4859  EVT VT = SVOp->getValueType(0);
4860  SDValue V1 = SVOp->getOperand(0);
4861  SDValue V2 = SVOp->getOperand(1);
4862  unsigned NumElems = VT.getVectorNumElements();
4863  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4864  EVT NewVT;
4865  switch (VT.getSimpleVT().SimpleTy) {
4866  default: assert(false && "Unexpected!");
4867  case MVT::v4f32: NewVT = MVT::v2f64; break;
4868  case MVT::v4i32: NewVT = MVT::v2i64; break;
4869  case MVT::v8i16: NewVT = MVT::v4i32; break;
4870  case MVT::v16i8: NewVT = MVT::v4i32; break;
4871  }
4872
4873  int Scale = NumElems / NewWidth;
4874  SmallVector<int, 8> MaskVec;
4875  for (unsigned i = 0; i < NumElems; i += Scale) {
4876    int StartIdx = -1;
4877    for (int j = 0; j < Scale; ++j) {
4878      int EltIdx = SVOp->getMaskElt(i+j);
4879      if (EltIdx < 0)
4880        continue;
4881      if (StartIdx == -1)
4882        StartIdx = EltIdx - (EltIdx % Scale);
4883      if (EltIdx != StartIdx + j)
4884        return SDValue();
4885    }
4886    if (StartIdx == -1)
4887      MaskVec.push_back(-1);
4888    else
4889      MaskVec.push_back(StartIdx / Scale);
4890  }
4891
4892  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
4893  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
4894  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4895}
4896
4897/// getVZextMovL - Return a zero-extending vector move low node.
4898///
4899static SDValue getVZextMovL(EVT VT, EVT OpVT,
4900                            SDValue SrcOp, SelectionDAG &DAG,
4901                            const X86Subtarget *Subtarget, DebugLoc dl) {
4902  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4903    LoadSDNode *LD = NULL;
4904    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4905      LD = dyn_cast<LoadSDNode>(SrcOp);
4906    if (!LD) {
4907      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4908      // instead.
4909      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4910      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
4911          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4912          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
4913          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4914        // PR2108
4915        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4916        return DAG.getNode(ISD::BITCAST, dl, VT,
4917                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4918                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4919                                                   OpVT,
4920                                                   SrcOp.getOperand(0)
4921                                                          .getOperand(0))));
4922      }
4923    }
4924  }
4925
4926  return DAG.getNode(ISD::BITCAST, dl, VT,
4927                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4928                                 DAG.getNode(ISD::BITCAST, dl,
4929                                             OpVT, SrcOp)));
4930}
4931
4932/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4933/// shuffles.
4934static SDValue
4935LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4936  SDValue V1 = SVOp->getOperand(0);
4937  SDValue V2 = SVOp->getOperand(1);
4938  DebugLoc dl = SVOp->getDebugLoc();
4939  EVT VT = SVOp->getValueType(0);
4940
4941  SmallVector<std::pair<int, int>, 8> Locs;
4942  Locs.resize(4);
4943  SmallVector<int, 8> Mask1(4U, -1);
4944  SmallVector<int, 8> PermMask;
4945  SVOp->getMask(PermMask);
4946
4947  unsigned NumHi = 0;
4948  unsigned NumLo = 0;
4949  for (unsigned i = 0; i != 4; ++i) {
4950    int Idx = PermMask[i];
4951    if (Idx < 0) {
4952      Locs[i] = std::make_pair(-1, -1);
4953    } else {
4954      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4955      if (Idx < 4) {
4956        Locs[i] = std::make_pair(0, NumLo);
4957        Mask1[NumLo] = Idx;
4958        NumLo++;
4959      } else {
4960        Locs[i] = std::make_pair(1, NumHi);
4961        if (2+NumHi < 4)
4962          Mask1[2+NumHi] = Idx;
4963        NumHi++;
4964      }
4965    }
4966  }
4967
4968  if (NumLo <= 2 && NumHi <= 2) {
4969    // If no more than two elements come from either vector. This can be
4970    // implemented with two shuffles. First shuffle gather the elements.
4971    // The second shuffle, which takes the first shuffle as both of its
4972    // vector operands, put the elements into the right order.
4973    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4974
4975    SmallVector<int, 8> Mask2(4U, -1);
4976
4977    for (unsigned i = 0; i != 4; ++i) {
4978      if (Locs[i].first == -1)
4979        continue;
4980      else {
4981        unsigned Idx = (i < 2) ? 0 : 4;
4982        Idx += Locs[i].first * 2 + Locs[i].second;
4983        Mask2[i] = Idx;
4984      }
4985    }
4986
4987    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4988  } else if (NumLo == 3 || NumHi == 3) {
4989    // Otherwise, we must have three elements from one vector, call it X, and
4990    // one element from the other, call it Y.  First, use a shufps to build an
4991    // intermediate vector with the one element from Y and the element from X
4992    // that will be in the same half in the final destination (the indexes don't
4993    // matter). Then, use a shufps to build the final vector, taking the half
4994    // containing the element from Y from the intermediate, and the other half
4995    // from X.
4996    if (NumHi == 3) {
4997      // Normalize it so the 3 elements come from V1.
4998      CommuteVectorShuffleMask(PermMask, VT);
4999      std::swap(V1, V2);
5000    }
5001
5002    // Find the element from V2.
5003    unsigned HiIndex;
5004    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5005      int Val = PermMask[HiIndex];
5006      if (Val < 0)
5007        continue;
5008      if (Val >= 4)
5009        break;
5010    }
5011
5012    Mask1[0] = PermMask[HiIndex];
5013    Mask1[1] = -1;
5014    Mask1[2] = PermMask[HiIndex^1];
5015    Mask1[3] = -1;
5016    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5017
5018    if (HiIndex >= 2) {
5019      Mask1[0] = PermMask[0];
5020      Mask1[1] = PermMask[1];
5021      Mask1[2] = HiIndex & 1 ? 6 : 4;
5022      Mask1[3] = HiIndex & 1 ? 4 : 6;
5023      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5024    } else {
5025      Mask1[0] = HiIndex & 1 ? 2 : 0;
5026      Mask1[1] = HiIndex & 1 ? 0 : 2;
5027      Mask1[2] = PermMask[2];
5028      Mask1[3] = PermMask[3];
5029      if (Mask1[2] >= 0)
5030        Mask1[2] += 4;
5031      if (Mask1[3] >= 0)
5032        Mask1[3] += 4;
5033      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5034    }
5035  }
5036
5037  // Break it into (shuffle shuffle_hi, shuffle_lo).
5038  Locs.clear();
5039  SmallVector<int,8> LoMask(4U, -1);
5040  SmallVector<int,8> HiMask(4U, -1);
5041
5042  SmallVector<int,8> *MaskPtr = &LoMask;
5043  unsigned MaskIdx = 0;
5044  unsigned LoIdx = 0;
5045  unsigned HiIdx = 2;
5046  for (unsigned i = 0; i != 4; ++i) {
5047    if (i == 2) {
5048      MaskPtr = &HiMask;
5049      MaskIdx = 1;
5050      LoIdx = 0;
5051      HiIdx = 2;
5052    }
5053    int Idx = PermMask[i];
5054    if (Idx < 0) {
5055      Locs[i] = std::make_pair(-1, -1);
5056    } else if (Idx < 4) {
5057      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5058      (*MaskPtr)[LoIdx] = Idx;
5059      LoIdx++;
5060    } else {
5061      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5062      (*MaskPtr)[HiIdx] = Idx;
5063      HiIdx++;
5064    }
5065  }
5066
5067  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5068  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5069  SmallVector<int, 8> MaskOps;
5070  for (unsigned i = 0; i != 4; ++i) {
5071    if (Locs[i].first == -1) {
5072      MaskOps.push_back(-1);
5073    } else {
5074      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5075      MaskOps.push_back(Idx);
5076    }
5077  }
5078  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5079}
5080
5081static bool MayFoldVectorLoad(SDValue V) {
5082  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5083    V = V.getOperand(0);
5084  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5085    V = V.getOperand(0);
5086  if (MayFoldLoad(V))
5087    return true;
5088  return false;
5089}
5090
5091// FIXME: the version above should always be used. Since there's
5092// a bug where several vector shuffles can't be folded because the
5093// DAG is not updated during lowering and a node claims to have two
5094// uses while it only has one, use this version, and let isel match
5095// another instruction if the load really happens to have more than
5096// one use. Remove this version after this bug get fixed.
5097// rdar://8434668, PR8156
5098static bool RelaxedMayFoldVectorLoad(SDValue V) {
5099  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5100    V = V.getOperand(0);
5101  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5102    V = V.getOperand(0);
5103  if (ISD::isNormalLoad(V.getNode()))
5104    return true;
5105  return false;
5106}
5107
5108/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5109/// a vector extract, and if both can be later optimized into a single load.
5110/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5111/// here because otherwise a target specific shuffle node is going to be
5112/// emitted for this shuffle, and the optimization not done.
5113/// FIXME: This is probably not the best approach, but fix the problem
5114/// until the right path is decided.
5115static
5116bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5117                                         const TargetLowering &TLI) {
5118  EVT VT = V.getValueType();
5119  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5120
5121  // Be sure that the vector shuffle is present in a pattern like this:
5122  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5123  if (!V.hasOneUse())
5124    return false;
5125
5126  SDNode *N = *V.getNode()->use_begin();
5127  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5128    return false;
5129
5130  SDValue EltNo = N->getOperand(1);
5131  if (!isa<ConstantSDNode>(EltNo))
5132    return false;
5133
5134  // If the bit convert changed the number of elements, it is unsafe
5135  // to examine the mask.
5136  bool HasShuffleIntoBitcast = false;
5137  if (V.getOpcode() == ISD::BITCAST) {
5138    EVT SrcVT = V.getOperand(0).getValueType();
5139    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5140      return false;
5141    V = V.getOperand(0);
5142    HasShuffleIntoBitcast = true;
5143  }
5144
5145  // Select the input vector, guarding against out of range extract vector.
5146  unsigned NumElems = VT.getVectorNumElements();
5147  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5148  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5149  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5150
5151  // Skip one more bit_convert if necessary
5152  if (V.getOpcode() == ISD::BITCAST)
5153    V = V.getOperand(0);
5154
5155  if (ISD::isNormalLoad(V.getNode())) {
5156    // Is the original load suitable?
5157    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5158
5159    // FIXME: avoid the multi-use bug that is preventing lots of
5160    // of foldings to be detected, this is still wrong of course, but
5161    // give the temporary desired behavior, and if it happens that
5162    // the load has real more uses, during isel it will not fold, and
5163    // will generate poor code.
5164    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5165      return false;
5166
5167    if (!HasShuffleIntoBitcast)
5168      return true;
5169
5170    // If there's a bitcast before the shuffle, check if the load type and
5171    // alignment is valid.
5172    unsigned Align = LN0->getAlignment();
5173    unsigned NewAlign =
5174      TLI.getTargetData()->getABITypeAlignment(
5175                                    VT.getTypeForEVT(*DAG.getContext()));
5176
5177    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5178      return false;
5179  }
5180
5181  return true;
5182}
5183
5184static
5185SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5186  EVT VT = Op.getValueType();
5187
5188  // Canonizalize to v2f64.
5189  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5190  return DAG.getNode(ISD::BITCAST, dl, VT,
5191                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5192                                          V1, DAG));
5193}
5194
5195static
5196SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5197                        bool HasSSE2) {
5198  SDValue V1 = Op.getOperand(0);
5199  SDValue V2 = Op.getOperand(1);
5200  EVT VT = Op.getValueType();
5201
5202  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5203
5204  if (HasSSE2 && VT == MVT::v2f64)
5205    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5206
5207  // v4f32 or v4i32
5208  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5209}
5210
5211static
5212SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5213  SDValue V1 = Op.getOperand(0);
5214  SDValue V2 = Op.getOperand(1);
5215  EVT VT = Op.getValueType();
5216
5217  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5218         "unsupported shuffle type");
5219
5220  if (V2.getOpcode() == ISD::UNDEF)
5221    V2 = V1;
5222
5223  // v4i32 or v4f32
5224  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5225}
5226
5227static
5228SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5229  SDValue V1 = Op.getOperand(0);
5230  SDValue V2 = Op.getOperand(1);
5231  EVT VT = Op.getValueType();
5232  unsigned NumElems = VT.getVectorNumElements();
5233
5234  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5235  // operand of these instructions is only memory, so check if there's a
5236  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5237  // same masks.
5238  bool CanFoldLoad = false;
5239
5240  // Trivial case, when V2 comes from a load.
5241  if (MayFoldVectorLoad(V2))
5242    CanFoldLoad = true;
5243
5244  // When V1 is a load, it can be folded later into a store in isel, example:
5245  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5246  //    turns into:
5247  //  (MOVLPSmr addr:$src1, VR128:$src2)
5248  // So, recognize this potential and also use MOVLPS or MOVLPD
5249  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5250    CanFoldLoad = true;
5251
5252  if (CanFoldLoad) {
5253    if (HasSSE2 && NumElems == 2)
5254      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5255
5256    if (NumElems == 4)
5257      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5258  }
5259
5260  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5261  // movl and movlp will both match v2i64, but v2i64 is never matched by
5262  // movl earlier because we make it strict to avoid messing with the movlp load
5263  // folding logic (see the code above getMOVLP call). Match it here then,
5264  // this is horrible, but will stay like this until we move all shuffle
5265  // matching to x86 specific nodes. Note that for the 1st condition all
5266  // types are matched with movsd.
5267  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5268    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5269  else if (HasSSE2)
5270    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5271
5272
5273  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5274
5275  // Invert the operand order and use SHUFPS to match it.
5276  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5277                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5278}
5279
5280static inline unsigned getUNPCKLOpcode(EVT VT) {
5281  switch(VT.getSimpleVT().SimpleTy) {
5282  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5283  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5284  case MVT::v4f32: return X86ISD::UNPCKLPS;
5285  case MVT::v2f64: return X86ISD::UNPCKLPD;
5286  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5287  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5288  default:
5289    llvm_unreachable("Unknow type for unpckl");
5290  }
5291  return 0;
5292}
5293
5294static inline unsigned getUNPCKHOpcode(EVT VT) {
5295  switch(VT.getSimpleVT().SimpleTy) {
5296  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5297  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5298  case MVT::v4f32: return X86ISD::UNPCKHPS;
5299  case MVT::v2f64: return X86ISD::UNPCKHPD;
5300  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5301  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5302  default:
5303    llvm_unreachable("Unknow type for unpckh");
5304  }
5305  return 0;
5306}
5307
5308static
5309SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5310                               const TargetLowering &TLI,
5311                               const X86Subtarget *Subtarget) {
5312  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5313  EVT VT = Op.getValueType();
5314  DebugLoc dl = Op.getDebugLoc();
5315  SDValue V1 = Op.getOperand(0);
5316  SDValue V2 = Op.getOperand(1);
5317
5318  if (isZeroShuffle(SVOp))
5319    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5320
5321  // Handle splat operations
5322  if (SVOp->isSplat()) {
5323    // Special case, this is the only place now where it's
5324    // allowed to return a vector_shuffle operation without
5325    // using a target specific node, because *hopefully* it
5326    // will be optimized away by the dag combiner.
5327    if (VT.getVectorNumElements() <= 4 &&
5328        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5329      return Op;
5330
5331    // Handle splats by matching through known masks
5332    if (VT.getVectorNumElements() <= 4)
5333      return SDValue();
5334
5335    // Canonicalize all of the remaining to v4f32.
5336    return PromoteSplat(SVOp, DAG);
5337  }
5338
5339  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5340  // do it!
5341  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5342    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5343    if (NewOp.getNode())
5344      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5345  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5346    // FIXME: Figure out a cleaner way to do this.
5347    // Try to make use of movq to zero out the top part.
5348    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5349      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5350      if (NewOp.getNode()) {
5351        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5352          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5353                              DAG, Subtarget, dl);
5354      }
5355    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5356      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5357      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5358        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5359                            DAG, Subtarget, dl);
5360    }
5361  }
5362  return SDValue();
5363}
5364
5365SDValue
5366X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5367  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5368  SDValue V1 = Op.getOperand(0);
5369  SDValue V2 = Op.getOperand(1);
5370  EVT VT = Op.getValueType();
5371  DebugLoc dl = Op.getDebugLoc();
5372  unsigned NumElems = VT.getVectorNumElements();
5373  bool isMMX = VT.getSizeInBits() == 64;
5374  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5375  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5376  bool V1IsSplat = false;
5377  bool V2IsSplat = false;
5378  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5379  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5380  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5381  MachineFunction &MF = DAG.getMachineFunction();
5382  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5383
5384  // Shuffle operations on MMX not supported.
5385  if (isMMX)
5386    return Op;
5387
5388  // Vector shuffle lowering takes 3 steps:
5389  //
5390  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5391  //    narrowing and commutation of operands should be handled.
5392  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5393  //    shuffle nodes.
5394  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5395  //    so the shuffle can be broken into other shuffles and the legalizer can
5396  //    try the lowering again.
5397  //
5398  // The general ideia is that no vector_shuffle operation should be left to
5399  // be matched during isel, all of them must be converted to a target specific
5400  // node here.
5401
5402  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5403  // narrowing and commutation of operands should be handled. The actual code
5404  // doesn't include all of those, work in progress...
5405  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5406  if (NewOp.getNode())
5407    return NewOp;
5408
5409  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5410  // unpckh_undef). Only use pshufd if speed is more important than size.
5411  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5412    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5413      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5414  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5415    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5416      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5417
5418  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5419      RelaxedMayFoldVectorLoad(V1))
5420    return getMOVDDup(Op, dl, V1, DAG);
5421
5422  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5423    return getMOVHighToLow(Op, dl, DAG);
5424
5425  // Use to match splats
5426  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5427      (VT == MVT::v2f64 || VT == MVT::v2i64))
5428    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5429
5430  if (X86::isPSHUFDMask(SVOp)) {
5431    // The actual implementation will match the mask in the if above and then
5432    // during isel it can match several different instructions, not only pshufd
5433    // as its name says, sad but true, emulate the behavior for now...
5434    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5435        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5436
5437    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5438
5439    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5440      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5441
5442    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5443      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5444                                  TargetMask, DAG);
5445
5446    if (VT == MVT::v4f32)
5447      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5448                                  TargetMask, DAG);
5449  }
5450
5451  // Check if this can be converted into a logical shift.
5452  bool isLeft = false;
5453  unsigned ShAmt = 0;
5454  SDValue ShVal;
5455  bool isShift = getSubtarget()->hasSSE2() &&
5456    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5457  if (isShift && ShVal.hasOneUse()) {
5458    // If the shifted value has multiple uses, it may be cheaper to use
5459    // v_set0 + movlhps or movhlps, etc.
5460    EVT EltVT = VT.getVectorElementType();
5461    ShAmt *= EltVT.getSizeInBits();
5462    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5463  }
5464
5465  if (X86::isMOVLMask(SVOp)) {
5466    if (V1IsUndef)
5467      return V2;
5468    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5469      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5470    if (!X86::isMOVLPMask(SVOp)) {
5471      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5472        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5473
5474      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5475        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5476    }
5477  }
5478
5479  // FIXME: fold these into legal mask.
5480  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5481    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5482
5483  if (X86::isMOVHLPSMask(SVOp))
5484    return getMOVHighToLow(Op, dl, DAG);
5485
5486  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5487    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5488
5489  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5490    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5491
5492  if (X86::isMOVLPMask(SVOp))
5493    return getMOVLP(Op, dl, DAG, HasSSE2);
5494
5495  if (ShouldXformToMOVHLPS(SVOp) ||
5496      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5497    return CommuteVectorShuffle(SVOp, DAG);
5498
5499  if (isShift) {
5500    // No better options. Use a vshl / vsrl.
5501    EVT EltVT = VT.getVectorElementType();
5502    ShAmt *= EltVT.getSizeInBits();
5503    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5504  }
5505
5506  bool Commuted = false;
5507  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5508  // 1,1,1,1 -> v8i16 though.
5509  V1IsSplat = isSplatVector(V1.getNode());
5510  V2IsSplat = isSplatVector(V2.getNode());
5511
5512  // Canonicalize the splat or undef, if present, to be on the RHS.
5513  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5514    Op = CommuteVectorShuffle(SVOp, DAG);
5515    SVOp = cast<ShuffleVectorSDNode>(Op);
5516    V1 = SVOp->getOperand(0);
5517    V2 = SVOp->getOperand(1);
5518    std::swap(V1IsSplat, V2IsSplat);
5519    std::swap(V1IsUndef, V2IsUndef);
5520    Commuted = true;
5521  }
5522
5523  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5524    // Shuffling low element of v1 into undef, just return v1.
5525    if (V2IsUndef)
5526      return V1;
5527    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5528    // the instruction selector will not match, so get a canonical MOVL with
5529    // swapped operands to undo the commute.
5530    return getMOVL(DAG, dl, VT, V2, V1);
5531  }
5532
5533  if (X86::isUNPCKLMask(SVOp))
5534    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
5535
5536  if (X86::isUNPCKHMask(SVOp))
5537    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5538
5539  if (V2IsSplat) {
5540    // Normalize mask so all entries that point to V2 points to its first
5541    // element then try to match unpck{h|l} again. If match, return a
5542    // new vector_shuffle with the corrected mask.
5543    SDValue NewMask = NormalizeMask(SVOp, DAG);
5544    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5545    if (NSVOp != SVOp) {
5546      if (X86::isUNPCKLMask(NSVOp, true)) {
5547        return NewMask;
5548      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5549        return NewMask;
5550      }
5551    }
5552  }
5553
5554  if (Commuted) {
5555    // Commute is back and try unpck* again.
5556    // FIXME: this seems wrong.
5557    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5558    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5559
5560    if (X86::isUNPCKLMask(NewSVOp))
5561      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
5562
5563    if (X86::isUNPCKHMask(NewSVOp))
5564      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5565  }
5566
5567  // Normalize the node to match x86 shuffle ops if needed
5568  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5569    return CommuteVectorShuffle(SVOp, DAG);
5570
5571  // The checks below are all present in isShuffleMaskLegal, but they are
5572  // inlined here right now to enable us to directly emit target specific
5573  // nodes, and remove one by one until they don't return Op anymore.
5574  SmallVector<int, 16> M;
5575  SVOp->getMask(M);
5576
5577  if (isPALIGNRMask(M, VT, HasSSSE3))
5578    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5579                                X86::getShufflePALIGNRImmediate(SVOp),
5580                                DAG);
5581
5582  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5583      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5584    if (VT == MVT::v2f64)
5585      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
5586    if (VT == MVT::v2i64)
5587      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5588  }
5589
5590  if (isPSHUFHWMask(M, VT))
5591    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5592                                X86::getShufflePSHUFHWImmediate(SVOp),
5593                                DAG);
5594
5595  if (isPSHUFLWMask(M, VT))
5596    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5597                                X86::getShufflePSHUFLWImmediate(SVOp),
5598                                DAG);
5599
5600  if (isSHUFPMask(M, VT)) {
5601    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5602    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5603      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5604                                  TargetMask, DAG);
5605    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5606      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5607                                  TargetMask, DAG);
5608  }
5609
5610  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5611    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5612      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5613  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5614    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5615      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5616
5617  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5618  if (VT == MVT::v8i16) {
5619    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5620    if (NewOp.getNode())
5621      return NewOp;
5622  }
5623
5624  if (VT == MVT::v16i8) {
5625    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5626    if (NewOp.getNode())
5627      return NewOp;
5628  }
5629
5630  // Handle all 4 wide cases with a number of shuffles.
5631  if (NumElems == 4)
5632    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5633
5634  return SDValue();
5635}
5636
5637SDValue
5638X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5639                                                SelectionDAG &DAG) const {
5640  EVT VT = Op.getValueType();
5641  DebugLoc dl = Op.getDebugLoc();
5642  if (VT.getSizeInBits() == 8) {
5643    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5644                                    Op.getOperand(0), Op.getOperand(1));
5645    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5646                                    DAG.getValueType(VT));
5647    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5648  } else if (VT.getSizeInBits() == 16) {
5649    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5650    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5651    if (Idx == 0)
5652      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5653                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5654                                     DAG.getNode(ISD::BITCAST, dl,
5655                                                 MVT::v4i32,
5656                                                 Op.getOperand(0)),
5657                                     Op.getOperand(1)));
5658    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5659                                    Op.getOperand(0), Op.getOperand(1));
5660    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5661                                    DAG.getValueType(VT));
5662    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5663  } else if (VT == MVT::f32) {
5664    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5665    // the result back to FR32 register. It's only worth matching if the
5666    // result has a single use which is a store or a bitcast to i32.  And in
5667    // the case of a store, it's not worth it if the index is a constant 0,
5668    // because a MOVSSmr can be used instead, which is smaller and faster.
5669    if (!Op.hasOneUse())
5670      return SDValue();
5671    SDNode *User = *Op.getNode()->use_begin();
5672    if ((User->getOpcode() != ISD::STORE ||
5673         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5674          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5675        (User->getOpcode() != ISD::BITCAST ||
5676         User->getValueType(0) != MVT::i32))
5677      return SDValue();
5678    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5679                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5680                                              Op.getOperand(0)),
5681                                              Op.getOperand(1));
5682    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5683  } else if (VT == MVT::i32) {
5684    // ExtractPS works with constant index.
5685    if (isa<ConstantSDNode>(Op.getOperand(1)))
5686      return Op;
5687  }
5688  return SDValue();
5689}
5690
5691
5692SDValue
5693X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5694                                           SelectionDAG &DAG) const {
5695  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5696    return SDValue();
5697
5698  if (Subtarget->hasSSE41()) {
5699    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5700    if (Res.getNode())
5701      return Res;
5702  }
5703
5704  EVT VT = Op.getValueType();
5705  DebugLoc dl = Op.getDebugLoc();
5706  // TODO: handle v16i8.
5707  if (VT.getSizeInBits() == 16) {
5708    SDValue Vec = Op.getOperand(0);
5709    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5710    if (Idx == 0)
5711      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5712                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5713                                     DAG.getNode(ISD::BITCAST, dl,
5714                                                 MVT::v4i32, Vec),
5715                                     Op.getOperand(1)));
5716    // Transform it so it match pextrw which produces a 32-bit result.
5717    EVT EltVT = MVT::i32;
5718    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5719                                    Op.getOperand(0), Op.getOperand(1));
5720    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5721                                    DAG.getValueType(VT));
5722    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5723  } else if (VT.getSizeInBits() == 32) {
5724    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5725    if (Idx == 0)
5726      return Op;
5727
5728    // SHUFPS the element to the lowest double word, then movss.
5729    int Mask[4] = { Idx, -1, -1, -1 };
5730    EVT VVT = Op.getOperand(0).getValueType();
5731    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5732                                       DAG.getUNDEF(VVT), Mask);
5733    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5734                       DAG.getIntPtrConstant(0));
5735  } else if (VT.getSizeInBits() == 64) {
5736    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5737    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5738    //        to match extract_elt for f64.
5739    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5740    if (Idx == 0)
5741      return Op;
5742
5743    // UNPCKHPD the element to the lowest double word, then movsd.
5744    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5745    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5746    int Mask[2] = { 1, -1 };
5747    EVT VVT = Op.getOperand(0).getValueType();
5748    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5749                                       DAG.getUNDEF(VVT), Mask);
5750    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5751                       DAG.getIntPtrConstant(0));
5752  }
5753
5754  return SDValue();
5755}
5756
5757SDValue
5758X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5759                                               SelectionDAG &DAG) const {
5760  EVT VT = Op.getValueType();
5761  EVT EltVT = VT.getVectorElementType();
5762  DebugLoc dl = Op.getDebugLoc();
5763
5764  SDValue N0 = Op.getOperand(0);
5765  SDValue N1 = Op.getOperand(1);
5766  SDValue N2 = Op.getOperand(2);
5767
5768  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5769      isa<ConstantSDNode>(N2)) {
5770    unsigned Opc;
5771    if (VT == MVT::v8i16)
5772      Opc = X86ISD::PINSRW;
5773    else if (VT == MVT::v16i8)
5774      Opc = X86ISD::PINSRB;
5775    else
5776      Opc = X86ISD::PINSRB;
5777
5778    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5779    // argument.
5780    if (N1.getValueType() != MVT::i32)
5781      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5782    if (N2.getValueType() != MVT::i32)
5783      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5784    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5785  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5786    // Bits [7:6] of the constant are the source select.  This will always be
5787    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5788    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5789    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5790    // Bits [5:4] of the constant are the destination select.  This is the
5791    //  value of the incoming immediate.
5792    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5793    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5794    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5795    // Create this as a scalar to vector..
5796    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5797    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5798  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5799    // PINSR* works with constant index.
5800    return Op;
5801  }
5802  return SDValue();
5803}
5804
5805SDValue
5806X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5807  EVT VT = Op.getValueType();
5808  EVT EltVT = VT.getVectorElementType();
5809
5810  if (Subtarget->hasSSE41())
5811    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5812
5813  if (EltVT == MVT::i8)
5814    return SDValue();
5815
5816  DebugLoc dl = Op.getDebugLoc();
5817  SDValue N0 = Op.getOperand(0);
5818  SDValue N1 = Op.getOperand(1);
5819  SDValue N2 = Op.getOperand(2);
5820
5821  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5822    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5823    // as its second argument.
