X86ISelLowering.cpp revision a72cb0ea0925e19ed5278b400bcedfe024cdd01c
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/ADT/StringExtras.h"
37using namespace llvm;
38
39X86TargetLowering::X86TargetLowering(TargetMachine &TM)
40  : TargetLowering(TM) {
41  Subtarget = &TM.getSubtarget<X86Subtarget>();
42  X86ScalarSSE = Subtarget->hasSSE2();
43  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
44
45  // Set up the TargetLowering object.
46
47  // X86 is weird, it always uses i8 for shift amounts and setcc results.
48  setShiftAmountType(MVT::i8);
49  setSetCCResultType(MVT::i8);
50  setSetCCResultContents(ZeroOrOneSetCCResult);
51  setSchedulingPreference(SchedulingForRegPressure);
52  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
53  setStackPointerRegisterToSaveRestore(X86StackPtr);
54
55  if (Subtarget->isTargetDarwin()) {
56    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
57    setUseUnderscoreSetJmp(false);
58    setUseUnderscoreLongJmp(false);
59  } else if (Subtarget->isTargetMingw()) {
60    // MS runtime is weird: it exports _setjmp, but longjmp!
61    setUseUnderscoreSetJmp(true);
62    setUseUnderscoreLongJmp(false);
63  } else {
64    setUseUnderscoreSetJmp(true);
65    setUseUnderscoreLongJmp(true);
66  }
67
68  // Set up the register classes.
69  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
70  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
71  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
72  if (Subtarget->is64Bit())
73    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
74
75  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
76
77  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
78  // operation.
79  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
80  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
81  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
82
83  if (Subtarget->is64Bit()) {
84    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
85    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
86  } else {
87    if (X86ScalarSSE)
88      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
89      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
90    else
91      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
92  }
93
94  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
95  // this operation.
96  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
97  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
98  // SSE has no i16 to fp conversion, only i32
99  if (X86ScalarSSE)
100    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
101  else {
102    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
103    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
104  }
105
106  if (!Subtarget->is64Bit()) {
107    // Custom lower SINT_TO_FP and FP_TO_SINT from/to i64 in 32-bit mode.
108    setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
109    setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
110  }
111
112  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
113  // this operation.
114  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
115  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
116
117  if (X86ScalarSSE) {
118    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
119  } else {
120    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
121    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
122  }
123
124  // Handle FP_TO_UINT by promoting the destination to a larger signed
125  // conversion.
126  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
127  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
128  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
129
130  if (Subtarget->is64Bit()) {
131    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
132    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
133  } else {
134    if (X86ScalarSSE && !Subtarget->hasSSE3())
135      // Expand FP_TO_UINT into a select.
136      // FIXME: We would like to use a Custom expander here eventually to do
137      // the optimal thing for SSE vs. the default expansion in the legalizer.
138      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
139    else
140      // With SSE3 we can use fisttpll to convert to a signed i64.
141      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
142  }
143
144  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
145  if (!X86ScalarSSE) {
146    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
147    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
148  }
149
150  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
151  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
152  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
153  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
154  setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand);
155  if (Subtarget->is64Bit())
156    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);
157  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand);
158  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand);
159  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
160  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
161  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
162
163  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
164  setOperationAction(ISD::CTTZ             , MVT::i8   , Expand);
165  setOperationAction(ISD::CTLZ             , MVT::i8   , Expand);
166  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
167  setOperationAction(ISD::CTTZ             , MVT::i16  , Expand);
168  setOperationAction(ISD::CTLZ             , MVT::i16  , Expand);
169  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
170  setOperationAction(ISD::CTTZ             , MVT::i32  , Expand);
171  setOperationAction(ISD::CTLZ             , MVT::i32  , Expand);
172  if (Subtarget->is64Bit()) {
173    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
174    setOperationAction(ISD::CTTZ           , MVT::i64  , Expand);
175    setOperationAction(ISD::CTLZ           , MVT::i64  , Expand);
176  }
177
178  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
179  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
180
181  // These should be promoted to a larger select which is supported.
182  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
183  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
184  // X86 wants to expand cmov itself.
185  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
186  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
187  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
188  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
189  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
190  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
191  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
192  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
193  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
194  if (Subtarget->is64Bit()) {
195    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
196    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
197  }
198  // X86 ret instruction may pop stack.
199  setOperationAction(ISD::RET             , MVT::Other, Custom);
200  // Darwin ABI issue.
201  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
202  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
203  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
204  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
205  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
206  if (Subtarget->is64Bit()) {
207    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
208    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
209    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
210    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
211  }
212  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
213  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
214  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
215  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
216  // X86 wants to expand memset / memcpy itself.
217  setOperationAction(ISD::MEMSET          , MVT::Other, Custom);
218  setOperationAction(ISD::MEMCPY          , MVT::Other, Custom);
219
220  // We don't have line number support yet.
221  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
222  setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
223  // FIXME - use subtarget debug flags
224  if (!Subtarget->isTargetDarwin() &&
225      !Subtarget->isTargetELF() &&
226      !Subtarget->isTargetCygMing())
227    setOperationAction(ISD::LABEL, MVT::Other, Expand);
228
229  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
230  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
231  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
232  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
233  if (Subtarget->is64Bit()) {
234    // FIXME: Verify
235    setExceptionPointerRegister(X86::RAX);
236    setExceptionSelectorRegister(X86::RDX);
237  } else {
238    setExceptionPointerRegister(X86::EAX);
239    setExceptionSelectorRegister(X86::EDX);
240  }
241
242  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
243  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
244  setOperationAction(ISD::VAARG             , MVT::Other, Expand);
245  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
246  if (Subtarget->is64Bit())
247    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
248  else
249    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
250
251  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
252  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
253  if (Subtarget->is64Bit())
254    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
255  if (Subtarget->isTargetCygMing())
256    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
257  else
258    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
259
260  if (X86ScalarSSE) {
261    // Set up the FP register classes.
262    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
263    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
264
265    // Use ANDPD to simulate FABS.
266    setOperationAction(ISD::FABS , MVT::f64, Custom);
267    setOperationAction(ISD::FABS , MVT::f32, Custom);
268
269    // Use XORP to simulate FNEG.
270    setOperationAction(ISD::FNEG , MVT::f64, Custom);
271    setOperationAction(ISD::FNEG , MVT::f32, Custom);
272
273    // Use ANDPD and ORPD to simulate FCOPYSIGN.
274    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
275    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
276
277    // We don't support sin/cos/fmod
278    setOperationAction(ISD::FSIN , MVT::f64, Expand);
279    setOperationAction(ISD::FCOS , MVT::f64, Expand);
280    setOperationAction(ISD::FREM , MVT::f64, Expand);
281    setOperationAction(ISD::FSIN , MVT::f32, Expand);
282    setOperationAction(ISD::FCOS , MVT::f32, Expand);
283    setOperationAction(ISD::FREM , MVT::f32, Expand);
284
285    // Expand FP immediates into loads from the stack, except for the special
286    // cases we handle.
287    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
288    setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
289    addLegalFPImmediate(+0.0); // xorps / xorpd
290  } else {
291    // Set up the FP register classes.
292    addRegisterClass(MVT::f64, X86::RFPRegisterClass);
293
294    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
295    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
296    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
297
298    if (!UnsafeFPMath) {
299      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
300      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
301    }
302
303    setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
304    addLegalFPImmediate(+0.0); // FLD0
305    addLegalFPImmediate(+1.0); // FLD1
306    addLegalFPImmediate(-0.0); // FLD0/FCHS
307    addLegalFPImmediate(-1.0); // FLD1/FCHS
308  }
309
310  // First set operation action for all vector types to expand. Then we
311  // will selectively turn on ones that can be effectively codegen'd.
312  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
313       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
314    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
315    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
316    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
317    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
318    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
319    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
320    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
321    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
322    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
323    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
324    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
325    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
326    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
327    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
328    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
329    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
330  }
331
332  if (Subtarget->hasMMX()) {
333    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
334    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
335    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
336    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
337
338    // FIXME: add MMX packed arithmetics
339
340    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
341    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
342    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
343    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
344
345    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
346    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
347    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
348
349    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
350    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
351
352    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
353    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
354    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
355    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
356    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
357    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
358    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
359
360    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
361    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
362    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
363    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
364    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
365    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
366    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
367
368    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
369    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
370    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
371    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
372    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
373    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
374    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
375
376    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
377    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
378    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
379    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
380    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
381    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
382    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
383
384    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
385    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
386    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
387    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
388
389    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
390    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
391    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
392    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
393
394    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
395    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
396    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Custom);
397    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
398  }
399
400  if (Subtarget->hasSSE1()) {
401    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
402
403    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
404    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
405    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
406    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
407    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
408    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
409    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
410    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
411    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
412  }
413
414  if (Subtarget->hasSSE2()) {
415    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
416    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
417    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
418    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
419    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
420
421    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
422    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
423    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
424    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
425    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
426    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
427    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
428    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
429    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
430    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
431    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
432    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
433    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
434
435    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
436    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
437    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
438    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
439    // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
440    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
441
442    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
443    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
444      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
445      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
446      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
447    }
448    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
449    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
450    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
451    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
452    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
453    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
454
455    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
456    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
457      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
458      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
459      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
460      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
461      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
462      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
463      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
464      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
465      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
466      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
467    }
468
469    // Custom lower v2i64 and v2f64 selects.
470    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
471    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
472    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
473    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
474  }
475
476  // We want to custom lower some of our intrinsics.
477  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
478
479  // We have target-specific dag combine patterns for the following nodes:
480  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
481  setTargetDAGCombine(ISD::SELECT);
482
483  computeRegisterProperties();
484
485  // FIXME: These should be based on subtarget info. Plus, the values should
486  // be smaller when we are in optimizing for size mode.
487  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
488  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
489  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
490  allowUnalignedMemoryAccesses = true; // x86 supports it!
491}
492
493
494//===----------------------------------------------------------------------===//
495//               Return Value Calling Convention Implementation
496//===----------------------------------------------------------------------===//
497
498#include "X86GenCallingConv.inc"
499
500/// LowerRET - Lower an ISD::RET node.
501SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
502  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
503
504  SmallVector<CCValAssign, 16> RVLocs;
505  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
506  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
507  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
508  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
509
510
511  // If this is the first return lowered for this function, add the regs to the
512  // liveout set for the function.
513  if (DAG.getMachineFunction().liveout_empty()) {
514    for (unsigned i = 0; i != RVLocs.size(); ++i)
515      if (RVLocs[i].isRegLoc())
516        DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
517  }
518
519  SDOperand Chain = Op.getOperand(0);
520  SDOperand Flag;
521
522  // Copy the result values into the output registers.
523  if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
524      RVLocs[0].getLocReg() != X86::ST0) {
525    for (unsigned i = 0; i != RVLocs.size(); ++i) {
526      CCValAssign &VA = RVLocs[i];
527      assert(VA.isRegLoc() && "Can only return in registers!");
528      Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
529                               Flag);
530      Flag = Chain.getValue(1);
531    }
532  } else {
533    // We need to handle a destination of ST0 specially, because it isn't really
534    // a register.
535    SDOperand Value = Op.getOperand(1);
536
537    // If this is an FP return with ScalarSSE, we need to move the value from
538    // an XMM register onto the fp-stack.
539    if (X86ScalarSSE) {
540      SDOperand MemLoc;
541
542      // If this is a load into a scalarsse value, don't store the loaded value
543      // back to the stack, only to reload it: just replace the scalar-sse load.
544      if (ISD::isNON_EXTLoad(Value.Val) &&
545          (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
546        Chain  = Value.getOperand(0);
547        MemLoc = Value.getOperand(1);
548      } else {
549        // Spill the value to memory and reload it into top of stack.
550        unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
551        MachineFunction &MF = DAG.getMachineFunction();
552        int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
553        MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
554        Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
555      }
556      SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
557      SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
558      Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
559      Chain = Value.getValue(1);
560    }
561
562    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
563    SDOperand Ops[] = { Chain, Value };
564    Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
565    Flag = Chain.getValue(1);
566  }
567
568  SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
569  if (Flag.Val)
570    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
571  else
572    return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
573}
574
575
576/// LowerCallResult - Lower the result values of an ISD::CALL into the
577/// appropriate copies out of appropriate physical registers.  This assumes that
578/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
579/// being lowered.  The returns a SDNode with the same number of values as the
580/// ISD::CALL.
581SDNode *X86TargetLowering::
582LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
583                unsigned CallingConv, SelectionDAG &DAG) {
584
585  // Assign locations to each value returned by this call.
586  SmallVector<CCValAssign, 16> RVLocs;
587  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
588  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
589  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
590
591
592  SmallVector<SDOperand, 8> ResultVals;
593
594  // Copy all of the result registers out of their specified physreg.
595  if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
596    for (unsigned i = 0; i != RVLocs.size(); ++i) {
597      Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
598                                 RVLocs[i].getValVT(), InFlag).getValue(1);
599      InFlag = Chain.getValue(2);
600      ResultVals.push_back(Chain.getValue(0));
601    }
602  } else {
603    // Copies from the FP stack are special, as ST0 isn't a valid register
604    // before the fp stackifier runs.
605
606    // Copy ST0 into an RFP register with FP_GET_RESULT.
607    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
608    SDOperand GROps[] = { Chain, InFlag };
609    SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
610    Chain  = RetVal.getValue(1);
611    InFlag = RetVal.getValue(2);
612
613    // If we are using ScalarSSE, store ST(0) to the stack and reload it into
614    // an XMM register.
615    if (X86ScalarSSE) {
616      // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
617      // shouldn't be necessary except that RFP cannot be live across
618      // multiple blocks. When stackifier is fixed, they can be uncoupled.
619      MachineFunction &MF = DAG.getMachineFunction();
620      int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
621      SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
622      SDOperand Ops[] = {
623        Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
624      };
625      Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
626      RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
627      Chain = RetVal.getValue(1);
628    }
629
630    if (RVLocs[0].getValVT() == MVT::f32 && !X86ScalarSSE)
631      // FIXME: we would really like to remember that this FP_ROUND
632      // operation is okay to eliminate if we allow excess FP precision.
633      RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal);
634    ResultVals.push_back(RetVal);
635  }
636
637  // Merge everything together with a MERGE_VALUES node.
638  ResultVals.push_back(Chain);
639  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
640                     &ResultVals[0], ResultVals.size()).Val;
641}
642
643
644//===----------------------------------------------------------------------===//
645//                C & StdCall Calling Convention implementation
646//===----------------------------------------------------------------------===//
647//  StdCall calling convention seems to be standard for many Windows' API
648//  routines and around. It differs from C calling convention just a little:
649//  callee should clean up the stack, not caller. Symbols should be also
650//  decorated in some fancy way :) It doesn't support any vector arguments.
651
652/// AddLiveIn - This helper function adds the specified physical register to the
653/// MachineFunction as a live in value.  It also creates a corresponding virtual
654/// register for it.
655static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
656                          const TargetRegisterClass *RC) {
657  assert(RC->contains(PReg) && "Not the correct regclass!");
658  unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
659  MF.addLiveIn(PReg, VReg);
660  return VReg;
661}
662
663SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
664                                               bool isStdCall) {
665  unsigned NumArgs = Op.Val->getNumValues() - 1;
666  MachineFunction &MF = DAG.getMachineFunction();
667  MachineFrameInfo *MFI = MF.getFrameInfo();
668  SDOperand Root = Op.getOperand(0);
669  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
670
671  // Assign locations to all of the incoming arguments.
672  SmallVector<CCValAssign, 16> ArgLocs;
673  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
674                 getTargetMachine(), ArgLocs);
675  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
676
677  SmallVector<SDOperand, 8> ArgValues;
678  unsigned LastVal = ~0U;
679  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
680    CCValAssign &VA = ArgLocs[i];
681    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
682    // places.
683    assert(VA.getValNo() != LastVal &&
684           "Don't support value assigned to multiple locs yet");
685    LastVal = VA.getValNo();
686
687    if (VA.isRegLoc()) {
688      MVT::ValueType RegVT = VA.getLocVT();
689      TargetRegisterClass *RC;
690      if (RegVT == MVT::i32)
691        RC = X86::GR32RegisterClass;
692      else {
693        assert(MVT::isVector(RegVT));
694        RC = X86::VR128RegisterClass;
695      }
696
697      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
698      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
699
700      // If this is an 8 or 16-bit value, it is really passed promoted to 32
701      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
702      // right size.
703      if (VA.getLocInfo() == CCValAssign::SExt)
704        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
705                               DAG.getValueType(VA.getValVT()));
706      else if (VA.getLocInfo() == CCValAssign::ZExt)
707        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
708                               DAG.getValueType(VA.getValVT()));
709
710      if (VA.getLocInfo() != CCValAssign::Full)
711        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
712
713      ArgValues.push_back(ArgValue);
714    } else {
715      assert(VA.isMemLoc());
716
717      // Create the nodes corresponding to a load from this parameter slot.
718      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
719                                      VA.getLocMemOffset());
720      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
721      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
722    }
723  }
724
725  unsigned StackSize = CCInfo.getNextStackOffset();
726
727  ArgValues.push_back(Root);
728
729  // If the function takes variable number of arguments, make a frame index for
730  // the start of the first vararg value... for expansion of llvm.va_start.
731  if (isVarArg)
732    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
733
734  if (isStdCall && !isVarArg) {
735    BytesToPopOnReturn  = StackSize;    // Callee pops everything..
736    BytesCallerReserves = 0;
737  } else {
738    BytesToPopOnReturn  = 0; // Callee pops nothing.
739
740    // If this is an sret function, the return should pop the hidden pointer.
741    if (NumArgs &&
742        (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
743         ISD::ParamFlags::StructReturn))
744      BytesToPopOnReturn = 4;
745
746    BytesCallerReserves = StackSize;
747  }
748
749  RegSaveFrameIndex = 0xAAAAAAA;  // X86-64 only.
750  ReturnAddrIndex = 0;            // No return address slot generated yet.
751
752  MF.getInfo<X86MachineFunctionInfo>()
753    ->setBytesToPopOnReturn(BytesToPopOnReturn);
754
755  // Return the new list of results.
756  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
757                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
758}
759
760SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
761                                            unsigned CC) {
762  SDOperand Chain     = Op.getOperand(0);
763  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
764  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
765  SDOperand Callee    = Op.getOperand(4);
766  unsigned NumOps     = (Op.getNumOperands() - 5) / 2;
767
768  // Analyze operands of the call, assigning locations to each operand.
769  SmallVector<CCValAssign, 16> ArgLocs;
770  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
771  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
772
773  // Get a count of how many bytes are to be pushed on the stack.
774  unsigned NumBytes = CCInfo.getNextStackOffset();
775
776  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
777
778  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
779  SmallVector<SDOperand, 8> MemOpChains;
780
781  SDOperand StackPtr;
782
783  // Walk the register/memloc assignments, inserting copies/loads.
784  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
785    CCValAssign &VA = ArgLocs[i];
786    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
787
788    // Promote the value if needed.
