X86ISelLowering.cpp revision af9b952627d8fa10412b8cf7319d3e334446547f
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Target/TargetOptions.h"
39#include "llvm/ADT/SmallSet.h"
40#include "llvm/ADT/StringExtras.h"
41#include "llvm/Support/CommandLine.h"
42using namespace llvm;
43
44static cl::opt<bool>
45DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
46
47// Forward declarations.
48static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
49
50X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
51  : TargetLowering(TM) {
52  Subtarget = &TM.getSubtarget<X86Subtarget>();
53  X86ScalarSSEf64 = Subtarget->hasSSE2();
54  X86ScalarSSEf32 = Subtarget->hasSSE1();
55  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
56
57  bool Fast = false;
58
59  RegInfo = TM.getRegisterInfo();
60  TD = getTargetData();
61
62  // Set up the TargetLowering object.
63
64  // X86 is weird, it always uses i8 for shift amounts and setcc results.
65  setShiftAmountType(MVT::i8);
66  setBooleanContents(ZeroOrOneBooleanContent);
67  setSchedulingPreference(SchedulingForRegPressure);
68  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
69  setStackPointerRegisterToSaveRestore(X86StackPtr);
70
71  if (Subtarget->isTargetDarwin()) {
72    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
73    setUseUnderscoreSetJmp(false);
74    setUseUnderscoreLongJmp(false);
75  } else if (Subtarget->isTargetMingw()) {
76    // MS runtime is weird: it exports _setjmp, but longjmp!
77    setUseUnderscoreSetJmp(true);
78    setUseUnderscoreLongJmp(false);
79  } else {
80    setUseUnderscoreSetJmp(true);
81    setUseUnderscoreLongJmp(true);
82  }
83
84  // Set up the register classes.
85  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
86  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
87  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
88  if (Subtarget->is64Bit())
89    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
90
91  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
92
93  // We don't accept any truncstore of integer registers.
94  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
95  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
96  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
97  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
98  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
99  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
100
101  // SETOEQ and SETUNE require checking two conditions.
102  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
103  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
104  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
105  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
106  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
107  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
108
109  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
110  // operation.
111  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
112  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
113  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
114
115  if (Subtarget->is64Bit()) {
116    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
117    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
118  } else {
119    if (X86ScalarSSEf64) {
120      // We have an impenetrably clever algorithm for ui64->double only.
121      setOperationAction(ISD::UINT_TO_FP   , MVT::i64  , Custom);
122      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
123      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
124    } else
125      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
126  }
127
128  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
129  // this operation.
130  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
131  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
132  // SSE has no i16 to fp conversion, only i32
133  if (X86ScalarSSEf32) {
134    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
135    // f32 and f64 cases are Legal, f80 case is not
136    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
137  } else {
138    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
139    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
140  }
141
142  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
143  // are Legal, f80 is custom lowered.
144  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
145  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
146
147  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
148  // this operation.
149  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
150  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
151
152  if (X86ScalarSSEf32) {
153    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
154    // f32 and f64 cases are Legal, f80 case is not
155    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
156  } else {
157    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
158    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
159  }
160
161  // Handle FP_TO_UINT by promoting the destination to a larger signed
162  // conversion.
163  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
164  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
165  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
166
167  if (Subtarget->is64Bit()) {
168    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
169    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
170  } else {
171    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
172      // Expand FP_TO_UINT into a select.
173      // FIXME: We would like to use a Custom expander here eventually to do
174      // the optimal thing for SSE vs. the default expansion in the legalizer.
175      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
176    else
177      // With SSE3 we can use fisttpll to convert to a signed i64.
178      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
179  }
180
181  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
182  if (!X86ScalarSSEf64) {
183    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
184    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
185  }
186
187  // Scalar integer divide and remainder are lowered to use operations that
188  // produce two results, to match the available instructions. This exposes
189  // the two-result form to trivial CSE, which is able to combine x/y and x%y
190  // into a single instruction.
191  //
192  // Scalar integer multiply-high is also lowered to use two-result
193  // operations, to match the available instructions. However, plain multiply
194  // (low) operations are left as Legal, as there are single-result
195  // instructions for this in x86. Using the two-result multiply instructions
196  // when both high and low results are needed must be arranged by dagcombine.
197  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
198  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
199  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
200  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
201  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
202  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
203  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
204  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
205  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
206  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
207  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
208  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
209  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
210  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
211  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
212  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
213  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
214  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
215  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
216  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
217  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
218  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
219  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
220  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
221
222  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
223  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
224  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
225  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
226  if (Subtarget->is64Bit())
227    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
228  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
229  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
230  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
231  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
232  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
233  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
234  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
235  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
236
237  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
238  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
239  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
240  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
241  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
242  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
243  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
244  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
245  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
246  if (Subtarget->is64Bit()) {
247    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
248    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
249    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
250  }
251
252  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
253  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
254
255  // These should be promoted to a larger select which is supported.
256  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
257  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
258  // X86 wants to expand cmov itself.
259  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
260  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
261  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
262  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
263  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
264  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
265  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
266  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
267  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
268  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
269  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
270  if (Subtarget->is64Bit()) {
271    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
272    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
273  }
274  // X86 ret instruction may pop stack.
275  setOperationAction(ISD::RET             , MVT::Other, Custom);
276  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
277
278  // Darwin ABI issue.
279  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
280  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
281  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
282  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
283  if (Subtarget->is64Bit())
284    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
285  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
286  if (Subtarget->is64Bit()) {
287    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
288    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
289    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
290    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
291  }
292  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
293  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
294  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
295  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
296  if (Subtarget->is64Bit()) {
297    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
298    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
299    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
300  }
301
302  if (Subtarget->hasSSE1())
303    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
304
305  if (!Subtarget->hasSSE2())
306    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
307
308  // Expand certain atomics
309  setOperationAction(ISD::ATOMIC_CMP_SWAP_8 , MVT::i8, Custom);
310  setOperationAction(ISD::ATOMIC_CMP_SWAP_16, MVT::i16, Custom);
311  setOperationAction(ISD::ATOMIC_CMP_SWAP_32, MVT::i32, Custom);
312  setOperationAction(ISD::ATOMIC_CMP_SWAP_64, MVT::i64, Custom);
313
314  setOperationAction(ISD::ATOMIC_LOAD_SUB_8 , MVT::i8, Custom);
315  setOperationAction(ISD::ATOMIC_LOAD_SUB_16, MVT::i16, Custom);
316  setOperationAction(ISD::ATOMIC_LOAD_SUB_32, MVT::i32, Custom);
317  setOperationAction(ISD::ATOMIC_LOAD_SUB_64, MVT::i64, Custom);
318
319  if (!Subtarget->is64Bit()) {
320    setOperationAction(ISD::ATOMIC_LOAD_ADD_64, MVT::i64, Custom);
321    setOperationAction(ISD::ATOMIC_LOAD_SUB_64, MVT::i64, Custom);
322    setOperationAction(ISD::ATOMIC_LOAD_AND_64, MVT::i64, Custom);
323    setOperationAction(ISD::ATOMIC_LOAD_OR_64, MVT::i64, Custom);
324    setOperationAction(ISD::ATOMIC_LOAD_XOR_64, MVT::i64, Custom);
325    setOperationAction(ISD::ATOMIC_LOAD_NAND_64, MVT::i64, Custom);
326    setOperationAction(ISD::ATOMIC_SWAP_64, MVT::i64, Custom);
327  }
328
329  // Use the default ISD::DBG_STOPPOINT, ISD::DECLARE expansion.
330  setOperationAction(ISD::DBG_STOPPOINT, MVT::Other, Expand);
331  // FIXME - use subtarget debug flags
332  if (!Subtarget->isTargetDarwin() &&
333      !Subtarget->isTargetELF() &&
334      !Subtarget->isTargetCygMing()) {
335    setOperationAction(ISD::DBG_LABEL, MVT::Other, Expand);
336    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
337  }
338
339  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
340  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
341  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
342  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
343  if (Subtarget->is64Bit()) {
344    setExceptionPointerRegister(X86::RAX);
345    setExceptionSelectorRegister(X86::RDX);
346  } else {
347    setExceptionPointerRegister(X86::EAX);
348    setExceptionSelectorRegister(X86::EDX);
349  }
350  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
351  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
352
353  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
354
355  setOperationAction(ISD::TRAP, MVT::Other, Legal);
356
357  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
358  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
359  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
360  if (Subtarget->is64Bit()) {
361    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
362    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
363  } else {
364    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
365    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
366  }
367
368  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
369  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
372  if (Subtarget->isTargetCygMing())
373    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
374  else
375    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
376
377  if (X86ScalarSSEf64) {
378    // f32 and f64 use SSE.
379    // Set up the FP register classes.
380    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
381    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
382
383    // Use ANDPD to simulate FABS.
384    setOperationAction(ISD::FABS , MVT::f64, Custom);
385    setOperationAction(ISD::FABS , MVT::f32, Custom);
386
387    // Use XORP to simulate FNEG.
388    setOperationAction(ISD::FNEG , MVT::f64, Custom);
389    setOperationAction(ISD::FNEG , MVT::f32, Custom);
390
391    // Use ANDPD and ORPD to simulate FCOPYSIGN.
392    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
393    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
394
395    // We don't support sin/cos/fmod
396    setOperationAction(ISD::FSIN , MVT::f64, Expand);
397    setOperationAction(ISD::FCOS , MVT::f64, Expand);
398    setOperationAction(ISD::FSIN , MVT::f32, Expand);
399    setOperationAction(ISD::FCOS , MVT::f32, Expand);
400
401    // Expand FP immediates into loads from the stack, except for the special
402    // cases we handle.
403    addLegalFPImmediate(APFloat(+0.0)); // xorpd
404    addLegalFPImmediate(APFloat(+0.0f)); // xorps
405
406    // Floating truncations from f80 and extensions to f80 go through memory.
407    // If optimizing, we lie about this though and handle it in
408    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
409    if (Fast) {
410      setConvertAction(MVT::f32, MVT::f80, Expand);
411      setConvertAction(MVT::f64, MVT::f80, Expand);
412      setConvertAction(MVT::f80, MVT::f32, Expand);
413      setConvertAction(MVT::f80, MVT::f64, Expand);
414    }
415  } else if (X86ScalarSSEf32) {
416    // Use SSE for f32, x87 for f64.
417    // Set up the FP register classes.
418    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
419    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
420
421    // Use ANDPS to simulate FABS.
422    setOperationAction(ISD::FABS , MVT::f32, Custom);
423
424    // Use XORP to simulate FNEG.
425    setOperationAction(ISD::FNEG , MVT::f32, Custom);
426
427    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
428
429    // Use ANDPS and ORPS to simulate FCOPYSIGN.
430    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
431    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
432
433    // We don't support sin/cos/fmod
434    setOperationAction(ISD::FSIN , MVT::f32, Expand);
435    setOperationAction(ISD::FCOS , MVT::f32, Expand);
436
437    // Special cases we handle for FP constants.
438    addLegalFPImmediate(APFloat(+0.0f)); // xorps
439    addLegalFPImmediate(APFloat(+0.0)); // FLD0
440    addLegalFPImmediate(APFloat(+1.0)); // FLD1
441    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
442    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
443
444    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
445    // this though and handle it in InstructionSelectPreprocess so that
446    // dagcombine2 can hack on these.