5824    if (N1.getValueType() != MVT::i32)
5825      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5826    if (N2.getValueType() != MVT::i32)
5827      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5828    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
5829  }
5830  return SDValue();
5831}
5832
5833SDValue
5834X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5835  DebugLoc dl = Op.getDebugLoc();
5836
5837  if (Op.getValueType() == MVT::v1i64 &&
5838      Op.getOperand(0).getValueType() == MVT::i64)
5839    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5840
5841  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5842  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
5843         "Expected an SSE type!");
5844  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
5845                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
5846}
5847
5848// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5849// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5850// one of the above mentioned nodes. It has to be wrapped because otherwise
5851// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5852// be used to form addressing mode. These wrapped nodes will be selected
5853// into MOV32ri.
5854SDValue
5855X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5856  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5857
5858  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5859  // global base reg.
5860  unsigned char OpFlag = 0;
5861  unsigned WrapperKind = X86ISD::Wrapper;
5862  CodeModel::Model M = getTargetMachine().getCodeModel();
5863
5864  if (Subtarget->isPICStyleRIPRel() &&
5865      (M == CodeModel::Small || M == CodeModel::Kernel))
5866    WrapperKind = X86ISD::WrapperRIP;
5867  else if (Subtarget->isPICStyleGOT())
5868    OpFlag = X86II::MO_GOTOFF;
5869  else if (Subtarget->isPICStyleStubPIC())
5870    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5871
5872  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5873                                             CP->getAlignment(),
5874                                             CP->getOffset(), OpFlag);
5875  DebugLoc DL = CP->getDebugLoc();
5876  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5877  // With PIC, the address is actually $g + Offset.
5878  if (OpFlag) {
5879    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5880                         DAG.getNode(X86ISD::GlobalBaseReg,
5881                                     DebugLoc(), getPointerTy()),
5882                         Result);
5883  }
5884
5885  return Result;
5886}
5887
5888SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5889  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5890
5891  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5892  // global base reg.
5893  unsigned char OpFlag = 0;
5894  unsigned WrapperKind = X86ISD::Wrapper;
5895  CodeModel::Model M = getTargetMachine().getCodeModel();
5896
5897  if (Subtarget->isPICStyleRIPRel() &&
5898      (M == CodeModel::Small || M == CodeModel::Kernel))
5899    WrapperKind = X86ISD::WrapperRIP;
5900  else if (Subtarget->isPICStyleGOT())
5901    OpFlag = X86II::MO_GOTOFF;
5902  else if (Subtarget->isPICStyleStubPIC())
5903    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5904
5905  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5906                                          OpFlag);
5907  DebugLoc DL = JT->getDebugLoc();
5908  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5909
5910  // With PIC, the address is actually $g + Offset.
5911  if (OpFlag)
5912    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5913                         DAG.getNode(X86ISD::GlobalBaseReg,
5914                                     DebugLoc(), getPointerTy()),
5915                         Result);
5916
5917  return Result;
5918}
5919
5920SDValue
5921X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5922  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5923
5924  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5925  // global base reg.
5926  unsigned char OpFlag = 0;
5927  unsigned WrapperKind = X86ISD::Wrapper;
5928  CodeModel::Model M = getTargetMachine().getCodeModel();
5929
5930  if (Subtarget->isPICStyleRIPRel() &&
5931      (M == CodeModel::Small || M == CodeModel::Kernel))
5932    WrapperKind = X86ISD::WrapperRIP;
5933  else if (Subtarget->isPICStyleGOT())
5934    OpFlag = X86II::MO_GOTOFF;
5935  else if (Subtarget->isPICStyleStubPIC())
5936    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5937
5938  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5939
5940  DebugLoc DL = Op.getDebugLoc();
5941  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5942
5943
5944  // With PIC, the address is actually $g + Offset.
5945  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5946      !Subtarget->is64Bit()) {
5947    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5948                         DAG.getNode(X86ISD::GlobalBaseReg,
5949                                     DebugLoc(), getPointerTy()),
5950                         Result);
5951  }
5952
5953  return Result;
5954}
5955
5956SDValue
5957X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5958  // Create the TargetBlockAddressAddress node.
5959  unsigned char OpFlags =
5960    Subtarget->ClassifyBlockAddressReference();
5961  CodeModel::Model M = getTargetMachine().getCodeModel();
5962  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5963  DebugLoc dl = Op.getDebugLoc();
5964  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5965                                       /*isTarget=*/true, OpFlags);
5966
5967  if (Subtarget->isPICStyleRIPRel() &&
5968      (M == CodeModel::Small || M == CodeModel::Kernel))
5969    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5970  else
5971    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5972
5973  // With PIC, the address is actually $g + Offset.
5974  if (isGlobalRelativeToPICBase(OpFlags)) {
5975    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5976                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5977                         Result);
5978  }
5979
5980  return Result;
5981}
5982
5983SDValue
5984X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5985                                      int64_t Offset,
5986                                      SelectionDAG &DAG) const {
5987  // Create the TargetGlobalAddress node, folding in the constant
5988  // offset if it is legal.
5989  unsigned char OpFlags =
5990    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5991  CodeModel::Model M = getTargetMachine().getCodeModel();
5992  SDValue Result;
5993  if (OpFlags == X86II::MO_NO_FLAG &&
5994      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5995    // A direct static reference to a global.
5996    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5997    Offset = 0;
5998  } else {
5999    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6000  }
6001
6002  if (Subtarget->isPICStyleRIPRel() &&
6003      (M == CodeModel::Small || M == CodeModel::Kernel))
6004    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6005  else
6006    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6007
6008  // With PIC, the address is actually $g + Offset.
6009  if (isGlobalRelativeToPICBase(OpFlags)) {
6010    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6011                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6012                         Result);
6013  }
6014
6015  // For globals that require a load from a stub to get the address, emit the
6016  // load.
6017  if (isGlobalStubReference(OpFlags))
6018    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6019                         MachinePointerInfo::getGOT(), false, false, 0);
6020
6021  // If there was a non-zero offset that we didn't fold, create an explicit
6022  // addition for it.
6023  if (Offset != 0)
6024    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6025                         DAG.getConstant(Offset, getPointerTy()));
6026
6027  return Result;
6028}
6029
6030SDValue
6031X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6032  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6033  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6034  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6035}
6036
6037static SDValue
6038GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6039           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6040           unsigned char OperandFlags) {
6041  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6042  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6043  DebugLoc dl = GA->getDebugLoc();
6044  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6045                                           GA->getValueType(0),
6046                                           GA->getOffset(),
6047                                           OperandFlags);
6048  if (InFlag) {
6049    SDValue Ops[] = { Chain,  TGA, *InFlag };
6050    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6051  } else {
6052    SDValue Ops[]  = { Chain, TGA };
6053    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6054  }
6055
6056  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6057  MFI->setAdjustsStack(true);
6058
6059  SDValue Flag = Chain.getValue(1);
6060  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6061}
6062
6063// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6064static SDValue
6065LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6066                                const EVT PtrVT) {
6067  SDValue InFlag;
6068  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6069  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6070                                     DAG.getNode(X86ISD::GlobalBaseReg,
6071                                                 DebugLoc(), PtrVT), InFlag);
6072  InFlag = Chain.getValue(1);
6073
6074  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6075}
6076
6077// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6078static SDValue
6079LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6080                                const EVT PtrVT) {
6081  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6082                    X86::RAX, X86II::MO_TLSGD);
6083}
6084
6085// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6086// "local exec" model.
6087static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6088                                   const EVT PtrVT, TLSModel::Model model,
6089                                   bool is64Bit) {
6090  DebugLoc dl = GA->getDebugLoc();
6091
6092  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6093  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6094                                                         is64Bit ? 257 : 256));
6095
6096  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6097                                      DAG.getIntPtrConstant(0),
6098                                      MachinePointerInfo(Ptr), false, false, 0);
6099
6100  unsigned char OperandFlags = 0;
6101  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6102  // initialexec.
6103  unsigned WrapperKind = X86ISD::Wrapper;
6104  if (model == TLSModel::LocalExec) {
6105    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6106  } else if (is64Bit) {
6107    assert(model == TLSModel::InitialExec);
6108    OperandFlags = X86II::MO_GOTTPOFF;
6109    WrapperKind = X86ISD::WrapperRIP;
6110  } else {
6111    assert(model == TLSModel::InitialExec);
6112    OperandFlags = X86II::MO_INDNTPOFF;
6113  }
6114
6115  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6116  // exec)
6117  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6118                                           GA->getValueType(0),
6119                                           GA->getOffset(), OperandFlags);
6120  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6121
6122  if (model == TLSModel::InitialExec)
6123    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6124                         MachinePointerInfo::getGOT(), false, false, 0);
6125
6126  // The address of the thread local variable is the add of the thread
6127  // pointer with the offset of the variable.
6128  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6129}
6130
6131SDValue
6132X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6133
6134  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6135  const GlobalValue *GV = GA->getGlobal();
6136
6137  if (Subtarget->isTargetELF()) {
6138    // TODO: implement the "local dynamic" model
6139    // TODO: implement the "initial exec"model for pic executables
6140
6141    // If GV is an alias then use the aliasee for determining
6142    // thread-localness.
6143    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6144      GV = GA->resolveAliasedGlobal(false);
6145
6146    TLSModel::Model model
6147      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6148
6149    switch (model) {
6150      case TLSModel::GeneralDynamic:
6151      case TLSModel::LocalDynamic: // not implemented
6152        if (Subtarget->is64Bit())
6153          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6154        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6155
6156      case TLSModel::InitialExec:
6157      case TLSModel::LocalExec:
6158        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6159                                   Subtarget->is64Bit());
6160    }
6161  } else if (Subtarget->isTargetDarwin()) {
6162    // Darwin only has one model of TLS.  Lower to that.
6163    unsigned char OpFlag = 0;
6164    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6165                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6166
6167    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6168    // global base reg.
6169    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6170                  !Subtarget->is64Bit();
6171    if (PIC32)
6172      OpFlag = X86II::MO_TLVP_PIC_BASE;
6173    else
6174      OpFlag = X86II::MO_TLVP;
6175    DebugLoc DL = Op.getDebugLoc();
6176    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6177                                                GA->getValueType(0),
6178                                                GA->getOffset(), OpFlag);
6179    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6180
6181    // With PIC32, the address is actually $g + Offset.
6182    if (PIC32)
6183      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6184                           DAG.getNode(X86ISD::GlobalBaseReg,
6185                                       DebugLoc(), getPointerTy()),
6186                           Offset);
6187
6188    // Lowering the machine isd will make sure everything is in the right
6189    // location.
6190    SDValue Chain = DAG.getEntryNode();
6191    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6192    SDValue Args[] = { Chain, Offset };
6193    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6194
6195    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6196    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6197    MFI->setAdjustsStack(true);
6198
6199    // And our return value (tls address) is in the standard call return value
6200    // location.
6201    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6202    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6203  }
6204
6205  assert(false &&
6206         "TLS not implemented for this target.");
6207
6208  llvm_unreachable("Unreachable");
6209  return SDValue();
6210}
6211
6212
6213/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6214/// take a 2 x i32 value to shift plus a shift amount.
6215SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6216  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6217  EVT VT = Op.getValueType();
6218  unsigned VTBits = VT.getSizeInBits();
6219  DebugLoc dl = Op.getDebugLoc();
6220  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6221  SDValue ShOpLo = Op.getOperand(0);
6222  SDValue ShOpHi = Op.getOperand(1);
6223  SDValue ShAmt  = Op.getOperand(2);
6224  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6225                                     DAG.getConstant(VTBits - 1, MVT::i8))
6226                       : DAG.getConstant(0, VT);
6227
6228  SDValue Tmp2, Tmp3;
6229  if (Op.getOpcode() == ISD::SHL_PARTS) {
6230    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6231    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6232  } else {
6233    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6234    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6235  }
6236
6237  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6238                                DAG.getConstant(VTBits, MVT::i8));
6239  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6240                             AndNode, DAG.getConstant(0, MVT::i8));
6241
6242  SDValue Hi, Lo;
6243  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6244  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6245  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6246
6247  if (Op.getOpcode() == ISD::SHL_PARTS) {
6248    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6249    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6250  } else {
6251    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6252    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6253  }
6254
6255  SDValue Ops[2] = { Lo, Hi };
6256  return DAG.getMergeValues(Ops, 2, dl);
6257}
6258
6259SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6260                                           SelectionDAG &DAG) const {
6261  EVT SrcVT = Op.getOperand(0).getValueType();
6262
6263  if (SrcVT.isVector())
6264    return SDValue();
6265
6266  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6267         "Unknown SINT_TO_FP to lower!");
6268
6269  // These are really Legal; return the operand so the caller accepts it as
6270  // Legal.
6271  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6272    return Op;
6273  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6274      Subtarget->is64Bit()) {
6275    return Op;
6276  }
6277
6278  DebugLoc dl = Op.getDebugLoc();
6279  unsigned Size = SrcVT.getSizeInBits()/8;
6280  MachineFunction &MF = DAG.getMachineFunction();
6281  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6282  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6283  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6284                               StackSlot,
6285                               MachinePointerInfo::getFixedStack(SSFI),
6286                               false, false, 0);
6287  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6288}
6289
6290SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6291                                     SDValue StackSlot,
6292                                     SelectionDAG &DAG) const {
6293  // Build the FILD
6294  DebugLoc DL = Op.getDebugLoc();
6295  SDVTList Tys;
6296  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6297  if (useSSE)
6298    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
6299  else
6300    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6301
6302  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6303
6304  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6305  MachineMemOperand *MMO =
6306    DAG.getMachineFunction()
6307    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6308                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6309
6310  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6311  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6312                                           X86ISD::FILD, DL,
6313                                           Tys, Ops, array_lengthof(Ops),
6314                                           SrcVT, MMO);
6315
6316  if (useSSE) {
6317    Chain = Result.getValue(1);
6318    SDValue InFlag = Result.getValue(2);
6319
6320    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6321    // shouldn't be necessary except that RFP cannot be live across
6322    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6323    MachineFunction &MF = DAG.getMachineFunction();
6324    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6325    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6326    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6327    Tys = DAG.getVTList(MVT::Other);
6328    SDValue Ops[] = {
6329      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6330    };
6331    MachineMemOperand *MMO =
6332      DAG.getMachineFunction()
6333      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6334                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6335
6336    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6337                                    Ops, array_lengthof(Ops),
6338                                    Op.getValueType(), MMO);
6339    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6340                         MachinePointerInfo::getFixedStack(SSFI),
6341                         false, false, 0);
6342  }
6343
6344  return Result;
6345}
6346
6347// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6348SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6349                                               SelectionDAG &DAG) const {
6350  // This algorithm is not obvious. Here it is in C code, more or less:
6351  /*
6352    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6353      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6354      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6355
6356      // Copy ints to xmm registers.
6357      __m128i xh = _mm_cvtsi32_si128( hi );
6358      __m128i xl = _mm_cvtsi32_si128( lo );
6359
6360      // Combine into low half of a single xmm register.
6361      __m128i x = _mm_unpacklo_epi32( xh, xl );
6362      __m128d d;
6363      double sd;
6364
6365      // Merge in appropriate exponents to give the integer bits the right
6366      // magnitude.
6367      x = _mm_unpacklo_epi32( x, exp );
6368
6369      // Subtract away the biases to deal with the IEEE-754 double precision
6370      // implicit 1.
6371      d = _mm_sub_pd( (__m128d) x, bias );
6372
6373      // All conversions up to here are exact. The correctly rounded result is
6374      // calculated using the current rounding mode using the following
6375      // horizontal add.
6376      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6377      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6378                                // store doesn't really need to be here (except
6379                                // maybe to zero the other double)
6380      return sd;
6381    }
6382  */
6383
6384  DebugLoc dl = Op.getDebugLoc();
6385  LLVMContext *Context = DAG.getContext();
6386
6387  // Build some magic constants.
6388  std::vector<Constant*> CV0;
6389  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6390  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6391  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6392  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6393  Constant *C0 = ConstantVector::get(CV0);
6394  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6395
6396  std::vector<Constant*> CV1;
6397  CV1.push_back(
6398    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6399  CV1.push_back(
6400    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6401  Constant *C1 = ConstantVector::get(CV1);
6402  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6403
6404  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6405                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6406                                        Op.getOperand(0),
6407                                        DAG.getIntPtrConstant(1)));
6408  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6409                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6410                                        Op.getOperand(0),
6411                                        DAG.getIntPtrConstant(0)));
6412  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6413  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6414                              MachinePointerInfo::getConstantPool(),
6415                              false, false, 16);
6416  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6417  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6418  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6419                              MachinePointerInfo::getConstantPool(),
6420                              false, false, 16);
6421  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6422
6423  // Add the halves; easiest way is to swap them into another reg first.
6424  int ShufMask[2] = { 1, -1 };
6425  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6426                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6427  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6428  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6429                     DAG.getIntPtrConstant(0));
6430}
6431
6432// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6433SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6434                                               SelectionDAG &DAG) const {
6435  DebugLoc dl = Op.getDebugLoc();
6436  // FP constant to bias correct the final result.
6437  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6438                                   MVT::f64);
6439
6440  // Load the 32-bit value into an XMM register.
6441  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6442                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6443                                         Op.getOperand(0),
6444                                         DAG.getIntPtrConstant(0)));
6445
6446  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6447                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6448                     DAG.getIntPtrConstant(0));
6449
6450  // Or the load with the bias.
6451  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6452                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6453                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6454                                                   MVT::v2f64, Load)),
6455                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6456                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6457                                                   MVT::v2f64, Bias)));
6458  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6459                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6460                   DAG.getIntPtrConstant(0));
6461
6462  // Subtract the bias.
6463  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6464
6465  // Handle final rounding.
6466  EVT DestVT = Op.getValueType();
6467
6468  if (DestVT.bitsLT(MVT::f64)) {
6469    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6470                       DAG.getIntPtrConstant(0));
6471  } else if (DestVT.bitsGT(MVT::f64)) {
6472    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6473  }
6474
6475  // Handle final rounding.
6476  return Sub;
6477}
6478
6479SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6480                                           SelectionDAG &DAG) const {
6481  SDValue N0 = Op.getOperand(0);
6482  DebugLoc dl = Op.getDebugLoc();
6483
6484  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6485  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6486  // the optimization here.
6487  if (DAG.SignBitIsZero(N0))
6488    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6489
6490  EVT SrcVT = N0.getValueType();
6491  EVT DstVT = Op.getValueType();
6492  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6493    return LowerUINT_TO_FP_i64(Op, DAG);
6494  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6495    return LowerUINT_TO_FP_i32(Op, DAG);
6496
6497  // Make a 64-bit buffer, and use it to build an FILD.
6498  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6499  if (SrcVT == MVT::i32) {
6500    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6501    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6502                                     getPointerTy(), StackSlot, WordOff);
6503    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6504                                  StackSlot, MachinePointerInfo(),
6505                                  false, false, 0);
6506    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6507                                  OffsetSlot, MachinePointerInfo(),
6508                                  false, false, 0);
6509    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6510    return Fild;
6511  }
6512
6513  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6514  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6515                                StackSlot, MachinePointerInfo(),
6516                               false, false, 0);
6517  // For i64 source, we need to add the appropriate power of 2 if the input
6518  // was negative.  This is the same as the optimization in
6519  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6520  // we must be careful to do the computation in x87 extended precision, not
6521  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6522  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6523  MachineMemOperand *MMO =
6524    DAG.getMachineFunction()
6525    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6526                          MachineMemOperand::MOLoad, 8, 8);
6527
6528  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6529  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6530  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6531                                         MVT::i64, MMO);
6532
6533  APInt FF(32, 0x5F800000ULL);
6534
6535  // Check whether the sign bit is set.
6536  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6537                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6538                                 ISD::SETLT);
6539
6540  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6541  SDValue FudgePtr = DAG.getConstantPool(
6542                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6543                                         getPointerTy());
6544
6545  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6546  SDValue Zero = DAG.getIntPtrConstant(0);
6547  SDValue Four = DAG.getIntPtrConstant(4);
6548  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6549                               Zero, Four);
6550  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6551
6552  // Load the value out, extending it from f32 to f80.
6553  // FIXME: Avoid the extend by constructing the right constant pool?
6554  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6555                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6556                                 MVT::f32, false, false, 4);
6557  // Extend everything to 80 bits to force it to be done on x87.
6558  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6559  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6560}
6561
6562std::pair<SDValue,SDValue> X86TargetLowering::
6563FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6564  DebugLoc DL = Op.getDebugLoc();
6565
6566  EVT DstTy = Op.getValueType();
6567
6568  if (!IsSigned) {
6569    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6570    DstTy = MVT::i64;
6571  }
6572
6573  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6574         DstTy.getSimpleVT() >= MVT::i16 &&
6575         "Unknown FP_TO_SINT to lower!");
6576
6577  // These are really Legal.
6578  if (DstTy == MVT::i32 &&
6579      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6580    return std::make_pair(SDValue(), SDValue());
6581  if (Subtarget->is64Bit() &&
6582      DstTy == MVT::i64 &&
6583      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6584    return std::make_pair(SDValue(), SDValue());
6585
6586  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6587  // stack slot.
6588  MachineFunction &MF = DAG.getMachineFunction();
6589  unsigned MemSize = DstTy.getSizeInBits()/8;
6590  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6591  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6592
6593
6594
6595  unsigned Opc;
6596  switch (DstTy.getSimpleVT().SimpleTy) {
6597  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6598  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6599  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6600  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6601  }
6602
6603  SDValue Chain = DAG.getEntryNode();
6604  SDValue Value = Op.getOperand(0);
6605  EVT TheVT = Op.getOperand(0).getValueType();
6606  if (isScalarFPTypeInSSEReg(TheVT)) {
6607    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6608    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
6609                         MachinePointerInfo::getFixedStack(SSFI),
6610                         false, false, 0);
6611    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6612    SDValue Ops[] = {
6613      Chain, StackSlot, DAG.getValueType(TheVT)
6614    };
6615
6616    MachineMemOperand *MMO =
6617      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6618                              MachineMemOperand::MOLoad, MemSize, MemSize);
6619    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
6620                                    DstTy, MMO);
6621    Chain = Value.getValue(1);
6622    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6623    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6624  }
6625
6626  MachineMemOperand *MMO =
6627    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6628                            MachineMemOperand::MOStore, MemSize, MemSize);
6629
6630  // Build the FP_TO_INT*_IN_MEM
6631  SDValue Ops[] = { Chain, Value, StackSlot };
6632  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
6633                                         Ops, 3, DstTy, MMO);
6634
6635  return std::make_pair(FIST, StackSlot);
6636}
6637
6638SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6639                                           SelectionDAG &DAG) const {
6640  if (Op.getValueType().isVector())
6641    return SDValue();
6642
6643  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6644  SDValue FIST = Vals.first, StackSlot = Vals.second;
6645  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6646  if (FIST.getNode() == 0) return Op;
6647
6648  // Load the result.
6649  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6650                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6651}
6652
6653SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6654                                           SelectionDAG &DAG) const {
6655  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6656  SDValue FIST = Vals.first, StackSlot = Vals.second;
6657  assert(FIST.getNode() && "Unexpected failure");
6658
6659  // Load the result.
6660  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6661                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6662}
6663
6664SDValue X86TargetLowering::LowerFABS(SDValue Op,
6665                                     SelectionDAG &DAG) const {
6666  LLVMContext *Context = DAG.getContext();
6667  DebugLoc dl = Op.getDebugLoc();
6668  EVT VT = Op.getValueType();
6669  EVT EltVT = VT;
6670  if (VT.isVector())
6671    EltVT = VT.getVectorElementType();
6672  std::vector<Constant*> CV;
6673  if (EltVT == MVT::f64) {
6674    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6675    CV.push_back(C);
6676    CV.push_back(C);
6677  } else {
6678    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6679    CV.push_back(C);
6680    CV.push_back(C);
6681    CV.push_back(C);
6682    CV.push_back(C);
6683  }
6684  Constant *C = ConstantVector::get(CV);
6685  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6686  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6687                             MachinePointerInfo::getConstantPool(),
6688                             false, false, 16);
6689  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6690}
6691
6692SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6693  LLVMContext *Context = DAG.getContext();
6694  DebugLoc dl = Op.getDebugLoc();
6695  EVT VT = Op.getValueType();
6696  EVT EltVT = VT;
6697  if (VT.isVector())
6698    EltVT = VT.getVectorElementType();
6699  std::vector<Constant*> CV;
6700  if (EltVT == MVT::f64) {
6701    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6702    CV.push_back(C);
6703    CV.push_back(C);
6704  } else {
6705    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6706    CV.push_back(C);
6707    CV.push_back(C);
6708    CV.push_back(C);
6709    CV.push_back(C);
6710  }
6711  Constant *C = ConstantVector::get(CV);
6712  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6713  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6714                             MachinePointerInfo::getConstantPool(),
6715                             false, false, 16);
6716  if (VT.isVector()) {
6717    return DAG.getNode(ISD::BITCAST, dl, VT,
6718                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6719                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6720                                Op.getOperand(0)),
6721                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
6722  } else {
6723    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6724  }
6725}
6726
6727SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6728  LLVMContext *Context = DAG.getContext();
6729  SDValue Op0 = Op.getOperand(0);
6730  SDValue Op1 = Op.getOperand(1);
6731  DebugLoc dl = Op.getDebugLoc();
6732  EVT VT = Op.getValueType();
6733  EVT SrcVT = Op1.getValueType();
6734
6735  // If second operand is smaller, extend it first.
6736  if (SrcVT.bitsLT(VT)) {
6737    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6738    SrcVT = VT;
6739  }
6740  // And if it is bigger, shrink it first.
6741  if (SrcVT.bitsGT(VT)) {
6742    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6743    SrcVT = VT;
6744  }
6745
6746  // At this point the operands and the result should have the same
6747  // type, and that won't be f80 since that is not custom lowered.
6748
6749  // First get the sign bit of second operand.
6750  std::vector<Constant*> CV;
6751  if (SrcVT == MVT::f64) {
6752    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6753    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6754  } else {
6755    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6756    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6757    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6758    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6759  }
6760  Constant *C = ConstantVector::get(CV);
6761  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6762  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6763                              MachinePointerInfo::getConstantPool(),
6764                              false, false, 16);
6765  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6766
6767  // Shift sign bit right or left if the two operands have different types.
6768  if (SrcVT.bitsGT(VT)) {
6769    // Op0 is MVT::f32, Op1 is MVT::f64.
6770    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6771    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6772                          DAG.getConstant(32, MVT::i32));
6773    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
6774    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6775                          DAG.getIntPtrConstant(0));
6776  }
6777
6778  // Clear first operand sign bit.
6779  CV.clear();
6780  if (VT == MVT::f64) {
6781    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6782    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6783  } else {
6784    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6785    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6786    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6787    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6788  }
6789  C = ConstantVector::get(CV);
6790  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6791  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6792                              MachinePointerInfo::getConstantPool(),
6793                              false, false, 16);
6794  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6795
6796  // Or the value with the sign bit.
6797  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6798}
6799
6800/// Emit nodes that will be selected as "test Op0,Op0", or something
6801/// equivalent.
6802SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6803                                    SelectionDAG &DAG) const {
6804  DebugLoc dl = Op.getDebugLoc();
6805
6806  // CF and OF aren't always set the way we want. Determine which
6807  // of these we need.
6808  bool NeedCF = false;
6809  bool NeedOF = false;
6810  switch (X86CC) {
6811  default: break;
6812  case X86::COND_A: case X86::COND_AE:
6813  case X86::COND_B: case X86::COND_BE:
6814    NeedCF = true;
6815    break;
6816  case X86::COND_G: case X86::COND_GE:
6817  case X86::COND_L: case X86::COND_LE:
6818  case X86::COND_O: case X86::COND_NO:
6819    NeedOF = true;
6820    break;
6821  }
6822
6823  // See if we can use the EFLAGS value from the operand instead of
6824  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6825  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6826  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6827    // Emit a CMP with 0, which is the TEST pattern.
6828    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6829                       DAG.getConstant(0, Op.getValueType()));
6830
6831  unsigned Opcode = 0;
6832  unsigned NumOperands = 0;
6833  switch (Op.getNode()->getOpcode()) {
6834  case ISD::ADD:
6835    // Due to an isel shortcoming, be conservative if this add is likely to be
6836    // selected as part of a load-modify-store instruction. When the root node
6837    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6838    // uses of other nodes in the match, such as the ADD in this case. This
6839    // leads to the ADD being left around and reselected, with the result being
6840    // two adds in the output.  Alas, even if none our users are stores, that
6841    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6842    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6843    // climbing the DAG back to the root, and it doesn't seem to be worth the
6844    // effort.
6845    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6846           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6847      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6848        goto default_case;
6849
6850    if (ConstantSDNode *C =
6851        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6852      // An add of one will be selected as an INC.
6853      if (C->getAPIntValue() == 1) {
6854        Opcode = X86ISD::INC;
6855        NumOperands = 1;
6856        break;
6857      }
6858
6859      // An add of negative one (subtract of one) will be selected as a DEC.