789    switch (VA.getLocInfo()) {
790    default: assert(0 && "Unknown loc info!");
791    case CCValAssign::Full: break;
792    case CCValAssign::SExt:
793      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
794      break;
795    case CCValAssign::ZExt:
796      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
797      break;
798    case CCValAssign::AExt:
799      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
800      break;
801    }
802
803    if (VA.isRegLoc()) {
804      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
805    } else {
806      assert(VA.isMemLoc());
807      if (StackPtr.Val == 0)
808        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
809      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
810      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
811      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
812    }
813  }
814
815  // If the first argument is an sret pointer, remember it.
816  bool isSRet = NumOps &&
817    (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
818     ISD::ParamFlags::StructReturn);
819
820  if (!MemOpChains.empty())
821    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
822                        &MemOpChains[0], MemOpChains.size());
823
824  // Build a sequence of copy-to-reg nodes chained together with token chain
825  // and flag operands which copy the outgoing args into registers.
826  SDOperand InFlag;
827  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
828    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
829                             InFlag);
830    InFlag = Chain.getValue(1);
831  }
832
833  // ELF / PIC requires GOT in the EBX register before function calls via PLT
834  // GOT pointer.
835  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
836      Subtarget->isPICStyleGOT()) {
837    Chain = DAG.getCopyToReg(Chain, X86::EBX,
838                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
839                             InFlag);
840    InFlag = Chain.getValue(1);
841  }
842
843  // If the callee is a GlobalAddress node (quite common, every direct call is)
844  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
845  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
846    // We should use extra load for direct calls to dllimported functions in
847    // non-JIT mode.
848    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
849                                        getTargetMachine(), true))
850      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
851  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
852    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
853
854  // Returns a chain & a flag for retval copy to use.
855  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
856  SmallVector<SDOperand, 8> Ops;
857  Ops.push_back(Chain);
858  Ops.push_back(Callee);
859
860  // Add argument registers to the end of the list so that they are known live
861  // into the call.
862  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
863    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
864                                  RegsToPass[i].second.getValueType()));
865
866  // Add an implicit use GOT pointer in EBX.
867  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
868      Subtarget->isPICStyleGOT())
869    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
870
871  if (InFlag.Val)
872    Ops.push_back(InFlag);
873
874  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
875                      NodeTys, &Ops[0], Ops.size());
876  InFlag = Chain.getValue(1);
877
878  // Create the CALLSEQ_END node.
879  unsigned NumBytesForCalleeToPush = 0;
880
881  if (CC == CallingConv::X86_StdCall) {
882    if (isVarArg)
883      NumBytesForCalleeToPush = isSRet ? 4 : 0;
884    else
885      NumBytesForCalleeToPush = NumBytes;
886  } else {
887    // If this is is a call to a struct-return function, the callee
888    // pops the hidden struct pointer, so we have to push it back.
889    // This is common for Darwin/X86, Linux & Mingw32 targets.
890    NumBytesForCalleeToPush = isSRet ? 4 : 0;
891  }
892
893  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
894  Ops.clear();
895  Ops.push_back(Chain);
896  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
897  Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
898  Ops.push_back(InFlag);
899  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
900  InFlag = Chain.getValue(1);
901
902  // Handle result values, copying them out of physregs into vregs that we
903  // return.
904  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
905}
906
907
908//===----------------------------------------------------------------------===//
909//                   FastCall Calling Convention implementation
910//===----------------------------------------------------------------------===//
911//
912// The X86 'fastcall' calling convention passes up to two integer arguments in
913// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
914// and requires that the callee pop its arguments off the stack (allowing proper
915// tail calls), and has the same return value conventions as C calling convs.
916//
917// This calling convention always arranges for the callee pop value to be 8n+4
918// bytes, which is needed for tail recursion elimination and stack alignment
919// reasons.
920SDOperand
921X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
922  MachineFunction &MF = DAG.getMachineFunction();
923  MachineFrameInfo *MFI = MF.getFrameInfo();
924  SDOperand Root = Op.getOperand(0);
925  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
926
927  // Assign locations to all of the incoming arguments.
928  SmallVector<CCValAssign, 16> ArgLocs;
929  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
930                 getTargetMachine(), ArgLocs);
931  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
932
933  SmallVector<SDOperand, 8> ArgValues;
934  unsigned LastVal = ~0U;
935  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
936    CCValAssign &VA = ArgLocs[i];
937    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
938    // places.
939    assert(VA.getValNo() != LastVal &&
940           "Don't support value assigned to multiple locs yet");
941    LastVal = VA.getValNo();
942
943    if (VA.isRegLoc()) {
944      MVT::ValueType RegVT = VA.getLocVT();
945      TargetRegisterClass *RC;
946      if (RegVT == MVT::i32)
947        RC = X86::GR32RegisterClass;
948      else {
949        assert(MVT::isVector(RegVT));
950        RC = X86::VR128RegisterClass;
951      }
952
953      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
954      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
955
956      // If this is an 8 or 16-bit value, it is really passed promoted to 32
957      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
958      // right size.
959      if (VA.getLocInfo() == CCValAssign::SExt)
960        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
961                               DAG.getValueType(VA.getValVT()));
962      else if (VA.getLocInfo() == CCValAssign::ZExt)
963        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
964                               DAG.getValueType(VA.getValVT()));
965
966      if (VA.getLocInfo() != CCValAssign::Full)
967        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
968
969      ArgValues.push_back(ArgValue);
970    } else {
971      assert(VA.isMemLoc());
972
973      // Create the nodes corresponding to a load from this parameter slot.
974      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
975                                      VA.getLocMemOffset());
976      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
977      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
978    }
979  }
980
981  ArgValues.push_back(Root);
982
983  unsigned StackSize = CCInfo.getNextStackOffset();
984
985  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
986    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
987    // arguments and the arguments after the retaddr has been pushed are aligned.
988    if ((StackSize & 7) == 0)
989      StackSize += 4;
990  }
991
992  VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
993  RegSaveFrameIndex = 0xAAAAAAA;   // X86-64 only.
994  ReturnAddrIndex = 0;             // No return address slot generated yet.
995  BytesToPopOnReturn = StackSize;  // Callee pops all stack arguments.
996  BytesCallerReserves = 0;
997
998  MF.getInfo<X86MachineFunctionInfo>()
999    ->setBytesToPopOnReturn(BytesToPopOnReturn);
1000
1001  // Return the new list of results.
1002  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1003                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1004}
1005
1006SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1007                                               unsigned CC) {
1008  SDOperand Chain     = Op.getOperand(0);
1009  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1010  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1011  SDOperand Callee    = Op.getOperand(4);
1012
1013  // Analyze operands of the call, assigning locations to each operand.
1014  SmallVector<CCValAssign, 16> ArgLocs;
1015  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1016  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1017
1018  // Get a count of how many bytes are to be pushed on the stack.
1019  unsigned NumBytes = CCInfo.getNextStackOffset();
1020
1021  if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1022    // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1023    // arguments and the arguments after the retaddr has been pushed are aligned.
1024    if ((NumBytes & 7) == 0)
1025      NumBytes += 4;
1026  }
1027
1028  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1029
1030  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1031  SmallVector<SDOperand, 8> MemOpChains;
1032
1033  SDOperand StackPtr;
1034
1035  // Walk the register/memloc assignments, inserting copies/loads.
1036  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1037    CCValAssign &VA = ArgLocs[i];
1038    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1039
1040    // Promote the value if needed.
1041    switch (VA.getLocInfo()) {
1042      default: assert(0 && "Unknown loc info!");
1043      case CCValAssign::Full: break;
1044      case CCValAssign::SExt:
1045        Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1046        break;
1047      case CCValAssign::ZExt:
1048        Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1049        break;
1050      case CCValAssign::AExt:
1051        Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1052        break;
1053    }
1054
1055    if (VA.isRegLoc()) {
1056      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1057    } else {
1058      assert(VA.isMemLoc());
1059      if (StackPtr.Val == 0)
1060        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1061      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1062      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1063      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1064    }
1065  }
1066
1067  if (!MemOpChains.empty())
1068    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1069                        &MemOpChains[0], MemOpChains.size());
1070
1071  // Build a sequence of copy-to-reg nodes chained together with token chain
1072  // and flag operands which copy the outgoing args into registers.
1073  SDOperand InFlag;
1074  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1075    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1076                             InFlag);
1077    InFlag = Chain.getValue(1);
1078  }
1079
1080  // If the callee is a GlobalAddress node (quite common, every direct call is)
1081  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1082  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1083    // We should use extra load for direct calls to dllimported functions in
1084    // non-JIT mode.
1085    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1086                                        getTargetMachine(), true))
1087      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1088  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1089    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1090
1091  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1092  // GOT pointer.
1093  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1094      Subtarget->isPICStyleGOT()) {
1095    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1096                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1097                             InFlag);
1098    InFlag = Chain.getValue(1);
1099  }
1100
1101  // Returns a chain & a flag for retval copy to use.
1102  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1103  SmallVector<SDOperand, 8> Ops;
1104  Ops.push_back(Chain);
1105  Ops.push_back(Callee);
1106
1107  // Add argument registers to the end of the list so that they are known live
1108  // into the call.
1109  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1110    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1111                                  RegsToPass[i].second.getValueType()));
1112
1113  // Add an implicit use GOT pointer in EBX.
1114  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1115      Subtarget->isPICStyleGOT())
1116    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1117
1118  if (InFlag.Val)
1119    Ops.push_back(InFlag);
1120
1121  // FIXME: Do not generate X86ISD::TAILCALL for now.
1122  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1123                      NodeTys, &Ops[0], Ops.size());
1124  InFlag = Chain.getValue(1);
1125
1126  // Returns a flag for retval copy to use.
1127  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1128  Ops.clear();
1129  Ops.push_back(Chain);
1130  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1131  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1132  Ops.push_back(InFlag);
1133  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1134  InFlag = Chain.getValue(1);
1135
1136  // Handle result values, copying them out of physregs into vregs that we
1137  // return.
1138  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1139}
1140
1141
1142//===----------------------------------------------------------------------===//
1143//                 X86-64 C Calling Convention implementation
1144//===----------------------------------------------------------------------===//
1145
1146SDOperand
1147X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1148  MachineFunction &MF = DAG.getMachineFunction();
1149  MachineFrameInfo *MFI = MF.getFrameInfo();
1150  SDOperand Root = Op.getOperand(0);
1151  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1152
1153  static const unsigned GPR64ArgRegs[] = {
1154    X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8,  X86::R9
1155  };
1156  static const unsigned XMMArgRegs[] = {
1157    X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1158    X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1159  };
1160
1161
1162  // Assign locations to all of the incoming arguments.
1163  SmallVector<CCValAssign, 16> ArgLocs;
1164  CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1165                 getTargetMachine(), ArgLocs);
1166  CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
1167
1168  SmallVector<SDOperand, 8> ArgValues;
1169  unsigned LastVal = ~0U;
1170  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1171    CCValAssign &VA = ArgLocs[i];
1172    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1173    // places.
1174    assert(VA.getValNo() != LastVal &&
1175           "Don't support value assigned to multiple locs yet");
1176    LastVal = VA.getValNo();
1177
1178    if (VA.isRegLoc()) {
1179      MVT::ValueType RegVT = VA.getLocVT();
1180      TargetRegisterClass *RC;
1181      if (RegVT == MVT::i32)
1182        RC = X86::GR32RegisterClass;
1183      else if (RegVT == MVT::i64)
1184        RC = X86::GR64RegisterClass;
1185      else if (RegVT == MVT::f32)
1186        RC = X86::FR32RegisterClass;
1187      else if (RegVT == MVT::f64)
1188        RC = X86::FR64RegisterClass;
1189      else {
1190        assert(MVT::isVector(RegVT));
1191        if (MVT::getSizeInBits(RegVT) == 64) {
1192          RC = X86::GR64RegisterClass;       // MMX values are passed in GPRs.
1193          RegVT = MVT::i64;
1194        } else
1195          RC = X86::VR128RegisterClass;
1196      }
1197
1198      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1199      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1200
1201      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1202      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1203      // right size.
1204      if (VA.getLocInfo() == CCValAssign::SExt)
1205        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1206                               DAG.getValueType(VA.getValVT()));
1207      else if (VA.getLocInfo() == CCValAssign::ZExt)
1208        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1209                               DAG.getValueType(VA.getValVT()));
1210
1211      if (VA.getLocInfo() != CCValAssign::Full)
1212        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1213
1214      // Handle MMX values passed in GPRs.
1215      if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1216          MVT::getSizeInBits(RegVT) == 64)
1217        ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1218
1219      ArgValues.push_back(ArgValue);
1220    } else {
1221      assert(VA.isMemLoc());
1222
1223      // Create the nodes corresponding to a load from this parameter slot.
1224      int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1225                                      VA.getLocMemOffset());
1226      SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1227      ArgValues.push_back(DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0));
1228    }
1229  }
1230
1231  unsigned StackSize = CCInfo.getNextStackOffset();
1232
1233  // If the function takes variable number of arguments, make a frame index for
1234  // the start of the first vararg value... for expansion of llvm.va_start.
1235  if (isVarArg) {
1236    unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1237    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1238
1239    // For X86-64, if there are vararg parameters that are passed via
1240    // registers, then we must store them to their spots on the stack so they
1241    // may be loaded by deferencing the result of va_next.
1242    VarArgsGPOffset = NumIntRegs * 8;
1243    VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1244    VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1245    RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1246
1247    // Store the integer parameter registers.
1248    SmallVector<SDOperand, 8> MemOps;
1249    SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1250    SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1251                              DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1252    for (; NumIntRegs != 6; ++NumIntRegs) {
1253      unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1254                                X86::GR64RegisterClass);
1255      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1256      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1257      MemOps.push_back(Store);
1258      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1259                        DAG.getConstant(8, getPointerTy()));
1260    }
1261
1262    // Now store the XMM (fp + vector) parameter registers.
1263    FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1264                      DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1265    for (; NumXMMRegs != 8; ++NumXMMRegs) {
1266      unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1267                                X86::VR128RegisterClass);
1268      SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1269      SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1270      MemOps.push_back(Store);
1271      FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1272                        DAG.getConstant(16, getPointerTy()));
1273    }
1274    if (!MemOps.empty())
1275        Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1276                           &MemOps[0], MemOps.size());
1277  }
1278
1279  ArgValues.push_back(Root);
1280
1281  ReturnAddrIndex = 0;     // No return address slot generated yet.
1282  BytesToPopOnReturn = 0;  // Callee pops nothing.
1283  BytesCallerReserves = StackSize;
1284
1285  // Return the new list of results.
1286  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1287                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1288}
1289
1290SDOperand
1291X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1292                                        unsigned CC) {
1293  SDOperand Chain     = Op.getOperand(0);
1294  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1295  bool isTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1296  SDOperand Callee    = Op.getOperand(4);
1297
1298  // Analyze operands of the call, assigning locations to each operand.
1299  SmallVector<CCValAssign, 16> ArgLocs;
1300  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1301  CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
1302
1303  // Get a count of how many bytes are to be pushed on the stack.
1304  unsigned NumBytes = CCInfo.getNextStackOffset();
1305  Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1306
1307  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1308  SmallVector<SDOperand, 8> MemOpChains;
1309
1310  SDOperand StackPtr;
1311
1312  // Walk the register/memloc assignments, inserting copies/loads.
1313  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1314    CCValAssign &VA = ArgLocs[i];
1315    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1316
1317    // Promote the value if needed.
1318    switch (VA.getLocInfo()) {
1319    default: assert(0 && "Unknown loc info!");
1320    case CCValAssign::Full: break;
1321    case CCValAssign::SExt:
1322      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1323      break;
1324    case CCValAssign::ZExt:
1325      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1326      break;
1327    case CCValAssign::AExt:
1328      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1329      break;
1330    }
1331
1332    if (VA.isRegLoc()) {
1333      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1334    } else {
1335      assert(VA.isMemLoc());
1336      if (StackPtr.Val == 0)
1337        StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1338      SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1339      PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1340      MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1341    }
1342  }
1343
1344  if (!MemOpChains.empty())
1345    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1346                        &MemOpChains[0], MemOpChains.size());
1347
1348  // Build a sequence of copy-to-reg nodes chained together with token chain
1349  // and flag operands which copy the outgoing args into registers.
1350  SDOperand InFlag;
1351  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1352    Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1353                             InFlag);
1354    InFlag = Chain.getValue(1);
1355  }
1356
1357  if (isVarArg) {
1358    // From AMD64 ABI document:
1359    // For calls that may call functions that use varargs or stdargs
1360    // (prototype-less calls or calls to functions containing ellipsis (...) in
1361    // the declaration) %al is used as hidden argument to specify the number
1362    // of SSE registers used. The contents of %al do not need to match exactly
1363    // the number of registers, but must be an ubound on the number of SSE
1364    // registers used and is in the range 0 - 8 inclusive.
1365
1366    // Count the number of XMM registers allocated.
1367    static const unsigned XMMArgRegs[] = {
1368      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1369      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1370    };
1371    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1372
1373    Chain = DAG.getCopyToReg(Chain, X86::AL,
1374                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1375    InFlag = Chain.getValue(1);
1376  }
1377
1378  // If the callee is a GlobalAddress node (quite common, every direct call is)
1379  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1380  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1381    // We should use extra load for direct calls to dllimported functions in
1382    // non-JIT mode.
1383    if (getTargetMachine().getCodeModel() != CodeModel::Large
1384        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1385                                           getTargetMachine(), true))
1386      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1387  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1388    if (getTargetMachine().getCodeModel() != CodeModel::Large)
1389      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1390
1391  // Returns a chain & a flag for retval copy to use.
1392  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1393  SmallVector<SDOperand, 8> Ops;
1394  Ops.push_back(Chain);
1395  Ops.push_back(Callee);
1396
1397  // Add argument registers to the end of the list so that they are known live
1398  // into the call.
1399  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1400    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1401                                  RegsToPass[i].second.getValueType()));
1402
1403  if (InFlag.Val)
1404    Ops.push_back(InFlag);
1405
1406  // FIXME: Do not generate X86ISD::TAILCALL for now.
1407  Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL,
1408                      NodeTys, &Ops[0], Ops.size());
1409  InFlag = Chain.getValue(1);
1410
1411  // Returns a flag for retval copy to use.
1412  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1413  Ops.clear();
1414  Ops.push_back(Chain);
1415  Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1416  Ops.push_back(DAG.getConstant(0, getPointerTy()));
1417  Ops.push_back(InFlag);
1418  Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1419  InFlag = Chain.getValue(1);
1420
1421  // Handle result values, copying them out of physregs into vregs that we
1422  // return.
1423  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1424}
1425
1426
1427//===----------------------------------------------------------------------===//
1428//                           Other Lowering Hooks
1429//===----------------------------------------------------------------------===//
1430
1431
1432SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1433  if (ReturnAddrIndex == 0) {
1434    // Set up a frame object for the return address.
1435    MachineFunction &MF = DAG.getMachineFunction();
1436    if (Subtarget->is64Bit())
1437      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1438    else
1439      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1440  }
1441
1442  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1443}
1444
1445
1446
1447/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1448/// specific condition code. It returns a false if it cannot do a direct
1449/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1450/// needed.
