X86ISelLowering.cpp revision af57738f008e56bceac2e600dd741fefbffce973
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/GlobalAlias.h"
25#include "llvm/GlobalVariable.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/LLVMContext.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineJumpTableInfo.h"
34#include "llvm/CodeGen/MachineModuleInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/PseudoSourceValue.h"
37#include "llvm/MC/MCAsmInfo.h"
38#include "llvm/MC/MCContext.h"
39#include "llvm/MC/MCExpr.h"
40#include "llvm/MC/MCSymbol.h"
41#include "llvm/ADT/BitVector.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VectorExtras.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/Dwarf.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52using namespace llvm;
53using namespace dwarf;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57static cl::opt<bool>
58DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
59
60// Forward declarations.
61static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                       SDValue V2);
63
64static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
65
66  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
67
68  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
69    if (is64Bit) return new X8664_MachoTargetObjectFile();
70    return new TargetLoweringObjectFileMachO();
71  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
72    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
73    return new X8632_ELFTargetObjectFile(TM);
74  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
75    return new TargetLoweringObjectFileCOFF();
76  }
77  llvm_unreachable("unknown subtarget type");
78}
79
80X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
81  : TargetLowering(TM, createTLOF(TM)) {
82  Subtarget = &TM.getSubtarget<X86Subtarget>();
83  X86ScalarSSEf64 = Subtarget->hasSSE2();
84  X86ScalarSSEf32 = Subtarget->hasSSE1();
85  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
86
87  RegInfo = TM.getRegisterInfo();
88  TD = getTargetData();
89
90  // Set up the TargetLowering object.
91
92  // X86 is weird, it always uses i8 for shift amounts and setcc results.
93  setShiftAmountType(MVT::i8);
94  setBooleanContents(ZeroOrOneBooleanContent);
95  setSchedulingPreference(Sched::RegPressure);
96  setStackPointerRegisterToSaveRestore(X86StackPtr);
97
98  if (Subtarget->isTargetDarwin()) {
99    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
100    setUseUnderscoreSetJmp(false);
101    setUseUnderscoreLongJmp(false);
102  } else if (Subtarget->isTargetMingw()) {
103    // MS runtime is weird: it exports _setjmp, but longjmp!
104    setUseUnderscoreSetJmp(true);
105    setUseUnderscoreLongJmp(false);
106  } else {
107    setUseUnderscoreSetJmp(true);
108    setUseUnderscoreLongJmp(true);
109  }
110
111  // Set up the register classes.
112  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
113  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
114  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
115  if (Subtarget->is64Bit())
116    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
117
118  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
119
120  // We don't accept any truncstore of integer registers.
121  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
122  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
123  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
124  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
125  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
126  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
127
128  // SETOEQ and SETUNE require checking two conditions.
129  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
130  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
131  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
132  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
133  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
134  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
135
136  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
137  // operation.
138  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
139  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
140  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
141
142  if (Subtarget->is64Bit()) {
143    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
144    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
145  } else if (!UseSoftFloat) {
146    // We have an algorithm for SSE2->double, and we turn this into a
147    // 64-bit FILD followed by conditional FADD for other targets.
148    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
149    // We have an algorithm for SSE2, and we turn this into a 64-bit
150    // FILD for other targets.
151    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
152  }
153
154  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
155  // this operation.
156  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
157  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
158
159  if (!UseSoftFloat) {
160    // SSE has no i16 to fp conversion, only i32
161    if (X86ScalarSSEf32) {
162      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
163      // f32 and f64 cases are Legal, f80 case is not
164      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
165    } else {
166      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
167      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
168    }
169  } else {
170    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
171    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
172  }
173
174  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
175  // are Legal, f80 is custom lowered.
176  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
177  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
178
179  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
180  // this operation.
181  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
182  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
183
184  if (X86ScalarSSEf32) {
185    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
186    // f32 and f64 cases are Legal, f80 case is not
187    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
188  } else {
189    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
190    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
191  }
192
193  // Handle FP_TO_UINT by promoting the destination to a larger signed
194  // conversion.
195  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
196  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
197  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
198
199  if (Subtarget->is64Bit()) {
200    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
201    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
202  } else if (!UseSoftFloat) {
203    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
204      // Expand FP_TO_UINT into a select.
205      // FIXME: We would like to use a Custom expander here eventually to do
206      // the optimal thing for SSE vs. the default expansion in the legalizer.
207      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
208    else
209      // With SSE3 we can use fisttpll to convert to a signed i64; without
210      // SSE, we're stuck with a fistpll.
211      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
212  }
213
214  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
215  if (!X86ScalarSSEf64) {
216    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
217    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
218    if (Subtarget->is64Bit()) {
219      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
220      // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
221      if (Subtarget->hasMMX() && !DisableMMX)
222        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Custom);
223      else
224        setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
225    }
226  }
227
228  // Scalar integer divide and remainder are lowered to use operations that
229  // produce two results, to match the available instructions. This exposes
230  // the two-result form to trivial CSE, which is able to combine x/y and x%y
231  // into a single instruction.
232  //
233  // Scalar integer multiply-high is also lowered to use two-result
234  // operations, to match the available instructions. However, plain multiply
235  // (low) operations are left as Legal, as there are single-result
236  // instructions for this in x86. Using the two-result multiply instructions
237  // when both high and low results are needed must be arranged by dagcombine.
238  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
239  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
240  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
241  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
242  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
243  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
244  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
245  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
246  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
247  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
248  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
249  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
250  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
251  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
252  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
253  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
254  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
255  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
256  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
257  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
258  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
259  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
260  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
261  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
262
263  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
264  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
265  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
266  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
267  if (Subtarget->is64Bit())
268    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
269  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
270  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
271  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
272  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
273  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
274  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
275  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
276  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
277
278  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
279  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
280  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
281  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
282  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
283  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
284  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
285  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
286  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
287  if (Subtarget->is64Bit()) {
288    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
289    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
290    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
291  }
292
293  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
294  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
295
296  // These should be promoted to a larger select which is supported.
297  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
298  // X86 wants to expand cmov itself.
299  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
300  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
301  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
302  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
303  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
304  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
305  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
306  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
307  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
308  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
309  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
310  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
311  if (Subtarget->is64Bit()) {
312    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
313    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
314  }
315  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
316
317  // Darwin ABI issue.
318  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
319  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
320  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
321  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
322  if (Subtarget->is64Bit())
323    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
324  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
325  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
326  if (Subtarget->is64Bit()) {
327    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
328    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
329    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
330    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
331    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
332  }
333  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
334  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
335  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
336  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
337  if (Subtarget->is64Bit()) {
338    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
339    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
340    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
341  }
342
343  if (Subtarget->hasSSE1())
344    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
345
346  // We may not have a libcall for MEMBARRIER so we should lower this.
347  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
348
349  // On X86 and X86-64, atomic operations are lowered to locked instructions.
350  // Locked instructions, in turn, have implicit fence semantics (all memory
351  // operations are flushed before issuing the locked instruction, and they
352  // are not buffered), so we can fold away the common pattern of
353  // fence-atomic-fence.
354  setShouldFoldAtomicFences(true);
355
356  // Expand certain atomics
357  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
358  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
359  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
360  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
361
362  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
363  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
364  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
365  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
366
367  if (!Subtarget->is64Bit()) {
368    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
369    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
370    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
371    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
372    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
373    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
374    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
375  }
376
377  // FIXME - use subtarget debug flags
378  if (!Subtarget->isTargetDarwin() &&
379      !Subtarget->isTargetELF() &&
380      !Subtarget->isTargetCygMing()) {
381    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
382  }
383
384  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
385  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
386  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
387  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
388  if (Subtarget->is64Bit()) {
389    setExceptionPointerRegister(X86::RAX);
390    setExceptionSelectorRegister(X86::RDX);
391  } else {
392    setExceptionPointerRegister(X86::EAX);
393    setExceptionSelectorRegister(X86::EDX);
394  }
395  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
396  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
397
398  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
399
400  setOperationAction(ISD::TRAP, MVT::Other, Legal);
401
402  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
403  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
404  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
405  if (Subtarget->is64Bit()) {
406    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
407    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
408  } else {
409    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
410    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
411  }
412
413  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
414  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
415  if (Subtarget->is64Bit())
416    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
417  if (Subtarget->isTargetCygMing())
418    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
419  else
420    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
421
422  if (!UseSoftFloat && X86ScalarSSEf64) {
423    // f32 and f64 use SSE.
424    // Set up the FP register classes.
425    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
426    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
427
428    // Use ANDPD to simulate FABS.
429    setOperationAction(ISD::FABS , MVT::f64, Custom);
430    setOperationAction(ISD::FABS , MVT::f32, Custom);
431
432    // Use XORP to simulate FNEG.
433    setOperationAction(ISD::FNEG , MVT::f64, Custom);
434    setOperationAction(ISD::FNEG , MVT::f32, Custom);
435
436    // Use ANDPD and ORPD to simulate FCOPYSIGN.
437    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
438    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
439
440    // We don't support sin/cos/fmod
441    setOperationAction(ISD::FSIN , MVT::f64, Expand);
442    setOperationAction(ISD::FCOS , MVT::f64, Expand);
443    setOperationAction(ISD::FSIN , MVT::f32, Expand);
444    setOperationAction(ISD::FCOS , MVT::f32, Expand);
445
446    // Expand FP immediates into loads from the stack, except for the special
447    // cases we handle.
448    addLegalFPImmediate(APFloat(+0.0)); // xorpd
449    addLegalFPImmediate(APFloat(+0.0f)); // xorps
450  } else if (!UseSoftFloat && X86ScalarSSEf32) {
451    // Use SSE for f32, x87 for f64.
452    // Set up the FP register classes.
453    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
454    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
455
456    // Use ANDPS to simulate FABS.
457    setOperationAction(ISD::FABS , MVT::f32, Custom);
458
459    // Use XORP to simulate FNEG.
460    setOperationAction(ISD::FNEG , MVT::f32, Custom);
461
462    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
463
464    // Use ANDPS and ORPS to simulate FCOPYSIGN.
465    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
466    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
467
468    // We don't support sin/cos/fmod
469    setOperationAction(ISD::FSIN , MVT::f32, Expand);
470    setOperationAction(ISD::FCOS , MVT::f32, Expand);
471
472    // Special cases we handle for FP constants.
473    addLegalFPImmediate(APFloat(+0.0f)); // xorps
474    addLegalFPImmediate(APFloat(+0.0)); // FLD0
475    addLegalFPImmediate(APFloat(+1.0)); // FLD1
476    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
477    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
478
479    if (!UnsafeFPMath) {
480      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
481      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
482    }
483  } else if (!UseSoftFloat) {
484    // f32 and f64 in x87.
485    // Set up the FP register classes.
486    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
487    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
488
489    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
490    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
491    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
492    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
493
494    if (!UnsafeFPMath) {
495      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
496      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
497    }
498    addLegalFPImmediate(APFloat(+0.0)); // FLD0
499    addLegalFPImmediate(APFloat(+1.0)); // FLD1
500    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
501    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
502    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
503    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
504    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
505    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
506  }
507
508  // Long double always uses X87.
509  if (!UseSoftFloat) {
510    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
511    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
512    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
513    {
514      bool ignored;
515      APFloat TmpFlt(+0.0);
516      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
517                     &ignored);
518      addLegalFPImmediate(TmpFlt);  // FLD0
519      TmpFlt.changeSign();
520      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
521      APFloat TmpFlt2(+1.0);
522      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
523                      &ignored);
524      addLegalFPImmediate(TmpFlt2);  // FLD1
525      TmpFlt2.changeSign();
526      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
527    }
528
529    if (!UnsafeFPMath) {
530      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
531      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
532    }
533  }
534
535  // Always use a library call for pow.
536  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
537  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
538  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
539
540  setOperationAction(ISD::FLOG, MVT::f80, Expand);
541  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
542  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
543  setOperationAction(ISD::FEXP, MVT::f80, Expand);
544  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
545
546  // First set operation action for all vector types to either promote
547  // (for widening) or expand (for scalarization). Then we will selectively
548  // turn on ones that can be effectively codegen'd.
549  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
550       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
551    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
566    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
567    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
600    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
604    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
605         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
606      setTruncStoreAction((MVT::SimpleValueType)VT,
607                          (MVT::SimpleValueType)InnerVT, Expand);
608    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
609    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
610    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
611  }
612
613  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
614  // with -msoft-float, disable use of MMX as well.
615  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
616    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass, false);
617    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
618    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
619
620    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
621
622    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
623    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
624    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
625    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
626
627    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
628    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
629    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
630    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
631
632    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
633    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
634
635    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
636    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
637    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
638    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
639    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
640    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
641    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
642
643    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
644    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
645    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
646    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
647    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
648    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
649    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
650
651    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
652    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
653    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
654    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
655    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
656    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
657    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
658
659    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
660    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
661    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
662    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
663    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
664    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
665    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
666
667    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
668    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
669    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
670    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
671
672    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
674    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
675    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
676
677    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
678    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
679    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
680
681    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
682
683    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
684    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
685    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
686    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
687    setOperationAction(ISD::VSETCC,             MVT::v8i8, Custom);
688    setOperationAction(ISD::VSETCC,             MVT::v4i16, Custom);
689    setOperationAction(ISD::VSETCC,             MVT::v2i32, Custom);
690
691    if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
692      setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Custom);
693      setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Custom);
694      setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Custom);
695      setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Custom);
696    }
697  }
698
699  if (!UseSoftFloat && Subtarget->hasSSE1()) {
700    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
701
702    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
703    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
704    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
705    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
706    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
707    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
708    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
709    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
710    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
711    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
712    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
713    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
714  }
715
716  if (!UseSoftFloat && Subtarget->hasSSE2()) {
717    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
718
719    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
720    // registers cannot be used even for integer operations.
721    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
722    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
723    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
724    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
725
726    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
727    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
728    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
729    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
730    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
731    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
732    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
733    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
734    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
735    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
736    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
737    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
738    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
739    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
740    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
741    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
742
743    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
744    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
745    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
746    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
747
748    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
749    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
750    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
751    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
752    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
753
754    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
755    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
756    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
757    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
758    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
759
760    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
761    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
762      EVT VT = (MVT::SimpleValueType)i;
763      // Do not attempt to custom lower non-power-of-2 vectors
764      if (!isPowerOf2_32(VT.getVectorNumElements()))
765        continue;
766      // Do not attempt to custom lower non-128-bit vectors
767      if (!VT.is128BitVector())
768        continue;
769      setOperationAction(ISD::BUILD_VECTOR,
770                         VT.getSimpleVT().SimpleTy, Custom);
771      setOperationAction(ISD::VECTOR_SHUFFLE,
772                         VT.getSimpleVT().SimpleTy, Custom);
773      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
774                         VT.getSimpleVT().SimpleTy, Custom);
775    }
776
777    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
778    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
779    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
780    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
781    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
782    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
783
784    if (Subtarget->is64Bit()) {
785      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
786      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
787    }
788
789    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
790    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
791      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
792      EVT VT = SVT;
793
794      // Do not attempt to promote non-128-bit vectors
795      if (!VT.is128BitVector())
796        continue;
797
798      setOperationAction(ISD::AND,    SVT, Promote);
799      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
800      setOperationAction(ISD::OR,     SVT, Promote);
801      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
802      setOperationAction(ISD::XOR,    SVT, Promote);
803      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
804      setOperationAction(ISD::LOAD,   SVT, Promote);
805      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
806      setOperationAction(ISD::SELECT, SVT, Promote);
807      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
808    }
809
810    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
811
812    // Custom lower v2i64 and v2f64 selects.
813    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
814    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
815    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
816    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
817
818    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
819    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
820    if (!DisableMMX && Subtarget->hasMMX()) {
821      setOperationAction(ISD::FP_TO_SINT,         MVT::v2i32, Custom);
822      setOperationAction(ISD::SINT_TO_FP,         MVT::v2i32, Custom);
823    }
824  }
825
826  if (Subtarget->hasSSE41()) {
827    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
828    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
829    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
830    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
831    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
832    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
833    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
834    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
835    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
836    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
837
838    // FIXME: Do we need to handle scalar-to-vector here?
839    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
840
841    // Can turn SHL into an integer multiply.
842    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
843    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
844
845    // i8 and i16 vectors are custom , because the source register and source
846    // source memory operand types are not the same width.  f32 vectors are
847    // custom since the immediate controlling the insert encodes additional
848    // information.
849    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
850    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
851    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
852    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
853
854    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
855    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
856    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
857    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
858
859    if (Subtarget->is64Bit()) {
860      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
861      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
862    }
863  }
864
865  if (Subtarget->hasSSE42()) {
866    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
867  }
868
869  if (!UseSoftFloat && Subtarget->hasAVX()) {
870    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
871    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
872    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
873    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
874    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
875
876    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
877    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
878    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
879    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
880    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
881    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
882    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
883    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
884    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
885    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
887    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
888    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
889    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
890    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
891
892    // Operations to consider commented out -v16i16 v32i8
893    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
894    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
895    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
896    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
897    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
898    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
899    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
900    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
901    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
902    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
903    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
904    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
905    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
906    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
907
908    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
909    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
910    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
911    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
912
913    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
914    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
915    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
916    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
917    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
918
919    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
920    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
921    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
922    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
923    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
924    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
925
926#if 0
927    // Not sure we want to do this since there are no 256-bit integer
928    // operations in AVX
929
930    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
931    // This includes 256-bit vectors
932    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
933      EVT VT = (MVT::SimpleValueType)i;
934
935      // Do not attempt to custom lower non-power-of-2 vectors
936      if (!isPowerOf2_32(VT.getVectorNumElements()))
937        continue;
938
939      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
940      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
942    }
943
944    if (Subtarget->is64Bit()) {
945      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
946      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
947    }
948#endif
949
950#if 0
951    // Not sure we want to do this since there are no 256-bit integer
952    // operations in AVX
953
954    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
955    // Including 256-bit vectors
956    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
957      EVT VT = (MVT::SimpleValueType)i;
958
959      if (!VT.is256BitVector()) {
960        continue;
961      }
962      setOperationAction(ISD::AND,    VT, Promote);
963      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
964      setOperationAction(ISD::OR,     VT, Promote);
965      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
966      setOperationAction(ISD::XOR,    VT, Promote);
967      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
968      setOperationAction(ISD::LOAD,   VT, Promote);
969      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
970      setOperationAction(ISD::SELECT, VT, Promote);
971      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
972    }
973
974    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
975#endif
976  }
977
978  // We want to custom lower some of our intrinsics.
979  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
980
981  // Add/Sub/Mul with overflow operations are custom lowered.
982  setOperationAction(ISD::SADDO, MVT::i32, Custom);
983  setOperationAction(ISD::UADDO, MVT::i32, Custom);
984  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
985  setOperationAction(ISD::USUBO, MVT::i32, Custom);
986  setOperationAction(ISD::SMULO, MVT::i32, Custom);
987
988  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
989  // handle type legalization for these operations here.
990  //
991  // FIXME: We really should do custom legalization for addition and
992  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
993  // than generic legalization for 64-bit multiplication-with-overflow, though.
994  if (Subtarget->is64Bit()) {
995    setOperationAction(ISD::SADDO, MVT::i64, Custom);
996    setOperationAction(ISD::UADDO, MVT::i64, Custom);
997    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
998    setOperationAction(ISD::USUBO, MVT::i64, Custom);
999    setOperationAction(ISD::SMULO, MVT::i64, Custom);
1000  }
1001
1002  if (!Subtarget->is64Bit()) {
1003    // These libcalls are not available in 32-bit.
1004    setLibcallName(RTLIB::SHL_I128, 0);
1005    setLibcallName(RTLIB::SRL_I128, 0);
1006    setLibcallName(RTLIB::SRA_I128, 0);
1007  }
1008
1009  // We have target-specific dag combine patterns for the following nodes:
1010  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1011  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1012  setTargetDAGCombine(ISD::BUILD_VECTOR);
1013  setTargetDAGCombine(ISD::SELECT);
1014  setTargetDAGCombine(ISD::SHL);
1015  setTargetDAGCombine(ISD::SRA);
1016  setTargetDAGCombine(ISD::SRL);
1017  setTargetDAGCombine(ISD::OR);
1018  setTargetDAGCombine(ISD::STORE);
1019  setTargetDAGCombine(ISD::ZERO_EXTEND);
1020  if (Subtarget->is64Bit())
1021    setTargetDAGCombine(ISD::MUL);
1022
1023  computeRegisterProperties();
1024
1025  // FIXME: These should be based on subtarget info. Plus, the values should
1026  // be smaller when we are in optimizing for size mode.
1027  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1028  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1029  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
1030  setPrefLoopAlignment(16);
1031  benefitFromCodePlacementOpt = true;
1032}
1033
1034
1035MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1036  return MVT::i8;
1037}
1038
1039
1040/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1041/// the desired ByVal argument alignment.
1042static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1043  if (MaxAlign == 16)
1044    return;
1045  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1046    if (VTy->getBitWidth() == 128)
1047      MaxAlign = 16;
1048  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1049    unsigned EltAlign = 0;
1050    getMaxByValAlign(ATy->getElementType(), EltAlign);
1051    if (EltAlign > MaxAlign)
1052      MaxAlign = EltAlign;
1053  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1054    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1055      unsigned EltAlign = 0;
1056      getMaxByValAlign(STy->getElementType(i), EltAlign);
1057      if (EltAlign > MaxAlign)
1058        MaxAlign = EltAlign;
1059      if (MaxAlign == 16)
1060        break;
1061    }
1062  }
1063  return;
1064}
1065
1066/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1067/// function arguments in the caller parameter area. For X86, aggregates
1068/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1069/// are at 4-byte boundaries.
1070unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1071  if (Subtarget->is64Bit()) {
1072    // Max of 8 and alignment of type.
1073    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1074    if (TyAlign > 8)
1075      return TyAlign;
1076    return 8;
1077  }
1078
1079  unsigned Align = 4;
1080  if (Subtarget->hasSSE1())
1081    getMaxByValAlign(Ty, Align);
1082  return Align;
1083}
1084
1085/// getOptimalMemOpType - Returns the target specific optimal type for load
1086/// and store operations as a result of memset, memcpy, and memmove
1087/// lowering. If DstAlign is zero that means it's safe to destination
1088/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1089/// means there isn't a need to check it against alignment requirement,
1090/// probably because the source does not need to be loaded. If
1091/// 'NonScalarIntSafe' is true, that means it's safe to return a
1092/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1093/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1094/// constant so it does not need to be loaded.
1095/// It returns EVT::Other if the type should be determined using generic
1096/// target-independent logic.
1097EVT
1098X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1099                                       unsigned DstAlign, unsigned SrcAlign,
1100                                       bool NonScalarIntSafe,
1101                                       bool MemcpyStrSrc,
1102                                       MachineFunction &MF) const {
1103  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1104  // linux.  This is because the stack realignment code can't handle certain
1105  // cases like PR2962.  This should be removed when PR2962 is fixed.
1106  const Function *F = MF.getFunction();
1107  if (NonScalarIntSafe &&
1108      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1109    if (Size >= 16 &&
1110        (Subtarget->isUnalignedMemAccessFast() ||
1111         ((DstAlign == 0 || DstAlign >= 16) &&
1112          (SrcAlign == 0 || SrcAlign >= 16))) &&
1113        Subtarget->getStackAlignment() >= 16) {
1114      if (Subtarget->hasSSE2())
1115        return MVT::v4i32;
1116      if (Subtarget->hasSSE1())
1117        return MVT::v4f32;
1118    } else if (!MemcpyStrSrc && Size >= 8 &&
1119               !Subtarget->is64Bit() &&
1120               Subtarget->getStackAlignment() >= 8 &&
1121               Subtarget->hasSSE2()) {
1122      // Do not use f64 to lower memcpy if source is string constant. It's
1123      // better to use i32 to avoid the loads.
1124      return MVT::f64;
1125    }
1126  }
1127  if (Subtarget->is64Bit() && Size >= 8)
1128    return MVT::i64;
1129  return MVT::i32;
1130}
1131
1132/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1133/// current function.  The returned value is a member of the
1134/// MachineJumpTableInfo::JTEntryKind enum.
1135unsigned X86TargetLowering::getJumpTableEncoding() const {
1136  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1137  // symbol.
1138  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1139      Subtarget->isPICStyleGOT())
1140    return MachineJumpTableInfo::EK_Custom32;
1141
1142  // Otherwise, use the normal jump table encoding heuristics.
1143  return TargetLowering::getJumpTableEncoding();
1144}
1145
1146/// getPICBaseSymbol - Return the X86-32 PIC base.
1147MCSymbol *
1148X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
1149                                    MCContext &Ctx) const {
1150  const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
1151  return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
1152                               Twine(MF->getFunctionNumber())+"$pb");
1153}
1154
1155
1156const MCExpr *
1157X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1158                                             const MachineBasicBlock *MBB,
1159                                             unsigned uid,MCContext &Ctx) const{
1160  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1161         Subtarget->isPICStyleGOT());
1162  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1163  // entries.
1164  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1165                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1166}
1167
1168/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1169/// jumptable.
1170SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1171                                                    SelectionDAG &DAG) const {
1172  if (!Subtarget->is64Bit())
1173    // This doesn't have DebugLoc associated with it, but is not really the
1174    // same as a Register.
1175    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1176  return Table;
1177}
1178
1179/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1180/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1181/// MCExpr.
1182const MCExpr *X86TargetLowering::
1183getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1184                             MCContext &Ctx) const {
1185  // X86-64 uses RIP relative addressing based on the jump table label.
1186  if (Subtarget->isPICStyleRIPRel())
1187    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1188
1189  // Otherwise, the reference is relative to the PIC base.
1190  return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
1191}
1192
1193/// getFunctionAlignment - Return the Log2 alignment of this function.
1194unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1195  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1196}
1197
1198std::pair<const TargetRegisterClass*, uint8_t>
1199X86TargetLowering::findRepresentativeClass(EVT VT) const{
1200  const TargetRegisterClass *RRC = 0;
1201  uint8_t Cost = 1;
1202  switch (VT.getSimpleVT().SimpleTy) {
1203  default:
1204    return TargetLowering::findRepresentativeClass(VT);
1205  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1206    RRC = (Subtarget->is64Bit()
1207           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1208    break;
1209  case MVT::v8i8: case MVT::v4i16:
1210  case MVT::v2i32: case MVT::v1i64:
1211    RRC = X86::VR64RegisterClass;
1212    break;
1213  case MVT::f32: case MVT::f64:
1214  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1215  case MVT::v4f32: case MVT::v2f64:
1216  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1217  case MVT::v4f64:
1218    RRC = X86::VR128RegisterClass;
1219    break;
1220  }
1221  return std::make_pair(RRC, Cost);
1222}
1223
1224unsigned
1225X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1226                                       MachineFunction &MF) const {
1227  unsigned FPDiff = RegInfo->hasFP(MF) ? 1 : 0;
1228  switch (RC->getID()) {
1229  default:
1230    return 0;
1231  case X86::GR32RegClassID:
1232    return 4 - FPDiff;
1233  case X86::GR64RegClassID:
1234    return 8 - FPDiff;
1235  case X86::VR128RegClassID:
1236    return Subtarget->is64Bit() ? 10 : 4;
1237  case X86::VR64RegClassID:
1238    return 4;
1239  }
1240}
1241
1242bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1243                                               unsigned &Offset) const {
1244  if (!Subtarget->isTargetLinux())
1245    return false;
1246
1247  if (Subtarget->is64Bit()) {
1248    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1249    Offset = 0x28;
1250    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1251      AddressSpace = 256;
1252    else
1253      AddressSpace = 257;
1254  } else {
1255    // %gs:0x14 on i386
1256    Offset = 0x14;
1257    AddressSpace = 256;
1258  }
1259  return true;
1260}
1261
1262
1263//===----------------------------------------------------------------------===//
1264//               Return Value Calling Convention Implementation
1265//===----------------------------------------------------------------------===//
1266
1267#include "X86GenCallingConv.inc"
1268
1269bool
1270X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1271                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1272                        LLVMContext &Context) const {
1273  SmallVector<CCValAssign, 16> RVLocs;
1274  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1275                 RVLocs, Context);
1276  return CCInfo.CheckReturn(Outs, RetCC_X86);
1277}
1278
1279SDValue
1280X86TargetLowering::LowerReturn(SDValue Chain,
1281                               CallingConv::ID CallConv, bool isVarArg,
1282                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1283                               const SmallVectorImpl<SDValue> &OutVals,
1284                               DebugLoc dl, SelectionDAG &DAG) const {
1285  MachineFunction &MF = DAG.getMachineFunction();
1286  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1287
1288  SmallVector<CCValAssign, 16> RVLocs;
1289  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1290                 RVLocs, *DAG.getContext());
1291  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1292
1293  // Add the regs to the liveout set for the function.
1294  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1295  for (unsigned i = 0; i != RVLocs.size(); ++i)
1296    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1297      MRI.addLiveOut(RVLocs[i].getLocReg());
1298
1299  SDValue Flag;
1300
1301  SmallVector<SDValue, 6> RetOps;
1302  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1303  // Operand #1 = Bytes To Pop
1304  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1305                   MVT::i16));
1306
1307  // Copy the result values into the output registers.
1308  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1309    CCValAssign &VA = RVLocs[i];
1310    assert(VA.isRegLoc() && "Can only return in registers!");
1311    SDValue ValToCopy = OutVals[i];
1312    EVT ValVT = ValToCopy.getValueType();
1313
1314    // If this is x86-64, and we disabled SSE, we can't return FP values
1315    if ((ValVT == MVT::f32 || ValVT == MVT::f64) &&
1316        (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1317      report_fatal_error("SSE register return with SSE disabled");
1318    }
1319    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1320    // llvm-gcc has never done it right and no one has noticed, so this
1321    // should be OK for now.
1322    if (ValVT == MVT::f64 &&
1323        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1324      report_fatal_error("SSE2 register return with SSE2 disabled");
1325
1326    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1327    // the RET instruction and handled by the FP Stackifier.
1328    if (VA.getLocReg() == X86::ST0 ||
1329        VA.getLocReg() == X86::ST1) {
1330      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1331      // change the value to the FP stack register class.
1332      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1333        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1334      RetOps.push_back(ValToCopy);
1335      // Don't emit a copytoreg.
1336      continue;
1337    }
1338
1339    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1340    // which is returned in RAX / RDX.
1341    if (Subtarget->is64Bit()) {
1342      if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
1343        ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1344        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1345          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1346                                  ValToCopy);
1347
1348          // If we don't have SSE2 available, convert to v4f32 so the generated
1349          // register is legal.
1350          if (!Subtarget->hasSSE2())
1351            ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
1352        }
1353      }
1354    }
1355
1356    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1357    Flag = Chain.getValue(1);
1358  }
1359
1360  // The x86-64 ABI for returning structs by value requires that we copy
1361  // the sret argument into %rax for the return. We saved the argument into
1362  // a virtual register in the entry block, so now we copy the value out
1363  // and into %rax.
1364  if (Subtarget->is64Bit() &&
1365      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1366    MachineFunction &MF = DAG.getMachineFunction();
1367    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1368    unsigned Reg = FuncInfo->getSRetReturnReg();
1369    assert(Reg &&
1370           "SRetReturnReg should have been set in LowerFormalArguments().");
1371    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1372
1373    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1374    Flag = Chain.getValue(1);
1375
1376    // RAX now acts like a return value.
1377    MRI.addLiveOut(X86::RAX);
1378  }
1379
1380  RetOps[0] = Chain;  // Update chain.
1381
1382  // Add the flag if we have it.
1383  if (Flag.getNode())
1384    RetOps.push_back(Flag);
1385
1386  return DAG.getNode(X86ISD::RET_FLAG, dl,
1387                     MVT::Other, &RetOps[0], RetOps.size());
1388}
1389
1390/// LowerCallResult - Lower the result values of a call into the
1391/// appropriate copies out of appropriate physical registers.
1392///
1393SDValue
1394X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1395                                   CallingConv::ID CallConv, bool isVarArg,
1396                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1397                                   DebugLoc dl, SelectionDAG &DAG,
1398                                   SmallVectorImpl<SDValue> &InVals) const {
1399
1400  // Assign locations to each value returned by this call.
1401  SmallVector<CCValAssign, 16> RVLocs;
1402  bool Is64Bit = Subtarget->is64Bit();
1403  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1404                 RVLocs, *DAG.getContext());
1405  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1406
1407  // Copy all of the result registers out of their specified physreg.
1408  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1409    CCValAssign &VA = RVLocs[i];
1410    EVT CopyVT = VA.getValVT();
1411
1412    // If this is x86-64, and we disabled SSE, we can't return FP values
1413    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1414        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1415      report_fatal_error("SSE register return with SSE disabled");
1416    }
1417
1418    SDValue Val;
1419
1420    // If this is a call to a function that returns an fp value on the floating
1421    // point stack, we must guarantee the the value is popped from the stack, so
1422    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1423    // if the return value is not used. We use the FpGET_ST0 instructions
1424    // instead.
1425    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1426      // If we prefer to use the value in xmm registers, copy it out as f80 and
1427      // use a truncate to move it from fp stack reg to xmm reg.
1428      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1429      bool isST0 = VA.getLocReg() == X86::ST0;
1430      unsigned Opc = 0;
1431      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1432      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1433      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1434      SDValue Ops[] = { Chain, InFlag };
1435      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1436                                         Ops, 2), 1);
1437      Val = Chain.getValue(0);
1438
1439      // Round the f80 to the right size, which also moves it to the appropriate
1440      // xmm register.
1441      if (CopyVT != VA.getValVT())
1442        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1443                          // This truncation won't change the value.
1444                          DAG.getIntPtrConstant(1));
1445    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1446      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1447      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1448        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1449                                   MVT::v2i64, InFlag).getValue(1);
1450        Val = Chain.getValue(0);
1451        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1452                          Val, DAG.getConstant(0, MVT::i64));
1453      } else {
1454        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1455                                   MVT::i64, InFlag).getValue(1);
1456        Val = Chain.getValue(0);
1457      }
1458      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1459    } else {
1460      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1461                                 CopyVT, InFlag).getValue(1);
1462      Val = Chain.getValue(0);
1463    }
1464    InFlag = Chain.getValue(2);
1465    InVals.push_back(Val);
1466  }
1467
1468  return Chain;
1469}
1470
1471
1472//===----------------------------------------------------------------------===//
1473//                C & StdCall & Fast Calling Convention implementation
1474//===----------------------------------------------------------------------===//
1475//  StdCall calling convention seems to be standard for many Windows' API
1476//  routines and around. It differs from C calling convention just a little:
1477//  callee should clean up the stack, not caller. Symbols should be also
1478//  decorated in some fancy way :) It doesn't support any vector arguments.
1479//  For info on fast calling convention see Fast Calling Convention (tail call)
1480//  implementation LowerX86_32FastCCCallTo.
1481
1482/// CallIsStructReturn - Determines whether a call uses struct return
1483/// semantics.
1484static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1485  if (Outs.empty())
1486    return false;
1487
1488  return Outs[0].Flags.isSRet();
1489}
1490
1491/// ArgsAreStructReturn - Determines whether a function uses struct
1492/// return semantics.
1493static bool
1494ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1495  if (Ins.empty())
1496    return false;
1497
1498  return Ins[0].Flags.isSRet();
1499}
1500
1501/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1502/// given CallingConvention value.
1503CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
1504  if (Subtarget->is64Bit()) {
1505    if (CC == CallingConv::GHC)
1506      return CC_X86_64_GHC;
1507    else if (Subtarget->isTargetWin64())
1508      return CC_X86_Win64_C;
1509    else
1510      return CC_X86_64_C;
1511  }
1512
1513  if (CC == CallingConv::X86_FastCall)
1514    return CC_X86_32_FastCall;
1515  else if (CC == CallingConv::X86_ThisCall)
1516    return CC_X86_32_ThisCall;
1517  else if (CC == CallingConv::Fast)
1518    return CC_X86_32_FastCC;
1519  else if (CC == CallingConv::GHC)
1520    return CC_X86_32_GHC;
1521  else
1522    return CC_X86_32_C;
1523}
1524
1525/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1526/// by "Src" to address "Dst" with size and alignment information specified by
1527/// the specific parameter attribute. The copy will be passed as a byval
1528/// function parameter.
1529static SDValue
1530CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1531                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1532                          DebugLoc dl) {
1533  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1534  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1535                       /*isVolatile*/false, /*AlwaysInline=*/true,
1536                       NULL, 0, NULL, 0);
1537}
1538
1539/// IsTailCallConvention - Return true if the calling convention is one that
1540/// supports tail call optimization.
1541static bool IsTailCallConvention(CallingConv::ID CC) {
1542  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1543}
1544
1545/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1546/// a tailcall target by changing its ABI.
1547static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1548  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1549}
1550
1551SDValue
1552X86TargetLowering::LowerMemArgument(SDValue Chain,
1553                                    CallingConv::ID CallConv,
1554                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1555                                    DebugLoc dl, SelectionDAG &DAG,
1556                                    const CCValAssign &VA,
1557                                    MachineFrameInfo *MFI,
1558                                    unsigned i) const {
1559  // Create the nodes corresponding to a load from this parameter slot.
1560  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1561  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1562  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1563  EVT ValVT;
1564
1565  // If value is passed by pointer we have address passed instead of the value
1566  // itself.
1567  if (VA.getLocInfo() == CCValAssign::Indirect)
1568    ValVT = VA.getLocVT();
1569  else
1570    ValVT = VA.getValVT();
1571
1572  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1573  // changed with more analysis.
1574  // In case of tail call optimization mark all arguments mutable. Since they
1575  // could be overwritten by lowering of arguments in case of a tail call.
1576  if (Flags.isByVal()) {
1577    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1578                                    VA.getLocMemOffset(), isImmutable);
1579    return DAG.getFrameIndex(FI, getPointerTy());
1580  } else {
1581    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1582                                    VA.getLocMemOffset(), isImmutable);
1583    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1584    return DAG.getLoad(ValVT, dl, Chain, FIN,
1585                       PseudoSourceValue::getFixedStack(FI), 0,
1586                       false, false, 0);
1587  }
1588}
1589
1590SDValue
1591X86TargetLowering::LowerFormalArguments(SDValue Chain,
1592                                        CallingConv::ID CallConv,
1593                                        bool isVarArg,
1594                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1595                                        DebugLoc dl,
1596                                        SelectionDAG &DAG,
1597                                        SmallVectorImpl<SDValue> &InVals)
1598                                          const {
1599  MachineFunction &MF = DAG.getMachineFunction();
1600  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1601
1602  const Function* Fn = MF.getFunction();
1603  if (Fn->hasExternalLinkage() &&
1604      Subtarget->isTargetCygMing() &&
1605      Fn->getName() == "main")
1606    FuncInfo->setForceFramePointer(true);
1607
1608  MachineFrameInfo *MFI = MF.getFrameInfo();
1609  bool Is64Bit = Subtarget->is64Bit();
1610  bool IsWin64 = Subtarget->isTargetWin64();
1611
1612  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1613         "Var args not supported with calling convention fastcc or ghc");
1614
1615  // Assign locations to all of the incoming arguments.
1616  SmallVector<CCValAssign, 16> ArgLocs;
1617  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1618                 ArgLocs, *DAG.getContext());
1619  CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
1620
1621  unsigned LastVal = ~0U;
1622  SDValue ArgValue;
1623  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1624    CCValAssign &VA = ArgLocs[i];
1625    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1626    // places.
1627    assert(VA.getValNo() != LastVal &&
1628           "Don't support value assigned to multiple locs yet");
1629    LastVal = VA.getValNo();
1630
1631    if (VA.isRegLoc()) {
1632      EVT RegVT = VA.getLocVT();
1633      TargetRegisterClass *RC = NULL;
1634      if (RegVT == MVT::i32)
1635        RC = X86::GR32RegisterClass;
1636      else if (Is64Bit && RegVT == MVT::i64)
1637        RC = X86::GR64RegisterClass;
1638      else if (RegVT == MVT::f32)
1639        RC = X86::FR32RegisterClass;
1640      else if (RegVT == MVT::f64)
1641        RC = X86::FR64RegisterClass;
1642      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1643        RC = X86::VR256RegisterClass;
1644      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1645        RC = X86::VR128RegisterClass;
1646      else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1647        RC = X86::VR64RegisterClass;
1648      else
1649        llvm_unreachable("Unknown argument type!");
1650
1651      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1652      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1653
1654      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1655      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1656      // right size.
1657      if (VA.getLocInfo() == CCValAssign::SExt)
1658        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1659                               DAG.getValueType(VA.getValVT()));
1660      else if (VA.getLocInfo() == CCValAssign::ZExt)
1661        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1662                               DAG.getValueType(VA.getValVT()));
1663      else if (VA.getLocInfo() == CCValAssign::BCvt)
1664        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1665
1666      if (VA.isExtInLoc()) {
1667        // Handle MMX values passed in XMM regs.
1668        if (RegVT.isVector()) {
1669          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1670                                 ArgValue, DAG.getConstant(0, MVT::i64));
1671          ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1672        } else
1673          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1674      }
1675    } else {
1676      assert(VA.isMemLoc());
1677      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1678    }
1679
1680    // If value is passed via pointer - do a load.
1681    if (VA.getLocInfo() == CCValAssign::Indirect)
1682      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
1683                             false, false, 0);
1684
1685    InVals.push_back(ArgValue);
1686  }
1687
1688  // The x86-64 ABI for returning structs by value requires that we copy
1689  // the sret argument into %rax for the return. Save the argument into
1690  // a virtual register so that we can access it from the return points.