447    if (Fast) {
448      setConvertAction(MVT::f32, MVT::f64, Expand);
449      setConvertAction(MVT::f32, MVT::f80, Expand);
450      setConvertAction(MVT::f80, MVT::f32, Expand);
451      setConvertAction(MVT::f64, MVT::f32, Expand);
452      // And x87->x87 truncations also.
453      setConvertAction(MVT::f80, MVT::f64, Expand);
454    }
455
456    if (!UnsafeFPMath) {
457      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
458      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
459    }
460  } else {
461    // f32 and f64 in x87.
462    // Set up the FP register classes.
463    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
464    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
465
466    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
467    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
468    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
469    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
470
471    // Floating truncations go through memory.  If optimizing, we lie about
472    // this though and handle it in InstructionSelectPreprocess so that
473    // dagcombine2 can hack on these.
474    if (Fast) {
475      setConvertAction(MVT::f80, MVT::f32, Expand);
476      setConvertAction(MVT::f64, MVT::f32, Expand);
477      setConvertAction(MVT::f80, MVT::f64, Expand);
478    }
479
480    if (!UnsafeFPMath) {
481      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
482      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
483    }
484    addLegalFPImmediate(APFloat(+0.0)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
488    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
489    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
490    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
491    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
492  }
493
494  // Long double always uses X87.
495  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
496  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
497  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
498  {
499    bool ignored;
500    APFloat TmpFlt(+0.0);
501    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
502                   &ignored);
503    addLegalFPImmediate(TmpFlt);  // FLD0
504    TmpFlt.changeSign();
505    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
506    APFloat TmpFlt2(+1.0);
507    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
508                    &ignored);
509    addLegalFPImmediate(TmpFlt2);  // FLD1
510    TmpFlt2.changeSign();
511    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
512  }
513
514  if (!UnsafeFPMath) {
515    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
516    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
517  }
518
519  // Always use a library call for pow.
520  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
521  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
522  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
523
524  setOperationAction(ISD::FLOG, MVT::f80, Expand);
525  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
526  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
527  setOperationAction(ISD::FEXP, MVT::f80, Expand);
528  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
529
530  // First set operation action for all vector types to either promote
531  // (for widening) or expand (for scalarization). Then we will selectively
532  // turn on ones that can be effectively codegen'd.
533  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
534       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
535    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
538    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
539    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
540    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
541    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
542    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
543    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
545    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
546    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
547    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
548    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
549    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
550    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
551    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
552    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
553    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
554    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
555    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
556    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
557    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
558    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
560    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
561    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
576    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
577    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
578  }
579
580  if (!DisableMMX && Subtarget->hasMMX()) {
581    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
582    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
583    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
584    addRegisterClass(MVT::v2f32, X86::VR64RegisterClass);
585    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
586
587    // FIXME: add MMX packed arithmetics
588
589    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
590    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
591    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
592    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
593
594    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
595    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
596    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
597    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
598
599    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
600    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
601
602    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
603    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
604    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
605    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
606    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
607    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
608    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
609
610    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
611    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
612    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
613    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
614    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
615    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
616    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
617
618    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
619    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
620    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
621    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
622    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
623    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
624    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
625
626    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
627    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
628    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
629    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
630    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
631    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
632    setOperationAction(ISD::LOAD,               MVT::v2f32, Promote);
633    AddPromotedToType (ISD::LOAD,               MVT::v2f32, MVT::v1i64);
634    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
635
636    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
637    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
638    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
639    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f32, Custom);
640    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
641
642    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
643    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
644    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
645    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
646
647    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2f32, Custom);
648    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
649    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
650    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
651
652    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i16, Custom);
653
654    setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
655    setOperationAction(ISD::TRUNCATE,           MVT::v8i8, Expand);
656    setOperationAction(ISD::SELECT,             MVT::v8i8, Promote);
657    setOperationAction(ISD::SELECT,             MVT::v4i16, Promote);
658    setOperationAction(ISD::SELECT,             MVT::v2i32, Promote);
659    setOperationAction(ISD::SELECT,             MVT::v1i64, Custom);
660  }
661
662  if (Subtarget->hasSSE1()) {
663    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
664
665    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
666    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
667    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
668    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
669    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
670    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
671    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
672    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
674    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
675    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
676    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
677  }
678
679  if (Subtarget->hasSSE2()) {
680    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
681    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
682    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
683    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
684    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
685
686    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
687    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
688    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
689    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
690    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
691    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
692    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
693    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
694    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
695    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
696    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
697    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
698    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
699    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
700    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
701    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
702
703    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
704    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
705    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
706    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
707
708    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
709    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
710    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
711    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
712    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
713
714    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
715    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
716      MVT VT = (MVT::SimpleValueType)i;
717      // Do not attempt to custom lower non-power-of-2 vectors
718      if (!isPowerOf2_32(VT.getVectorNumElements()))
719        continue;
720      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
721      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
722      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
723    }
724    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
725    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
726    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
727    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
728    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
729    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
730    if (Subtarget->is64Bit()) {
731      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
732      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
733    }
734
735    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
736    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
737      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
738      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v2i64);
739      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
740      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v2i64);
741      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
742      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v2i64);
743      setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
744      AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v2i64);
745      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
746      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v2i64);
747    }
748
749    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
750
751    // Custom lower v2i64 and v2f64 selects.
752    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
753    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
754    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
755    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
756
757  }
758
759  if (Subtarget->hasSSE41()) {
760    // FIXME: Do we need to handle scalar-to-vector here?
761    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
762
763    // i8 and i16 vectors are custom , because the source register and source
764    // source memory operand types are not the same width.  f32 vectors are
765    // custom since the immediate controlling the insert encodes additional
766    // information.
767    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
768    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
769    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
770    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
771
772    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
773    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
774    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
775    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
776
777    if (Subtarget->is64Bit()) {
778      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
779      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
780    }
781  }
782
783  if (Subtarget->hasSSE42()) {
784    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
785  }
786
787  // We want to custom lower some of our intrinsics.
788  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
789
790  // Add/Sub/Mul with overflow operations are custom lowered.
791  setOperationAction(ISD::SADDO, MVT::i32, Custom);
792  setOperationAction(ISD::SADDO, MVT::i64, Custom);
793  setOperationAction(ISD::UADDO, MVT::i32, Custom);
794  setOperationAction(ISD::UADDO, MVT::i64, Custom);
795  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
796  setOperationAction(ISD::SSUBO, MVT::i64, Custom);
797  setOperationAction(ISD::USUBO, MVT::i32, Custom);
798  setOperationAction(ISD::USUBO, MVT::i64, Custom);
799  setOperationAction(ISD::SMULO, MVT::i32, Custom);
800  setOperationAction(ISD::SMULO, MVT::i64, Custom);
801  setOperationAction(ISD::UMULO, MVT::i32, Custom);
802  setOperationAction(ISD::UMULO, MVT::i64, Custom);
803
804  // We have target-specific dag combine patterns for the following nodes:
805  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
806  setTargetDAGCombine(ISD::BUILD_VECTOR);
807  setTargetDAGCombine(ISD::SELECT);
808  setTargetDAGCombine(ISD::STORE);
809
810  computeRegisterProperties();
811
812  // FIXME: These should be based on subtarget info. Plus, the values should
813  // be smaller when we are in optimizing for size mode.
814  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
815  maxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
816  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
817  allowUnalignedMemoryAccesses = true; // x86 supports it!
818  setPrefLoopAlignment(16);
819}
820
821
822MVT X86TargetLowering::getSetCCResultType(const SDValue &) const {
823  return MVT::i8;
824}
825
826
827/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
828/// the desired ByVal argument alignment.
829static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
830  if (MaxAlign == 16)
831    return;
832  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
833    if (VTy->getBitWidth() == 128)
834      MaxAlign = 16;
835  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
836    unsigned EltAlign = 0;
837    getMaxByValAlign(ATy->getElementType(), EltAlign);
838    if (EltAlign > MaxAlign)
839      MaxAlign = EltAlign;
840  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
841    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
842      unsigned EltAlign = 0;
843      getMaxByValAlign(STy->getElementType(i), EltAlign);
844      if (EltAlign > MaxAlign)
845        MaxAlign = EltAlign;
846      if (MaxAlign == 16)
847        break;
848    }
849  }
850  return;
851}
852
853/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
854/// function arguments in the caller parameter area. For X86, aggregates
855/// that contain SSE vectors are placed at 16-byte boundaries while the rest
856/// are at 4-byte boundaries.
857unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
858  if (Subtarget->is64Bit()) {
859    // Max of 8 and alignment of type.
860    unsigned TyAlign = TD->getABITypeAlignment(Ty);
861    if (TyAlign > 8)
862      return TyAlign;
863    return 8;
864  }
865
866  unsigned Align = 4;
867  if (Subtarget->hasSSE1())
868    getMaxByValAlign(Ty, Align);
869  return Align;
870}
871
872/// getOptimalMemOpType - Returns the target specific optimal type for load
873/// and store operations as a result of memset, memcpy, and memmove
874/// lowering. It returns MVT::iAny if SelectionDAG should be responsible for
875/// determining it.
876MVT
877X86TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned Align,
878                                       bool isSrcConst, bool isSrcStr) const {
879  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
880  // linux.  This is because the stack realignment code can't handle certain
881  // cases like PR2962.  This should be removed when PR2962 is fixed.
882  if (Subtarget->getStackAlignment() >= 16) {
883    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE2() && Size >= 16)
884      return MVT::v4i32;
885    if ((isSrcConst || isSrcStr) && Subtarget->hasSSE1() && Size >= 16)
886      return MVT::v4f32;
887  }
888  if (Subtarget->is64Bit() && Size >= 8)
889    return MVT::i64;
890  return MVT::i32;
891}
892
893
894/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
895/// jumptable.
896SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
897                                                      SelectionDAG &DAG) const {
898  if (usesGlobalOffsetTable())
899    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
900  if (!Subtarget->isPICStyleRIPRel())
901    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
902  return Table;
903}
904
905//===----------------------------------------------------------------------===//
906//               Return Value Calling Convention Implementation
907//===----------------------------------------------------------------------===//
908
909#include "X86GenCallingConv.inc"
910
911/// LowerRET - Lower an ISD::RET node.
912SDValue X86TargetLowering::LowerRET(SDValue Op, SelectionDAG &DAG) {
913  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
914
915  SmallVector<CCValAssign, 16> RVLocs;
916  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
917  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
918  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
919  CCInfo.AnalyzeReturn(Op.getNode(), RetCC_X86);
920
921  // If this is the first return lowered for this function, add the regs to the
922  // liveout set for the function.
923  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
924    for (unsigned i = 0; i != RVLocs.size(); ++i)
925      if (RVLocs[i].isRegLoc())
926        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
927  }
928  SDValue Chain = Op.getOperand(0);
929
930  // Handle tail call return.
931  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
932  if (Chain.getOpcode() == X86ISD::TAILCALL) {
933    SDValue TailCall = Chain;
934    SDValue TargetAddress = TailCall.getOperand(1);
935    SDValue StackAdjustment = TailCall.getOperand(2);
936    assert(((TargetAddress.getOpcode() == ISD::Register &&
937               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::EAX ||
938                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
939              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
940              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
941             "Expecting an global address, external symbol, or register");
942    assert(StackAdjustment.getOpcode() == ISD::Constant &&
943           "Expecting a const value");
944
945    SmallVector<SDValue,8> Operands;
946    Operands.push_back(Chain.getOperand(0));
947    Operands.push_back(TargetAddress);
948    Operands.push_back(StackAdjustment);
949    // Copy registers used by the call. Last operand is a flag so it is not
950    // copied.