1451static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1452                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1453                           SelectionDAG &DAG) {
1454  X86CC = X86::COND_INVALID;
1455  if (!isFP) {
1456    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1457      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1458        // X > -1   -> X == 0, jump !sign.
1459        RHS = DAG.getConstant(0, RHS.getValueType());
1460        X86CC = X86::COND_NS;
1461        return true;
1462      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1463        // X < 0   -> X == 0, jump on sign.
1464        X86CC = X86::COND_S;
1465        return true;
1466      }
1467    }
1468
1469    switch (SetCCOpcode) {
1470    default: break;
1471    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1472    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1473    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1474    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1475    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1476    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1477    case ISD::SETULT: X86CC = X86::COND_B;  break;
1478    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1479    case ISD::SETULE: X86CC = X86::COND_BE; break;
1480    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1481    }
1482  } else {
1483    // On a floating point condition, the flags are set as follows:
1484    // ZF  PF  CF   op
1485    //  0 | 0 | 0 | X > Y
1486    //  0 | 0 | 1 | X < Y
1487    //  1 | 0 | 0 | X == Y
1488    //  1 | 1 | 1 | unordered
1489    bool Flip = false;
1490    switch (SetCCOpcode) {
1491    default: break;
1492    case ISD::SETUEQ:
1493    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1494    case ISD::SETOLT: Flip = true; // Fallthrough
1495    case ISD::SETOGT:
1496    case ISD::SETGT: X86CC = X86::COND_A;  break;
1497    case ISD::SETOLE: Flip = true; // Fallthrough
1498    case ISD::SETOGE:
1499    case ISD::SETGE: X86CC = X86::COND_AE; break;
1500    case ISD::SETUGT: Flip = true; // Fallthrough
1501    case ISD::SETULT:
1502    case ISD::SETLT: X86CC = X86::COND_B;  break;
1503    case ISD::SETUGE: Flip = true; // Fallthrough
1504    case ISD::SETULE:
1505    case ISD::SETLE: X86CC = X86::COND_BE; break;
1506    case ISD::SETONE:
1507    case ISD::SETNE: X86CC = X86::COND_NE; break;
1508    case ISD::SETUO: X86CC = X86::COND_P;  break;
1509    case ISD::SETO:  X86CC = X86::COND_NP; break;
1510    }
1511    if (Flip)
1512      std::swap(LHS, RHS);
1513  }
1514
1515  return X86CC != X86::COND_INVALID;
1516}
1517
1518/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1519/// code. Current x86 isa includes the following FP cmov instructions:
1520/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1521static bool hasFPCMov(unsigned X86CC) {
1522  switch (X86CC) {
1523  default:
1524    return false;
1525  case X86::COND_B:
1526  case X86::COND_BE:
1527  case X86::COND_E:
1528  case X86::COND_P:
1529  case X86::COND_A:
1530  case X86::COND_AE:
1531  case X86::COND_NE:
1532  case X86::COND_NP:
1533    return true;
1534  }
1535}
1536
1537/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1538/// true if Op is undef or if its value falls within the specified range (L, H].
1539static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1540  if (Op.getOpcode() == ISD::UNDEF)
1541    return true;
1542
1543  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1544  return (Val >= Low && Val < Hi);
1545}
1546
1547/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1548/// true if Op is undef or if its value equal to the specified value.
1549static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1550  if (Op.getOpcode() == ISD::UNDEF)
1551    return true;
1552  return cast<ConstantSDNode>(Op)->getValue() == Val;
1553}
1554
1555/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1556/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1557bool X86::isPSHUFDMask(SDNode *N) {
1558  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1559
1560  if (N->getNumOperands() != 4)
1561    return false;
1562
1563  // Check if the value doesn't reference the second vector.
1564  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1565    SDOperand Arg = N->getOperand(i);
1566    if (Arg.getOpcode() == ISD::UNDEF) continue;
1567    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1568    if (cast<ConstantSDNode>(Arg)->getValue() >= 4)
1569      return false;
1570  }
1571
1572  return true;
1573}
1574
1575/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
1576/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
1577bool X86::isPSHUFHWMask(SDNode *N) {
1578  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1579
1580  if (N->getNumOperands() != 8)
1581    return false;
1582
1583  // Lower quadword copied in order.
1584  for (unsigned i = 0; i != 4; ++i) {
1585    SDOperand Arg = N->getOperand(i);
1586    if (Arg.getOpcode() == ISD::UNDEF) continue;
1587    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1588    if (cast<ConstantSDNode>(Arg)->getValue() != i)
1589      return false;
1590  }
1591
1592  // Upper quadword shuffled.
1593  for (unsigned i = 4; i != 8; ++i) {
1594    SDOperand Arg = N->getOperand(i);
1595    if (Arg.getOpcode() == ISD::UNDEF) continue;
1596    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1597    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1598    if (Val < 4 || Val > 7)
1599      return false;
1600  }
1601
1602  return true;
1603}
1604
1605/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
1606/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
1607bool X86::isPSHUFLWMask(SDNode *N) {
1608  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1609
1610  if (N->getNumOperands() != 8)
1611    return false;
1612
1613  // Upper quadword copied in order.
1614  for (unsigned i = 4; i != 8; ++i)
1615    if (!isUndefOrEqual(N->getOperand(i), i))
1616      return false;
1617
1618  // Lower quadword shuffled.
1619  for (unsigned i = 0; i != 4; ++i)
1620    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
1621      return false;
1622
1623  return true;
1624}
1625
1626/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
1627/// specifies a shuffle of elements that is suitable for input to SHUFP*.
1628static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
1629  if (NumElems != 2 && NumElems != 4) return false;
1630
1631  unsigned Half = NumElems / 2;
1632  for (unsigned i = 0; i < Half; ++i)
1633    if (!isUndefOrInRange(Elems[i], 0, NumElems))
1634      return false;
1635  for (unsigned i = Half; i < NumElems; ++i)
1636    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
1637      return false;
1638
1639  return true;
1640}
1641
1642bool X86::isSHUFPMask(SDNode *N) {
1643  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1644  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
1645}
1646
1647/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
1648/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
1649/// half elements to come from vector 1 (which would equal the dest.) and
1650/// the upper half to come from vector 2.
1651static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
1652  if (NumOps != 2 && NumOps != 4) return false;
1653
1654  unsigned Half = NumOps / 2;
1655  for (unsigned i = 0; i < Half; ++i)
1656    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
1657      return false;
1658  for (unsigned i = Half; i < NumOps; ++i)
1659    if (!isUndefOrInRange(Ops[i], 0, NumOps))
1660      return false;
1661  return true;
1662}
1663
1664static bool isCommutedSHUFP(SDNode *N) {
1665  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1666  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
1667}
1668
1669/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
1670/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
1671bool X86::isMOVHLPSMask(SDNode *N) {
1672  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1673
1674  if (N->getNumOperands() != 4)
1675    return false;
1676
1677  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
1678  return isUndefOrEqual(N->getOperand(0), 6) &&
1679         isUndefOrEqual(N->getOperand(1), 7) &&
1680         isUndefOrEqual(N->getOperand(2), 2) &&
1681         isUndefOrEqual(N->getOperand(3), 3);
1682}
1683
1684/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
1685/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
1686/// <2, 3, 2, 3>
1687bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
1688  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1689
1690  if (N->getNumOperands() != 4)
1691    return false;
1692
1693  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
1694  return isUndefOrEqual(N->getOperand(0), 2) &&
1695         isUndefOrEqual(N->getOperand(1), 3) &&
1696         isUndefOrEqual(N->getOperand(2), 2) &&
1697         isUndefOrEqual(N->getOperand(3), 3);
1698}
1699
1700/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
1701/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
1702bool X86::isMOVLPMask(SDNode *N) {
1703  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1704
1705  unsigned NumElems = N->getNumOperands();
1706  if (NumElems != 2 && NumElems != 4)
1707    return false;
1708
1709  for (unsigned i = 0; i < NumElems/2; ++i)
1710    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
1711      return false;
1712
1713  for (unsigned i = NumElems/2; i < NumElems; ++i)
1714    if (!isUndefOrEqual(N->getOperand(i), i))
1715      return false;
1716
1717  return true;
1718}
1719
1720/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
1721/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
1722/// and MOVLHPS.
1723bool X86::isMOVHPMask(SDNode *N) {
1724  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1725
1726  unsigned NumElems = N->getNumOperands();
1727  if (NumElems != 2 && NumElems != 4)
1728    return false;
1729
1730  for (unsigned i = 0; i < NumElems/2; ++i)
1731    if (!isUndefOrEqual(N->getOperand(i), i))
1732      return false;
1733
1734  for (unsigned i = 0; i < NumElems/2; ++i) {
1735    SDOperand Arg = N->getOperand(i + NumElems/2);
1736    if (!isUndefOrEqual(Arg, i + NumElems))
1737      return false;
1738  }
1739
1740  return true;
1741}
1742
1743/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
1744/// specifies a shuffle of elements that is suitable for input to UNPCKL.
1745bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
1746                         bool V2IsSplat = false) {
1747  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1748    return false;
1749
1750  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1751    SDOperand BitI  = Elts[i];
1752    SDOperand BitI1 = Elts[i+1];
1753    if (!isUndefOrEqual(BitI, j))
1754      return false;
1755    if (V2IsSplat) {
1756      if (isUndefOrEqual(BitI1, NumElts))
1757        return false;
1758    } else {
1759      if (!isUndefOrEqual(BitI1, j + NumElts))
1760        return false;
1761    }
1762  }
1763
1764  return true;
1765}
1766
1767bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
1768  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1769  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1770}
1771
1772/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
1773/// specifies a shuffle of elements that is suitable for input to UNPCKH.
1774bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
1775                         bool V2IsSplat = false) {
1776  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1777    return false;
1778
1779  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
1780    SDOperand BitI  = Elts[i];
1781    SDOperand BitI1 = Elts[i+1];
1782    if (!isUndefOrEqual(BitI, j + NumElts/2))
1783      return false;
1784    if (V2IsSplat) {
1785      if (isUndefOrEqual(BitI1, NumElts))
1786        return false;
1787    } else {
1788      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
1789        return false;
1790    }
1791  }
1792
1793  return true;
1794}
1795
1796bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
1797  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1798  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
1799}
1800
1801/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
1802/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
1803/// <0, 0, 1, 1>
1804bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
1805  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1806
1807  unsigned NumElems = N->getNumOperands();
1808  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1809    return false;
1810
1811  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
1812    SDOperand BitI  = N->getOperand(i);
1813    SDOperand BitI1 = N->getOperand(i+1);
1814
1815    if (!isUndefOrEqual(BitI, j))
1816      return false;
1817    if (!isUndefOrEqual(BitI1, j))
1818      return false;
1819  }
1820
1821  return true;
1822}
1823
1824/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
1825/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
1826/// <2, 2, 3, 3>
1827bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
1828  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1829
1830  unsigned NumElems = N->getNumOperands();
1831  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
1832    return false;
1833
1834  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
1835    SDOperand BitI  = N->getOperand(i);
1836    SDOperand BitI1 = N->getOperand(i + 1);
1837
1838    if (!isUndefOrEqual(BitI, j))
1839      return false;
1840    if (!isUndefOrEqual(BitI1, j))
1841      return false;
1842  }
1843
1844  return true;
1845}
1846
1847/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
1848/// specifies a shuffle of elements that is suitable for input to MOVSS,
1849/// MOVSD, and MOVD, i.e. setting the lowest element.
1850static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
1851  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
1852    return false;
1853
1854  if (!isUndefOrEqual(Elts[0], NumElts))
1855    return false;
1856
1857  for (unsigned i = 1; i < NumElts; ++i) {
1858    if (!isUndefOrEqual(Elts[i], i))
1859      return false;
1860  }
1861
1862  return true;
1863}
1864
1865bool X86::isMOVLMask(SDNode *N) {
1866  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1867  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
1868}
1869
1870/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
1871/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
1872/// element of vector 2 and the other elements to come from vector 1 in order.
1873static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
1874                           bool V2IsSplat = false,
1875                           bool V2IsUndef = false) {
1876  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
1877    return false;
1878
1879  if (!isUndefOrEqual(Ops[0], 0))
1880    return false;
1881
1882  for (unsigned i = 1; i < NumOps; ++i) {
1883    SDOperand Arg = Ops[i];
1884    if (!(isUndefOrEqual(Arg, i+NumOps) ||
1885          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
1886          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
1887      return false;
1888  }
1889
1890  return true;
1891}
1892
1893static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
1894                           bool V2IsUndef = false) {
1895  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1896  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
1897                        V2IsSplat, V2IsUndef);
1898}
1899
1900/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1901/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
1902bool X86::isMOVSHDUPMask(SDNode *N) {
1903  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1904
1905  if (N->getNumOperands() != 4)
1906    return false;
1907
1908  // Expect 1, 1, 3, 3
1909  for (unsigned i = 0; i < 2; ++i) {
1910    SDOperand Arg = N->getOperand(i);
1911    if (Arg.getOpcode() == ISD::UNDEF) continue;
1912    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1913    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1914    if (Val != 1) return false;
1915  }
1916
1917  bool HasHi = false;
1918  for (unsigned i = 2; i < 4; ++i) {
1919    SDOperand Arg = N->getOperand(i);
1920    if (Arg.getOpcode() == ISD::UNDEF) continue;
1921    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1922    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1923    if (Val != 3) return false;
1924    HasHi = true;
1925  }
1926
1927  // Don't use movshdup if it can be done with a shufps.
1928  return HasHi;
1929}
1930
1931/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
1932/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
1933bool X86::isMOVSLDUPMask(SDNode *N) {
1934  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1935
1936  if (N->getNumOperands() != 4)
1937    return false;
1938
1939  // Expect 0, 0, 2, 2
1940  for (unsigned i = 0; i < 2; ++i) {
1941    SDOperand Arg = N->getOperand(i);
1942    if (Arg.getOpcode() == ISD::UNDEF) continue;
1943    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1944    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1945    if (Val != 0) return false;
1946  }
1947
1948  bool HasHi = false;
1949  for (unsigned i = 2; i < 4; ++i) {
1950    SDOperand Arg = N->getOperand(i);
1951    if (Arg.getOpcode() == ISD::UNDEF) continue;
1952    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1953    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
1954    if (Val != 2) return false;
1955    HasHi = true;
1956  }
1957
1958  // Don't use movshdup if it can be done with a shufps.
1959  return HasHi;
1960}
1961
1962/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
1963/// specifies a identity operation on the LHS or RHS.
1964static bool isIdentityMask(SDNode *N, bool RHS = false) {
1965  unsigned NumElems = N->getNumOperands();
1966  for (unsigned i = 0; i < NumElems; ++i)
1967    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
1968      return false;
1969  return true;
1970}
1971
1972/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
1973/// a splat of a single element.
1974static bool isSplatMask(SDNode *N) {
1975  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1976
1977  // This is a splat operation if each element of the permute is the same, and
1978  // if the value doesn't reference the second vector.
1979  unsigned NumElems = N->getNumOperands();
1980  SDOperand ElementBase;
1981  unsigned i = 0;
1982  for (; i != NumElems; ++i) {
1983    SDOperand Elt = N->getOperand(i);
1984    if (isa<ConstantSDNode>(Elt)) {
1985      ElementBase = Elt;
1986      break;
1987    }
1988  }
1989
1990  if (!ElementBase.Val)
1991    return false;
1992
1993  for (; i != NumElems; ++i) {
1994    SDOperand Arg = N->getOperand(i);
1995    if (Arg.getOpcode() == ISD::UNDEF) continue;
1996    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1997    if (Arg != ElementBase) return false;
1998  }
1999
2000  // Make sure it is a splat of the first vector operand.
2001  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2002}
2003
2004/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2005/// a splat of a single element and it's a 2 or 4 element mask.
2006bool X86::isSplatMask(SDNode *N) {
2007  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2008
2009  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2010  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2011    return false;
2012  return ::isSplatMask(N);
2013}
2014
2015/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2016/// specifies a splat of zero element.
2017bool X86::isSplatLoMask(SDNode *N) {
2018  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2019
2020  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2021    if (!isUndefOrEqual(N->getOperand(i), 0))
2022      return false;
2023  return true;
2024}
2025
2026/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2027/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2028/// instructions.
2029unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2030  unsigned NumOperands = N->getNumOperands();
2031  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2032  unsigned Mask = 0;
2033  for (unsigned i = 0; i < NumOperands; ++i) {
2034    unsigned Val = 0;
2035    SDOperand Arg = N->getOperand(NumOperands-i-1);
2036    if (Arg.getOpcode() != ISD::UNDEF)
2037      Val = cast<ConstantSDNode>(Arg)->getValue();
2038    if (Val >= NumOperands) Val -= NumOperands;
2039    Mask |= Val;
2040    if (i != NumOperands - 1)
2041      Mask <<= Shift;
2042  }
2043
2044  return Mask;
2045}
2046
2047/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2048/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2049/// instructions.
2050unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2051  unsigned Mask = 0;
2052  // 8 nodes, but we only care about the last 4.
2053  for (unsigned i = 7; i >= 4; --i) {
2054    unsigned Val = 0;
2055    SDOperand Arg = N->getOperand(i);
2056    if (Arg.getOpcode() != ISD::UNDEF)
2057      Val = cast<ConstantSDNode>(Arg)->getValue();
2058    Mask |= (Val - 4);
2059    if (i != 4)
2060      Mask <<= 2;
2061  }
2062
2063  return Mask;
2064}
2065
2066/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2067/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2068/// instructions.
2069unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2070  unsigned Mask = 0;
2071  // 8 nodes, but we only care about the first 4.
2072  for (int i = 3; i >= 0; --i) {
2073    unsigned Val = 0;
2074    SDOperand Arg = N->getOperand(i);
2075    if (Arg.getOpcode() != ISD::UNDEF)
2076      Val = cast<ConstantSDNode>(Arg)->getValue();
2077    Mask |= Val;
2078    if (i != 0)
2079      Mask <<= 2;
2080  }
2081
2082  return Mask;
2083}
2084
2085/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2086/// specifies a 8 element shuffle that can be broken into a pair of
2087/// PSHUFHW and PSHUFLW.
2088static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2089  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2090
2091  if (N->getNumOperands() != 8)
2092    return false;
2093
2094  // Lower quadword shuffled.
2095  for (unsigned i = 0; i != 4; ++i) {
2096    SDOperand Arg = N->getOperand(i);
2097    if (Arg.getOpcode() == ISD::UNDEF) continue;
2098    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2099    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2100    if (Val > 4)
2101      return false;
2102  }
2103
2104  // Upper quadword shuffled.
2105  for (unsigned i = 4; i != 8; ++i) {
2106    SDOperand Arg = N->getOperand(i);
2107    if (Arg.getOpcode() == ISD::UNDEF) continue;
2108    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2109    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2110    if (Val < 4 || Val > 7)
2111      return false;
2112  }
2113
2114  return true;
2115}
2116
2117/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2118/// values in ther permute mask.