1691  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1692    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1693    unsigned Reg = FuncInfo->getSRetReturnReg();
1694    if (!Reg) {
1695      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1696      FuncInfo->setSRetReturnReg(Reg);
1697    }
1698    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1699    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1700  }
1701
1702  unsigned StackSize = CCInfo.getNextStackOffset();
1703  // Align stack specially for tail calls.
1704  if (FuncIsMadeTailCallSafe(CallConv))
1705    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1706
1707  // If the function takes variable number of arguments, make a frame index for
1708  // the start of the first vararg value... for expansion of llvm.va_start.
1709  if (isVarArg) {
1710    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1711                    CallConv != CallingConv::X86_ThisCall)) {
1712      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1713    }
1714    if (Is64Bit) {
1715      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1716
1717      // FIXME: We should really autogenerate these arrays
1718      static const unsigned GPR64ArgRegsWin64[] = {
1719        X86::RCX, X86::RDX, X86::R8,  X86::R9
1720      };
1721      static const unsigned XMMArgRegsWin64[] = {
1722        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1723      };
1724      static const unsigned GPR64ArgRegs64Bit[] = {
1725        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1726      };
1727      static const unsigned XMMArgRegs64Bit[] = {
1728        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1729        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1730      };
1731      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1732
1733      if (IsWin64) {
1734        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1735        GPR64ArgRegs = GPR64ArgRegsWin64;
1736        XMMArgRegs = XMMArgRegsWin64;
1737      } else {
1738        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1739        GPR64ArgRegs = GPR64ArgRegs64Bit;
1740        XMMArgRegs = XMMArgRegs64Bit;
1741      }
1742      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1743                                                       TotalNumIntRegs);
1744      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1745                                                       TotalNumXMMRegs);
1746
1747      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1748      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1749             "SSE register cannot be used when SSE is disabled!");
1750      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1751             "SSE register cannot be used when SSE is disabled!");
1752      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1753        // Kernel mode asks for SSE to be disabled, so don't push them
1754        // on the stack.
1755        TotalNumXMMRegs = 0;
1756
1757      // For X86-64, if there are vararg parameters that are passed via
1758      // registers, then we must store them to their spots on the stack so they
1759      // may be loaded by deferencing the result of va_next.
1760      FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1761      FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1762      FuncInfo->setRegSaveFrameIndex(
1763        MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1764                               false));
1765
1766      // Store the integer parameter registers.
1767      SmallVector<SDValue, 8> MemOps;
1768      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1769                                        getPointerTy());
1770      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1771      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1772        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1773                                  DAG.getIntPtrConstant(Offset));
1774        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1775                                     X86::GR64RegisterClass);
1776        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1777        SDValue Store =
1778          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1779                       PseudoSourceValue::getFixedStack(
1780                         FuncInfo->getRegSaveFrameIndex()),
1781                       Offset, false, false, 0);
1782        MemOps.push_back(Store);
1783        Offset += 8;
1784      }
1785
1786      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1787        // Now store the XMM (fp + vector) parameter registers.
1788        SmallVector<SDValue, 11> SaveXMMOps;
1789        SaveXMMOps.push_back(Chain);
1790
1791        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1792        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1793        SaveXMMOps.push_back(ALVal);
1794
1795        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1796                               FuncInfo->getRegSaveFrameIndex()));
1797        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1798                               FuncInfo->getVarArgsFPOffset()));
1799
1800        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1801          unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
1802                                       X86::VR128RegisterClass);
1803          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1804          SaveXMMOps.push_back(Val);
1805        }
1806        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1807                                     MVT::Other,
1808                                     &SaveXMMOps[0], SaveXMMOps.size()));
1809      }
1810
1811      if (!MemOps.empty())
1812        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1813                            &MemOps[0], MemOps.size());
1814    }
1815  }
1816
1817  // Some CCs need callee pop.
1818  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1819    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1820  } else {
1821    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1822    // If this is an sret function, the return should pop the hidden pointer.
1823    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1824      FuncInfo->setBytesToPopOnReturn(4);
1825  }
1826
1827  if (!Is64Bit) {
1828    // RegSaveFrameIndex is X86-64 only.
1829    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1830    if (CallConv == CallingConv::X86_FastCall ||
1831        CallConv == CallingConv::X86_ThisCall)
1832      // fastcc functions can't have varargs.
1833      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1834  }
1835
1836  return Chain;
1837}
1838
1839SDValue
1840X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1841                                    SDValue StackPtr, SDValue Arg,
1842                                    DebugLoc dl, SelectionDAG &DAG,
1843                                    const CCValAssign &VA,
1844                                    ISD::ArgFlagsTy Flags) const {
1845  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1846  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1847  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1848  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1849  if (Flags.isByVal()) {
1850    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1851  }
1852  return DAG.getStore(Chain, dl, Arg, PtrOff,
1853                      PseudoSourceValue::getStack(), LocMemOffset,
1854                      false, false, 0);
1855}
1856
1857/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1858/// optimization is performed and it is required.
1859SDValue
1860X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1861                                           SDValue &OutRetAddr, SDValue Chain,
1862                                           bool IsTailCall, bool Is64Bit,
1863                                           int FPDiff, DebugLoc dl) const {
1864  // Adjust the Return address stack slot.
1865  EVT VT = getPointerTy();
1866  OutRetAddr = getReturnAddressFrameIndex(DAG);
1867
1868  // Load the "old" Return address.
1869  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
1870  return SDValue(OutRetAddr.getNode(), 1);
1871}
1872
1873/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1874/// optimization is performed and it is required (FPDiff!=0).
1875static SDValue
1876EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1877                         SDValue Chain, SDValue RetAddrFrIdx,
1878                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1879  // Store the return address to the appropriate stack slot.
1880  if (!FPDiff) return Chain;
1881  // Calculate the new stack slot for the return address.
1882  int SlotSize = Is64Bit ? 8 : 4;
1883  int NewReturnAddrFI =
1884    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1885  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1886  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1887  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1888                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
1889                       false, false, 0);
1890  return Chain;
1891}
1892
1893SDValue
1894X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1895                             CallingConv::ID CallConv, bool isVarArg,
1896                             bool &isTailCall,
1897                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1898                             const SmallVectorImpl<SDValue> &OutVals,
1899                             const SmallVectorImpl<ISD::InputArg> &Ins,
1900                             DebugLoc dl, SelectionDAG &DAG,
1901                             SmallVectorImpl<SDValue> &InVals) const {
1902  MachineFunction &MF = DAG.getMachineFunction();
1903  bool Is64Bit        = Subtarget->is64Bit();
1904  bool IsStructRet    = CallIsStructReturn(Outs);
1905  bool IsSibcall      = false;
1906
1907  if (isTailCall) {
1908    // Check if it's really possible to do a tail call.
1909    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1910                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1911                                                   Outs, OutVals, Ins, DAG);
1912
1913    // Sibcalls are automatically detected tailcalls which do not require
1914    // ABI changes.
1915    if (!GuaranteedTailCallOpt && isTailCall)
1916      IsSibcall = true;
1917
1918    if (isTailCall)
1919      ++NumTailCalls;
1920  }
1921
1922  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1923         "Var args not supported with calling convention fastcc or ghc");
1924
1925  // Analyze operands of the call, assigning locations to each operand.
1926  SmallVector<CCValAssign, 16> ArgLocs;
1927  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1928                 ArgLocs, *DAG.getContext());
1929  CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
1930
1931  // Get a count of how many bytes are to be pushed on the stack.
1932  unsigned NumBytes = CCInfo.getNextStackOffset();
1933  if (IsSibcall)
1934    // This is a sibcall. The memory operands are available in caller's
1935    // own caller's stack.
1936    NumBytes = 0;
1937  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1938    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1939
1940  int FPDiff = 0;
1941  if (isTailCall && !IsSibcall) {
1942    // Lower arguments at fp - stackoffset + fpdiff.
1943    unsigned NumBytesCallerPushed =
1944      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1945    FPDiff = NumBytesCallerPushed - NumBytes;
1946
1947    // Set the delta of movement of the returnaddr stackslot.
1948    // But only set if delta is greater than previous delta.
1949    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1950      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1951  }
1952
1953  if (!IsSibcall)
1954    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1955
1956  SDValue RetAddrFrIdx;
1957  // Load return adress for tail calls.
1958  if (isTailCall && FPDiff)
1959    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1960                                    Is64Bit, FPDiff, dl);
1961
1962  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1963  SmallVector<SDValue, 8> MemOpChains;
1964  SDValue StackPtr;
1965
1966  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1967  // of tail call optimization arguments are handle later.
1968  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1969    CCValAssign &VA = ArgLocs[i];
1970    EVT RegVT = VA.getLocVT();
1971    SDValue Arg = OutVals[i];
1972    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1973    bool isByVal = Flags.isByVal();
1974
1975    // Promote the value if needed.
1976    switch (VA.getLocInfo()) {
1977    default: llvm_unreachable("Unknown loc info!");
1978    case CCValAssign::Full: break;
1979    case CCValAssign::SExt:
1980      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1981      break;
1982    case CCValAssign::ZExt:
1983      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1984      break;
1985    case CCValAssign::AExt:
1986      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1987        // Special case: passing MMX values in XMM registers.
1988        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1989        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1990        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1991      } else
1992        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1993      break;
1994    case CCValAssign::BCvt:
1995      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1996      break;
1997    case CCValAssign::Indirect: {
1998      // Store the argument.
1999      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2000      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2001      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2002                           PseudoSourceValue::getFixedStack(FI), 0,
2003                           false, false, 0);
2004      Arg = SpillSlot;
2005      break;
2006    }
2007    }
2008
2009    if (VA.isRegLoc()) {
2010      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2011    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2012      assert(VA.isMemLoc());
2013      if (StackPtr.getNode() == 0)
2014        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2015      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2016                                             dl, DAG, VA, Flags));
2017    }
2018  }
2019
2020  if (!MemOpChains.empty())
2021    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2022                        &MemOpChains[0], MemOpChains.size());
2023
2024  // Build a sequence of copy-to-reg nodes chained together with token chain
2025  // and flag operands which copy the outgoing args into registers.
2026  SDValue InFlag;
2027  // Tail call byval lowering might overwrite argument registers so in case of
2028  // tail call optimization the copies to registers are lowered later.
2029  if (!isTailCall)
2030    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2031      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2032                               RegsToPass[i].second, InFlag);
2033      InFlag = Chain.getValue(1);
2034    }
2035
2036  if (Subtarget->isPICStyleGOT()) {
2037    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2038    // GOT pointer.
2039    if (!isTailCall) {
2040      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2041                               DAG.getNode(X86ISD::GlobalBaseReg,
2042                                           DebugLoc(), getPointerTy()),
2043                               InFlag);
2044      InFlag = Chain.getValue(1);
2045    } else {
2046      // If we are tail calling and generating PIC/GOT style code load the
2047      // address of the callee into ECX. The value in ecx is used as target of
2048      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2049      // for tail calls on PIC/GOT architectures. Normally we would just put the
2050      // address of GOT into ebx and then call target@PLT. But for tail calls
2051      // ebx would be restored (since ebx is callee saved) before jumping to the
2052      // target@PLT.
2053
2054      // Note: The actual moving to ECX is done further down.
2055      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2056      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2057          !G->getGlobal()->hasProtectedVisibility())
2058        Callee = LowerGlobalAddress(Callee, DAG);
2059      else if (isa<ExternalSymbolSDNode>(Callee))
2060        Callee = LowerExternalSymbol(Callee, DAG);
2061    }
2062  }
2063
2064  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2065    // From AMD64 ABI document:
2066    // For calls that may call functions that use varargs or stdargs
2067    // (prototype-less calls or calls to functions containing ellipsis (...) in
2068    // the declaration) %al is used as hidden argument to specify the number
2069    // of SSE registers used. The contents of %al do not need to match exactly
2070    // the number of registers, but must be an ubound on the number of SSE
2071    // registers used and is in the range 0 - 8 inclusive.
2072
2073    // Count the number of XMM registers allocated.
2074    static const unsigned XMMArgRegs[] = {
2075      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2076      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2077    };
2078    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2079    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2080           && "SSE registers cannot be used when SSE is disabled");
2081
2082    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2083                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2084    InFlag = Chain.getValue(1);
2085  }
2086
2087
2088  // For tail calls lower the arguments to the 'real' stack slot.
2089  if (isTailCall) {
2090    // Force all the incoming stack arguments to be loaded from the stack
2091    // before any new outgoing arguments are stored to the stack, because the
2092    // outgoing stack slots may alias the incoming argument stack slots, and
2093    // the alias isn't otherwise explicit. This is slightly more conservative
2094    // than necessary, because it means that each store effectively depends
2095    // on every argument instead of just those arguments it would clobber.
2096    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2097
2098    SmallVector<SDValue, 8> MemOpChains2;
2099    SDValue FIN;
2100    int FI = 0;
2101    // Do not flag preceeding copytoreg stuff together with the following stuff.
2102    InFlag = SDValue();
2103    if (GuaranteedTailCallOpt) {
2104      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2105        CCValAssign &VA = ArgLocs[i];
2106        if (VA.isRegLoc())
2107          continue;
2108        assert(VA.isMemLoc());
2109        SDValue Arg = OutVals[i];
2110        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2111        // Create frame index.
2112        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2113        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2114        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2115        FIN = DAG.getFrameIndex(FI, getPointerTy());
2116
2117        if (Flags.isByVal()) {
2118          // Copy relative to framepointer.
2119          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2120          if (StackPtr.getNode() == 0)
2121            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2122                                          getPointerTy());
2123          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2124
2125          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2126                                                           ArgChain,
2127                                                           Flags, DAG, dl));
2128        } else {
2129          // Store relative to framepointer.
2130          MemOpChains2.push_back(
2131            DAG.getStore(ArgChain, dl, Arg, FIN,
2132                         PseudoSourceValue::getFixedStack(FI), 0,
2133                         false, false, 0));
2134        }
2135      }
2136    }
2137
2138    if (!MemOpChains2.empty())
2139      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2140                          &MemOpChains2[0], MemOpChains2.size());
2141
2142    // Copy arguments to their registers.
2143    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2144      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2145                               RegsToPass[i].second, InFlag);
2146      InFlag = Chain.getValue(1);
2147    }
2148    InFlag =SDValue();
2149
2150    // Store the return address to the appropriate stack slot.
2151    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2152                                     FPDiff, dl);
2153  }
2154
2155  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2156    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2157    // In the 64-bit large code model, we have to make all calls
2158    // through a register, since the call instruction's 32-bit
2159    // pc-relative offset may not be large enough to hold the whole
2160    // address.
2161  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2162    // If the callee is a GlobalAddress node (quite common, every direct call
2163    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2164    // it.
2165
2166    // We should use extra load for direct calls to dllimported functions in
2167    // non-JIT mode.
2168    const GlobalValue *GV = G->getGlobal();
2169    if (!GV->hasDLLImportLinkage()) {
2170      unsigned char OpFlags = 0;
2171
2172      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2173      // external symbols most go through the PLT in PIC mode.  If the symbol
2174      // has hidden or protected visibility, or if it is static or local, then
2175      // we don't need to use the PLT - we can directly call it.
2176      if (Subtarget->isTargetELF() &&
2177          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2178          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2179        OpFlags = X86II::MO_PLT;
2180      } else if (Subtarget->isPICStyleStubAny() &&
2181               (GV->isDeclaration() || GV->isWeakForLinker()) &&
2182               Subtarget->getDarwinVers() < 9) {
2183        // PC-relative references to external symbols should go through $stub,
2184        // unless we're building with the leopard linker or later, which
2185        // automatically synthesizes these stubs.
2186        OpFlags = X86II::MO_DARWIN_STUB;
2187      }
2188
2189      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2190                                          G->getOffset(), OpFlags);
2191    }
2192  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2193    unsigned char OpFlags = 0;
2194
2195    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2196    // symbols should go through the PLT.
2197    if (Subtarget->isTargetELF() &&
2198        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2199      OpFlags = X86II::MO_PLT;
2200    } else if (Subtarget->isPICStyleStubAny() &&
2201             Subtarget->getDarwinVers() < 9) {
2202      // PC-relative references to external symbols should go through $stub,
2203      // unless we're building with the leopard linker or later, which
2204      // automatically synthesizes these stubs.
2205      OpFlags = X86II::MO_DARWIN_STUB;
2206    }
2207
2208    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2209                                         OpFlags);
2210  }
2211
2212  // Returns a chain & a flag for retval copy to use.
2213  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2214  SmallVector<SDValue, 8> Ops;
2215
2216  if (!IsSibcall && isTailCall) {
2217    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2218                           DAG.getIntPtrConstant(0, true), InFlag);
2219    InFlag = Chain.getValue(1);
2220  }
2221
2222  Ops.push_back(Chain);
2223  Ops.push_back(Callee);
2224
2225  if (isTailCall)
2226    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2227
2228  // Add argument registers to the end of the list so that they are known live
2229  // into the call.
2230  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2231    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2232                                  RegsToPass[i].second.getValueType()));
2233
2234  // Add an implicit use GOT pointer in EBX.
2235  if (!isTailCall && Subtarget->isPICStyleGOT())
2236    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2237
2238  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2239  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2240    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2241
2242  if (InFlag.getNode())
2243    Ops.push_back(InFlag);
2244
2245  if (isTailCall) {
2246    // We used to do:
2247    //// If this is the first return lowered for this function, add the regs
2248    //// to the liveout set for the function.
2249    // This isn't right, although it's probably harmless on x86; liveouts
2250    // should be computed from returns not tail calls.  Consider a void
2251    // function making a tail call to a function returning int.
2252    return DAG.getNode(X86ISD::TC_RETURN, dl,
2253                       NodeTys, &Ops[0], Ops.size());
2254  }
2255
2256  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2257  InFlag = Chain.getValue(1);
2258
2259  // Create the CALLSEQ_END node.
2260  unsigned NumBytesForCalleeToPush;
2261  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2262    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2263  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2264    // If this is a call to a struct-return function, the callee
2265    // pops the hidden struct pointer, so we have to push it back.
2266    // This is common for Darwin/X86, Linux & Mingw32 targets.
2267    NumBytesForCalleeToPush = 4;
2268  else
2269    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2270
2271  // Returns a flag for retval copy to use.
2272  if (!IsSibcall) {
2273    Chain = DAG.getCALLSEQ_END(Chain,
2274                               DAG.getIntPtrConstant(NumBytes, true),
2275                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2276                                                     true),
2277                               InFlag);
2278    InFlag = Chain.getValue(1);
2279  }
2280
2281  // Handle result values, copying them out of physregs into vregs that we
2282  // return.
2283  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2284                         Ins, dl, DAG, InVals);
2285}
2286
2287
2288//===----------------------------------------------------------------------===//
2289//                Fast Calling Convention (tail call) implementation
2290//===----------------------------------------------------------------------===//
2291
2292//  Like std call, callee cleans arguments, convention except that ECX is
2293//  reserved for storing the tail called function address. Only 2 registers are
2294//  free for argument passing (inreg). Tail call optimization is performed
2295//  provided:
2296//                * tailcallopt is enabled
2297//                * caller/callee are fastcc
2298//  On X86_64 architecture with GOT-style position independent code only local
2299//  (within module) calls are supported at the moment.
2300//  To keep the stack aligned according to platform abi the function
2301//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2302//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2303//  If a tail called function callee has more arguments than the caller the
2304//  caller needs to make sure that there is room to move the RETADDR to. This is
2305//  achieved by reserving an area the size of the argument delta right after the
2306//  original REtADDR, but before the saved framepointer or the spilled registers
2307//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2308//  stack layout:
2309//    arg1
2310//    arg2
2311//    RETADDR
2312//    [ new RETADDR
2313//      move area ]
2314//    (possible EBP)
2315//    ESI
2316//    EDI
2317//    local1 ..
2318
2319/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2320/// for a 16 byte align requirement.
2321unsigned
2322X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2323                                               SelectionDAG& DAG) const {
2324  MachineFunction &MF = DAG.getMachineFunction();
2325  const TargetMachine &TM = MF.getTarget();
2326  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2327  unsigned StackAlignment = TFI.getStackAlignment();
2328  uint64_t AlignMask = StackAlignment - 1;
2329  int64_t Offset = StackSize;
2330  uint64_t SlotSize = TD->getPointerSize();
2331  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2332    // Number smaller than 12 so just add the difference.
2333    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2334  } else {
2335    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2336    Offset = ((~AlignMask) & Offset) + StackAlignment +
2337      (StackAlignment-SlotSize);
2338  }
2339  return Offset;
2340}
2341
2342/// MatchingStackOffset - Return true if the given stack call argument is
2343/// already available in the same position (relatively) of the caller's
2344/// incoming argument stack.
2345static
2346bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2347                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2348                         const X86InstrInfo *TII) {
2349  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2350  int FI = INT_MAX;
2351  if (Arg.getOpcode() == ISD::CopyFromReg) {
2352    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2353    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2354      return false;
2355    MachineInstr *Def = MRI->getVRegDef(VR);
2356    if (!Def)
2357      return false;
2358    if (!Flags.isByVal()) {
2359      if (!TII->isLoadFromStackSlot(Def, FI))
2360        return false;
2361    } else {
2362      unsigned Opcode = Def->getOpcode();
2363      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2364          Def->getOperand(1).isFI()) {
2365        FI = Def->getOperand(1).getIndex();
2366        Bytes = Flags.getByValSize();
2367      } else
2368        return false;
2369    }
2370  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2371    if (Flags.isByVal())
2372      // ByVal argument is passed in as a pointer but it's now being
2373      // dereferenced. e.g.
2374      // define @foo(%struct.X* %A) {
2375      //   tail call @bar(%struct.X* byval %A)
2376      // }
2377      return false;
2378    SDValue Ptr = Ld->getBasePtr();
2379    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2380    if (!FINode)
2381      return false;
2382    FI = FINode->getIndex();
2383  } else
2384    return false;
2385
2386  assert(FI != INT_MAX);
2387  if (!MFI->isFixedObjectIndex(FI))
2388    return false;
2389  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2390}
2391
2392/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2393/// for tail call optimization. Targets which want to do tail call
2394/// optimization should implement this function.
2395bool
2396X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2397                                                     CallingConv::ID CalleeCC,
2398                                                     bool isVarArg,
2399                                                     bool isCalleeStructRet,
2400                                                     bool isCallerStructRet,
2401                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2402                                    const SmallVectorImpl<SDValue> &OutVals,
2403                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2404                                                     SelectionDAG& DAG) const {
2405  if (!IsTailCallConvention(CalleeCC) &&
2406      CalleeCC != CallingConv::C)
2407    return false;
2408
2409  // If -tailcallopt is specified, make fastcc functions tail-callable.
2410  const MachineFunction &MF = DAG.getMachineFunction();
2411  const Function *CallerF = DAG.getMachineFunction().getFunction();
2412  CallingConv::ID CallerCC = CallerF->getCallingConv();
2413  bool CCMatch = CallerCC == CalleeCC;
2414
2415  if (GuaranteedTailCallOpt) {
2416    if (IsTailCallConvention(CalleeCC) && CCMatch)
2417      return true;
2418    return false;
2419  }
2420
2421  // Look for obvious safe cases to perform tail call optimization that do not
2422  // require ABI changes. This is what gcc calls sibcall.
2423
2424  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2425  // emit a special epilogue.
2426  if (RegInfo->needsStackRealignment(MF))
2427    return false;
2428
2429  // Do not sibcall optimize vararg calls unless the call site is not passing
2430  // any arguments.
2431  if (isVarArg && !Outs.empty())
2432    return false;
2433
2434  // Also avoid sibcall optimization if either caller or callee uses struct
2435  // return semantics.
2436  if (isCalleeStructRet || isCallerStructRet)
2437    return false;
2438
2439  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2440  // Therefore if it's not used by the call it is not safe to optimize this into
2441  // a sibcall.
2442  bool Unused = false;
2443  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2444    if (!Ins[i].Used) {
2445      Unused = true;
2446      break;
2447    }
2448  }
2449  if (Unused) {
2450    SmallVector<CCValAssign, 16> RVLocs;
2451    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2452                   RVLocs, *DAG.getContext());
2453    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2454    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2455      CCValAssign &VA = RVLocs[i];
2456      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2457        return false;
2458    }
2459  }
2460
2461  // If the calling conventions do not match, then we'd better make sure the
2462  // results are returned in the same way as what the caller expects.
2463  if (!CCMatch) {
2464    SmallVector<CCValAssign, 16> RVLocs1;
2465    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2466                    RVLocs1, *DAG.getContext());
2467    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2468
2469    SmallVector<CCValAssign, 16> RVLocs2;
2470    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2471                    RVLocs2, *DAG.getContext());
2472    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2473
2474    if (RVLocs1.size() != RVLocs2.size())
2475      return false;
2476    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2477      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2478        return false;
2479      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2480        return false;
2481      if (RVLocs1[i].isRegLoc()) {
2482        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2483          return false;
2484      } else {
2485        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2486          return false;
2487      }
2488    }
2489  }
2490
2491  // If the callee takes no arguments then go on to check the results of the
2492  // call.
2493  if (!Outs.empty()) {
2494    // Check if stack adjustment is needed. For now, do not do this if any
2495    // argument is passed on the stack.
2496    SmallVector<CCValAssign, 16> ArgLocs;
2497    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2498                   ArgLocs, *DAG.getContext());
2499    CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
2500    if (CCInfo.getNextStackOffset()) {
2501      MachineFunction &MF = DAG.getMachineFunction();
2502      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2503        return false;
2504      if (Subtarget->isTargetWin64())
2505        // Win64 ABI has additional complications.
2506        return false;
2507
2508      // Check if the arguments are already laid out in the right way as
2509      // the caller's fixed stack objects.
2510      MachineFrameInfo *MFI = MF.getFrameInfo();
2511      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2512      const X86InstrInfo *TII =
2513        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2514      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2515        CCValAssign &VA = ArgLocs[i];
2516        SDValue Arg = OutVals[i];
2517        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2518        if (VA.getLocInfo() == CCValAssign::Indirect)
2519          return false;
2520        if (!VA.isRegLoc()) {
2521          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2522                                   MFI, MRI, TII))
2523            return false;
2524        }
2525      }
2526    }
2527
2528    // If the tailcall address may be in a register, then make sure it's
2529    // possible to register allocate for it. In 32-bit, the call address can
2530    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2531    // callee-saved registers are restored. These happen to be the same
2532    // registers used to pass 'inreg' arguments so watch out for those.
2533    if (!Subtarget->is64Bit() &&
2534        !isa<GlobalAddressSDNode>(Callee) &&
2535        !isa<ExternalSymbolSDNode>(Callee)) {
2536      unsigned NumInRegs = 0;
2537      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2538        CCValAssign &VA = ArgLocs[i];
2539        if (!VA.isRegLoc())
2540          continue;
2541        unsigned Reg = VA.getLocReg();
2542        switch (Reg) {
2543        default: break;
2544        case X86::EAX: case X86::EDX: case X86::ECX:
2545          if (++NumInRegs == 3)
2546            return false;
2547          break;
2548        }
2549      }
2550    }
2551  }
2552
2553  return true;
2554}
2555
2556FastISel *
2557X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2558  return X86::createFastISel(funcInfo);
2559}
2560
2561
2562//===----------------------------------------------------------------------===//
2563//                           Other Lowering Hooks
2564//===----------------------------------------------------------------------===//
2565
2566static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2567                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2568  switch(Opc) {
2569  default: llvm_unreachable("Unknown x86 shuffle node");
2570  case X86ISD::PSHUFD:
2571  case X86ISD::PSHUFHW:
2572  case X86ISD::PSHUFLW:
2573    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2574  }
2575
2576  return SDValue();
2577}
2578
2579static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2580               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2581  switch(Opc) {
2582  default: llvm_unreachable("Unknown x86 shuffle node");
2583  case X86ISD::SHUFPD:
2584  case X86ISD::SHUFPS:
2585    return DAG.getNode(Opc, dl, VT, V1, V2,
2586                       DAG.getConstant(TargetMask, MVT::i8));
2587  }
2588  return SDValue();
2589}
2590
2591static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2592                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2593  switch(Opc) {
2594  default: llvm_unreachable("Unknown x86 shuffle node");
2595  case X86ISD::MOVLHPS:
2596  case X86ISD::PUNPCKLDQ:
2597    return DAG.getNode(Opc, dl, VT, V1, V2);
2598  }
2599  return SDValue();
2600}
2601
2602SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2603  MachineFunction &MF = DAG.getMachineFunction();
2604  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2605  int ReturnAddrIndex = FuncInfo->getRAIndex();
2606
2607  if (ReturnAddrIndex == 0) {
2608    // Set up a frame object for the return address.
2609    uint64_t SlotSize = TD->getPointerSize();
2610    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2611                                                           false);
2612    FuncInfo->setRAIndex(ReturnAddrIndex);
2613  }
2614
2615  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2616}
2617
2618
2619bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2620                                       bool hasSymbolicDisplacement) {
2621  // Offset should fit into 32 bit immediate field.
2622  if (!isInt<32>(Offset))
2623    return false;
2624
2625  // If we don't have a symbolic displacement - we don't have any extra
2626  // restrictions.
2627  if (!hasSymbolicDisplacement)
2628    return true;
2629
2630  // FIXME: Some tweaks might be needed for medium code model.
2631  if (M != CodeModel::Small && M != CodeModel::Kernel)
2632    return false;
2633
2634  // For small code model we assume that latest object is 16MB before end of 31
2635  // bits boundary. We may also accept pretty large negative constants knowing
2636  // that all objects are in the positive half of address space.
2637  if (M == CodeModel::Small && Offset < 16*1024*1024)
2638    return true;
2639
2640  // For kernel code model we know that all object resist in the negative half
2641  // of 32bits address space. We may not accept negative offsets, since they may
2642  // be just off and we may accept pretty large positive ones.
2643  if (M == CodeModel::Kernel && Offset > 0)
2644    return true;
2645
2646  return false;
2647}
2648
2649/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2650/// specific condition code, returning the condition code and the LHS/RHS of the
2651/// comparison to make.
2652static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2653                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2654  if (!isFP) {
2655    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2656      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2657        // X > -1   -> X == 0, jump !sign.
2658        RHS = DAG.getConstant(0, RHS.getValueType());
2659        return X86::COND_NS;
2660      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2661        // X < 0   -> X == 0, jump on sign.
2662        return X86::COND_S;
2663      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2664        // X < 1   -> X <= 0
2665        RHS = DAG.getConstant(0, RHS.getValueType());
2666        return X86::COND_LE;
2667      }
2668    }
2669
2670    switch (SetCCOpcode) {
2671    default: llvm_unreachable("Invalid integer condition!");
2672    case ISD::SETEQ:  return X86::COND_E;
2673    case ISD::SETGT:  return X86::COND_G;
2674    case ISD::SETGE:  return X86::COND_GE;
2675    case ISD::SETLT:  return X86::COND_L;
2676    case ISD::SETLE:  return X86::COND_LE;
2677    case ISD::SETNE:  return X86::COND_NE;
2678    case ISD::SETULT: return X86::COND_B;
2679    case ISD::SETUGT: return X86::COND_A;
2680    case ISD::SETULE: return X86::COND_BE;
2681    case ISD::SETUGE: return X86::COND_AE;
2682    }
2683  }
2684
2685  // First determine if it is required or is profitable to flip the operands.
2686
2687  // If LHS is a foldable load, but RHS is not, flip the condition.
2688  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2689      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2690    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2691    std::swap(LHS, RHS);
2692  }
2693
2694  switch (SetCCOpcode) {
2695  default: break;
2696  case ISD::SETOLT:
2697  case ISD::SETOLE:
2698  case ISD::SETUGT:
2699  case ISD::SETUGE:
2700    std::swap(LHS, RHS);
2701    break;
2702  }
2703
2704  // On a floating point condition, the flags are set as follows:
2705  // ZF  PF  CF   op
2706  //  0 | 0 | 0 | X > Y
2707  //  0 | 0 | 1 | X < Y
2708  //  1 | 0 | 0 | X == Y
2709  //  1 | 1 | 1 | unordered
2710  switch (SetCCOpcode) {
2711  default: llvm_unreachable("Condcode should be pre-legalized away");
2712  case ISD::SETUEQ:
2713  case ISD::SETEQ:   return X86::COND_E;
2714  case ISD::SETOLT:              // flipped
2715  case ISD::SETOGT:
2716  case ISD::SETGT:   return X86::COND_A;
2717  case ISD::SETOLE:              // flipped
2718  case ISD::SETOGE:
2719  case ISD::SETGE:   return X86::COND_AE;
2720  case ISD::SETUGT:              // flipped
2721  case ISD::SETULT:
2722  case ISD::SETLT:   return X86::COND_B;
2723  case ISD::SETUGE:              // flipped
2724  case ISD::SETULE:
2725  case ISD::SETLE:   return X86::COND_BE;
2726  case ISD::SETONE:
2727  case ISD::SETNE:   return X86::COND_NE;
2728  case ISD::SETUO:   return X86::COND_P;
2729  case ISD::SETO:    return X86::COND_NP;
2730  case ISD::SETOEQ:
2731  case ISD::SETUNE:  return X86::COND_INVALID;
2732  }
2733}
2734
2735/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2736/// code. Current x86 isa includes the following FP cmov instructions:
2737/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2738static bool hasFPCMov(unsigned X86CC) {
2739  switch (X86CC) {
2740  default:
2741    return false;
2742  case X86::COND_B:
2743  case X86::COND_BE:
2744  case X86::COND_E:
2745  case X86::COND_P:
2746  case X86::COND_A:
2747  case X86::COND_AE:
2748  case X86::COND_NE:
2749  case X86::COND_NP:
2750    return true;
2751  }
2752}
2753
2754/// isFPImmLegal - Returns true if the target can instruction select the
2755/// specified FP immediate natively. If false, the legalizer will
2756/// materialize the FP immediate as a load from a constant pool.
2757bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2758  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2759    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2760      return true;
2761  }
2762  return false;
2763}
2764
2765/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2766/// the specified range (L, H].
2767static bool isUndefOrInRange(int Val, int Low, int Hi) {
2768  return (Val < 0) || (Val >= Low && Val < Hi);
2769}
2770
2771/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2772/// specified value.
2773static bool isUndefOrEqual(int Val, int CmpVal) {
2774  if (Val < 0 || Val == CmpVal)
2775    return true;
2776  return false;
2777}
2778
2779/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2780/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2781/// the second operand.
2782static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2783  if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
2784    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2785  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2786    return (Mask[0] < 2 && Mask[1] < 2);
2787  return false;
2788}
2789
2790bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2791  SmallVector<int, 8> M;
2792  N->getMask(M);
2793  return ::isPSHUFDMask(M, N->getValueType(0));
2794}
2795
2796/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2797/// is suitable for input to PSHUFHW.
2798static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2799  if (VT != MVT::v8i16)
2800    return false;
2801
2802  // Lower quadword copied in order or undef.
2803  for (int i = 0; i != 4; ++i)
2804    if (Mask[i] >= 0 && Mask[i] != i)
2805      return false;
2806
2807  // Upper quadword shuffled.
2808  for (int i = 4; i != 8; ++i)
2809    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2810      return false;
2811
2812  return true;
2813}
2814
2815bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2816  SmallVector<int, 8> M;
2817  N->getMask(M);
2818  return ::isPSHUFHWMask(M, N->getValueType(0));
2819}
2820
2821/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2822/// is suitable for input to PSHUFLW.
2823static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2824  if (VT != MVT::v8i16)
2825    return false;
2826
2827  // Upper quadword copied in order.
2828  for (int i = 4; i != 8; ++i)
2829    if (Mask[i] >= 0 && Mask[i] != i)
2830      return false;
2831
2832  // Lower quadword shuffled.
2833  for (int i = 0; i != 4; ++i)
2834    if (Mask[i] >= 4)
2835      return false;
2836
2837  return true;
2838}
2839
2840bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2841  SmallVector<int, 8> M;
2842  N->getMask(M);
2843  return ::isPSHUFLWMask(M, N->getValueType(0));
2844}
2845
2846/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2847/// is suitable for input to PALIGNR.
2848static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2849                          bool hasSSSE3) {
2850  int i, e = VT.getVectorNumElements();
2851
2852  // Do not handle v2i64 / v2f64 shuffles with palignr.
2853  if (e < 4 || !hasSSSE3)
2854    return false;
2855
2856  for (i = 0; i != e; ++i)
2857    if (Mask[i] >= 0)
2858      break;
2859
2860  // All undef, not a palignr.
2861  if (i == e)
2862    return false;
2863
2864  // Determine if it's ok to perform a palignr with only the LHS, since we
2865  // don't have access to the actual shuffle elements to see if RHS is undef.
2866  bool Unary = Mask[i] < (int)e;
2867  bool NeedsUnary = false;
2868
2869  int s = Mask[i] - i;
2870
2871  // Check the rest of the elements to see if they are consecutive.
2872  for (++i; i != e; ++i) {
2873    int m = Mask[i];
2874    if (m < 0)
2875      continue;
2876
2877    Unary = Unary && (m < (int)e);
2878    NeedsUnary = NeedsUnary || (m < s);
2879
2880    if (NeedsUnary && !Unary)
2881      return false;
2882    if (Unary && m != ((s+i) & (e-1)))
2883      return false;
2884    if (!Unary && m != (s+i))
2885      return false;
2886  }
2887  return true;
2888}
2889
2890bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2891  SmallVector<int, 8> M;
2892  N->getMask(M);
2893  return ::isPALIGNRMask(M, N->getValueType(0), true);
2894}
2895
2896/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2897/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2898static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2899  int NumElems = VT.getVectorNumElements();
2900  if (NumElems != 2 && NumElems != 4)
2901    return false;
2902
2903  int Half = NumElems / 2;
2904  for (int i = 0; i < Half; ++i)
2905    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2906      return false;
2907  for (int i = Half; i < NumElems; ++i)
2908    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2909      return false;
2910
2911  return true;
2912}
2913
2914bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2915  SmallVector<int, 8> M;
2916  N->getMask(M);
2917  return ::isSHUFPMask(M, N->getValueType(0));
2918}
2919
2920/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2921/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2922/// half elements to come from vector 1 (which would equal the dest.) and
2923/// the upper half to come from vector 2.
2924static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2925  int NumElems = VT.getVectorNumElements();
2926
2927  if (NumElems != 2 && NumElems != 4)
2928    return false;
2929
2930  int Half = NumElems / 2;
2931  for (int i = 0; i < Half; ++i)
2932    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2933      return false;
2934  for (int i = Half; i < NumElems; ++i)
2935    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2936      return false;
2937  return true;
2938}
2939
2940static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2941  SmallVector<int, 8> M;
2942  N->getMask(M);
2943  return isCommutedSHUFPMask(M, N->getValueType(0));
2944}
2945
2946/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2947/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2948bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2949  if (N->getValueType(0).getVectorNumElements() != 4)
2950    return false;
2951
2952  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2953  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2954         isUndefOrEqual(N->getMaskElt(1), 7) &&
2955         isUndefOrEqual(N->getMaskElt(2), 2) &&
2956         isUndefOrEqual(N->getMaskElt(3), 3);
2957}
2958
2959/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2960/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2961/// <2, 3, 2, 3>
2962bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2963  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2964
2965  if (NumElems != 4)
2966    return false;
2967
2968  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2969  isUndefOrEqual(N->getMaskElt(1), 3) &&
2970  isUndefOrEqual(N->getMaskElt(2), 2) &&
2971  isUndefOrEqual(N->getMaskElt(3), 3);
2972}
2973
2974/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2975/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2976bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
2977  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2978
2979  if (NumElems != 2 && NumElems != 4)
2980    return false;
2981
2982  for (unsigned i = 0; i < NumElems/2; ++i)
2983    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
2984      return false;
2985
2986  for (unsigned i = NumElems/2; i < NumElems; ++i)
2987    if (!isUndefOrEqual(N->getMaskElt(i), i))
2988      return false;
2989
2990  return true;
2991}
2992
2993/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
2994/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
2995bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
2996  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2997
2998  if (NumElems != 2 && NumElems != 4)
2999    return false;
3000
3001  for (unsigned i = 0; i < NumElems/2; ++i)
3002    if (!isUndefOrEqual(N->getMaskElt(i), i))
3003      return false;
3004
3005  for (unsigned i = 0; i < NumElems/2; ++i)
3006    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3007      return false;
3008
3009  return true;
3010}
3011
3012/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3013/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3014static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3015                         bool V2IsSplat = false) {
3016  int NumElts = VT.getVectorNumElements();
3017  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3018    return false;
3019
3020  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3021    int BitI  = Mask[i];
3022    int BitI1 = Mask[i+1];
3023    if (!isUndefOrEqual(BitI, j))
3024      return false;
3025    if (V2IsSplat) {
3026      if (!isUndefOrEqual(BitI1, NumElts))
3027        return false;
3028    } else {
3029      if (!isUndefOrEqual(BitI1, j + NumElts))
3030        return false;
3031    }
3032  }
3033  return true;
3034}
3035
3036bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3037  SmallVector<int, 8> M;
3038  N->getMask(M);
3039  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3040}
3041
3042/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3043/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3044static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3045                         bool V2IsSplat = false) {
3046  int NumElts = VT.getVectorNumElements();
3047  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3048    return false;
3049
3050  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3051    int BitI  = Mask[i];
3052    int BitI1 = Mask[i+1];
3053    if (!isUndefOrEqual(BitI, j + NumElts/2))
3054      return false;
3055    if (V2IsSplat) {
3056      if (isUndefOrEqual(BitI1, NumElts))
3057        return false;
3058    } else {
3059      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3060        return false;
3061    }
3062  }
3063  return true;
3064}
3065
3066bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3067  SmallVector<int, 8> M;
3068  N->getMask(M);
3069  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3070}
3071
3072/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3073/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3074/// <0, 0, 1, 1>
3075static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3076  int NumElems = VT.getVectorNumElements();
3077  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3078    return false;
3079
3080  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3081    int BitI  = Mask[i];
3082    int BitI1 = Mask[i+1];
3083    if (!isUndefOrEqual(BitI, j))
3084      return false;
3085    if (!isUndefOrEqual(BitI1, j))
3086      return false;
3087  }
3088  return true;
3089}
3090
3091bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3092  SmallVector<int, 8> M;
3093  N->getMask(M);
3094  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3095}
3096
3097/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3098/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3099/// <2, 2, 3, 3>
3100static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3101  int NumElems = VT.getVectorNumElements();
3102  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3103    return false;
3104
3105  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3106    int BitI  = Mask[i];
3107    int BitI1 = Mask[i+1];
3108    if (!isUndefOrEqual(BitI, j))
3109      return false;
3110    if (!isUndefOrEqual(BitI1, j))
3111      return false;
3112  }
3113  return true;
3114}
3115
3116bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3117  SmallVector<int, 8> M;
3118  N->getMask(M);
3119  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3120}
3121
3122/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3123/// specifies a shuffle of elements that is suitable for input to MOVSS,
3124/// MOVSD, and MOVD, i.e. setting the lowest element.