6860      if (C->getAPIntValue().isAllOnesValue()) {
6861        Opcode = X86ISD::DEC;
6862        NumOperands = 1;
6863        break;
6864      }
6865    }
6866
6867    // Otherwise use a regular EFLAGS-setting add.
6868    Opcode = X86ISD::ADD;
6869    NumOperands = 2;
6870    break;
6871  case ISD::AND: {
6872    // If the primary and result isn't used, don't bother using X86ISD::AND,
6873    // because a TEST instruction will be better.
6874    bool NonFlagUse = false;
6875    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6876           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6877      SDNode *User = *UI;
6878      unsigned UOpNo = UI.getOperandNo();
6879      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6880        // Look pass truncate.
6881        UOpNo = User->use_begin().getOperandNo();
6882        User = *User->use_begin();
6883      }
6884
6885      if (User->getOpcode() != ISD::BRCOND &&
6886          User->getOpcode() != ISD::SETCC &&
6887          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6888        NonFlagUse = true;
6889        break;
6890      }
6891    }
6892
6893    if (!NonFlagUse)
6894      break;
6895  }
6896    // FALL THROUGH
6897  case ISD::SUB:
6898  case ISD::OR:
6899  case ISD::XOR:
6900    // Due to the ISEL shortcoming noted above, be conservative if this op is
6901    // likely to be selected as part of a load-modify-store instruction.
6902    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6903           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6904      if (UI->getOpcode() == ISD::STORE)
6905        goto default_case;
6906
6907    // Otherwise use a regular EFLAGS-setting instruction.
6908    switch (Op.getNode()->getOpcode()) {
6909    default: llvm_unreachable("unexpected operator!");
6910    case ISD::SUB: Opcode = X86ISD::SUB; break;
6911    case ISD::OR:  Opcode = X86ISD::OR;  break;
6912    case ISD::XOR: Opcode = X86ISD::XOR; break;
6913    case ISD::AND: Opcode = X86ISD::AND; break;
6914    }
6915
6916    NumOperands = 2;
6917    break;
6918  case X86ISD::ADD:
6919  case X86ISD::SUB:
6920  case X86ISD::INC:
6921  case X86ISD::DEC:
6922  case X86ISD::OR:
6923  case X86ISD::XOR:
6924  case X86ISD::AND:
6925    return SDValue(Op.getNode(), 1);
6926  default:
6927  default_case:
6928    break;
6929  }
6930
6931  if (Opcode == 0)
6932    // Emit a CMP with 0, which is the TEST pattern.
6933    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6934                       DAG.getConstant(0, Op.getValueType()));
6935
6936  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6937  SmallVector<SDValue, 4> Ops;
6938  for (unsigned i = 0; i != NumOperands; ++i)
6939    Ops.push_back(Op.getOperand(i));
6940
6941  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6942  DAG.ReplaceAllUsesWith(Op, New);
6943  return SDValue(New.getNode(), 1);
6944}
6945
6946/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6947/// equivalent.
6948SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6949                                   SelectionDAG &DAG) const {
6950  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6951    if (C->getAPIntValue() == 0)
6952      return EmitTest(Op0, X86CC, DAG);
6953
6954  DebugLoc dl = Op0.getDebugLoc();
6955  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6956}
6957
6958/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6959/// if it's possible.
6960SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6961                                     DebugLoc dl, SelectionDAG &DAG) const {
6962  SDValue Op0 = And.getOperand(0);
6963  SDValue Op1 = And.getOperand(1);
6964  if (Op0.getOpcode() == ISD::TRUNCATE)
6965    Op0 = Op0.getOperand(0);
6966  if (Op1.getOpcode() == ISD::TRUNCATE)
6967    Op1 = Op1.getOperand(0);
6968
6969  SDValue LHS, RHS;
6970  if (Op1.getOpcode() == ISD::SHL)
6971    std::swap(Op0, Op1);
6972  if (Op0.getOpcode() == ISD::SHL) {
6973    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6974      if (And00C->getZExtValue() == 1) {
6975        // If we looked past a truncate, check that it's only truncating away
6976        // known zeros.
6977        unsigned BitWidth = Op0.getValueSizeInBits();
6978        unsigned AndBitWidth = And.getValueSizeInBits();
6979        if (BitWidth > AndBitWidth) {
6980          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6981          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6982          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6983            return SDValue();
6984        }
6985        LHS = Op1;
6986        RHS = Op0.getOperand(1);
6987      }
6988  } else if (Op1.getOpcode() == ISD::Constant) {
6989    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6990    SDValue AndLHS = Op0;
6991    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6992      LHS = AndLHS.getOperand(0);
6993      RHS = AndLHS.getOperand(1);
6994    }
6995  }
6996
6997  if (LHS.getNode()) {
6998    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6999    // instruction.  Since the shift amount is in-range-or-undefined, we know
7000    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7001    // the encoding for the i16 version is larger than the i32 version.
7002    // Also promote i16 to i32 for performance / code size reason.
7003    if (LHS.getValueType() == MVT::i8 ||
7004        LHS.getValueType() == MVT::i16)
7005      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7006
7007    // If the operand types disagree, extend the shift amount to match.  Since
7008    // BT ignores high bits (like shifts) we can use anyextend.
7009    if (LHS.getValueType() != RHS.getValueType())
7010      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7011
7012    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7013    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7014    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7015                       DAG.getConstant(Cond, MVT::i8), BT);
7016  }
7017
7018  return SDValue();
7019}
7020
7021SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7022  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7023  SDValue Op0 = Op.getOperand(0);
7024  SDValue Op1 = Op.getOperand(1);
7025  DebugLoc dl = Op.getDebugLoc();
7026  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7027
7028  // Optimize to BT if possible.
7029  // Lower (X & (1 << N)) == 0 to BT(X, N).
7030  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7031  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7032  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7033      Op1.getOpcode() == ISD::Constant &&
7034      cast<ConstantSDNode>(Op1)->isNullValue() &&
7035      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7036    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7037    if (NewSetCC.getNode())
7038      return NewSetCC;
7039  }
7040
7041  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7042  // these.
7043  if (Op1.getOpcode() == ISD::Constant &&
7044      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7045       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7046      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7047
7048    // If the input is a setcc, then reuse the input setcc or use a new one with
7049    // the inverted condition.
7050    if (Op0.getOpcode() == X86ISD::SETCC) {
7051      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7052      bool Invert = (CC == ISD::SETNE) ^
7053        cast<ConstantSDNode>(Op1)->isNullValue();
7054      if (!Invert) return Op0;
7055
7056      CCode = X86::GetOppositeBranchCondition(CCode);
7057      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7058                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7059    }
7060  }
7061
7062  bool isFP = Op1.getValueType().isFloatingPoint();
7063  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7064  if (X86CC == X86::COND_INVALID)
7065    return SDValue();
7066
7067  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7068  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7069                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7070}
7071
7072SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7073  SDValue Cond;
7074  SDValue Op0 = Op.getOperand(0);
7075  SDValue Op1 = Op.getOperand(1);
7076  SDValue CC = Op.getOperand(2);
7077  EVT VT = Op.getValueType();
7078  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7079  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7080  DebugLoc dl = Op.getDebugLoc();
7081
7082  if (isFP) {
7083    unsigned SSECC = 8;
7084    EVT VT0 = Op0.getValueType();
7085    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7086    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7087    bool Swap = false;
7088
7089    switch (SetCCOpcode) {
7090    default: break;
7091    case ISD::SETOEQ:
7092    case ISD::SETEQ:  SSECC = 0; break;
7093    case ISD::SETOGT:
7094    case ISD::SETGT: Swap = true; // Fallthrough
7095    case ISD::SETLT:
7096    case ISD::SETOLT: SSECC = 1; break;
7097    case ISD::SETOGE:
7098    case ISD::SETGE: Swap = true; // Fallthrough
7099    case ISD::SETLE:
7100    case ISD::SETOLE: SSECC = 2; break;
7101    case ISD::SETUO:  SSECC = 3; break;
7102    case ISD::SETUNE:
7103    case ISD::SETNE:  SSECC = 4; break;
7104    case ISD::SETULE: Swap = true;
7105    case ISD::SETUGE: SSECC = 5; break;
7106    case ISD::SETULT: Swap = true;
7107    case ISD::SETUGT: SSECC = 6; break;
7108    case ISD::SETO:   SSECC = 7; break;
7109    }
7110    if (Swap)
7111      std::swap(Op0, Op1);
7112
7113    // In the two special cases we can't handle, emit two comparisons.
7114    if (SSECC == 8) {
7115      if (SetCCOpcode == ISD::SETUEQ) {
7116        SDValue UNORD, EQ;
7117        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7118        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7119        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7120      }
7121      else if (SetCCOpcode == ISD::SETONE) {
7122        SDValue ORD, NEQ;
7123        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7124        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7125        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7126      }
7127      llvm_unreachable("Illegal FP comparison");
7128    }
7129    // Handle all other FP comparisons here.
7130    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7131  }
7132
7133  // We are handling one of the integer comparisons here.  Since SSE only has
7134  // GT and EQ comparisons for integer, swapping operands and multiple
7135  // operations may be required for some comparisons.
7136  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7137  bool Swap = false, Invert = false, FlipSigns = false;
7138
7139  switch (VT.getSimpleVT().SimpleTy) {
7140  default: break;
7141  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7142  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7143  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7144  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7145  }
7146
7147  switch (SetCCOpcode) {
7148  default: break;
7149  case ISD::SETNE:  Invert = true;
7150  case ISD::SETEQ:  Opc = EQOpc; break;
7151  case ISD::SETLT:  Swap = true;
7152  case ISD::SETGT:  Opc = GTOpc; break;
7153  case ISD::SETGE:  Swap = true;
7154  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7155  case ISD::SETULT: Swap = true;
7156  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7157  case ISD::SETUGE: Swap = true;
7158  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7159  }
7160  if (Swap)
7161    std::swap(Op0, Op1);
7162
7163  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7164  // bits of the inputs before performing those operations.
7165  if (FlipSigns) {
7166    EVT EltVT = VT.getVectorElementType();
7167    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7168                                      EltVT);
7169    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7170    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7171                                    SignBits.size());
7172    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7173    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7174  }
7175
7176  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7177
7178  // If the logical-not of the result is required, perform that now.
7179  if (Invert)
7180    Result = DAG.getNOT(dl, Result, VT);
7181
7182  return Result;
7183}
7184
7185// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7186static bool isX86LogicalCmp(SDValue Op) {
7187  unsigned Opc = Op.getNode()->getOpcode();
7188  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7189    return true;
7190  if (Op.getResNo() == 1 &&
7191      (Opc == X86ISD::ADD ||
7192       Opc == X86ISD::SUB ||
7193       Opc == X86ISD::ADC ||
7194       Opc == X86ISD::SBB ||
7195       Opc == X86ISD::SMUL ||
7196       Opc == X86ISD::UMUL ||
7197       Opc == X86ISD::INC ||
7198       Opc == X86ISD::DEC ||
7199       Opc == X86ISD::OR ||
7200       Opc == X86ISD::XOR ||
7201       Opc == X86ISD::AND))
7202    return true;
7203
7204  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7205    return true;
7206
7207  return false;
7208}
7209
7210static bool isZero(SDValue V) {
7211  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7212  return C && C->isNullValue();
7213}
7214
7215static bool isAllOnes(SDValue V) {
7216  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7217  return C && C->isAllOnesValue();
7218}
7219
7220SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7221  bool addTest = true;
7222  SDValue Cond  = Op.getOperand(0);
7223  SDValue Op1 = Op.getOperand(1);
7224  SDValue Op2 = Op.getOperand(2);
7225  DebugLoc DL = Op.getDebugLoc();
7226  SDValue CC;
7227
7228  if (Cond.getOpcode() == ISD::SETCC) {
7229    SDValue NewCond = LowerSETCC(Cond, DAG);
7230    if (NewCond.getNode())
7231      Cond = NewCond;
7232  }
7233
7234  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7235  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7236  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7237  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7238  if (Cond.getOpcode() == X86ISD::SETCC &&
7239      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7240      isZero(Cond.getOperand(1).getOperand(1))) {
7241    SDValue Cmp = Cond.getOperand(1);
7242
7243    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7244
7245    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7246        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7247      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7248
7249      SDValue CmpOp0 = Cmp.getOperand(0);
7250      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7251                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7252
7253      SDValue Res =   // Res = 0 or -1.
7254        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7255                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7256
7257      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7258        Res = DAG.getNOT(DL, Res, Res.getValueType());
7259
7260      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7261      if (N2C == 0 || !N2C->isNullValue())
7262        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7263      return Res;
7264    }
7265  }
7266
7267  // Look past (and (setcc_carry (cmp ...)), 1).
7268  if (Cond.getOpcode() == ISD::AND &&
7269      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7270    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7271    if (C && C->getAPIntValue() == 1)
7272      Cond = Cond.getOperand(0);
7273  }
7274
7275  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7276  // setting operand in place of the X86ISD::SETCC.
7277  if (Cond.getOpcode() == X86ISD::SETCC ||
7278      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7279    CC = Cond.getOperand(0);
7280
7281    SDValue Cmp = Cond.getOperand(1);
7282    unsigned Opc = Cmp.getOpcode();
7283    EVT VT = Op.getValueType();
7284
7285    bool IllegalFPCMov = false;
7286    if (VT.isFloatingPoint() && !VT.isVector() &&
7287        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7288      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7289
7290    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7291        Opc == X86ISD::BT) { // FIXME
7292      Cond = Cmp;
7293      addTest = false;
7294    }
7295  }
7296
7297  if (addTest) {
7298    // Look pass the truncate.
7299    if (Cond.getOpcode() == ISD::TRUNCATE)
7300      Cond = Cond.getOperand(0);
7301
7302    // We know the result of AND is compared against zero. Try to match
7303    // it to BT.
7304    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7305      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7306      if (NewSetCC.getNode()) {
7307        CC = NewSetCC.getOperand(0);
7308        Cond = NewSetCC.getOperand(1);
7309        addTest = false;
7310      }
7311    }
7312  }
7313
7314  if (addTest) {
7315    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7316    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7317  }
7318
7319  // a <  b ? -1 :  0 -> RES = ~setcc_carry
7320  // a <  b ?  0 : -1 -> RES = setcc_carry
7321  // a >= b ? -1 :  0 -> RES = setcc_carry
7322  // a >= b ?  0 : -1 -> RES = ~setcc_carry
7323  if (Cond.getOpcode() == X86ISD::CMP) {
7324    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
7325
7326    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
7327        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
7328      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7329                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
7330      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
7331        return DAG.getNOT(DL, Res, Res.getValueType());
7332      return Res;
7333    }
7334  }
7335
7336  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7337  // condition is true.
7338  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
7339  SDValue Ops[] = { Op2, Op1, CC, Cond };
7340  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7341}
7342
7343// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7344// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7345// from the AND / OR.
7346static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7347  Opc = Op.getOpcode();
7348  if (Opc != ISD::OR && Opc != ISD::AND)
7349    return false;
7350  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7351          Op.getOperand(0).hasOneUse() &&
7352          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7353          Op.getOperand(1).hasOneUse());
7354}
7355
7356// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7357// 1 and that the SETCC node has a single use.
7358static bool isXor1OfSetCC(SDValue Op) {
7359  if (Op.getOpcode() != ISD::XOR)
7360    return false;
7361  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7362  if (N1C && N1C->getAPIntValue() == 1) {
7363    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7364      Op.getOperand(0).hasOneUse();
7365  }
7366  return false;
7367}
7368
7369SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7370  bool addTest = true;
7371  SDValue Chain = Op.getOperand(0);
7372  SDValue Cond  = Op.getOperand(1);
7373  SDValue Dest  = Op.getOperand(2);
7374  DebugLoc dl = Op.getDebugLoc();
7375  SDValue CC;
7376
7377  if (Cond.getOpcode() == ISD::SETCC) {
7378    SDValue NewCond = LowerSETCC(Cond, DAG);
7379    if (NewCond.getNode())
7380      Cond = NewCond;
7381  }
7382#if 0
7383  // FIXME: LowerXALUO doesn't handle these!!
7384  else if (Cond.getOpcode() == X86ISD::ADD  ||
7385           Cond.getOpcode() == X86ISD::SUB  ||
7386           Cond.getOpcode() == X86ISD::SMUL ||
7387           Cond.getOpcode() == X86ISD::UMUL)
7388    Cond = LowerXALUO(Cond, DAG);
7389#endif
7390
7391  // Look pass (and (setcc_carry (cmp ...)), 1).
7392  if (Cond.getOpcode() == ISD::AND &&
7393      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7394    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7395    if (C && C->getAPIntValue() == 1)
7396      Cond = Cond.getOperand(0);
7397  }
7398
7399  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7400  // setting operand in place of the X86ISD::SETCC.
7401  if (Cond.getOpcode() == X86ISD::SETCC ||
7402      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7403    CC = Cond.getOperand(0);
7404
7405    SDValue Cmp = Cond.getOperand(1);
7406    unsigned Opc = Cmp.getOpcode();
7407    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7408    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7409      Cond = Cmp;
7410      addTest = false;
7411    } else {
7412      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7413      default: break;
7414      case X86::COND_O:
7415      case X86::COND_B:
7416        // These can only come from an arithmetic instruction with overflow,
7417        // e.g. SADDO, UADDO.
7418        Cond = Cond.getNode()->getOperand(1);
7419        addTest = false;
7420        break;
7421      }
7422    }
7423  } else {
7424    unsigned CondOpc;
7425    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7426      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7427      if (CondOpc == ISD::OR) {
7428        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7429        // two branches instead of an explicit OR instruction with a
7430        // separate test.
7431        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7432            isX86LogicalCmp(Cmp)) {
7433          CC = Cond.getOperand(0).getOperand(0);
7434          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7435                              Chain, Dest, CC, Cmp);
7436          CC = Cond.getOperand(1).getOperand(0);
7437          Cond = Cmp;
7438          addTest = false;
7439        }
7440      } else { // ISD::AND
7441        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7442        // two branches instead of an explicit AND instruction with a
7443        // separate test. However, we only do this if this block doesn't
7444        // have a fall-through edge, because this requires an explicit
7445        // jmp when the condition is false.
7446        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7447            isX86LogicalCmp(Cmp) &&
7448            Op.getNode()->hasOneUse()) {
7449          X86::CondCode CCode =
7450            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7451          CCode = X86::GetOppositeBranchCondition(CCode);
7452          CC = DAG.getConstant(CCode, MVT::i8);
7453          SDNode *User = *Op.getNode()->use_begin();
7454          // Look for an unconditional branch following this conditional branch.
7455          // We need this because we need to reverse the successors in order
7456          // to implement FCMP_OEQ.
7457          if (User->getOpcode() == ISD::BR) {
7458            SDValue FalseBB = User->getOperand(1);
7459            SDNode *NewBR =
7460              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7461            assert(NewBR == User);
7462            (void)NewBR;
7463            Dest = FalseBB;
7464
7465            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7466                                Chain, Dest, CC, Cmp);
7467            X86::CondCode CCode =
7468              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7469            CCode = X86::GetOppositeBranchCondition(CCode);
7470            CC = DAG.getConstant(CCode, MVT::i8);
7471            Cond = Cmp;
7472            addTest = false;
7473          }
7474        }
7475      }
7476    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7477      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7478      // It should be transformed during dag combiner except when the condition
7479      // is set by a arithmetics with overflow node.
7480      X86::CondCode CCode =
7481        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7482      CCode = X86::GetOppositeBranchCondition(CCode);
7483      CC = DAG.getConstant(CCode, MVT::i8);
7484      Cond = Cond.getOperand(0).getOperand(1);
7485      addTest = false;
7486    }
7487  }
7488
7489  if (addTest) {
7490    // Look pass the truncate.
7491    if (Cond.getOpcode() == ISD::TRUNCATE)
7492      Cond = Cond.getOperand(0);
7493
7494    // We know the result of AND is compared against zero. Try to match
7495    // it to BT.
7496    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7497      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7498      if (NewSetCC.getNode()) {
7499        CC = NewSetCC.getOperand(0);
7500        Cond = NewSetCC.getOperand(1);
7501        addTest = false;
7502      }
7503    }
7504  }
7505
7506  if (addTest) {
7507    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7508    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7509  }
7510  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7511                     Chain, Dest, CC, Cond);
7512}
7513
7514
7515// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7516// Calls to _alloca is needed to probe the stack when allocating more than 4k
7517// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7518// that the guard pages used by the OS virtual memory manager are allocated in
7519// correct sequence.
7520SDValue
7521X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7522                                           SelectionDAG &DAG) const {
7523  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7524         "This should be used only on Windows targets");
7525  DebugLoc dl = Op.getDebugLoc();
7526
7527  // Get the inputs.
7528  SDValue Chain = Op.getOperand(0);
7529  SDValue Size  = Op.getOperand(1);
7530  // FIXME: Ensure alignment here
7531
7532  SDValue Flag;
7533
7534  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7535
7536  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7537  Flag = Chain.getValue(1);
7538
7539  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7540
7541  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7542  Flag = Chain.getValue(1);
7543
7544  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7545
7546  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7547  return DAG.getMergeValues(Ops1, 2, dl);
7548}
7549
7550SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7551  MachineFunction &MF = DAG.getMachineFunction();
7552  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7553
7554  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7555  DebugLoc DL = Op.getDebugLoc();
7556
7557  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7558    // vastart just stores the address of the VarArgsFrameIndex slot into the
7559    // memory location argument.
7560    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7561                                   getPointerTy());
7562    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7563                        MachinePointerInfo(SV), false, false, 0);
7564  }
7565
7566  // __va_list_tag:
7567  //   gp_offset         (0 - 6 * 8)
7568  //   fp_offset         (48 - 48 + 8 * 16)
7569  //   overflow_arg_area (point to parameters coming in memory).
7570  //   reg_save_area
7571  SmallVector<SDValue, 8> MemOps;
7572  SDValue FIN = Op.getOperand(1);
7573  // Store gp_offset
7574  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7575                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7576                                               MVT::i32),
7577                               FIN, MachinePointerInfo(SV), false, false, 0);
7578  MemOps.push_back(Store);
7579
7580  // Store fp_offset
7581  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7582                    FIN, DAG.getIntPtrConstant(4));
7583  Store = DAG.getStore(Op.getOperand(0), DL,
7584                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7585                                       MVT::i32),
7586                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7587  MemOps.push_back(Store);
7588
7589  // Store ptr to overflow_arg_area
7590  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7591                    FIN, DAG.getIntPtrConstant(4));
7592  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7593                                    getPointerTy());
7594  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7595                       MachinePointerInfo(SV, 8),
7596                       false, false, 0);
7597  MemOps.push_back(Store);
7598
7599  // Store ptr to reg_save_area.
7600  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7601                    FIN, DAG.getIntPtrConstant(8));
7602  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7603                                    getPointerTy());
7604  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7605                       MachinePointerInfo(SV, 16), false, false, 0);
7606  MemOps.push_back(Store);
7607  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
7608                     &MemOps[0], MemOps.size());
7609}
7610
7611SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7612  assert(Subtarget->is64Bit() &&
7613         "LowerVAARG only handles 64-bit va_arg!");
7614  assert((Subtarget->isTargetLinux() ||
7615          Subtarget->isTargetDarwin()) &&
7616          "Unhandled target in LowerVAARG");
7617  assert(Op.getNode()->getNumOperands() == 4);
7618  SDValue Chain = Op.getOperand(0);
7619  SDValue SrcPtr = Op.getOperand(1);
7620  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7621  unsigned Align = Op.getConstantOperandVal(3);
7622  DebugLoc dl = Op.getDebugLoc();
7623
7624  EVT ArgVT = Op.getNode()->getValueType(0);
7625  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7626  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
7627  uint8_t ArgMode;
7628
7629  // Decide which area this value should be read from.
7630  // TODO: Implement the AMD64 ABI in its entirety. This simple
7631  // selection mechanism works only for the basic types.
7632  if (ArgVT == MVT::f80) {
7633    llvm_unreachable("va_arg for f80 not yet implemented");
7634  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
7635    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
7636  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
7637    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
7638  } else {
7639    llvm_unreachable("Unhandled argument type in LowerVAARG");
7640  }
7641
7642  if (ArgMode == 2) {
7643    // Sanity Check: Make sure using fp_offset makes sense.
7644    assert(!UseSoftFloat &&
7645           !(DAG.getMachineFunction()
7646                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
7647           Subtarget->hasXMM());
7648  }
7649
7650  // Insert VAARG_64 node into the DAG
7651  // VAARG_64 returns two values: Variable Argument Address, Chain
7652  SmallVector<SDValue, 11> InstOps;
7653  InstOps.push_back(Chain);
7654  InstOps.push_back(SrcPtr);
7655  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
7656  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
7657  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
7658  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
7659  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
7660                                          VTs, &InstOps[0], InstOps.size(),
7661                                          MVT::i64,
7662                                          MachinePointerInfo(SV),
7663                                          /*Align=*/0,
7664                                          /*Volatile=*/false,
7665                                          /*ReadMem=*/true,
7666                                          /*WriteMem=*/true);
7667  Chain = VAARG.getValue(1);
7668
7669  // Load the next argument and return it
7670  return DAG.getLoad(ArgVT, dl,
7671                     Chain,
7672                     VAARG,
7673                     MachinePointerInfo(),
7674                     false, false, 0);
7675}
7676
7677SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7678  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7679  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7680  SDValue Chain = Op.getOperand(0);
7681  SDValue DstPtr = Op.getOperand(1);
7682  SDValue SrcPtr = Op.getOperand(2);
7683  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7684  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7685  DebugLoc DL = Op.getDebugLoc();
7686
7687  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
7688                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7689                       false,
7690                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
7691}
7692
7693SDValue
7694X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7695  DebugLoc dl = Op.getDebugLoc();
7696  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7697  switch (IntNo) {
7698  default: return SDValue();    // Don't custom lower most intrinsics.
7699  // Comparison intrinsics.
7700  case Intrinsic::x86_sse_comieq_ss:
7701  case Intrinsic::x86_sse_comilt_ss:
7702  case Intrinsic::x86_sse_comile_ss:
7703  case Intrinsic::x86_sse_comigt_ss:
7704  case Intrinsic::x86_sse_comige_ss:
7705  case Intrinsic::x86_sse_comineq_ss:
7706  case Intrinsic::x86_sse_ucomieq_ss:
7707  case Intrinsic::x86_sse_ucomilt_ss:
7708  case Intrinsic::x86_sse_ucomile_ss:
7709  case Intrinsic::x86_sse_ucomigt_ss:
7710  case Intrinsic::x86_sse_ucomige_ss:
7711  case Intrinsic::x86_sse_ucomineq_ss:
7712  case Intrinsic::x86_sse2_comieq_sd:
7713  case Intrinsic::x86_sse2_comilt_sd:
7714  case Intrinsic::x86_sse2_comile_sd:
7715  case Intrinsic::x86_sse2_comigt_sd:
7716  case Intrinsic::x86_sse2_comige_sd:
7717  case Intrinsic::x86_sse2_comineq_sd:
7718  case Intrinsic::x86_sse2_ucomieq_sd:
7719  case Intrinsic::x86_sse2_ucomilt_sd:
7720  case Intrinsic::x86_sse2_ucomile_sd:
7721  case Intrinsic::x86_sse2_ucomigt_sd:
7722  case Intrinsic::x86_sse2_ucomige_sd:
7723  case Intrinsic::x86_sse2_ucomineq_sd: {
7724    unsigned Opc = 0;
7725    ISD::CondCode CC = ISD::SETCC_INVALID;
7726    switch (IntNo) {
7727    default: break;
7728    case Intrinsic::x86_sse_comieq_ss:
7729    case Intrinsic::x86_sse2_comieq_sd:
7730      Opc = X86ISD::COMI;
7731      CC = ISD::SETEQ;
7732      break;
7733    case Intrinsic::x86_sse_comilt_ss:
7734    case Intrinsic::x86_sse2_comilt_sd:
7735      Opc = X86ISD::COMI;
7736      CC = ISD::SETLT;
7737      break;
7738    case Intrinsic::x86_sse_comile_ss:
7739    case Intrinsic::x86_sse2_comile_sd:
7740      Opc = X86ISD::COMI;
7741      CC = ISD::SETLE;
7742      break;
7743    case Intrinsic::x86_sse_comigt_ss:
7744    case Intrinsic::x86_sse2_comigt_sd:
7745      Opc = X86ISD::COMI;
7746      CC = ISD::SETGT;
7747      break;
7748    case Intrinsic::x86_sse_comige_ss:
7749    case Intrinsic::x86_sse2_comige_sd:
7750      Opc = X86ISD::COMI;
7751      CC = ISD::SETGE;
7752      break;
7753    case Intrinsic::x86_sse_comineq_ss:
7754    case Intrinsic::x86_sse2_comineq_sd:
7755      Opc = X86ISD::COMI;
7756      CC = ISD::SETNE;
7757      break;
7758    case Intrinsic::x86_sse_ucomieq_ss:
7759    case Intrinsic::x86_sse2_ucomieq_sd:
7760      Opc = X86ISD::UCOMI;
7761      CC = ISD::SETEQ;
7762      break;
7763    case Intrinsic::x86_sse_ucomilt_ss:
7764    case Intrinsic::x86_sse2_ucomilt_sd:
7765      Opc = X86ISD::UCOMI;
7766      CC = ISD::SETLT;
7767      break;
7768    case Intrinsic::x86_sse_ucomile_ss:
7769    case Intrinsic::x86_sse2_ucomile_sd:
7770      Opc = X86ISD::UCOMI;
7771      CC = ISD::SETLE;
7772      break;
7773    case Intrinsic::x86_sse_ucomigt_ss:
7774    case Intrinsic::x86_sse2_ucomigt_sd:
7775      Opc = X86ISD::UCOMI;
7776      CC = ISD::SETGT;
7777      break;
7778    case Intrinsic::x86_sse_ucomige_ss:
7779    case Intrinsic::x86_sse2_ucomige_sd:
7780      Opc = X86ISD::UCOMI;
7781      CC = ISD::SETGE;
7782      break;
7783    case Intrinsic::x86_sse_ucomineq_ss:
7784    case Intrinsic::x86_sse2_ucomineq_sd:
7785      Opc = X86ISD::UCOMI;
7786      CC = ISD::SETNE;
7787      break;
7788    }
7789
7790    SDValue LHS = Op.getOperand(1);
7791    SDValue RHS = Op.getOperand(2);
7792    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7793    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7794    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7795    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7796                                DAG.getConstant(X86CC, MVT::i8), Cond);
7797    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7798  }
7799  // ptest and testp intrinsics. The intrinsic these come from are designed to
7800  // return an integer value, not just an instruction so lower it to the ptest
7801  // or testp pattern and a setcc for the result.