2119static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2120                                      SDOperand &V2, SDOperand &Mask,
2121                                      SelectionDAG &DAG) {
2122  MVT::ValueType VT = Op.getValueType();
2123  MVT::ValueType MaskVT = Mask.getValueType();
2124  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2125  unsigned NumElems = Mask.getNumOperands();
2126  SmallVector<SDOperand, 8> MaskVec;
2127
2128  for (unsigned i = 0; i != NumElems; ++i) {
2129    SDOperand Arg = Mask.getOperand(i);
2130    if (Arg.getOpcode() == ISD::UNDEF) {
2131      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2132      continue;
2133    }
2134    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2135    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2136    if (Val < NumElems)
2137      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2138    else
2139      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2140  }
2141
2142  std::swap(V1, V2);
2143  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2144  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2145}
2146
2147/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2148/// match movhlps. The lower half elements should come from upper half of
2149/// V1 (and in order), and the upper half elements should come from the upper
2150/// half of V2 (and in order).
2151static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2152  unsigned NumElems = Mask->getNumOperands();
2153  if (NumElems != 4)
2154    return false;
2155  for (unsigned i = 0, e = 2; i != e; ++i)
2156    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2157      return false;
2158  for (unsigned i = 2; i != 4; ++i)
2159    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2160      return false;
2161  return true;
2162}
2163
2164/// isScalarLoadToVector - Returns true if the node is a scalar load that
2165/// is promoted to a vector.
2166static inline bool isScalarLoadToVector(SDNode *N) {
2167  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2168    N = N->getOperand(0).Val;
2169    return ISD::isNON_EXTLoad(N);
2170  }
2171  return false;
2172}
2173
2174/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2175/// match movlp{s|d}. The lower half elements should come from lower half of
2176/// V1 (and in order), and the upper half elements should come from the upper
2177/// half of V2 (and in order). And since V1 will become the source of the
2178/// MOVLP, it must be either a vector load or a scalar load to vector.
2179static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2180  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2181    return false;
2182  // Is V2 is a vector load, don't do this transformation. We will try to use
2183  // load folding shufps op.
2184  if (ISD::isNON_EXTLoad(V2))
2185    return false;
2186
2187  unsigned NumElems = Mask->getNumOperands();
2188  if (NumElems != 2 && NumElems != 4)
2189    return false;
2190  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2191    if (!isUndefOrEqual(Mask->getOperand(i), i))
2192      return false;
2193  for (unsigned i = NumElems/2; i != NumElems; ++i)
2194    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2195      return false;
2196  return true;
2197}
2198
2199/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2200/// all the same.
2201static bool isSplatVector(SDNode *N) {
2202  if (N->getOpcode() != ISD::BUILD_VECTOR)
2203    return false;
2204
2205  SDOperand SplatValue = N->getOperand(0);
2206  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2207    if (N->getOperand(i) != SplatValue)
2208      return false;
2209  return true;
2210}
2211
2212/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2213/// to an undef.
2214static bool isUndefShuffle(SDNode *N) {
2215  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2216    return false;
2217
2218  SDOperand V1 = N->getOperand(0);
2219  SDOperand V2 = N->getOperand(1);
2220  SDOperand Mask = N->getOperand(2);
2221  unsigned NumElems = Mask.getNumOperands();
2222  for (unsigned i = 0; i != NumElems; ++i) {
2223    SDOperand Arg = Mask.getOperand(i);
2224    if (Arg.getOpcode() != ISD::UNDEF) {
2225      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2226      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2227        return false;
2228      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2229        return false;
2230    }
2231  }
2232  return true;
2233}
2234
2235/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2236/// constant +0.0.
2237static inline bool isZeroNode(SDOperand Elt) {
2238  return ((isa<ConstantSDNode>(Elt) &&
2239           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2240          (isa<ConstantFPSDNode>(Elt) &&
2241           cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0)));
2242}
2243
2244/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2245/// to an zero vector.
2246static bool isZeroShuffle(SDNode *N) {
2247  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2248    return false;
2249
2250  SDOperand V1 = N->getOperand(0);
2251  SDOperand V2 = N->getOperand(1);
2252  SDOperand Mask = N->getOperand(2);
2253  unsigned NumElems = Mask.getNumOperands();
2254  for (unsigned i = 0; i != NumElems; ++i) {
2255    SDOperand Arg = Mask.getOperand(i);
2256    if (Arg.getOpcode() != ISD::UNDEF) {
2257      unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2258      if (Idx < NumElems) {
2259        unsigned Opc = V1.Val->getOpcode();
2260        if (Opc == ISD::UNDEF)
2261          continue;
2262        if (Opc != ISD::BUILD_VECTOR ||
2263            !isZeroNode(V1.Val->getOperand(Idx)))
2264          return false;
2265      } else if (Idx >= NumElems) {
2266        unsigned Opc = V2.Val->getOpcode();
2267        if (Opc == ISD::UNDEF)
2268          continue;
2269        if (Opc != ISD::BUILD_VECTOR ||
2270            !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2271          return false;
2272      }
2273    }
2274  }
2275  return true;
2276}
2277
2278/// getZeroVector - Returns a vector of specified type with all zero elements.
2279///
2280static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2281  assert(MVT::isVector(VT) && "Expected a vector type");
2282  unsigned NumElems = MVT::getVectorNumElements(VT);
2283  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2284  bool isFP = MVT::isFloatingPoint(EVT);
2285  SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2286  SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2287  return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2288}
2289
2290/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2291/// that point to V2 points to its first element.
2292static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2293  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2294
2295  bool Changed = false;
2296  SmallVector<SDOperand, 8> MaskVec;
2297  unsigned NumElems = Mask.getNumOperands();
2298  for (unsigned i = 0; i != NumElems; ++i) {
2299    SDOperand Arg = Mask.getOperand(i);
2300    if (Arg.getOpcode() != ISD::UNDEF) {
2301      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2302      if (Val > NumElems) {
2303        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2304        Changed = true;
2305      }
2306    }
2307    MaskVec.push_back(Arg);
2308  }
2309
2310  if (Changed)
2311    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2312                       &MaskVec[0], MaskVec.size());
2313  return Mask;
2314}
2315
2316/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2317/// operation of specified width.
2318static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2319  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2320  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2321
2322  SmallVector<SDOperand, 8> MaskVec;
2323  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2324  for (unsigned i = 1; i != NumElems; ++i)
2325    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2326  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2327}
2328
2329/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2330/// of specified width.
2331static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2332  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2333  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2334  SmallVector<SDOperand, 8> MaskVec;
2335  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2336    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2337    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2338  }
2339  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2340}
2341
2342/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2343/// of specified width.
2344static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2345  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2346  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2347  unsigned Half = NumElems/2;
2348  SmallVector<SDOperand, 8> MaskVec;
2349  for (unsigned i = 0; i != Half; ++i) {
2350    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2351    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2352  }
2353  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2354}
2355
2356/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2357///
2358static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2359  SDOperand V1 = Op.getOperand(0);
2360  SDOperand Mask = Op.getOperand(2);
2361  MVT::ValueType VT = Op.getValueType();
2362  unsigned NumElems = Mask.getNumOperands();
2363  Mask = getUnpacklMask(NumElems, DAG);
2364  while (NumElems != 4) {
2365    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2366    NumElems >>= 1;
2367  }
2368  V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2369
2370  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2371  Mask = getZeroVector(MaskVT, DAG);
2372  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2373                                  DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2374  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2375}
2376
2377/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2378/// vector of zero or undef vector.
2379static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2380                                             unsigned NumElems, unsigned Idx,
2381                                             bool isZero, SelectionDAG &DAG) {
2382  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2383  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2384  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2385  SDOperand Zero = DAG.getConstant(0, EVT);
2386  SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2387  MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2388  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2389                               &MaskVec[0], MaskVec.size());
2390  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2391}
2392
2393/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2394///
2395static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2396                                       unsigned NumNonZero, unsigned NumZero,
2397                                       SelectionDAG &DAG, TargetLowering &TLI) {
2398  if (NumNonZero > 8)
2399    return SDOperand();
2400
2401  SDOperand V(0, 0);
2402  bool First = true;
2403  for (unsigned i = 0; i < 16; ++i) {
2404    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2405    if (ThisIsNonZero && First) {
2406      if (NumZero)
2407        V = getZeroVector(MVT::v8i16, DAG);
2408      else
2409        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2410      First = false;
2411    }
2412
2413    if ((i & 1) != 0) {
2414      SDOperand ThisElt(0, 0), LastElt(0, 0);
2415      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2416      if (LastIsNonZero) {
2417        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2418      }
2419      if (ThisIsNonZero) {
2420        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2421        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2422                              ThisElt, DAG.getConstant(8, MVT::i8));
2423        if (LastIsNonZero)
2424          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2425      } else
2426        ThisElt = LastElt;
2427
2428      if (ThisElt.Val)
2429        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2430                        DAG.getConstant(i/2, TLI.getPointerTy()));
2431    }
2432  }
2433
2434  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2435}
2436
2437/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2438///
2439static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2440                                       unsigned NumNonZero, unsigned NumZero,
2441                                       SelectionDAG &DAG, TargetLowering &TLI) {
2442  if (NumNonZero > 4)
2443    return SDOperand();
2444
2445  SDOperand V(0, 0);
2446  bool First = true;
2447  for (unsigned i = 0; i < 8; ++i) {
2448    bool isNonZero = (NonZeros & (1 << i)) != 0;
2449    if (isNonZero) {
2450      if (First) {
2451        if (NumZero)
2452          V = getZeroVector(MVT::v8i16, DAG);
2453        else
2454          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2455        First = false;
2456      }
2457      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2458                      DAG.getConstant(i, TLI.getPointerTy()));
2459    }
2460  }
2461
2462  return V;
2463}
2464
2465SDOperand
2466X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2467  // All zero's are handled with pxor.
2468  if (ISD::isBuildVectorAllZeros(Op.Val))
2469    return Op;
2470
2471  // All one's are handled with pcmpeqd.
2472  if (ISD::isBuildVectorAllOnes(Op.Val))
2473    return Op;
2474
2475  MVT::ValueType VT = Op.getValueType();
2476  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2477  unsigned EVTBits = MVT::getSizeInBits(EVT);
2478
2479  unsigned NumElems = Op.getNumOperands();
2480  unsigned NumZero  = 0;
2481  unsigned NumNonZero = 0;
2482  unsigned NonZeros = 0;
2483  std::set<SDOperand> Values;
2484  for (unsigned i = 0; i < NumElems; ++i) {
2485    SDOperand Elt = Op.getOperand(i);
2486    if (Elt.getOpcode() != ISD::UNDEF) {
2487      Values.insert(Elt);
2488      if (isZeroNode(Elt))
2489        NumZero++;
2490      else {
2491        NonZeros |= (1 << i);
2492        NumNonZero++;
2493      }
2494    }
2495  }
2496
2497  if (NumNonZero == 0) {
2498    if (NumZero == 0)
2499      // All undef vector. Return an UNDEF.
2500      return DAG.getNode(ISD::UNDEF, VT);
2501    else
2502      // A mix of zero and undef. Return a zero vector.
2503      return getZeroVector(VT, DAG);
2504  }
2505
2506  // Splat is obviously ok. Let legalizer expand it to a shuffle.
2507  if (Values.size() == 1)
2508    return SDOperand();
2509
2510  // Special case for single non-zero element.
2511  if (NumNonZero == 1) {
2512    unsigned Idx = CountTrailingZeros_32(NonZeros);
2513    SDOperand Item = Op.getOperand(Idx);
2514    Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
2515    if (Idx == 0)
2516      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
2517      return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
2518                                         NumZero > 0, DAG);
2519
2520    if (EVTBits == 32) {
2521      // Turn it into a shuffle of zero and zero-extended scalar to vector.
2522      Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
2523                                         DAG);
2524      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
2525      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2526      SmallVector<SDOperand, 8> MaskVec;
2527      for (unsigned i = 0; i < NumElems; i++)
2528        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
2529      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2530                                   &MaskVec[0], MaskVec.size());
2531      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
2532                         DAG.getNode(ISD::UNDEF, VT), Mask);
2533    }
2534  }
2535
2536  // Let legalizer expand 2-wide build_vectors.
2537  if (EVTBits == 64)
2538    return SDOperand();
2539
2540  // If element VT is < 32 bits, convert it to inserts into a zero vector.
2541  if (EVTBits == 8 && NumElems == 16) {
2542    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
2543                                        *this);
2544    if (V.Val) return V;
2545  }
2546
2547  if (EVTBits == 16 && NumElems == 8) {
2548    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
2549                                        *this);
2550    if (V.Val) return V;
2551  }
2552
2553  // If element VT is == 32 bits, turn it into a number of shuffles.
2554  SmallVector<SDOperand, 8> V;
2555  V.resize(NumElems);
2556  if (NumElems == 4 && NumZero > 0) {
2557    for (unsigned i = 0; i < 4; ++i) {
2558      bool isZero = !(NonZeros & (1 << i));
2559      if (isZero)
2560        V[i] = getZeroVector(VT, DAG);
2561      else
2562        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2563    }
2564
2565    for (unsigned i = 0; i < 2; ++i) {
2566      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
2567        default: break;
2568        case 0:
2569          V[i] = V[i*2];  // Must be a zero vector.
2570          break;
2571        case 1:
2572          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
2573                             getMOVLMask(NumElems, DAG));
2574          break;
2575        case 2:
2576          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2577                             getMOVLMask(NumElems, DAG));
2578          break;
2579        case 3:
2580          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
2581                             getUnpacklMask(NumElems, DAG));
2582          break;
2583      }
2584    }
2585
2586    // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
2587    // clears the upper bits.
2588    // FIXME: we can do the same for v4f32 case when we know both parts of
2589    // the lower half come from scalar_to_vector (loadf32). We should do
2590    // that in post legalizer dag combiner with target specific hooks.
2591    if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
2592      return V[0];
2593    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2594    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2595    SmallVector<SDOperand, 8> MaskVec;
2596    bool Reverse = (NonZeros & 0x3) == 2;
2597    for (unsigned i = 0; i < 2; ++i)
2598      if (Reverse)
2599        MaskVec.push_back(DAG.getConstant(1-i, EVT));
2600      else
2601        MaskVec.push_back(DAG.getConstant(i, EVT));
2602    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
2603    for (unsigned i = 0; i < 2; ++i)
2604      if (Reverse)
2605        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
2606      else
2607        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
2608    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2609                                     &MaskVec[0], MaskVec.size());
2610    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
2611  }
2612
2613  if (Values.size() > 2) {
2614    // Expand into a number of unpckl*.
2615    // e.g. for v4f32
2616    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
2617    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
2618    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
2619    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
2620    for (unsigned i = 0; i < NumElems; ++i)
2621      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
2622    NumElems >>= 1;
2623    while (NumElems != 0) {
2624      for (unsigned i = 0; i < NumElems; ++i)
2625        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
2626                           UnpckMask);
2627      NumElems >>= 1;
2628    }
2629    return V[0];
2630  }
2631
2632  return SDOperand();
2633}
2634
2635SDOperand
2636X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2637  SDOperand V1 = Op.getOperand(0);
2638  SDOperand V2 = Op.getOperand(1);
2639  SDOperand PermMask = Op.getOperand(2);
2640  MVT::ValueType VT = Op.getValueType();
2641  unsigned NumElems = PermMask.getNumOperands();
2642  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
2643  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
2644  bool V1IsSplat = false;
2645  bool V2IsSplat = false;
2646
2647  if (isUndefShuffle(Op.Val))
2648    return DAG.getNode(ISD::UNDEF, VT);
2649
2650  if (isZeroShuffle(Op.Val))
2651    return getZeroVector(VT, DAG);
2652
2653  if (isIdentityMask(PermMask.Val))
2654    return V1;
2655  else if (isIdentityMask(PermMask.Val, true))
2656    return V2;
2657
2658  if (isSplatMask(PermMask.Val)) {
2659    if (NumElems <= 4) return Op;
2660    // Promote it to a v4i32 splat.
2661    return PromoteSplat(Op, DAG);
2662  }
2663
2664  if (X86::isMOVLMask(PermMask.Val))
2665    return (V1IsUndef) ? V2 : Op;
2666
2667  if (X86::isMOVSHDUPMask(PermMask.Val) ||
2668      X86::isMOVSLDUPMask(PermMask.Val) ||
2669      X86::isMOVHLPSMask(PermMask.Val) ||
2670      X86::isMOVHPMask(PermMask.Val) ||
2671      X86::isMOVLPMask(PermMask.Val))
2672    return Op;
2673
2674  if (ShouldXformToMOVHLPS(PermMask.Val) ||
2675      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
2676    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2677
2678  bool Commuted = false;
2679  V1IsSplat = isSplatVector(V1.Val);
2680  V2IsSplat = isSplatVector(V2.Val);
2681  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
2682    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2683    std::swap(V1IsSplat, V2IsSplat);
2684    std::swap(V1IsUndef, V2IsUndef);
2685    Commuted = true;
2686  }
2687
2688  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
2689    if (V2IsUndef) return V1;
2690    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2691    if (V2IsSplat) {
2692      // V2 is a splat, so the mask may be malformed. That is, it may point
2693      // to any V2 element. The instruction selectior won't like this. Get
2694      // a corrected mask and commute to form a proper MOVS{S|D}.
2695      SDOperand NewMask = getMOVLMask(NumElems, DAG);
2696      if (NewMask.Val != PermMask.Val)
2697        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2698    }
2699    return Op;
2700  }
2701
2702  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2703      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2704      X86::isUNPCKLMask(PermMask.Val) ||
2705      X86::isUNPCKHMask(PermMask.Val))
2706    return Op;
2707
2708  if (V2IsSplat) {
2709    // Normalize mask so all entries that point to V2 points to its first
2710    // element then try to match unpck{h|l} again. If match, return a
2711    // new vector_shuffle with the corrected mask.
2712    SDOperand NewMask = NormalizeMask(PermMask, DAG);
2713    if (NewMask.Val != PermMask.Val) {
2714      if (X86::isUNPCKLMask(PermMask.Val, true)) {
2715        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
2716        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2717      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
2718        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
2719        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
2720      }
2721    }
2722  }
2723
2724  // Normalize the node to match x86 shuffle ops if needed
2725  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
2726      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2727
2728  if (Commuted) {
2729    // Commute is back and try unpck* again.
2730    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
2731    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
2732        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
2733        X86::isUNPCKLMask(PermMask.Val) ||
2734        X86::isUNPCKHMask(PermMask.Val))
2735      return Op;
2736  }
2737
2738  // If VT is integer, try PSHUF* first, then SHUFP*.
2739  if (MVT::isInteger(VT)) {
2740    if (X86::isPSHUFDMask(PermMask.Val) ||
2741        X86::isPSHUFHWMask(PermMask.Val) ||
2742        X86::isPSHUFLWMask(PermMask.Val)) {
2743      if (V2.getOpcode() != ISD::UNDEF)
2744        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2745                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2746      return Op;
2747    }
2748
2749    if (X86::isSHUFPMask(PermMask.Val) &&
2750        MVT::getSizeInBits(VT) != 64)    // Don't do this for MMX.
2751      return Op;
2752
2753    // Handle v8i16 shuffle high / low shuffle node pair.