951    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
952      Operands.push_back(Chain.getOperand(i));
953    }
954    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
955                       Operands.size());
956  }
957
958  // Regular return.
959  SDValue Flag;
960
961  SmallVector<SDValue, 6> RetOps;
962  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
963  // Operand #1 = Bytes To Pop
964  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
965
966  // Copy the result values into the output registers.
967  for (unsigned i = 0; i != RVLocs.size(); ++i) {
968    CCValAssign &VA = RVLocs[i];
969    assert(VA.isRegLoc() && "Can only return in registers!");
970    SDValue ValToCopy = Op.getOperand(i*2+1);
971
972    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
973    // the RET instruction and handled by the FP Stackifier.
974    if (RVLocs[i].getLocReg() == X86::ST0 ||
975        RVLocs[i].getLocReg() == X86::ST1) {
976      // If this is a copy from an xmm register to ST(0), use an FPExtend to
977      // change the value to the FP stack register class.
978      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
979        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
980      RetOps.push_back(ValToCopy);
981      // Don't emit a copytoreg.
982      continue;
983    }
984
985    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
986    Flag = Chain.getValue(1);
987  }
988
989  // The x86-64 ABI for returning structs by value requires that we copy
990  // the sret argument into %rax for the return. We saved the argument into
991  // a virtual register in the entry block, so now we copy the value out
992  // and into %rax.
993  if (Subtarget->is64Bit() &&
994      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
995    MachineFunction &MF = DAG.getMachineFunction();
996    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
997    unsigned Reg = FuncInfo->getSRetReturnReg();
998    if (!Reg) {
999      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1000      FuncInfo->setSRetReturnReg(Reg);
1001    }
1002    SDValue Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
1003
1004    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
1005    Flag = Chain.getValue(1);
1006  }
1007
1008  RetOps[0] = Chain;  // Update chain.
1009
1010  // Add the flag if we have it.
1011  if (Flag.getNode())
1012    RetOps.push_back(Flag);
1013
1014  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
1015}
1016
1017
1018/// LowerCallResult - Lower the result values of an ISD::CALL into the
1019/// appropriate copies out of appropriate physical registers.  This assumes that
1020/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
1021/// being lowered.  The returns a SDNode with the same number of values as the
1022/// ISD::CALL.
1023SDNode *X86TargetLowering::
1024LowerCallResult(SDValue Chain, SDValue InFlag, CallSDNode *TheCall,
1025                unsigned CallingConv, SelectionDAG &DAG) {
1026
1027  // Assign locations to each value returned by this call.
1028  SmallVector<CCValAssign, 16> RVLocs;
1029  bool isVarArg = TheCall->isVarArg();
1030  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
1031  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
1032
1033  SmallVector<SDValue, 8> ResultVals;
1034
1035  // Copy all of the result registers out of their specified physreg.
1036  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1037    MVT CopyVT = RVLocs[i].getValVT();
1038
1039    // If this is a call to a function that returns an fp value on the floating
1040    // point stack, but where we prefer to use the value in xmm registers, copy
1041    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
1042    if ((RVLocs[i].getLocReg() == X86::ST0 ||
1043         RVLocs[i].getLocReg() == X86::ST1) &&
1044        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
1045      CopyVT = MVT::f80;
1046    }
1047
1048    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
1049                               CopyVT, InFlag).getValue(1);
1050    SDValue Val = Chain.getValue(0);
1051    InFlag = Chain.getValue(2);
1052
1053    if (CopyVT != RVLocs[i].getValVT()) {
1054      // Round the F80 the right size, which also moves to the appropriate xmm
1055      // register.
1056      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
1057                        // This truncation won't change the value.
1058                        DAG.getIntPtrConstant(1));
1059    }
1060
1061    ResultVals.push_back(Val);
1062  }
1063
1064  // Merge everything together with a MERGE_VALUES node.
1065  ResultVals.push_back(Chain);
1066  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(), &ResultVals[0],
1067                     ResultVals.size()).getNode();
1068}
1069
1070
1071//===----------------------------------------------------------------------===//
1072//                C & StdCall & Fast Calling Convention implementation
1073//===----------------------------------------------------------------------===//
1074//  StdCall calling convention seems to be standard for many Windows' API
1075//  routines and around. It differs from C calling convention just a little:
1076//  callee should clean up the stack, not caller. Symbols should be also
1077//  decorated in some fancy way :) It doesn't support any vector arguments.
1078//  For info on fast calling convention see Fast Calling Convention (tail call)
1079//  implementation LowerX86_32FastCCCallTo.
1080
1081/// AddLiveIn - This helper function adds the specified physical register to the
1082/// MachineFunction as a live in value.  It also creates a corresponding virtual
1083/// register for it.
1084static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
1085                          const TargetRegisterClass *RC) {
1086  assert(RC->contains(PReg) && "Not the correct regclass!");
1087  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
1088  MF.getRegInfo().addLiveIn(PReg, VReg);
1089  return VReg;
1090}
1091
1092/// CallIsStructReturn - Determines whether a CALL node uses struct return
1093/// semantics.
1094static bool CallIsStructReturn(CallSDNode *TheCall) {
1095  unsigned NumOps = TheCall->getNumArgs();
1096  if (!NumOps)
1097    return false;
1098
1099  return TheCall->getArgFlags(0).isSRet();
1100}
1101
1102/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
1103/// return semantics.
1104static bool ArgsAreStructReturn(SDValue Op) {
1105  unsigned NumArgs = Op.getNode()->getNumValues() - 1;
1106  if (!NumArgs)
1107    return false;
1108
1109  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1110}
1111
1112/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1113/// the callee to pop its own arguments. Callee pop is necessary to support tail
1114/// calls.
1115bool X86TargetLowering::IsCalleePop(bool IsVarArg, unsigned CallingConv) {
1116  if (IsVarArg)
1117    return false;
1118
1119  switch (CallingConv) {
1120  default:
1121    return false;
1122  case CallingConv::X86_StdCall:
1123    return !Subtarget->is64Bit();
1124  case CallingConv::X86_FastCall:
1125    return !Subtarget->is64Bit();
1126  case CallingConv::Fast:
1127    return PerformTailCallOpt;
1128  }
1129}
1130
1131/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
1132/// given CallingConvention value.
1133CCAssignFn *X86TargetLowering::CCAssignFnForNode(unsigned CC) const {
1134  if (Subtarget->is64Bit()) {
1135    if (Subtarget->isTargetWin64())
1136      return CC_X86_Win64_C;
1137    else if (CC == CallingConv::Fast && PerformTailCallOpt)
1138      return CC_X86_64_TailCall;
1139    else
1140      return CC_X86_64_C;
1141  }
1142
1143  if (CC == CallingConv::X86_FastCall)
1144    return CC_X86_32_FastCall;
1145  else if (CC == CallingConv::Fast)
1146    return CC_X86_32_FastCC;
1147  else
1148    return CC_X86_32_C;
1149}
1150
1151/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1152/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1153NameDecorationStyle
1154X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDValue Op) {
1155  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1156  if (CC == CallingConv::X86_FastCall)
1157    return FastCall;
1158  else if (CC == CallingConv::X86_StdCall)
1159    return StdCall;
1160  return None;
1161}
1162
1163
1164/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1165/// in a register before calling.
1166bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1167  return !IsTailCall && !Is64Bit &&
1168    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1169    Subtarget->isPICStyleGOT();
1170}
1171
1172/// CallRequiresFnAddressInReg - Check whether the call requires the function
1173/// address to be loaded in a register.
1174bool
1175X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1176  return !Is64Bit && IsTailCall &&
1177    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1178    Subtarget->isPICStyleGOT();
1179}
1180
1181/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1182/// by "Src" to address "Dst" with size and alignment information specified by
1183/// the specific parameter attribute. The copy will be passed as a byval
1184/// function parameter.
1185static SDValue
1186CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1187                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1188  SDValue SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1189  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1190                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1191}
1192
1193SDValue X86TargetLowering::LowerMemArgument(SDValue Op, SelectionDAG &DAG,
1194                                              const CCValAssign &VA,
1195                                              MachineFrameInfo *MFI,
1196                                              unsigned CC,
1197                                              SDValue Root, unsigned i) {
1198  // Create the nodes corresponding to a load from this parameter slot.
1199  ISD::ArgFlagsTy Flags =
1200    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1201  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1202  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1203
1204  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1205  // changed with more analysis.
1206  // In case of tail call optimization mark all arguments mutable. Since they
1207  // could be overwritten by lowering of arguments in case of a tail call.
1208  int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
1209                                  VA.getLocMemOffset(), isImmutable);
1210  SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1211  if (Flags.isByVal())
1212    return FIN;
1213  return DAG.getLoad(VA.getValVT(), Root, FIN,
1214                     PseudoSourceValue::getFixedStack(FI), 0);
1215}
1216
1217SDValue
1218X86TargetLowering::LowerFORMAL_ARGUMENTS(SDValue Op, SelectionDAG &DAG) {
1219  MachineFunction &MF = DAG.getMachineFunction();
1220  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1221
1222  const Function* Fn = MF.getFunction();
1223  if (Fn->hasExternalLinkage() &&
1224      Subtarget->isTargetCygMing() &&
1225      Fn->getName() == "main")
1226    FuncInfo->setForceFramePointer(true);
1227
1228  // Decorate the function name.
1229  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1230
1231  MachineFrameInfo *MFI = MF.getFrameInfo();
1232  SDValue Root = Op.getOperand(0);
1233  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() != 0;
1234  unsigned CC = MF.getFunction()->getCallingConv();
1235  bool Is64Bit = Subtarget->is64Bit();
1236  bool IsWin64 = Subtarget->isTargetWin64();
1237
1238  assert(!(isVarArg && CC == CallingConv::Fast) &&
1239         "Var args not supported with calling convention fastcc");
1240
1241  // Assign locations to all of the incoming arguments.
1242  SmallVector<CCValAssign, 16> ArgLocs;
1243  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1244  CCInfo.AnalyzeFormalArguments(Op.getNode(), CCAssignFnForNode(CC));
1245
1246  SmallVector<SDValue, 8> ArgValues;
1247  unsigned LastVal = ~0U;
1248  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1249    CCValAssign &VA = ArgLocs[i];
1250    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1251    // places.
1252    assert(VA.getValNo() != LastVal &&
1253           "Don't support value assigned to multiple locs yet");
1254    LastVal = VA.getValNo();
1255
1256    if (VA.isRegLoc()) {
1257      MVT RegVT = VA.getLocVT();
1258      TargetRegisterClass *RC;
1259      if (RegVT == MVT::i32)
1260        RC = X86::GR32RegisterClass;
1261      else if (Is64Bit && RegVT == MVT::i64)
1262        RC = X86::GR64RegisterClass;
1263      else if (RegVT == MVT::f32)
1264        RC = X86::FR32RegisterClass;
1265      else if (RegVT == MVT::f64)
1266        RC = X86::FR64RegisterClass;
1267      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1268        RC = X86::VR128RegisterClass;
1269      else if (RegVT.isVector()) {
1270        assert(RegVT.getSizeInBits() == 64);
1271        if (!Is64Bit)
1272          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1273        else {
1274          // Darwin calling convention passes MMX values in either GPRs or
1275          // XMMs in x86-64. Other targets pass them in memory.