7802  case Intrinsic::x86_sse41_ptestz:
7803  case Intrinsic::x86_sse41_ptestc:
7804  case Intrinsic::x86_sse41_ptestnzc:
7805  case Intrinsic::x86_avx_ptestz_256:
7806  case Intrinsic::x86_avx_ptestc_256:
7807  case Intrinsic::x86_avx_ptestnzc_256:
7808  case Intrinsic::x86_avx_vtestz_ps:
7809  case Intrinsic::x86_avx_vtestc_ps:
7810  case Intrinsic::x86_avx_vtestnzc_ps:
7811  case Intrinsic::x86_avx_vtestz_pd:
7812  case Intrinsic::x86_avx_vtestc_pd:
7813  case Intrinsic::x86_avx_vtestnzc_pd:
7814  case Intrinsic::x86_avx_vtestz_ps_256:
7815  case Intrinsic::x86_avx_vtestc_ps_256:
7816  case Intrinsic::x86_avx_vtestnzc_ps_256:
7817  case Intrinsic::x86_avx_vtestz_pd_256:
7818  case Intrinsic::x86_avx_vtestc_pd_256:
7819  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7820    bool IsTestPacked = false;
7821    unsigned X86CC = 0;
7822    switch (IntNo) {
7823    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7824    case Intrinsic::x86_avx_vtestz_ps:
7825    case Intrinsic::x86_avx_vtestz_pd:
7826    case Intrinsic::x86_avx_vtestz_ps_256:
7827    case Intrinsic::x86_avx_vtestz_pd_256:
7828      IsTestPacked = true; // Fallthrough
7829    case Intrinsic::x86_sse41_ptestz:
7830    case Intrinsic::x86_avx_ptestz_256:
7831      // ZF = 1
7832      X86CC = X86::COND_E;
7833      break;
7834    case Intrinsic::x86_avx_vtestc_ps:
7835    case Intrinsic::x86_avx_vtestc_pd:
7836    case Intrinsic::x86_avx_vtestc_ps_256:
7837    case Intrinsic::x86_avx_vtestc_pd_256:
7838      IsTestPacked = true; // Fallthrough
7839    case Intrinsic::x86_sse41_ptestc:
7840    case Intrinsic::x86_avx_ptestc_256:
7841      // CF = 1
7842      X86CC = X86::COND_B;
7843      break;
7844    case Intrinsic::x86_avx_vtestnzc_ps:
7845    case Intrinsic::x86_avx_vtestnzc_pd:
7846    case Intrinsic::x86_avx_vtestnzc_ps_256:
7847    case Intrinsic::x86_avx_vtestnzc_pd_256:
7848      IsTestPacked = true; // Fallthrough
7849    case Intrinsic::x86_sse41_ptestnzc:
7850    case Intrinsic::x86_avx_ptestnzc_256:
7851      // ZF and CF = 0
7852      X86CC = X86::COND_A;
7853      break;
7854    }
7855
7856    SDValue LHS = Op.getOperand(1);
7857    SDValue RHS = Op.getOperand(2);
7858    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7859    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7860    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7861    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7862    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7863  }
7864
7865  // Fix vector shift instructions where the last operand is a non-immediate
7866  // i32 value.
7867  case Intrinsic::x86_sse2_pslli_w:
7868  case Intrinsic::x86_sse2_pslli_d:
7869  case Intrinsic::x86_sse2_pslli_q:
7870  case Intrinsic::x86_sse2_psrli_w:
7871  case Intrinsic::x86_sse2_psrli_d:
7872  case Intrinsic::x86_sse2_psrli_q:
7873  case Intrinsic::x86_sse2_psrai_w:
7874  case Intrinsic::x86_sse2_psrai_d:
7875  case Intrinsic::x86_mmx_pslli_w:
7876  case Intrinsic::x86_mmx_pslli_d:
7877  case Intrinsic::x86_mmx_pslli_q:
7878  case Intrinsic::x86_mmx_psrli_w:
7879  case Intrinsic::x86_mmx_psrli_d:
7880  case Intrinsic::x86_mmx_psrli_q:
7881  case Intrinsic::x86_mmx_psrai_w:
7882  case Intrinsic::x86_mmx_psrai_d: {
7883    SDValue ShAmt = Op.getOperand(2);
7884    if (isa<ConstantSDNode>(ShAmt))
7885      return SDValue();
7886
7887    unsigned NewIntNo = 0;
7888    EVT ShAmtVT = MVT::v4i32;
7889    switch (IntNo) {
7890    case Intrinsic::x86_sse2_pslli_w:
7891      NewIntNo = Intrinsic::x86_sse2_psll_w;
7892      break;
7893    case Intrinsic::x86_sse2_pslli_d:
7894      NewIntNo = Intrinsic::x86_sse2_psll_d;
7895      break;
7896    case Intrinsic::x86_sse2_pslli_q:
7897      NewIntNo = Intrinsic::x86_sse2_psll_q;
7898      break;
7899    case Intrinsic::x86_sse2_psrli_w:
7900      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7901      break;
7902    case Intrinsic::x86_sse2_psrli_d:
7903      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7904      break;
7905    case Intrinsic::x86_sse2_psrli_q:
7906      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7907      break;
7908    case Intrinsic::x86_sse2_psrai_w:
7909      NewIntNo = Intrinsic::x86_sse2_psra_w;
7910      break;
7911    case Intrinsic::x86_sse2_psrai_d:
7912      NewIntNo = Intrinsic::x86_sse2_psra_d;
7913      break;
7914    default: {
7915      ShAmtVT = MVT::v2i32;
7916      switch (IntNo) {
7917      case Intrinsic::x86_mmx_pslli_w:
7918        NewIntNo = Intrinsic::x86_mmx_psll_w;
7919        break;
7920      case Intrinsic::x86_mmx_pslli_d:
7921        NewIntNo = Intrinsic::x86_mmx_psll_d;
7922        break;
7923      case Intrinsic::x86_mmx_pslli_q:
7924        NewIntNo = Intrinsic::x86_mmx_psll_q;
7925        break;
7926      case Intrinsic::x86_mmx_psrli_w:
7927        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7928        break;
7929      case Intrinsic::x86_mmx_psrli_d:
7930        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7931        break;
7932      case Intrinsic::x86_mmx_psrli_q:
7933        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7934        break;
7935      case Intrinsic::x86_mmx_psrai_w:
7936        NewIntNo = Intrinsic::x86_mmx_psra_w;
7937        break;
7938      case Intrinsic::x86_mmx_psrai_d:
7939        NewIntNo = Intrinsic::x86_mmx_psra_d;
7940        break;
7941      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7942      }
7943      break;
7944    }
7945    }
7946
7947    // The vector shift intrinsics with scalars uses 32b shift amounts but
7948    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7949    // to be zero.
7950    SDValue ShOps[4];
7951    ShOps[0] = ShAmt;
7952    ShOps[1] = DAG.getConstant(0, MVT::i32);
7953    if (ShAmtVT == MVT::v4i32) {
7954      ShOps[2] = DAG.getUNDEF(MVT::i32);
7955      ShOps[3] = DAG.getUNDEF(MVT::i32);
7956      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7957    } else {
7958      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7959// FIXME this must be lowered to get rid of the invalid type.
7960    }
7961
7962    EVT VT = Op.getValueType();
7963    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
7964    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7965                       DAG.getConstant(NewIntNo, MVT::i32),
7966                       Op.getOperand(1), ShAmt);
7967  }
7968  }
7969}
7970
7971SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7972                                           SelectionDAG &DAG) const {
7973  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7974  MFI->setReturnAddressIsTaken(true);
7975
7976  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7977  DebugLoc dl = Op.getDebugLoc();
7978
7979  if (Depth > 0) {
7980    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7981    SDValue Offset =
7982      DAG.getConstant(TD->getPointerSize(),
7983                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7984    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7985                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7986                                   FrameAddr, Offset),
7987                       MachinePointerInfo(), false, false, 0);
7988  }
7989
7990  // Just load the return address.
7991  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7992  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7993                     RetAddrFI, MachinePointerInfo(), false, false, 0);
7994}
7995
7996SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7997  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7998  MFI->setFrameAddressIsTaken(true);
7999
8000  EVT VT = Op.getValueType();
8001  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8002  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8003  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8004  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8005  while (Depth--)
8006    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8007                            MachinePointerInfo(),
8008                            false, false, 0);
8009  return FrameAddr;
8010}
8011
8012SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8013                                                     SelectionDAG &DAG) const {
8014  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8015}
8016
8017SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8018  MachineFunction &MF = DAG.getMachineFunction();
8019  SDValue Chain     = Op.getOperand(0);
8020  SDValue Offset    = Op.getOperand(1);
8021  SDValue Handler   = Op.getOperand(2);
8022  DebugLoc dl       = Op.getDebugLoc();
8023
8024  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8025                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8026                                     getPointerTy());
8027  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8028
8029  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8030                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8031  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8032  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8033                       false, false, 0);
8034  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8035  MF.getRegInfo().addLiveOut(StoreAddrReg);
8036
8037  return DAG.getNode(X86ISD::EH_RETURN, dl,
8038                     MVT::Other,
8039                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8040}
8041
8042SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8043                                             SelectionDAG &DAG) const {
8044  SDValue Root = Op.getOperand(0);
8045  SDValue Trmp = Op.getOperand(1); // trampoline
8046  SDValue FPtr = Op.getOperand(2); // nested function
8047  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8048  DebugLoc dl  = Op.getDebugLoc();
8049
8050  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8051
8052  if (Subtarget->is64Bit()) {
8053    SDValue OutChains[6];
8054
8055    // Large code-model.
8056    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8057    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8058
8059    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8060    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8061
8062    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8063
8064    // Load the pointer to the nested function into R11.
8065    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8066    SDValue Addr = Trmp;
8067    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8068                                Addr, MachinePointerInfo(TrmpAddr),
8069                                false, false, 0);
8070
8071    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8072                       DAG.getConstant(2, MVT::i64));
8073    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8074                                MachinePointerInfo(TrmpAddr, 2),
8075                                false, false, 2);
8076
8077    // Load the 'nest' parameter value into R10.
8078    // R10 is specified in X86CallingConv.td
8079    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8080    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8081                       DAG.getConstant(10, MVT::i64));
8082    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8083                                Addr, MachinePointerInfo(TrmpAddr, 10),
8084                                false, false, 0);
8085
8086    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8087                       DAG.getConstant(12, MVT::i64));
8088    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8089                                MachinePointerInfo(TrmpAddr, 12),
8090                                false, false, 2);
8091
8092    // Jump to the nested function.
8093    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8094    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8095                       DAG.getConstant(20, MVT::i64));
8096    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8097                                Addr, MachinePointerInfo(TrmpAddr, 20),
8098                                false, false, 0);
8099
8100    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8101    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8102                       DAG.getConstant(22, MVT::i64));
8103    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8104                                MachinePointerInfo(TrmpAddr, 22),
8105                                false, false, 0);
8106
8107    SDValue Ops[] =
8108      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8109    return DAG.getMergeValues(Ops, 2, dl);
8110  } else {
8111    const Function *Func =
8112      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8113    CallingConv::ID CC = Func->getCallingConv();
8114    unsigned NestReg;
8115
8116    switch (CC) {
8117    default:
8118      llvm_unreachable("Unsupported calling convention");
8119    case CallingConv::C:
8120    case CallingConv::X86_StdCall: {
8121      // Pass 'nest' parameter in ECX.
8122      // Must be kept in sync with X86CallingConv.td
8123      NestReg = X86::ECX;
8124
8125      // Check that ECX wasn't needed by an 'inreg' parameter.
8126      const FunctionType *FTy = Func->getFunctionType();
8127      const AttrListPtr &Attrs = Func->getAttributes();
8128
8129      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8130        unsigned InRegCount = 0;
8131        unsigned Idx = 1;
8132
8133        for (FunctionType::param_iterator I = FTy->param_begin(),
8134             E = FTy->param_end(); I != E; ++I, ++Idx)
8135          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8136            // FIXME: should only count parameters that are lowered to integers.
8137            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8138
8139        if (InRegCount > 2) {
8140          report_fatal_error("Nest register in use - reduce number of inreg"
8141                             " parameters!");
8142        }
8143      }
8144      break;
8145    }
8146    case CallingConv::X86_FastCall:
8147    case CallingConv::X86_ThisCall:
8148    case CallingConv::Fast:
8149      // Pass 'nest' parameter in EAX.
8150      // Must be kept in sync with X86CallingConv.td
8151      NestReg = X86::EAX;
8152      break;
8153    }
8154
8155    SDValue OutChains[4];
8156    SDValue Addr, Disp;
8157
8158    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8159                       DAG.getConstant(10, MVT::i32));
8160    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8161
8162    // This is storing the opcode for MOV32ri.
8163    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8164    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8165    OutChains[0] = DAG.getStore(Root, dl,
8166                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8167                                Trmp, MachinePointerInfo(TrmpAddr),
8168                                false, false, 0);
8169
8170    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8171                       DAG.getConstant(1, MVT::i32));
8172    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8173                                MachinePointerInfo(TrmpAddr, 1),
8174                                false, false, 1);
8175
8176    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8177    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8178                       DAG.getConstant(5, MVT::i32));
8179    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8180                                MachinePointerInfo(TrmpAddr, 5),
8181                                false, false, 1);
8182
8183    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8184                       DAG.getConstant(6, MVT::i32));
8185    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8186                                MachinePointerInfo(TrmpAddr, 6),
8187                                false, false, 1);
8188
8189    SDValue Ops[] =
8190      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8191    return DAG.getMergeValues(Ops, 2, dl);
8192  }
8193}
8194
8195SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8196                                            SelectionDAG &DAG) const {
8197  /*
8198   The rounding mode is in bits 11:10 of FPSR, and has the following
8199   settings:
8200     00 Round to nearest
8201     01 Round to -inf
8202     10 Round to +inf
8203     11 Round to 0
8204
8205  FLT_ROUNDS, on the other hand, expects the following:
8206    -1 Undefined
8207     0 Round to 0
8208     1 Round to nearest
8209     2 Round to +inf
8210     3 Round to -inf
8211
8212  To perform the conversion, we do:
8213    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8214  */
8215
8216  MachineFunction &MF = DAG.getMachineFunction();
8217  const TargetMachine &TM = MF.getTarget();
8218  const TargetFrameInfo &TFI = *TM.getFrameInfo();
8219  unsigned StackAlignment = TFI.getStackAlignment();
8220  EVT VT = Op.getValueType();
8221  DebugLoc DL = Op.getDebugLoc();
8222
8223  // Save FP Control Word to stack slot
8224  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8225  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8226
8227
8228  MachineMemOperand *MMO =
8229   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8230                           MachineMemOperand::MOStore, 2, 2);
8231
8232  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8233  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8234                                          DAG.getVTList(MVT::Other),
8235                                          Ops, 2, MVT::i16, MMO);
8236
8237  // Load FP Control Word from stack slot
8238  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8239                            MachinePointerInfo(), false, false, 0);
8240
8241  // Transform as necessary
8242  SDValue CWD1 =
8243    DAG.getNode(ISD::SRL, DL, MVT::i16,
8244                DAG.getNode(ISD::AND, DL, MVT::i16,
8245                            CWD, DAG.getConstant(0x800, MVT::i16)),
8246                DAG.getConstant(11, MVT::i8));
8247  SDValue CWD2 =
8248    DAG.getNode(ISD::SRL, DL, MVT::i16,
8249                DAG.getNode(ISD::AND, DL, MVT::i16,
8250                            CWD, DAG.getConstant(0x400, MVT::i16)),
8251                DAG.getConstant(9, MVT::i8));
8252
8253  SDValue RetVal =
8254    DAG.getNode(ISD::AND, DL, MVT::i16,
8255                DAG.getNode(ISD::ADD, DL, MVT::i16,
8256                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8257                            DAG.getConstant(1, MVT::i16)),
8258                DAG.getConstant(3, MVT::i16));
8259
8260
8261  return DAG.getNode((VT.getSizeInBits() < 16 ?
8262                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8263}
8264
8265SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8266  EVT VT = Op.getValueType();
8267  EVT OpVT = VT;
8268  unsigned NumBits = VT.getSizeInBits();
8269  DebugLoc dl = Op.getDebugLoc();
8270
8271  Op = Op.getOperand(0);
8272  if (VT == MVT::i8) {
8273    // Zero extend to i32 since there is not an i8 bsr.
8274    OpVT = MVT::i32;
8275    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8276  }
8277
8278  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8279  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8280  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8281
8282  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8283  SDValue Ops[] = {
8284    Op,
8285    DAG.getConstant(NumBits+NumBits-1, OpVT),
8286    DAG.getConstant(X86::COND_E, MVT::i8),
8287    Op.getValue(1)
8288  };
8289  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8290
8291  // Finally xor with NumBits-1.
8292  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8293
8294  if (VT == MVT::i8)
8295    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8296  return Op;
8297}
8298
8299SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8300  EVT VT = Op.getValueType();
8301  EVT OpVT = VT;
8302  unsigned NumBits = VT.getSizeInBits();
8303  DebugLoc dl = Op.getDebugLoc();
8304
8305  Op = Op.getOperand(0);
8306  if (VT == MVT::i8) {
8307    OpVT = MVT::i32;
8308    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8309  }
8310
8311  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8312  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8313  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8314
8315  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8316  SDValue Ops[] = {
8317    Op,
8318    DAG.getConstant(NumBits, OpVT),
8319    DAG.getConstant(X86::COND_E, MVT::i8),
8320    Op.getValue(1)
8321  };
8322  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8323
8324  if (VT == MVT::i8)
8325    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8326  return Op;
8327}
8328
8329SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8330  EVT VT = Op.getValueType();
8331  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8332  DebugLoc dl = Op.getDebugLoc();
8333
8334  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8335  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8336  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8337  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8338  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8339  //
8340  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8341  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8342  //  return AloBlo + AloBhi + AhiBlo;
8343
8344  SDValue A = Op.getOperand(0);
8345  SDValue B = Op.getOperand(1);
8346
8347  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8348                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8349                       A, DAG.getConstant(32, MVT::i32));
8350  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8351                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8352                       B, DAG.getConstant(32, MVT::i32));
8353  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8354                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8355                       A, B);
8356  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8357                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8358                       A, Bhi);
8359  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8360                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8361                       Ahi, B);
8362  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8363                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8364                       AloBhi, DAG.getConstant(32, MVT::i32));
8365  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8366                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8367                       AhiBlo, DAG.getConstant(32, MVT::i32));
8368  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8369  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8370  return Res;
8371}
8372
8373SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8374  EVT VT = Op.getValueType();
8375  DebugLoc dl = Op.getDebugLoc();
8376  SDValue R = Op.getOperand(0);
8377
8378  LLVMContext *Context = DAG.getContext();
8379
8380  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8381
8382  if (VT == MVT::v4i32) {
8383    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8384                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8385                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8386
8387    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8388
8389    std::vector<Constant*> CV(4, CI);
8390    Constant *C = ConstantVector::get(CV);
8391    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8392    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8393                                 MachinePointerInfo::getConstantPool(),
8394                                 false, false, 16);
8395
8396    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8397    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8398    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8399    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8400  }
8401  if (VT == MVT::v16i8) {
8402    // a = a << 5;
8403    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8404                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8405                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8406
8407    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8408    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8409
8410    std::vector<Constant*> CVM1(16, CM1);
8411    std::vector<Constant*> CVM2(16, CM2);
8412    Constant *C = ConstantVector::get(CVM1);
8413    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8414    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8415                            MachinePointerInfo::getConstantPool(),
8416                            false, false, 16);
8417
8418    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8419    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8420    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8421                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8422                    DAG.getConstant(4, MVT::i32));
8423    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8424    // a += a
8425    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8426
8427    C = ConstantVector::get(CVM2);
8428    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8429    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8430                    MachinePointerInfo::getConstantPool(),
8431                    false, false, 16);
8432
8433    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8434    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8435    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8436                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8437                    DAG.getConstant(2, MVT::i32));
8438    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8439    // a += a
8440    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8441
8442    // return pblendv(r, r+r, a);
8443    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
8444                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8445    return R;
8446  }
8447  return SDValue();
8448}
8449
8450SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8451  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8452  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8453  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8454  // has only one use.
8455  SDNode *N = Op.getNode();
8456  SDValue LHS = N->getOperand(0);
8457  SDValue RHS = N->getOperand(1);
8458  unsigned BaseOp = 0;
8459  unsigned Cond = 0;
8460  DebugLoc DL = Op.getDebugLoc();
8461  switch (Op.getOpcode()) {
8462  default: llvm_unreachable("Unknown ovf instruction!");
8463  case ISD::SADDO:
8464    // A subtract of one will be selected as a INC. Note that INC doesn't
8465    // set CF, so we can't do this for UADDO.
8466    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8467      if (C->getAPIntValue() == 1) {
8468        BaseOp = X86ISD::INC;
8469        Cond = X86::COND_O;
8470        break;
8471      }
8472    BaseOp = X86ISD::ADD;
8473    Cond = X86::COND_O;
8474    break;
8475  case ISD::UADDO:
8476    BaseOp = X86ISD::ADD;
8477    Cond = X86::COND_B;
8478    break;
8479  case ISD::SSUBO:
8480    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8481    // set CF, so we can't do this for USUBO.
8482    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8483      if (C->getAPIntValue() == 1) {
8484        BaseOp = X86ISD::DEC;
8485        Cond = X86::COND_O;
8486        break;
8487      }
8488    BaseOp = X86ISD::SUB;
8489    Cond = X86::COND_O;
8490    break;
8491  case ISD::USUBO:
8492    BaseOp = X86ISD::SUB;
8493    Cond = X86::COND_B;
8494    break;
8495  case ISD::SMULO:
8496    BaseOp = X86ISD::SMUL;
8497    Cond = X86::COND_O;
8498    break;
8499  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
8500    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
8501                                 MVT::i32);
8502    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
8503
8504    SDValue SetCC =
8505      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8506                  DAG.getConstant(X86::COND_O, MVT::i32),
8507                  SDValue(Sum.getNode(), 2));
8508
8509    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8510    return Sum;
8511  }
8512  }
8513
8514  // Also sets EFLAGS.
8515  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8516  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
8517
8518  SDValue SetCC =
8519    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
8520                DAG.getConstant(Cond, MVT::i32),
8521                SDValue(Sum.getNode(), 1));
8522
8523  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8524  return Sum;
8525}
8526
8527SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8528  DebugLoc dl = Op.getDebugLoc();
8529
8530  if (!Subtarget->hasSSE2()) {
8531    SDValue Chain = Op.getOperand(0);
8532    SDValue Zero = DAG.getConstant(0,
8533                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8534    SDValue Ops[] = {
8535      DAG.getRegister(X86::ESP, MVT::i32), // Base
8536      DAG.getTargetConstant(1, MVT::i8),   // Scale
8537      DAG.getRegister(0, MVT::i32),        // Index
8538      DAG.getTargetConstant(0, MVT::i32),  // Disp
8539      DAG.getRegister(0, MVT::i32),        // Segment.
8540      Zero,
8541      Chain
8542    };
8543    SDNode *Res =
8544      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8545                          array_lengthof(Ops));
8546    return SDValue(Res, 0);
8547  }
8548
8549  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8550  if (!isDev)
8551    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8552
8553  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8554  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8555  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8556  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8557
8558  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8559  if (!Op1 && !Op2 && !Op3 && Op4)
8560    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8561
8562  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8563  if (Op1 && !Op2 && !Op3 && !Op4)
8564    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8565
8566  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8567  //           (MFENCE)>;
8568  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8569}
8570
8571SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8572  EVT T = Op.getValueType();
8573  DebugLoc DL = Op.getDebugLoc();
8574  unsigned Reg = 0;
8575  unsigned size = 0;
8576  switch(T.getSimpleVT().SimpleTy) {
8577  default:
8578    assert(false && "Invalid value type!");
8579  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8580  case MVT::i16: Reg = X86::AX;  size = 2; break;
8581  case MVT::i32: Reg = X86::EAX; size = 4; break;
8582  case MVT::i64:
8583    assert(Subtarget->is64Bit() && "Node not type legal!");
8584    Reg = X86::RAX; size = 8;
8585    break;
8586  }
8587  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8588                                    Op.getOperand(2), SDValue());
8589  SDValue Ops[] = { cpIn.getValue(0),
8590                    Op.getOperand(1),
8591                    Op.getOperand(3),
8592                    DAG.getTargetConstant(size, MVT::i8),
8593                    cpIn.getValue(1) };
8594  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8595  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8596  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8597                                           Ops, 5, T, MMO);
8598  SDValue cpOut =
8599    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8600  return cpOut;
8601}
8602
8603SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8604                                                 SelectionDAG &DAG) const {
8605  assert(Subtarget->is64Bit() && "Result not type legalized?");
8606  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8607  SDValue TheChain = Op.getOperand(0);
8608  DebugLoc dl = Op.getDebugLoc();
8609  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8610  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8611  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8612                                   rax.getValue(2));
8613  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8614                            DAG.getConstant(32, MVT::i8));
8615  SDValue Ops[] = {
8616    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8617    rdx.getValue(1)
8618  };
8619  return DAG.getMergeValues(Ops, 2, dl);
8620}
8621
8622SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
8623                                            SelectionDAG &DAG) const {
8624  EVT SrcVT = Op.getOperand(0).getValueType();
8625  EVT DstVT = Op.getValueType();
8626  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8627         Subtarget->hasMMX() && "Unexpected custom BITCAST");
8628  assert((DstVT == MVT::i64 ||
8629          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8630         "Unexpected custom BITCAST");
8631  // i64 <=> MMX conversions are Legal.
8632  if (SrcVT==MVT::i64 && DstVT.isVector())
8633    return Op;
8634  if (DstVT==MVT::i64 && SrcVT.isVector())
8635    return Op;
8636  // MMX <=> MMX conversions are Legal.
8637  if (SrcVT.isVector() && DstVT.isVector())
8638    return Op;
8639  // All other conversions need to be expanded.
8640  return SDValue();
8641}
8642
8643SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8644  SDNode *Node = Op.getNode();
8645  DebugLoc dl = Node->getDebugLoc();
8646  EVT T = Node->getValueType(0);
8647  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8648                              DAG.getConstant(0, T), Node->getOperand(2));
8649  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8650                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8651                       Node->getOperand(0),
8652                       Node->getOperand(1), negOp,
8653                       cast<AtomicSDNode>(Node)->getSrcValue(),
8654                       cast<AtomicSDNode>(Node)->getAlignment());
8655}
8656
8657static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
8658  EVT VT = Op.getNode()->getValueType(0);
8659
8660  // Let legalize expand this if it isn't a legal type yet.
8661  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
8662    return SDValue();
8663
8664  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
8665
8666  unsigned Opc;
8667  bool ExtraOp = false;
8668  switch (Op.getOpcode()) {
8669  default: assert(0 && "Invalid code");
8670  case ISD::ADDC: Opc = X86ISD::ADD; break;
8671  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
8672  case ISD::SUBC: Opc = X86ISD::SUB; break;
8673  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
8674  }
8675
8676  if (!ExtraOp)
8677    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
8678                       Op.getOperand(1));
8679  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
8680                     Op.getOperand(1), Op.getOperand(2));
8681}
8682
8683/// LowerOperation - Provide custom lowering hooks for some operations.