3125static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3126  if (VT.getVectorElementType().getSizeInBits() < 32)
3127    return false;
3128
3129  int NumElts = VT.getVectorNumElements();
3130
3131  if (!isUndefOrEqual(Mask[0], NumElts))
3132    return false;
3133
3134  for (int i = 1; i < NumElts; ++i)
3135    if (!isUndefOrEqual(Mask[i], i))
3136      return false;
3137
3138  return true;
3139}
3140
3141bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3142  SmallVector<int, 8> M;
3143  N->getMask(M);
3144  return ::isMOVLMask(M, N->getValueType(0));
3145}
3146
3147/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3148/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3149/// element of vector 2 and the other elements to come from vector 1 in order.
3150static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3151                               bool V2IsSplat = false, bool V2IsUndef = false) {
3152  int NumOps = VT.getVectorNumElements();
3153  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3154    return false;
3155
3156  if (!isUndefOrEqual(Mask[0], 0))
3157    return false;
3158
3159  for (int i = 1; i < NumOps; ++i)
3160    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3161          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3162          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3163      return false;
3164
3165  return true;
3166}
3167
3168static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3169                           bool V2IsUndef = false) {
3170  SmallVector<int, 8> M;
3171  N->getMask(M);
3172  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3173}
3174
3175/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3176/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3177bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3178  if (N->getValueType(0).getVectorNumElements() != 4)
3179    return false;
3180
3181  // Expect 1, 1, 3, 3
3182  for (unsigned i = 0; i < 2; ++i) {
3183    int Elt = N->getMaskElt(i);
3184    if (Elt >= 0 && Elt != 1)
3185      return false;
3186  }
3187
3188  bool HasHi = false;
3189  for (unsigned i = 2; i < 4; ++i) {
3190    int Elt = N->getMaskElt(i);
3191    if (Elt >= 0 && Elt != 3)
3192      return false;
3193    if (Elt == 3)
3194      HasHi = true;
3195  }
3196  // Don't use movshdup if it can be done with a shufps.
3197  // FIXME: verify that matching u, u, 3, 3 is what we want.
3198  return HasHi;
3199}
3200
3201/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3202/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3203bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3204  if (N->getValueType(0).getVectorNumElements() != 4)
3205    return false;
3206
3207  // Expect 0, 0, 2, 2
3208  for (unsigned i = 0; i < 2; ++i)
3209    if (N->getMaskElt(i) > 0)
3210      return false;
3211
3212  bool HasHi = false;
3213  for (unsigned i = 2; i < 4; ++i) {
3214    int Elt = N->getMaskElt(i);
3215    if (Elt >= 0 && Elt != 2)
3216      return false;
3217    if (Elt == 2)
3218      HasHi = true;
3219  }
3220  // Don't use movsldup if it can be done with a shufps.
3221  return HasHi;
3222}
3223
3224/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3225/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3226bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3227  int e = N->getValueType(0).getVectorNumElements() / 2;
3228
3229  for (int i = 0; i < e; ++i)
3230    if (!isUndefOrEqual(N->getMaskElt(i), i))
3231      return false;
3232  for (int i = 0; i < e; ++i)
3233    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3234      return false;
3235  return true;
3236}
3237
3238/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3239/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3240unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3241  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3242  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3243
3244  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3245  unsigned Mask = 0;
3246  for (int i = 0; i < NumOperands; ++i) {
3247    int Val = SVOp->getMaskElt(NumOperands-i-1);
3248    if (Val < 0) Val = 0;
3249    if (Val >= NumOperands) Val -= NumOperands;
3250    Mask |= Val;
3251    if (i != NumOperands - 1)
3252      Mask <<= Shift;
3253  }
3254  return Mask;
3255}
3256
3257/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3258/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3259unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3260  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3261  unsigned Mask = 0;
3262  // 8 nodes, but we only care about the last 4.
3263  for (unsigned i = 7; i >= 4; --i) {
3264    int Val = SVOp->getMaskElt(i);
3265    if (Val >= 0)
3266      Mask |= (Val - 4);
3267    if (i != 4)
3268      Mask <<= 2;
3269  }
3270  return Mask;
3271}
3272
3273/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3274/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3275unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3276  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3277  unsigned Mask = 0;
3278  // 8 nodes, but we only care about the first 4.
3279  for (int i = 3; i >= 0; --i) {
3280    int Val = SVOp->getMaskElt(i);
3281    if (Val >= 0)
3282      Mask |= Val;
3283    if (i != 0)
3284      Mask <<= 2;
3285  }
3286  return Mask;
3287}
3288
3289/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3290/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3291unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3292  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3293  EVT VVT = N->getValueType(0);
3294  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3295  int Val = 0;
3296
3297  unsigned i, e;
3298  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3299    Val = SVOp->getMaskElt(i);
3300    if (Val >= 0)
3301      break;
3302  }
3303  return (Val - i) * EltSize;
3304}
3305
3306/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3307/// constant +0.0.
3308bool X86::isZeroNode(SDValue Elt) {
3309  return ((isa<ConstantSDNode>(Elt) &&
3310           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3311          (isa<ConstantFPSDNode>(Elt) &&
3312           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3313}
3314
3315/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3316/// their permute mask.
3317static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3318                                    SelectionDAG &DAG) {
3319  EVT VT = SVOp->getValueType(0);
3320  unsigned NumElems = VT.getVectorNumElements();
3321  SmallVector<int, 8> MaskVec;
3322
3323  for (unsigned i = 0; i != NumElems; ++i) {
3324    int idx = SVOp->getMaskElt(i);
3325    if (idx < 0)
3326      MaskVec.push_back(idx);
3327    else if (idx < (int)NumElems)
3328      MaskVec.push_back(idx + NumElems);
3329    else
3330      MaskVec.push_back(idx - NumElems);
3331  }
3332  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3333                              SVOp->getOperand(0), &MaskVec[0]);
3334}
3335
3336/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3337/// the two vector operands have swapped position.
3338static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3339  unsigned NumElems = VT.getVectorNumElements();
3340  for (unsigned i = 0; i != NumElems; ++i) {
3341    int idx = Mask[i];
3342    if (idx < 0)
3343      continue;
3344    else if (idx < (int)NumElems)
3345      Mask[i] = idx + NumElems;
3346    else
3347      Mask[i] = idx - NumElems;
3348  }
3349}
3350
3351/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3352/// match movhlps. The lower half elements should come from upper half of
3353/// V1 (and in order), and the upper half elements should come from the upper
3354/// half of V2 (and in order).
3355static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3356  if (Op->getValueType(0).getVectorNumElements() != 4)
3357    return false;
3358  for (unsigned i = 0, e = 2; i != e; ++i)
3359    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3360      return false;
3361  for (unsigned i = 2; i != 4; ++i)
3362    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3363      return false;
3364  return true;
3365}
3366
3367/// isScalarLoadToVector - Returns true if the node is a scalar load that
3368/// is promoted to a vector. It also returns the LoadSDNode by reference if
3369/// required.
3370static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3371  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3372    return false;
3373  N = N->getOperand(0).getNode();
3374  if (!ISD::isNON_EXTLoad(N))
3375    return false;
3376  if (LD)
3377    *LD = cast<LoadSDNode>(N);
3378  return true;
3379}
3380
3381/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3382/// match movlp{s|d}. The lower half elements should come from lower half of
3383/// V1 (and in order), and the upper half elements should come from the upper
3384/// half of V2 (and in order). And since V1 will become the source of the
3385/// MOVLP, it must be either a vector load or a scalar load to vector.
3386static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3387                               ShuffleVectorSDNode *Op) {
3388  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3389    return false;
3390  // Is V2 is a vector load, don't do this transformation. We will try to use
3391  // load folding shufps op.
3392  if (ISD::isNON_EXTLoad(V2))
3393    return false;
3394
3395  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3396
3397  if (NumElems != 2 && NumElems != 4)
3398    return false;
3399  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3400    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3401      return false;
3402  for (unsigned i = NumElems/2; i != NumElems; ++i)
3403    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3404      return false;
3405  return true;
3406}
3407
3408/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3409/// all the same.
3410static bool isSplatVector(SDNode *N) {
3411  if (N->getOpcode() != ISD::BUILD_VECTOR)
3412    return false;
3413
3414  SDValue SplatValue = N->getOperand(0);
3415  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3416    if (N->getOperand(i) != SplatValue)
3417      return false;
3418  return true;
3419}
3420
3421/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3422/// to an zero vector.
3423/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3424static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3425  SDValue V1 = N->getOperand(0);
3426  SDValue V2 = N->getOperand(1);
3427  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3428  for (unsigned i = 0; i != NumElems; ++i) {
3429    int Idx = N->getMaskElt(i);
3430    if (Idx >= (int)NumElems) {
3431      unsigned Opc = V2.getOpcode();
3432      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3433        continue;
3434      if (Opc != ISD::BUILD_VECTOR ||
3435          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3436        return false;
3437    } else if (Idx >= 0) {
3438      unsigned Opc = V1.getOpcode();
3439      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3440        continue;
3441      if (Opc != ISD::BUILD_VECTOR ||
3442          !X86::isZeroNode(V1.getOperand(Idx)))
3443        return false;
3444    }
3445  }
3446  return true;
3447}
3448
3449/// getZeroVector - Returns a vector of specified type with all zero elements.
3450///
3451static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3452                             DebugLoc dl) {
3453  assert(VT.isVector() && "Expected a vector type");
3454
3455  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted
3456  // to their dest type. This ensures they get CSE'd.
3457  SDValue Vec;
3458  if (VT.getSizeInBits() == 64) { // MMX
3459    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3460    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3461  } else if (VT.getSizeInBits() == 128) {
3462    if (HasSSE2) {  // SSE2
3463      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3464      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3465    } else { // SSE1
3466      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3467      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3468    }
3469  } else if (VT.getSizeInBits() == 256) { // AVX
3470    // 256-bit logic and arithmetic instructions in AVX are
3471    // all floating-point, no support for integer ops. Default
3472    // to emitting fp zeroed vectors then.
3473    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3474    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3475    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3476  }
3477  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3478}
3479
3480/// getOnesVector - Returns a vector of specified type with all bits set.
3481///
3482static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3483  assert(VT.isVector() && "Expected a vector type");
3484
3485  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3486  // type.  This ensures they get CSE'd.
3487  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3488  SDValue Vec;
3489  if (VT.getSizeInBits() == 64) // MMX
3490    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
3491  else // SSE
3492    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3493  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3494}
3495
3496
3497/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3498/// that point to V2 points to its first element.
3499static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3500  EVT VT = SVOp->getValueType(0);
3501  unsigned NumElems = VT.getVectorNumElements();
3502
3503  bool Changed = false;
3504  SmallVector<int, 8> MaskVec;
3505  SVOp->getMask(MaskVec);
3506
3507  for (unsigned i = 0; i != NumElems; ++i) {
3508    if (MaskVec[i] > (int)NumElems) {
3509      MaskVec[i] = NumElems;
3510      Changed = true;
3511    }
3512  }
3513  if (Changed)
3514    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3515                                SVOp->getOperand(1), &MaskVec[0]);
3516  return SDValue(SVOp, 0);
3517}
3518
3519/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3520/// operation of specified width.
3521static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3522                       SDValue V2) {
3523  unsigned NumElems = VT.getVectorNumElements();
3524  SmallVector<int, 8> Mask;
3525  Mask.push_back(NumElems);
3526  for (unsigned i = 1; i != NumElems; ++i)
3527    Mask.push_back(i);
3528  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3529}
3530
3531/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3532static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3533                          SDValue V2) {
3534  unsigned NumElems = VT.getVectorNumElements();
3535  SmallVector<int, 8> Mask;
3536  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3537    Mask.push_back(i);
3538    Mask.push_back(i + NumElems);
3539  }
3540  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3541}
3542
3543/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3544static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3545                          SDValue V2) {
3546  unsigned NumElems = VT.getVectorNumElements();
3547  unsigned Half = NumElems/2;
3548  SmallVector<int, 8> Mask;
3549  for (unsigned i = 0; i != Half; ++i) {
3550    Mask.push_back(i + Half);
3551    Mask.push_back(i + NumElems + Half);
3552  }
3553  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3554}
3555
3556/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3557static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3558  if (SV->getValueType(0).getVectorNumElements() <= 4)
3559    return SDValue(SV, 0);
3560
3561  EVT PVT = MVT::v4f32;
3562  EVT VT = SV->getValueType(0);
3563  DebugLoc dl = SV->getDebugLoc();
3564  SDValue V1 = SV->getOperand(0);
3565  int NumElems = VT.getVectorNumElements();
3566  int EltNo = SV->getSplatIndex();
3567
3568  // unpack elements to the correct location
3569  while (NumElems > 4) {
3570    if (EltNo < NumElems/2) {
3571      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3572    } else {
3573      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3574      EltNo -= NumElems/2;
3575    }
3576    NumElems >>= 1;
3577  }
3578
3579  // Perform the splat.
3580  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3581  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3582  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3583  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3584}
3585
3586/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3587/// vector of zero or undef vector.  This produces a shuffle where the low
3588/// element of V2 is swizzled into the zero/undef vector, landing at element
3589/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3590static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3591                                             bool isZero, bool HasSSE2,
3592                                             SelectionDAG &DAG) {
3593  EVT VT = V2.getValueType();
3594  SDValue V1 = isZero
3595    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3596  unsigned NumElems = VT.getVectorNumElements();
3597  SmallVector<int, 16> MaskVec;
3598  for (unsigned i = 0; i != NumElems; ++i)
3599    // If this is the insertion idx, put the low elt of V2 here.
3600    MaskVec.push_back(i == Idx ? NumElems : i);
3601  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3602}
3603
3604/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3605/// a shuffle that is zero.
3606static
3607unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
3608                                  bool Low, SelectionDAG &DAG) {
3609  unsigned NumZeros = 0;
3610  for (int i = 0; i < NumElems; ++i) {
3611    unsigned Index = Low ? i : NumElems-i-1;
3612    int Idx = SVOp->getMaskElt(Index);
3613    if (Idx < 0) {
3614      ++NumZeros;
3615      continue;
3616    }
3617    SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
3618    if (Elt.getNode() && X86::isZeroNode(Elt))
3619      ++NumZeros;
3620    else
3621      break;
3622  }
3623  return NumZeros;
3624}
3625
3626/// isVectorShift - Returns true if the shuffle can be implemented as a
3627/// logical left or right shift of a vector.
3628/// FIXME: split into pslldqi, psrldqi, palignr variants.
3629static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3630                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3631  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3632
3633  isLeft = true;
3634  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
3635  if (!NumZeros) {
3636    isLeft = false;
3637    NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
3638    if (!NumZeros)
3639      return false;
3640  }
3641  bool SeenV1 = false;
3642  bool SeenV2 = false;
3643  for (unsigned i = NumZeros; i < NumElems; ++i) {
3644    unsigned Val = isLeft ? (i - NumZeros) : i;
3645    int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
3646    if (Idx_ < 0)
3647      continue;
3648    unsigned Idx = (unsigned) Idx_;
3649    if (Idx < NumElems)
3650      SeenV1 = true;
3651    else {
3652      Idx -= NumElems;
3653      SeenV2 = true;
3654    }
3655    if (Idx != Val)
3656      return false;
3657  }
3658  if (SeenV1 && SeenV2)
3659    return false;
3660
3661  ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
3662  ShAmt = NumZeros;
3663  return true;
3664}
3665
3666
3667/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3668///
3669static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3670                                       unsigned NumNonZero, unsigned NumZero,
3671                                       SelectionDAG &DAG,
3672                                       const TargetLowering &TLI) {
3673  if (NumNonZero > 8)
3674    return SDValue();
3675
3676  DebugLoc dl = Op.getDebugLoc();
3677  SDValue V(0, 0);
3678  bool First = true;
3679  for (unsigned i = 0; i < 16; ++i) {
3680    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3681    if (ThisIsNonZero && First) {
3682      if (NumZero)
3683        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3684      else
3685        V = DAG.getUNDEF(MVT::v8i16);
3686      First = false;
3687    }
3688
3689    if ((i & 1) != 0) {
3690      SDValue ThisElt(0, 0), LastElt(0, 0);
3691      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3692      if (LastIsNonZero) {
3693        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3694                              MVT::i16, Op.getOperand(i-1));
3695      }
3696      if (ThisIsNonZero) {
3697        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3698        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3699                              ThisElt, DAG.getConstant(8, MVT::i8));
3700        if (LastIsNonZero)
3701          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3702      } else
3703        ThisElt = LastElt;
3704
3705      if (ThisElt.getNode())
3706        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3707                        DAG.getIntPtrConstant(i/2));
3708    }
3709  }
3710
3711  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3712}
3713
3714/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3715///
3716static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3717                                     unsigned NumNonZero, unsigned NumZero,
3718                                     SelectionDAG &DAG,
3719                                     const TargetLowering &TLI) {
3720  if (NumNonZero > 4)
3721    return SDValue();
3722
3723  DebugLoc dl = Op.getDebugLoc();
3724  SDValue V(0, 0);
3725  bool First = true;
3726  for (unsigned i = 0; i < 8; ++i) {
3727    bool isNonZero = (NonZeros & (1 << i)) != 0;
3728    if (isNonZero) {
3729      if (First) {
3730        if (NumZero)
3731          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3732        else
3733          V = DAG.getUNDEF(MVT::v8i16);
3734        First = false;
3735      }
3736      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3737                      MVT::v8i16, V, Op.getOperand(i),
3738                      DAG.getIntPtrConstant(i));
3739    }
3740  }
3741
3742  return V;
3743}
3744
3745/// getVShift - Return a vector logical shift node.
3746///
3747static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3748                         unsigned NumBits, SelectionDAG &DAG,
3749                         const TargetLowering &TLI, DebugLoc dl) {
3750  bool isMMX = VT.getSizeInBits() == 64;
3751  EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3752  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3753  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3754  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3755                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3756                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3757}
3758
3759SDValue
3760X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3761                                          SelectionDAG &DAG) const {
3762
3763  // Check if the scalar load can be widened into a vector load. And if
3764  // the address is "base + cst" see if the cst can be "absorbed" into
3765  // the shuffle mask.
3766  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3767    SDValue Ptr = LD->getBasePtr();
3768    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3769      return SDValue();
3770    EVT PVT = LD->getValueType(0);
3771    if (PVT != MVT::i32 && PVT != MVT::f32)
3772      return SDValue();
3773
3774    int FI = -1;
3775    int64_t Offset = 0;
3776    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3777      FI = FINode->getIndex();
3778      Offset = 0;
3779    } else if (Ptr.getOpcode() == ISD::ADD &&
3780               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3781               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3782      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3783      Offset = Ptr.getConstantOperandVal(1);
3784      Ptr = Ptr.getOperand(0);
3785    } else {
3786      return SDValue();
3787    }
3788
3789    SDValue Chain = LD->getChain();
3790    // Make sure the stack object alignment is at least 16.
3791    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3792    if (DAG.InferPtrAlignment(Ptr) < 16) {
3793      if (MFI->isFixedObjectIndex(FI)) {
3794        // Can't change the alignment. FIXME: It's possible to compute
3795        // the exact stack offset and reference FI + adjust offset instead.
3796        // If someone *really* cares about this. That's the way to implement it.
3797        return SDValue();
3798      } else {
3799        MFI->setObjectAlignment(FI, 16);
3800      }
3801    }
3802
3803    // (Offset % 16) must be multiple of 4. Then address is then
3804    // Ptr + (Offset & ~15).
3805    if (Offset < 0)
3806      return SDValue();
3807    if ((Offset % 16) & 3)
3808      return SDValue();
3809    int64_t StartOffset = Offset & ~15;
3810    if (StartOffset)
3811      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
3812                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
3813
3814    int EltNo = (Offset - StartOffset) >> 2;
3815    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
3816    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
3817    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
3818                             false, false, 0);
3819    // Canonicalize it to a v4i32 shuffle.
3820    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
3821    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3822                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
3823                                            DAG.getUNDEF(MVT::v4i32), &Mask[0]));
3824  }
3825
3826  return SDValue();
3827}
3828
3829/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
3830/// vector of type 'VT', see if the elements can be replaced by a single large
3831/// load which has the same value as a build_vector whose operands are 'elts'.
3832///
3833/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
3834///
3835/// FIXME: we'd also like to handle the case where the last elements are zero
3836/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
3837/// There's even a handy isZeroNode for that purpose.
3838static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
3839                                        DebugLoc &dl, SelectionDAG &DAG) {
3840  EVT EltVT = VT.getVectorElementType();
3841  unsigned NumElems = Elts.size();
3842
3843  LoadSDNode *LDBase = NULL;
3844  unsigned LastLoadedElt = -1U;
3845
3846  // For each element in the initializer, see if we've found a load or an undef.
3847  // If we don't find an initial load element, or later load elements are
3848  // non-consecutive, bail out.
3849  for (unsigned i = 0; i < NumElems; ++i) {
3850    SDValue Elt = Elts[i];
3851
3852    if (!Elt.getNode() ||
3853        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
3854      return SDValue();
3855    if (!LDBase) {
3856      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
3857        return SDValue();
3858      LDBase = cast<LoadSDNode>(Elt.getNode());
3859      LastLoadedElt = i;
3860      continue;
3861    }
3862    if (Elt.getOpcode() == ISD::UNDEF)
3863      continue;
3864
3865    LoadSDNode *LD = cast<LoadSDNode>(Elt);
3866    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
3867      return SDValue();
3868    LastLoadedElt = i;
3869  }
3870
3871  // If we have found an entire vector of loads and undefs, then return a large
3872  // load of the entire vector width starting at the base pointer.  If we found
3873  // consecutive loads for the low half, generate a vzext_load node.
3874  if (LastLoadedElt == NumElems - 1) {
3875    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
3876      return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3877                         LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3878                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
3879    return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
3880                       LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
3881                       LDBase->isVolatile(), LDBase->isNonTemporal(),
3882                       LDBase->getAlignment());
3883  } else if (NumElems == 4 && LastLoadedElt == 1) {
3884    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
3885    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
3886    SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
3887    return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
3888  }
3889  return SDValue();
3890}
3891
3892SDValue
3893X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
3894  DebugLoc dl = Op.getDebugLoc();
3895  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1 and
3896  // all one's are handled with pcmpeqd. In AVX, zero's are handled with
3897  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
3898  // is present, so AllOnes is ignored.
3899  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
3900      (Op.getValueType().getSizeInBits() != 256 &&
3901       ISD::isBuildVectorAllOnes(Op.getNode()))) {
3902    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3903    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3904    // eliminated on x86-32 hosts.
3905    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3906      return Op;
3907
3908    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3909      return getOnesVector(Op.getValueType(), DAG, dl);
3910    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
3911  }
3912
3913  EVT VT = Op.getValueType();
3914  EVT ExtVT = VT.getVectorElementType();
3915  unsigned EVTBits = ExtVT.getSizeInBits();
3916
3917  unsigned NumElems = Op.getNumOperands();
3918  unsigned NumZero  = 0;
3919  unsigned NumNonZero = 0;
3920  unsigned NonZeros = 0;
3921  bool IsAllConstants = true;
3922  SmallSet<SDValue, 8> Values;
3923  for (unsigned i = 0; i < NumElems; ++i) {
3924    SDValue Elt = Op.getOperand(i);
3925    if (Elt.getOpcode() == ISD::UNDEF)
3926      continue;
3927    Values.insert(Elt);
3928    if (Elt.getOpcode() != ISD::Constant &&
3929        Elt.getOpcode() != ISD::ConstantFP)
3930      IsAllConstants = false;
3931    if (X86::isZeroNode(Elt))
3932      NumZero++;
3933    else {
3934      NonZeros |= (1 << i);
3935      NumNonZero++;
3936    }
3937  }
3938
3939  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3940  if (NumNonZero == 0)
3941    return DAG.getUNDEF(VT);
3942
3943  // Special case for single non-zero, non-undef, element.
3944  if (NumNonZero == 1) {
3945    unsigned Idx = CountTrailingZeros_32(NonZeros);
3946    SDValue Item = Op.getOperand(Idx);
3947
3948    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3949    // the value are obviously zero, truncate the value to i32 and do the
3950    // insertion that way.  Only do this if the value is non-constant or if the
3951    // value is a constant being inserted into element 0.  It is cheaper to do
3952    // a constant pool load than it is to do a movd + shuffle.
3953    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
3954        (!IsAllConstants || Idx == 0)) {
3955      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3956        // Handle MMX and SSE both.
3957        EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3958        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3959
3960        // Truncate the value (which may itself be a constant) to i32, and
3961        // convert it to a vector with movd (S2V+shuffle to zero extend).
3962        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
3963        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
3964        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3965                                           Subtarget->hasSSE2(), DAG);
3966
3967        // Now we have our 32-bit value zero extended in the low element of
3968        // a vector.  If Idx != 0, swizzle it into place.
3969        if (Idx != 0) {
3970          SmallVector<int, 4> Mask;
3971          Mask.push_back(Idx);
3972          for (unsigned i = 1; i != VecElts; ++i)
3973            Mask.push_back(i);
3974          Item = DAG.getVectorShuffle(VecVT, dl, Item,
3975                                      DAG.getUNDEF(Item.getValueType()),
3976                                      &Mask[0]);
3977        }
3978        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
3979      }
3980    }
3981
3982    // If we have a constant or non-constant insertion into the low element of
3983    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3984    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3985    // depending on what the source datatype is.
3986    if (Idx == 0) {
3987      if (NumZero == 0) {
3988        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3989      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
3990          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
3991        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
3992        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3993        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
3994                                           DAG);
3995      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
3996        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
3997        EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
3998        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
3999        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4000                                           Subtarget->hasSSE2(), DAG);
4001        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
4002      }
4003    }
4004
4005    // Is it a vector logical left shift?
4006    if (NumElems == 2 && Idx == 1 &&
4007        X86::isZeroNode(Op.getOperand(0)) &&
4008        !X86::isZeroNode(Op.getOperand(1))) {
4009      unsigned NumBits = VT.getSizeInBits();
4010      return getVShift(true, VT,
4011                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4012                                   VT, Op.getOperand(1)),
4013                       NumBits/2, DAG, *this, dl);
4014    }
4015
4016    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4017      return SDValue();
4018
4019    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4020    // is a non-constant being inserted into an element other than the low one,
4021    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4022    // movd/movss) to move this into the low element, then shuffle it into
4023    // place.
4024    if (EVTBits == 32) {
4025      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4026
4027      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4028      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4029                                         Subtarget->hasSSE2(), DAG);
4030      SmallVector<int, 8> MaskVec;
4031      for (unsigned i = 0; i < NumElems; i++)
4032        MaskVec.push_back(i == Idx ? 0 : 1);
4033      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4034    }
4035  }
4036
4037  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4038  if (Values.size() == 1) {
4039    if (EVTBits == 32) {
4040      // Instead of a shuffle like this:
4041      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4042      // Check if it's possible to issue this instead.
4043      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4044      unsigned Idx = CountTrailingZeros_32(NonZeros);
4045      SDValue Item = Op.getOperand(Idx);
4046      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4047        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4048    }
4049    return SDValue();
4050  }
4051
4052  // A vector full of immediates; various special cases are already
4053  // handled, so this is best done with a single constant-pool load.
4054  if (IsAllConstants)
4055    return SDValue();
4056
4057  // Let legalizer expand 2-wide build_vectors.
4058  if (EVTBits == 64) {
4059    if (NumNonZero == 1) {
4060      // One half is zero or undef.
4061      unsigned Idx = CountTrailingZeros_32(NonZeros);
4062      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4063                                 Op.getOperand(Idx));
4064      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4065                                         Subtarget->hasSSE2(), DAG);
4066    }
4067    return SDValue();
4068  }
4069
4070  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4071  if (EVTBits == 8 && NumElems == 16) {
4072    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4073                                        *this);
4074    if (V.getNode()) return V;
4075  }
4076
4077  if (EVTBits == 16 && NumElems == 8) {
4078    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4079                                      *this);
4080    if (V.getNode()) return V;
4081  }
4082
4083  // If element VT is == 32 bits, turn it into a number of shuffles.
4084  SmallVector<SDValue, 8> V;
4085  V.resize(NumElems);
4086  if (NumElems == 4 && NumZero > 0) {
4087    for (unsigned i = 0; i < 4; ++i) {
4088      bool isZero = !(NonZeros & (1 << i));
4089      if (isZero)
4090        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4091      else
4092        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4093    }
4094
4095    for (unsigned i = 0; i < 2; ++i) {
4096      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4097        default: break;
4098        case 0:
4099          V[i] = V[i*2];  // Must be a zero vector.
4100          break;
4101        case 1:
4102          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4103          break;
4104        case 2:
4105          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4106          break;
4107        case 3:
4108          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4109          break;
4110      }
4111    }
4112
4113    SmallVector<int, 8> MaskVec;
4114    bool Reverse = (NonZeros & 0x3) == 2;
4115    for (unsigned i = 0; i < 2; ++i)
4116      MaskVec.push_back(Reverse ? 1-i : i);
4117    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4118    for (unsigned i = 0; i < 2; ++i)
4119      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4120    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4121  }
4122
4123  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4124    // Check for a build vector of consecutive loads.
4125    for (unsigned i = 0; i < NumElems; ++i)
4126      V[i] = Op.getOperand(i);
4127
4128    // Check for elements which are consecutive loads.
4129    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4130    if (LD.getNode())
4131      return LD;
4132
4133    // For SSE 4.1, use inserts into undef.
4134    if (getSubtarget()->hasSSE41()) {
4135      V[0] = DAG.getUNDEF(VT);
4136      for (unsigned i = 0; i < NumElems; ++i)
4137        if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4138          V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
4139                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4140      return V[0];
4141    }
4142
4143    // Otherwise, expand into a number of unpckl*
4144    // e.g. for v4f32
4145    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4146    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4147    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4148    for (unsigned i = 0; i < NumElems; ++i)
4149      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4150    NumElems >>= 1;
4151    while (NumElems != 0) {
4152      for (unsigned i = 0; i < NumElems; ++i)
4153        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
4154      NumElems >>= 1;
4155    }
4156    return V[0];
4157  }
4158  return SDValue();
4159}
4160
4161SDValue
4162X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4163  // We support concatenate two MMX registers and place them in a MMX
4164  // register.  This is better than doing a stack convert.
4165  DebugLoc dl = Op.getDebugLoc();
4166  EVT ResVT = Op.getValueType();
4167  assert(Op.getNumOperands() == 2);
4168  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4169         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4170  int Mask[2];
4171  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4172  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4173  InVec = Op.getOperand(1);
4174  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4175    unsigned NumElts = ResVT.getVectorNumElements();
4176    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4177    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4178                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4179  } else {
4180    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4181    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4182    Mask[0] = 0; Mask[1] = 2;
4183    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4184  }
4185  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4186}
4187
4188// v8i16 shuffles - Prefer shuffles in the following order:
4189// 1. [all]   pshuflw, pshufhw, optional move
4190// 2. [ssse3] 1 x pshufb
4191// 3. [ssse3] 2 x pshufb + 1 x por
4192// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4193SDValue
4194X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4195                                            SelectionDAG &DAG) const {
4196  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4197  SDValue V1 = SVOp->getOperand(0);
4198  SDValue V2 = SVOp->getOperand(1);
4199  DebugLoc dl = SVOp->getDebugLoc();
4200  SmallVector<int, 8> MaskVals;
4201
4202  // Determine if more than 1 of the words in each of the low and high quadwords
4203  // of the result come from the same quadword of one of the two inputs.  Undef
4204  // mask values count as coming from any quadword, for better codegen.
4205  SmallVector<unsigned, 4> LoQuad(4);
4206  SmallVector<unsigned, 4> HiQuad(4);
4207  BitVector InputQuads(4);
4208  for (unsigned i = 0; i < 8; ++i) {
4209    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4210    int EltIdx = SVOp->getMaskElt(i);
4211    MaskVals.push_back(EltIdx);
4212    if (EltIdx < 0) {
4213      ++Quad[0];
4214      ++Quad[1];
4215      ++Quad[2];
4216      ++Quad[3];
4217      continue;
4218    }
4219    ++Quad[EltIdx / 4];
4220    InputQuads.set(EltIdx / 4);
4221  }
4222
4223  int BestLoQuad = -1;
4224  unsigned MaxQuad = 1;
4225  for (unsigned i = 0; i < 4; ++i) {
4226    if (LoQuad[i] > MaxQuad) {
4227      BestLoQuad = i;
4228      MaxQuad = LoQuad[i];
4229    }
4230  }
4231
4232  int BestHiQuad = -1;
4233  MaxQuad = 1;
4234  for (unsigned i = 0; i < 4; ++i) {
4235    if (HiQuad[i] > MaxQuad) {
4236      BestHiQuad = i;
4237      MaxQuad = HiQuad[i];
4238    }
4239  }
4240
4241  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4242  // of the two input vectors, shuffle them into one input vector so only a
4243  // single pshufb instruction is necessary. If There are more than 2 input
4244  // quads, disable the next transformation since it does not help SSSE3.
4245  bool V1Used = InputQuads[0] || InputQuads[1];
4246  bool V2Used = InputQuads[2] || InputQuads[3];
4247  if (Subtarget->hasSSSE3()) {
4248    if (InputQuads.count() == 2 && V1Used && V2Used) {
4249      BestLoQuad = InputQuads.find_first();
4250      BestHiQuad = InputQuads.find_next(BestLoQuad);
4251    }
4252    if (InputQuads.count() > 2) {
4253      BestLoQuad = -1;
4254      BestHiQuad = -1;
4255    }
4256  }
4257
4258  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4259  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4260  // words from all 4 input quadwords.
4261  SDValue NewV;
4262  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4263    SmallVector<int, 8> MaskV;
4264    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4265    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4266    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4267                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4268                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4269    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4270
4271    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4272    // source words for the shuffle, to aid later transformations.
4273    bool AllWordsInNewV = true;
4274    bool InOrder[2] = { true, true };
4275    for (unsigned i = 0; i != 8; ++i) {
4276      int idx = MaskVals[i];
4277      if (idx != (int)i)
4278        InOrder[i/4] = false;
4279      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4280        continue;
4281      AllWordsInNewV = false;
4282      break;
4283    }
4284
4285    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4286    if (AllWordsInNewV) {
4287      for (int i = 0; i != 8; ++i) {
4288        int idx = MaskVals[i];
4289        if (idx < 0)
4290          continue;
4291        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4292        if ((idx != i) && idx < 4)
4293          pshufhw = false;
4294        if ((idx != i) && idx > 3)
4295          pshuflw = false;
4296      }
4297      V1 = NewV;
4298      V2Used = false;
4299      BestLoQuad = 0;
4300      BestHiQuad = 1;
4301    }
4302
4303    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4304    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4305    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4306      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4307      unsigned TargetMask = 0;
4308      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4309                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4310      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4311                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4312      V1 = NewV.getOperand(0);
4313      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4314    }
4315  }
4316
4317  // If we have SSSE3, and all words of the result are from 1 input vector,
4318  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4319  // is present, fall back to case 4.
4320  if (Subtarget->hasSSSE3()) {
4321    SmallVector<SDValue,16> pshufbMask;
4322
4323    // If we have elements from both input vectors, set the high bit of the
4324    // shuffle mask element to zero out elements that come from V2 in the V1
4325    // mask, and elements that come from V1 in the V2 mask, so that the two
4326    // results can be OR'd together.
4327    bool TwoInputs = V1Used && V2Used;
4328    for (unsigned i = 0; i != 8; ++i) {
4329      int EltIdx = MaskVals[i] * 2;
4330      if (TwoInputs && (EltIdx >= 16)) {
4331        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4332        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4333        continue;
4334      }
4335      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4336      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4337    }
4338    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4339    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4340                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4341                                 MVT::v16i8, &pshufbMask[0], 16));
4342    if (!TwoInputs)
4343      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4344
4345    // Calculate the shuffle mask for the second input, shuffle it, and
4346    // OR it with the first shuffled input.
4347    pshufbMask.clear();
4348    for (unsigned i = 0; i != 8; ++i) {
4349      int EltIdx = MaskVals[i] * 2;
4350      if (EltIdx < 16) {
4351        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4352        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4353        continue;
4354      }
4355      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4356      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4357    }
4358    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4359    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4360                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4361                                 MVT::v16i8, &pshufbMask[0], 16));
4362    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4363    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4364  }
4365
4366  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4367  // and update MaskVals with new element order.
4368  BitVector InOrder(8);
4369  if (BestLoQuad >= 0) {
4370    SmallVector<int, 8> MaskV;
4371    for (int i = 0; i != 4; ++i) {
4372      int idx = MaskVals[i];
4373      if (idx < 0) {
4374        MaskV.push_back(-1);
4375        InOrder.set(i);
4376      } else if ((idx / 4) == BestLoQuad) {
4377        MaskV.push_back(idx & 3);
4378        InOrder.set(i);
4379      } else {
4380        MaskV.push_back(-1);
4381      }
4382    }
4383    for (unsigned i = 4; i != 8; ++i)
4384      MaskV.push_back(i);
4385    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4386                                &MaskV[0]);
4387
4388    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4389      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4390                               NewV.getOperand(0),
4391                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4392                               DAG);
4393  }
4394
4395  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4396  // and update MaskVals with the new element order.
4397  if (BestHiQuad >= 0) {
4398    SmallVector<int, 8> MaskV;
4399    for (unsigned i = 0; i != 4; ++i)
4400      MaskV.push_back(i);
4401    for (unsigned i = 4; i != 8; ++i) {
4402      int idx = MaskVals[i];
4403      if (idx < 0) {
4404        MaskV.push_back(-1);
4405        InOrder.set(i);
4406      } else if ((idx / 4) == BestHiQuad) {
4407        MaskV.push_back((idx & 3) + 4);
4408        InOrder.set(i);
4409      } else {
4410        MaskV.push_back(-1);
4411      }
4412    }
4413    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4414                                &MaskV[0]);
4415
4416    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4417      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4418                              NewV.getOperand(0),
4419                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4420                              DAG);
4421  }
4422
4423  // In case BestHi & BestLo were both -1, which means each quadword has a word
4424  // from each of the four input quadwords, calculate the InOrder bitvector now
4425  // before falling through to the insert/extract cleanup.
4426  if (BestLoQuad == -1 && BestHiQuad == -1) {
4427    NewV = V1;
4428    for (int i = 0; i != 8; ++i)
4429      if (MaskVals[i] < 0 || MaskVals[i] == i)
4430        InOrder.set(i);
4431  }
4432
4433  // The other elements are put in the right place using pextrw and pinsrw.
4434  for (unsigned i = 0; i != 8; ++i) {
4435    if (InOrder[i])
4436      continue;
4437    int EltIdx = MaskVals[i];
4438    if (EltIdx < 0)
4439      continue;
4440    SDValue ExtOp = (EltIdx < 8)
4441    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4442                  DAG.getIntPtrConstant(EltIdx))
4443    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4444                  DAG.getIntPtrConstant(EltIdx - 8));
4445    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4446                       DAG.getIntPtrConstant(i));
4447  }
4448  return NewV;
4449}
4450
4451// v16i8 shuffles - Prefer shuffles in the following order:
4452// 1. [ssse3] 1 x pshufb
4453// 2. [ssse3] 2 x pshufb + 1 x por
4454// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4455static
4456SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4457                                 SelectionDAG &DAG,
4458                                 const X86TargetLowering &TLI) {
4459  SDValue V1 = SVOp->getOperand(0);
4460  SDValue V2 = SVOp->getOperand(1);
4461  DebugLoc dl = SVOp->getDebugLoc();
4462  SmallVector<int, 16> MaskVals;
4463  SVOp->getMask(MaskVals);
4464
4465  // If we have SSSE3, case 1 is generated when all result bytes come from
4466  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4467  // present, fall back to case 3.