1276          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1277            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1278            RegVT = MVT::v2i64;
1279          } else {
1280            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1281            RegVT = MVT::i64;
1282          }
1283        }
1284      } else {
1285        assert(0 && "Unknown argument type!");
1286      }
1287
1288      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1289      SDValue ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1290
1291      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1292      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1293      // right size.
1294      if (VA.getLocInfo() == CCValAssign::SExt)
1295        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1296                               DAG.getValueType(VA.getValVT()));
1297      else if (VA.getLocInfo() == CCValAssign::ZExt)
1298        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1299                               DAG.getValueType(VA.getValVT()));
1300
1301      if (VA.getLocInfo() != CCValAssign::Full)
1302        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1303
1304      // Handle MMX values passed in GPRs.
1305      if (Is64Bit && RegVT != VA.getLocVT()) {
1306        if (RegVT.getSizeInBits() == 64 && RC == X86::GR64RegisterClass)
1307          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1308        else if (RC == X86::VR128RegisterClass) {
1309          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1310                                 DAG.getConstant(0, MVT::i64));
1311          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1312        }
1313      }
1314
1315      ArgValues.push_back(ArgValue);
1316    } else {
1317      assert(VA.isMemLoc());
1318      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1319    }
1320  }
1321
1322  // The x86-64 ABI for returning structs by value requires that we copy
1323  // the sret argument into %rax for the return. Save the argument into
1324  // a virtual register so that we can access it from the return points.
1325  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1326    MachineFunction &MF = DAG.getMachineFunction();
1327    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1328    unsigned Reg = FuncInfo->getSRetReturnReg();
1329    if (!Reg) {
1330      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1331      FuncInfo->setSRetReturnReg(Reg);
1332    }
1333    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1334    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1335  }
1336
1337  unsigned StackSize = CCInfo.getNextStackOffset();
1338  // align stack specially for tail calls
1339  if (PerformTailCallOpt && CC == CallingConv::Fast)
1340    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1341
1342  // If the function takes variable number of arguments, make a frame index for
1343  // the start of the first vararg value... for expansion of llvm.va_start.
1344  if (isVarArg) {
1345    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1346      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1347    }
1348    if (Is64Bit) {
1349      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1350
1351      // FIXME: We should really autogenerate these arrays
1352      static const unsigned GPR64ArgRegsWin64[] = {
1353        X86::RCX, X86::RDX, X86::R8,  X86::R9
1354      };
1355      static const unsigned XMMArgRegsWin64[] = {
1356        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1357      };
1358      static const unsigned GPR64ArgRegs64Bit[] = {
1359        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1360      };
1361      static const unsigned XMMArgRegs64Bit[] = {
1362        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1363        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1364      };
1365      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1366
1367      if (IsWin64) {
1368        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1369        GPR64ArgRegs = GPR64ArgRegsWin64;
1370        XMMArgRegs = XMMArgRegsWin64;
1371      } else {
1372        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1373        GPR64ArgRegs = GPR64ArgRegs64Bit;
1374        XMMArgRegs = XMMArgRegs64Bit;
1375      }
1376      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1377                                                       TotalNumIntRegs);
1378      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1379                                                       TotalNumXMMRegs);
1380
1381      // For X86-64, if there are vararg parameters that are passed via
1382      // registers, then we must store them to their spots on the stack so they
1383      // may be loaded by deferencing the result of va_next.
1384      VarArgsGPOffset = NumIntRegs * 8;
1385      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1386      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1387                                                 TotalNumXMMRegs * 16, 16);
1388
1389      // Store the integer parameter registers.
1390      SmallVector<SDValue, 8> MemOps;
1391      SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1392      SDValue FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1393                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1394      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1395        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1396                                  X86::GR64RegisterClass);
1397        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1398        SDValue Store =
1399          DAG.getStore(Val.getValue(1), Val, FIN,
1400                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1401        MemOps.push_back(Store);
1402        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1403                          DAG.getIntPtrConstant(8));
1404      }
1405
1406      // Now store the XMM (fp + vector) parameter registers.
1407      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1408                        DAG.getIntPtrConstant(VarArgsFPOffset));
1409      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1410        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1411                                  X86::VR128RegisterClass);
1412        SDValue Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1413        SDValue Store =
1414          DAG.getStore(Val.getValue(1), Val, FIN,
1415                       PseudoSourceValue::getFixedStack(RegSaveFrameIndex), 0);
1416        MemOps.push_back(Store);
1417        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1418                          DAG.getIntPtrConstant(16));
1419      }
1420      if (!MemOps.empty())
1421          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1422                             &MemOps[0], MemOps.size());
1423    }
1424  }
1425
1426  ArgValues.push_back(Root);
1427
1428  // Some CCs need callee pop.
1429  if (IsCalleePop(isVarArg, CC)) {
1430    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1431    BytesCallerReserves = 0;
1432  } else {
1433    BytesToPopOnReturn  = 0; // Callee pops nothing.
1434    // If this is an sret function, the return should pop the hidden pointer.
1435    if (!Is64Bit && CC != CallingConv::Fast && ArgsAreStructReturn(Op))
1436      BytesToPopOnReturn = 4;
1437    BytesCallerReserves = StackSize;
1438  }
1439
1440  if (!Is64Bit) {
1441    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1442    if (CC == CallingConv::X86_FastCall)
1443      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1444  }
1445
1446  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1447
1448  // Return the new list of results.
1449  return DAG.getNode(ISD::MERGE_VALUES, Op.getNode()->getVTList(),
1450                     &ArgValues[0], ArgValues.size()).getValue(Op.getResNo());
1451}
1452
1453SDValue
1454X86TargetLowering::LowerMemOpCallTo(CallSDNode *TheCall, SelectionDAG &DAG,
1455                                    const SDValue &StackPtr,
1456                                    const CCValAssign &VA,
1457                                    SDValue Chain,
1458                                    SDValue Arg, ISD::ArgFlagsTy Flags) {
1459  unsigned LocMemOffset = VA.getLocMemOffset();
1460  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1461  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1462  if (Flags.isByVal()) {
1463    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1464  }
1465  return DAG.getStore(Chain, Arg, PtrOff,
1466                      PseudoSourceValue::getStack(), LocMemOffset);
1467}
1468
1469/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
1470/// optimization is performed and it is required.
1471SDValue
1472X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1473                                           SDValue &OutRetAddr,
1474                                           SDValue Chain,
1475                                           bool IsTailCall,
1476                                           bool Is64Bit,
1477                                           int FPDiff) {
1478  if (!IsTailCall || FPDiff==0) return Chain;
1479
1480  // Adjust the Return address stack slot.
1481  MVT VT = getPointerTy();
1482  OutRetAddr = getReturnAddressFrameIndex(DAG);
1483  // Load the "old" Return address.
1484  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
1485  return SDValue(OutRetAddr.getNode(), 1);
1486}
1487
1488/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1489/// optimization is performed and it is required (FPDiff!=0).
1490static SDValue
1491EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1492                         SDValue Chain, SDValue RetAddrFrIdx,
1493                         bool Is64Bit, int FPDiff) {
1494  // Store the return address to the appropriate stack slot.
1495  if (!FPDiff) return Chain;
1496  // Calculate the new stack slot for the return address.
1497  int SlotSize = Is64Bit ? 8 : 4;
1498  int NewReturnAddrFI =
1499    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1500  MVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1501  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1502  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1503                       PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0);
1504  return Chain;
1505}
1506
1507SDValue X86TargetLowering::LowerCALL(SDValue Op, SelectionDAG &DAG) {
1508  MachineFunction &MF = DAG.getMachineFunction();
1509  CallSDNode *TheCall = cast<CallSDNode>(Op.getNode());
1510  SDValue Chain       = TheCall->getChain();
1511  unsigned CC         = TheCall->getCallingConv();
1512  bool isVarArg       = TheCall->isVarArg();
1513  bool IsTailCall     = TheCall->isTailCall() &&
1514                        CC == CallingConv::Fast && PerformTailCallOpt;
1515  SDValue Callee      = TheCall->getCallee();
1516  bool Is64Bit        = Subtarget->is64Bit();
1517  bool IsStructRet    = CallIsStructReturn(TheCall);
1518
1519  assert(!(isVarArg && CC == CallingConv::Fast) &&
1520         "Var args not supported with calling convention fastcc");
1521
1522  // Analyze operands of the call, assigning locations to each operand.
1523  SmallVector<CCValAssign, 16> ArgLocs;
1524  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1525  CCInfo.AnalyzeCallOperands(TheCall, CCAssignFnForNode(CC));
1526
1527  // Get a count of how many bytes are to be pushed on the stack.
1528  unsigned NumBytes = CCInfo.getNextStackOffset();
1529  if (PerformTailCallOpt && CC == CallingConv::Fast)
1530    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1531
1532  int FPDiff = 0;
1533  if (IsTailCall) {
1534    // Lower arguments at fp - stackoffset + fpdiff.
1535    unsigned NumBytesCallerPushed =
1536      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1537    FPDiff = NumBytesCallerPushed - NumBytes;
1538
1539    // Set the delta of movement of the returnaddr stackslot.
1540    // But only set if delta is greater than previous delta.
1541    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1542      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1543  }
1544
1545  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1546
1547  SDValue RetAddrFrIdx;
1548  // Load return adress for tail calls.
1549  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1550                                  FPDiff);
1551
1552  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1553  SmallVector<SDValue, 8> MemOpChains;
1554  SDValue StackPtr;
1555
1556  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1557  // of tail call optimization arguments are handle later.
1558  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1559    CCValAssign &VA = ArgLocs[i];
1560    SDValue Arg = TheCall->getArg(i);
1561    ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1562    bool isByVal = Flags.isByVal();
1563
1564    // Promote the value if needed.
1565    switch (VA.getLocInfo()) {
1566    default: assert(0 && "Unknown loc info!");
1567    case CCValAssign::Full: break;
1568    case CCValAssign::SExt:
1569      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1570      break;
1571    case CCValAssign::ZExt:
1572      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1573      break;
1574    case CCValAssign::AExt:
1575      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1576      break;
1577    }
1578
1579    if (VA.isRegLoc()) {
1580      if (Is64Bit) {
1581        MVT RegVT = VA.getLocVT();
1582        if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
1583          switch (VA.getLocReg()) {
1584          default:
1585            break;
1586          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1587          case X86::R8: {
1588            // Special case: passing MMX values in GPR registers.
1589            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1590            break;
1591          }
1592          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1593          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1594            // Special case: passing MMX values in XMM registers.
1595            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1596            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1597            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1598                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1599                              getMOVLMask(2, DAG));
1600            break;
1601          }
1602          }
1603      }
1604      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1605    } else {
1606      if (!IsTailCall || (IsTailCall && isByVal)) {
1607        assert(VA.isMemLoc());
1608        if (StackPtr.getNode() == 0)
1609          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1610
1611        MemOpChains.push_back(LowerMemOpCallTo(TheCall, DAG, StackPtr, VA,
1612                                               Chain, Arg, Flags));
1613      }
1614    }
1615  }
1616
1617  if (!MemOpChains.empty())
1618    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1619                        &MemOpChains[0], MemOpChains.size());
1620
1621  // Build a sequence of copy-to-reg nodes chained together with token chain
1622  // and flag operands which copy the outgoing args into registers.
1623  SDValue InFlag;
1624  // Tail call byval lowering might overwrite argument registers so in case of
1625  // tail call optimization the copies to registers are lowered later.
1626  if (!IsTailCall)
1627    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1628      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1629                               InFlag);
1630      InFlag = Chain.getValue(1);
1631    }
1632
1633  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1634  // GOT pointer.