8684///
8685SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8686  switch (Op.getOpcode()) {
8687  default: llvm_unreachable("Should not custom lower this!");
8688  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8689  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8690  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8691  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8692  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8693  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8694  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8695  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8696  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8697  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8698  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8699  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8700  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8701  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8702  case ISD::SHL_PARTS:
8703  case ISD::SRA_PARTS:
8704  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8705  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8706  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8707  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8708  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8709  case ISD::FABS:               return LowerFABS(Op, DAG);
8710  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8711  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8712  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8713  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8714  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8715  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8716  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8717  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8718  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8719  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8720  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8721  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8722  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8723  case ISD::FRAME_TO_ARGS_OFFSET:
8724                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8725  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8726  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8727  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8728  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8729  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8730  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8731  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8732  case ISD::SHL:                return LowerSHL(Op, DAG);
8733  case ISD::SADDO:
8734  case ISD::UADDO:
8735  case ISD::SSUBO:
8736  case ISD::USUBO:
8737  case ISD::SMULO:
8738  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8739  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8740  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
8741  case ISD::ADDC:
8742  case ISD::ADDE:
8743  case ISD::SUBC:
8744  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
8745  }
8746}
8747
8748void X86TargetLowering::
8749ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8750                        SelectionDAG &DAG, unsigned NewOp) const {
8751  EVT T = Node->getValueType(0);
8752  DebugLoc dl = Node->getDebugLoc();
8753  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8754
8755  SDValue Chain = Node->getOperand(0);
8756  SDValue In1 = Node->getOperand(1);
8757  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8758                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8759  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8760                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8761  SDValue Ops[] = { Chain, In1, In2L, In2H };
8762  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8763  SDValue Result =
8764    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8765                            cast<MemSDNode>(Node)->getMemOperand());
8766  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8767  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8768  Results.push_back(Result.getValue(2));
8769}
8770
8771/// ReplaceNodeResults - Replace a node with an illegal result type
8772/// with a new node built out of custom code.
8773void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8774                                           SmallVectorImpl<SDValue>&Results,
8775                                           SelectionDAG &DAG) const {
8776  DebugLoc dl = N->getDebugLoc();
8777  switch (N->getOpcode()) {
8778  default:
8779    assert(false && "Do not know how to custom type legalize this operation!");
8780    return;
8781  case ISD::ADDC:
8782  case ISD::ADDE:
8783  case ISD::SUBC:
8784  case ISD::SUBE:
8785    // We don't want to expand or promote these.
8786    return;
8787  case ISD::FP_TO_SINT: {
8788    std::pair<SDValue,SDValue> Vals =
8789        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8790    SDValue FIST = Vals.first, StackSlot = Vals.second;
8791    if (FIST.getNode() != 0) {
8792      EVT VT = N->getValueType(0);
8793      // Return a load from the stack slot.
8794      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
8795                                    MachinePointerInfo(), false, false, 0));
8796    }
8797    return;
8798  }
8799  case ISD::READCYCLECOUNTER: {
8800    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8801    SDValue TheChain = N->getOperand(0);
8802    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8803    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8804                                     rd.getValue(1));
8805    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8806                                     eax.getValue(2));
8807    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8808    SDValue Ops[] = { eax, edx };
8809    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8810    Results.push_back(edx.getValue(1));
8811    return;
8812  }
8813  case ISD::ATOMIC_CMP_SWAP: {
8814    EVT T = N->getValueType(0);
8815    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8816    SDValue cpInL, cpInH;
8817    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8818                        DAG.getConstant(0, MVT::i32));
8819    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8820                        DAG.getConstant(1, MVT::i32));
8821    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8822    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8823                             cpInL.getValue(1));
8824    SDValue swapInL, swapInH;
8825    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8826                          DAG.getConstant(0, MVT::i32));
8827    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8828                          DAG.getConstant(1, MVT::i32));
8829    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8830                               cpInH.getValue(1));
8831    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8832                               swapInL.getValue(1));
8833    SDValue Ops[] = { swapInH.getValue(0),
8834                      N->getOperand(1),
8835                      swapInH.getValue(1) };
8836    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8837    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
8838    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
8839                                             Ops, 3, T, MMO);
8840    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8841                                        MVT::i32, Result.getValue(1));
8842    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8843                                        MVT::i32, cpOutL.getValue(2));
8844    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8845    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8846    Results.push_back(cpOutH.getValue(1));
8847    return;
8848  }
8849  case ISD::ATOMIC_LOAD_ADD:
8850    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8851    return;
8852  case ISD::ATOMIC_LOAD_AND:
8853    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8854    return;
8855  case ISD::ATOMIC_LOAD_NAND:
8856    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8857    return;
8858  case ISD::ATOMIC_LOAD_OR:
8859    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8860    return;
8861  case ISD::ATOMIC_LOAD_SUB:
8862    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8863    return;
8864  case ISD::ATOMIC_LOAD_XOR:
8865    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8866    return;
8867  case ISD::ATOMIC_SWAP:
8868    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8869    return;
8870  }
8871}
8872
8873const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8874  switch (Opcode) {
8875  default: return NULL;
8876  case X86ISD::BSF:                return "X86ISD::BSF";
8877  case X86ISD::BSR:                return "X86ISD::BSR";
8878  case X86ISD::SHLD:               return "X86ISD::SHLD";
8879  case X86ISD::SHRD:               return "X86ISD::SHRD";
8880  case X86ISD::FAND:               return "X86ISD::FAND";
8881  case X86ISD::FOR:                return "X86ISD::FOR";
8882  case X86ISD::FXOR:               return "X86ISD::FXOR";
8883  case X86ISD::FSRL:               return "X86ISD::FSRL";
8884  case X86ISD::FILD:               return "X86ISD::FILD";
8885  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8886  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8887  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8888  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8889  case X86ISD::FLD:                return "X86ISD::FLD";
8890  case X86ISD::FST:                return "X86ISD::FST";
8891  case X86ISD::CALL:               return "X86ISD::CALL";
8892  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8893  case X86ISD::BT:                 return "X86ISD::BT";
8894  case X86ISD::CMP:                return "X86ISD::CMP";
8895  case X86ISD::COMI:               return "X86ISD::COMI";
8896  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8897  case X86ISD::SETCC:              return "X86ISD::SETCC";
8898  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8899  case X86ISD::CMOV:               return "X86ISD::CMOV";
8900  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8901  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8902  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8903  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8904  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8905  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8906  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8907  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8908  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8909  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8910  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8911  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8912  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8913  case X86ISD::PANDN:              return "X86ISD::PANDN";
8914  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
8915  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
8916  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
8917  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
8918  case X86ISD::FMAX:               return "X86ISD::FMAX";
8919  case X86ISD::FMIN:               return "X86ISD::FMIN";
8920  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8921  case X86ISD::FRCP:               return "X86ISD::FRCP";
8922  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8923  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8924  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8925  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8926  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8927  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8928  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8929  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8930  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8931  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8932  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8933  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8934  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8935  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8936  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8937  case X86ISD::VSHL:               return "X86ISD::VSHL";
8938  case X86ISD::VSRL:               return "X86ISD::VSRL";
8939  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8940  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8941  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8942  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8943  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8944  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8945  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8946  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8947  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8948  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8949  case X86ISD::ADD:                return "X86ISD::ADD";
8950  case X86ISD::SUB:                return "X86ISD::SUB";
8951  case X86ISD::ADC:                return "X86ISD::ADC";
8952  case X86ISD::SBB:                return "X86ISD::SBB";
8953  case X86ISD::SMUL:               return "X86ISD::SMUL";
8954  case X86ISD::UMUL:               return "X86ISD::UMUL";
8955  case X86ISD::INC:                return "X86ISD::INC";
8956  case X86ISD::DEC:                return "X86ISD::DEC";
8957  case X86ISD::OR:                 return "X86ISD::OR";
8958  case X86ISD::XOR:                return "X86ISD::XOR";
8959  case X86ISD::AND:                return "X86ISD::AND";
8960  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8961  case X86ISD::PTEST:              return "X86ISD::PTEST";
8962  case X86ISD::TESTP:              return "X86ISD::TESTP";
8963  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8964  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8965  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8966  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8967  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8968  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8969  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8970  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8971  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8972  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8973  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8974  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8975  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8976  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8977  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8978  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8979  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8980  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8981  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8982  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8983  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8984  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8985  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8986  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8987  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8988  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8989  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8990  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8991  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8992  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8993  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8994  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8995  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8996  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8997  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
8998  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
8999  }
9000}
9001
9002// isLegalAddressingMode - Return true if the addressing mode represented
9003// by AM is legal for this target, for a load/store of the specified type.
9004bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9005                                              const Type *Ty) const {
9006  // X86 supports extremely general addressing modes.
9007  CodeModel::Model M = getTargetMachine().getCodeModel();
9008  Reloc::Model R = getTargetMachine().getRelocationModel();
9009
9010  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9011  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9012    return false;
9013
9014  if (AM.BaseGV) {
9015    unsigned GVFlags =
9016      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9017
9018    // If a reference to this global requires an extra load, we can't fold it.
9019    if (isGlobalStubReference(GVFlags))
9020      return false;
9021
9022    // If BaseGV requires a register for the PIC base, we cannot also have a
9023    // BaseReg specified.
9024    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9025      return false;
9026
9027    // If lower 4G is not available, then we must use rip-relative addressing.
9028    if ((M != CodeModel::Small || R != Reloc::Static) &&
9029        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9030      return false;
9031  }
9032
9033  switch (AM.Scale) {
9034  case 0:
9035  case 1:
9036  case 2:
9037  case 4:
9038  case 8:
9039    // These scales always work.
9040    break;
9041  case 3:
9042  case 5:
9043  case 9:
9044    // These scales are formed with basereg+scalereg.  Only accept if there is
9045    // no basereg yet.
9046    if (AM.HasBaseReg)
9047      return false;
9048    break;
9049  default:  // Other stuff never works.
9050    return false;
9051  }
9052
9053  return true;
9054}
9055
9056
9057bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
9058  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9059    return false;
9060  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9061  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9062  if (NumBits1 <= NumBits2)
9063    return false;
9064  return true;
9065}
9066
9067bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9068  if (!VT1.isInteger() || !VT2.isInteger())
9069    return false;
9070  unsigned NumBits1 = VT1.getSizeInBits();
9071  unsigned NumBits2 = VT2.getSizeInBits();
9072  if (NumBits1 <= NumBits2)
9073    return false;
9074  return true;
9075}
9076
9077bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
9078  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9079  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9080}
9081
9082bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9083  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9084  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9085}
9086
9087bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9088  // i16 instructions are longer (0x66 prefix) and potentially slower.
9089  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9090}
9091
9092/// isShuffleMaskLegal - Targets can use this to indicate that they only
9093/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9094/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9095/// are assumed to be legal.
9096bool
9097X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9098                                      EVT VT) const {
9099  // Very little shuffling can be done for 64-bit vectors right now.
9100  if (VT.getSizeInBits() == 64)
9101    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9102
9103  // FIXME: pshufb, blends, shifts.
9104  return (VT.getVectorNumElements() == 2 ||
9105          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9106          isMOVLMask(M, VT) ||
9107          isSHUFPMask(M, VT) ||
9108          isPSHUFDMask(M, VT) ||
9109          isPSHUFHWMask(M, VT) ||
9110          isPSHUFLWMask(M, VT) ||
9111          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9112          isUNPCKLMask(M, VT) ||
9113          isUNPCKHMask(M, VT) ||
9114          isUNPCKL_v_undef_Mask(M, VT) ||
9115          isUNPCKH_v_undef_Mask(M, VT));
9116}
9117
9118bool
9119X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9120                                          EVT VT) const {
9121  unsigned NumElts = VT.getVectorNumElements();
9122  // FIXME: This collection of masks seems suspect.
9123  if (NumElts == 2)
9124    return true;
9125  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9126    return (isMOVLMask(Mask, VT)  ||
9127            isCommutedMOVLMask(Mask, VT, true) ||
9128            isSHUFPMask(Mask, VT) ||
9129            isCommutedSHUFPMask(Mask, VT));
9130  }
9131  return false;
9132}
9133
9134//===----------------------------------------------------------------------===//
9135//                           X86 Scheduler Hooks
9136//===----------------------------------------------------------------------===//
9137
9138// private utility function
9139MachineBasicBlock *
9140X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9141                                                       MachineBasicBlock *MBB,
9142                                                       unsigned regOpc,
9143                                                       unsigned immOpc,
9144                                                       unsigned LoadOpc,
9145                                                       unsigned CXchgOpc,
9146                                                       unsigned notOpc,
9147                                                       unsigned EAXreg,
9148                                                       TargetRegisterClass *RC,
9149                                                       bool invSrc) const {
9150  // For the atomic bitwise operator, we generate
9151  //   thisMBB:
9152  //   newMBB:
9153  //     ld  t1 = [bitinstr.addr]
9154  //     op  t2 = t1, [bitinstr.val]
9155  //     mov EAX = t1
9156  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9157  //     bz  newMBB
9158  //     fallthrough -->nextMBB
9159  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9160  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9161  MachineFunction::iterator MBBIter = MBB;
9162  ++MBBIter;
9163
9164  /// First build the CFG
9165  MachineFunction *F = MBB->getParent();
9166  MachineBasicBlock *thisMBB = MBB;
9167  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9168  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9169  F->insert(MBBIter, newMBB);
9170  F->insert(MBBIter, nextMBB);
9171
9172  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9173  nextMBB->splice(nextMBB->begin(), thisMBB,
9174                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9175                  thisMBB->end());
9176  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9177
9178  // Update thisMBB to fall through to newMBB
9179  thisMBB->addSuccessor(newMBB);
9180
9181  // newMBB jumps to itself and fall through to nextMBB
9182  newMBB->addSuccessor(nextMBB);
9183  newMBB->addSuccessor(newMBB);
9184
9185  // Insert instructions into newMBB based on incoming instruction
9186  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9187         "unexpected number of operands");
9188  DebugLoc dl = bInstr->getDebugLoc();
9189  MachineOperand& destOper = bInstr->getOperand(0);
9190  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9191  int numArgs = bInstr->getNumOperands() - 1;
9192  for (int i=0; i < numArgs; ++i)
9193    argOpers[i] = &bInstr->getOperand(i+1);
9194
9195  // x86 address has 4 operands: base, index, scale, and displacement
9196  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9197  int valArgIndx = lastAddrIndx + 1;
9198
9199  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9200  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9201  for (int i=0; i <= lastAddrIndx; ++i)
9202    (*MIB).addOperand(*argOpers[i]);
9203
9204  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9205  if (invSrc) {
9206    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9207  }
9208  else
9209    tt = t1;
9210
9211  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9212  assert((argOpers[valArgIndx]->isReg() ||
9213          argOpers[valArgIndx]->isImm()) &&
9214         "invalid operand");
9215  if (argOpers[valArgIndx]->isReg())
9216    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9217  else
9218    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9219  MIB.addReg(tt);
9220  (*MIB).addOperand(*argOpers[valArgIndx]);
9221
9222  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9223  MIB.addReg(t1);
9224
9225  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9226  for (int i=0; i <= lastAddrIndx; ++i)
9227    (*MIB).addOperand(*argOpers[i]);
9228  MIB.addReg(t2);
9229  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9230  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9231                    bInstr->memoperands_end());
9232
9233  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9234  MIB.addReg(EAXreg);
9235
9236  // insert branch
9237  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9238
9239  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9240  return nextMBB;
9241}
9242
9243// private utility function:  64 bit atomics on 32 bit host.
9244MachineBasicBlock *
9245X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9246                                                       MachineBasicBlock *MBB,
9247                                                       unsigned regOpcL,
9248                                                       unsigned regOpcH,
9249                                                       unsigned immOpcL,
9250                                                       unsigned immOpcH,
9251                                                       bool invSrc) const {
9252  // For the atomic bitwise operator, we generate
9253  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9254  //     ld t1,t2 = [bitinstr.addr]
9255  //   newMBB:
9256  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9257  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9258  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9259  //     mov ECX, EBX <- t5, t6
9260  //     mov EAX, EDX <- t1, t2
9261  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9262  //     mov t3, t4 <- EAX, EDX
9263  //     bz  newMBB
9264  //     result in out1, out2
9265  //     fallthrough -->nextMBB
9266
9267  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9268  const unsigned LoadOpc = X86::MOV32rm;
9269  const unsigned NotOpc = X86::NOT32r;
9270  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9271  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9272  MachineFunction::iterator MBBIter = MBB;
9273  ++MBBIter;
9274
9275  /// First build the CFG
9276  MachineFunction *F = MBB->getParent();
9277  MachineBasicBlock *thisMBB = MBB;
9278  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9279  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9280  F->insert(MBBIter, newMBB);
9281  F->insert(MBBIter, nextMBB);
9282
9283  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9284  nextMBB->splice(nextMBB->begin(), thisMBB,
9285                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9286                  thisMBB->end());
9287  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9288
9289  // Update thisMBB to fall through to newMBB
9290  thisMBB->addSuccessor(newMBB);
9291
9292  // newMBB jumps to itself and fall through to nextMBB
9293  newMBB->addSuccessor(nextMBB);
9294  newMBB->addSuccessor(newMBB);
9295
9296  DebugLoc dl = bInstr->getDebugLoc();
9297  // Insert instructions into newMBB based on incoming instruction
9298  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9299  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9300         "unexpected number of operands");
9301  MachineOperand& dest1Oper = bInstr->getOperand(0);
9302  MachineOperand& dest2Oper = bInstr->getOperand(1);
9303  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9304  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9305    argOpers[i] = &bInstr->getOperand(i+2);
9306
9307    // We use some of the operands multiple times, so conservatively just
9308    // clear any kill flags that might be present.
9309    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9310      argOpers[i]->setIsKill(false);
9311  }
9312
9313  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9314  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9315
9316  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9317  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9318  for (int i=0; i <= lastAddrIndx; ++i)
9319    (*MIB).addOperand(*argOpers[i]);
9320  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9321  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9322  // add 4 to displacement.
9323  for (int i=0; i <= lastAddrIndx-2; ++i)
9324    (*MIB).addOperand(*argOpers[i]);
9325  MachineOperand newOp3 = *(argOpers[3]);
9326  if (newOp3.isImm())
9327    newOp3.setImm(newOp3.getImm()+4);
9328  else
9329    newOp3.setOffset(newOp3.getOffset()+4);
9330  (*MIB).addOperand(newOp3);
9331  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9332
9333  // t3/4 are defined later, at the bottom of the loop
9334  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9335  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9336  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9337    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9338  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9339    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9340
9341  // The subsequent operations should be using the destination registers of
9342  //the PHI instructions.
9343  if (invSrc) {
9344    t1 = F->getRegInfo().createVirtualRegister(RC);
9345    t2 = F->getRegInfo().createVirtualRegister(RC);
9346    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9347    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9348  } else {
9349    t1 = dest1Oper.getReg();
9350    t2 = dest2Oper.getReg();
9351  }
9352
9353  int valArgIndx = lastAddrIndx + 1;
9354  assert((argOpers[valArgIndx]->isReg() ||
9355          argOpers[valArgIndx]->isImm()) &&
9356         "invalid operand");
9357  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9358  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9359  if (argOpers[valArgIndx]->isReg())
9360    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9361  else
9362    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9363  if (regOpcL != X86::MOV32rr)
9364    MIB.addReg(t1);
9365  (*MIB).addOperand(*argOpers[valArgIndx]);
9366  assert(argOpers[valArgIndx + 1]->isReg() ==
9367         argOpers[valArgIndx]->isReg());
9368  assert(argOpers[valArgIndx + 1]->isImm() ==
9369         argOpers[valArgIndx]->isImm());
9370  if (argOpers[valArgIndx + 1]->isReg())
9371    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9372  else
9373    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9374  if (regOpcH != X86::MOV32rr)
9375    MIB.addReg(t2);
9376  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9377
9378  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9379  MIB.addReg(t1);
9380  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9381  MIB.addReg(t2);
9382
9383  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9384  MIB.addReg(t5);
9385  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9386  MIB.addReg(t6);
9387
9388  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9389  for (int i=0; i <= lastAddrIndx; ++i)
9390    (*MIB).addOperand(*argOpers[i]);
9391
9392  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9393  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9394                    bInstr->memoperands_end());
9395
9396  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9397  MIB.addReg(X86::EAX);
9398  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9399  MIB.addReg(X86::EDX);
9400
9401  // insert branch
9402  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9403
9404  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9405  return nextMBB;
9406}
9407
9408// private utility function
9409MachineBasicBlock *
9410X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9411                                                      MachineBasicBlock *MBB,
9412                                                      unsigned cmovOpc) const {
9413  // For the atomic min/max operator, we generate
9414  //   thisMBB:
9415  //   newMBB:
9416  //     ld t1 = [min/max.addr]
9417  //     mov t2 = [min/max.val]
9418  //     cmp  t1, t2
9419  //     cmov[cond] t2 = t1
9420  //     mov EAX = t1
9421  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9422  //     bz   newMBB
9423  //     fallthrough -->nextMBB
9424  //
9425  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9426  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9427  MachineFunction::iterator MBBIter = MBB;
9428  ++MBBIter;
9429
9430  /// First build the CFG
9431  MachineFunction *F = MBB->getParent();
9432  MachineBasicBlock *thisMBB = MBB;
9433  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9434  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9435  F->insert(MBBIter, newMBB);
9436  F->insert(MBBIter, nextMBB);
9437
9438  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9439  nextMBB->splice(nextMBB->begin(), thisMBB,
9440                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9441                  thisMBB->end());
9442  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9443
9444  // Update thisMBB to fall through to newMBB
9445  thisMBB->addSuccessor(newMBB);
9446
9447  // newMBB jumps to newMBB and fall through to nextMBB
9448  newMBB->addSuccessor(nextMBB);
9449  newMBB->addSuccessor(newMBB);
9450
9451  DebugLoc dl = mInstr->getDebugLoc();
9452  // Insert instructions into newMBB based on incoming instruction
9453  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9454         "unexpected number of operands");
9455  MachineOperand& destOper = mInstr->getOperand(0);
9456  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9457  int numArgs = mInstr->getNumOperands() - 1;
9458  for (int i=0; i < numArgs; ++i)
9459    argOpers[i] = &mInstr->getOperand(i+1);
9460
9461  // x86 address has 4 operands: base, index, scale, and displacement
9462  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9463  int valArgIndx = lastAddrIndx + 1;
9464
9465  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9466  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9467  for (int i=0; i <= lastAddrIndx; ++i)
9468    (*MIB).addOperand(*argOpers[i]);
9469
9470  // We only support register and immediate values
9471  assert((argOpers[valArgIndx]->isReg() ||
9472          argOpers[valArgIndx]->isImm()) &&
9473         "invalid operand");
9474
9475  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9476  if (argOpers[valArgIndx]->isReg())
9477    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9478  else
9479    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9480  (*MIB).addOperand(*argOpers[valArgIndx]);
9481
9482  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9483  MIB.addReg(t1);
9484
9485  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9486  MIB.addReg(t1);
9487  MIB.addReg(t2);
9488
9489  // Generate movc
9490  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9491  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9492  MIB.addReg(t2);
9493  MIB.addReg(t1);
9494
9495  // Cmp and exchange if none has modified the memory location
9496  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9497  for (int i=0; i <= lastAddrIndx; ++i)
9498    (*MIB).addOperand(*argOpers[i]);
9499  MIB.addReg(t3);
9500  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9501  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9502                    mInstr->memoperands_end());
9503
9504  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9505  MIB.addReg(X86::EAX);
9506
9507  // insert branch
9508  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9509
9510  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9511  return nextMBB;
9512}
9513
9514// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9515// or XMM0_V32I8 in AVX all of this code can be replaced with that
9516// in the .td file.
9517MachineBasicBlock *
9518X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9519                            unsigned numArgs, bool memArg) const {
9520  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9521         "Target must have SSE4.2 or AVX features enabled");
9522
9523  DebugLoc dl = MI->getDebugLoc();
9524  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9525  unsigned Opc;
9526  if (!Subtarget->hasAVX()) {
9527    if (memArg)
9528      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9529    else
9530      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9531  } else {
9532    if (memArg)
9533      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9534    else
9535      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9536  }
9537
9538  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
9539  for (unsigned i = 0; i < numArgs; ++i) {
9540    MachineOperand &Op = MI->getOperand(i+1);
9541    if (!(Op.isReg() && Op.isImplicit()))
9542      MIB.addOperand(Op);
9543  }
9544  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9545    .addReg(X86::XMM0);
9546
9547  MI->eraseFromParent();
9548  return BB;
9549}
9550
9551MachineBasicBlock *
9552X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
9553  DebugLoc dl = MI->getDebugLoc();
9554  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9555
9556  // Address into RAX/EAX, other two args into ECX, EDX.
9557  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
9558  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
9559  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
9560  for (int i = 0; i < X86::AddrNumOperands; ++i)
9561    MIB.addOperand(MI->getOperand(i));
9562
9563  unsigned ValOps = X86::AddrNumOperands;
9564  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9565    .addReg(MI->getOperand(ValOps).getReg());
9566  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
9567    .addReg(MI->getOperand(ValOps+1).getReg());
9568
9569  // The instruction doesn't actually take any operands though.
9570  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
9571
9572  MI->eraseFromParent(); // The pseudo is gone now.
9573  return BB;
9574}
9575
9576MachineBasicBlock *
9577X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
9578  DebugLoc dl = MI->getDebugLoc();
9579  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9580
9581  // First arg in ECX, the second in EAX.
9582  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9583    .addReg(MI->getOperand(0).getReg());
9584  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
9585    .addReg(MI->getOperand(1).getReg());
9586
9587  // The instruction doesn't actually take any operands though.
9588  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
9589
9590  MI->eraseFromParent(); // The pseudo is gone now.
9591  return BB;
9592}
9593
9594MachineBasicBlock *
9595X86TargetLowering::EmitVAARG64WithCustomInserter(
9596                   MachineInstr *MI,
9597                   MachineBasicBlock *MBB) const {
9598  // Emit va_arg instruction on X86-64.
9599
9600  // Operands to this pseudo-instruction:
9601  // 0  ) Output        : destination address (reg)
9602  // 1-5) Input         : va_list address (addr, i64mem)
9603  // 6  ) ArgSize       : Size (in bytes) of vararg type
9604  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
9605  // 8  ) Align         : Alignment of type
9606  // 9  ) EFLAGS (implicit-def)
9607
9608  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
9609  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
9610
9611  unsigned DestReg = MI->getOperand(0).getReg();
9612  MachineOperand &Base = MI->getOperand(1);
9613  MachineOperand &Scale = MI->getOperand(2);
9614  MachineOperand &Index = MI->getOperand(3);
9615  MachineOperand &Disp = MI->getOperand(4);
9616  MachineOperand &Segment = MI->getOperand(5);
9617  unsigned ArgSize = MI->getOperand(6).getImm();
9618  unsigned ArgMode = MI->getOperand(7).getImm();
9619  unsigned Align = MI->getOperand(8).getImm();
9620
9621  // Memory Reference
9622  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
9623  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
9624  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
9625
9626  // Machine Information
9627  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9628  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9629  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
9630  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
9631  DebugLoc DL = MI->getDebugLoc();
9632
9633  // struct va_list {
9634  //   i32   gp_offset
9635  //   i32   fp_offset
9636  //   i64   overflow_area (address)
9637  //   i64   reg_save_area (address)
9638  // }
9639  // sizeof(va_list) = 24
9640  // alignment(va_list) = 8
9641
9642  unsigned TotalNumIntRegs = 6;
9643  unsigned TotalNumXMMRegs = 8;
9644  bool UseGPOffset = (ArgMode == 1);
9645  bool UseFPOffset = (ArgMode == 2);
9646  unsigned MaxOffset = TotalNumIntRegs * 8 +
9647                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
9648
9649  /* Align ArgSize to a multiple of 8 */
9650  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
9651  bool NeedsAlign = (Align > 8);
9652
9653  MachineBasicBlock *thisMBB = MBB;
9654  MachineBasicBlock *overflowMBB;
9655  MachineBasicBlock *offsetMBB;
9656  MachineBasicBlock *endMBB;
9657
9658  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
9659  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
9660  unsigned OffsetReg = 0;
9661
9662  if (!UseGPOffset && !UseFPOffset) {
9663    // If we only pull from the overflow region, we don't create a branch.
9664    // We don't need to alter control flow.
9665    OffsetDestReg = 0; // unused
9666    OverflowDestReg = DestReg;
9667
9668    offsetMBB = NULL;
9669    overflowMBB = thisMBB;
9670    endMBB = thisMBB;
9671  } else {
9672    // First emit code to check if gp_offset (or fp_offset) is below the bound.
9673    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
9674    // If not, pull from overflow_area. (branch to overflowMBB)
9675    //
9676    //       thisMBB
9677    //         |     .
9678    //         |        .
9679    //     offsetMBB   overflowMBB
9680    //         |        .
9681    //         |     .
9682    //        endMBB
9683
9684    // Registers for the PHI in endMBB
9685    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
9686    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
9687
9688    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9689    MachineFunction *MF = MBB->getParent();
9690    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9691    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9692    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9693
9694    MachineFunction::iterator MBBIter = MBB;
9695    ++MBBIter;
9696
9697    // Insert the new basic blocks
9698    MF->insert(MBBIter, offsetMBB);
9699    MF->insert(MBBIter, overflowMBB);
9700    MF->insert(MBBIter, endMBB);
9701
9702    // Transfer the remainder of MBB and its successor edges to endMBB.