4468  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4469  bool V1Only = true;
4470  bool V2Only = true;
4471  for (unsigned i = 0; i < 16; ++i) {
4472    int EltIdx = MaskVals[i];
4473    if (EltIdx < 0)
4474      continue;
4475    if (EltIdx < 16)
4476      V2Only = false;
4477    else
4478      V1Only = false;
4479  }
4480
4481  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4482  if (TLI.getSubtarget()->hasSSSE3()) {
4483    SmallVector<SDValue,16> pshufbMask;
4484
4485    // If all result elements are from one input vector, then only translate
4486    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4487    //
4488    // Otherwise, we have elements from both input vectors, and must zero out
4489    // elements that come from V2 in the first mask, and V1 in the second mask
4490    // so that we can OR them together.
4491    bool TwoInputs = !(V1Only || V2Only);
4492    for (unsigned i = 0; i != 16; ++i) {
4493      int EltIdx = MaskVals[i];
4494      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4495        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4496        continue;
4497      }
4498      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4499    }
4500    // If all the elements are from V2, assign it to V1 and return after
4501    // building the first pshufb.
4502    if (V2Only)
4503      V1 = V2;
4504    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4505                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4506                                 MVT::v16i8, &pshufbMask[0], 16));
4507    if (!TwoInputs)
4508      return V1;
4509
4510    // Calculate the shuffle mask for the second input, shuffle it, and
4511    // OR it with the first shuffled input.
4512    pshufbMask.clear();
4513    for (unsigned i = 0; i != 16; ++i) {
4514      int EltIdx = MaskVals[i];
4515      if (EltIdx < 16) {
4516        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4517        continue;
4518      }
4519      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4520    }
4521    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4522                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4523                                 MVT::v16i8, &pshufbMask[0], 16));
4524    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4525  }
4526
4527  // No SSSE3 - Calculate in place words and then fix all out of place words
4528  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4529  // the 16 different words that comprise the two doublequadword input vectors.
4530  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4531  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4532  SDValue NewV = V2Only ? V2 : V1;
4533  for (int i = 0; i != 8; ++i) {
4534    int Elt0 = MaskVals[i*2];
4535    int Elt1 = MaskVals[i*2+1];
4536
4537    // This word of the result is all undef, skip it.
4538    if (Elt0 < 0 && Elt1 < 0)
4539      continue;
4540
4541    // This word of the result is already in the correct place, skip it.
4542    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4543      continue;
4544    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4545      continue;
4546
4547    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4548    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4549    SDValue InsElt;
4550
4551    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4552    // using a single extract together, load it and store it.
4553    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4554      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4555                           DAG.getIntPtrConstant(Elt1 / 2));
4556      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4557                        DAG.getIntPtrConstant(i));
4558      continue;
4559    }
4560
4561    // If Elt1 is defined, extract it from the appropriate source.  If the
4562    // source byte is not also odd, shift the extracted word left 8 bits
4563    // otherwise clear the bottom 8 bits if we need to do an or.
4564    if (Elt1 >= 0) {
4565      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4566                           DAG.getIntPtrConstant(Elt1 / 2));
4567      if ((Elt1 & 1) == 0)
4568        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4569                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4570      else if (Elt0 >= 0)
4571        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4572                             DAG.getConstant(0xFF00, MVT::i16));
4573    }
4574    // If Elt0 is defined, extract it from the appropriate source.  If the
4575    // source byte is not also even, shift the extracted word right 8 bits. If
4576    // Elt1 was also defined, OR the extracted values together before
4577    // inserting them in the result.
4578    if (Elt0 >= 0) {
4579      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4580                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4581      if ((Elt0 & 1) != 0)
4582        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4583                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4584      else if (Elt1 >= 0)
4585        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4586                             DAG.getConstant(0x00FF, MVT::i16));
4587      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4588                         : InsElt0;
4589    }
4590    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4591                       DAG.getIntPtrConstant(i));
4592  }
4593  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4594}
4595
4596/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4597/// ones, or rewriting v4i32 / v2i32 as 2 wide ones if possible. This can be
4598/// done when every pair / quad of shuffle mask elements point to elements in
4599/// the right sequence. e.g.
4600/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
4601static
4602SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4603                                 SelectionDAG &DAG,
4604                                 const TargetLowering &TLI, DebugLoc dl) {
4605  EVT VT = SVOp->getValueType(0);
4606  SDValue V1 = SVOp->getOperand(0);
4607  SDValue V2 = SVOp->getOperand(1);
4608  unsigned NumElems = VT.getVectorNumElements();
4609  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4610  EVT MaskVT = (NewWidth == 4) ? MVT::v4i16 : MVT::v2i32;
4611  EVT NewVT = MaskVT;
4612  switch (VT.getSimpleVT().SimpleTy) {
4613  default: assert(false && "Unexpected!");
4614  case MVT::v4f32: NewVT = MVT::v2f64; break;
4615  case MVT::v4i32: NewVT = MVT::v2i64; break;
4616  case MVT::v8i16: NewVT = MVT::v4i32; break;
4617  case MVT::v16i8: NewVT = MVT::v4i32; break;
4618  }
4619
4620  if (NewWidth == 2) {
4621    if (VT.isInteger())
4622      NewVT = MVT::v2i64;
4623    else
4624      NewVT = MVT::v2f64;
4625  }
4626  int Scale = NumElems / NewWidth;
4627  SmallVector<int, 8> MaskVec;
4628  for (unsigned i = 0; i < NumElems; i += Scale) {
4629    int StartIdx = -1;
4630    for (int j = 0; j < Scale; ++j) {
4631      int EltIdx = SVOp->getMaskElt(i+j);
4632      if (EltIdx < 0)
4633        continue;
4634      if (StartIdx == -1)
4635        StartIdx = EltIdx - (EltIdx % Scale);
4636      if (EltIdx != StartIdx + j)
4637        return SDValue();
4638    }
4639    if (StartIdx == -1)
4640      MaskVec.push_back(-1);
4641    else
4642      MaskVec.push_back(StartIdx / Scale);
4643  }
4644
4645  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4646  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4647  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4648}
4649
4650/// getVZextMovL - Return a zero-extending vector move low node.
4651///
4652static SDValue getVZextMovL(EVT VT, EVT OpVT,
4653                            SDValue SrcOp, SelectionDAG &DAG,
4654                            const X86Subtarget *Subtarget, DebugLoc dl) {
4655  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4656    LoadSDNode *LD = NULL;
4657    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4658      LD = dyn_cast<LoadSDNode>(SrcOp);
4659    if (!LD) {
4660      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4661      // instead.
4662      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4663      if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
4664          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4665          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4666          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4667        // PR2108
4668        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4669        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4670                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4671                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4672                                                   OpVT,
4673                                                   SrcOp.getOperand(0)
4674                                                          .getOperand(0))));
4675      }
4676    }
4677  }
4678
4679  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4680                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4681                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4682                                             OpVT, SrcOp)));
4683}
4684
4685/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4686/// shuffles.
4687static SDValue
4688LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4689  SDValue V1 = SVOp->getOperand(0);
4690  SDValue V2 = SVOp->getOperand(1);
4691  DebugLoc dl = SVOp->getDebugLoc();
4692  EVT VT = SVOp->getValueType(0);
4693
4694  SmallVector<std::pair<int, int>, 8> Locs;
4695  Locs.resize(4);
4696  SmallVector<int, 8> Mask1(4U, -1);
4697  SmallVector<int, 8> PermMask;
4698  SVOp->getMask(PermMask);
4699
4700  unsigned NumHi = 0;
4701  unsigned NumLo = 0;
4702  for (unsigned i = 0; i != 4; ++i) {
4703    int Idx = PermMask[i];
4704    if (Idx < 0) {
4705      Locs[i] = std::make_pair(-1, -1);
4706    } else {
4707      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4708      if (Idx < 4) {
4709        Locs[i] = std::make_pair(0, NumLo);
4710        Mask1[NumLo] = Idx;
4711        NumLo++;
4712      } else {
4713        Locs[i] = std::make_pair(1, NumHi);
4714        if (2+NumHi < 4)
4715          Mask1[2+NumHi] = Idx;
4716        NumHi++;
4717      }
4718    }
4719  }
4720
4721  if (NumLo <= 2 && NumHi <= 2) {
4722    // If no more than two elements come from either vector. This can be
4723    // implemented with two shuffles. First shuffle gather the elements.
4724    // The second shuffle, which takes the first shuffle as both of its
4725    // vector operands, put the elements into the right order.
4726    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4727
4728    SmallVector<int, 8> Mask2(4U, -1);
4729
4730    for (unsigned i = 0; i != 4; ++i) {
4731      if (Locs[i].first == -1)
4732        continue;
4733      else {
4734        unsigned Idx = (i < 2) ? 0 : 4;
4735        Idx += Locs[i].first * 2 + Locs[i].second;
4736        Mask2[i] = Idx;
4737      }
4738    }
4739
4740    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4741  } else if (NumLo == 3 || NumHi == 3) {
4742    // Otherwise, we must have three elements from one vector, call it X, and
4743    // one element from the other, call it Y.  First, use a shufps to build an
4744    // intermediate vector with the one element from Y and the element from X
4745    // that will be in the same half in the final destination (the indexes don't
4746    // matter). Then, use a shufps to build the final vector, taking the half
4747    // containing the element from Y from the intermediate, and the other half
4748    // from X.
4749    if (NumHi == 3) {
4750      // Normalize it so the 3 elements come from V1.
4751      CommuteVectorShuffleMask(PermMask, VT);
4752      std::swap(V1, V2);
4753    }
4754
4755    // Find the element from V2.
4756    unsigned HiIndex;
4757    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4758      int Val = PermMask[HiIndex];
4759      if (Val < 0)
4760        continue;
4761      if (Val >= 4)
4762        break;
4763    }
4764
4765    Mask1[0] = PermMask[HiIndex];
4766    Mask1[1] = -1;
4767    Mask1[2] = PermMask[HiIndex^1];
4768    Mask1[3] = -1;
4769    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4770
4771    if (HiIndex >= 2) {
4772      Mask1[0] = PermMask[0];
4773      Mask1[1] = PermMask[1];
4774      Mask1[2] = HiIndex & 1 ? 6 : 4;
4775      Mask1[3] = HiIndex & 1 ? 4 : 6;
4776      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4777    } else {
4778      Mask1[0] = HiIndex & 1 ? 2 : 0;
4779      Mask1[1] = HiIndex & 1 ? 0 : 2;
4780      Mask1[2] = PermMask[2];
4781      Mask1[3] = PermMask[3];
4782      if (Mask1[2] >= 0)
4783        Mask1[2] += 4;
4784      if (Mask1[3] >= 0)
4785        Mask1[3] += 4;
4786      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
4787    }
4788  }
4789
4790  // Break it into (shuffle shuffle_hi, shuffle_lo).
4791  Locs.clear();
4792  SmallVector<int,8> LoMask(4U, -1);
4793  SmallVector<int,8> HiMask(4U, -1);
4794
4795  SmallVector<int,8> *MaskPtr = &LoMask;
4796  unsigned MaskIdx = 0;
4797  unsigned LoIdx = 0;
4798  unsigned HiIdx = 2;
4799  for (unsigned i = 0; i != 4; ++i) {
4800    if (i == 2) {
4801      MaskPtr = &HiMask;
4802      MaskIdx = 1;
4803      LoIdx = 0;
4804      HiIdx = 2;
4805    }
4806    int Idx = PermMask[i];
4807    if (Idx < 0) {
4808      Locs[i] = std::make_pair(-1, -1);
4809    } else if (Idx < 4) {
4810      Locs[i] = std::make_pair(MaskIdx, LoIdx);
4811      (*MaskPtr)[LoIdx] = Idx;
4812      LoIdx++;
4813    } else {
4814      Locs[i] = std::make_pair(MaskIdx, HiIdx);
4815      (*MaskPtr)[HiIdx] = Idx;
4816      HiIdx++;
4817    }
4818  }
4819
4820  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
4821  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
4822  SmallVector<int, 8> MaskOps;
4823  for (unsigned i = 0; i != 4; ++i) {
4824    if (Locs[i].first == -1) {
4825      MaskOps.push_back(-1);
4826    } else {
4827      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
4828      MaskOps.push_back(Idx);
4829    }
4830  }
4831  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
4832}
4833
4834SDValue
4835X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
4836  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4837  SDValue V1 = Op.getOperand(0);
4838  SDValue V2 = Op.getOperand(1);
4839  EVT VT = Op.getValueType();
4840  DebugLoc dl = Op.getDebugLoc();
4841  unsigned NumElems = VT.getVectorNumElements();
4842  bool isMMX = VT.getSizeInBits() == 64;
4843  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
4844  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
4845  bool V1IsSplat = false;
4846  bool V2IsSplat = false;
4847  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
4848  MachineFunction &MF = DAG.getMachineFunction();
4849  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
4850
4851  if (isZeroShuffle(SVOp))
4852    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4853
4854  // Promote splats to v4f32.
4855  if (SVOp->isSplat()) {
4856    if (isMMX || NumElems < 4)
4857      return Op;
4858    return PromoteSplat(SVOp, DAG);
4859  }
4860
4861  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4862  // do it!
4863  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4864    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4865    if (NewOp.getNode())
4866      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4867                         LowerVECTOR_SHUFFLE(NewOp, DAG));
4868  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4869    // FIXME: Figure out a cleaner way to do this.
4870    // Try to make use of movq to zero out the top part.
4871    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4872      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4873      if (NewOp.getNode()) {
4874        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
4875          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
4876                              DAG, Subtarget, dl);
4877      }
4878    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4879      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
4880      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
4881        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4882                            DAG, Subtarget, dl);
4883    }
4884  }
4885
4886  if (X86::isPSHUFDMask(SVOp)) {
4887    // The actual implementation will match the mask in the if above and then
4888    // during isel it can match several different instructions, not only pshufd
4889    // as its name says, sad but true, emulate the behavior for now...
4890    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
4891        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
4892
4893    if (OptForSize && HasSSE2 && X86::isUNPCKL_v_undef_Mask(SVOp) &&
4894        VT == MVT::v4i32)
4895      return getTargetShuffleNode(X86ISD::PUNPCKLDQ, dl, VT, V1, V1, DAG);
4896
4897    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
4898
4899    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
4900      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
4901
4902    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
4903      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
4904                                  TargetMask, DAG);
4905
4906    if (VT == MVT::v4f32)
4907      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
4908                                  TargetMask, DAG);
4909  }
4910
4911  // Check if this can be converted into a logical shift.
4912  bool isLeft = false;
4913  unsigned ShAmt = 0;
4914  SDValue ShVal;
4915  bool isShift = getSubtarget()->hasSSE2() &&
4916    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
4917  if (isShift && ShVal.hasOneUse()) {
4918    // If the shifted value has multiple uses, it may be cheaper to use
4919    // v_set0 + movlhps or movhlps, etc.
4920    EVT EltVT = VT.getVectorElementType();
4921    ShAmt *= EltVT.getSizeInBits();
4922    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4923  }
4924
4925  if (X86::isMOVLMask(SVOp)) {
4926    if (V1IsUndef)
4927      return V2;
4928    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4929      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
4930    if (!isMMX)
4931      return Op;
4932  }
4933
4934  // FIXME: fold these into legal mask.
4935  if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
4936                 X86::isMOVSLDUPMask(SVOp) ||
4937                 X86::isMOVHLPSMask(SVOp) ||
4938                 X86::isMOVLHPSMask(SVOp) ||
4939                 X86::isMOVLPMask(SVOp)))
4940    return Op;
4941
4942  if (ShouldXformToMOVHLPS(SVOp) ||
4943      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
4944    return CommuteVectorShuffle(SVOp, DAG);
4945
4946  if (isShift) {
4947    // No better options. Use a vshl / vsrl.
4948    EVT EltVT = VT.getVectorElementType();
4949    ShAmt *= EltVT.getSizeInBits();
4950    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
4951  }
4952
4953  bool Commuted = false;
4954  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4955  // 1,1,1,1 -> v8i16 though.
4956  V1IsSplat = isSplatVector(V1.getNode());
4957  V2IsSplat = isSplatVector(V2.getNode());
4958
4959  // Canonicalize the splat or undef, if present, to be on the RHS.
4960  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4961    Op = CommuteVectorShuffle(SVOp, DAG);
4962    SVOp = cast<ShuffleVectorSDNode>(Op);
4963    V1 = SVOp->getOperand(0);
4964    V2 = SVOp->getOperand(1);
4965    std::swap(V1IsSplat, V2IsSplat);
4966    std::swap(V1IsUndef, V2IsUndef);
4967    Commuted = true;
4968  }
4969
4970  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
4971    // Shuffling low element of v1 into undef, just return v1.
4972    if (V2IsUndef)
4973      return V1;
4974    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
4975    // the instruction selector will not match, so get a canonical MOVL with
4976    // swapped operands to undo the commute.
4977    return getMOVL(DAG, dl, VT, V2, V1);
4978  }
4979
4980  if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
4981      X86::isUNPCKH_v_undef_Mask(SVOp) ||
4982      X86::isUNPCKLMask(SVOp) ||
4983      X86::isUNPCKHMask(SVOp))
4984    return Op;
4985
4986  if (V2IsSplat) {
4987    // Normalize mask so all entries that point to V2 points to its first
4988    // element then try to match unpck{h|l} again. If match, return a
4989    // new vector_shuffle with the corrected mask.
4990    SDValue NewMask = NormalizeMask(SVOp, DAG);
4991    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
4992    if (NSVOp != SVOp) {
4993      if (X86::isUNPCKLMask(NSVOp, true)) {
4994        return NewMask;
4995      } else if (X86::isUNPCKHMask(NSVOp, true)) {
4996        return NewMask;
4997      }
4998    }
4999  }
5000
5001  if (Commuted) {
5002    // Commute is back and try unpck* again.
5003    // FIXME: this seems wrong.
5004    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5005    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5006    if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
5007        X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
5008        X86::isUNPCKLMask(NewSVOp) ||
5009        X86::isUNPCKHMask(NewSVOp))
5010      return NewOp;
5011  }
5012
5013  // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
5014
5015  // Normalize the node to match x86 shuffle ops if needed
5016  if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5017    return CommuteVectorShuffle(SVOp, DAG);
5018
5019  // Check for legal shuffle and return?
5020  SmallVector<int, 16> PermMask;
5021  SVOp->getMask(PermMask);
5022  if (isShuffleMaskLegal(PermMask, VT))
5023    return Op;
5024
5025  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5026  if (VT == MVT::v8i16) {
5027    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5028    if (NewOp.getNode())
5029      return NewOp;
5030  }
5031
5032  if (VT == MVT::v16i8) {
5033    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5034    if (NewOp.getNode())
5035      return NewOp;
5036  }
5037
5038  // Handle all 4 wide cases with a number of shuffles except for MMX.
5039  if (NumElems == 4 && !isMMX)
5040    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5041
5042  return SDValue();
5043}
5044
5045SDValue
5046X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5047                                                SelectionDAG &DAG) const {
5048  EVT VT = Op.getValueType();
5049  DebugLoc dl = Op.getDebugLoc();
5050  if (VT.getSizeInBits() == 8) {
5051    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5052                                    Op.getOperand(0), Op.getOperand(1));
5053    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5054                                    DAG.getValueType(VT));
5055    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5056  } else if (VT.getSizeInBits() == 16) {
5057    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5058    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5059    if (Idx == 0)
5060      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5061                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5062                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5063                                                 MVT::v4i32,
5064                                                 Op.getOperand(0)),
5065                                     Op.getOperand(1)));
5066    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5067                                    Op.getOperand(0), Op.getOperand(1));
5068    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5069                                    DAG.getValueType(VT));
5070    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5071  } else if (VT == MVT::f32) {
5072    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5073    // the result back to FR32 register. It's only worth matching if the
5074    // result has a single use which is a store or a bitcast to i32.  And in
5075    // the case of a store, it's not worth it if the index is a constant 0,
5076    // because a MOVSSmr can be used instead, which is smaller and faster.
5077    if (!Op.hasOneUse())
5078      return SDValue();
5079    SDNode *User = *Op.getNode()->use_begin();
5080    if ((User->getOpcode() != ISD::STORE ||
5081         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5082          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5083        (User->getOpcode() != ISD::BIT_CONVERT ||
5084         User->getValueType(0) != MVT::i32))
5085      return SDValue();
5086    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5087                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5088                                              Op.getOperand(0)),
5089                                              Op.getOperand(1));
5090    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5091  } else if (VT == MVT::i32) {
5092    // ExtractPS works with constant index.
5093    if (isa<ConstantSDNode>(Op.getOperand(1)))
5094      return Op;
5095  }
5096  return SDValue();
5097}
5098
5099
5100SDValue
5101X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5102                                           SelectionDAG &DAG) const {
5103  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5104    return SDValue();
5105
5106  if (Subtarget->hasSSE41()) {
5107    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5108    if (Res.getNode())
5109      return Res;
5110  }
5111
5112  EVT VT = Op.getValueType();
5113  DebugLoc dl = Op.getDebugLoc();
5114  // TODO: handle v16i8.
5115  if (VT.getSizeInBits() == 16) {
5116    SDValue Vec = Op.getOperand(0);
5117    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5118    if (Idx == 0)
5119      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5120                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5121                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5122                                                 MVT::v4i32, Vec),
5123                                     Op.getOperand(1)));
5124    // Transform it so it match pextrw which produces a 32-bit result.
5125    EVT EltVT = MVT::i32;
5126    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5127                                    Op.getOperand(0), Op.getOperand(1));
5128    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5129                                    DAG.getValueType(VT));
5130    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5131  } else if (VT.getSizeInBits() == 32) {
5132    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5133    if (Idx == 0)
5134      return Op;
5135
5136    // SHUFPS the element to the lowest double word, then movss.
5137    int Mask[4] = { Idx, -1, -1, -1 };
5138    EVT VVT = Op.getOperand(0).getValueType();
5139    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5140                                       DAG.getUNDEF(VVT), Mask);
5141    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5142                       DAG.getIntPtrConstant(0));
5143  } else if (VT.getSizeInBits() == 64) {
5144    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5145    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5146    //        to match extract_elt for f64.
5147    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5148    if (Idx == 0)
5149      return Op;
5150
5151    // UNPCKHPD the element to the lowest double word, then movsd.
5152    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5153    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5154    int Mask[2] = { 1, -1 };
5155    EVT VVT = Op.getOperand(0).getValueType();
5156    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5157                                       DAG.getUNDEF(VVT), Mask);
5158    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5159                       DAG.getIntPtrConstant(0));
5160  }
5161
5162  return SDValue();
5163}
5164
5165SDValue
5166X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5167                                               SelectionDAG &DAG) const {
5168  EVT VT = Op.getValueType();
5169  EVT EltVT = VT.getVectorElementType();
5170  DebugLoc dl = Op.getDebugLoc();
5171
5172  SDValue N0 = Op.getOperand(0);
5173  SDValue N1 = Op.getOperand(1);
5174  SDValue N2 = Op.getOperand(2);
5175
5176  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5177      isa<ConstantSDNode>(N2)) {
5178    unsigned Opc;
5179    if (VT == MVT::v8i16)
5180      Opc = X86ISD::PINSRW;
5181    else if (VT == MVT::v4i16)
5182      Opc = X86ISD::MMX_PINSRW;
5183    else if (VT == MVT::v16i8)
5184      Opc = X86ISD::PINSRB;
5185    else
5186      Opc = X86ISD::PINSRB;
5187
5188    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5189    // argument.
5190    if (N1.getValueType() != MVT::i32)
5191      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5192    if (N2.getValueType() != MVT::i32)
5193      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5194    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5195  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5196    // Bits [7:6] of the constant are the source select.  This will always be
5197    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5198    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5199    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5200    // Bits [5:4] of the constant are the destination select.  This is the
5201    //  value of the incoming immediate.
5202    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5203    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5204    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5205    // Create this as a scalar to vector..
5206    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5207    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5208  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5209    // PINSR* works with constant index.
5210    return Op;
5211  }
5212  return SDValue();
5213}
5214
5215SDValue
5216X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5217  EVT VT = Op.getValueType();
5218  EVT EltVT = VT.getVectorElementType();
5219
5220  if (Subtarget->hasSSE41())
5221    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5222
5223  if (EltVT == MVT::i8)
5224    return SDValue();
5225
5226  DebugLoc dl = Op.getDebugLoc();
5227  SDValue N0 = Op.getOperand(0);
5228  SDValue N1 = Op.getOperand(1);
5229  SDValue N2 = Op.getOperand(2);
5230
5231  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5232    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5233    // as its second argument.
5234    if (N1.getValueType() != MVT::i32)
5235      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5236    if (N2.getValueType() != MVT::i32)
5237      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5238    return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
5239                       dl, VT, N0, N1, N2);
5240  }
5241  return SDValue();
5242}
5243
5244SDValue
5245X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5246  DebugLoc dl = Op.getDebugLoc();
5247
5248  if (Op.getValueType() == MVT::v1i64 &&
5249      Op.getOperand(0).getValueType() == MVT::i64)
5250    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5251
5252  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5253  EVT VT = MVT::v2i32;
5254  switch (Op.getValueType().getSimpleVT().SimpleTy) {
5255  default: break;
5256  case MVT::v16i8:
5257  case MVT::v8i16:
5258    VT = MVT::v4i32;
5259    break;
5260  }
5261  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5262                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
5263}
5264
5265// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5266// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5267// one of the above mentioned nodes. It has to be wrapped because otherwise
5268// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5269// be used to form addressing mode. These wrapped nodes will be selected
5270// into MOV32ri.
5271SDValue
5272X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5273  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5274
5275  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5276  // global base reg.
5277  unsigned char OpFlag = 0;
5278  unsigned WrapperKind = X86ISD::Wrapper;
5279  CodeModel::Model M = getTargetMachine().getCodeModel();
5280
5281  if (Subtarget->isPICStyleRIPRel() &&
5282      (M == CodeModel::Small || M == CodeModel::Kernel))
5283    WrapperKind = X86ISD::WrapperRIP;
5284  else if (Subtarget->isPICStyleGOT())
5285    OpFlag = X86II::MO_GOTOFF;
5286  else if (Subtarget->isPICStyleStubPIC())
5287    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5288
5289  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5290                                             CP->getAlignment(),
5291                                             CP->getOffset(), OpFlag);
5292  DebugLoc DL = CP->getDebugLoc();
5293  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5294  // With PIC, the address is actually $g + Offset.
5295  if (OpFlag) {
5296    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5297                         DAG.getNode(X86ISD::GlobalBaseReg,
5298                                     DebugLoc(), getPointerTy()),
5299                         Result);
5300  }
5301
5302  return Result;
5303}
5304
5305SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5306  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5307
5308  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5309  // global base reg.
5310  unsigned char OpFlag = 0;
5311  unsigned WrapperKind = X86ISD::Wrapper;
5312  CodeModel::Model M = getTargetMachine().getCodeModel();
5313
5314  if (Subtarget->isPICStyleRIPRel() &&
5315      (M == CodeModel::Small || M == CodeModel::Kernel))
5316    WrapperKind = X86ISD::WrapperRIP;
5317  else if (Subtarget->isPICStyleGOT())
5318    OpFlag = X86II::MO_GOTOFF;
5319  else if (Subtarget->isPICStyleStubPIC())
5320    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5321
5322  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5323                                          OpFlag);
5324  DebugLoc DL = JT->getDebugLoc();
5325  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5326
5327  // With PIC, the address is actually $g + Offset.
5328  if (OpFlag) {
5329    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5330                         DAG.getNode(X86ISD::GlobalBaseReg,
5331                                     DebugLoc(), getPointerTy()),
5332                         Result);
5333  }
5334
5335  return Result;
5336}
5337
5338SDValue
5339X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5340  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5341
5342  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5343  // global base reg.
5344  unsigned char OpFlag = 0;
5345  unsigned WrapperKind = X86ISD::Wrapper;
5346  CodeModel::Model M = getTargetMachine().getCodeModel();
5347
5348  if (Subtarget->isPICStyleRIPRel() &&
5349      (M == CodeModel::Small || M == CodeModel::Kernel))
5350    WrapperKind = X86ISD::WrapperRIP;
5351  else if (Subtarget->isPICStyleGOT())
5352    OpFlag = X86II::MO_GOTOFF;
5353  else if (Subtarget->isPICStyleStubPIC())
5354    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5355
5356  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5357
5358  DebugLoc DL = Op.getDebugLoc();
5359  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5360
5361
5362  // With PIC, the address is actually $g + Offset.
5363  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5364      !Subtarget->is64Bit()) {
5365    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5366                         DAG.getNode(X86ISD::GlobalBaseReg,
5367                                     DebugLoc(), getPointerTy()),
5368                         Result);
5369  }
5370
5371  return Result;
5372}
5373
5374SDValue
5375X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5376  // Create the TargetBlockAddressAddress node.
5377  unsigned char OpFlags =
5378    Subtarget->ClassifyBlockAddressReference();
5379  CodeModel::Model M = getTargetMachine().getCodeModel();
5380  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5381  DebugLoc dl = Op.getDebugLoc();
5382  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5383                                       /*isTarget=*/true, OpFlags);
5384
5385  if (Subtarget->isPICStyleRIPRel() &&
5386      (M == CodeModel::Small || M == CodeModel::Kernel))
5387    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5388  else
5389    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5390
5391  // With PIC, the address is actually $g + Offset.
5392  if (isGlobalRelativeToPICBase(OpFlags)) {
5393    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5394                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5395                         Result);
5396  }
5397
5398  return Result;
5399}
5400
5401SDValue
5402X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5403                                      int64_t Offset,
5404                                      SelectionDAG &DAG) const {
5405  // Create the TargetGlobalAddress node, folding in the constant
5406  // offset if it is legal.
5407  unsigned char OpFlags =
5408    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5409  CodeModel::Model M = getTargetMachine().getCodeModel();
5410  SDValue Result;
5411  if (OpFlags == X86II::MO_NO_FLAG &&
5412      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5413    // A direct static reference to a global.
5414    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5415    Offset = 0;
5416  } else {
5417    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5418  }
5419
5420  if (Subtarget->isPICStyleRIPRel() &&
5421      (M == CodeModel::Small || M == CodeModel::Kernel))
5422    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5423  else
5424    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5425
5426  // With PIC, the address is actually $g + Offset.
5427  if (isGlobalRelativeToPICBase(OpFlags)) {
5428    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5429                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5430                         Result);
5431  }
5432
5433  // For globals that require a load from a stub to get the address, emit the
5434  // load.
5435  if (isGlobalStubReference(OpFlags))
5436    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5437                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5438
5439  // If there was a non-zero offset that we didn't fold, create an explicit
5440  // addition for it.
5441  if (Offset != 0)
5442    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
5443                         DAG.getConstant(Offset, getPointerTy()));
5444
5445  return Result;
5446}
5447
5448SDValue
5449X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
5450  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
5451  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
5452  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
5453}
5454
5455static SDValue
5456GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
5457           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
5458           unsigned char OperandFlags) {
5459  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5460  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5461  DebugLoc dl = GA->getDebugLoc();
5462  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5463                                           GA->getValueType(0),
5464                                           GA->getOffset(),
5465                                           OperandFlags);
5466  if (InFlag) {
5467    SDValue Ops[] = { Chain,  TGA, *InFlag };
5468    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
5469  } else {
5470    SDValue Ops[]  = { Chain, TGA };
5471    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
5472  }
5473
5474  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5475  MFI->setAdjustsStack(true);
5476
5477  SDValue Flag = Chain.getValue(1);
5478  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
5479}
5480
5481// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
5482static SDValue
5483LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5484                                const EVT PtrVT) {
5485  SDValue InFlag;
5486  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
5487  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
5488                                     DAG.getNode(X86ISD::GlobalBaseReg,
5489                                                 DebugLoc(), PtrVT), InFlag);
5490  InFlag = Chain.getValue(1);
5491
5492  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
5493}
5494
5495// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
5496static SDValue
5497LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5498                                const EVT PtrVT) {
5499  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
5500                    X86::RAX, X86II::MO_TLSGD);
5501}
5502
5503// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
5504// "local exec" model.
5505static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
5506                                   const EVT PtrVT, TLSModel::Model model,
5507                                   bool is64Bit) {
5508  DebugLoc dl = GA->getDebugLoc();
5509  // Get the Thread Pointer
5510  SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
5511                             DebugLoc(), PtrVT,
5512                             DAG.getRegister(is64Bit? X86::FS : X86::GS,
5513                                             MVT::i32));
5514
5515  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
5516                                      NULL, 0, false, false, 0);
5517
5518  unsigned char OperandFlags = 0;
5519  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
5520  // initialexec.
5521  unsigned WrapperKind = X86ISD::Wrapper;
5522  if (model == TLSModel::LocalExec) {
5523    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
5524  } else if (is64Bit) {
5525    assert(model == TLSModel::InitialExec);
5526    OperandFlags = X86II::MO_GOTTPOFF;
5527    WrapperKind = X86ISD::WrapperRIP;
5528  } else {
5529    assert(model == TLSModel::InitialExec);
5530    OperandFlags = X86II::MO_INDNTPOFF;
5531  }
5532
5533  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
5534  // exec)
5535  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
5536                                           GA->getValueType(0),
5537                                           GA->getOffset(), OperandFlags);
5538  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
5539
5540  if (model == TLSModel::InitialExec)
5541    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
5542                         PseudoSourceValue::getGOT(), 0, false, false, 0);
5543
5544  // The address of the thread local variable is the add of the thread
5545  // pointer with the offset of the variable.
5546  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
5547}
5548
5549SDValue
5550X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
5551
5552  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
5553  const GlobalValue *GV = GA->getGlobal();
5554
5555  if (Subtarget->isTargetELF()) {
5556    // TODO: implement the "local dynamic" model
5557    // TODO: implement the "initial exec"model for pic executables
5558
5559    // If GV is an alias then use the aliasee for determining
5560    // thread-localness.
5561    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
5562      GV = GA->resolveAliasedGlobal(false);
5563
5564    TLSModel::Model model
5565      = getTLSModel(GV, getTargetMachine().getRelocationModel());
5566
5567    switch (model) {
5568      case TLSModel::GeneralDynamic:
5569      case TLSModel::LocalDynamic: // not implemented
5570        if (Subtarget->is64Bit())
5571          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
5572        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
5573
5574      case TLSModel::InitialExec:
5575      case TLSModel::LocalExec:
5576        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
5577                                   Subtarget->is64Bit());
5578    }
5579  } else if (Subtarget->isTargetDarwin()) {
5580    // Darwin only has one model of TLS.  Lower to that.
5581    unsigned char OpFlag = 0;
5582    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
5583                           X86ISD::WrapperRIP : X86ISD::Wrapper;
5584
5585    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5586    // global base reg.
5587    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
5588                  !Subtarget->is64Bit();
5589    if (PIC32)
5590      OpFlag = X86II::MO_TLVP_PIC_BASE;
5591    else
5592      OpFlag = X86II::MO_TLVP;
5593    DebugLoc DL = Op.getDebugLoc();
5594    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
5595                                                getPointerTy(),
5596                                                GA->getOffset(), OpFlag);
5597    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5598
5599    // With PIC32, the address is actually $g + Offset.
5600    if (PIC32)
5601      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5602                           DAG.getNode(X86ISD::GlobalBaseReg,
5603                                       DebugLoc(), getPointerTy()),
5604                           Offset);
5605
5606    // Lowering the machine isd will make sure everything is in the right
5607    // location.
5608    SDValue Args[] = { Offset };
5609    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
5610
5611    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
5612    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5613    MFI->setAdjustsStack(true);
5614
5615    // And our return value (tls address) is in the standard call return value
5616    // location.
5617    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
5618    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
5619  }
5620
5621  assert(false &&
5622         "TLS not implemented for this target.");
5623
5624  llvm_unreachable("Unreachable");
5625  return SDValue();
5626}
5627
5628
5629/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
5630/// take a 2 x i32 value to shift plus a shift amount.
5631SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
5632  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5633  EVT VT = Op.getValueType();
5634  unsigned VTBits = VT.getSizeInBits();
5635  DebugLoc dl = Op.getDebugLoc();
5636  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
5637  SDValue ShOpLo = Op.getOperand(0);
5638  SDValue ShOpHi = Op.getOperand(1);
5639  SDValue ShAmt  = Op.getOperand(2);
5640  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
5641                                     DAG.getConstant(VTBits - 1, MVT::i8))
5642                       : DAG.getConstant(0, VT);
5643
5644  SDValue Tmp2, Tmp3;
5645  if (Op.getOpcode() == ISD::SHL_PARTS) {
5646    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
5647    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5648  } else {
5649    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
5650    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
5651  }
5652
5653  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
5654                                DAG.getConstant(VTBits, MVT::i8));
5655  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
5656                             AndNode, DAG.getConstant(0, MVT::i8));
5657
5658  SDValue Hi, Lo;
5659  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5660  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
5661  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
5662
5663  if (Op.getOpcode() == ISD::SHL_PARTS) {
5664    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5665    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5666  } else {
5667    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
5668    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
5669  }
5670
5671  SDValue Ops[2] = { Lo, Hi };
5672  return DAG.getMergeValues(Ops, 2, dl);
5673}
5674
5675SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
5676                                           SelectionDAG &DAG) const {
5677  EVT SrcVT = Op.getOperand(0).getValueType();
5678
5679  if (SrcVT.isVector()) {
5680    if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
5681      return Op;
5682    }
5683    return SDValue();
5684  }
5685
5686  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
5687         "Unknown SINT_TO_FP to lower!");
5688
5689  // These are really Legal; return the operand so the caller accepts it as
5690  // Legal.
5691  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
5692    return Op;
5693  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
5694      Subtarget->is64Bit()) {
5695    return Op;
5696  }
5697
5698  DebugLoc dl = Op.getDebugLoc();
5699  unsigned Size = SrcVT.getSizeInBits()/8;
5700  MachineFunction &MF = DAG.getMachineFunction();
5701  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
5702  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5703  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5704                               StackSlot,
5705                               PseudoSourceValue::getFixedStack(SSFI), 0,
5706                               false, false, 0);
5707  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
5708}
5709
5710SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
5711                                     SDValue StackSlot,
5712                                     SelectionDAG &DAG) const {
5713  // Build the FILD
5714  DebugLoc dl = Op.getDebugLoc();
5715  SDVTList Tys;
5716  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
5717  if (useSSE)
5718    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
5719  else
5720    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
5721  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
5722  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
5723                               Tys, Ops, array_lengthof(Ops));
5724
5725  if (useSSE) {
5726    Chain = Result.getValue(1);
5727    SDValue InFlag = Result.getValue(2);
5728
5729    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
5730    // shouldn't be necessary except that RFP cannot be live across
5731    // multiple blocks. When stackifier is fixed, they can be uncoupled.
5732    MachineFunction &MF = DAG.getMachineFunction();
5733    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
5734    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5735    Tys = DAG.getVTList(MVT::Other);
5736    SDValue Ops[] = {
5737      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
5738    };
5739    Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
5740    Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
5741                         PseudoSourceValue::getFixedStack(SSFI), 0,
5742                         false, false, 0);
5743  }
5744
5745  return Result;
5746}
5747
5748// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
5749SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
5750                                               SelectionDAG &DAG) const {
5751  // This algorithm is not obvious. Here it is in C code, more or less:
5752  /*
5753    double uint64_to_double( uint32_t hi, uint32_t lo ) {
5754      static const __m128i exp = { 0x4330000045300000ULL, 0 };
5755      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
5756
5757      // Copy ints to xmm registers.
5758      __m128i xh = _mm_cvtsi32_si128( hi );
5759      __m128i xl = _mm_cvtsi32_si128( lo );
5760
5761      // Combine into low half of a single xmm register.
5762      __m128i x = _mm_unpacklo_epi32( xh, xl );
5763      __m128d d;
5764      double sd;
5765
5766      // Merge in appropriate exponents to give the integer bits the right
5767      // magnitude.
5768      x = _mm_unpacklo_epi32( x, exp );
5769
5770      // Subtract away the biases to deal with the IEEE-754 double precision
5771      // implicit 1.
5772      d = _mm_sub_pd( (__m128d) x, bias );
5773
5774      // All conversions up to here are exact. The correctly rounded result is
5775      // calculated using the current rounding mode using the following
5776      // horizontal add.
5777      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
5778      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
5779                                // store doesn't really need to be here (except
5780                                // maybe to zero the other double)
5781      return sd;
5782    }
5783  */
5784
5785  DebugLoc dl = Op.getDebugLoc();
5786  LLVMContext *Context = DAG.getContext();
5787
5788  // Build some magic constants.
5789  std::vector<Constant*> CV0;
5790  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
5791  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
5792  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5793  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
5794  Constant *C0 = ConstantVector::get(CV0);
5795  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
5796
5797  std::vector<Constant*> CV1;
5798  CV1.push_back(
5799    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
5800  CV1.push_back(
5801    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
5802  Constant *C1 = ConstantVector::get(CV1);
5803  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
5804
5805  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5806                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5807                                        Op.getOperand(0),
5808                                        DAG.getIntPtrConstant(1)));
5809  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5810                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5811                                        Op.getOperand(0),
5812                                        DAG.getIntPtrConstant(0)));
5813  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
5814  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
5815                              PseudoSourceValue::getConstantPool(), 0,
5816                              false, false, 16);
5817  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
5818  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
5819  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
5820                              PseudoSourceValue::getConstantPool(), 0,
5821                              false, false, 16);
5822  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
5823
5824  // Add the halves; easiest way is to swap them into another reg first.