2754    if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
2755      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2756      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2757      SmallVector<SDOperand, 8> MaskVec;
2758      for (unsigned i = 0; i != 4; ++i)
2759        MaskVec.push_back(PermMask.getOperand(i));
2760      for (unsigned i = 4; i != 8; ++i)
2761        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2762      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2763                                   &MaskVec[0], MaskVec.size());
2764      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2765      MaskVec.clear();
2766      for (unsigned i = 0; i != 4; ++i)
2767        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2768      for (unsigned i = 4; i != 8; ++i)
2769        MaskVec.push_back(PermMask.getOperand(i));
2770      Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
2771      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2772    }
2773  } else {
2774    // Floating point cases in the other order.
2775    if (X86::isSHUFPMask(PermMask.Val))
2776      return Op;
2777    if (X86::isPSHUFDMask(PermMask.Val) ||
2778        X86::isPSHUFHWMask(PermMask.Val) ||
2779        X86::isPSHUFLWMask(PermMask.Val)) {
2780      if (V2.getOpcode() != ISD::UNDEF)
2781        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
2782                           DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
2783      return Op;
2784    }
2785  }
2786
2787  if (NumElems == 4 &&
2788      // Don't do this for MMX.
2789      MVT::getSizeInBits(VT) != 64) {
2790    MVT::ValueType MaskVT = PermMask.getValueType();
2791    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
2792    SmallVector<std::pair<int, int>, 8> Locs;
2793    Locs.reserve(NumElems);
2794    SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2795    SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2796    unsigned NumHi = 0;
2797    unsigned NumLo = 0;
2798    // If no more than two elements come from either vector. This can be
2799    // implemented with two shuffles. First shuffle gather the elements.
2800    // The second shuffle, which takes the first shuffle as both of its
2801    // vector operands, put the elements into the right order.
2802    for (unsigned i = 0; i != NumElems; ++i) {
2803      SDOperand Elt = PermMask.getOperand(i);
2804      if (Elt.getOpcode() == ISD::UNDEF) {
2805        Locs[i] = std::make_pair(-1, -1);
2806      } else {
2807        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
2808        if (Val < NumElems) {
2809          Locs[i] = std::make_pair(0, NumLo);
2810          Mask1[NumLo] = Elt;
2811          NumLo++;
2812        } else {
2813          Locs[i] = std::make_pair(1, NumHi);
2814          if (2+NumHi < NumElems)
2815            Mask1[2+NumHi] = Elt;
2816          NumHi++;
2817        }
2818      }
2819    }
2820    if (NumLo <= 2 && NumHi <= 2) {
2821      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2822                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2823                                   &Mask1[0], Mask1.size()));
2824      for (unsigned i = 0; i != NumElems; ++i) {
2825        if (Locs[i].first == -1)
2826          continue;
2827        else {
2828          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
2829          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
2830          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
2831        }
2832      }
2833
2834      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
2835                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2836                                     &Mask2[0], Mask2.size()));
2837    }
2838
2839    // Break it into (shuffle shuffle_hi, shuffle_lo).
2840    Locs.clear();
2841    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2842    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
2843    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
2844    unsigned MaskIdx = 0;
2845    unsigned LoIdx = 0;
2846    unsigned HiIdx = NumElems/2;
2847    for (unsigned i = 0; i != NumElems; ++i) {
2848      if (i == NumElems/2) {
2849        MaskPtr = &HiMask;
2850        MaskIdx = 1;
2851        LoIdx = 0;
2852        HiIdx = NumElems/2;
2853      }
2854      SDOperand Elt = PermMask.getOperand(i);
2855      if (Elt.getOpcode() == ISD::UNDEF) {
2856        Locs[i] = std::make_pair(-1, -1);
2857      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
2858        Locs[i] = std::make_pair(MaskIdx, LoIdx);
2859        (*MaskPtr)[LoIdx] = Elt;
2860        LoIdx++;
2861      } else {
2862        Locs[i] = std::make_pair(MaskIdx, HiIdx);
2863        (*MaskPtr)[HiIdx] = Elt;
2864        HiIdx++;
2865      }
2866    }
2867
2868    SDOperand LoShuffle =
2869      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2870                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2871                              &LoMask[0], LoMask.size()));
2872    SDOperand HiShuffle =
2873      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
2874                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2875                              &HiMask[0], HiMask.size()));
2876    SmallVector<SDOperand, 8> MaskOps;
2877    for (unsigned i = 0; i != NumElems; ++i) {
2878      if (Locs[i].first == -1) {
2879        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
2880      } else {
2881        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
2882        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
2883      }
2884    }
2885    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
2886                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2887                                   &MaskOps[0], MaskOps.size()));
2888  }
2889
2890  return SDOperand();
2891}
2892
2893SDOperand
2894X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2895  if (!isa<ConstantSDNode>(Op.getOperand(1)))
2896    return SDOperand();
2897
2898  MVT::ValueType VT = Op.getValueType();
2899  // TODO: handle v16i8.
2900  if (MVT::getSizeInBits(VT) == 16) {
2901    // Transform it so it match pextrw which produces a 32-bit result.
2902    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
2903    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
2904                                    Op.getOperand(0), Op.getOperand(1));
2905    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
2906                                    DAG.getValueType(VT));
2907    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
2908  } else if (MVT::getSizeInBits(VT) == 32) {
2909    SDOperand Vec = Op.getOperand(0);
2910    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2911    if (Idx == 0)
2912      return Op;
2913    // SHUFPS the element to the lowest double word, then movss.
2914    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2915    SmallVector<SDOperand, 8> IdxVec;
2916    IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
2917    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2918    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2919    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2920    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2921                                 &IdxVec[0], IdxVec.size());
2922    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2923                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2924    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2925                       DAG.getConstant(0, getPointerTy()));
2926  } else if (MVT::getSizeInBits(VT) == 64) {
2927    SDOperand Vec = Op.getOperand(0);
2928    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
2929    if (Idx == 0)
2930      return Op;
2931
2932    // UNPCKHPD the element to the lowest double word, then movsd.
2933    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
2934    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
2935    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2936    SmallVector<SDOperand, 8> IdxVec;
2937    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
2938    IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
2939    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2940                                 &IdxVec[0], IdxVec.size());
2941    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
2942                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
2943    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
2944                       DAG.getConstant(0, getPointerTy()));
2945  }
2946
2947  return SDOperand();
2948}
2949
2950SDOperand
2951X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
2952  // Transform it so it match pinsrw which expects a 16-bit value in a GR32
2953  // as its second argument.
2954  MVT::ValueType VT = Op.getValueType();
2955  MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
2956  SDOperand N0 = Op.getOperand(0);
2957  SDOperand N1 = Op.getOperand(1);
2958  SDOperand N2 = Op.getOperand(2);
2959  if (MVT::getSizeInBits(BaseVT) == 16) {
2960    if (N1.getValueType() != MVT::i32)
2961      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
2962    if (N2.getValueType() != MVT::i32)
2963      N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
2964    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
2965  } else if (MVT::getSizeInBits(BaseVT) == 32) {
2966    unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
2967    if (Idx == 0) {
2968      // Use a movss.
2969      N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
2970      MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2971      MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2972      SmallVector<SDOperand, 8> MaskVec;
2973      MaskVec.push_back(DAG.getConstant(4, BaseVT));
2974      for (unsigned i = 1; i <= 3; ++i)
2975        MaskVec.push_back(DAG.getConstant(i, BaseVT));
2976      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
2977                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2978                                     &MaskVec[0], MaskVec.size()));
2979    } else {
2980      // Use two pinsrw instructions to insert a 32 bit value.
2981      Idx <<= 1;
2982      if (MVT::isFloatingPoint(N1.getValueType())) {
2983        if (ISD::isNON_EXTLoad(N1.Val)) {
2984          // Just load directly from f32mem to GR32.
2985          LoadSDNode *LD = cast<LoadSDNode>(N1);
2986          N1 = DAG.getLoad(MVT::i32, LD->getChain(), LD->getBasePtr(),
2987                           LD->getSrcValue(), LD->getSrcValueOffset());
2988        } else {
2989          N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
2990          N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
2991          N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
2992                           DAG.getConstant(0, getPointerTy()));
2993        }
2994      }
2995      N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
2996      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
2997                       DAG.getConstant(Idx, getPointerTy()));
2998      N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
2999      N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3000                       DAG.getConstant(Idx+1, getPointerTy()));
3001      return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3002    }
3003  }
3004
3005  return SDOperand();
3006}
3007
3008SDOperand
3009X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3010  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3011  return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3012}
3013
3014// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3015// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3016// one of the above mentioned nodes. It has to be wrapped because otherwise
3017// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3018// be used to form addressing mode. These wrapped nodes will be selected
3019// into MOV32ri.
3020SDOperand
3021X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3022  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3023  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3024                                               getPointerTy(),
3025                                               CP->getAlignment());
3026  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3027  // With PIC, the address is actually $g + Offset.
3028  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3029      !Subtarget->isPICStyleRIPRel()) {
3030    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3031                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3032                         Result);
3033  }
3034
3035  return Result;
3036}
3037
3038SDOperand
3039X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3040  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3041  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3042  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3043  // With PIC, the address is actually $g + Offset.
3044  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3045      !Subtarget->isPICStyleRIPRel()) {
3046    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3047                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3048                         Result);
3049  }
3050
3051  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3052  // load the value at address GV, not the value of GV itself. This means that
3053  // the GlobalAddress must be in the base or index register of the address, not
3054  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3055  // The same applies for external symbols during PIC codegen
3056  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3057    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3058
3059  return Result;
3060}
3061
3062// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3063static SDOperand
3064LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3065                              const MVT::ValueType PtrVT) {
3066  SDOperand InFlag;
3067  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3068                                     DAG.getNode(X86ISD::GlobalBaseReg,
3069                                                 PtrVT), InFlag);
3070  InFlag = Chain.getValue(1);
3071
3072  // emit leal symbol@TLSGD(,%ebx,1), %eax
3073  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3074  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3075                                             GA->getValueType(0),
3076                                             GA->getOffset());
3077  SDOperand Ops[] = { Chain,  TGA, InFlag };
3078  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3079  InFlag = Result.getValue(2);
3080  Chain = Result.getValue(1);
3081
3082  // call ___tls_get_addr. This function receives its argument in
3083  // the register EAX.
3084  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3085  InFlag = Chain.getValue(1);
3086
3087  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3088  SDOperand Ops1[] = { Chain,
3089                      DAG.getTargetExternalSymbol("___tls_get_addr",
3090                                                  PtrVT),
3091                      DAG.getRegister(X86::EAX, PtrVT),
3092                      DAG.getRegister(X86::EBX, PtrVT),
3093                      InFlag };
3094  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3095  InFlag = Chain.getValue(1);
3096
3097  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3098}
3099
3100// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3101// "local exec" model.
3102static SDOperand
3103LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3104                         const MVT::ValueType PtrVT) {
3105  // Get the Thread Pointer
3106  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3107  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3108  // exec)
3109  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3110                                             GA->getValueType(0),
3111                                             GA->getOffset());
3112  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3113
3114  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3115    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3116
3117  // The address of the thread local variable is the add of the thread
3118  // pointer with the offset of the variable.
3119  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3120}
3121
3122SDOperand
3123X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3124  // TODO: implement the "local dynamic" model
3125  // TODO: implement the "initial exec"model for pic executables
3126  assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3127         "TLS not implemented for non-ELF and 64-bit targets");
3128  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3129  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3130  // otherwise use the "Local Exec"TLS Model
3131  if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3132    return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3133  else
3134    return LowerToTLSExecModel(GA, DAG, getPointerTy());
3135}
3136
3137SDOperand
3138X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3139  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3140  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3141  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3142  // With PIC, the address is actually $g + Offset.
3143  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3144      !Subtarget->isPICStyleRIPRel()) {
3145    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3146                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3147                         Result);
3148  }
3149
3150  return Result;
3151}
3152
3153SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3154  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3155  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3156  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3157  // With PIC, the address is actually $g + Offset.
3158  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3159      !Subtarget->isPICStyleRIPRel()) {
3160    Result = DAG.getNode(ISD::ADD, getPointerTy(),
3161                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3162                         Result);
3163  }
3164
3165  return Result;
3166}
3167
3168SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
3169    assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3170           "Not an i64 shift!");
3171    bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3172    SDOperand ShOpLo = Op.getOperand(0);
3173    SDOperand ShOpHi = Op.getOperand(1);
3174    SDOperand ShAmt  = Op.getOperand(2);
3175    SDOperand Tmp1 = isSRA ?
3176      DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3177      DAG.getConstant(0, MVT::i32);
3178
3179    SDOperand Tmp2, Tmp3;
3180    if (Op.getOpcode() == ISD::SHL_PARTS) {
3181      Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3182      Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3183    } else {
3184      Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3185      Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3186    }
3187
3188    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3189    SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3190                                    DAG.getConstant(32, MVT::i8));
3191    SDOperand COps[]={DAG.getEntryNode(), AndNode, DAG.getConstant(0, MVT::i8)};
3192    SDOperand InFlag = DAG.getNode(X86ISD::CMP, VTs, 2, COps, 3).getValue(1);
3193
3194    SDOperand Hi, Lo;
3195    SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3196
3197    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3198    SmallVector<SDOperand, 4> Ops;
3199    if (Op.getOpcode() == ISD::SHL_PARTS) {
3200      Ops.push_back(Tmp2);
3201      Ops.push_back(Tmp3);
3202      Ops.push_back(CC);
3203      Ops.push_back(InFlag);
3204      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3205      InFlag = Hi.getValue(1);
3206
3207      Ops.clear();
3208      Ops.push_back(Tmp3);
3209      Ops.push_back(Tmp1);
3210      Ops.push_back(CC);
3211      Ops.push_back(InFlag);
3212      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3213    } else {
3214      Ops.push_back(Tmp2);
3215      Ops.push_back(Tmp3);
3216      Ops.push_back(CC);
3217      Ops.push_back(InFlag);
3218      Lo = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3219      InFlag = Lo.getValue(1);
3220
3221      Ops.clear();
3222      Ops.push_back(Tmp3);
3223      Ops.push_back(Tmp1);
3224      Ops.push_back(CC);
3225      Ops.push_back(InFlag);
3226      Hi = DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3227    }
3228
3229    VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3230    Ops.clear();
3231    Ops.push_back(Lo);
3232    Ops.push_back(Hi);
3233    return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
3234}
3235
3236SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3237  assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3238         Op.getOperand(0).getValueType() >= MVT::i16 &&
3239         "Unknown SINT_TO_FP to lower!");
3240
3241  SDOperand Result;
3242  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3243  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3244  MachineFunction &MF = DAG.getMachineFunction();
3245  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3246  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3247  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3248                                 StackSlot, NULL, 0);
3249
3250  // Build the FILD
3251  SDVTList Tys;
3252  if (X86ScalarSSE)
3253    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3254  else
3255    Tys = DAG.getVTList(MVT::f64, MVT::Other);
3256  SmallVector<SDOperand, 8> Ops;
3257  Ops.push_back(Chain);
3258  Ops.push_back(StackSlot);
3259  Ops.push_back(DAG.getValueType(SrcVT));
3260  Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
3261                       Tys, &Ops[0], Ops.size());
3262
3263  if (X86ScalarSSE) {
3264    Chain = Result.getValue(1);
3265    SDOperand InFlag = Result.getValue(2);
3266
3267    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3268    // shouldn't be necessary except that RFP cannot be live across
3269    // multiple blocks. When stackifier is fixed, they can be uncoupled.
3270    MachineFunction &MF = DAG.getMachineFunction();
3271    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3272    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3273    Tys = DAG.getVTList(MVT::Other);
3274    SmallVector<SDOperand, 8> Ops;
3275    Ops.push_back(Chain);
3276    Ops.push_back(Result);
3277    Ops.push_back(StackSlot);
3278    Ops.push_back(DAG.getValueType(Op.getValueType()));
3279    Ops.push_back(InFlag);
3280    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3281    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3282  }
3283
3284  return Result;
3285}
3286
3287SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3288  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3289         "Unknown FP_TO_SINT to lower!");
3290  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3291  // stack slot.
3292  MachineFunction &MF = DAG.getMachineFunction();
3293  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3294  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3295  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3296
3297  unsigned Opc;
3298  switch (Op.getValueType()) {
3299    default: assert(0 && "Invalid FP_TO_SINT to lower!");
3300    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3301    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3302    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3303  }
3304
3305  SDOperand Chain = DAG.getEntryNode();
3306  SDOperand Value = Op.getOperand(0);
3307  if (X86ScalarSSE) {
3308    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3309    Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3310    SDVTList Tys = DAG.getVTList(MVT::f64, MVT::Other);
3311    SDOperand Ops[] = {
3312      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3313    };
3314    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3315    Chain = Value.getValue(1);
3316    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3317    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3318  }
3319
3320  // Build the FP_TO_INT*_IN_MEM
3321  SDOperand Ops[] = { Chain, Value, StackSlot };
3322  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3323
3324  // Load the result.
3325  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3326}
3327
3328SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3329  MVT::ValueType VT = Op.getValueType();
3330  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3331  std::vector<Constant*> CV;
3332  if (VT == MVT::f64) {
3333    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63))));
3334    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3335  } else {
3336    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31))));
3337    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3338    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3339    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3340  }
3341  Constant *CS = ConstantStruct::get(CV);
3342  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3343  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3344  SmallVector<SDOperand, 3> Ops;
3345  Ops.push_back(DAG.getEntryNode());
3346  Ops.push_back(CPIdx);
3347  Ops.push_back(DAG.getSrcValue(NULL));
3348  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3349  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3350}
3351
3352SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
3353  MVT::ValueType VT = Op.getValueType();
3354  const Type *OpNTy =  MVT::getTypeForValueType(VT);
3355  std::vector<Constant*> CV;
3356  if (VT == MVT::f64) {
3357    CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63)));
3358    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3359  } else {
3360    CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31)));
3361    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3362    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3363    CV.push_back(ConstantFP::get(OpNTy, 0.0));
3364  }
3365  Constant *CS = ConstantStruct::get(CV);
3366  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3367  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
3368  SmallVector<SDOperand, 3> Ops;
3369  Ops.push_back(DAG.getEntryNode());
3370  Ops.push_back(CPIdx);
3371  Ops.push_back(DAG.getSrcValue(NULL));
3372  SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3373  return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
3374}
3375
3376SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
3377  SDOperand Op0 = Op.getOperand(0);
3378  SDOperand Op1 = Op.getOperand(1);
3379  MVT::ValueType VT = Op.getValueType();
3380  MVT::ValueType SrcVT = Op1.getValueType();
3381  const Type *SrcTy =  MVT::getTypeForValueType(SrcVT);
3382
3383  // If second operand is smaller, extend it first.
3384  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
3385    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
3386    SrcVT = VT;
3387  }
3388
3389  // First get the sign bit of second operand.
3390  std::vector<Constant*> CV;
3391  if (SrcVT == MVT::f64) {
3392    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(1ULL << 63)));
3393    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3394  } else {
3395    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(1U << 31)));
3396    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3397    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3398    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3399  }
3400  Constant *CS = ConstantStruct::get(CV);
3401  SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3402  SDVTList Tys = DAG.getVTList(SrcVT, MVT::Other);
3403  SmallVector<SDOperand, 3> Ops;
3404  Ops.push_back(DAG.getEntryNode());
3405  Ops.push_back(CPIdx);
3406  Ops.push_back(DAG.getSrcValue(NULL));
3407  SDOperand Mask1 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3408  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
3409
3410  // Shift sign bit right or left if the two operands have different types.