9703    endMBB->splice(endMBB->begin(), thisMBB,
9704                    llvm::next(MachineBasicBlock::iterator(MI)),
9705                    thisMBB->end());
9706    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9707
9708    // Make offsetMBB and overflowMBB successors of thisMBB
9709    thisMBB->addSuccessor(offsetMBB);
9710    thisMBB->addSuccessor(overflowMBB);
9711
9712    // endMBB is a successor of both offsetMBB and overflowMBB
9713    offsetMBB->addSuccessor(endMBB);
9714    overflowMBB->addSuccessor(endMBB);
9715
9716    // Load the offset value into a register
9717    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9718    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
9719      .addOperand(Base)
9720      .addOperand(Scale)
9721      .addOperand(Index)
9722      .addDisp(Disp, UseFPOffset ? 4 : 0)
9723      .addOperand(Segment)
9724      .setMemRefs(MMOBegin, MMOEnd);
9725
9726    // Check if there is enough room left to pull this argument.
9727    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
9728      .addReg(OffsetReg)
9729      .addImm(MaxOffset + 8 - ArgSizeA8);
9730
9731    // Branch to "overflowMBB" if offset >= max
9732    // Fall through to "offsetMBB" otherwise
9733    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
9734      .addMBB(overflowMBB);
9735  }
9736
9737  // In offsetMBB, emit code to use the reg_save_area.
9738  if (offsetMBB) {
9739    assert(OffsetReg != 0);
9740
9741    // Read the reg_save_area address.
9742    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
9743    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
9744      .addOperand(Base)
9745      .addOperand(Scale)
9746      .addOperand(Index)
9747      .addDisp(Disp, 16)
9748      .addOperand(Segment)
9749      .setMemRefs(MMOBegin, MMOEnd);
9750
9751    // Zero-extend the offset
9752    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
9753      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
9754        .addImm(0)
9755        .addReg(OffsetReg)
9756        .addImm(X86::sub_32bit);
9757
9758    // Add the offset to the reg_save_area to get the final address.
9759    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
9760      .addReg(OffsetReg64)
9761      .addReg(RegSaveReg);
9762
9763    // Compute the offset for the next argument
9764    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9765    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
9766      .addReg(OffsetReg)
9767      .addImm(UseFPOffset ? 16 : 8);
9768
9769    // Store it back into the va_list.
9770    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
9771      .addOperand(Base)
9772      .addOperand(Scale)
9773      .addOperand(Index)
9774      .addDisp(Disp, UseFPOffset ? 4 : 0)
9775      .addOperand(Segment)
9776      .addReg(NextOffsetReg)
9777      .setMemRefs(MMOBegin, MMOEnd);
9778
9779    // Jump to endMBB
9780    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
9781      .addMBB(endMBB);
9782  }
9783
9784  //
9785  // Emit code to use overflow area
9786  //
9787
9788  // Load the overflow_area address into a register.
9789  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
9790  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
9791    .addOperand(Base)
9792    .addOperand(Scale)
9793    .addOperand(Index)
9794    .addDisp(Disp, 8)
9795    .addOperand(Segment)
9796    .setMemRefs(MMOBegin, MMOEnd);
9797
9798  // If we need to align it, do so. Otherwise, just copy the address
9799  // to OverflowDestReg.
9800  if (NeedsAlign) {
9801    // Align the overflow address
9802    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
9803    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
9804
9805    // aligned_addr = (addr + (align-1)) & ~(align-1)
9806    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
9807      .addReg(OverflowAddrReg)
9808      .addImm(Align-1);
9809
9810    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
9811      .addReg(TmpReg)
9812      .addImm(~(uint64_t)(Align-1));
9813  } else {
9814    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
9815      .addReg(OverflowAddrReg);
9816  }
9817
9818  // Compute the next overflow address after this argument.
9819  // (the overflow address should be kept 8-byte aligned)
9820  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
9821  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
9822    .addReg(OverflowDestReg)
9823    .addImm(ArgSizeA8);
9824
9825  // Store the new overflow address.
9826  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
9827    .addOperand(Base)
9828    .addOperand(Scale)
9829    .addOperand(Index)
9830    .addDisp(Disp, 8)
9831    .addOperand(Segment)
9832    .addReg(NextAddrReg)
9833    .setMemRefs(MMOBegin, MMOEnd);
9834
9835  // If we branched, emit the PHI to the front of endMBB.
9836  if (offsetMBB) {
9837    BuildMI(*endMBB, endMBB->begin(), DL,
9838            TII->get(X86::PHI), DestReg)
9839      .addReg(OffsetDestReg).addMBB(offsetMBB)
9840      .addReg(OverflowDestReg).addMBB(overflowMBB);
9841  }
9842
9843  // Erase the pseudo instruction
9844  MI->eraseFromParent();
9845
9846  return endMBB;
9847}
9848
9849MachineBasicBlock *
9850X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9851                                                 MachineInstr *MI,
9852                                                 MachineBasicBlock *MBB) const {
9853  // Emit code to save XMM registers to the stack. The ABI says that the
9854  // number of registers to save is given in %al, so it's theoretically
9855  // possible to do an indirect jump trick to avoid saving all of them,
9856  // however this code takes a simpler approach and just executes all
9857  // of the stores if %al is non-zero. It's less code, and it's probably
9858  // easier on the hardware branch predictor, and stores aren't all that
9859  // expensive anyway.
9860
9861  // Create the new basic blocks. One block contains all the XMM stores,
9862  // and one block is the final destination regardless of whether any
9863  // stores were performed.
9864  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9865  MachineFunction *F = MBB->getParent();
9866  MachineFunction::iterator MBBIter = MBB;
9867  ++MBBIter;
9868  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9869  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9870  F->insert(MBBIter, XMMSaveMBB);
9871  F->insert(MBBIter, EndMBB);
9872
9873  // Transfer the remainder of MBB and its successor edges to EndMBB.
9874  EndMBB->splice(EndMBB->begin(), MBB,
9875                 llvm::next(MachineBasicBlock::iterator(MI)),
9876                 MBB->end());
9877  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9878
9879  // The original block will now fall through to the XMM save block.
9880  MBB->addSuccessor(XMMSaveMBB);
9881  // The XMMSaveMBB will fall through to the end block.
9882  XMMSaveMBB->addSuccessor(EndMBB);
9883
9884  // Now add the instructions.
9885  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9886  DebugLoc DL = MI->getDebugLoc();
9887
9888  unsigned CountReg = MI->getOperand(0).getReg();
9889  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9890  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9891
9892  if (!Subtarget->isTargetWin64()) {
9893    // If %al is 0, branch around the XMM save block.
9894    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9895    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9896    MBB->addSuccessor(EndMBB);
9897  }
9898
9899  // In the XMM save block, save all the XMM argument registers.
9900  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9901    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9902    MachineMemOperand *MMO =
9903      F->getMachineMemOperand(
9904          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
9905        MachineMemOperand::MOStore,
9906        /*Size=*/16, /*Align=*/16);
9907    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9908      .addFrameIndex(RegSaveFrameIndex)
9909      .addImm(/*Scale=*/1)
9910      .addReg(/*IndexReg=*/0)
9911      .addImm(/*Disp=*/Offset)
9912      .addReg(/*Segment=*/0)
9913      .addReg(MI->getOperand(i).getReg())
9914      .addMemOperand(MMO);
9915  }
9916
9917  MI->eraseFromParent();   // The pseudo instruction is gone now.
9918
9919  return EndMBB;
9920}
9921
9922MachineBasicBlock *
9923X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9924                                     MachineBasicBlock *BB) const {
9925  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9926  DebugLoc DL = MI->getDebugLoc();
9927
9928  // To "insert" a SELECT_CC instruction, we actually have to insert the
9929  // diamond control-flow pattern.  The incoming instruction knows the
9930  // destination vreg to set, the condition code register to branch on, the
9931  // true/false values to select between, and a branch opcode to use.
9932  const BasicBlock *LLVM_BB = BB->getBasicBlock();
9933  MachineFunction::iterator It = BB;
9934  ++It;
9935
9936  //  thisMBB:
9937  //  ...
9938  //   TrueVal = ...
9939  //   cmpTY ccX, r1, r2
9940  //   bCC copy1MBB
9941  //   fallthrough --> copy0MBB
9942  MachineBasicBlock *thisMBB = BB;
9943  MachineFunction *F = BB->getParent();
9944  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9945  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9946  F->insert(It, copy0MBB);
9947  F->insert(It, sinkMBB);
9948
9949  // If the EFLAGS register isn't dead in the terminator, then claim that it's
9950  // live into the sink and copy blocks.
9951  const MachineFunction *MF = BB->getParent();
9952  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9953  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9954
9955  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9956    const MachineOperand &MO = MI->getOperand(I);
9957    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9958    unsigned Reg = MO.getReg();
9959    if (Reg != X86::EFLAGS) continue;
9960    copy0MBB->addLiveIn(Reg);
9961    sinkMBB->addLiveIn(Reg);
9962  }
9963
9964  // Transfer the remainder of BB and its successor edges to sinkMBB.
9965  sinkMBB->splice(sinkMBB->begin(), BB,
9966                  llvm::next(MachineBasicBlock::iterator(MI)),
9967                  BB->end());
9968  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9969
9970  // Add the true and fallthrough blocks as its successors.
9971  BB->addSuccessor(copy0MBB);
9972  BB->addSuccessor(sinkMBB);
9973
9974  // Create the conditional branch instruction.
9975  unsigned Opc =
9976    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9977  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9978
9979  //  copy0MBB:
9980  //   %FalseValue = ...
9981  //   # fallthrough to sinkMBB
9982  copy0MBB->addSuccessor(sinkMBB);
9983
9984  //  sinkMBB:
9985  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9986  //  ...
9987  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9988          TII->get(X86::PHI), MI->getOperand(0).getReg())
9989    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9990    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9991
9992  MI->eraseFromParent();   // The pseudo instruction is gone now.
9993  return sinkMBB;
9994}
9995
9996MachineBasicBlock *
9997X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
9998                                          MachineBasicBlock *BB) const {
9999  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10000  DebugLoc DL = MI->getDebugLoc();
10001
10002  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10003  // non-trivial part is impdef of ESP.
10004  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
10005  // mingw-w64.
10006
10007  const char *StackProbeSymbol =
10008      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10009
10010  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10011    .addExternalSymbol(StackProbeSymbol)
10012    .addReg(X86::EAX, RegState::Implicit)
10013    .addReg(X86::ESP, RegState::Implicit)
10014    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10015    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10016    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10017
10018  MI->eraseFromParent();   // The pseudo instruction is gone now.
10019  return BB;
10020}
10021
10022MachineBasicBlock *
10023X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10024                                      MachineBasicBlock *BB) const {
10025  // This is pretty easy.  We're taking the value that we received from
10026  // our load from the relocation, sticking it in either RDI (x86-64)
10027  // or EAX and doing an indirect call.  The return value will then
10028  // be in the normal return register.
10029  const X86InstrInfo *TII
10030    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10031  DebugLoc DL = MI->getDebugLoc();
10032  MachineFunction *F = BB->getParent();
10033
10034  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10035  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10036
10037  if (Subtarget->is64Bit()) {
10038    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10039                                      TII->get(X86::MOV64rm), X86::RDI)
10040    .addReg(X86::RIP)
10041    .addImm(0).addReg(0)
10042    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10043                      MI->getOperand(3).getTargetFlags())
10044    .addReg(0);
10045    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10046    addDirectMem(MIB, X86::RDI);
10047  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10048    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10049                                      TII->get(X86::MOV32rm), X86::EAX)
10050    .addReg(0)
10051    .addImm(0).addReg(0)
10052    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10053                      MI->getOperand(3).getTargetFlags())
10054    .addReg(0);
10055    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10056    addDirectMem(MIB, X86::EAX);
10057  } else {
10058    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10059                                      TII->get(X86::MOV32rm), X86::EAX)
10060    .addReg(TII->getGlobalBaseReg(F))
10061    .addImm(0).addReg(0)
10062    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10063                      MI->getOperand(3).getTargetFlags())
10064    .addReg(0);
10065    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10066    addDirectMem(MIB, X86::EAX);
10067  }
10068
10069  MI->eraseFromParent(); // The pseudo instruction is gone now.
10070  return BB;
10071}
10072
10073MachineBasicBlock *
10074X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10075                                               MachineBasicBlock *BB) const {
10076  switch (MI->getOpcode()) {
10077  default: assert(false && "Unexpected instr type to insert");
10078  case X86::WIN_ALLOCA:
10079    return EmitLoweredWinAlloca(MI, BB);
10080  case X86::TLSCall_32:
10081  case X86::TLSCall_64:
10082    return EmitLoweredTLSCall(MI, BB);
10083  case X86::CMOV_GR8:
10084  case X86::CMOV_FR32:
10085  case X86::CMOV_FR64:
10086  case X86::CMOV_V4F32:
10087  case X86::CMOV_V2F64:
10088  case X86::CMOV_V2I64:
10089  case X86::CMOV_GR16:
10090  case X86::CMOV_GR32:
10091  case X86::CMOV_RFP32:
10092  case X86::CMOV_RFP64:
10093  case X86::CMOV_RFP80:
10094    return EmitLoweredSelect(MI, BB);
10095
10096  case X86::FP32_TO_INT16_IN_MEM:
10097  case X86::FP32_TO_INT32_IN_MEM:
10098  case X86::FP32_TO_INT64_IN_MEM:
10099  case X86::FP64_TO_INT16_IN_MEM:
10100  case X86::FP64_TO_INT32_IN_MEM:
10101  case X86::FP64_TO_INT64_IN_MEM:
10102  case X86::FP80_TO_INT16_IN_MEM:
10103  case X86::FP80_TO_INT32_IN_MEM:
10104  case X86::FP80_TO_INT64_IN_MEM: {
10105    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10106    DebugLoc DL = MI->getDebugLoc();
10107
10108    // Change the floating point control register to use "round towards zero"
10109    // mode when truncating to an integer value.
10110    MachineFunction *F = BB->getParent();
10111    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10112    addFrameReference(BuildMI(*BB, MI, DL,
10113                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10114
10115    // Load the old value of the high byte of the control word...
10116    unsigned OldCW =
10117      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10118    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10119                      CWFrameIdx);
10120
10121    // Set the high part to be round to zero...
10122    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10123      .addImm(0xC7F);
10124
10125    // Reload the modified control word now...
10126    addFrameReference(BuildMI(*BB, MI, DL,
10127                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10128
10129    // Restore the memory image of control word to original value
10130    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10131      .addReg(OldCW);
10132
10133    // Get the X86 opcode to use.
10134    unsigned Opc;
10135    switch (MI->getOpcode()) {
10136    default: llvm_unreachable("illegal opcode!");
10137    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10138    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10139    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10140    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10141    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10142    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10143    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10144    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10145    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10146    }
10147
10148    X86AddressMode AM;
10149    MachineOperand &Op = MI->getOperand(0);
10150    if (Op.isReg()) {
10151      AM.BaseType = X86AddressMode::RegBase;
10152      AM.Base.Reg = Op.getReg();
10153    } else {
10154      AM.BaseType = X86AddressMode::FrameIndexBase;
10155      AM.Base.FrameIndex = Op.getIndex();
10156    }
10157    Op = MI->getOperand(1);
10158    if (Op.isImm())
10159      AM.Scale = Op.getImm();
10160    Op = MI->getOperand(2);
10161    if (Op.isImm())
10162      AM.IndexReg = Op.getImm();
10163    Op = MI->getOperand(3);
10164    if (Op.isGlobal()) {
10165      AM.GV = Op.getGlobal();
10166    } else {
10167      AM.Disp = Op.getImm();
10168    }
10169    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10170                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10171
10172    // Reload the original control word now.
10173    addFrameReference(BuildMI(*BB, MI, DL,
10174                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10175
10176    MI->eraseFromParent();   // The pseudo instruction is gone now.
10177    return BB;
10178  }
10179    // String/text processing lowering.
10180  case X86::PCMPISTRM128REG:
10181  case X86::VPCMPISTRM128REG:
10182    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10183  case X86::PCMPISTRM128MEM:
10184  case X86::VPCMPISTRM128MEM:
10185    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10186  case X86::PCMPESTRM128REG:
10187  case X86::VPCMPESTRM128REG:
10188    return EmitPCMP(MI, BB, 5, false /* in mem */);
10189  case X86::PCMPESTRM128MEM:
10190  case X86::VPCMPESTRM128MEM:
10191    return EmitPCMP(MI, BB, 5, true /* in mem */);
10192
10193    // Thread synchronization.
10194  case X86::MONITOR:
10195    return EmitMonitor(MI, BB);
10196  case X86::MWAIT:
10197    return EmitMwait(MI, BB);
10198
10199    // Atomic Lowering.
10200  case X86::ATOMAND32:
10201    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10202                                               X86::AND32ri, X86::MOV32rm,
10203                                               X86::LCMPXCHG32,
10204                                               X86::NOT32r, X86::EAX,
10205                                               X86::GR32RegisterClass);
10206  case X86::ATOMOR32:
10207    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10208                                               X86::OR32ri, X86::MOV32rm,
10209                                               X86::LCMPXCHG32,
10210                                               X86::NOT32r, X86::EAX,
10211                                               X86::GR32RegisterClass);
10212  case X86::ATOMXOR32:
10213    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10214                                               X86::XOR32ri, X86::MOV32rm,
10215                                               X86::LCMPXCHG32,
10216                                               X86::NOT32r, X86::EAX,
10217                                               X86::GR32RegisterClass);
10218  case X86::ATOMNAND32:
10219    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10220                                               X86::AND32ri, X86::MOV32rm,
10221                                               X86::LCMPXCHG32,
10222                                               X86::NOT32r, X86::EAX,
10223                                               X86::GR32RegisterClass, true);
10224  case X86::ATOMMIN32:
10225    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10226  case X86::ATOMMAX32:
10227    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10228  case X86::ATOMUMIN32:
10229    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10230  case X86::ATOMUMAX32:
10231    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10232
10233  case X86::ATOMAND16:
10234    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10235                                               X86::AND16ri, X86::MOV16rm,
10236                                               X86::LCMPXCHG16,
10237                                               X86::NOT16r, X86::AX,
10238                                               X86::GR16RegisterClass);
10239  case X86::ATOMOR16:
10240    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10241                                               X86::OR16ri, X86::MOV16rm,
10242                                               X86::LCMPXCHG16,
10243                                               X86::NOT16r, X86::AX,
10244                                               X86::GR16RegisterClass);
10245  case X86::ATOMXOR16:
10246    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10247                                               X86::XOR16ri, X86::MOV16rm,
10248                                               X86::LCMPXCHG16,
10249                                               X86::NOT16r, X86::AX,
10250                                               X86::GR16RegisterClass);
10251  case X86::ATOMNAND16:
10252    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10253                                               X86::AND16ri, X86::MOV16rm,
10254                                               X86::LCMPXCHG16,
10255                                               X86::NOT16r, X86::AX,
10256                                               X86::GR16RegisterClass, true);
10257  case X86::ATOMMIN16:
10258    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10259  case X86::ATOMMAX16:
10260    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10261  case X86::ATOMUMIN16:
10262    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10263  case X86::ATOMUMAX16:
10264    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10265
10266  case X86::ATOMAND8:
10267    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10268                                               X86::AND8ri, X86::MOV8rm,
10269                                               X86::LCMPXCHG8,
10270                                               X86::NOT8r, X86::AL,
10271                                               X86::GR8RegisterClass);
10272  case X86::ATOMOR8:
10273    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10274                                               X86::OR8ri, X86::MOV8rm,
10275                                               X86::LCMPXCHG8,
10276                                               X86::NOT8r, X86::AL,
10277                                               X86::GR8RegisterClass);
10278  case X86::ATOMXOR8:
10279    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10280                                               X86::XOR8ri, X86::MOV8rm,
10281                                               X86::LCMPXCHG8,
10282                                               X86::NOT8r, X86::AL,
10283                                               X86::GR8RegisterClass);
10284  case X86::ATOMNAND8:
10285    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10286                                               X86::AND8ri, X86::MOV8rm,
10287                                               X86::LCMPXCHG8,
10288                                               X86::NOT8r, X86::AL,
10289                                               X86::GR8RegisterClass, true);
10290  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10291  // This group is for 64-bit host.
10292  case X86::ATOMAND64:
10293    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10294                                               X86::AND64ri32, X86::MOV64rm,
10295                                               X86::LCMPXCHG64,
10296                                               X86::NOT64r, X86::RAX,
10297                                               X86::GR64RegisterClass);
10298  case X86::ATOMOR64:
10299    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10300                                               X86::OR64ri32, X86::MOV64rm,
10301                                               X86::LCMPXCHG64,
10302                                               X86::NOT64r, X86::RAX,
10303                                               X86::GR64RegisterClass);
10304  case X86::ATOMXOR64:
10305    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10306                                               X86::XOR64ri32, X86::MOV64rm,
10307                                               X86::LCMPXCHG64,
10308                                               X86::NOT64r, X86::RAX,
10309                                               X86::GR64RegisterClass);
10310  case X86::ATOMNAND64:
10311    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10312                                               X86::AND64ri32, X86::MOV64rm,
10313                                               X86::LCMPXCHG64,
10314                                               X86::NOT64r, X86::RAX,
10315                                               X86::GR64RegisterClass, true);
10316  case X86::ATOMMIN64:
10317    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10318  case X86::ATOMMAX64:
10319    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10320  case X86::ATOMUMIN64:
10321    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10322  case X86::ATOMUMAX64:
10323    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10324
10325  // This group does 64-bit operations on a 32-bit host.
10326  case X86::ATOMAND6432:
10327    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10328                                               X86::AND32rr, X86::AND32rr,
10329                                               X86::AND32ri, X86::AND32ri,
10330                                               false);
10331  case X86::ATOMOR6432:
10332    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10333                                               X86::OR32rr, X86::OR32rr,
10334                                               X86::OR32ri, X86::OR32ri,
10335                                               false);
10336  case X86::ATOMXOR6432:
10337    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10338                                               X86::XOR32rr, X86::XOR32rr,
10339                                               X86::XOR32ri, X86::XOR32ri,
10340                                               false);
10341  case X86::ATOMNAND6432:
10342    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10343                                               X86::AND32rr, X86::AND32rr,
10344                                               X86::AND32ri, X86::AND32ri,
10345                                               true);
10346  case X86::ATOMADD6432:
10347    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10348                                               X86::ADD32rr, X86::ADC32rr,
10349                                               X86::ADD32ri, X86::ADC32ri,
10350                                               false);
10351  case X86::ATOMSUB6432:
10352    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10353                                               X86::SUB32rr, X86::SBB32rr,
10354                                               X86::SUB32ri, X86::SBB32ri,
10355                                               false);
10356  case X86::ATOMSWAP6432:
10357    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10358                                               X86::MOV32rr, X86::MOV32rr,
10359                                               X86::MOV32ri, X86::MOV32ri,
10360                                               false);
10361  case X86::VASTART_SAVE_XMM_REGS:
10362    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10363
10364  case X86::VAARG_64:
10365    return EmitVAARG64WithCustomInserter(MI, BB);
10366  }
10367}
10368
10369//===----------------------------------------------------------------------===//
10370//                           X86 Optimization Hooks
10371//===----------------------------------------------------------------------===//
10372
10373void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10374                                                       const APInt &Mask,
10375                                                       APInt &KnownZero,
10376                                                       APInt &KnownOne,
10377                                                       const SelectionDAG &DAG,
10378                                                       unsigned Depth) const {
10379  unsigned Opc = Op.getOpcode();
10380  assert((Opc >= ISD::BUILTIN_OP_END ||
10381          Opc == ISD::INTRINSIC_WO_CHAIN ||
10382          Opc == ISD::INTRINSIC_W_CHAIN ||
10383          Opc == ISD::INTRINSIC_VOID) &&
10384         "Should use MaskedValueIsZero if you don't know whether Op"
10385         " is a target node!");
10386
10387  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10388  switch (Opc) {
10389  default: break;
10390  case X86ISD::ADD:
10391  case X86ISD::SUB:
10392  case X86ISD::ADC:
10393  case X86ISD::SBB:
10394  case X86ISD::SMUL:
10395  case X86ISD::UMUL:
10396  case X86ISD::INC:
10397  case X86ISD::DEC:
10398  case X86ISD::OR:
10399  case X86ISD::XOR:
10400  case X86ISD::AND:
10401    // These nodes' second result is a boolean.
10402    if (Op.getResNo() == 0)
10403      break;
10404    // Fallthrough
10405  case X86ISD::SETCC:
10406    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10407                                       Mask.getBitWidth() - 1);
10408    break;
10409  }
10410}
10411
10412unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10413                                                         unsigned Depth) const {
10414  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10415  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10416    return Op.getValueType().getScalarType().getSizeInBits();
10417
10418  // Fallback case.
10419  return 1;
10420}
10421
10422/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10423/// node is a GlobalAddress + offset.
10424bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10425                                       const GlobalValue* &GA,
10426                                       int64_t &Offset) const {
10427  if (N->getOpcode() == X86ISD::Wrapper) {
10428    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10429      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10430      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10431      return true;
10432    }
10433  }
10434  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10435}
10436
10437/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10438/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10439/// if the load addresses are consecutive, non-overlapping, and in the right
10440/// order.
10441static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10442                                     TargetLowering::DAGCombinerInfo &DCI) {
10443  DebugLoc dl = N->getDebugLoc();
10444  EVT VT = N->getValueType(0);
10445
10446  if (VT.getSizeInBits() != 128)
10447    return SDValue();
10448
10449  // Don't create instructions with illegal types after legalize types has run.
10450  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10451  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
10452    return SDValue();
10453
10454  SmallVector<SDValue, 16> Elts;
10455  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10456    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10457
10458  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10459}
10460
10461/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10462/// generation and convert it from being a bunch of shuffles and extracts
10463/// to a simple store and scalar loads to extract the elements.
10464static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10465                                                const TargetLowering &TLI) {
10466  SDValue InputVector = N->getOperand(0);
10467
10468  // Only operate on vectors of 4 elements, where the alternative shuffling
10469  // gets to be more expensive.
10470  if (InputVector.getValueType() != MVT::v4i32)
10471    return SDValue();
10472
10473  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10474  // single use which is a sign-extend or zero-extend, and all elements are
10475  // used.
10476  SmallVector<SDNode *, 4> Uses;
10477  unsigned ExtractedElements = 0;
10478  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10479       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10480    if (UI.getUse().getResNo() != InputVector.getResNo())
10481      return SDValue();
10482
10483    SDNode *Extract = *UI;
10484    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10485      return SDValue();
10486
10487    if (Extract->getValueType(0) != MVT::i32)
10488      return SDValue();
10489    if (!Extract->hasOneUse())
10490      return SDValue();
10491    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10492        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10493      return SDValue();
10494    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10495      return SDValue();
10496
10497    // Record which element was extracted.
10498    ExtractedElements |=
10499      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10500
10501    Uses.push_back(Extract);
10502  }
10503
10504  // If not all the elements were used, this may not be worthwhile.
10505  if (ExtractedElements != 15)
10506    return SDValue();
10507
10508  // Ok, we've now decided to do the transformation.
10509  DebugLoc dl = InputVector.getDebugLoc();
10510
10511  // Store the value to a temporary stack slot.
10512  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10513  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10514                            MachinePointerInfo(), false, false, 0);
10515
10516  // Replace each use (extract) with a load of the appropriate element.
10517  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10518       UE = Uses.end(); UI != UE; ++UI) {
10519    SDNode *Extract = *UI;
10520
10521    // Compute the element's address.
10522    SDValue Idx = Extract->getOperand(1);
10523    unsigned EltSize =
10524        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10525    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10526    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10527
10528    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10529                                     StackPtr, OffsetVal);
10530
10531    // Load the scalar.
10532    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10533                                     ScalarAddr, MachinePointerInfo(),
10534                                     false, false, 0);
10535
10536    // Replace the exact with the load.
10537    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10538  }
10539
10540  // The replacement was made in place; don't return anything.
10541  return SDValue();
10542}
10543
10544/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10545static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10546                                    const X86Subtarget *Subtarget) {
10547  DebugLoc DL = N->getDebugLoc();
10548  SDValue Cond = N->getOperand(0);
10549  // Get the LHS/RHS of the select.
10550  SDValue LHS = N->getOperand(1);
10551  SDValue RHS = N->getOperand(2);
10552
10553  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10554  // instructions match the semantics of the common C idiom x<y?x:y but not
10555  // x<=y?x:y, because of how they handle negative zero (which can be
10556  // ignored in unsafe-math mode).
10557  if (Subtarget->hasSSE2() &&
10558      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10559      Cond.getOpcode() == ISD::SETCC) {
10560    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10561
10562    unsigned Opcode = 0;
10563    // Check for x CC y ? x : y.
10564    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10565        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10566      switch (CC) {
10567      default: break;
10568      case ISD::SETULT:
10569        // Converting this to a min would handle NaNs incorrectly, and swapping
10570        // the operands would cause it to handle comparisons between positive
10571        // and negative zero incorrectly.
10572        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10573          if (!UnsafeFPMath &&
10574              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10575            break;
10576          std::swap(LHS, RHS);
10577        }
10578        Opcode = X86ISD::FMIN;
10579        break;
10580      case ISD::SETOLE:
10581        // Converting this to a min would handle comparisons between positive
10582        // and negative zero incorrectly.