5825  int ShufMask[2] = { 1, -1 };
5826  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
5827                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
5828  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
5829  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
5830                     DAG.getIntPtrConstant(0));
5831}
5832
5833// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
5834SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
5835                                               SelectionDAG &DAG) const {
5836  DebugLoc dl = Op.getDebugLoc();
5837  // FP constant to bias correct the final result.
5838  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
5839                                   MVT::f64);
5840
5841  // Load the 32-bit value into an XMM register.
5842  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
5843                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
5844                                         Op.getOperand(0),
5845                                         DAG.getIntPtrConstant(0)));
5846
5847  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5848                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
5849                     DAG.getIntPtrConstant(0));
5850
5851  // Or the load with the bias.
5852  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
5853                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5854                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5855                                                   MVT::v2f64, Load)),
5856                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
5857                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5858                                                   MVT::v2f64, Bias)));
5859  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
5860                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
5861                   DAG.getIntPtrConstant(0));
5862
5863  // Subtract the bias.
5864  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
5865
5866  // Handle final rounding.
5867  EVT DestVT = Op.getValueType();
5868
5869  if (DestVT.bitsLT(MVT::f64)) {
5870    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
5871                       DAG.getIntPtrConstant(0));
5872  } else if (DestVT.bitsGT(MVT::f64)) {
5873    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
5874  }
5875
5876  // Handle final rounding.
5877  return Sub;
5878}
5879
5880SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
5881                                           SelectionDAG &DAG) const {
5882  SDValue N0 = Op.getOperand(0);
5883  DebugLoc dl = Op.getDebugLoc();
5884
5885  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
5886  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
5887  // the optimization here.
5888  if (DAG.SignBitIsZero(N0))
5889    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
5890
5891  EVT SrcVT = N0.getValueType();
5892  EVT DstVT = Op.getValueType();
5893  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
5894    return LowerUINT_TO_FP_i64(Op, DAG);
5895  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
5896    return LowerUINT_TO_FP_i32(Op, DAG);
5897
5898  // Make a 64-bit buffer, and use it to build an FILD.
5899  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
5900  if (SrcVT == MVT::i32) {
5901    SDValue WordOff = DAG.getConstant(4, getPointerTy());
5902    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
5903                                     getPointerTy(), StackSlot, WordOff);
5904    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5905                                  StackSlot, NULL, 0, false, false, 0);
5906    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
5907                                  OffsetSlot, NULL, 0, false, false, 0);
5908    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
5909    return Fild;
5910  }
5911
5912  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
5913  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
5914                                StackSlot, NULL, 0, false, false, 0);
5915  // For i64 source, we need to add the appropriate power of 2 if the input
5916  // was negative.  This is the same as the optimization in
5917  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
5918  // we must be careful to do the computation in x87 extended precision, not
5919  // in SSE. (The generic code can't know it's OK to do this, or how to.)
5920  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
5921  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
5922  SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
5923
5924  APInt FF(32, 0x5F800000ULL);
5925
5926  // Check whether the sign bit is set.
5927  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
5928                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
5929                                 ISD::SETLT);
5930
5931  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
5932  SDValue FudgePtr = DAG.getConstantPool(
5933                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
5934                                         getPointerTy());
5935
5936  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
5937  SDValue Zero = DAG.getIntPtrConstant(0);
5938  SDValue Four = DAG.getIntPtrConstant(4);
5939  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
5940                               Zero, Four);
5941  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
5942
5943  // Load the value out, extending it from f32 to f80.
5944  // FIXME: Avoid the extend by constructing the right constant pool?
5945  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
5946                                 FudgePtr, PseudoSourceValue::getConstantPool(),
5947                                 0, MVT::f32, false, false, 4);
5948  // Extend everything to 80 bits to force it to be done on x87.
5949  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
5950  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
5951}
5952
5953std::pair<SDValue,SDValue> X86TargetLowering::
5954FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
5955  DebugLoc dl = Op.getDebugLoc();
5956
5957  EVT DstTy = Op.getValueType();
5958
5959  if (!IsSigned) {
5960    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
5961    DstTy = MVT::i64;
5962  }
5963
5964  assert(DstTy.getSimpleVT() <= MVT::i64 &&
5965         DstTy.getSimpleVT() >= MVT::i16 &&
5966         "Unknown FP_TO_SINT to lower!");
5967
5968  // These are really Legal.
5969  if (DstTy == MVT::i32 &&
5970      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5971    return std::make_pair(SDValue(), SDValue());
5972  if (Subtarget->is64Bit() &&
5973      DstTy == MVT::i64 &&
5974      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
5975    return std::make_pair(SDValue(), SDValue());
5976
5977  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
5978  // stack slot.
5979  MachineFunction &MF = DAG.getMachineFunction();
5980  unsigned MemSize = DstTy.getSizeInBits()/8;
5981  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
5982  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5983
5984  unsigned Opc;
5985  switch (DstTy.getSimpleVT().SimpleTy) {
5986  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
5987  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
5988  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
5989  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
5990  }
5991
5992  SDValue Chain = DAG.getEntryNode();
5993  SDValue Value = Op.getOperand(0);
5994  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
5995    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
5996    Chain = DAG.getStore(Chain, dl, Value, StackSlot,
5997                         PseudoSourceValue::getFixedStack(SSFI), 0,
5998                         false, false, 0);
5999    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6000    SDValue Ops[] = {
6001      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
6002    };
6003    Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
6004    Chain = Value.getValue(1);
6005    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6006    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6007  }
6008
6009  // Build the FP_TO_INT*_IN_MEM
6010  SDValue Ops[] = { Chain, Value, StackSlot };
6011  SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
6012
6013  return std::make_pair(FIST, StackSlot);
6014}
6015
6016SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6017                                           SelectionDAG &DAG) const {
6018  if (Op.getValueType().isVector()) {
6019    if (Op.getValueType() == MVT::v2i32 &&
6020        Op.getOperand(0).getValueType() == MVT::v2f64) {
6021      return Op;
6022    }
6023    return SDValue();
6024  }
6025
6026  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6027  SDValue FIST = Vals.first, StackSlot = Vals.second;
6028  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6029  if (FIST.getNode() == 0) return Op;
6030
6031  // Load the result.
6032  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6033                     FIST, StackSlot, NULL, 0, false, false, 0);
6034}
6035
6036SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6037                                           SelectionDAG &DAG) const {
6038  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6039  SDValue FIST = Vals.first, StackSlot = Vals.second;
6040  assert(FIST.getNode() && "Unexpected failure");
6041
6042  // Load the result.
6043  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6044                     FIST, StackSlot, NULL, 0, false, false, 0);
6045}
6046
6047SDValue X86TargetLowering::LowerFABS(SDValue Op,
6048                                     SelectionDAG &DAG) const {
6049  LLVMContext *Context = DAG.getContext();
6050  DebugLoc dl = Op.getDebugLoc();
6051  EVT VT = Op.getValueType();
6052  EVT EltVT = VT;
6053  if (VT.isVector())
6054    EltVT = VT.getVectorElementType();
6055  std::vector<Constant*> CV;
6056  if (EltVT == MVT::f64) {
6057    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6058    CV.push_back(C);
6059    CV.push_back(C);
6060  } else {
6061    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6062    CV.push_back(C);
6063    CV.push_back(C);
6064    CV.push_back(C);
6065    CV.push_back(C);
6066  }
6067  Constant *C = ConstantVector::get(CV);
6068  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6069  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6070                             PseudoSourceValue::getConstantPool(), 0,
6071                             false, false, 16);
6072  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6073}
6074
6075SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6076  LLVMContext *Context = DAG.getContext();
6077  DebugLoc dl = Op.getDebugLoc();
6078  EVT VT = Op.getValueType();
6079  EVT EltVT = VT;
6080  if (VT.isVector())
6081    EltVT = VT.getVectorElementType();
6082  std::vector<Constant*> CV;
6083  if (EltVT == MVT::f64) {
6084    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6085    CV.push_back(C);
6086    CV.push_back(C);
6087  } else {
6088    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6089    CV.push_back(C);
6090    CV.push_back(C);
6091    CV.push_back(C);
6092    CV.push_back(C);
6093  }
6094  Constant *C = ConstantVector::get(CV);
6095  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6096  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6097                             PseudoSourceValue::getConstantPool(), 0,
6098                             false, false, 16);
6099  if (VT.isVector()) {
6100    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6101                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6102                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6103                                Op.getOperand(0)),
6104                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6105  } else {
6106    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6107  }
6108}
6109
6110SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6111  LLVMContext *Context = DAG.getContext();
6112  SDValue Op0 = Op.getOperand(0);
6113  SDValue Op1 = Op.getOperand(1);
6114  DebugLoc dl = Op.getDebugLoc();
6115  EVT VT = Op.getValueType();
6116  EVT SrcVT = Op1.getValueType();
6117
6118  // If second operand is smaller, extend it first.
6119  if (SrcVT.bitsLT(VT)) {
6120    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6121    SrcVT = VT;
6122  }
6123  // And if it is bigger, shrink it first.
6124  if (SrcVT.bitsGT(VT)) {
6125    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6126    SrcVT = VT;
6127  }
6128
6129  // At this point the operands and the result should have the same
6130  // type, and that won't be f80 since that is not custom lowered.
6131
6132  // First get the sign bit of second operand.
6133  std::vector<Constant*> CV;
6134  if (SrcVT == MVT::f64) {
6135    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6136    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6137  } else {
6138    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6139    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6140    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6141    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6142  }
6143  Constant *C = ConstantVector::get(CV);
6144  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6145  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6146                              PseudoSourceValue::getConstantPool(), 0,
6147                              false, false, 16);
6148  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6149
6150  // Shift sign bit right or left if the two operands have different types.
6151  if (SrcVT.bitsGT(VT)) {
6152    // Op0 is MVT::f32, Op1 is MVT::f64.
6153    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6154    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6155                          DAG.getConstant(32, MVT::i32));
6156    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6157    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6158                          DAG.getIntPtrConstant(0));
6159  }
6160
6161  // Clear first operand sign bit.
6162  CV.clear();
6163  if (VT == MVT::f64) {
6164    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6165    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6166  } else {
6167    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6168    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6169    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6170    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6171  }
6172  C = ConstantVector::get(CV);
6173  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6174  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6175                              PseudoSourceValue::getConstantPool(), 0,
6176                              false, false, 16);
6177  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6178
6179  // Or the value with the sign bit.
6180  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6181}
6182
6183/// Emit nodes that will be selected as "test Op0,Op0", or something
6184/// equivalent.
6185SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6186                                    SelectionDAG &DAG) const {
6187  DebugLoc dl = Op.getDebugLoc();
6188
6189  // CF and OF aren't always set the way we want. Determine which
6190  // of these we need.
6191  bool NeedCF = false;
6192  bool NeedOF = false;
6193  switch (X86CC) {
6194  default: break;
6195  case X86::COND_A: case X86::COND_AE:
6196  case X86::COND_B: case X86::COND_BE:
6197    NeedCF = true;
6198    break;
6199  case X86::COND_G: case X86::COND_GE:
6200  case X86::COND_L: case X86::COND_LE:
6201  case X86::COND_O: case X86::COND_NO:
6202    NeedOF = true;
6203    break;
6204  }
6205
6206  // See if we can use the EFLAGS value from the operand instead of
6207  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6208  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6209  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6210    // Emit a CMP with 0, which is the TEST pattern.
6211    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6212                       DAG.getConstant(0, Op.getValueType()));
6213
6214  unsigned Opcode = 0;
6215  unsigned NumOperands = 0;
6216  switch (Op.getNode()->getOpcode()) {
6217  case ISD::ADD:
6218    // Due to an isel shortcoming, be conservative if this add is likely to be
6219    // selected as part of a load-modify-store instruction. When the root node
6220    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6221    // uses of other nodes in the match, such as the ADD in this case. This
6222    // leads to the ADD being left around and reselected, with the result being
6223    // two adds in the output.  Alas, even if none our users are stores, that
6224    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6225    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6226    // climbing the DAG back to the root, and it doesn't seem to be worth the
6227    // effort.
6228    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6229           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6230      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6231        goto default_case;
6232
6233    if (ConstantSDNode *C =
6234        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6235      // An add of one will be selected as an INC.
6236      if (C->getAPIntValue() == 1) {
6237        Opcode = X86ISD::INC;
6238        NumOperands = 1;
6239        break;
6240      }
6241
6242      // An add of negative one (subtract of one) will be selected as a DEC.
6243      if (C->getAPIntValue().isAllOnesValue()) {
6244        Opcode = X86ISD::DEC;
6245        NumOperands = 1;
6246        break;
6247      }
6248    }
6249
6250    // Otherwise use a regular EFLAGS-setting add.
6251    Opcode = X86ISD::ADD;
6252    NumOperands = 2;
6253    break;
6254  case ISD::AND: {
6255    // If the primary and result isn't used, don't bother using X86ISD::AND,
6256    // because a TEST instruction will be better.
6257    bool NonFlagUse = false;
6258    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6259           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6260      SDNode *User = *UI;
6261      unsigned UOpNo = UI.getOperandNo();
6262      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6263        // Look pass truncate.
6264        UOpNo = User->use_begin().getOperandNo();
6265        User = *User->use_begin();
6266      }
6267
6268      if (User->getOpcode() != ISD::BRCOND &&
6269          User->getOpcode() != ISD::SETCC &&
6270          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6271        NonFlagUse = true;
6272        break;
6273      }
6274    }
6275
6276    if (!NonFlagUse)
6277      break;
6278  }
6279    // FALL THROUGH
6280  case ISD::SUB:
6281  case ISD::OR:
6282  case ISD::XOR:
6283    // Due to the ISEL shortcoming noted above, be conservative if this op is
6284    // likely to be selected as part of a load-modify-store instruction.
6285    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6286           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6287      if (UI->getOpcode() == ISD::STORE)
6288        goto default_case;
6289
6290    // Otherwise use a regular EFLAGS-setting instruction.
6291    switch (Op.getNode()->getOpcode()) {
6292    default: llvm_unreachable("unexpected operator!");
6293    case ISD::SUB: Opcode = X86ISD::SUB; break;
6294    case ISD::OR:  Opcode = X86ISD::OR;  break;
6295    case ISD::XOR: Opcode = X86ISD::XOR; break;
6296    case ISD::AND: Opcode = X86ISD::AND; break;
6297    }
6298
6299    NumOperands = 2;
6300    break;
6301  case X86ISD::ADD:
6302  case X86ISD::SUB:
6303  case X86ISD::INC:
6304  case X86ISD::DEC:
6305  case X86ISD::OR:
6306  case X86ISD::XOR:
6307  case X86ISD::AND:
6308    return SDValue(Op.getNode(), 1);
6309  default:
6310  default_case:
6311    break;
6312  }
6313
6314  if (Opcode == 0)
6315    // Emit a CMP with 0, which is the TEST pattern.
6316    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6317                       DAG.getConstant(0, Op.getValueType()));
6318
6319  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6320  SmallVector<SDValue, 4> Ops;
6321  for (unsigned i = 0; i != NumOperands; ++i)
6322    Ops.push_back(Op.getOperand(i));
6323
6324  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6325  DAG.ReplaceAllUsesWith(Op, New);
6326  return SDValue(New.getNode(), 1);
6327}
6328
6329/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6330/// equivalent.
6331SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6332                                   SelectionDAG &DAG) const {
6333  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6334    if (C->getAPIntValue() == 0)
6335      return EmitTest(Op0, X86CC, DAG);
6336
6337  DebugLoc dl = Op0.getDebugLoc();
6338  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6339}
6340
6341/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6342/// if it's possible.
6343SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6344                                     DebugLoc dl, SelectionDAG &DAG) const {
6345  SDValue Op0 = And.getOperand(0);
6346  SDValue Op1 = And.getOperand(1);
6347  if (Op0.getOpcode() == ISD::TRUNCATE)
6348    Op0 = Op0.getOperand(0);
6349  if (Op1.getOpcode() == ISD::TRUNCATE)
6350    Op1 = Op1.getOperand(0);
6351
6352  SDValue LHS, RHS;
6353  if (Op1.getOpcode() == ISD::SHL)
6354    std::swap(Op0, Op1);
6355  if (Op0.getOpcode() == ISD::SHL) {
6356    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6357      if (And00C->getZExtValue() == 1) {
6358        // If we looked past a truncate, check that it's only truncating away
6359        // known zeros.
6360        unsigned BitWidth = Op0.getValueSizeInBits();
6361        unsigned AndBitWidth = And.getValueSizeInBits();
6362        if (BitWidth > AndBitWidth) {
6363          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6364          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6365          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6366            return SDValue();
6367        }
6368        LHS = Op1;
6369        RHS = Op0.getOperand(1);
6370      }
6371  } else if (Op1.getOpcode() == ISD::Constant) {
6372    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6373    SDValue AndLHS = Op0;
6374    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6375      LHS = AndLHS.getOperand(0);
6376      RHS = AndLHS.getOperand(1);
6377    }
6378  }
6379
6380  if (LHS.getNode()) {
6381    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6382    // instruction.  Since the shift amount is in-range-or-undefined, we know
6383    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6384    // the encoding for the i16 version is larger than the i32 version.
6385    // Also promote i16 to i32 for performance / code size reason.
6386    if (LHS.getValueType() == MVT::i8 ||
6387        LHS.getValueType() == MVT::i16)
6388      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6389
6390    // If the operand types disagree, extend the shift amount to match.  Since
6391    // BT ignores high bits (like shifts) we can use anyextend.
6392    if (LHS.getValueType() != RHS.getValueType())
6393      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6394
6395    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6396    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6397    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6398                       DAG.getConstant(Cond, MVT::i8), BT);
6399  }
6400
6401  return SDValue();
6402}
6403
6404SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6405  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6406  SDValue Op0 = Op.getOperand(0);
6407  SDValue Op1 = Op.getOperand(1);
6408  DebugLoc dl = Op.getDebugLoc();
6409  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6410
6411  // Optimize to BT if possible.
6412  // Lower (X & (1 << N)) == 0 to BT(X, N).
6413  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
6414  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
6415  if (Op0.getOpcode() == ISD::AND &&
6416      Op0.hasOneUse() &&
6417      Op1.getOpcode() == ISD::Constant &&
6418      cast<ConstantSDNode>(Op1)->isNullValue() &&
6419      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6420    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
6421    if (NewSetCC.getNode())
6422      return NewSetCC;
6423  }
6424
6425  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
6426  if (Op0.getOpcode() == X86ISD::SETCC &&
6427      Op1.getOpcode() == ISD::Constant &&
6428      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
6429       cast<ConstantSDNode>(Op1)->isNullValue()) &&
6430      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
6431    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
6432    bool Invert = (CC == ISD::SETNE) ^
6433      cast<ConstantSDNode>(Op1)->isNullValue();
6434    if (Invert)
6435      CCode = X86::GetOppositeBranchCondition(CCode);
6436    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6437                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
6438  }
6439
6440  bool isFP = Op1.getValueType().isFloatingPoint();
6441  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
6442  if (X86CC == X86::COND_INVALID)
6443    return SDValue();
6444
6445  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
6446
6447  // Use sbb x, x to materialize carry bit into a GPR.
6448  if (X86CC == X86::COND_B)
6449    return DAG.getNode(ISD::AND, dl, MVT::i8,
6450                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
6451                                   DAG.getConstant(X86CC, MVT::i8), Cond),
6452                       DAG.getConstant(1, MVT::i8));
6453
6454  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6455                     DAG.getConstant(X86CC, MVT::i8), Cond);
6456}
6457
6458SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
6459  SDValue Cond;
6460  SDValue Op0 = Op.getOperand(0);
6461  SDValue Op1 = Op.getOperand(1);
6462  SDValue CC = Op.getOperand(2);
6463  EVT VT = Op.getValueType();
6464  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6465  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
6466  DebugLoc dl = Op.getDebugLoc();
6467
6468  if (isFP) {
6469    unsigned SSECC = 8;
6470    EVT VT0 = Op0.getValueType();
6471    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
6472    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
6473    bool Swap = false;
6474
6475    switch (SetCCOpcode) {
6476    default: break;
6477    case ISD::SETOEQ:
6478    case ISD::SETEQ:  SSECC = 0; break;
6479    case ISD::SETOGT:
6480    case ISD::SETGT: Swap = true; // Fallthrough
6481    case ISD::SETLT:
6482    case ISD::SETOLT: SSECC = 1; break;
6483    case ISD::SETOGE:
6484    case ISD::SETGE: Swap = true; // Fallthrough
6485    case ISD::SETLE:
6486    case ISD::SETOLE: SSECC = 2; break;
6487    case ISD::SETUO:  SSECC = 3; break;
6488    case ISD::SETUNE:
6489    case ISD::SETNE:  SSECC = 4; break;
6490    case ISD::SETULE: Swap = true;
6491    case ISD::SETUGE: SSECC = 5; break;
6492    case ISD::SETULT: Swap = true;
6493    case ISD::SETUGT: SSECC = 6; break;
6494    case ISD::SETO:   SSECC = 7; break;
6495    }
6496    if (Swap)
6497      std::swap(Op0, Op1);
6498
6499    // In the two special cases we can't handle, emit two comparisons.
6500    if (SSECC == 8) {
6501      if (SetCCOpcode == ISD::SETUEQ) {
6502        SDValue UNORD, EQ;
6503        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
6504        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
6505        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
6506      }
6507      else if (SetCCOpcode == ISD::SETONE) {
6508        SDValue ORD, NEQ;
6509        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
6510        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
6511        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
6512      }
6513      llvm_unreachable("Illegal FP comparison");
6514    }
6515    // Handle all other FP comparisons here.
6516    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
6517  }
6518
6519  // We are handling one of the integer comparisons here.  Since SSE only has
6520  // GT and EQ comparisons for integer, swapping operands and multiple
6521  // operations may be required for some comparisons.
6522  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
6523  bool Swap = false, Invert = false, FlipSigns = false;
6524
6525  switch (VT.getSimpleVT().SimpleTy) {
6526  default: break;
6527  case MVT::v8i8:
6528  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
6529  case MVT::v4i16:
6530  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
6531  case MVT::v2i32:
6532  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
6533  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
6534  }
6535
6536  switch (SetCCOpcode) {
6537  default: break;
6538  case ISD::SETNE:  Invert = true;
6539  case ISD::SETEQ:  Opc = EQOpc; break;
6540  case ISD::SETLT:  Swap = true;
6541  case ISD::SETGT:  Opc = GTOpc; break;
6542  case ISD::SETGE:  Swap = true;
6543  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
6544  case ISD::SETULT: Swap = true;
6545  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
6546  case ISD::SETUGE: Swap = true;
6547  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
6548  }
6549  if (Swap)
6550    std::swap(Op0, Op1);
6551
6552  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
6553  // bits of the inputs before performing those operations.
6554  if (FlipSigns) {
6555    EVT EltVT = VT.getVectorElementType();
6556    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
6557                                      EltVT);
6558    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
6559    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
6560                                    SignBits.size());
6561    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
6562    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
6563  }
6564
6565  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
6566
6567  // If the logical-not of the result is required, perform that now.
6568  if (Invert)
6569    Result = DAG.getNOT(dl, Result, VT);
6570
6571  return Result;
6572}
6573
6574// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
6575static bool isX86LogicalCmp(SDValue Op) {
6576  unsigned Opc = Op.getNode()->getOpcode();
6577  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
6578    return true;
6579  if (Op.getResNo() == 1 &&
6580      (Opc == X86ISD::ADD ||
6581       Opc == X86ISD::SUB ||
6582       Opc == X86ISD::SMUL ||
6583       Opc == X86ISD::UMUL ||
6584       Opc == X86ISD::INC ||
6585       Opc == X86ISD::DEC ||
6586       Opc == X86ISD::OR ||
6587       Opc == X86ISD::XOR ||
6588       Opc == X86ISD::AND))
6589    return true;
6590
6591  return false;
6592}
6593
6594SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
6595  bool addTest = true;
6596  SDValue Cond  = Op.getOperand(0);
6597  DebugLoc dl = Op.getDebugLoc();
6598  SDValue CC;
6599
6600  if (Cond.getOpcode() == ISD::SETCC) {
6601    SDValue NewCond = LowerSETCC(Cond, DAG);
6602    if (NewCond.getNode())
6603      Cond = NewCond;
6604  }
6605
6606  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
6607  SDValue Op1 = Op.getOperand(1);
6608  SDValue Op2 = Op.getOperand(2);
6609  if (Cond.getOpcode() == X86ISD::SETCC &&
6610      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
6611    SDValue Cmp = Cond.getOperand(1);
6612    if (Cmp.getOpcode() == X86ISD::CMP) {
6613      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
6614      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
6615      ConstantSDNode *RHSC =
6616        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
6617      if (N1C && N1C->isAllOnesValue() &&
6618          N2C && N2C->isNullValue() &&
6619          RHSC && RHSC->isNullValue()) {
6620        SDValue CmpOp0 = Cmp.getOperand(0);
6621        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6622                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
6623        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
6624                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
6625      }
6626    }
6627  }
6628
6629  // Look pass (and (setcc_carry (cmp ...)), 1).
6630  if (Cond.getOpcode() == ISD::AND &&
6631      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6632    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6633    if (C && C->getAPIntValue() == 1)
6634      Cond = Cond.getOperand(0);
6635  }
6636
6637  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6638  // setting operand in place of the X86ISD::SETCC.
6639  if (Cond.getOpcode() == X86ISD::SETCC ||
6640      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6641    CC = Cond.getOperand(0);
6642
6643    SDValue Cmp = Cond.getOperand(1);
6644    unsigned Opc = Cmp.getOpcode();
6645    EVT VT = Op.getValueType();
6646
6647    bool IllegalFPCMov = false;
6648    if (VT.isFloatingPoint() && !VT.isVector() &&
6649        !isScalarFPTypeInSSEReg(VT))  // FPStack?
6650      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
6651
6652    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
6653        Opc == X86ISD::BT) { // FIXME
6654      Cond = Cmp;
6655      addTest = false;
6656    }
6657  }
6658
6659  if (addTest) {
6660    // Look pass the truncate.
6661    if (Cond.getOpcode() == ISD::TRUNCATE)
6662      Cond = Cond.getOperand(0);
6663
6664    // We know the result of AND is compared against zero. Try to match
6665    // it to BT.
6666    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6667      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6668      if (NewSetCC.getNode()) {
6669        CC = NewSetCC.getOperand(0);
6670        Cond = NewSetCC.getOperand(1);
6671        addTest = false;
6672      }
6673    }
6674  }
6675
6676  if (addTest) {
6677    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6678    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6679  }
6680
6681  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
6682  // condition is true.
6683  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
6684  SDValue Ops[] = { Op2, Op1, CC, Cond };
6685  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
6686}
6687
6688// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
6689// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
6690// from the AND / OR.
6691static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
6692  Opc = Op.getOpcode();
6693  if (Opc != ISD::OR && Opc != ISD::AND)
6694    return false;
6695  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6696          Op.getOperand(0).hasOneUse() &&
6697          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
6698          Op.getOperand(1).hasOneUse());
6699}
6700
6701// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
6702// 1 and that the SETCC node has a single use.
6703static bool isXor1OfSetCC(SDValue Op) {
6704  if (Op.getOpcode() != ISD::XOR)
6705    return false;
6706  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6707  if (N1C && N1C->getAPIntValue() == 1) {
6708    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
6709      Op.getOperand(0).hasOneUse();
6710  }
6711  return false;
6712}
6713
6714SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
6715  bool addTest = true;
6716  SDValue Chain = Op.getOperand(0);
6717  SDValue Cond  = Op.getOperand(1);
6718  SDValue Dest  = Op.getOperand(2);
6719  DebugLoc dl = Op.getDebugLoc();
6720  SDValue CC;
6721
6722  if (Cond.getOpcode() == ISD::SETCC) {
6723    SDValue NewCond = LowerSETCC(Cond, DAG);
6724    if (NewCond.getNode())
6725      Cond = NewCond;
6726  }
6727#if 0
6728  // FIXME: LowerXALUO doesn't handle these!!
6729  else if (Cond.getOpcode() == X86ISD::ADD  ||
6730           Cond.getOpcode() == X86ISD::SUB  ||
6731           Cond.getOpcode() == X86ISD::SMUL ||
6732           Cond.getOpcode() == X86ISD::UMUL)
6733    Cond = LowerXALUO(Cond, DAG);
6734#endif
6735
6736  // Look pass (and (setcc_carry (cmp ...)), 1).
6737  if (Cond.getOpcode() == ISD::AND &&
6738      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
6739    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
6740    if (C && C->getAPIntValue() == 1)
6741      Cond = Cond.getOperand(0);
6742  }
6743
6744  // If condition flag is set by a X86ISD::CMP, then use it as the condition
6745  // setting operand in place of the X86ISD::SETCC.
6746  if (Cond.getOpcode() == X86ISD::SETCC ||
6747      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
6748    CC = Cond.getOperand(0);
6749
6750    SDValue Cmp = Cond.getOperand(1);
6751    unsigned Opc = Cmp.getOpcode();
6752    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
6753    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
6754      Cond = Cmp;
6755      addTest = false;
6756    } else {
6757      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
6758      default: break;
6759      case X86::COND_O:
6760      case X86::COND_B:
6761        // These can only come from an arithmetic instruction with overflow,
6762        // e.g. SADDO, UADDO.
6763        Cond = Cond.getNode()->getOperand(1);
6764        addTest = false;
6765        break;
6766      }
6767    }
6768  } else {
6769    unsigned CondOpc;
6770    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
6771      SDValue Cmp = Cond.getOperand(0).getOperand(1);
6772      if (CondOpc == ISD::OR) {
6773        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
6774        // two branches instead of an explicit OR instruction with a
6775        // separate test.
6776        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6777            isX86LogicalCmp(Cmp)) {
6778          CC = Cond.getOperand(0).getOperand(0);
6779          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6780                              Chain, Dest, CC, Cmp);
6781          CC = Cond.getOperand(1).getOperand(0);
6782          Cond = Cmp;
6783          addTest = false;
6784        }
6785      } else { // ISD::AND
6786        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
6787        // two branches instead of an explicit AND instruction with a
6788        // separate test. However, we only do this if this block doesn't
6789        // have a fall-through edge, because this requires an explicit
6790        // jmp when the condition is false.
6791        if (Cmp == Cond.getOperand(1).getOperand(1) &&
6792            isX86LogicalCmp(Cmp) &&
6793            Op.getNode()->hasOneUse()) {
6794          X86::CondCode CCode =
6795            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6796          CCode = X86::GetOppositeBranchCondition(CCode);
6797          CC = DAG.getConstant(CCode, MVT::i8);
6798          SDNode *User = *Op.getNode()->use_begin();
6799          // Look for an unconditional branch following this conditional branch.
6800          // We need this because we need to reverse the successors in order
6801          // to implement FCMP_OEQ.
6802          if (User->getOpcode() == ISD::BR) {
6803            SDValue FalseBB = User->getOperand(1);
6804            SDNode *NewBR =
6805              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
6806            assert(NewBR == User);
6807            (void)NewBR;
6808            Dest = FalseBB;
6809
6810            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6811                                Chain, Dest, CC, Cmp);
6812            X86::CondCode CCode =
6813              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
6814            CCode = X86::GetOppositeBranchCondition(CCode);
6815            CC = DAG.getConstant(CCode, MVT::i8);
6816            Cond = Cmp;
6817            addTest = false;
6818          }
6819        }
6820      }
6821    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
6822      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
6823      // It should be transformed during dag combiner except when the condition
6824      // is set by a arithmetics with overflow node.
6825      X86::CondCode CCode =
6826        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
6827      CCode = X86::GetOppositeBranchCondition(CCode);
6828      CC = DAG.getConstant(CCode, MVT::i8);
6829      Cond = Cond.getOperand(0).getOperand(1);
6830      addTest = false;
6831    }
6832  }
6833
6834  if (addTest) {
6835    // Look pass the truncate.
6836    if (Cond.getOpcode() == ISD::TRUNCATE)
6837      Cond = Cond.getOperand(0);
6838
6839    // We know the result of AND is compared against zero. Try to match
6840    // it to BT.
6841    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
6842      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
6843      if (NewSetCC.getNode()) {
6844        CC = NewSetCC.getOperand(0);
6845        Cond = NewSetCC.getOperand(1);
6846        addTest = false;
6847      }
6848    }
6849  }
6850
6851  if (addTest) {
6852    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6853    Cond = EmitTest(Cond, X86::COND_NE, DAG);
6854  }
6855  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
6856                     Chain, Dest, CC, Cond);
6857}
6858
6859
6860// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
6861// Calls to _alloca is needed to probe the stack when allocating more than 4k
6862// bytes in one go. Touching the stack at 4K increments is necessary to ensure
6863// that the guard pages used by the OS virtual memory manager are allocated in
6864// correct sequence.
6865SDValue
6866X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6867                                           SelectionDAG &DAG) const {
6868  assert(Subtarget->isTargetCygMing() &&
6869         "This should be used only on Cygwin/Mingw targets");
6870  DebugLoc dl = Op.getDebugLoc();
6871
6872  // Get the inputs.
6873  SDValue Chain = Op.getOperand(0);
6874  SDValue Size  = Op.getOperand(1);
6875  // FIXME: Ensure alignment here
6876
6877  SDValue Flag;
6878
6879  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
6880
6881  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
6882  Flag = Chain.getValue(1);
6883
6884  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6885
6886  Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
6887  Flag = Chain.getValue(1);
6888
6889  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
6890
6891  SDValue Ops1[2] = { Chain.getValue(0), Chain };
6892  return DAG.getMergeValues(Ops1, 2, dl);
6893}
6894
6895SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
6896  MachineFunction &MF = DAG.getMachineFunction();
6897  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
6898
6899  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
6900  DebugLoc dl = Op.getDebugLoc();
6901
6902  if (!Subtarget->is64Bit()) {
6903    // vastart just stores the address of the VarArgsFrameIndex slot into the
6904    // memory location argument.
6905    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6906                                   getPointerTy());
6907    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
6908                        false, false, 0);
6909  }
6910
6911  // __va_list_tag:
6912  //   gp_offset         (0 - 6 * 8)
6913  //   fp_offset         (48 - 48 + 8 * 16)
6914  //   overflow_arg_area (point to parameters coming in memory).
6915  //   reg_save_area
6916  SmallVector<SDValue, 8> MemOps;
6917  SDValue FIN = Op.getOperand(1);
6918  // Store gp_offset
6919  SDValue Store = DAG.getStore(Op.getOperand(0), dl,
6920                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
6921                                               MVT::i32),
6922                               FIN, SV, 0, false, false, 0);
6923  MemOps.push_back(Store);
6924
6925  // Store fp_offset
6926  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6927                    FIN, DAG.getIntPtrConstant(4));
6928  Store = DAG.getStore(Op.getOperand(0), dl,
6929                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
6930                                       MVT::i32),
6931                       FIN, SV, 4, false, false, 0);
6932  MemOps.push_back(Store);
6933
6934  // Store ptr to overflow_arg_area
6935  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6936                    FIN, DAG.getIntPtrConstant(4));
6937  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
6938                                    getPointerTy());
6939  Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 8,
6940                       false, false, 0);
6941  MemOps.push_back(Store);
6942
6943  // Store ptr to reg_save_area.
6944  FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6945                    FIN, DAG.getIntPtrConstant(8));
6946  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
6947                                    getPointerTy());
6948  Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 16,
6949                       false, false, 0);
6950  MemOps.push_back(Store);
6951  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
6952                     &MemOps[0], MemOps.size());
6953}
6954
6955SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
6956  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6957  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
6958
6959  report_fatal_error("VAArgInst is not yet implemented for x86-64!");
6960  return SDValue();
6961}
6962
6963SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
6964  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
6965  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
6966  SDValue Chain = Op.getOperand(0);
6967  SDValue DstPtr = Op.getOperand(1);
6968  SDValue SrcPtr = Op.getOperand(2);
6969  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
6970  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
6971  DebugLoc dl = Op.getDebugLoc();
6972
6973  return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
6974                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
6975                       false, DstSV, 0, SrcSV, 0);
6976}
6977
6978SDValue
6979X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
6980  DebugLoc dl = Op.getDebugLoc();
6981  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6982  switch (IntNo) {
6983  default: return SDValue();    // Don't custom lower most intrinsics.
6984  // Comparison intrinsics.
6985  case Intrinsic::x86_sse_comieq_ss:
6986  case Intrinsic::x86_sse_comilt_ss:
6987  case Intrinsic::x86_sse_comile_ss:
6988  case Intrinsic::x86_sse_comigt_ss:
6989  case Intrinsic::x86_sse_comige_ss:
6990  case Intrinsic::x86_sse_comineq_ss:
6991  case Intrinsic::x86_sse_ucomieq_ss:
6992  case Intrinsic::x86_sse_ucomilt_ss:
6993  case Intrinsic::x86_sse_ucomile_ss:
6994  case Intrinsic::x86_sse_ucomigt_ss:
6995  case Intrinsic::x86_sse_ucomige_ss:
6996  case Intrinsic::x86_sse_ucomineq_ss:
6997  case Intrinsic::x86_sse2_comieq_sd:
6998  case Intrinsic::x86_sse2_comilt_sd:
6999  case Intrinsic::x86_sse2_comile_sd:
7000  case Intrinsic::x86_sse2_comigt_sd:
7001  case Intrinsic::x86_sse2_comige_sd:
7002  case Intrinsic::x86_sse2_comineq_sd:
7003  case Intrinsic::x86_sse2_ucomieq_sd:
7004  case Intrinsic::x86_sse2_ucomilt_sd:
7005  case Intrinsic::x86_sse2_ucomile_sd:
7006  case Intrinsic::x86_sse2_ucomigt_sd:
7007  case Intrinsic::x86_sse2_ucomige_sd:
7008  case Intrinsic::x86_sse2_ucomineq_sd: {
7009    unsigned Opc = 0;
7010    ISD::CondCode CC = ISD::SETCC_INVALID;
7011    switch (IntNo) {
7012    default: break;
7013    case Intrinsic::x86_sse_comieq_ss:
7014    case Intrinsic::x86_sse2_comieq_sd:
7015      Opc = X86ISD::COMI;
7016      CC = ISD::SETEQ;
7017      break;
7018    case Intrinsic::x86_sse_comilt_ss:
7019    case Intrinsic::x86_sse2_comilt_sd:
7020      Opc = X86ISD::COMI;
7021      CC = ISD::SETLT;
7022      break;
7023    case Intrinsic::x86_sse_comile_ss:
7024    case Intrinsic::x86_sse2_comile_sd:
7025      Opc = X86ISD::COMI;
7026      CC = ISD::SETLE;
7027      break;
7028    case Intrinsic::x86_sse_comigt_ss:
7029    case Intrinsic::x86_sse2_comigt_sd:
7030      Opc = X86ISD::COMI;
7031      CC = ISD::SETGT;
7032      break;
7033    case Intrinsic::x86_sse_comige_ss:
7034    case Intrinsic::x86_sse2_comige_sd:
7035      Opc = X86ISD::COMI;
7036      CC = ISD::SETGE;
7037      break;
7038    case Intrinsic::x86_sse_comineq_ss:
7039    case Intrinsic::x86_sse2_comineq_sd:
7040      Opc = X86ISD::COMI;
7041      CC = ISD::SETNE;
7042      break;
7043    case Intrinsic::x86_sse_ucomieq_ss:
7044    case Intrinsic::x86_sse2_ucomieq_sd:
7045      Opc = X86ISD::UCOMI;
7046      CC = ISD::SETEQ;
7047      break;
7048    case Intrinsic::x86_sse_ucomilt_ss:
7049    case Intrinsic::x86_sse2_ucomilt_sd:
7050      Opc = X86ISD::UCOMI;
7051      CC = ISD::SETLT;
7052      break;
7053    case Intrinsic::x86_sse_ucomile_ss:
7054    case Intrinsic::x86_sse2_ucomile_sd:
7055      Opc = X86ISD::UCOMI;
7056      CC = ISD::SETLE;
7057      break;
7058    case Intrinsic::x86_sse_ucomigt_ss:
7059    case Intrinsic::x86_sse2_ucomigt_sd:
7060      Opc = X86ISD::UCOMI;
7061      CC = ISD::SETGT;
7062      break;
7063    case Intrinsic::x86_sse_ucomige_ss:
7064    case Intrinsic::x86_sse2_ucomige_sd:
7065      Opc = X86ISD::UCOMI;
7066      CC = ISD::SETGE;
7067      break;
7068    case Intrinsic::x86_sse_ucomineq_ss:
7069    case Intrinsic::x86_sse2_ucomineq_sd:
7070      Opc = X86ISD::UCOMI;
7071      CC = ISD::SETNE;
7072      break;
7073    }
7074
7075    SDValue LHS = Op.getOperand(1);
7076    SDValue RHS = Op.getOperand(2);
7077    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7078    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7079    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7080    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7081                                DAG.getConstant(X86CC, MVT::i8), Cond);
7082    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7083  }
7084  // ptest and testp intrinsics. The intrinsic these come from are designed to
7085  // return an integer value, not just an instruction so lower it to the ptest
7086  // or testp pattern and a setcc for the result.