3411  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
3412    // Op0 is MVT::f32, Op1 is MVT::f64.
3413    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
3414    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
3415                          DAG.getConstant(32, MVT::i32));
3416    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
3417    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
3418                          DAG.getConstant(0, getPointerTy()));
3419  }
3420
3421  // Clear first operand sign bit.
3422  CV.clear();
3423  if (VT == MVT::f64) {
3424    CV.push_back(ConstantFP::get(SrcTy, BitsToDouble(~(1ULL << 63))));
3425    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3426  } else {
3427    CV.push_back(ConstantFP::get(SrcTy, BitsToFloat(~(1U << 31))));
3428    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3429    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3430    CV.push_back(ConstantFP::get(SrcTy, 0.0));
3431  }
3432  CS = ConstantStruct::get(CV);
3433  CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4);
3434  Tys = DAG.getVTList(VT, MVT::Other);
3435  Ops.clear();
3436  Ops.push_back(DAG.getEntryNode());
3437  Ops.push_back(CPIdx);
3438  Ops.push_back(DAG.getSrcValue(NULL));
3439  SDOperand Mask2 = DAG.getNode(X86ISD::LOAD_PACK, Tys, &Ops[0], Ops.size());
3440  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
3441
3442  // Or the value with the sign bit.
3443  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
3444}
3445
3446SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG,
3447                                        SDOperand Chain) {
3448  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
3449  SDOperand Cond;
3450  SDOperand Op0 = Op.getOperand(0);
3451  SDOperand Op1 = Op.getOperand(1);
3452  SDOperand CC = Op.getOperand(2);
3453  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
3454  const MVT::ValueType *VTs1 = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3455  const MVT::ValueType *VTs2 = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
3456  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
3457  unsigned X86CC;
3458
3459  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
3460                     Op0, Op1, DAG)) {
3461    SDOperand Ops1[] = { Chain, Op0, Op1 };
3462    Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, Ops1, 3).getValue(1);
3463    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
3464    return DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3465  }
3466
3467  assert(isFP && "Illegal integer SetCC!");
3468
3469  SDOperand COps[] = { Chain, Op0, Op1 };
3470  Cond = DAG.getNode(X86ISD::CMP, VTs1, 2, COps, 3).getValue(1);
3471
3472  switch (SetCCOpcode) {
3473  default: assert(false && "Illegal floating point SetCC!");
3474  case ISD::SETOEQ: {  // !PF & ZF
3475    SDOperand Ops1[] = { DAG.getConstant(X86::COND_NP, MVT::i8), Cond };
3476    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3477    SDOperand Ops2[] = { DAG.getConstant(X86::COND_E, MVT::i8),
3478                         Tmp1.getValue(1) };
3479    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3480    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
3481  }
3482  case ISD::SETUNE: {  // PF | !ZF
3483    SDOperand Ops1[] = { DAG.getConstant(X86::COND_P, MVT::i8), Cond };
3484    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops1, 2);
3485    SDOperand Ops2[] = { DAG.getConstant(X86::COND_NE, MVT::i8),
3486                         Tmp1.getValue(1) };
3487    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, VTs2, 2, Ops2, 2);
3488    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
3489  }
3490  }
3491}
3492
3493SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
3494  bool addTest = true;
3495  SDOperand Chain = DAG.getEntryNode();
3496  SDOperand Cond  = Op.getOperand(0);
3497  SDOperand CC;
3498  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3499
3500  if (Cond.getOpcode() == ISD::SETCC)
3501    Cond = LowerSETCC(Cond, DAG, Chain);
3502
3503  if (Cond.getOpcode() == X86ISD::SETCC) {
3504    CC = Cond.getOperand(0);
3505
3506    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3507    // (since flag operand cannot be shared). Use it as the condition setting
3508    // operand in place of the X86ISD::SETCC.
3509    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3510    // to use a test instead of duplicating the X86ISD::CMP (for register
3511    // pressure reason)?
3512    SDOperand Cmp = Cond.getOperand(1);
3513    unsigned Opc = Cmp.getOpcode();
3514    bool IllegalFPCMov = !X86ScalarSSE &&
3515      MVT::isFloatingPoint(Op.getValueType()) &&
3516      !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
3517    if ((Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) &&
3518        !IllegalFPCMov) {
3519      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3520      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3521      addTest = false;
3522    }
3523  }
3524
3525  if (addTest) {
3526    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3527    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3528    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3529  }
3530
3531  VTs = DAG.getNodeValueTypes(Op.getValueType(), MVT::Flag);
3532  SmallVector<SDOperand, 4> Ops;
3533  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
3534  // condition is true.
3535  Ops.push_back(Op.getOperand(2));
3536  Ops.push_back(Op.getOperand(1));
3537  Ops.push_back(CC);
3538  Ops.push_back(Cond.getValue(1));
3539  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
3540}
3541
3542SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
3543  bool addTest = true;
3544  SDOperand Chain = Op.getOperand(0);
3545  SDOperand Cond  = Op.getOperand(1);
3546  SDOperand Dest  = Op.getOperand(2);
3547  SDOperand CC;
3548  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3549
3550  if (Cond.getOpcode() == ISD::SETCC)
3551    Cond = LowerSETCC(Cond, DAG, Chain);
3552
3553  if (Cond.getOpcode() == X86ISD::SETCC) {
3554    CC = Cond.getOperand(0);
3555
3556    // If condition flag is set by a X86ISD::CMP, then make a copy of it
3557    // (since flag operand cannot be shared). Use it as the condition setting
3558    // operand in place of the X86ISD::SETCC.
3559    // If the X86ISD::SETCC has more than one use, then perhaps it's better
3560    // to use a test instead of duplicating the X86ISD::CMP (for register
3561    // pressure reason)?
3562    SDOperand Cmp = Cond.getOperand(1);
3563    unsigned Opc = Cmp.getOpcode();
3564    if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) {
3565      SDOperand Ops[] = { Chain, Cmp.getOperand(1), Cmp.getOperand(2) };
3566      Cond = DAG.getNode(Opc, VTs, 2, Ops, 3);
3567      addTest = false;
3568    }
3569  }
3570
3571  if (addTest) {
3572    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3573    SDOperand Ops[] = { Chain, Cond, DAG.getConstant(0, MVT::i8) };
3574    Cond = DAG.getNode(X86ISD::CMP, VTs, 2, Ops, 3);
3575  }
3576  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
3577                     Cond, Op.getOperand(2), CC, Cond.getValue(1));
3578}
3579
3580SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
3581  unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3582
3583  if (Subtarget->is64Bit())
3584    return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
3585  else
3586    switch (CallingConv) {
3587    default:
3588      assert(0 && "Unsupported calling convention");
3589    case CallingConv::Fast:
3590      // TODO: Implement fastcc
3591      // Falls through
3592    case CallingConv::C:
3593    case CallingConv::X86_StdCall:
3594      return LowerCCCCallTo(Op, DAG, CallingConv);
3595    case CallingConv::X86_FastCall:
3596      return LowerFastCCCallTo(Op, DAG, CallingConv);
3597    }
3598}
3599
3600
3601// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
3602// Calls to _alloca is needed to probe the stack when allocating more than 4k
3603// bytes in one go. Touching the stack at 4K increments is necessary to ensure
3604// that the guard pages used by the OS virtual memory manager are allocated in
3605// correct sequence.
3606SDOperand X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
3607                                                     SelectionDAG &DAG) {
3608  assert(Subtarget->isTargetCygMing() &&
3609         "This should be used only on Cygwin/Mingw targets");
3610
3611  // Get the inputs.
3612  SDOperand Chain = Op.getOperand(0);
3613  SDOperand Size  = Op.getOperand(1);
3614  // FIXME: Ensure alignment here
3615
3616  TargetLowering::ArgListTy Args;
3617  TargetLowering::ArgListEntry Entry;
3618  MVT::ValueType IntPtr = getPointerTy();
3619  MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
3620  const Type *IntPtrTy = getTargetData()->getIntPtrType();
3621
3622  Entry.Node    = Size;
3623  Entry.Ty      = IntPtrTy;
3624  Entry.isInReg = true; // Should pass in EAX
3625  Args.push_back(Entry);
3626  std::pair<SDOperand, SDOperand> CallResult =
3627    LowerCallTo(Chain, IntPtrTy, false, false, CallingConv::C, false,
3628                DAG.getExternalSymbol("_alloca", IntPtr), Args, DAG);
3629
3630  SDOperand SP = DAG.getCopyFromReg(CallResult.second, X86StackPtr, SPTy);
3631
3632  std::vector<MVT::ValueType> Tys;
3633  Tys.push_back(SPTy);
3634  Tys.push_back(MVT::Other);
3635  SDOperand Ops[2] = { SP, CallResult.second };
3636  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
3637}
3638
3639SDOperand
3640X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
3641  MachineFunction &MF = DAG.getMachineFunction();
3642  const Function* Fn = MF.getFunction();
3643  if (Fn->hasExternalLinkage() &&
3644      Subtarget->isTargetCygMing() &&
3645      Fn->getName() == "main")
3646    MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
3647
3648  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3649  if (Subtarget->is64Bit())
3650    return LowerX86_64CCCArguments(Op, DAG);
3651  else
3652    switch(CC) {
3653    default:
3654      assert(0 && "Unsupported calling convention");
3655    case CallingConv::Fast:
3656      // TODO: implement fastcc.
3657
3658      // Falls through
3659    case CallingConv::C:
3660      return LowerCCCArguments(Op, DAG);
3661    case CallingConv::X86_StdCall:
3662      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
3663      return LowerCCCArguments(Op, DAG, true);
3664    case CallingConv::X86_FastCall:
3665      MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
3666      return LowerFastCCArguments(Op, DAG);
3667    }
3668}
3669
3670SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
3671  SDOperand InFlag(0, 0);
3672  SDOperand Chain = Op.getOperand(0);
3673  unsigned Align =
3674    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3675  if (Align == 0) Align = 1;
3676
3677  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3678  // If not DWORD aligned, call memset if size is less than the threshold.
3679  // It knows how to align to the right boundary first.
3680  if ((Align & 3) != 0 ||
3681      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3682    MVT::ValueType IntPtr = getPointerTy();
3683    const Type *IntPtrTy = getTargetData()->getIntPtrType();
3684    TargetLowering::ArgListTy Args;
3685    TargetLowering::ArgListEntry Entry;
3686    Entry.Node = Op.getOperand(1);
3687    Entry.Ty = IntPtrTy;
3688    Args.push_back(Entry);
3689    // Extend the unsigned i8 argument to be an int value for the call.
3690    Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
3691    Entry.Ty = IntPtrTy;
3692    Args.push_back(Entry);
3693    Entry.Node = Op.getOperand(3);
3694    Args.push_back(Entry);
3695    std::pair<SDOperand,SDOperand> CallResult =
3696      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3697                  DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
3698    return CallResult.second;
3699  }
3700
3701  MVT::ValueType AVT;
3702  SDOperand Count;
3703  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
3704  unsigned BytesLeft = 0;
3705  bool TwoRepStos = false;
3706  if (ValC) {
3707    unsigned ValReg;
3708    uint64_t Val = ValC->getValue() & 255;
3709
3710    // If the value is a constant, then we can potentially use larger sets.
3711    switch (Align & 3) {
3712      case 2:   // WORD aligned
3713        AVT = MVT::i16;
3714        ValReg = X86::AX;
3715        Val = (Val << 8) | Val;
3716        break;
3717      case 0:  // DWORD aligned
3718        AVT = MVT::i32;
3719        ValReg = X86::EAX;
3720        Val = (Val << 8)  | Val;
3721        Val = (Val << 16) | Val;
3722        if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) {  // QWORD aligned
3723          AVT = MVT::i64;
3724          ValReg = X86::RAX;
3725          Val = (Val << 32) | Val;
3726        }
3727        break;
3728      default:  // Byte aligned
3729        AVT = MVT::i8;
3730        ValReg = X86::AL;
3731        Count = Op.getOperand(3);
3732        break;
3733    }
3734
3735    if (AVT > MVT::i8) {
3736      if (I) {
3737        unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3738        Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3739        BytesLeft = I->getValue() % UBytes;
3740      } else {
3741        assert(AVT >= MVT::i32 &&
3742               "Do not use rep;stos if not at least DWORD aligned");
3743        Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3744                            Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3745        TwoRepStos = true;
3746      }
3747    }
3748
3749    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
3750                              InFlag);
3751    InFlag = Chain.getValue(1);
3752  } else {
3753    AVT = MVT::i8;
3754    Count  = Op.getOperand(3);
3755    Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
3756    InFlag = Chain.getValue(1);
3757  }
3758
3759  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3760                            Count, InFlag);
3761  InFlag = Chain.getValue(1);
3762  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3763                            Op.getOperand(1), InFlag);
3764  InFlag = Chain.getValue(1);
3765
3766  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3767  SmallVector<SDOperand, 8> Ops;
3768  Ops.push_back(Chain);
3769  Ops.push_back(DAG.getValueType(AVT));
3770  Ops.push_back(InFlag);
3771  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3772
3773  if (TwoRepStos) {
3774    InFlag = Chain.getValue(1);
3775    Count = Op.getOperand(3);
3776    MVT::ValueType CVT = Count.getValueType();
3777    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3778                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3779    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3780                              Left, InFlag);
3781    InFlag = Chain.getValue(1);
3782    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3783    Ops.clear();
3784    Ops.push_back(Chain);
3785    Ops.push_back(DAG.getValueType(MVT::i8));
3786    Ops.push_back(InFlag);
3787    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
3788  } else if (BytesLeft) {
3789    // Issue stores for the last 1 - 7 bytes.
3790    SDOperand Value;
3791    unsigned Val = ValC->getValue() & 255;
3792    unsigned Offset = I->getValue() - BytesLeft;
3793    SDOperand DstAddr = Op.getOperand(1);
3794    MVT::ValueType AddrVT = DstAddr.getValueType();
3795    if (BytesLeft >= 4) {
3796      Val = (Val << 8)  | Val;
3797      Val = (Val << 16) | Val;
3798      Value = DAG.getConstant(Val, MVT::i32);
3799      Chain = DAG.getStore(Chain, Value,
3800                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3801                                       DAG.getConstant(Offset, AddrVT)),
3802                           NULL, 0);
3803      BytesLeft -= 4;
3804      Offset += 4;
3805    }
3806    if (BytesLeft >= 2) {
3807      Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
3808      Chain = DAG.getStore(Chain, Value,
3809                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3810                                       DAG.getConstant(Offset, AddrVT)),
3811                           NULL, 0);
3812      BytesLeft -= 2;
3813      Offset += 2;
3814    }
3815    if (BytesLeft == 1) {
3816      Value = DAG.getConstant(Val, MVT::i8);
3817      Chain = DAG.getStore(Chain, Value,
3818                           DAG.getNode(ISD::ADD, AddrVT, DstAddr,
3819                                       DAG.getConstant(Offset, AddrVT)),
3820                           NULL, 0);
3821    }
3822  }
3823
3824  return Chain;
3825}
3826
3827SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
3828  SDOperand Chain = Op.getOperand(0);
3829  unsigned Align =
3830    (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
3831  if (Align == 0) Align = 1;
3832
3833  ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
3834  // If not DWORD aligned, call memcpy if size is less than the threshold.
3835  // It knows how to align to the right boundary first.
3836  if ((Align & 3) != 0 ||
3837      (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) {
3838    MVT::ValueType IntPtr = getPointerTy();
3839    TargetLowering::ArgListTy Args;
3840    TargetLowering::ArgListEntry Entry;
3841    Entry.Ty = getTargetData()->getIntPtrType();
3842    Entry.Node = Op.getOperand(1); Args.push_back(Entry);
3843    Entry.Node = Op.getOperand(2); Args.push_back(Entry);
3844    Entry.Node = Op.getOperand(3); Args.push_back(Entry);
3845    std::pair<SDOperand,SDOperand> CallResult =
3846      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
3847                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
3848    return CallResult.second;
3849  }
3850
3851  MVT::ValueType AVT;
3852  SDOperand Count;
3853  unsigned BytesLeft = 0;
3854  bool TwoRepMovs = false;
3855  switch (Align & 3) {
3856    case 2:   // WORD aligned
3857      AVT = MVT::i16;
3858      break;
3859    case 0:  // DWORD aligned
3860      AVT = MVT::i32;
3861      if (Subtarget->is64Bit() && ((Align & 0xF) == 0))  // QWORD aligned
3862        AVT = MVT::i64;
3863      break;
3864    default:  // Byte aligned
3865      AVT = MVT::i8;
3866      Count = Op.getOperand(3);
3867      break;
3868  }
3869
3870  if (AVT > MVT::i8) {
3871    if (I) {
3872      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
3873      Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
3874      BytesLeft = I->getValue() % UBytes;
3875    } else {
3876      assert(AVT >= MVT::i32 &&
3877             "Do not use rep;movs if not at least DWORD aligned");
3878      Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
3879                          Op.getOperand(3), DAG.getConstant(2, MVT::i8));
3880      TwoRepMovs = true;
3881    }
3882  }
3883
3884  SDOperand InFlag(0, 0);
3885  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
3886                            Count, InFlag);
3887  InFlag = Chain.getValue(1);
3888  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
3889                            Op.getOperand(1), InFlag);
3890  InFlag = Chain.getValue(1);
3891  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
3892                            Op.getOperand(2), InFlag);
3893  InFlag = Chain.getValue(1);
3894
3895  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3896  SmallVector<SDOperand, 8> Ops;
3897  Ops.push_back(Chain);
3898  Ops.push_back(DAG.getValueType(AVT));
3899  Ops.push_back(InFlag);
3900  Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3901
3902  if (TwoRepMovs) {
3903    InFlag = Chain.getValue(1);
3904    Count = Op.getOperand(3);
3905    MVT::ValueType CVT = Count.getValueType();
3906    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
3907                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
3908    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
3909                              Left, InFlag);
3910    InFlag = Chain.getValue(1);
3911    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3912    Ops.clear();
3913    Ops.push_back(Chain);
3914    Ops.push_back(DAG.getValueType(MVT::i8));
3915    Ops.push_back(InFlag);
3916    Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
3917  } else if (BytesLeft) {
3918    // Issue loads and stores for the last 1 - 7 bytes.