1635  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1636    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1637                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1638                             InFlag);
1639    InFlag = Chain.getValue(1);
1640  }
1641  // If we are tail calling and generating PIC/GOT style code load the address
1642  // of the callee into ecx. The value in ecx is used as target of the tail
1643  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1644  // calls on PIC/GOT architectures. Normally we would just put the address of
1645  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1646  // restored (since ebx is callee saved) before jumping to the target@PLT.
1647  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1648    // Note: The actual moving to ecx is done further down.
1649    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1650    if (G && !G->getGlobal()->hasHiddenVisibility() &&
1651        !G->getGlobal()->hasProtectedVisibility())
1652      Callee =  LowerGlobalAddress(Callee, DAG);
1653    else if (isa<ExternalSymbolSDNode>(Callee))
1654      Callee = LowerExternalSymbol(Callee,DAG);
1655  }
1656
1657  if (Is64Bit && isVarArg) {
1658    // From AMD64 ABI document:
1659    // For calls that may call functions that use varargs or stdargs
1660    // (prototype-less calls or calls to functions containing ellipsis (...) in
1661    // the declaration) %al is used as hidden argument to specify the number
1662    // of SSE registers used. The contents of %al do not need to match exactly
1663    // the number of registers, but must be an ubound on the number of SSE
1664    // registers used and is in the range 0 - 8 inclusive.
1665
1666    // FIXME: Verify this on Win64
1667    // Count the number of XMM registers allocated.
1668    static const unsigned XMMArgRegs[] = {
1669      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1670      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1671    };
1672    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1673
1674    Chain = DAG.getCopyToReg(Chain, X86::AL,
1675                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1676    InFlag = Chain.getValue(1);
1677  }
1678
1679
1680  // For tail calls lower the arguments to the 'real' stack slot.
1681  if (IsTailCall) {
1682    SmallVector<SDValue, 8> MemOpChains2;
1683    SDValue FIN;
1684    int FI = 0;
1685    // Do not flag preceeding copytoreg stuff together with the following stuff.
1686    InFlag = SDValue();
1687    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1688      CCValAssign &VA = ArgLocs[i];
1689      if (!VA.isRegLoc()) {
1690        assert(VA.isMemLoc());
1691        SDValue Arg = TheCall->getArg(i);
1692        ISD::ArgFlagsTy Flags = TheCall->getArgFlags(i);
1693        // Create frame index.
1694        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1695        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
1696        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1697        FIN = DAG.getFrameIndex(FI, getPointerTy());
1698
1699        if (Flags.isByVal()) {
1700          // Copy relative to framepointer.
1701          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1702          if (StackPtr.getNode() == 0)
1703            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1704          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1705
1706          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1707                                                           Flags, DAG));
1708        } else {
1709          // Store relative to framepointer.
1710          MemOpChains2.push_back(
1711            DAG.getStore(Chain, Arg, FIN,
1712                         PseudoSourceValue::getFixedStack(FI), 0));
1713        }
1714      }
1715    }
1716
1717    if (!MemOpChains2.empty())
1718      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1719                          &MemOpChains2[0], MemOpChains2.size());
1720
1721    // Copy arguments to their registers.
1722    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1723      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1724                               InFlag);
1725      InFlag = Chain.getValue(1);
1726    }
1727    InFlag =SDValue();
1728
1729    // Store the return address to the appropriate stack slot.
1730    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1731                                     FPDiff);
1732  }
1733
1734  // If the callee is a GlobalAddress node (quite common, every direct call is)
1735  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1736  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1737    // We should use extra load for direct calls to dllimported functions in
1738    // non-JIT mode.
1739    if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1740                                        getTargetMachine(), true))
1741      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy(),
1742                                          G->getOffset());
1743  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1744    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1745  } else if (IsTailCall) {
1746    unsigned Opc = Is64Bit ? X86::R9 : X86::EAX;
1747
1748    Chain = DAG.getCopyToReg(Chain,
1749                             DAG.getRegister(Opc, getPointerTy()),
1750                             Callee,InFlag);
1751    Callee = DAG.getRegister(Opc, getPointerTy());
1752    // Add register as live out.
1753    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1754  }
1755
1756  // Returns a chain & a flag for retval copy to use.
1757  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1758  SmallVector<SDValue, 8> Ops;
1759
1760  if (IsTailCall) {
1761    Ops.push_back(Chain);
1762    Ops.push_back(DAG.getIntPtrConstant(NumBytes, true));
1763    Ops.push_back(DAG.getIntPtrConstant(0, true));
1764    if (InFlag.getNode())
1765      Ops.push_back(InFlag);
1766    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1767    InFlag = Chain.getValue(1);
1768
1769    // Returns a chain & a flag for retval copy to use.
1770    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1771    Ops.clear();
1772  }
1773
1774  Ops.push_back(Chain);
1775  Ops.push_back(Callee);
1776
1777  if (IsTailCall)
1778    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1779
1780  // Add argument registers to the end of the list so that they are known live
1781  // into the call.
1782  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1783    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1784                                  RegsToPass[i].second.getValueType()));
1785
1786  // Add an implicit use GOT pointer in EBX.
1787  if (!IsTailCall && !Is64Bit &&
1788      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1789      Subtarget->isPICStyleGOT())
1790    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1791
1792  // Add an implicit use of AL for x86 vararg functions.
1793  if (Is64Bit && isVarArg)
1794    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1795
1796  if (InFlag.getNode())
1797    Ops.push_back(InFlag);
1798
1799  if (IsTailCall) {
1800    assert(InFlag.getNode() &&
1801           "Flag must be set. Depend on flag being set in LowerRET");
1802    Chain = DAG.getNode(X86ISD::TAILCALL,
1803                        TheCall->getVTList(), &Ops[0], Ops.size());
1804
1805    return SDValue(Chain.getNode(), Op.getResNo());
1806  }
1807
1808  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1809  InFlag = Chain.getValue(1);
1810
1811  // Create the CALLSEQ_END node.
1812  unsigned NumBytesForCalleeToPush;
1813  if (IsCalleePop(isVarArg, CC))
1814    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1815  else if (!Is64Bit && CC != CallingConv::Fast && IsStructRet)
1816    // If this is is a call to a struct-return function, the callee
1817    // pops the hidden struct pointer, so we have to push it back.
1818    // This is common for Darwin/X86, Linux & Mingw32 targets.
1819    NumBytesForCalleeToPush = 4;
1820  else
1821    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1822
1823  // Returns a flag for retval copy to use.
1824  Chain = DAG.getCALLSEQ_END(Chain,
1825                             DAG.getIntPtrConstant(NumBytes, true),
1826                             DAG.getIntPtrConstant(NumBytesForCalleeToPush,
1827                                                   true),
1828                             InFlag);
1829  InFlag = Chain.getValue(1);
1830
1831  // Handle result values, copying them out of physregs into vregs that we
1832  // return.
1833  return SDValue(LowerCallResult(Chain, InFlag, TheCall, CC, DAG),
1834                 Op.getResNo());
1835}
1836
1837
1838//===----------------------------------------------------------------------===//
1839//                Fast Calling Convention (tail call) implementation
1840//===----------------------------------------------------------------------===//
1841
1842//  Like std call, callee cleans arguments, convention except that ECX is
1843//  reserved for storing the tail called function address. Only 2 registers are
1844//  free for argument passing (inreg). Tail call optimization is performed
1845//  provided:
1846//                * tailcallopt is enabled
1847//                * caller/callee are fastcc
1848//  On X86_64 architecture with GOT-style position independent code only local
1849//  (within module) calls are supported at the moment.
1850//  To keep the stack aligned according to platform abi the function
1851//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1852//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1853//  If a tail called function callee has more arguments than the caller the
1854//  caller needs to make sure that there is room to move the RETADDR to. This is
1855//  achieved by reserving an area the size of the argument delta right after the
1856//  original REtADDR, but before the saved framepointer or the spilled registers
1857//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1858//  stack layout:
1859//    arg1
1860//    arg2
1861//    RETADDR
1862//    [ new RETADDR
1863//      move area ]
1864//    (possible EBP)
1865//    ESI
1866//    EDI
1867//    local1 ..
1868
1869/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1870/// for a 16 byte align requirement.
1871unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1872                                                        SelectionDAG& DAG) {
1873  MachineFunction &MF = DAG.getMachineFunction();
1874  const TargetMachine &TM = MF.getTarget();
1875  const TargetFrameInfo &TFI = *TM.getFrameInfo();
1876  unsigned StackAlignment = TFI.getStackAlignment();
1877  uint64_t AlignMask = StackAlignment - 1;
1878  int64_t Offset = StackSize;
1879  uint64_t SlotSize = TD->getPointerSize();
1880  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1881    // Number smaller than 12 so just add the difference.
1882    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1883  } else {
1884    // Mask out lower bits, add stackalignment once plus the 12 bytes.
1885    Offset = ((~AlignMask) & Offset) + StackAlignment +
1886      (StackAlignment-SlotSize);
1887  }
1888  return Offset;
1889}
1890
1891/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1892/// following the call is a return. A function is eligible if caller/callee
1893/// calling conventions match, currently only fastcc supports tail calls, and
1894/// the function CALL is immediatly followed by a RET.
1895bool X86TargetLowering::IsEligibleForTailCallOptimization(CallSDNode *TheCall,
1896                                                      SDValue Ret,
1897                                                      SelectionDAG& DAG) const {
1898  if (!PerformTailCallOpt)
1899    return false;
1900
1901  if (CheckTailCallReturnConstraints(TheCall, Ret)) {
1902    MachineFunction &MF = DAG.getMachineFunction();
1903    unsigned CallerCC = MF.getFunction()->getCallingConv();
1904    unsigned CalleeCC= TheCall->getCallingConv();
1905    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1906      SDValue Callee = TheCall->getCallee();
1907      // On x86/32Bit PIC/GOT  tail calls are supported.
1908      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1909          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1910        return true;
1911
1912      // Can only do local tail calls (in same module, hidden or protected) on
1913      // x86_64 PIC/GOT at the moment.
1914      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1915        return G->getGlobal()->hasHiddenVisibility()
1916            || G->getGlobal()->hasProtectedVisibility();
1917    }
1918  }
1919
1920  return false;
1921}
1922
1923FastISel *
1924X86TargetLowering::createFastISel(MachineFunction &mf,
1925                                  MachineModuleInfo *mmo,
1926                                  DenseMap<const Value *, unsigned> &vm,
1927                                  DenseMap<const BasicBlock *,
1928                                           MachineBasicBlock *> &bm,
1929                                  DenseMap<const AllocaInst *, int> &am
1930#ifndef NDEBUG
1931                                  , SmallSet<Instruction*, 8> &cil
1932#endif
1933                                  ) {
1934  return X86::createFastISel(mf, mmo, vm, bm, am
1935#ifndef NDEBUG
1936                             , cil
1937#endif
1938                             );
1939}
1940
1941
1942//===----------------------------------------------------------------------===//
1943//                           Other Lowering Hooks
1944//===----------------------------------------------------------------------===//
1945
1946
1947SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1948  MachineFunction &MF = DAG.getMachineFunction();
1949  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1950  int ReturnAddrIndex = FuncInfo->getRAIndex();
1951  uint64_t SlotSize = TD->getPointerSize();
1952
1953  if (ReturnAddrIndex == 0) {
1954    // Set up a frame object for the return address.