7087  case Intrinsic::x86_sse41_ptestz:
7088  case Intrinsic::x86_sse41_ptestc:
7089  case Intrinsic::x86_sse41_ptestnzc:
7090  case Intrinsic::x86_avx_ptestz_256:
7091  case Intrinsic::x86_avx_ptestc_256:
7092  case Intrinsic::x86_avx_ptestnzc_256:
7093  case Intrinsic::x86_avx_vtestz_ps:
7094  case Intrinsic::x86_avx_vtestc_ps:
7095  case Intrinsic::x86_avx_vtestnzc_ps:
7096  case Intrinsic::x86_avx_vtestz_pd:
7097  case Intrinsic::x86_avx_vtestc_pd:
7098  case Intrinsic::x86_avx_vtestnzc_pd:
7099  case Intrinsic::x86_avx_vtestz_ps_256:
7100  case Intrinsic::x86_avx_vtestc_ps_256:
7101  case Intrinsic::x86_avx_vtestnzc_ps_256:
7102  case Intrinsic::x86_avx_vtestz_pd_256:
7103  case Intrinsic::x86_avx_vtestc_pd_256:
7104  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7105    bool IsTestPacked = false;
7106    unsigned X86CC = 0;
7107    switch (IntNo) {
7108    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7109    case Intrinsic::x86_avx_vtestz_ps:
7110    case Intrinsic::x86_avx_vtestz_pd:
7111    case Intrinsic::x86_avx_vtestz_ps_256:
7112    case Intrinsic::x86_avx_vtestz_pd_256:
7113      IsTestPacked = true; // Fallthrough
7114    case Intrinsic::x86_sse41_ptestz:
7115    case Intrinsic::x86_avx_ptestz_256:
7116      // ZF = 1
7117      X86CC = X86::COND_E;
7118      break;
7119    case Intrinsic::x86_avx_vtestc_ps:
7120    case Intrinsic::x86_avx_vtestc_pd:
7121    case Intrinsic::x86_avx_vtestc_ps_256:
7122    case Intrinsic::x86_avx_vtestc_pd_256:
7123      IsTestPacked = true; // Fallthrough
7124    case Intrinsic::x86_sse41_ptestc:
7125    case Intrinsic::x86_avx_ptestc_256:
7126      // CF = 1
7127      X86CC = X86::COND_B;
7128      break;
7129    case Intrinsic::x86_avx_vtestnzc_ps:
7130    case Intrinsic::x86_avx_vtestnzc_pd:
7131    case Intrinsic::x86_avx_vtestnzc_ps_256:
7132    case Intrinsic::x86_avx_vtestnzc_pd_256:
7133      IsTestPacked = true; // Fallthrough
7134    case Intrinsic::x86_sse41_ptestnzc:
7135    case Intrinsic::x86_avx_ptestnzc_256:
7136      // ZF and CF = 0
7137      X86CC = X86::COND_A;
7138      break;
7139    }
7140
7141    SDValue LHS = Op.getOperand(1);
7142    SDValue RHS = Op.getOperand(2);
7143    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7144    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7145    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7146    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7147    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7148  }
7149
7150  // Fix vector shift instructions where the last operand is a non-immediate
7151  // i32 value.
7152  case Intrinsic::x86_sse2_pslli_w:
7153  case Intrinsic::x86_sse2_pslli_d:
7154  case Intrinsic::x86_sse2_pslli_q:
7155  case Intrinsic::x86_sse2_psrli_w:
7156  case Intrinsic::x86_sse2_psrli_d:
7157  case Intrinsic::x86_sse2_psrli_q:
7158  case Intrinsic::x86_sse2_psrai_w:
7159  case Intrinsic::x86_sse2_psrai_d:
7160  case Intrinsic::x86_mmx_pslli_w:
7161  case Intrinsic::x86_mmx_pslli_d:
7162  case Intrinsic::x86_mmx_pslli_q:
7163  case Intrinsic::x86_mmx_psrli_w:
7164  case Intrinsic::x86_mmx_psrli_d:
7165  case Intrinsic::x86_mmx_psrli_q:
7166  case Intrinsic::x86_mmx_psrai_w:
7167  case Intrinsic::x86_mmx_psrai_d: {
7168    SDValue ShAmt = Op.getOperand(2);
7169    if (isa<ConstantSDNode>(ShAmt))
7170      return SDValue();
7171
7172    unsigned NewIntNo = 0;
7173    EVT ShAmtVT = MVT::v4i32;
7174    switch (IntNo) {
7175    case Intrinsic::x86_sse2_pslli_w:
7176      NewIntNo = Intrinsic::x86_sse2_psll_w;
7177      break;
7178    case Intrinsic::x86_sse2_pslli_d:
7179      NewIntNo = Intrinsic::x86_sse2_psll_d;
7180      break;
7181    case Intrinsic::x86_sse2_pslli_q:
7182      NewIntNo = Intrinsic::x86_sse2_psll_q;
7183      break;
7184    case Intrinsic::x86_sse2_psrli_w:
7185      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7186      break;
7187    case Intrinsic::x86_sse2_psrli_d:
7188      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7189      break;
7190    case Intrinsic::x86_sse2_psrli_q:
7191      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7192      break;
7193    case Intrinsic::x86_sse2_psrai_w:
7194      NewIntNo = Intrinsic::x86_sse2_psra_w;
7195      break;
7196    case Intrinsic::x86_sse2_psrai_d:
7197      NewIntNo = Intrinsic::x86_sse2_psra_d;
7198      break;
7199    default: {
7200      ShAmtVT = MVT::v2i32;
7201      switch (IntNo) {
7202      case Intrinsic::x86_mmx_pslli_w:
7203        NewIntNo = Intrinsic::x86_mmx_psll_w;
7204        break;
7205      case Intrinsic::x86_mmx_pslli_d:
7206        NewIntNo = Intrinsic::x86_mmx_psll_d;
7207        break;
7208      case Intrinsic::x86_mmx_pslli_q:
7209        NewIntNo = Intrinsic::x86_mmx_psll_q;
7210        break;
7211      case Intrinsic::x86_mmx_psrli_w:
7212        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7213        break;
7214      case Intrinsic::x86_mmx_psrli_d:
7215        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7216        break;
7217      case Intrinsic::x86_mmx_psrli_q:
7218        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7219        break;
7220      case Intrinsic::x86_mmx_psrai_w:
7221        NewIntNo = Intrinsic::x86_mmx_psra_w;
7222        break;
7223      case Intrinsic::x86_mmx_psrai_d:
7224        NewIntNo = Intrinsic::x86_mmx_psra_d;
7225        break;
7226      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7227      }
7228      break;
7229    }
7230    }
7231
7232    // The vector shift intrinsics with scalars uses 32b shift amounts but
7233    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7234    // to be zero.
7235    SDValue ShOps[4];
7236    ShOps[0] = ShAmt;
7237    ShOps[1] = DAG.getConstant(0, MVT::i32);
7238    if (ShAmtVT == MVT::v4i32) {
7239      ShOps[2] = DAG.getUNDEF(MVT::i32);
7240      ShOps[3] = DAG.getUNDEF(MVT::i32);
7241      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7242    } else {
7243      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7244    }
7245
7246    EVT VT = Op.getValueType();
7247    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7248    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7249                       DAG.getConstant(NewIntNo, MVT::i32),
7250                       Op.getOperand(1), ShAmt);
7251  }
7252  }
7253}
7254
7255SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7256                                           SelectionDAG &DAG) const {
7257  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7258  MFI->setReturnAddressIsTaken(true);
7259
7260  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7261  DebugLoc dl = Op.getDebugLoc();
7262
7263  if (Depth > 0) {
7264    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7265    SDValue Offset =
7266      DAG.getConstant(TD->getPointerSize(),
7267                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7268    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7269                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7270                                   FrameAddr, Offset),
7271                       NULL, 0, false, false, 0);
7272  }
7273
7274  // Just load the return address.
7275  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7276  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7277                     RetAddrFI, NULL, 0, false, false, 0);
7278}
7279
7280SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7281  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7282  MFI->setFrameAddressIsTaken(true);
7283
7284  EVT VT = Op.getValueType();
7285  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7286  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7287  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7288  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7289  while (Depth--)
7290    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
7291                            false, false, 0);
7292  return FrameAddr;
7293}
7294
7295SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7296                                                     SelectionDAG &DAG) const {
7297  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7298}
7299
7300SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7301  MachineFunction &MF = DAG.getMachineFunction();
7302  SDValue Chain     = Op.getOperand(0);
7303  SDValue Offset    = Op.getOperand(1);
7304  SDValue Handler   = Op.getOperand(2);
7305  DebugLoc dl       = Op.getDebugLoc();
7306
7307  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7308                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7309                                     getPointerTy());
7310  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7311
7312  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7313                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7314  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7315  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
7316  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7317  MF.getRegInfo().addLiveOut(StoreAddrReg);
7318
7319  return DAG.getNode(X86ISD::EH_RETURN, dl,
7320                     MVT::Other,
7321                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7322}
7323
7324SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7325                                             SelectionDAG &DAG) const {
7326  SDValue Root = Op.getOperand(0);
7327  SDValue Trmp = Op.getOperand(1); // trampoline
7328  SDValue FPtr = Op.getOperand(2); // nested function
7329  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7330  DebugLoc dl  = Op.getDebugLoc();
7331
7332  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7333
7334  if (Subtarget->is64Bit()) {
7335    SDValue OutChains[6];
7336
7337    // Large code-model.
7338    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7339    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7340
7341    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7342    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7343
7344    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7345
7346    // Load the pointer to the nested function into R11.
7347    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
7348    SDValue Addr = Trmp;
7349    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7350                                Addr, TrmpAddr, 0, false, false, 0);
7351
7352    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7353                       DAG.getConstant(2, MVT::i64));
7354    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
7355                                false, false, 2);
7356
7357    // Load the 'nest' parameter value into R10.
7358    // R10 is specified in X86CallingConv.td
7359    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
7360    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7361                       DAG.getConstant(10, MVT::i64));
7362    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7363                                Addr, TrmpAddr, 10, false, false, 0);
7364
7365    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7366                       DAG.getConstant(12, MVT::i64));
7367    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
7368                                false, false, 2);
7369
7370    // Jump to the nested function.
7371    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
7372    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7373                       DAG.getConstant(20, MVT::i64));
7374    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
7375                                Addr, TrmpAddr, 20, false, false, 0);
7376
7377    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
7378    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
7379                       DAG.getConstant(22, MVT::i64));
7380    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
7381                                TrmpAddr, 22, false, false, 0);
7382
7383    SDValue Ops[] =
7384      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
7385    return DAG.getMergeValues(Ops, 2, dl);
7386  } else {
7387    const Function *Func =
7388      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
7389    CallingConv::ID CC = Func->getCallingConv();
7390    unsigned NestReg;
7391
7392    switch (CC) {
7393    default:
7394      llvm_unreachable("Unsupported calling convention");
7395    case CallingConv::C:
7396    case CallingConv::X86_StdCall: {
7397      // Pass 'nest' parameter in ECX.
7398      // Must be kept in sync with X86CallingConv.td
7399      NestReg = X86::ECX;
7400
7401      // Check that ECX wasn't needed by an 'inreg' parameter.
7402      const FunctionType *FTy = Func->getFunctionType();
7403      const AttrListPtr &Attrs = Func->getAttributes();
7404
7405      if (!Attrs.isEmpty() && !Func->isVarArg()) {
7406        unsigned InRegCount = 0;
7407        unsigned Idx = 1;
7408
7409        for (FunctionType::param_iterator I = FTy->param_begin(),
7410             E = FTy->param_end(); I != E; ++I, ++Idx)
7411          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
7412            // FIXME: should only count parameters that are lowered to integers.
7413            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
7414
7415        if (InRegCount > 2) {
7416          report_fatal_error("Nest register in use - reduce number of inreg"
7417                             " parameters!");
7418        }
7419      }
7420      break;
7421    }
7422    case CallingConv::X86_FastCall:
7423    case CallingConv::X86_ThisCall:
7424    case CallingConv::Fast:
7425      // Pass 'nest' parameter in EAX.
7426      // Must be kept in sync with X86CallingConv.td
7427      NestReg = X86::EAX;
7428      break;
7429    }
7430
7431    SDValue OutChains[4];
7432    SDValue Addr, Disp;
7433
7434    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7435                       DAG.getConstant(10, MVT::i32));
7436    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
7437
7438    // This is storing the opcode for MOV32ri.
7439    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
7440    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
7441    OutChains[0] = DAG.getStore(Root, dl,
7442                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
7443                                Trmp, TrmpAddr, 0, false, false, 0);
7444
7445    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7446                       DAG.getConstant(1, MVT::i32));
7447    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
7448                                false, false, 1);
7449
7450    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
7451    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7452                       DAG.getConstant(5, MVT::i32));
7453    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
7454                                TrmpAddr, 5, false, false, 1);
7455
7456    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
7457                       DAG.getConstant(6, MVT::i32));
7458    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
7459                                false, false, 1);
7460
7461    SDValue Ops[] =
7462      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
7463    return DAG.getMergeValues(Ops, 2, dl);
7464  }
7465}
7466
7467SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7468                                            SelectionDAG &DAG) const {
7469  /*
7470   The rounding mode is in bits 11:10 of FPSR, and has the following
7471   settings:
7472     00 Round to nearest
7473     01 Round to -inf
7474     10 Round to +inf
7475     11 Round to 0
7476
7477  FLT_ROUNDS, on the other hand, expects the following:
7478    -1 Undefined
7479     0 Round to 0
7480     1 Round to nearest
7481     2 Round to +inf
7482     3 Round to -inf
7483
7484  To perform the conversion, we do:
7485    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
7486  */
7487
7488  MachineFunction &MF = DAG.getMachineFunction();
7489  const TargetMachine &TM = MF.getTarget();
7490  const TargetFrameInfo &TFI = *TM.getFrameInfo();
7491  unsigned StackAlignment = TFI.getStackAlignment();
7492  EVT VT = Op.getValueType();
7493  DebugLoc dl = Op.getDebugLoc();
7494
7495  // Save FP Control Word to stack slot
7496  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
7497  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7498
7499  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
7500                              DAG.getEntryNode(), StackSlot);
7501
7502  // Load FP Control Word from stack slot
7503  SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
7504                            false, false, 0);
7505
7506  // Transform as necessary
7507  SDValue CWD1 =
7508    DAG.getNode(ISD::SRL, dl, MVT::i16,
7509                DAG.getNode(ISD::AND, dl, MVT::i16,
7510                            CWD, DAG.getConstant(0x800, MVT::i16)),
7511                DAG.getConstant(11, MVT::i8));
7512  SDValue CWD2 =
7513    DAG.getNode(ISD::SRL, dl, MVT::i16,
7514                DAG.getNode(ISD::AND, dl, MVT::i16,
7515                            CWD, DAG.getConstant(0x400, MVT::i16)),
7516                DAG.getConstant(9, MVT::i8));
7517
7518  SDValue RetVal =
7519    DAG.getNode(ISD::AND, dl, MVT::i16,
7520                DAG.getNode(ISD::ADD, dl, MVT::i16,
7521                            DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
7522                            DAG.getConstant(1, MVT::i16)),
7523                DAG.getConstant(3, MVT::i16));
7524
7525
7526  return DAG.getNode((VT.getSizeInBits() < 16 ?
7527                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7528}
7529
7530SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
7531  EVT VT = Op.getValueType();
7532  EVT OpVT = VT;
7533  unsigned NumBits = VT.getSizeInBits();
7534  DebugLoc dl = Op.getDebugLoc();
7535
7536  Op = Op.getOperand(0);
7537  if (VT == MVT::i8) {
7538    // Zero extend to i32 since there is not an i8 bsr.
7539    OpVT = MVT::i32;
7540    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7541  }
7542
7543  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
7544  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7545  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
7546
7547  // If src is zero (i.e. bsr sets ZF), returns NumBits.
7548  SDValue Ops[] = {
7549    Op,
7550    DAG.getConstant(NumBits+NumBits-1, OpVT),
7551    DAG.getConstant(X86::COND_E, MVT::i8),
7552    Op.getValue(1)
7553  };
7554  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7555
7556  // Finally xor with NumBits-1.
7557  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
7558
7559  if (VT == MVT::i8)
7560    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7561  return Op;
7562}
7563
7564SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
7565  EVT VT = Op.getValueType();
7566  EVT OpVT = VT;
7567  unsigned NumBits = VT.getSizeInBits();
7568  DebugLoc dl = Op.getDebugLoc();
7569
7570  Op = Op.getOperand(0);
7571  if (VT == MVT::i8) {
7572    OpVT = MVT::i32;
7573    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
7574  }
7575
7576  // Issue a bsf (scan bits forward) which also sets EFLAGS.
7577  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
7578  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
7579
7580  // If src is zero (i.e. bsf sets ZF), returns NumBits.
7581  SDValue Ops[] = {
7582    Op,
7583    DAG.getConstant(NumBits, OpVT),
7584    DAG.getConstant(X86::COND_E, MVT::i8),
7585    Op.getValue(1)
7586  };
7587  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
7588
7589  if (VT == MVT::i8)
7590    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
7591  return Op;
7592}
7593
7594SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
7595  EVT VT = Op.getValueType();
7596  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
7597  DebugLoc dl = Op.getDebugLoc();
7598
7599  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
7600  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
7601  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
7602  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
7603  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
7604  //
7605  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
7606  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
7607  //  return AloBlo + AloBhi + AhiBlo;
7608
7609  SDValue A = Op.getOperand(0);
7610  SDValue B = Op.getOperand(1);
7611
7612  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7613                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7614                       A, DAG.getConstant(32, MVT::i32));
7615  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7616                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
7617                       B, DAG.getConstant(32, MVT::i32));
7618  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7619                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7620                       A, B);
7621  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7622                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7623                       A, Bhi);
7624  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7625                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
7626                       Ahi, B);
7627  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7628                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7629                       AloBhi, DAG.getConstant(32, MVT::i32));
7630  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7631                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
7632                       AhiBlo, DAG.getConstant(32, MVT::i32));
7633  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
7634  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
7635  return Res;
7636}
7637
7638SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
7639  EVT VT = Op.getValueType();
7640  DebugLoc dl = Op.getDebugLoc();
7641  SDValue R = Op.getOperand(0);
7642
7643  LLVMContext *Context = DAG.getContext();
7644
7645  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
7646
7647  if (VT == MVT::v4i32) {
7648    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7649                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
7650                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
7651
7652    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
7653
7654    std::vector<Constant*> CV(4, CI);
7655    Constant *C = ConstantVector::get(CV);
7656    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7657    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7658                                 PseudoSourceValue::getConstantPool(), 0,
7659                                 false, false, 16);
7660
7661    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
7662    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
7663    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
7664    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
7665  }
7666  if (VT == MVT::v16i8) {
7667    // a = a << 5;
7668    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7669                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
7670                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
7671
7672    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
7673    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
7674
7675    std::vector<Constant*> CVM1(16, CM1);
7676    std::vector<Constant*> CVM2(16, CM2);
7677    Constant *C = ConstantVector::get(CVM1);
7678    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7679    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7680                            PseudoSourceValue::getConstantPool(), 0,
7681                            false, false, 16);
7682
7683    // r = pblendv(r, psllw(r & (char16)15, 4), a);
7684    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7685    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7686                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7687                    DAG.getConstant(4, MVT::i32));
7688    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7689                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7690                    R, M, Op);
7691    // a += a
7692    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7693
7694    C = ConstantVector::get(CVM2);
7695    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7696    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7697                    PseudoSourceValue::getConstantPool(), 0, false, false, 16);
7698
7699    // r = pblendv(r, psllw(r & (char16)63, 2), a);
7700    M = DAG.getNode(ISD::AND, dl, VT, R, M);
7701    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7702                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
7703                    DAG.getConstant(2, MVT::i32));
7704    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7705                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7706                    R, M, Op);
7707    // a += a
7708    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
7709
7710    // return pblendv(r, r+r, a);
7711    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7712                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
7713                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
7714    return R;
7715  }
7716  return SDValue();
7717}
7718
7719SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
7720  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
7721  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
7722  // looks for this combo and may remove the "setcc" instruction if the "setcc"
7723  // has only one use.
7724  SDNode *N = Op.getNode();
7725  SDValue LHS = N->getOperand(0);
7726  SDValue RHS = N->getOperand(1);
7727  unsigned BaseOp = 0;
7728  unsigned Cond = 0;
7729  DebugLoc dl = Op.getDebugLoc();
7730
7731  switch (Op.getOpcode()) {
7732  default: llvm_unreachable("Unknown ovf instruction!");
7733  case ISD::SADDO:
7734    // A subtract of one will be selected as a INC. Note that INC doesn't
7735    // set CF, so we can't do this for UADDO.
7736    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7737      if (C->getAPIntValue() == 1) {
7738        BaseOp = X86ISD::INC;
7739        Cond = X86::COND_O;
7740        break;
7741      }
7742    BaseOp = X86ISD::ADD;
7743    Cond = X86::COND_O;
7744    break;
7745  case ISD::UADDO:
7746    BaseOp = X86ISD::ADD;
7747    Cond = X86::COND_B;
7748    break;
7749  case ISD::SSUBO:
7750    // A subtract of one will be selected as a DEC. Note that DEC doesn't
7751    // set CF, so we can't do this for USUBO.
7752    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
7753      if (C->getAPIntValue() == 1) {
7754        BaseOp = X86ISD::DEC;
7755        Cond = X86::COND_O;
7756        break;
7757      }
7758    BaseOp = X86ISD::SUB;
7759    Cond = X86::COND_O;
7760    break;
7761  case ISD::USUBO:
7762    BaseOp = X86ISD::SUB;
7763    Cond = X86::COND_B;
7764    break;
7765  case ISD::SMULO:
7766    BaseOp = X86ISD::SMUL;
7767    Cond = X86::COND_O;
7768    break;
7769  case ISD::UMULO:
7770    BaseOp = X86ISD::UMUL;
7771    Cond = X86::COND_B;
7772    break;
7773  }
7774
7775  // Also sets EFLAGS.
7776  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
7777  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
7778
7779  SDValue SetCC =
7780    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
7781                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
7782
7783  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
7784  return Sum;
7785}
7786
7787SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
7788  DebugLoc dl = Op.getDebugLoc();
7789
7790  if (!Subtarget->hasSSE2()) {
7791    SDValue Chain = Op.getOperand(0);
7792    SDValue Zero = DAG.getConstant(0,
7793                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7794    SDValue Ops[] = {
7795      DAG.getRegister(X86::ESP, MVT::i32), // Base
7796      DAG.getTargetConstant(1, MVT::i8),   // Scale
7797      DAG.getRegister(0, MVT::i32),        // Index
7798      DAG.getTargetConstant(0, MVT::i32),  // Disp
7799      DAG.getRegister(0, MVT::i32),        // Segment.
7800      Zero,
7801      Chain
7802    };
7803    SDNode *Res =
7804      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
7805                          array_lengthof(Ops));
7806    return SDValue(Res, 0);
7807  }
7808
7809  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
7810  if (!isDev)
7811    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
7812
7813  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
7814  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
7815  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7816  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
7817
7818  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
7819  if (!Op1 && !Op2 && !Op3 && Op4)
7820    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
7821
7822  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
7823  if (Op1 && !Op2 && !Op3 && !Op4)
7824    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
7825
7826  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
7827  //           (MFENCE)>;
7828  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
7829}
7830
7831SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
7832  EVT T = Op.getValueType();
7833  DebugLoc dl = Op.getDebugLoc();
7834  unsigned Reg = 0;
7835  unsigned size = 0;
7836  switch(T.getSimpleVT().SimpleTy) {
7837  default:
7838    assert(false && "Invalid value type!");
7839  case MVT::i8:  Reg = X86::AL;  size = 1; break;
7840  case MVT::i16: Reg = X86::AX;  size = 2; break;
7841  case MVT::i32: Reg = X86::EAX; size = 4; break;
7842  case MVT::i64:
7843    assert(Subtarget->is64Bit() && "Node not type legal!");
7844    Reg = X86::RAX; size = 8;
7845    break;
7846  }
7847  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
7848                                    Op.getOperand(2), SDValue());
7849  SDValue Ops[] = { cpIn.getValue(0),
7850                    Op.getOperand(1),
7851                    Op.getOperand(3),
7852                    DAG.getTargetConstant(size, MVT::i8),
7853                    cpIn.getValue(1) };
7854  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7855  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
7856  SDValue cpOut =
7857    DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
7858  return cpOut;
7859}
7860
7861SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
7862                                                 SelectionDAG &DAG) const {
7863  assert(Subtarget->is64Bit() && "Result not type legalized?");
7864  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
7865  SDValue TheChain = Op.getOperand(0);
7866  DebugLoc dl = Op.getDebugLoc();
7867  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
7868  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
7869  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
7870                                   rax.getValue(2));
7871  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
7872                            DAG.getConstant(32, MVT::i8));
7873  SDValue Ops[] = {
7874    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
7875    rdx.getValue(1)
7876  };
7877  return DAG.getMergeValues(Ops, 2, dl);
7878}
7879
7880SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
7881                                            SelectionDAG &DAG) const {
7882  EVT SrcVT = Op.getOperand(0).getValueType();
7883  EVT DstVT = Op.getValueType();
7884  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
7885          Subtarget->hasMMX() && !DisableMMX) &&
7886         "Unexpected custom BIT_CONVERT");
7887  assert((DstVT == MVT::i64 ||
7888          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
7889         "Unexpected custom BIT_CONVERT");
7890  // i64 <=> MMX conversions are Legal.
7891  if (SrcVT==MVT::i64 && DstVT.isVector())
7892    return Op;
7893  if (DstVT==MVT::i64 && SrcVT.isVector())
7894    return Op;
7895  // MMX <=> MMX conversions are Legal.
7896  if (SrcVT.isVector() && DstVT.isVector())
7897    return Op;
7898  // All other conversions need to be expanded.
7899  return SDValue();
7900}
7901SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
7902  SDNode *Node = Op.getNode();
7903  DebugLoc dl = Node->getDebugLoc();
7904  EVT T = Node->getValueType(0);
7905  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
7906                              DAG.getConstant(0, T), Node->getOperand(2));
7907  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
7908                       cast<AtomicSDNode>(Node)->getMemoryVT(),
7909                       Node->getOperand(0),
7910                       Node->getOperand(1), negOp,
7911                       cast<AtomicSDNode>(Node)->getSrcValue(),
7912                       cast<AtomicSDNode>(Node)->getAlignment());
7913}
7914
7915/// LowerOperation - Provide custom lowering hooks for some operations.
7916///
7917SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7918  switch (Op.getOpcode()) {
7919  default: llvm_unreachable("Should not custom lower this!");
7920  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
7921  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
7922  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
7923  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
7924  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
7925  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
7926  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7927  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
7928  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
7929  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
7930  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
7931  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
7932  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
7933  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
7934  case ISD::SHL_PARTS:
7935  case ISD::SRA_PARTS:
7936  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
7937  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
7938  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
7939  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
7940  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
7941  case ISD::FABS:               return LowerFABS(Op, DAG);
7942  case ISD::FNEG:               return LowerFNEG(Op, DAG);
7943  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
7944  case ISD::SETCC:              return LowerSETCC(Op, DAG);
7945  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
7946  case ISD::SELECT:             return LowerSELECT(Op, DAG);
7947  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
7948  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
7949  case ISD::VASTART:            return LowerVASTART(Op, DAG);
7950  case ISD::VAARG:              return LowerVAARG(Op, DAG);
7951  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
7952  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
7953  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
7954  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
7955  case ISD::FRAME_TO_ARGS_OFFSET:
7956                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
7957  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
7958  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
7959  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
7960  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
7961  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
7962  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
7963  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
7964  case ISD::SHL:                return LowerSHL(Op, DAG);
7965  case ISD::SADDO:
7966  case ISD::UADDO:
7967  case ISD::SSUBO:
7968  case ISD::USUBO:
7969  case ISD::SMULO:
7970  case ISD::UMULO:              return LowerXALUO(Op, DAG);
7971  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
7972  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
7973  }
7974}
7975
7976void X86TargetLowering::
7977ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
7978                        SelectionDAG &DAG, unsigned NewOp) const {
7979  EVT T = Node->getValueType(0);
7980  DebugLoc dl = Node->getDebugLoc();
7981  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
7982
7983  SDValue Chain = Node->getOperand(0);
7984  SDValue In1 = Node->getOperand(1);
7985  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7986                             Node->getOperand(2), DAG.getIntPtrConstant(0));
7987  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7988                             Node->getOperand(2), DAG.getIntPtrConstant(1));
7989  SDValue Ops[] = { Chain, In1, In2L, In2H };
7990  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
7991  SDValue Result =
7992    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
7993                            cast<MemSDNode>(Node)->getMemOperand());
7994  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
7995  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
7996  Results.push_back(Result.getValue(2));
7997}
7998
7999/// ReplaceNodeResults - Replace a node with an illegal result type
8000/// with a new node built out of custom code.
8001void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8002                                           SmallVectorImpl<SDValue>&Results,
8003                                           SelectionDAG &DAG) const {
8004  DebugLoc dl = N->getDebugLoc();
8005  switch (N->getOpcode()) {
8006  default:
8007    assert(false && "Do not know how to custom type legalize this operation!");
8008    return;
8009  case ISD::FP_TO_SINT: {
8010    std::pair<SDValue,SDValue> Vals =
8011        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8012    SDValue FIST = Vals.first, StackSlot = Vals.second;
8013    if (FIST.getNode() != 0) {
8014      EVT VT = N->getValueType(0);
8015      // Return a load from the stack slot.
8016      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
8017                                    false, false, 0));
8018    }
8019    return;
8020  }
8021  case ISD::READCYCLECOUNTER: {
8022    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8023    SDValue TheChain = N->getOperand(0);
8024    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8025    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8026                                     rd.getValue(1));
8027    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8028                                     eax.getValue(2));
8029    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8030    SDValue Ops[] = { eax, edx };
8031    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8032    Results.push_back(edx.getValue(1));
8033    return;
8034  }
8035  case ISD::ATOMIC_CMP_SWAP: {
8036    EVT T = N->getValueType(0);
8037    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8038    SDValue cpInL, cpInH;
8039    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8040                        DAG.getConstant(0, MVT::i32));
8041    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8042                        DAG.getConstant(1, MVT::i32));
8043    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8044    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8045                             cpInL.getValue(1));
8046    SDValue swapInL, swapInH;
8047    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8048                          DAG.getConstant(0, MVT::i32));
8049    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8050                          DAG.getConstant(1, MVT::i32));
8051    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8052                               cpInH.getValue(1));
8053    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8054                               swapInL.getValue(1));
8055    SDValue Ops[] = { swapInH.getValue(0),
8056                      N->getOperand(1),
8057                      swapInH.getValue(1) };
8058    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8059    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
8060    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8061                                        MVT::i32, Result.getValue(1));
8062    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8063                                        MVT::i32, cpOutL.getValue(2));
8064    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8065    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8066    Results.push_back(cpOutH.getValue(1));
8067    return;
8068  }
8069  case ISD::ATOMIC_LOAD_ADD:
8070    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8071    return;
8072  case ISD::ATOMIC_LOAD_AND:
8073    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8074    return;
8075  case ISD::ATOMIC_LOAD_NAND:
8076    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8077    return;
8078  case ISD::ATOMIC_LOAD_OR:
8079    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8080    return;
8081  case ISD::ATOMIC_LOAD_SUB:
8082    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8083    return;
8084  case ISD::ATOMIC_LOAD_XOR:
8085    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8086    return;
8087  case ISD::ATOMIC_SWAP:
8088    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8089    return;
8090  }
8091}
8092
8093const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8094  switch (Opcode) {
8095  default: return NULL;
8096  case X86ISD::BSF:                return "X86ISD::BSF";
8097  case X86ISD::BSR:                return "X86ISD::BSR";
8098  case X86ISD::SHLD:               return "X86ISD::SHLD";
8099  case X86ISD::SHRD:               return "X86ISD::SHRD";
8100  case X86ISD::FAND:               return "X86ISD::FAND";
8101  case X86ISD::FOR:                return "X86ISD::FOR";
8102  case X86ISD::FXOR:               return "X86ISD::FXOR";
8103  case X86ISD::FSRL:               return "X86ISD::FSRL";
8104  case X86ISD::FILD:               return "X86ISD::FILD";
8105  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8106  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8107  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8108  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8109  case X86ISD::FLD:                return "X86ISD::FLD";
8110  case X86ISD::FST:                return "X86ISD::FST";
8111  case X86ISD::CALL:               return "X86ISD::CALL";
8112  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8113  case X86ISD::BT:                 return "X86ISD::BT";
8114  case X86ISD::CMP:                return "X86ISD::CMP";
8115  case X86ISD::COMI:               return "X86ISD::COMI";
8116  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8117  case X86ISD::SETCC:              return "X86ISD::SETCC";
8118  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8119  case X86ISD::CMOV:               return "X86ISD::CMOV";
8120  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8121  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8122  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8123  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8124  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8125  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8126  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8127  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8128  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8129  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8130  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8131  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8132  case X86ISD::MMX_PINSRW:         return "X86ISD::MMX_PINSRW";
8133  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8134  case X86ISD::FMAX:               return "X86ISD::FMAX";
8135  case X86ISD::FMIN:               return "X86ISD::FMIN";
8136  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8137  case X86ISD::FRCP:               return "X86ISD::FRCP";
8138  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8139  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8140  case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
8141  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8142  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8143  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8144  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8145  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8146  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8147  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8148  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8149  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8150  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8151  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8152  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8153  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8154  case X86ISD::VSHL:               return "X86ISD::VSHL";
8155  case X86ISD::VSRL:               return "X86ISD::VSRL";
8156  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8157  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8158  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8159  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8160  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8161  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8162  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8163  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8164  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8165  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8166  case X86ISD::ADD:                return "X86ISD::ADD";
8167  case X86ISD::SUB:                return "X86ISD::SUB";
8168  case X86ISD::SMUL:               return "X86ISD::SMUL";
8169  case X86ISD::UMUL:               return "X86ISD::UMUL";
8170  case X86ISD::INC:                return "X86ISD::INC";
8171  case X86ISD::DEC:                return "X86ISD::DEC";
8172  case X86ISD::OR:                 return "X86ISD::OR";
8173  case X86ISD::XOR:                return "X86ISD::XOR";
8174  case X86ISD::AND:                return "X86ISD::AND";
8175  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8176  case X86ISD::PTEST:              return "X86ISD::PTEST";
8177  case X86ISD::TESTP:              return "X86ISD::TESTP";
8178  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8179  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8180  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8181  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8182  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8183  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8184  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8185  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8186  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8187  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8188  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8189  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8190  case X86ISD::MOVHPS:             return "X86ISD::MOVHPS";
8191  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8192  case X86ISD::MOVHPD:             return "X86ISD::MOVHPD";
8193  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8194  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8195  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8196  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8197  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8198  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8199  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8200  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8201  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8202  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8203  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8204  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8205  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8206  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8207  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8208  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8209  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8210  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8211  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8212  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8213  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8214  case X86ISD::MINGW_ALLOCA:       return "X86ISD::MINGW_ALLOCA";
8215  }
8216}
8217
8218// isLegalAddressingMode - Return true if the addressing mode represented
8219// by AM is legal for this target, for a load/store of the specified type.
8220bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8221                                              const Type *Ty) const {
8222  // X86 supports extremely general addressing modes.
8223  CodeModel::Model M = getTargetMachine().getCodeModel();
8224  Reloc::Model R = getTargetMachine().getRelocationModel();
8225
8226  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8227  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8228    return false;
8229
8230  if (AM.BaseGV) {
8231    unsigned GVFlags =
8232      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8233
8234    // If a reference to this global requires an extra load, we can't fold it.
8235    if (isGlobalStubReference(GVFlags))
8236      return false;
8237
8238    // If BaseGV requires a register for the PIC base, we cannot also have a
8239    // BaseReg specified.
8240    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8241      return false;
8242
8243    // If lower 4G is not available, then we must use rip-relative addressing.
8244    if ((M != CodeModel::Small || R != Reloc::Static) &&
8245        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8246      return false;
8247  }
8248
8249  switch (AM.Scale) {
8250  case 0:
8251  case 1:
8252  case 2:
8253  case 4:
8254  case 8:
8255    // These scales always work.
8256    break;
8257  case 3:
8258  case 5:
8259  case 9:
8260    // These scales are formed with basereg+scalereg.  Only accept if there is
8261    // no basereg yet.
8262    if (AM.HasBaseReg)
8263      return false;
8264    break;
8265  default:  // Other stuff never works.
8266    return false;
8267  }
8268
8269  return true;
8270}
8271
8272
8273bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8274  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8275    return false;
8276  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8277  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8278  if (NumBits1 <= NumBits2)
8279    return false;
8280  return true;
8281}
8282
8283bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8284  if (!VT1.isInteger() || !VT2.isInteger())
8285    return false;
8286  unsigned NumBits1 = VT1.getSizeInBits();
8287  unsigned NumBits2 = VT2.getSizeInBits();
8288  if (NumBits1 <= NumBits2)
8289    return false;
8290  return true;
8291}
8292
8293bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8294  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8295  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8296}
8297
8298bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8299  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8300  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8301}
8302
8303bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8304  // i16 instructions are longer (0x66 prefix) and potentially slower.
8305  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8306}
8307
8308/// isShuffleMaskLegal - Targets can use this to indicate that they only
8309/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8310/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8311/// are assumed to be legal.
8312bool
8313X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8314                                      EVT VT) const {
8315  // Very little shuffling can be done for 64-bit vectors right now.
8316  if (VT.getSizeInBits() == 64)
8317    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8318
8319  // FIXME: pshufb, blends, shifts.
8320  return (VT.getVectorNumElements() == 2 ||
8321          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8322          isMOVLMask(M, VT) ||
8323          isSHUFPMask(M, VT) ||
8324          isPSHUFDMask(M, VT) ||
8325          isPSHUFHWMask(M, VT) ||
8326          isPSHUFLWMask(M, VT) ||
8327          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
8328          isUNPCKLMask(M, VT) ||
8329          isUNPCKHMask(M, VT) ||
8330          isUNPCKL_v_undef_Mask(M, VT) ||
8331          isUNPCKH_v_undef_Mask(M, VT));
8332}
8333
8334bool
8335X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
8336                                          EVT VT) const {
8337  unsigned NumElts = VT.getVectorNumElements();
8338  // FIXME: This collection of masks seems suspect.
8339  if (NumElts == 2)
8340    return true;
8341  if (NumElts == 4 && VT.getSizeInBits() == 128) {
8342    return (isMOVLMask(Mask, VT)  ||
8343            isCommutedMOVLMask(Mask, VT, true) ||
8344            isSHUFPMask(Mask, VT) ||
8345            isCommutedSHUFPMask(Mask, VT));
8346  }
8347  return false;
8348}
8349
8350//===----------------------------------------------------------------------===//
8351//                           X86 Scheduler Hooks
8352//===----------------------------------------------------------------------===//
8353
8354// private utility function
8355MachineBasicBlock *
8356X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
8357                                                       MachineBasicBlock *MBB,
8358                                                       unsigned regOpc,
8359                                                       unsigned immOpc,
8360                                                       unsigned LoadOpc,
8361                                                       unsigned CXchgOpc,
8362                                                       unsigned notOpc,
8363                                                       unsigned EAXreg,
8364                                                       TargetRegisterClass *RC,
8365                                                       bool invSrc) const {
8366  // For the atomic bitwise operator, we generate
8367  //   thisMBB:
8368  //   newMBB:
8369  //     ld  t1 = [bitinstr.addr]
8370  //     op  t2 = t1, [bitinstr.val]
8371  //     mov EAX = t1
8372  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8373  //     bz  newMBB
8374  //     fallthrough -->nextMBB
8375  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8376  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8377  MachineFunction::iterator MBBIter = MBB;
8378  ++MBBIter;
8379
8380  /// First build the CFG
8381  MachineFunction *F = MBB->getParent();
8382  MachineBasicBlock *thisMBB = MBB;
8383  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8384  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8385  F->insert(MBBIter, newMBB);
8386  F->insert(MBBIter, nextMBB);
8387
8388  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8389  nextMBB->splice(nextMBB->begin(), thisMBB,
8390                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8391                  thisMBB->end());
8392  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8393
8394  // Update thisMBB to fall through to newMBB
8395  thisMBB->addSuccessor(newMBB);
8396
8397  // newMBB jumps to itself and fall through to nextMBB
8398  newMBB->addSuccessor(nextMBB);
8399  newMBB->addSuccessor(newMBB);
8400
8401  // Insert instructions into newMBB based on incoming instruction
8402  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8403         "unexpected number of operands");
8404  DebugLoc dl = bInstr->getDebugLoc();
8405  MachineOperand& destOper = bInstr->getOperand(0);
8406  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8407  int numArgs = bInstr->getNumOperands() - 1;
8408  for (int i=0; i < numArgs; ++i)
8409    argOpers[i] = &bInstr->getOperand(i+1);
8410
8411  // x86 address has 4 operands: base, index, scale, and displacement
8412  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8413  int valArgIndx = lastAddrIndx + 1;
8414
8415  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8416  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
8417  for (int i=0; i <= lastAddrIndx; ++i)
8418    (*MIB).addOperand(*argOpers[i]);
8419
8420  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
8421  if (invSrc) {
8422    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
8423  }
8424  else
8425    tt = t1;
8426
8427  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8428  assert((argOpers[valArgIndx]->isReg() ||
8429          argOpers[valArgIndx]->isImm()) &&
8430         "invalid operand");
8431  if (argOpers[valArgIndx]->isReg())
8432    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
8433  else
8434    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
8435  MIB.addReg(tt);
8436  (*MIB).addOperand(*argOpers[valArgIndx]);
8437
8438  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
8439  MIB.addReg(t1);
8440
8441  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
8442  for (int i=0; i <= lastAddrIndx; ++i)
8443    (*MIB).addOperand(*argOpers[i]);
8444  MIB.addReg(t2);
8445  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8446  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8447                    bInstr->memoperands_end());
8448
8449  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8450  MIB.addReg(EAXreg);
8451
8452  // insert branch
8453  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8454
8455  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8456  return nextMBB;
8457}
8458
8459// private utility function:  64 bit atomics on 32 bit host.