3919    unsigned Offset = I->getValue() - BytesLeft;
3920    SDOperand DstAddr = Op.getOperand(1);
3921    MVT::ValueType DstVT = DstAddr.getValueType();
3922    SDOperand SrcAddr = Op.getOperand(2);
3923    MVT::ValueType SrcVT = SrcAddr.getValueType();
3924    SDOperand Value;
3925    if (BytesLeft >= 4) {
3926      Value = DAG.getLoad(MVT::i32, Chain,
3927                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3928                                      DAG.getConstant(Offset, SrcVT)),
3929                          NULL, 0);
3930      Chain = Value.getValue(1);
3931      Chain = DAG.getStore(Chain, Value,
3932                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3933                                       DAG.getConstant(Offset, DstVT)),
3934                           NULL, 0);
3935      BytesLeft -= 4;
3936      Offset += 4;
3937    }
3938    if (BytesLeft >= 2) {
3939      Value = DAG.getLoad(MVT::i16, Chain,
3940                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3941                                      DAG.getConstant(Offset, SrcVT)),
3942                          NULL, 0);
3943      Chain = Value.getValue(1);
3944      Chain = DAG.getStore(Chain, Value,
3945                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3946                                       DAG.getConstant(Offset, DstVT)),
3947                           NULL, 0);
3948      BytesLeft -= 2;
3949      Offset += 2;
3950    }
3951
3952    if (BytesLeft == 1) {
3953      Value = DAG.getLoad(MVT::i8, Chain,
3954                          DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
3955                                      DAG.getConstant(Offset, SrcVT)),
3956                          NULL, 0);
3957      Chain = Value.getValue(1);
3958      Chain = DAG.getStore(Chain, Value,
3959                           DAG.getNode(ISD::ADD, DstVT, DstAddr,
3960                                       DAG.getConstant(Offset, DstVT)),
3961                           NULL, 0);
3962    }
3963  }
3964
3965  return Chain;
3966}
3967
3968SDOperand
3969X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
3970  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
3971  SDOperand TheOp = Op.getOperand(0);
3972  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
3973  if (Subtarget->is64Bit()) {
3974    SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
3975    SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
3976                                         MVT::i64, Copy1.getValue(2));
3977    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
3978                                DAG.getConstant(32, MVT::i8));
3979    SDOperand Ops[] = {
3980      DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
3981    };
3982
3983    Tys = DAG.getVTList(MVT::i64, MVT::Other);
3984    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
3985  }
3986
3987  SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
3988  SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
3989                                       MVT::i32, Copy1.getValue(2));
3990  SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
3991  Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
3992  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
3993}
3994
3995SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
3996  SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
3997
3998  if (!Subtarget->is64Bit()) {
3999    // vastart just stores the address of the VarArgsFrameIndex slot into the
4000    // memory location argument.
4001    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4002    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4003                        SV->getOffset());
4004  }
4005
4006  // __va_list_tag:
4007  //   gp_offset         (0 - 6 * 8)
4008  //   fp_offset         (48 - 48 + 8 * 16)
4009  //   overflow_arg_area (point to parameters coming in memory).
4010  //   reg_save_area
4011  SmallVector<SDOperand, 8> MemOps;
4012  SDOperand FIN = Op.getOperand(1);
4013  // Store gp_offset
4014  SDOperand Store = DAG.getStore(Op.getOperand(0),
4015                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4016                                 FIN, SV->getValue(), SV->getOffset());
4017  MemOps.push_back(Store);
4018
4019  // Store fp_offset
4020  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4021                    DAG.getConstant(4, getPointerTy()));
4022  Store = DAG.getStore(Op.getOperand(0),
4023                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4024                       FIN, SV->getValue(), SV->getOffset());
4025  MemOps.push_back(Store);
4026
4027  // Store ptr to overflow_arg_area
4028  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4029                    DAG.getConstant(4, getPointerTy()));
4030  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4031  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4032                       SV->getOffset());
4033  MemOps.push_back(Store);
4034
4035  // Store ptr to reg_save_area.
4036  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4037                    DAG.getConstant(8, getPointerTy()));
4038  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4039  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4040                       SV->getOffset());
4041  MemOps.push_back(Store);
4042  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4043}
4044
4045SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4046  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4047  SDOperand Chain = Op.getOperand(0);
4048  SDOperand DstPtr = Op.getOperand(1);
4049  SDOperand SrcPtr = Op.getOperand(2);
4050  SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4051  SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4052
4053  SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4054                       SrcSV->getValue(), SrcSV->getOffset());
4055  Chain = SrcPtr.getValue(1);
4056  for (unsigned i = 0; i < 3; ++i) {
4057    SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4058                                SrcSV->getValue(), SrcSV->getOffset());
4059    Chain = Val.getValue(1);
4060    Chain = DAG.getStore(Chain, Val, DstPtr,
4061                         DstSV->getValue(), DstSV->getOffset());
4062    if (i == 2)
4063      break;
4064    SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4065                         DAG.getConstant(8, getPointerTy()));
4066    DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4067                         DAG.getConstant(8, getPointerTy()));
4068  }
4069  return Chain;
4070}
4071
4072SDOperand
4073X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4074  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4075  switch (IntNo) {
4076  default: return SDOperand();    // Don't custom lower most intrinsics.
4077    // Comparison intrinsics.
4078  case Intrinsic::x86_sse_comieq_ss:
4079  case Intrinsic::x86_sse_comilt_ss:
4080  case Intrinsic::x86_sse_comile_ss:
4081  case Intrinsic::x86_sse_comigt_ss:
4082  case Intrinsic::x86_sse_comige_ss:
4083  case Intrinsic::x86_sse_comineq_ss:
4084  case Intrinsic::x86_sse_ucomieq_ss:
4085  case Intrinsic::x86_sse_ucomilt_ss:
4086  case Intrinsic::x86_sse_ucomile_ss:
4087  case Intrinsic::x86_sse_ucomigt_ss:
4088  case Intrinsic::x86_sse_ucomige_ss:
4089  case Intrinsic::x86_sse_ucomineq_ss:
4090  case Intrinsic::x86_sse2_comieq_sd:
4091  case Intrinsic::x86_sse2_comilt_sd:
4092  case Intrinsic::x86_sse2_comile_sd:
4093  case Intrinsic::x86_sse2_comigt_sd:
4094  case Intrinsic::x86_sse2_comige_sd:
4095  case Intrinsic::x86_sse2_comineq_sd:
4096  case Intrinsic::x86_sse2_ucomieq_sd:
4097  case Intrinsic::x86_sse2_ucomilt_sd:
4098  case Intrinsic::x86_sse2_ucomile_sd:
4099  case Intrinsic::x86_sse2_ucomigt_sd:
4100  case Intrinsic::x86_sse2_ucomige_sd:
4101  case Intrinsic::x86_sse2_ucomineq_sd: {
4102    unsigned Opc = 0;
4103    ISD::CondCode CC = ISD::SETCC_INVALID;
4104    switch (IntNo) {
4105    default: break;
4106    case Intrinsic::x86_sse_comieq_ss:
4107    case Intrinsic::x86_sse2_comieq_sd:
4108      Opc = X86ISD::COMI;
4109      CC = ISD::SETEQ;
4110      break;
4111    case Intrinsic::x86_sse_comilt_ss:
4112    case Intrinsic::x86_sse2_comilt_sd:
4113      Opc = X86ISD::COMI;
4114      CC = ISD::SETLT;
4115      break;
4116    case Intrinsic::x86_sse_comile_ss:
4117    case Intrinsic::x86_sse2_comile_sd:
4118      Opc = X86ISD::COMI;
4119      CC = ISD::SETLE;
4120      break;
4121    case Intrinsic::x86_sse_comigt_ss:
4122    case Intrinsic::x86_sse2_comigt_sd:
4123      Opc = X86ISD::COMI;
4124      CC = ISD::SETGT;
4125      break;
4126    case Intrinsic::x86_sse_comige_ss:
4127    case Intrinsic::x86_sse2_comige_sd:
4128      Opc = X86ISD::COMI;
4129      CC = ISD::SETGE;
4130      break;
4131    case Intrinsic::x86_sse_comineq_ss:
4132    case Intrinsic::x86_sse2_comineq_sd:
4133      Opc = X86ISD::COMI;
4134      CC = ISD::SETNE;
4135      break;
4136    case Intrinsic::x86_sse_ucomieq_ss:
4137    case Intrinsic::x86_sse2_ucomieq_sd:
4138      Opc = X86ISD::UCOMI;
4139      CC = ISD::SETEQ;
4140      break;
4141    case Intrinsic::x86_sse_ucomilt_ss:
4142    case Intrinsic::x86_sse2_ucomilt_sd:
4143      Opc = X86ISD::UCOMI;
4144      CC = ISD::SETLT;
4145      break;
4146    case Intrinsic::x86_sse_ucomile_ss:
4147    case Intrinsic::x86_sse2_ucomile_sd:
4148      Opc = X86ISD::UCOMI;
4149      CC = ISD::SETLE;
4150      break;
4151    case Intrinsic::x86_sse_ucomigt_ss:
4152    case Intrinsic::x86_sse2_ucomigt_sd:
4153      Opc = X86ISD::UCOMI;
4154      CC = ISD::SETGT;
4155      break;
4156    case Intrinsic::x86_sse_ucomige_ss:
4157    case Intrinsic::x86_sse2_ucomige_sd:
4158      Opc = X86ISD::UCOMI;
4159      CC = ISD::SETGE;
4160      break;
4161    case Intrinsic::x86_sse_ucomineq_ss:
4162    case Intrinsic::x86_sse2_ucomineq_sd:
4163      Opc = X86ISD::UCOMI;
4164      CC = ISD::SETNE;
4165      break;
4166    }
4167
4168    unsigned X86CC;
4169    SDOperand LHS = Op.getOperand(1);
4170    SDOperand RHS = Op.getOperand(2);
4171    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4172
4173    const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4174    SDOperand Ops1[] = { DAG.getEntryNode(), LHS, RHS };
4175    SDOperand Cond = DAG.getNode(Opc, VTs, 2, Ops1, 3);
4176    VTs = DAG.getNodeValueTypes(MVT::i8, MVT::Flag);
4177    SDOperand Ops2[] = { DAG.getConstant(X86CC, MVT::i8), Cond };
4178    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, VTs, 2, Ops2, 2);
4179    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
4180  }
4181  }
4182}
4183
4184SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4185  // Depths > 0 not supported yet!
4186  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4187    return SDOperand();
4188
4189  // Just load the return address
4190  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4191  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4192}
4193
4194SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4195  // Depths > 0 not supported yet!
4196  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4197    return SDOperand();
4198
4199  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4200  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4201                     DAG.getConstant(4, getPointerTy()));
4202}
4203
4204/// LowerOperation - Provide custom lowering hooks for some operations.
4205///
4206SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4207  switch (Op.getOpcode()) {
4208  default: assert(0 && "Should not custom lower this!");
4209  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4210  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4211  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4212  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
4213  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4214  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4215  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4216  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
4217  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
4218  case ISD::SHL_PARTS:
4219  case ISD::SRA_PARTS:
4220  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
4221  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4222  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
4223  case ISD::FABS:               return LowerFABS(Op, DAG);
4224  case ISD::FNEG:               return LowerFNEG(Op, DAG);
4225  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
4226  case ISD::SETCC:              return LowerSETCC(Op, DAG, DAG.getEntryNode());
4227  case ISD::SELECT:             return LowerSELECT(Op, DAG);
4228  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
4229  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4230  case ISD::CALL:               return LowerCALL(Op, DAG);
4231  case ISD::RET:                return LowerRET(Op, DAG);
4232  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
4233  case ISD::MEMSET:             return LowerMEMSET(Op, DAG);
4234  case ISD::MEMCPY:             return LowerMEMCPY(Op, DAG);
4235  case ISD::READCYCLECOUNTER:   return LowerREADCYCLCECOUNTER(Op, DAG);
4236  case ISD::VASTART:            return LowerVASTART(Op, DAG);
4237  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
4238  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4239  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4240  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4241  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
4242  }
4243  return SDOperand();
4244}
4245
4246const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
4247  switch (Opcode) {
4248  default: return NULL;
4249  case X86ISD::SHLD:               return "X86ISD::SHLD";
4250  case X86ISD::SHRD:               return "X86ISD::SHRD";
4251  case X86ISD::FAND:               return "X86ISD::FAND";
4252  case X86ISD::FOR:                return "X86ISD::FOR";
4253  case X86ISD::FXOR:               return "X86ISD::FXOR";
4254  case X86ISD::FSRL:               return "X86ISD::FSRL";
4255  case X86ISD::FILD:               return "X86ISD::FILD";
4256  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
4257  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
4258  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
4259  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
4260  case X86ISD::FLD:                return "X86ISD::FLD";
4261  case X86ISD::FST:                return "X86ISD::FST";
4262  case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT";
4263  case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT";
4264  case X86ISD::CALL:               return "X86ISD::CALL";
4265  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
4266  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
4267  case X86ISD::CMP:                return "X86ISD::CMP";
4268  case X86ISD::COMI:               return "X86ISD::COMI";
4269  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
4270  case X86ISD::SETCC:              return "X86ISD::SETCC";
4271  case X86ISD::CMOV:               return "X86ISD::CMOV";
4272  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
4273  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
4274  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
4275  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
4276  case X86ISD::LOAD_PACK:          return "X86ISD::LOAD_PACK";
4277  case X86ISD::LOAD_UA:            return "X86ISD::LOAD_UA";
4278  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
4279  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
4280  case X86ISD::S2VEC:              return "X86ISD::S2VEC";
4281  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
4282  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
4283  case X86ISD::FMAX:               return "X86ISD::FMAX";
4284  case X86ISD::FMIN:               return "X86ISD::FMIN";
4285  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
4286  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
4287  }
4288}
4289
4290// isLegalAddressingMode - Return true if the addressing mode represented
4291// by AM is legal for this target, for a load/store of the specified type.
4292bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
4293                                              const Type *Ty) const {
4294  // X86 supports extremely general addressing modes.
4295
4296  // X86 allows a sign-extended 32-bit immediate field as a displacement.
4297  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
4298    return false;
4299
4300  if (AM.BaseGV) {
4301    // X86-64 only supports addr of globals in small code model.
4302    if (Subtarget->is64Bit() &&
4303        getTargetMachine().getCodeModel() != CodeModel::Small)
4304      return false;
4305
4306    // We can only fold this if we don't need a load either.
4307    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
4308      return false;
4309  }
4310
4311  switch (AM.Scale) {
4312  case 0:
4313  case 1:
4314  case 2:
4315  case 4:
4316  case 8:
4317    // These scales always work.
4318    break;
4319  case 3:
4320  case 5:
4321  case 9:
4322    // These scales are formed with basereg+scalereg.  Only accept if there is
4323    // no basereg yet.
4324    if (AM.HasBaseReg)
4325      return false;
4326    break;
4327  default:  // Other stuff never works.
4328    return false;
4329  }
4330
4331  return true;
4332}
4333
4334
4335/// isShuffleMaskLegal - Targets can use this to indicate that they only
4336/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
4337/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
4338/// are assumed to be legal.
4339bool
4340X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
4341  // Only do shuffles on 128-bit vector types for now.
4342  if (MVT::getSizeInBits(VT) == 64) return false;
4343  return (Mask.Val->getNumOperands() <= 4 ||
4344          isIdentityMask(Mask.Val) ||
4345          isIdentityMask(Mask.Val, true) ||
4346          isSplatMask(Mask.Val)  ||
4347          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
4348          X86::isUNPCKLMask(Mask.Val) ||
4349          X86::isUNPCKHMask(Mask.Val) ||
4350          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
4351          X86::isUNPCKH_v_undef_Mask(Mask.Val));
4352}
4353
4354bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
4355                                               MVT::ValueType EVT,
4356                                               SelectionDAG &DAG) const {
4357  unsigned NumElts = BVOps.size();
4358  // Only do shuffles on 128-bit vector types for now.
4359  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
4360  if (NumElts == 2) return true;
4361  if (NumElts == 4) {
4362    return (isMOVLMask(&BVOps[0], 4)  ||
4363            isCommutedMOVL(&BVOps[0], 4, true) ||
4364            isSHUFPMask(&BVOps[0], 4) ||
4365            isCommutedSHUFP(&BVOps[0], 4));
4366  }
4367  return false;
4368}
4369
4370//===----------------------------------------------------------------------===//
4371//                           X86 Scheduler Hooks
4372//===----------------------------------------------------------------------===//
4373
4374MachineBasicBlock *
4375X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
4376                                           MachineBasicBlock *BB) {
4377  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4378  switch (MI->getOpcode()) {
4379  default: assert(false && "Unexpected instr type to insert");
4380  case X86::CMOV_FR32:
4381  case X86::CMOV_FR64:
4382  case X86::CMOV_V4F32:
4383  case X86::CMOV_V2F64:
4384  case X86::CMOV_V2I64: {
4385    // To "insert" a SELECT_CC instruction, we actually have to insert the
4386    // diamond control-flow pattern.  The incoming instruction knows the
4387    // destination vreg to set, the condition code register to branch on, the
4388    // true/false values to select between, and a branch opcode to use.
4389    const BasicBlock *LLVM_BB = BB->getBasicBlock();
4390    ilist<MachineBasicBlock>::iterator It = BB;
4391    ++It;
4392
4393    //  thisMBB:
4394    //  ...
4395    //   TrueVal = ...
4396    //   cmpTY ccX, r1, r2
4397    //   bCC copy1MBB
4398    //   fallthrough --> copy0MBB
4399    MachineBasicBlock *thisMBB = BB;
4400    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
4401    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
4402    unsigned Opc =
4403      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
4404    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
4405    MachineFunction *F = BB->getParent();
4406    F->getBasicBlockList().insert(It, copy0MBB);
4407    F->getBasicBlockList().insert(It, sinkMBB);
4408    // Update machine-CFG edges by first adding all successors of the current
4409    // block to the new block which will contain the Phi node for the select.
4410    for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
4411        e = BB->succ_end(); i != e; ++i)
4412      sinkMBB->addSuccessor(*i);
4413    // Next, remove all successors of the current block, and add the true
4414    // and fallthrough blocks as its successors.
4415    while(!BB->succ_empty())
4416      BB->removeSuccessor(BB->succ_begin());
4417    BB->addSuccessor(copy0MBB);
4418    BB->addSuccessor(sinkMBB);
4419
4420    //  copy0MBB:
4421    //   %FalseValue = ...
4422    //   # fallthrough to sinkMBB
4423    BB = copy0MBB;
4424
4425    // Update machine-CFG edges
4426    BB->addSuccessor(sinkMBB);
4427
4428    //  sinkMBB:
4429    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4430    //  ...
4431    BB = sinkMBB;
4432    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
4433      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
4434      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4435
4436    delete MI;   // The pseudo instruction is gone now.
4437    return BB;
4438  }
4439
4440  case X86::FP_TO_INT16_IN_MEM:
4441  case X86::FP_TO_INT32_IN_MEM:
4442  case X86::FP_TO_INT64_IN_MEM: {
4443    // Change the floating point control register to use "round towards zero"
4444    // mode when truncating to an integer value.
4445    MachineFunction *F = BB->getParent();
4446    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
4447    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
4448
4449    // Load the old value of the high byte of the control word...
4450    unsigned OldCW =
4451      F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
4452    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
4453
4454    // Set the high part to be round to zero...
4455    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
4456      .addImm(0xC7F);
4457
4458    // Reload the modified control word now...
4459    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4460
4461    // Restore the memory image of control word to original value
4462    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
4463      .addReg(OldCW);
4464
4465    // Get the X86 opcode to use.