1955    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize);
1956    FuncInfo->setRAIndex(ReturnAddrIndex);
1957  }
1958
1959  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1960}
1961
1962
1963/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1964/// specific condition code. It returns a false if it cannot do a direct
1965/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1966/// needed.
1967static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1968                           unsigned &X86CC, SDValue &LHS, SDValue &RHS,
1969                           SelectionDAG &DAG) {
1970  X86CC = X86::COND_INVALID;
1971  if (!isFP) {
1972    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1973      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1974        // X > -1   -> X == 0, jump !sign.
1975        RHS = DAG.getConstant(0, RHS.getValueType());
1976        X86CC = X86::COND_NS;
1977        return true;
1978      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1979        // X < 0   -> X == 0, jump on sign.
1980        X86CC = X86::COND_S;
1981        return true;
1982      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
1983        // X < 1   -> X <= 0
1984        RHS = DAG.getConstant(0, RHS.getValueType());
1985        X86CC = X86::COND_LE;
1986        return true;
1987      }
1988    }
1989
1990    switch (SetCCOpcode) {
1991    default: break;
1992    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1993    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1994    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1995    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1996    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1997    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1998    case ISD::SETULT: X86CC = X86::COND_B;  break;
1999    case ISD::SETUGT: X86CC = X86::COND_A;  break;
2000    case ISD::SETULE: X86CC = X86::COND_BE; break;
2001    case ISD::SETUGE: X86CC = X86::COND_AE; break;
2002    }
2003  } else {
2004    // First determine if it is required or is profitable to flip the operands.
2005
2006    // If LHS is a foldable load, but RHS is not, flip the condition.
2007    if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2008        !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2009      SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2010      std::swap(LHS, RHS);
2011    }
2012
2013    switch (SetCCOpcode) {
2014    default: break;
2015    case ISD::SETOLT:
2016    case ISD::SETOLE:
2017    case ISD::SETUGT:
2018    case ISD::SETUGE:
2019      std::swap(LHS, RHS);
2020      break;
2021    }
2022
2023    // On a floating point condition, the flags are set as follows:
2024    // ZF  PF  CF   op
2025    //  0 | 0 | 0 | X > Y
2026    //  0 | 0 | 1 | X < Y
2027    //  1 | 0 | 0 | X == Y
2028    //  1 | 1 | 1 | unordered
2029    switch (SetCCOpcode) {
2030    default: break;
2031    case ISD::SETUEQ:
2032    case ISD::SETEQ:
2033      X86CC = X86::COND_E;
2034      break;
2035    case ISD::SETOLT:              // flipped
2036    case ISD::SETOGT:
2037    case ISD::SETGT:
2038      X86CC = X86::COND_A;
2039      break;
2040    case ISD::SETOLE:              // flipped
2041    case ISD::SETOGE:
2042    case ISD::SETGE:
2043      X86CC = X86::COND_AE;
2044      break;
2045    case ISD::SETUGT:              // flipped
2046    case ISD::SETULT:
2047    case ISD::SETLT:
2048      X86CC = X86::COND_B;
2049      break;
2050    case ISD::SETUGE:              // flipped
2051    case ISD::SETULE:
2052    case ISD::SETLE:
2053      X86CC = X86::COND_BE;
2054      break;
2055    case ISD::SETONE:
2056    case ISD::SETNE:
2057      X86CC = X86::COND_NE;
2058      break;
2059    case ISD::SETUO:
2060      X86CC = X86::COND_P;
2061      break;
2062    case ISD::SETO:
2063      X86CC = X86::COND_NP;
2064      break;
2065    }
2066  }
2067
2068  return X86CC != X86::COND_INVALID;
2069}
2070
2071/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2072/// code. Current x86 isa includes the following FP cmov instructions:
2073/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2074static bool hasFPCMov(unsigned X86CC) {
2075  switch (X86CC) {
2076  default:
2077    return false;
2078  case X86::COND_B:
2079  case X86::COND_BE:
2080  case X86::COND_E:
2081  case X86::COND_P:
2082  case X86::COND_A:
2083  case X86::COND_AE:
2084  case X86::COND_NE:
2085  case X86::COND_NP:
2086    return true;
2087  }
2088}
2089
2090/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
2091/// true if Op is undef or if its value falls within the specified range (L, H].
2092static bool isUndefOrInRange(SDValue Op, unsigned Low, unsigned Hi) {
2093  if (Op.getOpcode() == ISD::UNDEF)
2094    return true;
2095
2096  unsigned Val = cast<ConstantSDNode>(Op)->getZExtValue();
2097  return (Val >= Low && Val < Hi);
2098}
2099
2100/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
2101/// true if Op is undef or if its value equal to the specified value.
2102static bool isUndefOrEqual(SDValue Op, unsigned Val) {
2103  if (Op.getOpcode() == ISD::UNDEF)
2104    return true;
2105  return cast<ConstantSDNode>(Op)->getZExtValue() == Val;
2106}
2107
2108/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2109/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2110bool X86::isPSHUFDMask(SDNode *N) {
2111  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2112
2113  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
2114    return false;
2115
2116  // Check if the value doesn't reference the second vector.
2117  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2118    SDValue Arg = N->getOperand(i);
2119    if (Arg.getOpcode() == ISD::UNDEF) continue;
2120    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2121    if (cast<ConstantSDNode>(Arg)->getZExtValue() >= e)
2122      return false;
2123  }
2124
2125  return true;
2126}
2127
2128/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2129/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2130bool X86::isPSHUFHWMask(SDNode *N) {
2131  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2132
2133  if (N->getNumOperands() != 8)
2134    return false;
2135
2136  // Lower quadword copied in order.
2137  for (unsigned i = 0; i != 4; ++i) {
2138    SDValue Arg = N->getOperand(i);
2139    if (Arg.getOpcode() == ISD::UNDEF) continue;
2140    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2141    if (cast<ConstantSDNode>(Arg)->getZExtValue() != i)
2142      return false;
2143  }
2144
2145  // Upper quadword shuffled.
2146  for (unsigned i = 4; i != 8; ++i) {
2147    SDValue Arg = N->getOperand(i);
2148    if (Arg.getOpcode() == ISD::UNDEF) continue;
2149    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2150    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2151    if (Val < 4 || Val > 7)
2152      return false;
2153  }
2154
2155  return true;
2156}
2157
2158/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2159/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2160bool X86::isPSHUFLWMask(SDNode *N) {
2161  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2162
2163  if (N->getNumOperands() != 8)
2164    return false;
2165
2166  // Upper quadword copied in order.
2167  for (unsigned i = 4; i != 8; ++i)
2168    if (!isUndefOrEqual(N->getOperand(i), i))
2169      return false;
2170
2171  // Lower quadword shuffled.
2172  for (unsigned i = 0; i != 4; ++i)
2173    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2174      return false;
2175
2176  return true;
2177}
2178
2179/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2180/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2181static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2182  if (NumElems != 2 && NumElems != 4) return false;
2183
2184  unsigned Half = NumElems / 2;
2185  for (unsigned i = 0; i < Half; ++i)
2186    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2187      return false;
2188  for (unsigned i = Half; i < NumElems; ++i)
2189    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2190      return false;
2191
2192  return true;
2193}
2194
2195bool X86::isSHUFPMask(SDNode *N) {
2196  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2197  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2198}
2199
2200/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2201/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2202/// half elements to come from vector 1 (which would equal the dest.) and
2203/// the upper half to come from vector 2.
2204static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2205  if (NumOps != 2 && NumOps != 4) return false;
2206
2207  unsigned Half = NumOps / 2;
2208  for (unsigned i = 0; i < Half; ++i)
2209    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2210      return false;
2211  for (unsigned i = Half; i < NumOps; ++i)
2212    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2213      return false;
2214  return true;
2215}
2216
2217static bool isCommutedSHUFP(SDNode *N) {
2218  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2219  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2220}
2221
2222/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2223/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2224bool X86::isMOVHLPSMask(SDNode *N) {
2225  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2226
2227  if (N->getNumOperands() != 4)
2228    return false;
2229
2230  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2231  return isUndefOrEqual(N->getOperand(0), 6) &&
2232         isUndefOrEqual(N->getOperand(1), 7) &&
2233         isUndefOrEqual(N->getOperand(2), 2) &&
2234         isUndefOrEqual(N->getOperand(3), 3);
2235}
2236
2237/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2238/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2239/// <2, 3, 2, 3>
2240bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2241  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2242
2243  if (N->getNumOperands() != 4)
2244    return false;
2245
2246  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2247  return isUndefOrEqual(N->getOperand(0), 2) &&
2248         isUndefOrEqual(N->getOperand(1), 3) &&
2249         isUndefOrEqual(N->getOperand(2), 2) &&
2250         isUndefOrEqual(N->getOperand(3), 3);
2251}
2252
2253/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2254/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2255bool X86::isMOVLPMask(SDNode *N) {
2256  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2257
2258  unsigned NumElems = N->getNumOperands();
2259  if (NumElems != 2 && NumElems != 4)
2260    return false;
2261
2262  for (unsigned i = 0; i < NumElems/2; ++i)
2263    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2264      return false;
2265
2266  for (unsigned i = NumElems/2; i < NumElems; ++i)
2267    if (!isUndefOrEqual(N->getOperand(i), i))
2268      return false;
2269
2270  return true;
2271}
2272
2273/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2274/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2275/// and MOVLHPS.
2276bool X86::isMOVHPMask(SDNode *N) {
2277  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2278
2279  unsigned NumElems = N->getNumOperands();
2280  if (NumElems != 2 && NumElems != 4)
2281    return false;
2282
2283  for (unsigned i = 0; i < NumElems/2; ++i)
2284    if (!isUndefOrEqual(N->getOperand(i), i))
2285      return false;
2286
2287  for (unsigned i = 0; i < NumElems/2; ++i) {
2288    SDValue Arg = N->getOperand(i + NumElems/2);
2289    if (!isUndefOrEqual(Arg, i + NumElems))
2290      return false;
2291  }
2292
2293  return true;
2294}
2295
2296/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2297/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2298bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2299                         bool V2IsSplat = false) {
2300  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2301    return false;
2302
2303  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2304    SDValue BitI  = Elts[i];
2305    SDValue BitI1 = Elts[i+1];
2306    if (!isUndefOrEqual(BitI, j))
2307      return false;
2308    if (V2IsSplat) {
2309      if (isUndefOrEqual(BitI1, NumElts))
2310        return false;
2311    } else {
2312      if (!isUndefOrEqual(BitI1, j + NumElts))
2313        return false;
2314    }
2315  }
2316
2317  return true;
2318}
2319
2320bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2321  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2322  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2323}
2324
2325/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2326/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2327bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2328                         bool V2IsSplat = false) {
2329  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2330    return false;
2331
2332  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2333    SDValue BitI  = Elts[i];
2334    SDValue BitI1 = Elts[i+1];
2335    if (!isUndefOrEqual(BitI, j + NumElts/2))
2336      return false;
2337    if (V2IsSplat) {
2338      if (isUndefOrEqual(BitI1, NumElts))
2339        return false;
2340    } else {
2341      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2342        return false;
2343    }
2344  }
2345
2346  return true;
2347}
2348
2349bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2350  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2351  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2352}
2353
2354/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2355/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2356/// <0, 0, 1, 1>
2357bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2358  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2359
2360  unsigned NumElems = N->getNumOperands();
2361  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2362    return false;
2363
2364  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2365    SDValue BitI  = N->getOperand(i);
2366    SDValue BitI1 = N->getOperand(i+1);
2367
2368    if (!isUndefOrEqual(BitI, j))
2369      return false;
2370    if (!isUndefOrEqual(BitI1, j))
2371      return false;
2372  }
2373
2374  return true;
2375}
2376
2377/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2378/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2379/// <2, 2, 3, 3>
2380bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2381  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2382
2383  unsigned NumElems = N->getNumOperands();
2384  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2385    return false;
2386
2387  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2388    SDValue BitI  = N->getOperand(i);
2389    SDValue BitI1 = N->getOperand(i + 1);
2390
2391    if (!isUndefOrEqual(BitI, j))
2392      return false;
2393    if (!isUndefOrEqual(BitI1, j))
2394      return false;
2395  }
2396
2397  return true;
2398}
2399
2400/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2401/// specifies a shuffle of elements that is suitable for input to MOVSS,
2402/// MOVSD, and MOVD, i.e. setting the lowest element.