10583        if (!UnsafeFPMath &&
10584            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
10585          break;
10586        Opcode = X86ISD::FMIN;
10587        break;
10588      case ISD::SETULE:
10589        // Converting this to a min would handle both negative zeros and NaNs
10590        // incorrectly, but we can swap the operands to fix both.
10591        std::swap(LHS, RHS);
10592      case ISD::SETOLT:
10593      case ISD::SETLT:
10594      case ISD::SETLE:
10595        Opcode = X86ISD::FMIN;
10596        break;
10597
10598      case ISD::SETOGE:
10599        // Converting this to a max would handle comparisons between positive
10600        // and negative zero incorrectly.
10601        if (!UnsafeFPMath &&
10602            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
10603          break;
10604        Opcode = X86ISD::FMAX;
10605        break;
10606      case ISD::SETUGT:
10607        // Converting this to a max would handle NaNs incorrectly, and swapping
10608        // the operands would cause it to handle comparisons between positive
10609        // and negative zero incorrectly.
10610        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10611          if (!UnsafeFPMath &&
10612              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10613            break;
10614          std::swap(LHS, RHS);
10615        }
10616        Opcode = X86ISD::FMAX;
10617        break;
10618      case ISD::SETUGE:
10619        // Converting this to a max would handle both negative zeros and NaNs
10620        // incorrectly, but we can swap the operands to fix both.
10621        std::swap(LHS, RHS);
10622      case ISD::SETOGT:
10623      case ISD::SETGT:
10624      case ISD::SETGE:
10625        Opcode = X86ISD::FMAX;
10626        break;
10627      }
10628    // Check for x CC y ? y : x -- a min/max with reversed arms.
10629    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
10630               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
10631      switch (CC) {
10632      default: break;
10633      case ISD::SETOGE:
10634        // Converting this to a min would handle comparisons between positive
10635        // and negative zero incorrectly, and swapping the operands would
10636        // cause it to handle NaNs incorrectly.
10637        if (!UnsafeFPMath &&
10638            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
10639          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10640            break;
10641          std::swap(LHS, RHS);
10642        }
10643        Opcode = X86ISD::FMIN;
10644        break;
10645      case ISD::SETUGT:
10646        // Converting this to a min would handle NaNs incorrectly.
10647        if (!UnsafeFPMath &&
10648            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
10649          break;
10650        Opcode = X86ISD::FMIN;
10651        break;
10652      case ISD::SETUGE:
10653        // Converting this to a min would handle both negative zeros and NaNs
10654        // incorrectly, but we can swap the operands to fix both.
10655        std::swap(LHS, RHS);
10656      case ISD::SETOGT:
10657      case ISD::SETGT:
10658      case ISD::SETGE:
10659        Opcode = X86ISD::FMIN;
10660        break;
10661
10662      case ISD::SETULT:
10663        // Converting this to a max would handle NaNs incorrectly.
10664        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10665          break;
10666        Opcode = X86ISD::FMAX;
10667        break;
10668      case ISD::SETOLE:
10669        // Converting this to a max would handle comparisons between positive
10670        // and negative zero incorrectly, and swapping the operands would
10671        // cause it to handle NaNs incorrectly.
10672        if (!UnsafeFPMath &&
10673            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
10674          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10675            break;
10676          std::swap(LHS, RHS);
10677        }
10678        Opcode = X86ISD::FMAX;
10679        break;
10680      case ISD::SETULE:
10681        // Converting this to a max would handle both negative zeros and NaNs
10682        // incorrectly, but we can swap the operands to fix both.
10683        std::swap(LHS, RHS);
10684      case ISD::SETOLT:
10685      case ISD::SETLT:
10686      case ISD::SETLE:
10687        Opcode = X86ISD::FMAX;
10688        break;
10689      }
10690    }
10691
10692    if (Opcode)
10693      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
10694  }
10695
10696  // If this is a select between two integer constants, try to do some
10697  // optimizations.
10698  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
10699    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
10700      // Don't do this for crazy integer types.
10701      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
10702        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10703        // so that TrueC (the true value) is larger than FalseC.
10704        bool NeedsCondInvert = false;
10705
10706        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
10707            // Efficiently invertible.
10708            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
10709             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
10710              isa<ConstantSDNode>(Cond.getOperand(1))))) {
10711          NeedsCondInvert = true;
10712          std::swap(TrueC, FalseC);
10713        }
10714
10715        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
10716        if (FalseC->getAPIntValue() == 0 &&
10717            TrueC->getAPIntValue().isPowerOf2()) {
10718          if (NeedsCondInvert) // Invert the condition if needed.
10719            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10720                               DAG.getConstant(1, Cond.getValueType()));
10721
10722          // Zero extend the condition if needed.
10723          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
10724
10725          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10726          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
10727                             DAG.getConstant(ShAmt, MVT::i8));
10728        }
10729
10730        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10731        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10732          if (NeedsCondInvert) // Invert the condition if needed.
10733            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10734                               DAG.getConstant(1, Cond.getValueType()));
10735
10736          // Zero extend the condition if needed.
10737          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10738                             FalseC->getValueType(0), Cond);
10739          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10740                             SDValue(FalseC, 0));
10741        }
10742
10743        // Optimize cases that will turn into an LEA instruction.  This requires
10744        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10745        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10746          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10747          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10748
10749          bool isFastMultiplier = false;
10750          if (Diff < 10) {
10751            switch ((unsigned char)Diff) {
10752              default: break;
10753              case 1:  // result = add base, cond
10754              case 2:  // result = lea base(    , cond*2)
10755              case 3:  // result = lea base(cond, cond*2)
10756              case 4:  // result = lea base(    , cond*4)
10757              case 5:  // result = lea base(cond, cond*4)
10758              case 8:  // result = lea base(    , cond*8)
10759              case 9:  // result = lea base(cond, cond*8)
10760                isFastMultiplier = true;
10761                break;
10762            }
10763          }
10764
10765          if (isFastMultiplier) {
10766            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10767            if (NeedsCondInvert) // Invert the condition if needed.
10768              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10769                                 DAG.getConstant(1, Cond.getValueType()));
10770
10771            // Zero extend the condition if needed.
10772            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10773                               Cond);
10774            // Scale the condition by the difference.
10775            if (Diff != 1)
10776              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10777                                 DAG.getConstant(Diff, Cond.getValueType()));
10778
10779            // Add the base if non-zero.
10780            if (FalseC->getAPIntValue() != 0)
10781              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10782                                 SDValue(FalseC, 0));
10783            return Cond;
10784          }
10785        }
10786      }
10787  }
10788
10789  return SDValue();
10790}
10791
10792/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10793static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10794                                  TargetLowering::DAGCombinerInfo &DCI) {
10795  DebugLoc DL = N->getDebugLoc();
10796
10797  // If the flag operand isn't dead, don't touch this CMOV.
10798  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10799    return SDValue();
10800
10801  // If this is a select between two integer constants, try to do some
10802  // optimizations.  Note that the operands are ordered the opposite of SELECT
10803  // operands.
10804  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10805    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10806      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10807      // larger than FalseC (the false value).
10808      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10809
10810      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10811        CC = X86::GetOppositeBranchCondition(CC);
10812        std::swap(TrueC, FalseC);
10813      }
10814
10815      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
10816      // This is efficient for any integer data type (including i8/i16) and
10817      // shift amount.
10818      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10819        SDValue Cond = N->getOperand(3);
10820        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10821                           DAG.getConstant(CC, MVT::i8), Cond);
10822
10823        // Zero extend the condition if needed.
10824        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10825
10826        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10827        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10828                           DAG.getConstant(ShAmt, MVT::i8));
10829        if (N->getNumValues() == 2)  // Dead flag value?
10830          return DCI.CombineTo(N, Cond, SDValue());
10831        return Cond;
10832      }
10833
10834      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
10835      // for any integer data type, including i8/i16.
10836      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10837        SDValue Cond = N->getOperand(3);
10838        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10839                           DAG.getConstant(CC, MVT::i8), Cond);
10840
10841        // Zero extend the condition if needed.
10842        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10843                           FalseC->getValueType(0), Cond);
10844        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10845                           SDValue(FalseC, 0));
10846
10847        if (N->getNumValues() == 2)  // Dead flag value?
10848          return DCI.CombineTo(N, Cond, SDValue());
10849        return Cond;
10850      }
10851
10852      // Optimize cases that will turn into an LEA instruction.  This requires
10853      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10854      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10855        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10856        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10857
10858        bool isFastMultiplier = false;
10859        if (Diff < 10) {
10860          switch ((unsigned char)Diff) {
10861          default: break;
10862          case 1:  // result = add base, cond
10863          case 2:  // result = lea base(    , cond*2)
10864          case 3:  // result = lea base(cond, cond*2)
10865          case 4:  // result = lea base(    , cond*4)
10866          case 5:  // result = lea base(cond, cond*4)
10867          case 8:  // result = lea base(    , cond*8)
10868          case 9:  // result = lea base(cond, cond*8)
10869            isFastMultiplier = true;
10870            break;
10871          }
10872        }
10873
10874        if (isFastMultiplier) {
10875          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10876          SDValue Cond = N->getOperand(3);
10877          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10878                             DAG.getConstant(CC, MVT::i8), Cond);
10879          // Zero extend the condition if needed.
10880          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10881                             Cond);
10882          // Scale the condition by the difference.
10883          if (Diff != 1)
10884            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10885                               DAG.getConstant(Diff, Cond.getValueType()));
10886
10887          // Add the base if non-zero.
10888          if (FalseC->getAPIntValue() != 0)
10889            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10890                               SDValue(FalseC, 0));
10891          if (N->getNumValues() == 2)  // Dead flag value?
10892            return DCI.CombineTo(N, Cond, SDValue());
10893          return Cond;
10894        }
10895      }
10896    }
10897  }
10898  return SDValue();
10899}
10900
10901
10902/// PerformMulCombine - Optimize a single multiply with constant into two
10903/// in order to implement it with two cheaper instructions, e.g.
10904/// LEA + SHL, LEA + LEA.
10905static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10906                                 TargetLowering::DAGCombinerInfo &DCI) {
10907  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10908    return SDValue();
10909
10910  EVT VT = N->getValueType(0);
10911  if (VT != MVT::i64)
10912    return SDValue();
10913
10914  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10915  if (!C)
10916    return SDValue();
10917  uint64_t MulAmt = C->getZExtValue();
10918  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10919    return SDValue();
10920
10921  uint64_t MulAmt1 = 0;
10922  uint64_t MulAmt2 = 0;
10923  if ((MulAmt % 9) == 0) {
10924    MulAmt1 = 9;
10925    MulAmt2 = MulAmt / 9;
10926  } else if ((MulAmt % 5) == 0) {
10927    MulAmt1 = 5;
10928    MulAmt2 = MulAmt / 5;
10929  } else if ((MulAmt % 3) == 0) {
10930    MulAmt1 = 3;
10931    MulAmt2 = MulAmt / 3;
10932  }
10933  if (MulAmt2 &&
10934      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10935    DebugLoc DL = N->getDebugLoc();
10936
10937    if (isPowerOf2_64(MulAmt2) &&
10938        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10939      // If second multiplifer is pow2, issue it first. We want the multiply by
10940      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10941      // is an add.
10942      std::swap(MulAmt1, MulAmt2);
10943
10944    SDValue NewMul;
10945    if (isPowerOf2_64(MulAmt1))
10946      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10947                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10948    else
10949      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10950                           DAG.getConstant(MulAmt1, VT));
10951
10952    if (isPowerOf2_64(MulAmt2))
10953      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10954                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10955    else
10956      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10957                           DAG.getConstant(MulAmt2, VT));
10958
10959    // Do not add new nodes to DAG combiner worklist.
10960    DCI.CombineTo(N, NewMul, false);
10961  }
10962  return SDValue();
10963}
10964
10965static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10966  SDValue N0 = N->getOperand(0);
10967  SDValue N1 = N->getOperand(1);
10968  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10969  EVT VT = N0.getValueType();
10970
10971  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10972  // since the result of setcc_c is all zero's or all ones.
10973  if (N1C && N0.getOpcode() == ISD::AND &&
10974      N0.getOperand(1).getOpcode() == ISD::Constant) {
10975    SDValue N00 = N0.getOperand(0);
10976    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10977        ((N00.getOpcode() == ISD::ANY_EXTEND ||
10978          N00.getOpcode() == ISD::ZERO_EXTEND) &&
10979         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10980      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10981      APInt ShAmt = N1C->getAPIntValue();
10982      Mask = Mask.shl(ShAmt);
10983      if (Mask != 0)
10984        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10985                           N00, DAG.getConstant(Mask, VT));
10986    }
10987  }
10988
10989  return SDValue();
10990}
10991
10992/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10993///                       when possible.
10994static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10995                                   const X86Subtarget *Subtarget) {
10996  EVT VT = N->getValueType(0);
10997  if (!VT.isVector() && VT.isInteger() &&
10998      N->getOpcode() == ISD::SHL)
10999    return PerformSHLCombine(N, DAG);
11000
11001  // On X86 with SSE2 support, we can transform this to a vector shift if
11002  // all elements are shifted by the same amount.  We can't do this in legalize
11003  // because the a constant vector is typically transformed to a constant pool
11004  // so we have no knowledge of the shift amount.
11005  if (!Subtarget->hasSSE2())
11006    return SDValue();
11007
11008  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11009    return SDValue();
11010
11011  SDValue ShAmtOp = N->getOperand(1);
11012  EVT EltVT = VT.getVectorElementType();
11013  DebugLoc DL = N->getDebugLoc();
11014  SDValue BaseShAmt = SDValue();
11015  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11016    unsigned NumElts = VT.getVectorNumElements();
11017    unsigned i = 0;
11018    for (; i != NumElts; ++i) {
11019      SDValue Arg = ShAmtOp.getOperand(i);
11020      if (Arg.getOpcode() == ISD::UNDEF) continue;
11021      BaseShAmt = Arg;
11022      break;
11023    }
11024    for (; i != NumElts; ++i) {
11025      SDValue Arg = ShAmtOp.getOperand(i);
11026      if (Arg.getOpcode() == ISD::UNDEF) continue;
11027      if (Arg != BaseShAmt) {
11028        return SDValue();
11029      }
11030    }
11031  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
11032             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
11033    SDValue InVec = ShAmtOp.getOperand(0);
11034    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11035      unsigned NumElts = InVec.getValueType().getVectorNumElements();
11036      unsigned i = 0;
11037      for (; i != NumElts; ++i) {
11038        SDValue Arg = InVec.getOperand(i);
11039        if (Arg.getOpcode() == ISD::UNDEF) continue;
11040        BaseShAmt = Arg;
11041        break;
11042      }
11043    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11044       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11045         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
11046         if (C->getZExtValue() == SplatIdx)
11047           BaseShAmt = InVec.getOperand(1);
11048       }
11049    }
11050    if (BaseShAmt.getNode() == 0)
11051      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
11052                              DAG.getIntPtrConstant(0));
11053  } else
11054    return SDValue();
11055
11056  // The shift amount is an i32.
11057  if (EltVT.bitsGT(MVT::i32))
11058    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
11059  else if (EltVT.bitsLT(MVT::i32))
11060    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
11061
11062  // The shift amount is identical so we can do a vector shift.
11063  SDValue  ValOp = N->getOperand(0);
11064  switch (N->getOpcode()) {
11065  default:
11066    llvm_unreachable("Unknown shift opcode!");
11067    break;
11068  case ISD::SHL:
11069    if (VT == MVT::v2i64)
11070      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11071                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11072                         ValOp, BaseShAmt);
11073    if (VT == MVT::v4i32)
11074      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11075                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11076                         ValOp, BaseShAmt);
11077    if (VT == MVT::v8i16)
11078      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11079                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11080                         ValOp, BaseShAmt);
11081    break;
11082  case ISD::SRA:
11083    if (VT == MVT::v4i32)
11084      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11085                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11086                         ValOp, BaseShAmt);
11087    if (VT == MVT::v8i16)
11088      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11089                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11090                         ValOp, BaseShAmt);
11091    break;
11092  case ISD::SRL:
11093    if (VT == MVT::v2i64)
11094      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11095                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11096                         ValOp, BaseShAmt);
11097    if (VT == MVT::v4i32)
11098      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11099                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11100                         ValOp, BaseShAmt);
11101    if (VT ==  MVT::v8i16)
11102      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11103                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11104                         ValOp, BaseShAmt);
11105    break;
11106  }
11107  return SDValue();
11108}
11109
11110
11111static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
11112                                 TargetLowering::DAGCombinerInfo &DCI,
11113                                 const X86Subtarget *Subtarget) {
11114  if (DCI.isBeforeLegalizeOps())
11115    return SDValue();
11116
11117  // Want to form PANDN nodes, in the hopes of then easily combining them with
11118  // OR and AND nodes to form PBLEND/PSIGN.
11119  EVT VT = N->getValueType(0);
11120  if (VT != MVT::v2i64)
11121    return SDValue();
11122
11123  SDValue N0 = N->getOperand(0);
11124  SDValue N1 = N->getOperand(1);
11125  DebugLoc DL = N->getDebugLoc();
11126
11127  // Check LHS for vnot
11128  if (N0.getOpcode() == ISD::XOR &&
11129      ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
11130    return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1);
11131
11132  // Check RHS for vnot
11133  if (N1.getOpcode() == ISD::XOR &&
11134      ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
11135    return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0);
11136
11137  return SDValue();
11138}
11139
11140static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
11141                                TargetLowering::DAGCombinerInfo &DCI,
11142                                const X86Subtarget *Subtarget) {
11143  if (DCI.isBeforeLegalizeOps())
11144    return SDValue();
11145
11146  EVT VT = N->getValueType(0);
11147  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
11148    return SDValue();
11149
11150  SDValue N0 = N->getOperand(0);
11151  SDValue N1 = N->getOperand(1);
11152
11153  // look for psign/blend
11154  if (Subtarget->hasSSSE3()) {
11155    if (VT == MVT::v2i64) {
11156      // Canonicalize pandn to RHS
11157      if (N0.getOpcode() == X86ISD::PANDN)
11158        std::swap(N0, N1);
11159      // or (and (m, x), (pandn m, y))
11160      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) {
11161        SDValue Mask = N1.getOperand(0);
11162        SDValue X    = N1.getOperand(1);
11163        SDValue Y;
11164        if (N0.getOperand(0) == Mask)
11165          Y = N0.getOperand(1);
11166        if (N0.getOperand(1) == Mask)
11167          Y = N0.getOperand(0);
11168
11169        // Check to see if the mask appeared in both the AND and PANDN and
11170        if (!Y.getNode())
11171          return SDValue();
11172
11173        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
11174        if (Mask.getOpcode() != ISD::BITCAST ||
11175            X.getOpcode() != ISD::BITCAST ||
11176            Y.getOpcode() != ISD::BITCAST)
11177          return SDValue();
11178
11179        // Look through mask bitcast.
11180        Mask = Mask.getOperand(0);
11181        EVT MaskVT = Mask.getValueType();
11182
11183        // Validate that the Mask operand is a vector sra node.  The sra node
11184        // will be an intrinsic.
11185        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
11186          return SDValue();
11187
11188        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
11189        // there is no psrai.b
11190        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
11191        case Intrinsic::x86_sse2_psrai_w:
11192        case Intrinsic::x86_sse2_psrai_d:
11193          break;
11194        default: return SDValue();
11195        }
11196
11197        // Check that the SRA is all signbits.
11198        SDValue SraC = Mask.getOperand(2);
11199        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
11200        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
11201        if ((SraAmt + 1) != EltBits)
11202          return SDValue();
11203
11204        DebugLoc DL = N->getDebugLoc();
11205
11206        // Now we know we at least have a plendvb with the mask val.  See if
11207        // we can form a psignb/w/d.
11208        // psign = x.type == y.type == mask.type && y = sub(0, x);
11209        X = X.getOperand(0);
11210        Y = Y.getOperand(0);
11211        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
11212            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
11213            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
11214          unsigned Opc = 0;
11215          switch (EltBits) {
11216          case 8: Opc = X86ISD::PSIGNB; break;
11217          case 16: Opc = X86ISD::PSIGNW; break;
11218          case 32: Opc = X86ISD::PSIGND; break;
11219          default: break;
11220          }
11221          if (Opc) {
11222            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
11223            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
11224          }
11225        }
11226        // PBLENDVB only available on SSE 4.1
11227        if (!Subtarget->hasSSE41())
11228          return SDValue();
11229
11230        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
11231        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
11232        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
11233        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
11234        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
11235      }
11236    }
11237  }
11238
11239  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
11240  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
11241    std::swap(N0, N1);
11242  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
11243    return SDValue();
11244  if (!N0.hasOneUse() || !N1.hasOneUse())
11245    return SDValue();
11246
11247  SDValue ShAmt0 = N0.getOperand(1);
11248  if (ShAmt0.getValueType() != MVT::i8)
11249    return SDValue();
11250  SDValue ShAmt1 = N1.getOperand(1);
11251  if (ShAmt1.getValueType() != MVT::i8)
11252    return SDValue();
11253  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11254    ShAmt0 = ShAmt0.getOperand(0);
11255  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11256    ShAmt1 = ShAmt1.getOperand(0);
11257
11258  DebugLoc DL = N->getDebugLoc();
11259  unsigned Opc = X86ISD::SHLD;
11260  SDValue Op0 = N0.getOperand(0);
11261  SDValue Op1 = N1.getOperand(0);
11262  if (ShAmt0.getOpcode() == ISD::SUB) {
11263    Opc = X86ISD::SHRD;
11264    std::swap(Op0, Op1);
11265    std::swap(ShAmt0, ShAmt1);
11266  }
11267
11268  unsigned Bits = VT.getSizeInBits();
11269  if (ShAmt1.getOpcode() == ISD::SUB) {
11270    SDValue Sum = ShAmt1.getOperand(0);
11271    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11272      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11273      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11274        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11275      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11276        return DAG.getNode(Opc, DL, VT,
11277                           Op0, Op1,
11278                           DAG.getNode(ISD::TRUNCATE, DL,
11279                                       MVT::i8, ShAmt0));
11280    }
11281  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11282    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11283    if (ShAmt0C &&
11284        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11285      return DAG.getNode(Opc, DL, VT,
11286                         N0.getOperand(0), N1.getOperand(0),
11287                         DAG.getNode(ISD::TRUNCATE, DL,
11288                                       MVT::i8, ShAmt0));
11289  }
11290
11291  return SDValue();
11292}
11293
11294/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11295static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11296                                   const X86Subtarget *Subtarget) {
11297  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11298  // the FP state in cases where an emms may be missing.
11299  // A preferable solution to the general problem is to figure out the right
11300  // places to insert EMMS.  This qualifies as a quick hack.
11301
11302  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11303  StoreSDNode *St = cast<StoreSDNode>(N);
11304  EVT VT = St->getValue().getValueType();
11305  if (VT.getSizeInBits() != 64)
11306    return SDValue();
11307
11308  const Function *F = DAG.getMachineFunction().getFunction();
11309  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11310  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11311    && Subtarget->hasSSE2();
11312  if ((VT.isVector() ||
11313       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11314      isa<LoadSDNode>(St->getValue()) &&
11315      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11316      St->getChain().hasOneUse() && !St->isVolatile()) {
11317    SDNode* LdVal = St->getValue().getNode();
11318    LoadSDNode *Ld = 0;
11319    int TokenFactorIndex = -1;
11320    SmallVector<SDValue, 8> Ops;
11321    SDNode* ChainVal = St->getChain().getNode();
11322    // Must be a store of a load.  We currently handle two cases:  the load
11323    // is a direct child, and it's under an intervening TokenFactor.  It is
11324    // possible to dig deeper under nested TokenFactors.
11325    if (ChainVal == LdVal)
11326      Ld = cast<LoadSDNode>(St->getChain());
11327    else if (St->getValue().hasOneUse() &&
11328             ChainVal->getOpcode() == ISD::TokenFactor) {
11329      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11330        if (ChainVal->getOperand(i).getNode() == LdVal) {
11331          TokenFactorIndex = i;
11332          Ld = cast<LoadSDNode>(St->getValue());
11333        } else
11334          Ops.push_back(ChainVal->getOperand(i));
11335      }
11336    }
11337
11338    if (!Ld || !ISD::isNormalLoad(Ld))
11339      return SDValue();
11340
11341    // If this is not the MMX case, i.e. we are just turning i64 load/store
11342    // into f64 load/store, avoid the transformation if there are multiple
11343    // uses of the loaded value.
11344    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11345      return SDValue();
11346
11347    DebugLoc LdDL = Ld->getDebugLoc();
11348    DebugLoc StDL = N->getDebugLoc();
11349    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11350    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11351    // pair instead.
11352    if (Subtarget->is64Bit() || F64IsLegal) {
11353      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11354      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11355                                  Ld->getPointerInfo(), Ld->isVolatile(),
11356                                  Ld->isNonTemporal(), Ld->getAlignment());
11357      SDValue NewChain = NewLd.getValue(1);
11358      if (TokenFactorIndex != -1) {
11359        Ops.push_back(NewChain);
11360        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11361                               Ops.size());
11362      }
11363      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11364                          St->getPointerInfo(),
11365                          St->isVolatile(), St->isNonTemporal(),
11366                          St->getAlignment());
11367    }
11368
11369    // Otherwise, lower to two pairs of 32-bit loads / stores.
11370    SDValue LoAddr = Ld->getBasePtr();
11371    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11372                                 DAG.getConstant(4, MVT::i32));
11373
11374    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11375                               Ld->getPointerInfo(),
11376                               Ld->isVolatile(), Ld->isNonTemporal(),
11377                               Ld->getAlignment());
11378    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11379                               Ld->getPointerInfo().getWithOffset(4),
11380                               Ld->isVolatile(), Ld->isNonTemporal(),
11381                               MinAlign(Ld->getAlignment(), 4));
11382
11383    SDValue NewChain = LoLd.getValue(1);
11384    if (TokenFactorIndex != -1) {
11385      Ops.push_back(LoLd);
11386      Ops.push_back(HiLd);
11387      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11388                             Ops.size());
11389    }
11390
11391    LoAddr = St->getBasePtr();
11392    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11393                         DAG.getConstant(4, MVT::i32));
11394
11395    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11396                                St->getPointerInfo(),
11397                                St->isVolatile(), St->isNonTemporal(),
11398                                St->getAlignment());
11399    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11400                                St->getPointerInfo().getWithOffset(4),
11401                                St->isVolatile(),
11402                                St->isNonTemporal(),
11403                                MinAlign(St->getAlignment(), 4));
11404    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11405  }
11406  return SDValue();
11407}
11408
11409/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11410/// X86ISD::FXOR nodes.
11411static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11412  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11413  // F[X]OR(0.0, x) -> x
11414  // F[X]OR(x, 0.0) -> x
11415  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11416    if (C->getValueAPF().isPosZero())
11417      return N->getOperand(1);
11418  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11419    if (C->getValueAPF().isPosZero())
11420      return N->getOperand(0);
11421  return SDValue();
11422}
11423
11424/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11425static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11426  // FAND(0.0, x) -> 0.0
11427  // FAND(x, 0.0) -> 0.0
11428  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11429    if (C->getValueAPF().isPosZero())
11430      return N->getOperand(0);
11431  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11432    if (C->getValueAPF().isPosZero())
11433      return N->getOperand(1);
11434  return SDValue();
11435}
11436
11437static SDValue PerformBTCombine(SDNode *N,
11438                                SelectionDAG &DAG,
11439                                TargetLowering::DAGCombinerInfo &DCI) {
11440  // BT ignores high bits in the bit index operand.
11441  SDValue Op1 = N->getOperand(1);
11442  if (Op1.hasOneUse()) {
11443    unsigned BitWidth = Op1.getValueSizeInBits();
11444    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11445    APInt KnownZero, KnownOne;
11446    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11447                                          !DCI.isBeforeLegalizeOps());
11448    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11449    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11450        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11451      DCI.CommitTargetLoweringOpt(TLO);
11452  }
11453  return SDValue();
11454}
11455
11456static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11457  SDValue Op = N->getOperand(0);
11458  if (Op.getOpcode() == ISD::BITCAST)
11459    Op = Op.getOperand(0);
11460  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11461  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11462      VT.getVectorElementType().getSizeInBits() ==
11463      OpVT.getVectorElementType().getSizeInBits()) {
11464    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
11465  }
11466  return SDValue();
11467}
11468
11469static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11470  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
11471  //           (and (i32 x86isd::setcc_carry), 1)
11472  // This eliminates the zext. This transformation is necessary because
11473  // ISD::SETCC is always legalized to i8.
11474  DebugLoc dl = N->getDebugLoc();
11475  SDValue N0 = N->getOperand(0);
11476  EVT VT = N->getValueType(0);
11477  if (N0.getOpcode() == ISD::AND &&
11478      N0.hasOneUse() &&
11479      N0.getOperand(0).hasOneUse()) {
11480    SDValue N00 = N0.getOperand(0);
11481    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11482      return SDValue();
11483    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11484    if (!C || C->getZExtValue() != 1)
11485      return SDValue();
11486    return DAG.getNode(ISD::AND, dl, VT,
11487                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11488                                   N00.getOperand(0), N00.getOperand(1)),
11489                       DAG.getConstant(1, VT));
11490  }
11491
11492  return SDValue();
11493}
11494
11495// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
11496static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
11497  unsigned X86CC = N->getConstantOperandVal(0);
11498  SDValue EFLAG = N->getOperand(1);
11499  DebugLoc DL = N->getDebugLoc();
11500
11501  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
11502  // a zext and produces an all-ones bit which is more useful than 0/1 in some
11503  // cases.