8460MachineBasicBlock *
8461X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
8462                                                       MachineBasicBlock *MBB,
8463                                                       unsigned regOpcL,
8464                                                       unsigned regOpcH,
8465                                                       unsigned immOpcL,
8466                                                       unsigned immOpcH,
8467                                                       bool invSrc) const {
8468  // For the atomic bitwise operator, we generate
8469  //   thisMBB (instructions are in pairs, except cmpxchg8b)
8470  //     ld t1,t2 = [bitinstr.addr]
8471  //   newMBB:
8472  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
8473  //     op  t5, t6 <- out1, out2, [bitinstr.val]
8474  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
8475  //     mov ECX, EBX <- t5, t6
8476  //     mov EAX, EDX <- t1, t2
8477  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
8478  //     mov t3, t4 <- EAX, EDX
8479  //     bz  newMBB
8480  //     result in out1, out2
8481  //     fallthrough -->nextMBB
8482
8483  const TargetRegisterClass *RC = X86::GR32RegisterClass;
8484  const unsigned LoadOpc = X86::MOV32rm;
8485  const unsigned NotOpc = X86::NOT32r;
8486  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8487  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8488  MachineFunction::iterator MBBIter = MBB;
8489  ++MBBIter;
8490
8491  /// First build the CFG
8492  MachineFunction *F = MBB->getParent();
8493  MachineBasicBlock *thisMBB = MBB;
8494  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8495  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8496  F->insert(MBBIter, newMBB);
8497  F->insert(MBBIter, nextMBB);
8498
8499  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8500  nextMBB->splice(nextMBB->begin(), thisMBB,
8501                  llvm::next(MachineBasicBlock::iterator(bInstr)),
8502                  thisMBB->end());
8503  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8504
8505  // Update thisMBB to fall through to newMBB
8506  thisMBB->addSuccessor(newMBB);
8507
8508  // newMBB jumps to itself and fall through to nextMBB
8509  newMBB->addSuccessor(nextMBB);
8510  newMBB->addSuccessor(newMBB);
8511
8512  DebugLoc dl = bInstr->getDebugLoc();
8513  // Insert instructions into newMBB based on incoming instruction
8514  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
8515  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
8516         "unexpected number of operands");
8517  MachineOperand& dest1Oper = bInstr->getOperand(0);
8518  MachineOperand& dest2Oper = bInstr->getOperand(1);
8519  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8520  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
8521    argOpers[i] = &bInstr->getOperand(i+2);
8522
8523    // We use some of the operands multiple times, so conservatively just
8524    // clear any kill flags that might be present.
8525    if (argOpers[i]->isReg() && argOpers[i]->isUse())
8526      argOpers[i]->setIsKill(false);
8527  }
8528
8529  // x86 address has 5 operands: base, index, scale, displacement, and segment.
8530  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8531
8532  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
8533  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
8534  for (int i=0; i <= lastAddrIndx; ++i)
8535    (*MIB).addOperand(*argOpers[i]);
8536  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
8537  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
8538  // add 4 to displacement.
8539  for (int i=0; i <= lastAddrIndx-2; ++i)
8540    (*MIB).addOperand(*argOpers[i]);
8541  MachineOperand newOp3 = *(argOpers[3]);
8542  if (newOp3.isImm())
8543    newOp3.setImm(newOp3.getImm()+4);
8544  else
8545    newOp3.setOffset(newOp3.getOffset()+4);
8546  (*MIB).addOperand(newOp3);
8547  (*MIB).addOperand(*argOpers[lastAddrIndx]);
8548
8549  // t3/4 are defined later, at the bottom of the loop
8550  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
8551  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
8552  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
8553    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
8554  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
8555    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
8556
8557  // The subsequent operations should be using the destination registers of
8558  //the PHI instructions.
8559  if (invSrc) {
8560    t1 = F->getRegInfo().createVirtualRegister(RC);
8561    t2 = F->getRegInfo().createVirtualRegister(RC);
8562    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
8563    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
8564  } else {
8565    t1 = dest1Oper.getReg();
8566    t2 = dest2Oper.getReg();
8567  }
8568
8569  int valArgIndx = lastAddrIndx + 1;
8570  assert((argOpers[valArgIndx]->isReg() ||
8571          argOpers[valArgIndx]->isImm()) &&
8572         "invalid operand");
8573  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
8574  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
8575  if (argOpers[valArgIndx]->isReg())
8576    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
8577  else
8578    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
8579  if (regOpcL != X86::MOV32rr)
8580    MIB.addReg(t1);
8581  (*MIB).addOperand(*argOpers[valArgIndx]);
8582  assert(argOpers[valArgIndx + 1]->isReg() ==
8583         argOpers[valArgIndx]->isReg());
8584  assert(argOpers[valArgIndx + 1]->isImm() ==
8585         argOpers[valArgIndx]->isImm());
8586  if (argOpers[valArgIndx + 1]->isReg())
8587    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
8588  else
8589    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
8590  if (regOpcH != X86::MOV32rr)
8591    MIB.addReg(t2);
8592  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
8593
8594  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8595  MIB.addReg(t1);
8596  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
8597  MIB.addReg(t2);
8598
8599  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
8600  MIB.addReg(t5);
8601  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
8602  MIB.addReg(t6);
8603
8604  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
8605  for (int i=0; i <= lastAddrIndx; ++i)
8606    (*MIB).addOperand(*argOpers[i]);
8607
8608  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8609  (*MIB).setMemRefs(bInstr->memoperands_begin(),
8610                    bInstr->memoperands_end());
8611
8612  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
8613  MIB.addReg(X86::EAX);
8614  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
8615  MIB.addReg(X86::EDX);
8616
8617  // insert branch
8618  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8619
8620  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
8621  return nextMBB;
8622}
8623
8624// private utility function
8625MachineBasicBlock *
8626X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
8627                                                      MachineBasicBlock *MBB,
8628                                                      unsigned cmovOpc) const {
8629  // For the atomic min/max operator, we generate
8630  //   thisMBB:
8631  //   newMBB:
8632  //     ld t1 = [min/max.addr]
8633  //     mov t2 = [min/max.val]
8634  //     cmp  t1, t2
8635  //     cmov[cond] t2 = t1
8636  //     mov EAX = t1
8637  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
8638  //     bz   newMBB
8639  //     fallthrough -->nextMBB
8640  //
8641  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8642  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8643  MachineFunction::iterator MBBIter = MBB;
8644  ++MBBIter;
8645
8646  /// First build the CFG
8647  MachineFunction *F = MBB->getParent();
8648  MachineBasicBlock *thisMBB = MBB;
8649  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
8650  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
8651  F->insert(MBBIter, newMBB);
8652  F->insert(MBBIter, nextMBB);
8653
8654  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
8655  nextMBB->splice(nextMBB->begin(), thisMBB,
8656                  llvm::next(MachineBasicBlock::iterator(mInstr)),
8657                  thisMBB->end());
8658  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
8659
8660  // Update thisMBB to fall through to newMBB
8661  thisMBB->addSuccessor(newMBB);
8662
8663  // newMBB jumps to newMBB and fall through to nextMBB
8664  newMBB->addSuccessor(nextMBB);
8665  newMBB->addSuccessor(newMBB);
8666
8667  DebugLoc dl = mInstr->getDebugLoc();
8668  // Insert instructions into newMBB based on incoming instruction
8669  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
8670         "unexpected number of operands");
8671  MachineOperand& destOper = mInstr->getOperand(0);
8672  MachineOperand* argOpers[2 + X86::AddrNumOperands];
8673  int numArgs = mInstr->getNumOperands() - 1;
8674  for (int i=0; i < numArgs; ++i)
8675    argOpers[i] = &mInstr->getOperand(i+1);
8676
8677  // x86 address has 4 operands: base, index, scale, and displacement
8678  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
8679  int valArgIndx = lastAddrIndx + 1;
8680
8681  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8682  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
8683  for (int i=0; i <= lastAddrIndx; ++i)
8684    (*MIB).addOperand(*argOpers[i]);
8685
8686  // We only support register and immediate values
8687  assert((argOpers[valArgIndx]->isReg() ||
8688          argOpers[valArgIndx]->isImm()) &&
8689         "invalid operand");
8690
8691  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8692  if (argOpers[valArgIndx]->isReg())
8693    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
8694  else
8695    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
8696  (*MIB).addOperand(*argOpers[valArgIndx]);
8697
8698  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
8699  MIB.addReg(t1);
8700
8701  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
8702  MIB.addReg(t1);
8703  MIB.addReg(t2);
8704
8705  // Generate movc
8706  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
8707  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
8708  MIB.addReg(t2);
8709  MIB.addReg(t1);
8710
8711  // Cmp and exchange if none has modified the memory location
8712  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
8713  for (int i=0; i <= lastAddrIndx; ++i)
8714    (*MIB).addOperand(*argOpers[i]);
8715  MIB.addReg(t3);
8716  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
8717  (*MIB).setMemRefs(mInstr->memoperands_begin(),
8718                    mInstr->memoperands_end());
8719
8720  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
8721  MIB.addReg(X86::EAX);
8722
8723  // insert branch
8724  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
8725
8726  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
8727  return nextMBB;
8728}
8729
8730// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
8731// or XMM0_V32I8 in AVX all of this code can be replaced with that
8732// in the .td file.
8733MachineBasicBlock *
8734X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
8735                            unsigned numArgs, bool memArg) const {
8736
8737  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
8738         "Target must have SSE4.2 or AVX features enabled");
8739
8740  DebugLoc dl = MI->getDebugLoc();
8741  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8742
8743  unsigned Opc;
8744
8745  if (!Subtarget->hasAVX()) {
8746    if (memArg)
8747      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
8748    else
8749      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
8750  } else {
8751    if (memArg)
8752      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
8753    else
8754      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
8755  }
8756
8757  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
8758
8759  for (unsigned i = 0; i < numArgs; ++i) {
8760    MachineOperand &Op = MI->getOperand(i+1);
8761
8762    if (!(Op.isReg() && Op.isImplicit()))
8763      MIB.addOperand(Op);
8764  }
8765
8766  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
8767    .addReg(X86::XMM0);
8768
8769  MI->eraseFromParent();
8770
8771  return BB;
8772}
8773
8774MachineBasicBlock *
8775X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
8776                                                 MachineInstr *MI,
8777                                                 MachineBasicBlock *MBB) const {
8778  // Emit code to save XMM registers to the stack. The ABI says that the
8779  // number of registers to save is given in %al, so it's theoretically
8780  // possible to do an indirect jump trick to avoid saving all of them,
8781  // however this code takes a simpler approach and just executes all
8782  // of the stores if %al is non-zero. It's less code, and it's probably
8783  // easier on the hardware branch predictor, and stores aren't all that
8784  // expensive anyway.
8785
8786  // Create the new basic blocks. One block contains all the XMM stores,
8787  // and one block is the final destination regardless of whether any
8788  // stores were performed.
8789  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
8790  MachineFunction *F = MBB->getParent();
8791  MachineFunction::iterator MBBIter = MBB;
8792  ++MBBIter;
8793  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
8794  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
8795  F->insert(MBBIter, XMMSaveMBB);
8796  F->insert(MBBIter, EndMBB);
8797
8798  // Transfer the remainder of MBB and its successor edges to EndMBB.
8799  EndMBB->splice(EndMBB->begin(), MBB,
8800                 llvm::next(MachineBasicBlock::iterator(MI)),
8801                 MBB->end());
8802  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
8803
8804  // The original block will now fall through to the XMM save block.
8805  MBB->addSuccessor(XMMSaveMBB);
8806  // The XMMSaveMBB will fall through to the end block.
8807  XMMSaveMBB->addSuccessor(EndMBB);
8808
8809  // Now add the instructions.
8810  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8811  DebugLoc DL = MI->getDebugLoc();
8812
8813  unsigned CountReg = MI->getOperand(0).getReg();
8814  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
8815  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
8816
8817  if (!Subtarget->isTargetWin64()) {
8818    // If %al is 0, branch around the XMM save block.
8819    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
8820    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
8821    MBB->addSuccessor(EndMBB);
8822  }
8823
8824  // In the XMM save block, save all the XMM argument registers.
8825  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
8826    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
8827    MachineMemOperand *MMO =
8828      F->getMachineMemOperand(
8829        PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
8830        MachineMemOperand::MOStore, Offset,
8831        /*Size=*/16, /*Align=*/16);
8832    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
8833      .addFrameIndex(RegSaveFrameIndex)
8834      .addImm(/*Scale=*/1)
8835      .addReg(/*IndexReg=*/0)
8836      .addImm(/*Disp=*/Offset)
8837      .addReg(/*Segment=*/0)
8838      .addReg(MI->getOperand(i).getReg())
8839      .addMemOperand(MMO);
8840  }
8841
8842  MI->eraseFromParent();   // The pseudo instruction is gone now.
8843
8844  return EndMBB;
8845}
8846
8847MachineBasicBlock *
8848X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
8849                                     MachineBasicBlock *BB) const {
8850  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8851  DebugLoc DL = MI->getDebugLoc();
8852
8853  // To "insert" a SELECT_CC instruction, we actually have to insert the
8854  // diamond control-flow pattern.  The incoming instruction knows the
8855  // destination vreg to set, the condition code register to branch on, the
8856  // true/false values to select between, and a branch opcode to use.
8857  const BasicBlock *LLVM_BB = BB->getBasicBlock();
8858  MachineFunction::iterator It = BB;
8859  ++It;
8860
8861  //  thisMBB:
8862  //  ...
8863  //   TrueVal = ...
8864  //   cmpTY ccX, r1, r2
8865  //   bCC copy1MBB
8866  //   fallthrough --> copy0MBB
8867  MachineBasicBlock *thisMBB = BB;
8868  MachineFunction *F = BB->getParent();
8869  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8870  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
8871  F->insert(It, copy0MBB);
8872  F->insert(It, sinkMBB);
8873
8874  // If the EFLAGS register isn't dead in the terminator, then claim that it's
8875  // live into the sink and copy blocks.
8876  const MachineFunction *MF = BB->getParent();
8877  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
8878  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
8879
8880  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
8881    const MachineOperand &MO = MI->getOperand(I);
8882    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
8883    unsigned Reg = MO.getReg();
8884    if (Reg != X86::EFLAGS) continue;
8885    copy0MBB->addLiveIn(Reg);
8886    sinkMBB->addLiveIn(Reg);
8887  }
8888
8889  // Transfer the remainder of BB and its successor edges to sinkMBB.
8890  sinkMBB->splice(sinkMBB->begin(), BB,
8891                  llvm::next(MachineBasicBlock::iterator(MI)),
8892                  BB->end());
8893  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8894
8895  // Add the true and fallthrough blocks as its successors.
8896  BB->addSuccessor(copy0MBB);
8897  BB->addSuccessor(sinkMBB);
8898
8899  // Create the conditional branch instruction.
8900  unsigned Opc =
8901    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
8902  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
8903
8904  //  copy0MBB:
8905  //   %FalseValue = ...
8906  //   # fallthrough to sinkMBB
8907  copy0MBB->addSuccessor(sinkMBB);
8908
8909  //  sinkMBB:
8910  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8911  //  ...
8912  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
8913          TII->get(X86::PHI), MI->getOperand(0).getReg())
8914    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
8915    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
8916
8917  MI->eraseFromParent();   // The pseudo instruction is gone now.
8918  return sinkMBB;
8919}
8920
8921MachineBasicBlock *
8922X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
8923                                          MachineBasicBlock *BB) const {
8924  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
8925  DebugLoc DL = MI->getDebugLoc();
8926
8927  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
8928  // non-trivial part is impdef of ESP.
8929  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
8930  // mingw-w64.
8931
8932  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
8933    .addExternalSymbol("_alloca")
8934    .addReg(X86::EAX, RegState::Implicit)
8935    .addReg(X86::ESP, RegState::Implicit)
8936    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
8937    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
8938    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
8939
8940  MI->eraseFromParent();   // The pseudo instruction is gone now.
8941  return BB;
8942}
8943
8944MachineBasicBlock *
8945X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
8946                                      MachineBasicBlock *BB) const {
8947  // This is pretty easy.  We're taking the value that we received from
8948  // our load from the relocation, sticking it in either RDI (x86-64)
8949  // or EAX and doing an indirect call.  The return value will then
8950  // be in the normal return register.
8951  const X86InstrInfo *TII
8952    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
8953  DebugLoc DL = MI->getDebugLoc();
8954  MachineFunction *F = BB->getParent();
8955  bool IsWin64 = Subtarget->isTargetWin64();
8956
8957  assert(MI->getOperand(3).isGlobal() && "This should be a global");
8958
8959  if (Subtarget->is64Bit()) {
8960    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8961                                      TII->get(X86::MOV64rm), X86::RDI)
8962    .addReg(X86::RIP)
8963    .addImm(0).addReg(0)
8964    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8965                      MI->getOperand(3).getTargetFlags())
8966    .addReg(0);
8967    MIB = BuildMI(*BB, MI, DL, TII->get(IsWin64 ? X86::WINCALL64m : X86::CALL64m));
8968    addDirectMem(MIB, X86::RDI);
8969  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
8970    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8971                                      TII->get(X86::MOV32rm), X86::EAX)
8972    .addReg(0)
8973    .addImm(0).addReg(0)
8974    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8975                      MI->getOperand(3).getTargetFlags())
8976    .addReg(0);
8977    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8978    addDirectMem(MIB, X86::EAX);
8979  } else {
8980    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
8981                                      TII->get(X86::MOV32rm), X86::EAX)
8982    .addReg(TII->getGlobalBaseReg(F))
8983    .addImm(0).addReg(0)
8984    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
8985                      MI->getOperand(3).getTargetFlags())
8986    .addReg(0);
8987    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
8988    addDirectMem(MIB, X86::EAX);
8989  }
8990
8991  MI->eraseFromParent(); // The pseudo instruction is gone now.
8992  return BB;
8993}
8994
8995MachineBasicBlock *
8996X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
8997                                               MachineBasicBlock *BB) const {
8998  switch (MI->getOpcode()) {
8999  default: assert(false && "Unexpected instr type to insert");
9000  case X86::MINGW_ALLOCA:
9001    return EmitLoweredMingwAlloca(MI, BB);
9002  case X86::TLSCall_32:
9003  case X86::TLSCall_64:
9004    return EmitLoweredTLSCall(MI, BB);
9005  case X86::CMOV_GR8:
9006  case X86::CMOV_V1I64:
9007  case X86::CMOV_FR32:
9008  case X86::CMOV_FR64:
9009  case X86::CMOV_V4F32:
9010  case X86::CMOV_V2F64:
9011  case X86::CMOV_V2I64:
9012  case X86::CMOV_GR16:
9013  case X86::CMOV_GR32:
9014  case X86::CMOV_RFP32:
9015  case X86::CMOV_RFP64:
9016  case X86::CMOV_RFP80:
9017    return EmitLoweredSelect(MI, BB);
9018
9019  case X86::FP32_TO_INT16_IN_MEM:
9020  case X86::FP32_TO_INT32_IN_MEM:
9021  case X86::FP32_TO_INT64_IN_MEM:
9022  case X86::FP64_TO_INT16_IN_MEM:
9023  case X86::FP64_TO_INT32_IN_MEM:
9024  case X86::FP64_TO_INT64_IN_MEM:
9025  case X86::FP80_TO_INT16_IN_MEM:
9026  case X86::FP80_TO_INT32_IN_MEM:
9027  case X86::FP80_TO_INT64_IN_MEM: {
9028    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9029    DebugLoc DL = MI->getDebugLoc();
9030
9031    // Change the floating point control register to use "round towards zero"
9032    // mode when truncating to an integer value.
9033    MachineFunction *F = BB->getParent();
9034    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9035    addFrameReference(BuildMI(*BB, MI, DL,
9036                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
9037
9038    // Load the old value of the high byte of the control word...
9039    unsigned OldCW =
9040      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9041    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9042                      CWFrameIdx);
9043
9044    // Set the high part to be round to zero...
9045    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
9046      .addImm(0xC7F);
9047
9048    // Reload the modified control word now...
9049    addFrameReference(BuildMI(*BB, MI, DL,
9050                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9051
9052    // Restore the memory image of control word to original value
9053    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
9054      .addReg(OldCW);
9055
9056    // Get the X86 opcode to use.
9057    unsigned Opc;
9058    switch (MI->getOpcode()) {
9059    default: llvm_unreachable("illegal opcode!");
9060    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
9061    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
9062    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
9063    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
9064    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
9065    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
9066    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
9067    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
9068    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
9069    }
9070
9071    X86AddressMode AM;
9072    MachineOperand &Op = MI->getOperand(0);
9073    if (Op.isReg()) {
9074      AM.BaseType = X86AddressMode::RegBase;
9075      AM.Base.Reg = Op.getReg();
9076    } else {
9077      AM.BaseType = X86AddressMode::FrameIndexBase;
9078      AM.Base.FrameIndex = Op.getIndex();
9079    }
9080    Op = MI->getOperand(1);
9081    if (Op.isImm())
9082      AM.Scale = Op.getImm();
9083    Op = MI->getOperand(2);
9084    if (Op.isImm())
9085      AM.IndexReg = Op.getImm();
9086    Op = MI->getOperand(3);
9087    if (Op.isGlobal()) {
9088      AM.GV = Op.getGlobal();
9089    } else {
9090      AM.Disp = Op.getImm();
9091    }
9092    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
9093                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
9094
9095    // Reload the original control word now.
9096    addFrameReference(BuildMI(*BB, MI, DL,
9097                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9098
9099    MI->eraseFromParent();   // The pseudo instruction is gone now.
9100    return BB;
9101  }
9102    // String/text processing lowering.
9103  case X86::PCMPISTRM128REG:
9104  case X86::VPCMPISTRM128REG:
9105    return EmitPCMP(MI, BB, 3, false /* in-mem */);
9106  case X86::PCMPISTRM128MEM:
9107  case X86::VPCMPISTRM128MEM:
9108    return EmitPCMP(MI, BB, 3, true /* in-mem */);
9109  case X86::PCMPESTRM128REG:
9110  case X86::VPCMPESTRM128REG:
9111    return EmitPCMP(MI, BB, 5, false /* in mem */);
9112  case X86::PCMPESTRM128MEM:
9113  case X86::VPCMPESTRM128MEM:
9114    return EmitPCMP(MI, BB, 5, true /* in mem */);
9115
9116    // Atomic Lowering.
9117  case X86::ATOMAND32:
9118    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9119                                               X86::AND32ri, X86::MOV32rm,
9120                                               X86::LCMPXCHG32,
9121                                               X86::NOT32r, X86::EAX,
9122                                               X86::GR32RegisterClass);
9123  case X86::ATOMOR32:
9124    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
9125                                               X86::OR32ri, X86::MOV32rm,
9126                                               X86::LCMPXCHG32,
9127                                               X86::NOT32r, X86::EAX,
9128                                               X86::GR32RegisterClass);
9129  case X86::ATOMXOR32:
9130    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
9131                                               X86::XOR32ri, X86::MOV32rm,
9132                                               X86::LCMPXCHG32,
9133                                               X86::NOT32r, X86::EAX,
9134                                               X86::GR32RegisterClass);
9135  case X86::ATOMNAND32:
9136    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
9137                                               X86::AND32ri, X86::MOV32rm,
9138                                               X86::LCMPXCHG32,
9139                                               X86::NOT32r, X86::EAX,
9140                                               X86::GR32RegisterClass, true);
9141  case X86::ATOMMIN32:
9142    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
9143  case X86::ATOMMAX32:
9144    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
9145  case X86::ATOMUMIN32:
9146    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
9147  case X86::ATOMUMAX32:
9148    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
9149
9150  case X86::ATOMAND16:
9151    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9152                                               X86::AND16ri, X86::MOV16rm,
9153                                               X86::LCMPXCHG16,
9154                                               X86::NOT16r, X86::AX,
9155                                               X86::GR16RegisterClass);
9156  case X86::ATOMOR16:
9157    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
9158                                               X86::OR16ri, X86::MOV16rm,
9159                                               X86::LCMPXCHG16,
9160                                               X86::NOT16r, X86::AX,
9161                                               X86::GR16RegisterClass);
9162  case X86::ATOMXOR16:
9163    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
9164                                               X86::XOR16ri, X86::MOV16rm,
9165                                               X86::LCMPXCHG16,
9166                                               X86::NOT16r, X86::AX,
9167                                               X86::GR16RegisterClass);
9168  case X86::ATOMNAND16:
9169    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
9170                                               X86::AND16ri, X86::MOV16rm,
9171                                               X86::LCMPXCHG16,
9172                                               X86::NOT16r, X86::AX,
9173                                               X86::GR16RegisterClass, true);
9174  case X86::ATOMMIN16:
9175    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
9176  case X86::ATOMMAX16:
9177    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
9178  case X86::ATOMUMIN16:
9179    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
9180  case X86::ATOMUMAX16:
9181    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
9182
9183  case X86::ATOMAND8:
9184    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9185                                               X86::AND8ri, X86::MOV8rm,
9186                                               X86::LCMPXCHG8,
9187                                               X86::NOT8r, X86::AL,
9188                                               X86::GR8RegisterClass);
9189  case X86::ATOMOR8:
9190    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
9191                                               X86::OR8ri, X86::MOV8rm,
9192                                               X86::LCMPXCHG8,
9193                                               X86::NOT8r, X86::AL,
9194                                               X86::GR8RegisterClass);
9195  case X86::ATOMXOR8:
9196    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
9197                                               X86::XOR8ri, X86::MOV8rm,
9198                                               X86::LCMPXCHG8,
9199                                               X86::NOT8r, X86::AL,
9200                                               X86::GR8RegisterClass);
9201  case X86::ATOMNAND8:
9202    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
9203                                               X86::AND8ri, X86::MOV8rm,
9204                                               X86::LCMPXCHG8,
9205                                               X86::NOT8r, X86::AL,
9206                                               X86::GR8RegisterClass, true);
9207  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
9208  // This group is for 64-bit host.
9209  case X86::ATOMAND64:
9210    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9211                                               X86::AND64ri32, X86::MOV64rm,
9212                                               X86::LCMPXCHG64,
9213                                               X86::NOT64r, X86::RAX,
9214                                               X86::GR64RegisterClass);
9215  case X86::ATOMOR64:
9216    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
9217                                               X86::OR64ri32, X86::MOV64rm,
9218                                               X86::LCMPXCHG64,
9219                                               X86::NOT64r, X86::RAX,
9220                                               X86::GR64RegisterClass);
9221  case X86::ATOMXOR64:
9222    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
9223                                               X86::XOR64ri32, X86::MOV64rm,
9224                                               X86::LCMPXCHG64,
9225                                               X86::NOT64r, X86::RAX,
9226                                               X86::GR64RegisterClass);
9227  case X86::ATOMNAND64:
9228    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
9229                                               X86::AND64ri32, X86::MOV64rm,
9230                                               X86::LCMPXCHG64,
9231                                               X86::NOT64r, X86::RAX,
9232                                               X86::GR64RegisterClass, true);
9233  case X86::ATOMMIN64:
9234    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
9235  case X86::ATOMMAX64:
9236    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
9237  case X86::ATOMUMIN64:
9238    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
9239  case X86::ATOMUMAX64:
9240    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
9241
9242  // This group does 64-bit operations on a 32-bit host.
9243  case X86::ATOMAND6432:
9244    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9245                                               X86::AND32rr, X86::AND32rr,
9246                                               X86::AND32ri, X86::AND32ri,
9247                                               false);
9248  case X86::ATOMOR6432:
9249    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9250                                               X86::OR32rr, X86::OR32rr,
9251                                               X86::OR32ri, X86::OR32ri,
9252                                               false);
9253  case X86::ATOMXOR6432:
9254    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9255                                               X86::XOR32rr, X86::XOR32rr,
9256                                               X86::XOR32ri, X86::XOR32ri,
9257                                               false);
9258  case X86::ATOMNAND6432:
9259    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9260                                               X86::AND32rr, X86::AND32rr,
9261                                               X86::AND32ri, X86::AND32ri,
9262                                               true);
9263  case X86::ATOMADD6432:
9264    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9265                                               X86::ADD32rr, X86::ADC32rr,
9266                                               X86::ADD32ri, X86::ADC32ri,
9267                                               false);
9268  case X86::ATOMSUB6432:
9269    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9270                                               X86::SUB32rr, X86::SBB32rr,
9271                                               X86::SUB32ri, X86::SBB32ri,
9272                                               false);
9273  case X86::ATOMSWAP6432:
9274    return EmitAtomicBit6432WithCustomInserter(MI, BB,
9275                                               X86::MOV32rr, X86::MOV32rr,
9276                                               X86::MOV32ri, X86::MOV32ri,
9277                                               false);
9278  case X86::VASTART_SAVE_XMM_REGS:
9279    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
9280  }
9281}
9282
9283//===----------------------------------------------------------------------===//
9284//                           X86 Optimization Hooks
9285//===----------------------------------------------------------------------===//
9286
9287void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
9288                                                       const APInt &Mask,
9289                                                       APInt &KnownZero,
9290                                                       APInt &KnownOne,
9291                                                       const SelectionDAG &DAG,
9292                                                       unsigned Depth) const {
9293  unsigned Opc = Op.getOpcode();
9294  assert((Opc >= ISD::BUILTIN_OP_END ||
9295          Opc == ISD::INTRINSIC_WO_CHAIN ||
9296          Opc == ISD::INTRINSIC_W_CHAIN ||
9297          Opc == ISD::INTRINSIC_VOID) &&
9298         "Should use MaskedValueIsZero if you don't know whether Op"
9299         " is a target node!");
9300
9301  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
9302  switch (Opc) {
9303  default: break;
9304  case X86ISD::ADD:
9305  case X86ISD::SUB:
9306  case X86ISD::SMUL:
9307  case X86ISD::UMUL:
9308  case X86ISD::INC:
9309  case X86ISD::DEC:
9310  case X86ISD::OR:
9311  case X86ISD::XOR:
9312  case X86ISD::AND:
9313    // These nodes' second result is a boolean.
9314    if (Op.getResNo() == 0)
9315      break;
9316    // Fallthrough
9317  case X86ISD::SETCC:
9318    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
9319                                       Mask.getBitWidth() - 1);
9320    break;
9321  }
9322}
9323
9324/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
9325/// node is a GlobalAddress + offset.
9326bool X86TargetLowering::isGAPlusOffset(SDNode *N,
9327                                       const GlobalValue* &GA,
9328                                       int64_t &Offset) const {
9329  if (N->getOpcode() == X86ISD::Wrapper) {
9330    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
9331      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
9332      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
9333      return true;
9334    }
9335  }
9336  return TargetLowering::isGAPlusOffset(N, GA, Offset);
9337}
9338
9339/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
9340/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
9341/// if the load addresses are consecutive, non-overlapping, and in the right
9342/// order.
9343static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
9344                                     const TargetLowering &TLI) {
9345  DebugLoc dl = N->getDebugLoc();
9346  EVT VT = N->getValueType(0);
9347  ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9348
9349  if (VT.getSizeInBits() != 128)
9350    return SDValue();
9351
9352  SmallVector<SDValue, 16> Elts;
9353  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
9354    Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
9355
9356  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
9357}
9358
9359/// PerformShuffleCombine - Detect vector gather/scatter index generation
9360/// and convert it from being a bunch of shuffles and extracts to a simple
9361/// store and scalar loads to extract the elements.
9362static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
9363                                                const TargetLowering &TLI) {
9364  SDValue InputVector = N->getOperand(0);
9365
9366  // Only operate on vectors of 4 elements, where the alternative shuffling
9367  // gets to be more expensive.
9368  if (InputVector.getValueType() != MVT::v4i32)
9369    return SDValue();
9370
9371  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
9372  // single use which is a sign-extend or zero-extend, and all elements are
9373  // used.
9374  SmallVector<SDNode *, 4> Uses;
9375  unsigned ExtractedElements = 0;
9376  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
9377       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
9378    if (UI.getUse().getResNo() != InputVector.getResNo())
9379      return SDValue();
9380
9381    SDNode *Extract = *UI;
9382    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
9383      return SDValue();
9384
9385    if (Extract->getValueType(0) != MVT::i32)
9386      return SDValue();
9387    if (!Extract->hasOneUse())
9388      return SDValue();
9389    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
9390        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
9391      return SDValue();
9392    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
9393      return SDValue();
9394
9395    // Record which element was extracted.
9396    ExtractedElements |=
9397      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
9398
9399    Uses.push_back(Extract);
9400  }
9401
9402  // If not all the elements were used, this may not be worthwhile.
9403  if (ExtractedElements != 15)
9404    return SDValue();
9405
9406  // Ok, we've now decided to do the transformation.
9407  DebugLoc dl = InputVector.getDebugLoc();
9408
9409  // Store the value to a temporary stack slot.
9410  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
9411  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL,
9412                            0, false, false, 0);
9413
9414  // Replace each use (extract) with a load of the appropriate element.
9415  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
9416       UE = Uses.end(); UI != UE; ++UI) {
9417    SDNode *Extract = *UI;
9418
9419    // Compute the element's address.
9420    SDValue Idx = Extract->getOperand(1);
9421    unsigned EltSize =
9422        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
9423    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
9424    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
9425
9426    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
9427                                     OffsetVal, StackPtr);
9428
9429    // Load the scalar.
9430    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
9431                                     ScalarAddr, NULL, 0, false, false, 0);
9432
9433    // Replace the exact with the load.
9434    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
9435  }
9436
9437  // The replacement was made in place; don't return anything.
9438  return SDValue();
9439}
9440
9441/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
9442static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
9443                                    const X86Subtarget *Subtarget) {
9444  DebugLoc DL = N->getDebugLoc();
9445  SDValue Cond = N->getOperand(0);
9446  // Get the LHS/RHS of the select.
9447  SDValue LHS = N->getOperand(1);
9448  SDValue RHS = N->getOperand(2);
9449
9450  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
9451  // instructions match the semantics of the common C idiom x<y?x:y but not
9452  // x<=y?x:y, because of how they handle negative zero (which can be
9453  // ignored in unsafe-math mode).
9454  if (Subtarget->hasSSE2() &&
9455      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
9456      Cond.getOpcode() == ISD::SETCC) {
9457    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
9458
9459    unsigned Opcode = 0;
9460    // Check for x CC y ? x : y.
9461    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
9462        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
9463      switch (CC) {
9464      default: break;
9465      case ISD::SETULT:
9466        // Converting this to a min would handle NaNs incorrectly, and swapping
9467        // the operands would cause it to handle comparisons between positive
9468        // and negative zero incorrectly.
9469        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9470          if (!UnsafeFPMath &&
9471              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9472            break;
9473          std::swap(LHS, RHS);
9474        }
9475        Opcode = X86ISD::FMIN;
9476        break;
9477      case ISD::SETOLE:
9478        // Converting this to a min would handle comparisons between positive
9479        // and negative zero incorrectly.
9480        if (!UnsafeFPMath &&
9481            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
9482          break;
9483        Opcode = X86ISD::FMIN;
9484        break;
9485      case ISD::SETULE:
9486        // Converting this to a min would handle both negative zeros and NaNs
9487        // incorrectly, but we can swap the operands to fix both.
9488        std::swap(LHS, RHS);
9489      case ISD::SETOLT:
9490      case ISD::SETLT:
9491      case ISD::SETLE:
9492        Opcode = X86ISD::FMIN;
9493        break;
9494
9495      case ISD::SETOGE:
9496        // Converting this to a max would handle comparisons between positive
9497        // and negative zero incorrectly.
9498        if (!UnsafeFPMath &&
9499            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
9500          break;
9501        Opcode = X86ISD::FMAX;
9502        break;
9503      case ISD::SETUGT:
9504        // Converting this to a max would handle NaNs incorrectly, and swapping
9505        // the operands would cause it to handle comparisons between positive
9506        // and negative zero incorrectly.
9507        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
9508          if (!UnsafeFPMath &&
9509              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
9510            break;
9511          std::swap(LHS, RHS);
9512        }
9513        Opcode = X86ISD::FMAX;
9514        break;
9515      case ISD::SETUGE:
9516        // Converting this to a max would handle both negative zeros and NaNs
9517        // incorrectly, but we can swap the operands to fix both.
9518        std::swap(LHS, RHS);
9519      case ISD::SETOGT:
9520      case ISD::SETGT:
9521      case ISD::SETGE:
9522        Opcode = X86ISD::FMAX;
9523        break;
9524      }
9525    // Check for x CC y ? y : x -- a min/max with reversed arms.
9526    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
9527               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
9528      switch (CC) {
9529      default: break;
9530      case ISD::SETOGE:
9531        // Converting this to a min would handle comparisons between positive
9532        // and negative zero incorrectly, and swapping the operands would
9533        // cause it to handle NaNs incorrectly.
9534        if (!UnsafeFPMath &&
9535            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
9536          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9537            break;
9538          std::swap(LHS, RHS);
9539        }
9540        Opcode = X86ISD::FMIN;
9541        break;
9542      case ISD::SETUGT:
9543        // Converting this to a min would handle NaNs incorrectly.
9544        if (!UnsafeFPMath &&
9545            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
9546          break;
9547        Opcode = X86ISD::FMIN;
9548        break;
9549      case ISD::SETUGE:
9550        // Converting this to a min would handle both negative zeros and NaNs
9551        // incorrectly, but we can swap the operands to fix both.
9552        std::swap(LHS, RHS);
9553      case ISD::SETOGT:
9554      case ISD::SETGT:
9555      case ISD::SETGE:
9556        Opcode = X86ISD::FMIN;
9557        break;
9558
9559      case ISD::SETULT:
9560        // Converting this to a max would handle NaNs incorrectly.
9561        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9562          break;
9563        Opcode = X86ISD::FMAX;
9564        break;
9565      case ISD::SETOLE:
9566        // Converting this to a max would handle comparisons between positive
9567        // and negative zero incorrectly, and swapping the operands would
9568        // cause it to handle NaNs incorrectly.
9569        if (!UnsafeFPMath &&
9570            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
9571          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
9572            break;
9573          std::swap(LHS, RHS);
9574        }
9575        Opcode = X86ISD::FMAX;
9576        break;
9577      case ISD::SETULE:
9578        // Converting this to a max would handle both negative zeros and NaNs
9579        // incorrectly, but we can swap the operands to fix both.
9580        std::swap(LHS, RHS);
9581      case ISD::SETOLT:
9582      case ISD::SETLT:
9583      case ISD::SETLE:
9584        Opcode = X86ISD::FMAX;
9585        break;
9586      }
9587    }
9588
9589    if (Opcode)
9590      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
9591  }
9592
9593  // If this is a select between two integer constants, try to do some
9594  // optimizations.
9595  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
9596    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
9597      // Don't do this for crazy integer types.
9598      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
9599        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
9600        // so that TrueC (the true value) is larger than FalseC.
9601        bool NeedsCondInvert = false;
9602
9603        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
9604            // Efficiently invertible.
9605            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
9606             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
9607              isa<ConstantSDNode>(Cond.getOperand(1))))) {
9608          NeedsCondInvert = true;
9609          std::swap(TrueC, FalseC);
9610        }
9611
9612        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
9613        if (FalseC->getAPIntValue() == 0 &&
9614            TrueC->getAPIntValue().isPowerOf2()) {
9615          if (NeedsCondInvert) // Invert the condition if needed.
9616            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9617                               DAG.getConstant(1, Cond.getValueType()));
9618
9619          // Zero extend the condition if needed.
9620          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
9621
9622          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9623          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
9624                             DAG.getConstant(ShAmt, MVT::i8));
9625        }
9626
9627        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
9628        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9629          if (NeedsCondInvert) // Invert the condition if needed.
9630            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9631                               DAG.getConstant(1, Cond.getValueType()));
9632
9633          // Zero extend the condition if needed.
9634          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9635                             FalseC->getValueType(0), Cond);
9636          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9637                             SDValue(FalseC, 0));
9638        }
9639
9640        // Optimize cases that will turn into an LEA instruction.  This requires
9641        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9642        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9643          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9644          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9645
9646          bool isFastMultiplier = false;
9647          if (Diff < 10) {
9648            switch ((unsigned char)Diff) {
9649              default: break;
9650              case 1:  // result = add base, cond
9651              case 2:  // result = lea base(    , cond*2)
9652              case 3:  // result = lea base(cond, cond*2)
9653              case 4:  // result = lea base(    , cond*4)
9654              case 5:  // result = lea base(cond, cond*4)
9655              case 8:  // result = lea base(    , cond*8)
9656              case 9:  // result = lea base(cond, cond*8)
9657                isFastMultiplier = true;
9658                break;
9659            }
9660          }
9661
9662          if (isFastMultiplier) {
9663            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9664            if (NeedsCondInvert) // Invert the condition if needed.