2403static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2404  if (NumElts != 2 && NumElts != 4)
2405    return false;
2406
2407  if (!isUndefOrEqual(Elts[0], NumElts))
2408    return false;
2409
2410  for (unsigned i = 1; i < NumElts; ++i) {
2411    if (!isUndefOrEqual(Elts[i], i))
2412      return false;
2413  }
2414
2415  return true;
2416}
2417
2418bool X86::isMOVLMask(SDNode *N) {
2419  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2420  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2421}
2422
2423/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2424/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2425/// element of vector 2 and the other elements to come from vector 1 in order.
2426static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2427                           bool V2IsSplat = false,
2428                           bool V2IsUndef = false) {
2429  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2430    return false;
2431
2432  if (!isUndefOrEqual(Ops[0], 0))
2433    return false;
2434
2435  for (unsigned i = 1; i < NumOps; ++i) {
2436    SDValue Arg = Ops[i];
2437    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2438          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2439          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2440      return false;
2441  }
2442
2443  return true;
2444}
2445
2446static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2447                           bool V2IsUndef = false) {
2448  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2449  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2450                        V2IsSplat, V2IsUndef);
2451}
2452
2453/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2454/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2455bool X86::isMOVSHDUPMask(SDNode *N) {
2456  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2457
2458  if (N->getNumOperands() != 4)
2459    return false;
2460
2461  // Expect 1, 1, 3, 3
2462  for (unsigned i = 0; i < 2; ++i) {
2463    SDValue Arg = N->getOperand(i);
2464    if (Arg.getOpcode() == ISD::UNDEF) continue;
2465    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2466    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2467    if (Val != 1) return false;
2468  }
2469
2470  bool HasHi = false;
2471  for (unsigned i = 2; i < 4; ++i) {
2472    SDValue Arg = N->getOperand(i);
2473    if (Arg.getOpcode() == ISD::UNDEF) continue;
2474    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2475    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2476    if (Val != 3) return false;
2477    HasHi = true;
2478  }
2479
2480  // Don't use movshdup if it can be done with a shufps.
2481  return HasHi;
2482}
2483
2484/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2485/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2486bool X86::isMOVSLDUPMask(SDNode *N) {
2487  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2488
2489  if (N->getNumOperands() != 4)
2490    return false;
2491
2492  // Expect 0, 0, 2, 2
2493  for (unsigned i = 0; i < 2; ++i) {
2494    SDValue Arg = N->getOperand(i);
2495    if (Arg.getOpcode() == ISD::UNDEF) continue;
2496    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2497    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2498    if (Val != 0) return false;
2499  }
2500
2501  bool HasHi = false;
2502  for (unsigned i = 2; i < 4; ++i) {
2503    SDValue Arg = N->getOperand(i);
2504    if (Arg.getOpcode() == ISD::UNDEF) continue;
2505    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2506    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2507    if (Val != 2) return false;
2508    HasHi = true;
2509  }
2510
2511  // Don't use movshdup if it can be done with a shufps.
2512  return HasHi;
2513}
2514
2515/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2516/// specifies a identity operation on the LHS or RHS.
2517static bool isIdentityMask(SDNode *N, bool RHS = false) {
2518  unsigned NumElems = N->getNumOperands();
2519  for (unsigned i = 0; i < NumElems; ++i)
2520    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2521      return false;
2522  return true;
2523}
2524
2525/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2526/// a splat of a single element.
2527static bool isSplatMask(SDNode *N) {
2528  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2529
2530  // This is a splat operation if each element of the permute is the same, and
2531  // if the value doesn't reference the second vector.
2532  unsigned NumElems = N->getNumOperands();
2533  SDValue ElementBase;
2534  unsigned i = 0;
2535  for (; i != NumElems; ++i) {
2536    SDValue Elt = N->getOperand(i);
2537    if (isa<ConstantSDNode>(Elt)) {
2538      ElementBase = Elt;
2539      break;
2540    }
2541  }
2542
2543  if (!ElementBase.getNode())
2544    return false;
2545
2546  for (; i != NumElems; ++i) {
2547    SDValue Arg = N->getOperand(i);
2548    if (Arg.getOpcode() == ISD::UNDEF) continue;
2549    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2550    if (Arg != ElementBase) return false;
2551  }
2552
2553  // Make sure it is a splat of the first vector operand.
2554  return cast<ConstantSDNode>(ElementBase)->getZExtValue() < NumElems;
2555}
2556
2557/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2558/// a splat of a single element and it's a 2 or 4 element mask.
2559bool X86::isSplatMask(SDNode *N) {
2560  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2561
2562  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2563  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2564    return false;
2565  return ::isSplatMask(N);
2566}
2567
2568/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2569/// specifies a splat of zero element.
2570bool X86::isSplatLoMask(SDNode *N) {
2571  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2572
2573  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2574    if (!isUndefOrEqual(N->getOperand(i), 0))
2575      return false;
2576  return true;
2577}
2578
2579/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2580/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
2581bool X86::isMOVDDUPMask(SDNode *N) {
2582  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2583
2584  unsigned e = N->getNumOperands() / 2;
2585  for (unsigned i = 0; i < e; ++i)
2586    if (!isUndefOrEqual(N->getOperand(i), i))
2587      return false;
2588  for (unsigned i = 0; i < e; ++i)
2589    if (!isUndefOrEqual(N->getOperand(e+i), i))
2590      return false;
2591  return true;
2592}
2593
2594/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2595/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2596/// instructions.
2597unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2598  unsigned NumOperands = N->getNumOperands();
2599  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2600  unsigned Mask = 0;
2601  for (unsigned i = 0; i < NumOperands; ++i) {
2602    unsigned Val = 0;
2603    SDValue Arg = N->getOperand(NumOperands-i-1);
2604    if (Arg.getOpcode() != ISD::UNDEF)
2605      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2606    if (Val >= NumOperands) Val -= NumOperands;
2607    Mask |= Val;
2608    if (i != NumOperands - 1)
2609      Mask <<= Shift;
2610  }
2611
2612  return Mask;
2613}
2614
2615/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2616/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2617/// instructions.
2618unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2619  unsigned Mask = 0;
2620  // 8 nodes, but we only care about the last 4.
2621  for (unsigned i = 7; i >= 4; --i) {
2622    unsigned Val = 0;
2623    SDValue Arg = N->getOperand(i);
2624    if (Arg.getOpcode() != ISD::UNDEF)
2625      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2626    Mask |= (Val - 4);
2627    if (i != 4)
2628      Mask <<= 2;
2629  }
2630
2631  return Mask;
2632}
2633
2634/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2635/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2636/// instructions.
2637unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2638  unsigned Mask = 0;
2639  // 8 nodes, but we only care about the first 4.
2640  for (int i = 3; i >= 0; --i) {
2641    unsigned Val = 0;
2642    SDValue Arg = N->getOperand(i);
2643    if (Arg.getOpcode() != ISD::UNDEF)
2644      Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2645    Mask |= Val;
2646    if (i != 0)
2647      Mask <<= 2;
2648  }
2649
2650  return Mask;
2651}
2652
2653/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2654/// specifies a 8 element shuffle that can be broken into a pair of
2655/// PSHUFHW and PSHUFLW.
2656static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2657  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2658
2659  if (N->getNumOperands() != 8)
2660    return false;
2661
2662  // Lower quadword shuffled.
2663  for (unsigned i = 0; i != 4; ++i) {
2664    SDValue Arg = N->getOperand(i);
2665    if (Arg.getOpcode() == ISD::UNDEF) continue;
2666    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2667    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2668    if (Val >= 4)
2669      return false;
2670  }
2671
2672  // Upper quadword shuffled.
2673  for (unsigned i = 4; i != 8; ++i) {
2674    SDValue Arg = N->getOperand(i);
2675    if (Arg.getOpcode() == ISD::UNDEF) continue;
2676    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2677    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2678    if (Val < 4 || Val > 7)
2679      return false;
2680  }
2681
2682  return true;
2683}
2684
2685/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2686/// values in ther permute mask.
2687static SDValue CommuteVectorShuffle(SDValue Op, SDValue &V1,
2688                                      SDValue &V2, SDValue &Mask,
2689                                      SelectionDAG &DAG) {
2690  MVT VT = Op.getValueType();
2691  MVT MaskVT = Mask.getValueType();
2692  MVT EltVT = MaskVT.getVectorElementType();
2693  unsigned NumElems = Mask.getNumOperands();
2694  SmallVector<SDValue, 8> MaskVec;
2695
2696  for (unsigned i = 0; i != NumElems; ++i) {
2697    SDValue Arg = Mask.getOperand(i);
2698    if (Arg.getOpcode() == ISD::UNDEF) {
2699      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2700      continue;
2701    }
2702    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2703    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2704    if (Val < NumElems)
2705      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2706    else
2707      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2708  }
2709
2710  std::swap(V1, V2);
2711  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2712  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2713}
2714
2715/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2716/// the two vector operands have swapped position.
2717static
2718SDValue CommuteVectorShuffleMask(SDValue Mask, SelectionDAG &DAG) {
2719  MVT MaskVT = Mask.getValueType();
2720  MVT EltVT = MaskVT.getVectorElementType();
2721  unsigned NumElems = Mask.getNumOperands();
2722  SmallVector<SDValue, 8> MaskVec;
2723  for (unsigned i = 0; i != NumElems; ++i) {
2724    SDValue Arg = Mask.getOperand(i);
2725    if (Arg.getOpcode() == ISD::UNDEF) {
2726      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2727      continue;
2728    }
2729    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2730    unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2731    if (Val < NumElems)
2732      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2733    else
2734      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2735  }
2736  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2737}
2738
2739
2740/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2741/// match movhlps. The lower half elements should come from upper half of
2742/// V1 (and in order), and the upper half elements should come from the upper
2743/// half of V2 (and in order).
2744static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2745  unsigned NumElems = Mask->getNumOperands();
2746  if (NumElems != 4)
2747    return false;
2748  for (unsigned i = 0, e = 2; i != e; ++i)
2749    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2750      return false;
2751  for (unsigned i = 2; i != 4; ++i)
2752    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2753      return false;
2754  return true;
2755}
2756
2757/// isScalarLoadToVector - Returns true if the node is a scalar load that
2758/// is promoted to a vector. It also returns the LoadSDNode by reference if
2759/// required.