11504  if (X86CC == X86::COND_B)
11505    return DAG.getNode(ISD::AND, DL, MVT::i8,
11506                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
11507                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
11508                       DAG.getConstant(1, MVT::i8));
11509
11510  return SDValue();
11511}
11512
11513// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
11514static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
11515                                 X86TargetLowering::DAGCombinerInfo &DCI) {
11516  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
11517  // the result is either zero or one (depending on the input carry bit).
11518  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
11519  if (X86::isZeroNode(N->getOperand(0)) &&
11520      X86::isZeroNode(N->getOperand(1)) &&
11521      // We don't have a good way to replace an EFLAGS use, so only do this when
11522      // dead right now.
11523      SDValue(N, 1).use_empty()) {
11524    DebugLoc DL = N->getDebugLoc();
11525    EVT VT = N->getValueType(0);
11526    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
11527    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
11528                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
11529                                           DAG.getConstant(X86::COND_B,MVT::i8),
11530                                           N->getOperand(2)),
11531                               DAG.getConstant(1, VT));
11532    return DCI.CombineTo(N, Res1, CarryOut);
11533  }
11534
11535  return SDValue();
11536}
11537
11538// fold (add Y, (sete  X, 0)) -> adc  0, Y
11539//      (add Y, (setne X, 0)) -> sbb -1, Y
11540//      (sub (sete  X, 0), Y) -> sbb  0, Y
11541//      (sub (setne X, 0), Y) -> adc -1, Y
11542static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
11543  DebugLoc DL = N->getDebugLoc();
11544
11545  // Look through ZExts.
11546  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
11547  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
11548    return SDValue();
11549
11550  SDValue SetCC = Ext.getOperand(0);
11551  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
11552    return SDValue();
11553
11554  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
11555  if (CC != X86::COND_E && CC != X86::COND_NE)
11556    return SDValue();
11557
11558  SDValue Cmp = SetCC.getOperand(1);
11559  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
11560      !X86::isZeroNode(Cmp.getOperand(1)))
11561    return SDValue();
11562
11563  SDValue CmpOp0 = Cmp.getOperand(0);
11564  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
11565                               DAG.getConstant(1, CmpOp0.getValueType()));
11566
11567  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
11568  if (CC == X86::COND_NE)
11569    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
11570                       DL, OtherVal.getValueType(), OtherVal,
11571                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
11572  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
11573                     DL, OtherVal.getValueType(), OtherVal,
11574                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
11575}
11576
11577SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
11578                                             DAGCombinerInfo &DCI) const {
11579  SelectionDAG &DAG = DCI.DAG;
11580  switch (N->getOpcode()) {
11581  default: break;
11582  case ISD::EXTRACT_VECTOR_ELT:
11583    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
11584  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
11585  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
11586  case ISD::ADD:
11587  case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG);
11588  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
11589  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
11590  case ISD::SHL:
11591  case ISD::SRA:
11592  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
11593  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
11594  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
11595  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
11596  case X86ISD::FXOR:
11597  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
11598  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
11599  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
11600  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
11601  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
11602  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
11603  case X86ISD::SHUFPS:      // Handle all target specific shuffles
11604  case X86ISD::SHUFPD:
11605  case X86ISD::PALIGN:
11606  case X86ISD::PUNPCKHBW:
11607  case X86ISD::PUNPCKHWD:
11608  case X86ISD::PUNPCKHDQ:
11609  case X86ISD::PUNPCKHQDQ:
11610  case X86ISD::UNPCKHPS:
11611  case X86ISD::UNPCKHPD:
11612  case X86ISD::PUNPCKLBW:
11613  case X86ISD::PUNPCKLWD:
11614  case X86ISD::PUNPCKLDQ:
11615  case X86ISD::PUNPCKLQDQ:
11616  case X86ISD::UNPCKLPS:
11617  case X86ISD::UNPCKLPD:
11618  case X86ISD::MOVHLPS:
11619  case X86ISD::MOVLHPS:
11620  case X86ISD::PSHUFD:
11621  case X86ISD::PSHUFHW:
11622  case X86ISD::PSHUFLW:
11623  case X86ISD::MOVSS:
11624  case X86ISD::MOVSD:
11625  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
11626  }
11627
11628  return SDValue();
11629}
11630
11631/// isTypeDesirableForOp - Return true if the target has native support for
11632/// the specified value type and it is 'desirable' to use the type for the
11633/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
11634/// instruction encodings are longer and some i16 instructions are slow.
11635bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
11636  if (!isTypeLegal(VT))
11637    return false;
11638  if (VT != MVT::i16)
11639    return true;
11640
11641  switch (Opc) {
11642  default:
11643    return true;
11644  case ISD::LOAD:
11645  case ISD::SIGN_EXTEND:
11646  case ISD::ZERO_EXTEND:
11647  case ISD::ANY_EXTEND:
11648  case ISD::SHL:
11649  case ISD::SRL:
11650  case ISD::SUB:
11651  case ISD::ADD:
11652  case ISD::MUL:
11653  case ISD::AND:
11654  case ISD::OR:
11655  case ISD::XOR:
11656    return false;
11657  }
11658}
11659
11660/// IsDesirableToPromoteOp - This method query the target whether it is
11661/// beneficial for dag combiner to promote the specified node. If true, it
11662/// should return the desired promotion type by reference.
11663bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
11664  EVT VT = Op.getValueType();
11665  if (VT != MVT::i16)
11666    return false;
11667
11668  bool Promote = false;
11669  bool Commute = false;
11670  switch (Op.getOpcode()) {
11671  default: break;
11672  case ISD::LOAD: {
11673    LoadSDNode *LD = cast<LoadSDNode>(Op);
11674    // If the non-extending load has a single use and it's not live out, then it
11675    // might be folded.
11676    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
11677                                                     Op.hasOneUse()*/) {
11678      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
11679             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
11680        // The only case where we'd want to promote LOAD (rather then it being
11681        // promoted as an operand is when it's only use is liveout.
11682        if (UI->getOpcode() != ISD::CopyToReg)
11683          return false;
11684      }
11685    }
11686    Promote = true;
11687    break;
11688  }
11689  case ISD::SIGN_EXTEND:
11690  case ISD::ZERO_EXTEND:
11691  case ISD::ANY_EXTEND:
11692    Promote = true;
11693    break;
11694  case ISD::SHL:
11695  case ISD::SRL: {
11696    SDValue N0 = Op.getOperand(0);
11697    // Look out for (store (shl (load), x)).
11698    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
11699      return false;
11700    Promote = true;
11701    break;
11702  }
11703  case ISD::ADD:
11704  case ISD::MUL:
11705  case ISD::AND:
11706  case ISD::OR:
11707  case ISD::XOR:
11708    Commute = true;
11709    // fallthrough
11710  case ISD::SUB: {
11711    SDValue N0 = Op.getOperand(0);
11712    SDValue N1 = Op.getOperand(1);
11713    if (!Commute && MayFoldLoad(N1))
11714      return false;
11715    // Avoid disabling potential load folding opportunities.
11716    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
11717      return false;
11718    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
11719      return false;
11720    Promote = true;
11721  }
11722  }
11723
11724  PVT = MVT::i32;
11725  return Promote;
11726}
11727
11728//===----------------------------------------------------------------------===//
11729//                           X86 Inline Assembly Support
11730//===----------------------------------------------------------------------===//
11731
11732static bool LowerToBSwap(CallInst *CI) {
11733  // FIXME: this should verify that we are targetting a 486 or better.  If not,
11734  // we will turn this bswap into something that will be lowered to logical ops
11735  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
11736  // so don't worry about this.
11737
11738  // Verify this is a simple bswap.
11739  if (CI->getNumArgOperands() != 1 ||
11740      CI->getType() != CI->getArgOperand(0)->getType() ||
11741      !CI->getType()->isIntegerTy())
11742    return false;
11743
11744  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11745  if (!Ty || Ty->getBitWidth() % 16 != 0)
11746    return false;
11747
11748  // Okay, we can do this xform, do so now.
11749  const Type *Tys[] = { Ty };
11750  Module *M = CI->getParent()->getParent()->getParent();
11751  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
11752
11753  Value *Op = CI->getArgOperand(0);
11754  Op = CallInst::Create(Int, Op, CI->getName(), CI);
11755
11756  CI->replaceAllUsesWith(Op);
11757  CI->eraseFromParent();
11758  return true;
11759}
11760
11761bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
11762  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11763  InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
11764
11765  std::string AsmStr = IA->getAsmString();
11766
11767  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
11768  SmallVector<StringRef, 4> AsmPieces;
11769  SplitString(AsmStr, AsmPieces, ";\n");
11770
11771  switch (AsmPieces.size()) {
11772  default: return false;
11773  case 1:
11774    AsmStr = AsmPieces[0];
11775    AsmPieces.clear();
11776    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
11777
11778    // bswap $0
11779    if (AsmPieces.size() == 2 &&
11780        (AsmPieces[0] == "bswap" ||
11781         AsmPieces[0] == "bswapq" ||
11782         AsmPieces[0] == "bswapl") &&
11783        (AsmPieces[1] == "$0" ||
11784         AsmPieces[1] == "${0:q}")) {
11785      // No need to check constraints, nothing other than the equivalent of
11786      // "=r,0" would be valid here.
11787      return LowerToBSwap(CI);
11788    }
11789    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
11790    if (CI->getType()->isIntegerTy(16) &&
11791        AsmPieces.size() == 3 &&
11792        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
11793        AsmPieces[1] == "$$8," &&
11794        AsmPieces[2] == "${0:w}" &&
11795        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11796      AsmPieces.clear();
11797      const std::string &Constraints = IA->getConstraintString();
11798      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11799      std::sort(AsmPieces.begin(), AsmPieces.end());
11800      if (AsmPieces.size() == 4 &&
11801          AsmPieces[0] == "~{cc}" &&
11802          AsmPieces[1] == "~{dirflag}" &&
11803          AsmPieces[2] == "~{flags}" &&
11804          AsmPieces[3] == "~{fpsr}") {
11805        return LowerToBSwap(CI);
11806      }
11807    }
11808    break;
11809  case 3:
11810    if (CI->getType()->isIntegerTy(32) &&
11811        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11812      SmallVector<StringRef, 4> Words;
11813      SplitString(AsmPieces[0], Words, " \t,");
11814      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11815          Words[2] == "${0:w}") {
11816        Words.clear();
11817        SplitString(AsmPieces[1], Words, " \t,");
11818        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
11819            Words[2] == "$0") {
11820          Words.clear();
11821          SplitString(AsmPieces[2], Words, " \t,");
11822          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11823              Words[2] == "${0:w}") {
11824            AsmPieces.clear();
11825            const std::string &Constraints = IA->getConstraintString();
11826            SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11827            std::sort(AsmPieces.begin(), AsmPieces.end());
11828            if (AsmPieces.size() == 4 &&
11829                AsmPieces[0] == "~{cc}" &&
11830                AsmPieces[1] == "~{dirflag}" &&
11831                AsmPieces[2] == "~{flags}" &&
11832                AsmPieces[3] == "~{fpsr}") {
11833              return LowerToBSwap(CI);
11834            }
11835          }
11836        }
11837      }
11838    }
11839    if (CI->getType()->isIntegerTy(64) &&
11840        Constraints.size() >= 2 &&
11841        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
11842        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
11843      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
11844      SmallVector<StringRef, 4> Words;
11845      SplitString(AsmPieces[0], Words, " \t");
11846      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
11847        Words.clear();
11848        SplitString(AsmPieces[1], Words, " \t");
11849        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
11850          Words.clear();
11851          SplitString(AsmPieces[2], Words, " \t,");
11852          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
11853              Words[2] == "%edx") {
11854            return LowerToBSwap(CI);
11855          }
11856        }
11857      }
11858    }
11859    break;
11860  }
11861  return false;
11862}
11863
11864
11865
11866/// getConstraintType - Given a constraint letter, return the type of
11867/// constraint it is for this target.
11868X86TargetLowering::ConstraintType
11869X86TargetLowering::getConstraintType(const std::string &Constraint) const {
11870  if (Constraint.size() == 1) {
11871    switch (Constraint[0]) {
11872    case 'R':
11873    case 'q':
11874    case 'Q':
11875    case 'f':
11876    case 't':
11877    case 'u':
11878    case 'y':
11879    case 'x':
11880    case 'Y':
11881      return C_RegisterClass;
11882    case 'a':
11883    case 'b':
11884    case 'c':
11885    case 'd':
11886    case 'S':
11887    case 'D':
11888    case 'A':
11889      return C_Register;
11890    case 'I':
11891    case 'J':
11892    case 'K':
11893    case 'L':
11894    case 'M':
11895    case 'N':
11896    case 'G':
11897    case 'C':
11898    case 'e':
11899    case 'Z':
11900      return C_Other;
11901    default:
11902      break;
11903    }
11904  }
11905  return TargetLowering::getConstraintType(Constraint);
11906}
11907
11908/// Examine constraint type and operand type and determine a weight value.
11909/// This object must already have been set up with the operand type
11910/// and the current alternative constraint selected.
11911TargetLowering::ConstraintWeight
11912  X86TargetLowering::getSingleConstraintMatchWeight(
11913    AsmOperandInfo &info, const char *constraint) const {
11914  ConstraintWeight weight = CW_Invalid;
11915  Value *CallOperandVal = info.CallOperandVal;
11916    // If we don't have a value, we can't do a match,
11917    // but allow it at the lowest weight.
11918  if (CallOperandVal == NULL)
11919    return CW_Default;
11920  const Type *type = CallOperandVal->getType();
11921  // Look at the constraint type.
11922  switch (*constraint) {
11923  default:
11924    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11925  case 'R':
11926  case 'q':
11927  case 'Q':
11928  case 'a':
11929  case 'b':
11930  case 'c':
11931  case 'd':
11932  case 'S':
11933  case 'D':
11934  case 'A':
11935    if (CallOperandVal->getType()->isIntegerTy())
11936      weight = CW_SpecificReg;
11937    break;
11938  case 'f':
11939  case 't':
11940  case 'u':
11941      if (type->isFloatingPointTy())
11942        weight = CW_SpecificReg;
11943      break;
11944  case 'y':
11945      if (type->isX86_MMXTy() && Subtarget->hasMMX())
11946        weight = CW_SpecificReg;
11947      break;
11948  case 'x':
11949  case 'Y':
11950    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
11951      weight = CW_Register;
11952    break;
11953  case 'I':
11954    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
11955      if (C->getZExtValue() <= 31)
11956        weight = CW_Constant;
11957    }
11958    break;
11959  case 'J':
11960    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11961      if (C->getZExtValue() <= 63)
11962        weight = CW_Constant;
11963    }
11964    break;
11965  case 'K':
11966    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11967      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
11968        weight = CW_Constant;
11969    }
11970    break;
11971  case 'L':
11972    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11973      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
11974        weight = CW_Constant;
11975    }
11976    break;
11977  case 'M':
11978    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11979      if (C->getZExtValue() <= 3)
11980        weight = CW_Constant;
11981    }
11982    break;
11983  case 'N':
11984    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11985      if (C->getZExtValue() <= 0xff)
11986        weight = CW_Constant;
11987    }
11988    break;
11989  case 'G':
11990  case 'C':
11991    if (dyn_cast<ConstantFP>(CallOperandVal)) {
11992      weight = CW_Constant;
11993    }
11994    break;
11995  case 'e':
11996    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11997      if ((C->getSExtValue() >= -0x80000000LL) &&
11998          (C->getSExtValue() <= 0x7fffffffLL))
11999        weight = CW_Constant;
12000    }
12001    break;
12002  case 'Z':
12003    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12004      if (C->getZExtValue() <= 0xffffffff)
12005        weight = CW_Constant;
12006    }
12007    break;
12008  }
12009  return weight;
12010}
12011
12012/// LowerXConstraint - try to replace an X constraint, which matches anything,
12013/// with another that has more specific requirements based on the type of the
12014/// corresponding operand.
12015const char *X86TargetLowering::
12016LowerXConstraint(EVT ConstraintVT) const {
12017  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
12018  // 'f' like normal targets.
12019  if (ConstraintVT.isFloatingPoint()) {
12020    if (Subtarget->hasXMMInt())
12021      return "Y";
12022    if (Subtarget->hasXMM())
12023      return "x";
12024  }
12025
12026  return TargetLowering::LowerXConstraint(ConstraintVT);
12027}
12028
12029/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12030/// vector.  If it is invalid, don't add anything to Ops.
12031void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12032                                                     char Constraint,
12033                                                     std::vector<SDValue>&Ops,
12034                                                     SelectionDAG &DAG) const {
12035  SDValue Result(0, 0);
12036
12037  switch (Constraint) {
12038  default: break;
12039  case 'I':
12040    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12041      if (C->getZExtValue() <= 31) {
12042        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12043        break;
12044      }
12045    }
12046    return;
12047  case 'J':
12048    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12049      if (C->getZExtValue() <= 63) {
12050        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12051        break;
12052      }
12053    }
12054    return;
12055  case 'K':
12056    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12057      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
12058        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12059        break;
12060      }
12061    }
12062    return;
12063  case 'N':
12064    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12065      if (C->getZExtValue() <= 255) {
12066        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12067        break;
12068      }
12069    }
12070    return;
12071  case 'e': {
12072    // 32-bit signed value
12073    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12074      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12075                                           C->getSExtValue())) {
12076        // Widen to 64 bits here to get it sign extended.
12077        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
12078        break;
12079      }
12080    // FIXME gcc accepts some relocatable values here too, but only in certain
12081    // memory models; it's complicated.
12082    }
12083    return;
12084  }
12085  case 'Z': {
12086    // 32-bit unsigned value
12087    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12088      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12089                                           C->getZExtValue())) {
12090        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12091        break;
12092      }
12093    }
12094    // FIXME gcc accepts some relocatable values here too, but only in certain
12095    // memory models; it's complicated.
12096    return;
12097  }
12098  case 'i': {
12099    // Literal immediates are always ok.
12100    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
12101      // Widen to 64 bits here to get it sign extended.
12102      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
12103      break;
12104    }
12105
12106    // In any sort of PIC mode addresses need to be computed at runtime by
12107    // adding in a register or some sort of table lookup.  These can't
12108    // be used as immediates.
12109    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
12110      return;
12111
12112    // If we are in non-pic codegen mode, we allow the address of a global (with
12113    // an optional displacement) to be used with 'i'.
12114    GlobalAddressSDNode *GA = 0;
12115    int64_t Offset = 0;
12116
12117    // Match either (GA), (GA+C), (GA+C1+C2), etc.
12118    while (1) {
12119      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
12120        Offset += GA->getOffset();
12121        break;
12122      } else if (Op.getOpcode() == ISD::ADD) {
12123        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12124          Offset += C->getZExtValue();
12125          Op = Op.getOperand(0);
12126          continue;
12127        }
12128      } else if (Op.getOpcode() == ISD::SUB) {
12129        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12130          Offset += -C->getZExtValue();
12131          Op = Op.getOperand(0);
12132          continue;
12133        }
12134      }
12135
12136      // Otherwise, this isn't something we can handle, reject it.
12137      return;
12138    }
12139
12140    const GlobalValue *GV = GA->getGlobal();
12141    // If we require an extra load to get this address, as in PIC mode, we
12142    // can't accept it.
12143    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
12144                                                        getTargetMachine())))
12145      return;
12146
12147    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
12148                                        GA->getValueType(0), Offset);
12149    break;
12150  }
12151  }
12152
12153  if (Result.getNode()) {
12154    Ops.push_back(Result);
12155    return;
12156  }
12157  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12158}
12159
12160std::vector<unsigned> X86TargetLowering::
12161getRegClassForInlineAsmConstraint(const std::string &Constraint,
12162                                  EVT VT) const {
12163  if (Constraint.size() == 1) {
12164    // FIXME: not handling fp-stack yet!
12165    switch (Constraint[0]) {      // GCC X86 Constraint Letters
12166    default: break;  // Unknown constraint letter
12167    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
12168      if (Subtarget->is64Bit()) {
12169        if (VT == MVT::i32)
12170          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
12171                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
12172                                       X86::R10D,X86::R11D,X86::R12D,
12173                                       X86::R13D,X86::R14D,X86::R15D,
12174                                       X86::EBP, X86::ESP, 0);
12175        else if (VT == MVT::i16)
12176          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
12177                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
12178                                       X86::R10W,X86::R11W,X86::R12W,
12179                                       X86::R13W,X86::R14W,X86::R15W,
12180                                       X86::BP,  X86::SP, 0);
12181        else if (VT == MVT::i8)
12182          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
12183                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
12184                                       X86::R10B,X86::R11B,X86::R12B,
12185                                       X86::R13B,X86::R14B,X86::R15B,
12186                                       X86::BPL, X86::SPL, 0);
12187
12188        else if (VT == MVT::i64)
12189          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
12190                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
12191                                       X86::R10, X86::R11, X86::R12,
12192                                       X86::R13, X86::R14, X86::R15,
12193                                       X86::RBP, X86::RSP, 0);
12194
12195        break;
12196      }
12197      // 32-bit fallthrough
12198    case 'Q':   // Q_REGS
12199      if (VT == MVT::i32)
12200        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
12201      else if (VT == MVT::i16)
12202        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
12203      else if (VT == MVT::i8)
12204        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
12205      else if (VT == MVT::i64)
12206        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
12207      break;
12208    }
12209  }
12210
12211  return std::vector<unsigned>();
12212}
12213
12214std::pair<unsigned, const TargetRegisterClass*>
12215X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
12216                                                EVT VT) const {
12217  // First, see if this is a constraint that directly corresponds to an LLVM
12218  // register class.
12219  if (Constraint.size() == 1) {
12220    // GCC Constraint Letters
12221    switch (Constraint[0]) {
12222    default: break;
12223    case 'r':   // GENERAL_REGS
12224    case 'l':   // INDEX_REGS
12225      if (VT == MVT::i8)
12226        return std::make_pair(0U, X86::GR8RegisterClass);
12227      if (VT == MVT::i16)
12228        return std::make_pair(0U, X86::GR16RegisterClass);
12229      if (VT == MVT::i32 || !Subtarget->is64Bit())
12230        return std::make_pair(0U, X86::GR32RegisterClass);
12231      return std::make_pair(0U, X86::GR64RegisterClass);
12232    case 'R':   // LEGACY_REGS
12233      if (VT == MVT::i8)
12234        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
12235      if (VT == MVT::i16)
12236        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
12237      if (VT == MVT::i32 || !Subtarget->is64Bit())
12238        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
12239      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
12240    case 'f':  // FP Stack registers.
12241      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
12242      // value to the correct fpstack register class.
12243      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
12244        return std::make_pair(0U, X86::RFP32RegisterClass);
12245      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
12246        return std::make_pair(0U, X86::RFP64RegisterClass);
12247      return std::make_pair(0U, X86::RFP80RegisterClass);
12248    case 'y':   // MMX_REGS if MMX allowed.
12249      if (!Subtarget->hasMMX()) break;
12250      return std::make_pair(0U, X86::VR64RegisterClass);
12251    case 'Y':   // SSE_REGS if SSE2 allowed
12252      if (!Subtarget->hasXMMInt()) break;
12253      // FALL THROUGH.
12254    case 'x':   // SSE_REGS if SSE1 allowed
12255      if (!Subtarget->hasXMM()) break;
12256
12257      switch (VT.getSimpleVT().SimpleTy) {
12258      default: break;
12259      // Scalar SSE types.
12260      case MVT::f32:
12261      case MVT::i32:
12262        return std::make_pair(0U, X86::FR32RegisterClass);
12263      case MVT::f64:
12264      case MVT::i64:
12265        return std::make_pair(0U, X86::FR64RegisterClass);
12266      // Vector types.
12267      case MVT::v16i8:
12268      case MVT::v8i16:
12269      case MVT::v4i32:
12270      case MVT::v2i64:
12271      case MVT::v4f32:
12272      case MVT::v2f64:
12273        return std::make_pair(0U, X86::VR128RegisterClass);
12274      }
12275      break;
12276    }
12277  }
12278
12279  // Use the default implementation in TargetLowering to convert the register
12280  // constraint into a member of a register class.
12281  std::pair<unsigned, const TargetRegisterClass*> Res;
12282  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
12283
12284  // Not found as a standard register?
12285  if (Res.second == 0) {
12286    // Map st(0) -> st(7) -> ST0
12287    if (Constraint.size() == 7 && Constraint[0] == '{' &&
12288        tolower(Constraint[1]) == 's' &&
12289        tolower(Constraint[2]) == 't' &&
12290        Constraint[3] == '(' &&
12291        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
12292        Constraint[5] == ')' &&
12293        Constraint[6] == '}') {
12294
12295      Res.first = X86::ST0+Constraint[4]-'0';
12296      Res.second = X86::RFP80RegisterClass;
12297      return Res;
12298    }
12299
12300    // GCC allows "st(0)" to be called just plain "st".
12301    if (StringRef("{st}").equals_lower(Constraint)) {
12302      Res.first = X86::ST0;
12303      Res.second = X86::RFP80RegisterClass;
12304      return Res;
12305    }
12306
12307    // flags -> EFLAGS
12308    if (StringRef("{flags}").equals_lower(Constraint)) {
12309      Res.first = X86::EFLAGS;
12310      Res.second = X86::CCRRegisterClass;
12311      return Res;
12312    }
12313
12314    // 'A' means EAX + EDX.
12315    if (Constraint == "A") {
12316      Res.first = X86::EAX;
12317      Res.second = X86::GR32_ADRegisterClass;
12318      return Res;
12319    }
12320    return Res;
12321  }
12322
12323  // Otherwise, check to see if this is a register class of the wrong value
12324  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
12325  // turn into {ax},{dx}.
12326  if (Res.second->hasType(VT))
12327    return Res;   // Correct type already, nothing to do.
12328
12329  // All of the single-register GCC register classes map their values onto
12330  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
12331  // really want an 8-bit or 32-bit register, map to the appropriate register
12332  // class and return the appropriate register.
12333  if (Res.second == X86::GR16RegisterClass) {
12334    if (VT == MVT::i8) {
12335      unsigned DestReg = 0;
12336      switch (Res.first) {
12337      default: break;
12338      case X86::AX: DestReg = X86::AL; break;
12339      case X86::DX: DestReg = X86::DL; break;
12340      case X86::CX: DestReg = X86::CL; break;
12341      case X86::BX: DestReg = X86::BL; break;
12342      }
12343      if (DestReg) {
12344        Res.first = DestReg;
12345        Res.second = X86::GR8RegisterClass;
12346      }
12347    } else if (VT == MVT::i32) {
12348      unsigned DestReg = 0;
12349      switch (Res.first) {
12350      default: break;
12351      case X86::AX: DestReg = X86::EAX; break;
12352      case X86::DX: DestReg = X86::EDX; break;
12353      case X86::CX: DestReg = X86::ECX; break;
12354      case X86::BX: DestReg = X86::EBX; break;
12355      case X86::SI: DestReg = X86::ESI; break;
12356      case X86::DI: DestReg = X86::EDI; break;
12357      case X86::BP: DestReg = X86::EBP; break;
12358      case X86::SP: DestReg = X86::ESP; break;
12359      }
12360      if (DestReg) {
12361        Res.first = DestReg;
12362        Res.second = X86::GR32RegisterClass;
12363      }
12364    } else if (VT == MVT::i64) {
12365      unsigned DestReg = 0;
12366      switch (Res.first) {
12367      default: break;
12368      case X86::AX: DestReg = X86::RAX; break;
12369      case X86::DX: DestReg = X86::RDX; break;
12370      case X86::CX: DestReg = X86::RCX; break;
12371      case X86::BX: DestReg = X86::RBX; break;
12372      case X86::SI: DestReg = X86::RSI; break;
12373      case X86::DI: DestReg = X86::RDI; break;
12374      case X86::BP: DestReg = X86::RBP; break;
12375      case X86::SP: DestReg = X86::RSP; break;
12376      }
12377      if (DestReg) {
12378        Res.first = DestReg;
12379        Res.second = X86::GR64RegisterClass;
12380      }
12381    }
12382  } else if (Res.second == X86::FR32RegisterClass ||
12383             Res.second == X86::FR64RegisterClass ||
12384             Res.second == X86::VR128RegisterClass) {
12385    // Handle references to XMM physical registers that got mapped into the
12386    // wrong class.  This can happen with constraints like {xmm0} where the
12387    // target independent register mapper will just pick the first match it can
12388    // find, ignoring the required type.
12389    if (VT == MVT::f32)
12390      Res.second = X86::FR32RegisterClass;
12391    else if (VT == MVT::f64)
12392      Res.second = X86::FR64RegisterClass;
12393    else if (X86::VR128RegisterClass->hasType(VT))
12394      Res.second = X86::VR128RegisterClass;
12395  }
12396
12397  return Res;
12398}
12399