9665              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
9666                                 DAG.getConstant(1, Cond.getValueType()));
9667
9668            // Zero extend the condition if needed.
9669            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9670                               Cond);
9671            // Scale the condition by the difference.
9672            if (Diff != 1)
9673              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9674                                 DAG.getConstant(Diff, Cond.getValueType()));
9675
9676            // Add the base if non-zero.
9677            if (FalseC->getAPIntValue() != 0)
9678              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9679                                 SDValue(FalseC, 0));
9680            return Cond;
9681          }
9682        }
9683      }
9684  }
9685
9686  return SDValue();
9687}
9688
9689/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
9690static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
9691                                  TargetLowering::DAGCombinerInfo &DCI) {
9692  DebugLoc DL = N->getDebugLoc();
9693
9694  // If the flag operand isn't dead, don't touch this CMOV.
9695  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
9696    return SDValue();
9697
9698  // If this is a select between two integer constants, try to do some
9699  // optimizations.  Note that the operands are ordered the opposite of SELECT
9700  // operands.
9701  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
9702    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
9703      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
9704      // larger than FalseC (the false value).
9705      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
9706
9707      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
9708        CC = X86::GetOppositeBranchCondition(CC);
9709        std::swap(TrueC, FalseC);
9710      }
9711
9712      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
9713      // This is efficient for any integer data type (including i8/i16) and
9714      // shift amount.
9715      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
9716        SDValue Cond = N->getOperand(3);
9717        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9718                           DAG.getConstant(CC, MVT::i8), Cond);
9719
9720        // Zero extend the condition if needed.
9721        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
9722
9723        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
9724        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
9725                           DAG.getConstant(ShAmt, MVT::i8));
9726        if (N->getNumValues() == 2)  // Dead flag value?
9727          return DCI.CombineTo(N, Cond, SDValue());
9728        return Cond;
9729      }
9730
9731      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
9732      // for any integer data type, including i8/i16.
9733      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
9734        SDValue Cond = N->getOperand(3);
9735        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9736                           DAG.getConstant(CC, MVT::i8), Cond);
9737
9738        // Zero extend the condition if needed.
9739        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
9740                           FalseC->getValueType(0), Cond);
9741        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9742                           SDValue(FalseC, 0));
9743
9744        if (N->getNumValues() == 2)  // Dead flag value?
9745          return DCI.CombineTo(N, Cond, SDValue());
9746        return Cond;
9747      }
9748
9749      // Optimize cases that will turn into an LEA instruction.  This requires
9750      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
9751      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
9752        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
9753        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
9754
9755        bool isFastMultiplier = false;
9756        if (Diff < 10) {
9757          switch ((unsigned char)Diff) {
9758          default: break;
9759          case 1:  // result = add base, cond
9760          case 2:  // result = lea base(    , cond*2)
9761          case 3:  // result = lea base(cond, cond*2)
9762          case 4:  // result = lea base(    , cond*4)
9763          case 5:  // result = lea base(cond, cond*4)
9764          case 8:  // result = lea base(    , cond*8)
9765          case 9:  // result = lea base(cond, cond*8)
9766            isFastMultiplier = true;
9767            break;
9768          }
9769        }
9770
9771        if (isFastMultiplier) {
9772          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
9773          SDValue Cond = N->getOperand(3);
9774          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
9775                             DAG.getConstant(CC, MVT::i8), Cond);
9776          // Zero extend the condition if needed.
9777          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
9778                             Cond);
9779          // Scale the condition by the difference.
9780          if (Diff != 1)
9781            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
9782                               DAG.getConstant(Diff, Cond.getValueType()));
9783
9784          // Add the base if non-zero.
9785          if (FalseC->getAPIntValue() != 0)
9786            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
9787                               SDValue(FalseC, 0));
9788          if (N->getNumValues() == 2)  // Dead flag value?
9789            return DCI.CombineTo(N, Cond, SDValue());
9790          return Cond;
9791        }
9792      }
9793    }
9794  }
9795  return SDValue();
9796}
9797
9798
9799/// PerformMulCombine - Optimize a single multiply with constant into two
9800/// in order to implement it with two cheaper instructions, e.g.
9801/// LEA + SHL, LEA + LEA.
9802static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
9803                                 TargetLowering::DAGCombinerInfo &DCI) {
9804  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9805    return SDValue();
9806
9807  EVT VT = N->getValueType(0);
9808  if (VT != MVT::i64)
9809    return SDValue();
9810
9811  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9812  if (!C)
9813    return SDValue();
9814  uint64_t MulAmt = C->getZExtValue();
9815  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
9816    return SDValue();
9817
9818  uint64_t MulAmt1 = 0;
9819  uint64_t MulAmt2 = 0;
9820  if ((MulAmt % 9) == 0) {
9821    MulAmt1 = 9;
9822    MulAmt2 = MulAmt / 9;
9823  } else if ((MulAmt % 5) == 0) {
9824    MulAmt1 = 5;
9825    MulAmt2 = MulAmt / 5;
9826  } else if ((MulAmt % 3) == 0) {
9827    MulAmt1 = 3;
9828    MulAmt2 = MulAmt / 3;
9829  }
9830  if (MulAmt2 &&
9831      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
9832    DebugLoc DL = N->getDebugLoc();
9833
9834    if (isPowerOf2_64(MulAmt2) &&
9835        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
9836      // If second multiplifer is pow2, issue it first. We want the multiply by
9837      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
9838      // is an add.
9839      std::swap(MulAmt1, MulAmt2);
9840
9841    SDValue NewMul;
9842    if (isPowerOf2_64(MulAmt1))
9843      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
9844                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
9845    else
9846      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
9847                           DAG.getConstant(MulAmt1, VT));
9848
9849    if (isPowerOf2_64(MulAmt2))
9850      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
9851                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
9852    else
9853      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
9854                           DAG.getConstant(MulAmt2, VT));
9855
9856    // Do not add new nodes to DAG combiner worklist.
9857    DCI.CombineTo(N, NewMul, false);
9858  }
9859  return SDValue();
9860}
9861
9862static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
9863  SDValue N0 = N->getOperand(0);
9864  SDValue N1 = N->getOperand(1);
9865  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9866  EVT VT = N0.getValueType();
9867
9868  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
9869  // since the result of setcc_c is all zero's or all ones.
9870  if (N1C && N0.getOpcode() == ISD::AND &&
9871      N0.getOperand(1).getOpcode() == ISD::Constant) {
9872    SDValue N00 = N0.getOperand(0);
9873    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
9874        ((N00.getOpcode() == ISD::ANY_EXTEND ||
9875          N00.getOpcode() == ISD::ZERO_EXTEND) &&
9876         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
9877      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
9878      APInt ShAmt = N1C->getAPIntValue();
9879      Mask = Mask.shl(ShAmt);
9880      if (Mask != 0)
9881        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
9882                           N00, DAG.getConstant(Mask, VT));
9883    }
9884  }
9885
9886  return SDValue();
9887}
9888
9889/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
9890///                       when possible.
9891static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
9892                                   const X86Subtarget *Subtarget) {
9893  EVT VT = N->getValueType(0);
9894  if (!VT.isVector() && VT.isInteger() &&
9895      N->getOpcode() == ISD::SHL)
9896    return PerformSHLCombine(N, DAG);
9897
9898  // On X86 with SSE2 support, we can transform this to a vector shift if
9899  // all elements are shifted by the same amount.  We can't do this in legalize
9900  // because the a constant vector is typically transformed to a constant pool
9901  // so we have no knowledge of the shift amount.
9902  if (!Subtarget->hasSSE2())
9903    return SDValue();
9904
9905  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
9906    return SDValue();
9907
9908  SDValue ShAmtOp = N->getOperand(1);
9909  EVT EltVT = VT.getVectorElementType();
9910  DebugLoc DL = N->getDebugLoc();
9911  SDValue BaseShAmt = SDValue();
9912  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
9913    unsigned NumElts = VT.getVectorNumElements();
9914    unsigned i = 0;
9915    for (; i != NumElts; ++i) {
9916      SDValue Arg = ShAmtOp.getOperand(i);
9917      if (Arg.getOpcode() == ISD::UNDEF) continue;
9918      BaseShAmt = Arg;
9919      break;
9920    }
9921    for (; i != NumElts; ++i) {
9922      SDValue Arg = ShAmtOp.getOperand(i);
9923      if (Arg.getOpcode() == ISD::UNDEF) continue;
9924      if (Arg != BaseShAmt) {
9925        return SDValue();
9926      }
9927    }
9928  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
9929             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
9930    SDValue InVec = ShAmtOp.getOperand(0);
9931    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
9932      unsigned NumElts = InVec.getValueType().getVectorNumElements();
9933      unsigned i = 0;
9934      for (; i != NumElts; ++i) {
9935        SDValue Arg = InVec.getOperand(i);
9936        if (Arg.getOpcode() == ISD::UNDEF) continue;
9937        BaseShAmt = Arg;
9938        break;
9939      }
9940    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
9941       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
9942         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
9943         if (C->getZExtValue() == SplatIdx)
9944           BaseShAmt = InVec.getOperand(1);
9945       }
9946    }
9947    if (BaseShAmt.getNode() == 0)
9948      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
9949                              DAG.getIntPtrConstant(0));
9950  } else
9951    return SDValue();
9952
9953  // The shift amount is an i32.
9954  if (EltVT.bitsGT(MVT::i32))
9955    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
9956  else if (EltVT.bitsLT(MVT::i32))
9957    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
9958
9959  // The shift amount is identical so we can do a vector shift.
9960  SDValue  ValOp = N->getOperand(0);
9961  switch (N->getOpcode()) {
9962  default:
9963    llvm_unreachable("Unknown shift opcode!");
9964    break;
9965  case ISD::SHL:
9966    if (VT == MVT::v2i64)
9967      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9968                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9969                         ValOp, BaseShAmt);
9970    if (VT == MVT::v4i32)
9971      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9972                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9973                         ValOp, BaseShAmt);
9974    if (VT == MVT::v8i16)
9975      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9976                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9977                         ValOp, BaseShAmt);
9978    break;
9979  case ISD::SRA:
9980    if (VT == MVT::v4i32)
9981      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9982                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9983                         ValOp, BaseShAmt);
9984    if (VT == MVT::v8i16)
9985      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9986                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9987                         ValOp, BaseShAmt);
9988    break;
9989  case ISD::SRL:
9990    if (VT == MVT::v2i64)
9991      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9992                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9993                         ValOp, BaseShAmt);
9994    if (VT == MVT::v4i32)
9995      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
9996                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9997                         ValOp, BaseShAmt);
9998    if (VT ==  MVT::v8i16)
9999      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10000                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10001                         ValOp, BaseShAmt);
10002    break;
10003  }
10004  return SDValue();
10005}
10006
10007static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10008                                TargetLowering::DAGCombinerInfo &DCI,
10009                                const X86Subtarget *Subtarget) {
10010  if (DCI.isBeforeLegalizeOps())
10011    return SDValue();
10012
10013  EVT VT = N->getValueType(0);
10014  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10015    return SDValue();
10016
10017  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10018  SDValue N0 = N->getOperand(0);
10019  SDValue N1 = N->getOperand(1);
10020  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10021    std::swap(N0, N1);
10022  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10023    return SDValue();
10024  if (!N0.hasOneUse() || !N1.hasOneUse())
10025    return SDValue();
10026
10027  SDValue ShAmt0 = N0.getOperand(1);
10028  if (ShAmt0.getValueType() != MVT::i8)
10029    return SDValue();
10030  SDValue ShAmt1 = N1.getOperand(1);
10031  if (ShAmt1.getValueType() != MVT::i8)
10032    return SDValue();
10033  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
10034    ShAmt0 = ShAmt0.getOperand(0);
10035  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
10036    ShAmt1 = ShAmt1.getOperand(0);
10037
10038  DebugLoc DL = N->getDebugLoc();
10039  unsigned Opc = X86ISD::SHLD;
10040  SDValue Op0 = N0.getOperand(0);
10041  SDValue Op1 = N1.getOperand(0);
10042  if (ShAmt0.getOpcode() == ISD::SUB) {
10043    Opc = X86ISD::SHRD;
10044    std::swap(Op0, Op1);
10045    std::swap(ShAmt0, ShAmt1);
10046  }
10047
10048  unsigned Bits = VT.getSizeInBits();
10049  if (ShAmt1.getOpcode() == ISD::SUB) {
10050    SDValue Sum = ShAmt1.getOperand(0);
10051    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
10052      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
10053      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
10054        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
10055      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
10056        return DAG.getNode(Opc, DL, VT,
10057                           Op0, Op1,
10058                           DAG.getNode(ISD::TRUNCATE, DL,
10059                                       MVT::i8, ShAmt0));
10060    }
10061  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
10062    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
10063    if (ShAmt0C &&
10064        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
10065      return DAG.getNode(Opc, DL, VT,
10066                         N0.getOperand(0), N1.getOperand(0),
10067                         DAG.getNode(ISD::TRUNCATE, DL,
10068                                       MVT::i8, ShAmt0));
10069  }
10070
10071  return SDValue();
10072}
10073
10074/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
10075static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
10076                                   const X86Subtarget *Subtarget) {
10077  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
10078  // the FP state in cases where an emms may be missing.
10079  // A preferable solution to the general problem is to figure out the right
10080  // places to insert EMMS.  This qualifies as a quick hack.
10081
10082  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
10083  StoreSDNode *St = cast<StoreSDNode>(N);
10084  EVT VT = St->getValue().getValueType();
10085  if (VT.getSizeInBits() != 64)
10086    return SDValue();
10087
10088  const Function *F = DAG.getMachineFunction().getFunction();
10089  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
10090  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
10091    && Subtarget->hasSSE2();
10092  if ((VT.isVector() ||
10093       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
10094      isa<LoadSDNode>(St->getValue()) &&
10095      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
10096      St->getChain().hasOneUse() && !St->isVolatile()) {
10097    SDNode* LdVal = St->getValue().getNode();
10098    LoadSDNode *Ld = 0;
10099    int TokenFactorIndex = -1;
10100    SmallVector<SDValue, 8> Ops;
10101    SDNode* ChainVal = St->getChain().getNode();
10102    // Must be a store of a load.  We currently handle two cases:  the load
10103    // is a direct child, and it's under an intervening TokenFactor.  It is
10104    // possible to dig deeper under nested TokenFactors.
10105    if (ChainVal == LdVal)
10106      Ld = cast<LoadSDNode>(St->getChain());
10107    else if (St->getValue().hasOneUse() &&
10108             ChainVal->getOpcode() == ISD::TokenFactor) {
10109      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
10110        if (ChainVal->getOperand(i).getNode() == LdVal) {
10111          TokenFactorIndex = i;
10112          Ld = cast<LoadSDNode>(St->getValue());
10113        } else
10114          Ops.push_back(ChainVal->getOperand(i));
10115      }
10116    }
10117
10118    if (!Ld || !ISD::isNormalLoad(Ld))
10119      return SDValue();
10120
10121    // If this is not the MMX case, i.e. we are just turning i64 load/store
10122    // into f64 load/store, avoid the transformation if there are multiple
10123    // uses of the loaded value.
10124    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
10125      return SDValue();
10126
10127    DebugLoc LdDL = Ld->getDebugLoc();
10128    DebugLoc StDL = N->getDebugLoc();
10129    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
10130    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
10131    // pair instead.
10132    if (Subtarget->is64Bit() || F64IsLegal) {
10133      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
10134      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
10135                                  Ld->getBasePtr(), Ld->getSrcValue(),
10136                                  Ld->getSrcValueOffset(), Ld->isVolatile(),
10137                                  Ld->isNonTemporal(), Ld->getAlignment());
10138      SDValue NewChain = NewLd.getValue(1);
10139      if (TokenFactorIndex != -1) {
10140        Ops.push_back(NewChain);
10141        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10142                               Ops.size());
10143      }
10144      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
10145                          St->getSrcValue(), St->getSrcValueOffset(),
10146                          St->isVolatile(), St->isNonTemporal(),
10147                          St->getAlignment());
10148    }
10149
10150    // Otherwise, lower to two pairs of 32-bit loads / stores.
10151    SDValue LoAddr = Ld->getBasePtr();
10152    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
10153                                 DAG.getConstant(4, MVT::i32));
10154
10155    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
10156                               Ld->getSrcValue(), Ld->getSrcValueOffset(),
10157                               Ld->isVolatile(), Ld->isNonTemporal(),
10158                               Ld->getAlignment());
10159    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
10160                               Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
10161                               Ld->isVolatile(), Ld->isNonTemporal(),
10162                               MinAlign(Ld->getAlignment(), 4));
10163
10164    SDValue NewChain = LoLd.getValue(1);
10165    if (TokenFactorIndex != -1) {
10166      Ops.push_back(LoLd);
10167      Ops.push_back(HiLd);
10168      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
10169                             Ops.size());
10170    }
10171
10172    LoAddr = St->getBasePtr();
10173    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
10174                         DAG.getConstant(4, MVT::i32));
10175
10176    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
10177                                St->getSrcValue(), St->getSrcValueOffset(),
10178                                St->isVolatile(), St->isNonTemporal(),
10179                                St->getAlignment());
10180    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
10181                                St->getSrcValue(),
10182                                St->getSrcValueOffset() + 4,
10183                                St->isVolatile(),
10184                                St->isNonTemporal(),
10185                                MinAlign(St->getAlignment(), 4));
10186    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
10187  }
10188  return SDValue();
10189}
10190
10191/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
10192/// X86ISD::FXOR nodes.
10193static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
10194  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
10195  // F[X]OR(0.0, x) -> x
10196  // F[X]OR(x, 0.0) -> x
10197  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10198    if (C->getValueAPF().isPosZero())
10199      return N->getOperand(1);
10200  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10201    if (C->getValueAPF().isPosZero())
10202      return N->getOperand(0);
10203  return SDValue();
10204}
10205
10206/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
10207static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
10208  // FAND(0.0, x) -> 0.0
10209  // FAND(x, 0.0) -> 0.0
10210  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
10211    if (C->getValueAPF().isPosZero())
10212      return N->getOperand(0);
10213  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
10214    if (C->getValueAPF().isPosZero())
10215      return N->getOperand(1);
10216  return SDValue();
10217}
10218
10219static SDValue PerformBTCombine(SDNode *N,
10220                                SelectionDAG &DAG,
10221                                TargetLowering::DAGCombinerInfo &DCI) {
10222  // BT ignores high bits in the bit index operand.
10223  SDValue Op1 = N->getOperand(1);
10224  if (Op1.hasOneUse()) {
10225    unsigned BitWidth = Op1.getValueSizeInBits();
10226    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
10227    APInt KnownZero, KnownOne;
10228    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
10229                                          !DCI.isBeforeLegalizeOps());
10230    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10231    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
10232        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
10233      DCI.CommitTargetLoweringOpt(TLO);
10234  }
10235  return SDValue();
10236}
10237
10238static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
10239  SDValue Op = N->getOperand(0);
10240  if (Op.getOpcode() == ISD::BIT_CONVERT)
10241    Op = Op.getOperand(0);
10242  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
10243  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
10244      VT.getVectorElementType().getSizeInBits() ==
10245      OpVT.getVectorElementType().getSizeInBits()) {
10246    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
10247  }
10248  return SDValue();
10249}
10250
10251static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
10252  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
10253  //           (and (i32 x86isd::setcc_carry), 1)
10254  // This eliminates the zext. This transformation is necessary because
10255  // ISD::SETCC is always legalized to i8.
10256  DebugLoc dl = N->getDebugLoc();
10257  SDValue N0 = N->getOperand(0);
10258  EVT VT = N->getValueType(0);
10259  if (N0.getOpcode() == ISD::AND &&
10260      N0.hasOneUse() &&
10261      N0.getOperand(0).hasOneUse()) {
10262    SDValue N00 = N0.getOperand(0);
10263    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
10264      return SDValue();
10265    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
10266    if (!C || C->getZExtValue() != 1)
10267      return SDValue();
10268    return DAG.getNode(ISD::AND, dl, VT,
10269                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
10270                                   N00.getOperand(0), N00.getOperand(1)),
10271                       DAG.getConstant(1, VT));
10272  }
10273
10274  return SDValue();
10275}
10276
10277SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
10278                                             DAGCombinerInfo &DCI) const {
10279  SelectionDAG &DAG = DCI.DAG;
10280  switch (N->getOpcode()) {
10281  default: break;
10282  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
10283  case ISD::EXTRACT_VECTOR_ELT:
10284                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
10285  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
10286  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
10287  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
10288  case ISD::SHL:
10289  case ISD::SRA:
10290  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
10291  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
10292  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
10293  case X86ISD::FXOR:
10294  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
10295  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
10296  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
10297  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
10298  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
10299  }
10300
10301  return SDValue();
10302}
10303
10304/// isTypeDesirableForOp - Return true if the target has native support for
10305/// the specified value type and it is 'desirable' to use the type for the
10306/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
10307/// instruction encodings are longer and some i16 instructions are slow.
10308bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
10309  if (!isTypeLegal(VT))
10310    return false;
10311  if (VT != MVT::i16)
10312    return true;
10313
10314  switch (Opc) {
10315  default:
10316    return true;
10317  case ISD::LOAD:
10318  case ISD::SIGN_EXTEND:
10319  case ISD::ZERO_EXTEND:
10320  case ISD::ANY_EXTEND:
10321  case ISD::SHL:
10322  case ISD::SRL:
10323  case ISD::SUB:
10324  case ISD::ADD:
10325  case ISD::MUL:
10326  case ISD::AND:
10327  case ISD::OR:
10328  case ISD::XOR:
10329    return false;
10330  }
10331}
10332
10333static bool MayFoldLoad(SDValue Op) {
10334  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
10335}
10336
10337static bool MayFoldIntoStore(SDValue Op) {
10338  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
10339}
10340
10341/// IsDesirableToPromoteOp - This method query the target whether it is
10342/// beneficial for dag combiner to promote the specified node. If true, it
10343/// should return the desired promotion type by reference.
10344bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
10345  EVT VT = Op.getValueType();
10346  if (VT != MVT::i16)
10347    return false;
10348
10349  bool Promote = false;
10350  bool Commute = false;
10351  switch (Op.getOpcode()) {
10352  default: break;
10353  case ISD::LOAD: {
10354    LoadSDNode *LD = cast<LoadSDNode>(Op);
10355    // If the non-extending load has a single use and it's not live out, then it
10356    // might be folded.
10357    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
10358                                                     Op.hasOneUse()*/) {
10359      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
10360             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
10361        // The only case where we'd want to promote LOAD (rather then it being
10362        // promoted as an operand is when it's only use is liveout.
10363        if (UI->getOpcode() != ISD::CopyToReg)
10364          return false;
10365      }
10366    }
10367    Promote = true;
10368    break;
10369  }
10370  case ISD::SIGN_EXTEND:
10371  case ISD::ZERO_EXTEND:
10372  case ISD::ANY_EXTEND:
10373    Promote = true;
10374    break;
10375  case ISD::SHL:
10376  case ISD::SRL: {
10377    SDValue N0 = Op.getOperand(0);
10378    // Look out for (store (shl (load), x)).
10379    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
10380      return false;
10381    Promote = true;
10382    break;
10383  }
10384  case ISD::ADD:
10385  case ISD::MUL:
10386  case ISD::AND:
10387  case ISD::OR:
10388  case ISD::XOR:
10389    Commute = true;
10390    // fallthrough
10391  case ISD::SUB: {
10392    SDValue N0 = Op.getOperand(0);
10393    SDValue N1 = Op.getOperand(1);
10394    if (!Commute && MayFoldLoad(N1))
10395      return false;
10396    // Avoid disabling potential load folding opportunities.
10397    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
10398      return false;
10399    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
10400      return false;
10401    Promote = true;
10402  }
10403  }
10404
10405  PVT = MVT::i32;
10406  return Promote;
10407}
10408
10409//===----------------------------------------------------------------------===//
10410//                           X86 Inline Assembly Support
10411//===----------------------------------------------------------------------===//
10412
10413static bool LowerToBSwap(CallInst *CI) {
10414  // FIXME: this should verify that we are targetting a 486 or better.  If not,
10415  // we will turn this bswap into something that will be lowered to logical ops
10416  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
10417  // so don't worry about this.
10418
10419  // Verify this is a simple bswap.
10420  if (CI->getNumArgOperands() != 1 ||
10421      CI->getType() != CI->getArgOperand(0)->getType() ||
10422      !CI->getType()->isIntegerTy())
10423    return false;
10424
10425  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
10426  if (!Ty || Ty->getBitWidth() % 16 != 0)
10427    return false;
10428
10429  // Okay, we can do this xform, do so now.
10430  const Type *Tys[] = { Ty };
10431  Module *M = CI->getParent()->getParent()->getParent();
10432  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
10433
10434  Value *Op = CI->getArgOperand(0);
10435  Op = CallInst::Create(Int, Op, CI->getName(), CI);
10436
10437  CI->replaceAllUsesWith(Op);
10438  CI->eraseFromParent();
10439  return true;
10440}
10441
10442bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
10443  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
10444  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
10445
10446  std::string AsmStr = IA->getAsmString();
10447
10448  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
10449  SmallVector<StringRef, 4> AsmPieces;
10450  SplitString(AsmStr, AsmPieces, "\n");  // ; as separator?
10451
10452  switch (AsmPieces.size()) {
10453  default: return false;
10454  case 1:
10455    AsmStr = AsmPieces[0];
10456    AsmPieces.clear();
10457    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
10458
10459    // bswap $0
10460    if (AsmPieces.size() == 2 &&
10461        (AsmPieces[0] == "bswap" ||
10462         AsmPieces[0] == "bswapq" ||
10463         AsmPieces[0] == "bswapl") &&
10464        (AsmPieces[1] == "$0" ||
10465         AsmPieces[1] == "${0:q}")) {
10466      // No need to check constraints, nothing other than the equivalent of
10467      // "=r,0" would be valid here.
10468      return LowerToBSwap(CI);
10469    }
10470    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
10471    if (CI->getType()->isIntegerTy(16) &&
10472        AsmPieces.size() == 3 &&
10473        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
10474        AsmPieces[1] == "$$8," &&
10475        AsmPieces[2] == "${0:w}" &&
10476        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
10477      AsmPieces.clear();
10478      const std::string &Constraints = IA->getConstraintString();
10479      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
10480      std::sort(AsmPieces.begin(), AsmPieces.end());
10481      if (AsmPieces.size() == 4 &&
10482          AsmPieces[0] == "~{cc}" &&
10483          AsmPieces[1] == "~{dirflag}" &&
10484          AsmPieces[2] == "~{flags}" &&
10485          AsmPieces[3] == "~{fpsr}") {
10486        return LowerToBSwap(CI);
10487      }
10488    }
10489    break;
10490  case 3:
10491    if (CI->getType()->isIntegerTy(64) &&
10492        Constraints.size() >= 2 &&
10493        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
10494        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
10495      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
10496      SmallVector<StringRef, 4> Words;
10497      SplitString(AsmPieces[0], Words, " \t");
10498      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
10499        Words.clear();
10500        SplitString(AsmPieces[1], Words, " \t");
10501        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
10502          Words.clear();
10503          SplitString(AsmPieces[2], Words, " \t,");
10504          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
10505              Words[2] == "%edx") {
10506            return LowerToBSwap(CI);
10507          }
10508        }
10509      }
10510    }
10511    break;
10512  }
10513  return false;
10514}
10515
10516
10517
10518/// getConstraintType - Given a constraint letter, return the type of
10519/// constraint it is for this target.
10520X86TargetLowering::ConstraintType
10521X86TargetLowering::getConstraintType(const std::string &Constraint) const {
10522  if (Constraint.size() == 1) {
10523    switch (Constraint[0]) {
10524    case 'A':
10525      return C_Register;
10526    case 'f':
10527    case 'r':
10528    case 'R':
10529    case 'l':
10530    case 'q':
10531    case 'Q':
10532    case 'x':
10533    case 'y':
10534    case 'Y':
10535      return C_RegisterClass;
10536    case 'e':
10537    case 'Z':
10538      return C_Other;
10539    default:
10540      break;
10541    }
10542  }
10543  return TargetLowering::getConstraintType(Constraint);
10544}
10545
10546/// LowerXConstraint - try to replace an X constraint, which matches anything,
10547/// with another that has more specific requirements based on the type of the
10548/// corresponding operand.
10549const char *X86TargetLowering::
10550LowerXConstraint(EVT ConstraintVT) const {
10551  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
10552  // 'f' like normal targets.
10553  if (ConstraintVT.isFloatingPoint()) {
10554    if (Subtarget->hasSSE2())
10555      return "Y";
10556    if (Subtarget->hasSSE1())
10557      return "x";
10558  }
10559
10560  return TargetLowering::LowerXConstraint(ConstraintVT);
10561}
10562
10563/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
10564/// vector.  If it is invalid, don't add anything to Ops.
10565void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
10566                                                     char Constraint,
10567                                                     std::vector<SDValue>&Ops,
10568                                                     SelectionDAG &DAG) const {
10569  SDValue Result(0, 0);
10570
10571  switch (Constraint) {
10572  default: break;
10573  case 'I':
10574    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10575      if (C->getZExtValue() <= 31) {
10576        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10577        break;
10578      }
10579    }
10580    return;
10581  case 'J':
10582    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10583      if (C->getZExtValue() <= 63) {
10584        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10585        break;
10586      }
10587    }
10588    return;
10589  case 'K':
10590    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10591      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
10592        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10593        break;
10594      }
10595    }
10596    return;
10597  case 'N':
10598    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10599      if (C->getZExtValue() <= 255) {
10600        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10601        break;
10602      }
10603    }
10604    return;
10605  case 'e': {
10606    // 32-bit signed value
10607    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10608      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10609                                           C->getSExtValue())) {
10610        // Widen to 64 bits here to get it sign extended.
10611        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
10612        break;
10613      }
10614    // FIXME gcc accepts some relocatable values here too, but only in certain
10615    // memory models; it's complicated.
10616    }
10617    return;
10618  }
10619  case 'Z': {
10620    // 32-bit unsigned value
10621    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
10622      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
10623                                           C->getZExtValue())) {
10624        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
10625        break;
10626      }
10627    }
10628    // FIXME gcc accepts some relocatable values here too, but only in certain
10629    // memory models; it's complicated.
10630    return;
10631  }
10632  case 'i': {
10633    // Literal immediates are always ok.
10634    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
10635      // Widen to 64 bits here to get it sign extended.
10636      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
10637      break;
10638    }
10639
10640    // In any sort of PIC mode addresses need to be computed at runtime by
10641    // adding in a register or some sort of table lookup.  These can't
10642    // be used as immediates.
10643    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
10644      return;
10645
10646    // If we are in non-pic codegen mode, we allow the address of a global (with
10647    // an optional displacement) to be used with 'i'.
10648    GlobalAddressSDNode *GA = 0;
10649    int64_t Offset = 0;
10650
10651    // Match either (GA), (GA+C), (GA+C1+C2), etc.
10652    while (1) {
10653      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
10654        Offset += GA->getOffset();
10655        break;
10656      } else if (Op.getOpcode() == ISD::ADD) {
10657        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10658          Offset += C->getZExtValue();
10659          Op = Op.getOperand(0);
10660          continue;
10661        }
10662      } else if (Op.getOpcode() == ISD::SUB) {
10663        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
10664          Offset += -C->getZExtValue();
10665          Op = Op.getOperand(0);
10666          continue;
10667        }
10668      }
10669
10670      // Otherwise, this isn't something we can handle, reject it.
10671      return;
10672    }
10673
10674    const GlobalValue *GV = GA->getGlobal();
10675    // If we require an extra load to get this address, as in PIC mode, we
10676    // can't accept it.
10677    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
10678                                                        getTargetMachine())))
10679      return;
10680
10681    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
10682                                        GA->getValueType(0), Offset);
10683    break;
10684  }
10685  }
10686
10687  if (Result.getNode()) {
10688    Ops.push_back(Result);
10689    return;
10690  }
10691  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
10692}
10693
10694std::vector<unsigned> X86TargetLowering::
10695getRegClassForInlineAsmConstraint(const std::string &Constraint,
10696                                  EVT VT) const {
10697  if (Constraint.size() == 1) {
10698    // FIXME: not handling fp-stack yet!
10699    switch (Constraint[0]) {      // GCC X86 Constraint Letters
10700    default: break;  // Unknown constraint letter
10701    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
10702      if (Subtarget->is64Bit()) {
10703        if (VT == MVT::i32)
10704          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
10705                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
10706                                       X86::R10D,X86::R11D,X86::R12D,
10707                                       X86::R13D,X86::R14D,X86::R15D,
10708                                       X86::EBP, X86::ESP, 0);
10709        else if (VT == MVT::i16)
10710          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
10711                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
10712                                       X86::R10W,X86::R11W,X86::R12W,
10713                                       X86::R13W,X86::R14W,X86::R15W,
10714                                       X86::BP,  X86::SP, 0);
10715        else if (VT == MVT::i8)
10716          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
10717                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
10718                                       X86::R10B,X86::R11B,X86::R12B,
10719                                       X86::R13B,X86::R14B,X86::R15B,
10720                                       X86::BPL, X86::SPL, 0);
10721
10722        else if (VT == MVT::i64)
10723          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
10724                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
10725                                       X86::R10, X86::R11, X86::R12,
10726                                       X86::R13, X86::R14, X86::R15,
10727                                       X86::RBP, X86::RSP, 0);
10728
10729        break;
10730      }
10731      // 32-bit fallthrough
10732    case 'Q':   // Q_REGS
10733      if (VT == MVT::i32)
10734        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
10735      else if (VT == MVT::i16)
10736        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
10737      else if (VT == MVT::i8)
10738        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
10739      else if (VT == MVT::i64)
10740        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
10741      break;
10742    }
10743  }
10744
10745  return std::vector<unsigned>();
10746}
10747
10748std::pair<unsigned, const TargetRegisterClass*>
10749X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
10750                                                EVT VT) const {
10751  // First, see if this is a constraint that directly corresponds to an LLVM
10752  // register class.
10753  if (Constraint.size() == 1) {
10754    // GCC Constraint Letters
10755    switch (Constraint[0]) {
10756    default: break;
10757    case 'r':   // GENERAL_REGS
10758    case 'l':   // INDEX_REGS
10759      if (VT == MVT::i8)
10760        return std::make_pair(0U, X86::GR8RegisterClass);
10761      if (VT == MVT::i16)
10762        return std::make_pair(0U, X86::GR16RegisterClass);
10763      if (VT == MVT::i32 || !Subtarget->is64Bit())
10764        return std::make_pair(0U, X86::GR32RegisterClass);
10765      return std::make_pair(0U, X86::GR64RegisterClass);
10766    case 'R':   // LEGACY_REGS
10767      if (VT == MVT::i8)
10768        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
10769      if (VT == MVT::i16)
10770        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
10771      if (VT == MVT::i32 || !Subtarget->is64Bit())
10772        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
10773      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
10774    case 'f':  // FP Stack registers.
10775      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
10776      // value to the correct fpstack register class.
10777      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
10778        return std::make_pair(0U, X86::RFP32RegisterClass);
10779      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
10780        return std::make_pair(0U, X86::RFP64RegisterClass);
10781      return std::make_pair(0U, X86::RFP80RegisterClass);
10782    case 'y':   // MMX_REGS if MMX allowed.
10783      if (!Subtarget->hasMMX()) break;
10784      return std::make_pair(0U, X86::VR64RegisterClass);
10785    case 'Y':   // SSE_REGS if SSE2 allowed
10786      if (!Subtarget->hasSSE2()) break;
10787      // FALL THROUGH.
10788    case 'x':   // SSE_REGS if SSE1 allowed
10789      if (!Subtarget->hasSSE1()) break;
10790
10791      switch (VT.getSimpleVT().SimpleTy) {
10792      default: break;
10793      // Scalar SSE types.
10794      case MVT::f32:
10795      case MVT::i32:
10796        return std::make_pair(0U, X86::FR32RegisterClass);
10797      case MVT::f64:
10798      case MVT::i64:
10799        return std::make_pair(0U, X86::FR64RegisterClass);
10800      // Vector types.
10801      case MVT::v16i8:
10802      case MVT::v8i16:
10803      case MVT::v4i32:
10804      case MVT::v2i64:
10805      case MVT::v4f32:
10806      case MVT::v2f64:
10807        return std::make_pair(0U, X86::VR128RegisterClass);
10808      }
10809      break;
10810    }
10811  }
10812
10813  // Use the default implementation in TargetLowering to convert the register
10814  // constraint into a member of a register class.
10815  std::pair<unsigned, const TargetRegisterClass*> Res;
10816  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
10817
10818  // Not found as a standard register?
10819  if (Res.second == 0) {
10820    // Map st(0) -> st(7) -> ST0
10821    if (Constraint.size() == 7 && Constraint[0] == '{' &&
10822        tolower(Constraint[1]) == 's' &&
10823        tolower(Constraint[2]) == 't' &&
10824        Constraint[3] == '(' &&
10825        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
10826        Constraint[5] == ')' &&
10827        Constraint[6] == '}') {
10828
10829      Res.first = X86::ST0+Constraint[4]-'0';
10830      Res.second = X86::RFP80RegisterClass;
10831      return Res;
10832    }
10833
10834    // GCC allows "st(0)" to be called just plain "st".
10835    if (StringRef("{st}").equals_lower(Constraint)) {
10836      Res.first = X86::ST0;
10837      Res.second = X86::RFP80RegisterClass;
10838      return Res;
10839    }
10840
10841    // flags -> EFLAGS
10842    if (StringRef("{flags}").equals_lower(Constraint)) {
10843      Res.first = X86::EFLAGS;
10844      Res.second = X86::CCRRegisterClass;
10845      return Res;
10846    }
10847
10848    // 'A' means EAX + EDX.
10849    if (Constraint == "A") {
10850      Res.first = X86::EAX;
10851      Res.second = X86::GR32_ADRegisterClass;
10852      return Res;
10853    }
10854    return Res;
10855  }
10856
10857  // Otherwise, check to see if this is a register class of the wrong value
10858  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
10859  // turn into {ax},{dx}.
10860  if (Res.second->hasType(VT))
10861    return Res;   // Correct type already, nothing to do.
10862
10863  // All of the single-register GCC register classes map their values onto
10864  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
10865  // really want an 8-bit or 32-bit register, map to the appropriate register
10866  // class and return the appropriate register.
10867  if (Res.second == X86::GR16RegisterClass) {
10868    if (VT == MVT::i8) {
10869      unsigned DestReg = 0;
10870      switch (Res.first) {
10871      default: break;
10872      case X86::AX: DestReg = X86::AL; break;
10873      case X86::DX: DestReg = X86::DL; break;
10874      case X86::CX: DestReg = X86::CL; break;
10875      case X86::BX: DestReg = X86::BL; break;
10876      }
10877      if (DestReg) {
10878        Res.first = DestReg;
10879        Res.second = X86::GR8RegisterClass;
10880      }
10881    } else if (VT == MVT::i32) {
10882      unsigned DestReg = 0;
10883      switch (Res.first) {
10884      default: break;
10885      case X86::AX: DestReg = X86::EAX; break;
10886      case X86::DX: DestReg = X86::EDX; break;
10887      case X86::CX: DestReg = X86::ECX; break;
10888      case X86::BX: DestReg = X86::EBX; break;
10889      case X86::SI: DestReg = X86::ESI; break;
10890      case X86::DI: DestReg = X86::EDI; break;
10891      case X86::BP: DestReg = X86::EBP; break;
10892      case X86::SP: DestReg = X86::ESP; break;
10893      }
10894      if (DestReg) {
10895        Res.first = DestReg;
10896        Res.second = X86::GR32RegisterClass;
10897      }
10898    } else if (VT == MVT::i64) {
10899      unsigned DestReg = 0;
10900      switch (Res.first) {
10901      default: break;
10902      case X86::AX: DestReg = X86::RAX; break;
10903      case X86::DX: DestReg = X86::RDX; break;
10904      case X86::CX: DestReg = X86::RCX; break;
10905      case X86::BX: DestReg = X86::RBX; break;
10906      case X86::SI: DestReg = X86::RSI; break;
10907      case X86::DI: DestReg = X86::RDI; break;
10908      case X86::BP: DestReg = X86::RBP; break;
10909      case X86::SP: DestReg = X86::RSP; break;
10910      }
10911      if (DestReg) {
10912        Res.first = DestReg;
10913        Res.second = X86::GR64RegisterClass;
10914      }
10915    }
10916  } else if (Res.second == X86::FR32RegisterClass ||
10917             Res.second == X86::FR64RegisterClass ||
10918             Res.second == X86::VR128RegisterClass) {
10919    // Handle references to XMM physical registers that got mapped into the
10920    // wrong class.  This can happen with constraints like {xmm0} where the
10921    // target independent register mapper will just pick the first match it can
10922    // find, ignoring the required type.
10923    if (VT == MVT::f32)
10924      Res.second = X86::FR32RegisterClass;
10925    else if (VT == MVT::f64)
10926      Res.second = X86::FR64RegisterClass;
10927    else if (X86::VR128RegisterClass->hasType(VT))
10928      Res.second = X86::VR128RegisterClass;
10929  }
10930
10931  return Res;
10932}
10933