4466    unsigned Opc;
4467    switch (MI->getOpcode()) {
4468    default: assert(0 && "illegal opcode!");
4469    case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break;
4470    case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break;
4471    case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break;
4472    }
4473
4474    X86AddressMode AM;
4475    MachineOperand &Op = MI->getOperand(0);
4476    if (Op.isRegister()) {
4477      AM.BaseType = X86AddressMode::RegBase;
4478      AM.Base.Reg = Op.getReg();
4479    } else {
4480      AM.BaseType = X86AddressMode::FrameIndexBase;
4481      AM.Base.FrameIndex = Op.getFrameIndex();
4482    }
4483    Op = MI->getOperand(1);
4484    if (Op.isImmediate())
4485      AM.Scale = Op.getImm();
4486    Op = MI->getOperand(2);
4487    if (Op.isImmediate())
4488      AM.IndexReg = Op.getImm();
4489    Op = MI->getOperand(3);
4490    if (Op.isGlobalAddress()) {
4491      AM.GV = Op.getGlobal();
4492    } else {
4493      AM.Disp = Op.getImm();
4494    }
4495    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
4496                      .addReg(MI->getOperand(4).getReg());
4497
4498    // Reload the original control word now.
4499    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
4500
4501    delete MI;   // The pseudo instruction is gone now.
4502    return BB;
4503  }
4504  }
4505}
4506
4507//===----------------------------------------------------------------------===//
4508//                           X86 Optimization Hooks
4509//===----------------------------------------------------------------------===//
4510
4511void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
4512                                                       uint64_t Mask,
4513                                                       uint64_t &KnownZero,
4514                                                       uint64_t &KnownOne,
4515                                                       const SelectionDAG &DAG,
4516                                                       unsigned Depth) const {
4517  unsigned Opc = Op.getOpcode();
4518  assert((Opc >= ISD::BUILTIN_OP_END ||
4519          Opc == ISD::INTRINSIC_WO_CHAIN ||
4520          Opc == ISD::INTRINSIC_W_CHAIN ||
4521          Opc == ISD::INTRINSIC_VOID) &&
4522         "Should use MaskedValueIsZero if you don't know whether Op"
4523         " is a target node!");
4524
4525  KnownZero = KnownOne = 0;   // Don't know anything.
4526  switch (Opc) {
4527  default: break;
4528  case X86ISD::SETCC:
4529    KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
4530    break;
4531  }
4532}
4533
4534/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4535/// element of the result of the vector shuffle.
4536static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
4537  MVT::ValueType VT = N->getValueType(0);
4538  SDOperand PermMask = N->getOperand(2);
4539  unsigned NumElems = PermMask.getNumOperands();
4540  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
4541  i %= NumElems;
4542  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4543    return (i == 0)
4544      ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4545  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
4546    SDOperand Idx = PermMask.getOperand(i);
4547    if (Idx.getOpcode() == ISD::UNDEF)
4548      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
4549    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
4550  }
4551  return SDOperand();
4552}
4553
4554/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
4555/// node is a GlobalAddress + an offset.
4556static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
4557  unsigned Opc = N->getOpcode();
4558  if (Opc == X86ISD::Wrapper) {
4559    if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
4560      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
4561      return true;
4562    }
4563  } else if (Opc == ISD::ADD) {
4564    SDOperand N1 = N->getOperand(0);
4565    SDOperand N2 = N->getOperand(1);
4566    if (isGAPlusOffset(N1.Val, GA, Offset)) {
4567      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
4568      if (V) {
4569        Offset += V->getSignExtended();
4570        return true;
4571      }
4572    } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
4573      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
4574      if (V) {
4575        Offset += V->getSignExtended();
4576        return true;
4577      }
4578    }
4579  }
4580  return false;
4581}
4582
4583/// isConsecutiveLoad - Returns true if N is loading from an address of Base
4584/// + Dist * Size.
4585static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
4586                              MachineFrameInfo *MFI) {
4587  if (N->getOperand(0).Val != Base->getOperand(0).Val)
4588    return false;
4589
4590  SDOperand Loc = N->getOperand(1);
4591  SDOperand BaseLoc = Base->getOperand(1);
4592  if (Loc.getOpcode() == ISD::FrameIndex) {
4593    if (BaseLoc.getOpcode() != ISD::FrameIndex)
4594      return false;
4595    int FI  = dyn_cast<FrameIndexSDNode>(Loc)->getIndex();
4596    int BFI = dyn_cast<FrameIndexSDNode>(BaseLoc)->getIndex();
4597    int FS  = MFI->getObjectSize(FI);
4598    int BFS = MFI->getObjectSize(BFI);
4599    if (FS != BFS || FS != Size) return false;
4600    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
4601  } else {
4602    GlobalValue *GV1 = NULL;
4603    GlobalValue *GV2 = NULL;
4604    int64_t Offset1 = 0;
4605    int64_t Offset2 = 0;
4606    bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
4607    bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
4608    if (isGA1 && isGA2 && GV1 == GV2)
4609      return Offset1 == (Offset2 + Dist*Size);
4610  }
4611
4612  return false;
4613}
4614
4615static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
4616                              const X86Subtarget *Subtarget) {
4617  GlobalValue *GV;
4618  int64_t Offset;
4619  if (isGAPlusOffset(Base, GV, Offset))
4620    return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
4621  else {
4622    assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
4623    int BFI = dyn_cast<FrameIndexSDNode>(Base)->getIndex();
4624    if (BFI < 0)
4625      // Fixed objects do not specify alignment, however the offsets are known.
4626      return ((Subtarget->getStackAlignment() % 16) == 0 &&
4627              (MFI->getObjectOffset(BFI) % 16) == 0);
4628    else
4629      return MFI->getObjectAlignment(BFI) >= 16;
4630  }
4631  return false;
4632}
4633
4634
4635/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
4636/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
4637/// if the load addresses are consecutive, non-overlapping, and in the right
4638/// order.
4639static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
4640                                       const X86Subtarget *Subtarget) {
4641  MachineFunction &MF = DAG.getMachineFunction();
4642  MachineFrameInfo *MFI = MF.getFrameInfo();
4643  MVT::ValueType VT = N->getValueType(0);
4644  MVT::ValueType EVT = MVT::getVectorElementType(VT);
4645  SDOperand PermMask = N->getOperand(2);
4646  int NumElems = (int)PermMask.getNumOperands();
4647  SDNode *Base = NULL;
4648  for (int i = 0; i < NumElems; ++i) {
4649    SDOperand Idx = PermMask.getOperand(i);
4650    if (Idx.getOpcode() == ISD::UNDEF) {
4651      if (!Base) return SDOperand();
4652    } else {
4653      SDOperand Arg =
4654        getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
4655      if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
4656        return SDOperand();
4657      if (!Base)
4658        Base = Arg.Val;
4659      else if (!isConsecutiveLoad(Arg.Val, Base,
4660                                  i, MVT::getSizeInBits(EVT)/8,MFI))
4661        return SDOperand();
4662    }
4663  }
4664
4665  bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
4666  if (isAlign16) {
4667    LoadSDNode *LD = cast<LoadSDNode>(Base);
4668    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
4669                       LD->getSrcValueOffset());
4670  } else {
4671    // Just use movups, it's shorter.
4672    SDVTList Tys = DAG.getVTList(MVT::v4f32, MVT::Other);
4673    SmallVector<SDOperand, 3> Ops;
4674    Ops.push_back(Base->getOperand(0));
4675    Ops.push_back(Base->getOperand(1));
4676    Ops.push_back(Base->getOperand(2));
4677    return DAG.getNode(ISD::BIT_CONVERT, VT,
4678                       DAG.getNode(X86ISD::LOAD_UA, Tys, &Ops[0], Ops.size()));
4679  }
4680}
4681
4682/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
4683static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
4684                                      const X86Subtarget *Subtarget) {
4685  SDOperand Cond = N->getOperand(0);
4686
4687  // If we have SSE[12] support, try to form min/max nodes.
4688  if (Subtarget->hasSSE2() &&
4689      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
4690    if (Cond.getOpcode() == ISD::SETCC) {
4691      // Get the LHS/RHS of the select.
4692      SDOperand LHS = N->getOperand(1);
4693      SDOperand RHS = N->getOperand(2);
4694      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
4695
4696      unsigned Opcode = 0;
4697      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
4698        switch (CC) {
4699        default: break;
4700        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
4701        case ISD::SETULE:
4702        case ISD::SETLE:
4703          if (!UnsafeFPMath) break;
4704          // FALL THROUGH.
4705        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
4706        case ISD::SETLT:
4707          Opcode = X86ISD::FMIN;
4708          break;
4709
4710        case ISD::SETOGT: // (X > Y) ? X : Y -> max
4711        case ISD::SETUGT:
4712        case ISD::SETGT:
4713          if (!UnsafeFPMath) break;
4714          // FALL THROUGH.
4715        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
4716        case ISD::SETGE:
4717          Opcode = X86ISD::FMAX;
4718          break;
4719        }
4720      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
4721        switch (CC) {
4722        default: break;
4723        case ISD::SETOGT: // (X > Y) ? Y : X -> min
4724        case ISD::SETUGT:
4725        case ISD::SETGT:
4726          if (!UnsafeFPMath) break;
4727          // FALL THROUGH.
4728        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
4729        case ISD::SETGE:
4730          Opcode = X86ISD::FMIN;
4731          break;
4732
4733        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
4734        case ISD::SETULE:
4735        case ISD::SETLE:
4736          if (!UnsafeFPMath) break;
4737          // FALL THROUGH.
4738        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
4739        case ISD::SETLT:
4740          Opcode = X86ISD::FMAX;
4741          break;
4742        }
4743      }
4744
4745      if (Opcode)
4746        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
4747    }
4748
4749  }
4750
4751  return SDOperand();
4752}
4753
4754
4755SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
4756                                               DAGCombinerInfo &DCI) const {
4757  SelectionDAG &DAG = DCI.DAG;
4758  switch (N->getOpcode()) {
4759  default: break;
4760  case ISD::VECTOR_SHUFFLE:
4761    return PerformShuffleCombine(N, DAG, Subtarget);
4762  case ISD::SELECT:
4763    return PerformSELECTCombine(N, DAG, Subtarget);
4764  }
4765
4766  return SDOperand();
4767}
4768
4769//===----------------------------------------------------------------------===//
4770//                           X86 Inline Assembly Support
4771//===----------------------------------------------------------------------===//
4772
4773/// getConstraintType - Given a constraint letter, return the type of
4774/// constraint it is for this target.
4775X86TargetLowering::ConstraintType
4776X86TargetLowering::getConstraintType(const std::string &Constraint) const {
4777  if (Constraint.size() == 1) {
4778    switch (Constraint[0]) {
4779    case 'A':
4780    case 'r':
4781    case 'R':
4782    case 'l':
4783    case 'q':
4784    case 'Q':
4785    case 'x':
4786    case 'Y':
4787      return C_RegisterClass;
4788    default:
4789      break;
4790    }
4791  }
4792  return TargetLowering::getConstraintType(Constraint);
4793}
4794
4795/// isOperandValidForConstraint - Return the specified operand (possibly
4796/// modified) if the specified SDOperand is valid for the specified target
4797/// constraint letter, otherwise return null.
4798SDOperand X86TargetLowering::
4799isOperandValidForConstraint(SDOperand Op, char Constraint, SelectionDAG &DAG) {
4800  switch (Constraint) {
4801  default: break;
4802  case 'I':
4803    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4804      if (C->getValue() <= 31)
4805        return DAG.getTargetConstant(C->getValue(), Op.getValueType());
4806    }
4807    return SDOperand(0,0);
4808  case 'N':
4809    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
4810      if (C->getValue() <= 255)
4811        return DAG.getTargetConstant(C->getValue(), Op.getValueType());
4812    }
4813    return SDOperand(0,0);
4814  case 'i': {
4815    // Literal immediates are always ok.
4816    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op))
4817      return DAG.getTargetConstant(CST->getValue(), Op.getValueType());
4818
4819    // If we are in non-pic codegen mode, we allow the address of a global (with
4820    // an optional displacement) to be used with 'i'.
4821    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
4822    int64_t Offset = 0;
4823
4824    // Match either (GA) or (GA+C)
4825    if (GA) {
4826      Offset = GA->getOffset();
4827    } else if (Op.getOpcode() == ISD::ADD) {
4828      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4829      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
4830      if (C && GA) {
4831        Offset = GA->getOffset()+C->getValue();
4832      } else {
4833        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4834        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
4835        if (C && GA)
4836          Offset = GA->getOffset()+C->getValue();
4837        else
4838          C = 0, GA = 0;
4839      }
4840    }
4841
4842    if (GA) {
4843      // If addressing this global requires a load (e.g. in PIC mode), we can't
4844      // match.
4845      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
4846                                         false))
4847        return SDOperand(0, 0);
4848
4849      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
4850                                      Offset);
4851      return Op;
4852    }
4853
4854    // Otherwise, not valid for this mode.
4855    return SDOperand(0, 0);
4856  }
4857  }
4858  return TargetLowering::isOperandValidForConstraint(Op, Constraint, DAG);
4859}
4860
4861std::vector<unsigned> X86TargetLowering::
4862getRegClassForInlineAsmConstraint(const std::string &Constraint,
4863                                  MVT::ValueType VT) const {
4864  if (Constraint.size() == 1) {
4865    // FIXME: not handling fp-stack yet!
4866    switch (Constraint[0]) {      // GCC X86 Constraint Letters
4867    default: break;  // Unknown constraint letter
4868    case 'A':   // EAX/EDX
4869      if (VT == MVT::i32 || VT == MVT::i64)
4870        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
4871      break;
4872    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
4873    case 'Q':   // Q_REGS
4874      if (VT == MVT::i32)
4875        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
4876      else if (VT == MVT::i16)
4877        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
4878      else if (VT == MVT::i8)
4879        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0);
4880        break;
4881    }
4882  }
4883
4884  return std::vector<unsigned>();
4885}
4886
4887std::pair<unsigned, const TargetRegisterClass*>
4888X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
4889                                                MVT::ValueType VT) const {
4890  // First, see if this is a constraint that directly corresponds to an LLVM
4891  // register class.
4892  if (Constraint.size() == 1) {
4893    // GCC Constraint Letters
4894    switch (Constraint[0]) {
4895    default: break;
4896    case 'r':   // GENERAL_REGS
4897    case 'R':   // LEGACY_REGS
4898    case 'l':   // INDEX_REGS
4899      if (VT == MVT::i64 && Subtarget->is64Bit())
4900        return std::make_pair(0U, X86::GR64RegisterClass);
4901      if (VT == MVT::i32)
4902        return std::make_pair(0U, X86::GR32RegisterClass);
4903      else if (VT == MVT::i16)
4904        return std::make_pair(0U, X86::GR16RegisterClass);
4905      else if (VT == MVT::i8)
4906        return std::make_pair(0U, X86::GR8RegisterClass);
4907      break;
4908    case 'y':   // MMX_REGS if MMX allowed.
4909      if (!Subtarget->hasMMX()) break;
4910      return std::make_pair(0U, X86::VR64RegisterClass);
4911      break;
4912    case 'Y':   // SSE_REGS if SSE2 allowed
4913      if (!Subtarget->hasSSE2()) break;
4914      // FALL THROUGH.
4915    case 'x':   // SSE_REGS if SSE1 allowed
4916      if (!Subtarget->hasSSE1()) break;
4917
4918      switch (VT) {
4919      default: break;
4920      // Scalar SSE types.
4921      case MVT::f32:
4922      case MVT::i32:
4923        return std::make_pair(0U, X86::FR32RegisterClass);
4924      case MVT::f64:
4925      case MVT::i64:
4926        return std::make_pair(0U, X86::FR64RegisterClass);
4927      // Vector types.
4928      case MVT::v16i8:
4929      case MVT::v8i16:
4930      case MVT::v4i32:
4931      case MVT::v2i64:
4932      case MVT::v4f32:
4933      case MVT::v2f64:
4934        return std::make_pair(0U, X86::VR128RegisterClass);
4935      }
4936      break;
4937    }
4938  }
4939
4940  // Use the default implementation in TargetLowering to convert the register
4941  // constraint into a member of a register class.
4942  std::pair<unsigned, const TargetRegisterClass*> Res;
4943  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
4944
4945  // Not found as a standard register?
4946  if (Res.second == 0) {
4947    // GCC calls "st(0)" just plain "st".
4948    if (StringsEqualNoCase("{st}", Constraint)) {
4949      Res.first = X86::ST0;
4950      Res.second = X86::RSTRegisterClass;
4951    }
4952
4953    return Res;
4954  }
4955
4956  // Otherwise, check to see if this is a register class of the wrong value
4957  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
4958  // turn into {ax},{dx}.
4959  if (Res.second->hasType(VT))
4960    return Res;   // Correct type already, nothing to do.
4961
4962  // All of the single-register GCC register classes map their values onto
4963  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
4964  // really want an 8-bit or 32-bit register, map to the appropriate register
4965  // class and return the appropriate register.
4966  if (Res.second != X86::GR16RegisterClass)
4967    return Res;
4968
4969  if (VT == MVT::i8) {
4970    unsigned DestReg = 0;
4971    switch (Res.first) {
4972    default: break;
4973    case X86::AX: DestReg = X86::AL; break;
4974    case X86::DX: DestReg = X86::DL; break;
4975    case X86::CX: DestReg = X86::CL; break;
4976    case X86::BX: DestReg = X86::BL; break;
4977    }
4978    if (DestReg) {
4979      Res.first = DestReg;
4980      Res.second = Res.second = X86::GR8RegisterClass;
4981    }
4982  } else if (VT == MVT::i32) {
4983    unsigned DestReg = 0;
4984    switch (Res.first) {
4985    default: break;
4986    case X86::AX: DestReg = X86::EAX; break;
4987    case X86::DX: DestReg = X86::EDX; break;
4988    case X86::CX: DestReg = X86::ECX; break;
4989    case X86::BX: DestReg = X86::EBX; break;
4990    case X86::SI: DestReg = X86::ESI; break;
4991    case X86::DI: DestReg = X86::EDI; break;
4992    case X86::BP: DestReg = X86::EBP; break;
4993    case X86::SP: DestReg = X86::ESP; break;
4994    }
4995    if (DestReg) {
4996      Res.first = DestReg;
4997      Res.second = Res.second = X86::GR32RegisterClass;
4998    }
4999  } else if (VT == MVT::i64) {
5000    unsigned DestReg = 0;
5001    switch (Res.first) {
5002    default: break;
5003    case X86::AX: DestReg = X86::RAX; break;
5004    case X86::DX: DestReg = X86::RDX; break;
5005    case X86::CX: DestReg = X86::RCX; break;
5006    case X86::BX: DestReg = X86::RBX; break;
5007    case X86::SI: DestReg = X86::RSI; break;
5008    case X86::DI: DestReg = X86::RDI; break;
5009    case X86::BP: DestReg = X86::RBP; break;
5010    case X86::SP: DestReg = X86::RSP; break;
5011    }
5012    if (DestReg) {
5013      Res.first = DestReg;
5014      Res.second = Res.second = X86::GR64RegisterClass;
5015    }
5016  }
5017
5018  return Res;
5019}
5020