2760static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2761  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
2762    return false;
2763  N = N->getOperand(0).getNode();
2764  if (!ISD::isNON_EXTLoad(N))
2765    return false;
2766  if (LD)
2767    *LD = cast<LoadSDNode>(N);
2768  return true;
2769}
2770
2771/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2772/// match movlp{s|d}. The lower half elements should come from lower half of
2773/// V1 (and in order), and the upper half elements should come from the upper
2774/// half of V2 (and in order). And since V1 will become the source of the
2775/// MOVLP, it must be either a vector load or a scalar load to vector.
2776static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2777  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2778    return false;
2779  // Is V2 is a vector load, don't do this transformation. We will try to use
2780  // load folding shufps op.
2781  if (ISD::isNON_EXTLoad(V2))
2782    return false;
2783
2784  unsigned NumElems = Mask->getNumOperands();
2785  if (NumElems != 2 && NumElems != 4)
2786    return false;
2787  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2788    if (!isUndefOrEqual(Mask->getOperand(i), i))
2789      return false;
2790  for (unsigned i = NumElems/2; i != NumElems; ++i)
2791    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2792      return false;
2793  return true;
2794}
2795
2796/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2797/// all the same.
2798static bool isSplatVector(SDNode *N) {
2799  if (N->getOpcode() != ISD::BUILD_VECTOR)
2800    return false;
2801
2802  SDValue SplatValue = N->getOperand(0);
2803  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2804    if (N->getOperand(i) != SplatValue)
2805      return false;
2806  return true;
2807}
2808
2809/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2810/// to an undef.
2811static bool isUndefShuffle(SDNode *N) {
2812  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2813    return false;
2814
2815  SDValue V1 = N->getOperand(0);
2816  SDValue V2 = N->getOperand(1);
2817  SDValue Mask = N->getOperand(2);
2818  unsigned NumElems = Mask.getNumOperands();
2819  for (unsigned i = 0; i != NumElems; ++i) {
2820    SDValue Arg = Mask.getOperand(i);
2821    if (Arg.getOpcode() != ISD::UNDEF) {
2822      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2823      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2824        return false;
2825      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2826        return false;
2827    }
2828  }
2829  return true;
2830}
2831
2832/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2833/// constant +0.0.
2834static inline bool isZeroNode(SDValue Elt) {
2835  return ((isa<ConstantSDNode>(Elt) &&
2836           cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
2837          (isa<ConstantFPSDNode>(Elt) &&
2838           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2839}
2840
2841/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2842/// to an zero vector.
2843static bool isZeroShuffle(SDNode *N) {
2844  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2845    return false;
2846
2847  SDValue V1 = N->getOperand(0);
2848  SDValue V2 = N->getOperand(1);
2849  SDValue Mask = N->getOperand(2);
2850  unsigned NumElems = Mask.getNumOperands();
2851  for (unsigned i = 0; i != NumElems; ++i) {
2852    SDValue Arg = Mask.getOperand(i);
2853    if (Arg.getOpcode() == ISD::UNDEF)
2854      continue;
2855
2856    unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2857    if (Idx < NumElems) {
2858      unsigned Opc = V1.getNode()->getOpcode();
2859      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
2860        continue;
2861      if (Opc != ISD::BUILD_VECTOR ||
2862          !isZeroNode(V1.getNode()->getOperand(Idx)))
2863        return false;
2864    } else if (Idx >= NumElems) {
2865      unsigned Opc = V2.getNode()->getOpcode();
2866      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
2867        continue;
2868      if (Opc != ISD::BUILD_VECTOR ||
2869          !isZeroNode(V2.getNode()->getOperand(Idx - NumElems)))
2870        return false;
2871    }
2872  }
2873  return true;
2874}
2875
2876/// getZeroVector - Returns a vector of specified type with all zero elements.
2877///
2878static SDValue getZeroVector(MVT VT, bool HasSSE2, SelectionDAG &DAG) {
2879  assert(VT.isVector() && "Expected a vector type");
2880
2881  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2882  // type.  This ensures they get CSE'd.
2883  SDValue Vec;
2884  if (VT.getSizeInBits() == 64) { // MMX
2885    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2886    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2887  } else if (HasSSE2) {  // SSE2
2888    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
2889    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2890  } else { // SSE1
2891    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
2892    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4f32, Cst, Cst, Cst, Cst);
2893  }
2894  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2895}
2896
2897/// getOnesVector - Returns a vector of specified type with all bits set.
2898///
2899static SDValue getOnesVector(MVT VT, SelectionDAG &DAG) {
2900  assert(VT.isVector() && "Expected a vector type");
2901
2902  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2903  // type.  This ensures they get CSE'd.
2904  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
2905  SDValue Vec;
2906  if (VT.getSizeInBits() == 64)  // MMX
2907    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2908  else                                              // SSE
2909    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2910  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2911}
2912
2913
2914/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2915/// that point to V2 points to its first element.
2916static SDValue NormalizeMask(SDValue Mask, SelectionDAG &DAG) {
2917  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2918
2919  bool Changed = false;
2920  SmallVector<SDValue, 8> MaskVec;
2921  unsigned NumElems = Mask.getNumOperands();
2922  for (unsigned i = 0; i != NumElems; ++i) {
2923    SDValue Arg = Mask.getOperand(i);
2924    if (Arg.getOpcode() != ISD::UNDEF) {
2925      unsigned Val = cast<ConstantSDNode>(Arg)->getZExtValue();
2926      if (Val > NumElems) {
2927        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2928        Changed = true;
2929      }
2930    }
2931    MaskVec.push_back(Arg);
2932  }
2933
2934  if (Changed)
2935    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2936                       &MaskVec[0], MaskVec.size());
2937  return Mask;
2938}
2939
2940/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2941/// operation of specified width.
2942static SDValue getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2943  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2944  MVT BaseVT = MaskVT.getVectorElementType();
2945
2946  SmallVector<SDValue, 8> MaskVec;
2947  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2948  for (unsigned i = 1; i != NumElems; ++i)
2949    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2950  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2951}
2952
2953/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2954/// of specified width.
2955static SDValue getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2956  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2957  MVT BaseVT = MaskVT.getVectorElementType();
2958  SmallVector<SDValue, 8> MaskVec;
2959  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2960    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2961    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2962  }
2963  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2964}
2965
2966/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2967/// of specified width.
2968static SDValue getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2969  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2970  MVT BaseVT = MaskVT.getVectorElementType();
2971  unsigned Half = NumElems/2;
2972  SmallVector<SDValue, 8> MaskVec;
2973  for (unsigned i = 0; i != Half; ++i) {
2974    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2975    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2976  }
2977  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2978}
2979
2980/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2981/// element #0 of a vector with the specified index, leaving the rest of the
2982/// elements in place.
2983static SDValue getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2984                                   SelectionDAG &DAG) {
2985  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2986  MVT BaseVT = MaskVT.getVectorElementType();
2987  SmallVector<SDValue, 8> MaskVec;
2988  // Element #0 of the result gets the elt we are replacing.
2989  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2990  for (unsigned i = 1; i != NumElems; ++i)
2991    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2992  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2993}
2994
2995/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2996static SDValue PromoteSplat(SDValue Op, SelectionDAG &DAG, bool HasSSE2) {
2997  MVT PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2998  MVT VT = Op.getValueType();
2999  if (PVT == VT)
3000    return Op;
3001  SDValue V1 = Op.getOperand(0);
3002  SDValue Mask = Op.getOperand(2);
3003  unsigned NumElems = Mask.getNumOperands();
3004  // Special handling of v4f32 -> v4i32.
3005  if (VT != MVT::v4f32) {
3006    Mask = getUnpacklMask(NumElems, DAG);
3007    while (NumElems > 4) {
3008      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
3009      NumElems >>= 1;
3010    }
3011    Mask = getZeroVector(MVT::v4i32, true, DAG);
3012  }
3013
3014  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
3015  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
3016                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
3017  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3018}
3019
3020/// isVectorLoad - Returns true if the node is a vector load, a scalar
3021/// load that's promoted to vector, or a load bitcasted.
3022static bool isVectorLoad(SDValue Op) {
3023  assert(Op.getValueType().isVector() && "Expected a vector type");
3024  if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR ||
3025      Op.getOpcode() == ISD::BIT_CONVERT) {
3026    return isa<LoadSDNode>(Op.getOperand(0));
3027  }
3028  return isa<LoadSDNode>(Op);
3029}
3030
3031
3032/// CanonicalizeMovddup - Cannonicalize movddup shuffle to v2f64.
3033///
3034static SDValue CanonicalizeMovddup(SDValue Op, SDValue V1, SDValue Mask,
3035                                   SelectionDAG &DAG, bool HasSSE3) {
3036  // If we have sse3 and shuffle has more than one use or input is a load, then
3037  // use movddup. Otherwise, use movlhps.
3038  bool UseMovddup = HasSSE3 && (!Op.hasOneUse() || isVectorLoad(V1));
3039  MVT PVT = UseMovddup ? MVT::v2f64 : MVT::v4f32;
3040  MVT VT = Op.getValueType();
3041  if (VT == PVT)
3042    return Op;
3043  unsigned NumElems = PVT.getVectorNumElements();
3044  if (NumElems == 2) {
3045    SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3046    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
3047  } else {
3048    assert(NumElems == 4);
3049    SDValue Cst0 = DAG.getTargetConstant(0, MVT::i32);
3050    SDValue Cst1 = DAG.getTargetConstant(1, MVT::i32);
3051    Mask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst0, Cst1, Cst0, Cst1);
3052  }
3053
3054  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
3055  SDValue Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
3056                                DAG.getNode(ISD::UNDEF, PVT), Mask);
3057  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
3058}
3059
3060/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3061/// vector of zero or undef vector.  This produces a shuffle where the low
3062/// element of V2 is swizzled into the zero/undef vector, landing at element
3063/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3064static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3065                                             bool isZero, bool HasSSE2,
3066                                             SelectionDAG &DAG) {
3067  MVT VT = V2.getValueType();
3068  SDValue V1 = isZero
3069    ? getZeroVector(VT, HasSSE2, DAG) : DAG.getNode(ISD::UNDEF, VT);
3070  unsigned NumElems = V2.getValueType().getVectorNumElements();
3071  MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3072  MVT EVT = MaskVT.getVectorElementType();
3073  SmallVector<SDValue, 16> MaskVec;
3074  for (unsigned i = 0; i != NumElems; ++i)
3075    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
3076      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
3077    else
3078      MaskVec.push_back(DAG.getConstant(i, EVT));
3079  SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3080                               &MaskVec[0], MaskVec.size());
3081  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3082}
3083
3084/// getNumOfConsecutiveZeros - Return the number of elements in a result of
3085/// a shuffle that is zero.
3086static
3087unsigned getNumOfConsecutiveZeros(SDValue Op, SDValue Mask,
3088                                  unsigned NumElems, bool Low,
3089                                  SelectionDAG &DAG) {
3090  unsigned NumZeros = 0;
3091  for (unsigned i = 0; i < NumElems; ++i) {
3092    unsigned Index = Low ? i : NumElems-i-1;
3093    SDValue Idx = Mask.getOperand(Index);
3094    if (Idx.getOpcode() == ISD::UNDEF) {
3095      ++NumZeros;
3096      continue;
3097    }
3098    SDValue Elt = DAG.getShuffleScalarElt(Op.getNode(), Index);
3099    if (Elt.getNode() && isZeroNode(Elt))
3100      ++NumZeros;
3101    else
3102      break;
3103  }
3104  return NumZeros;
3105}
3106
3107/// isVectorShift - Returns true if the shuffle can be implemented as a
3108/// logical left or right shift of a vector.
3109static bool isVectorShift(SDValue Op, SDValue Mask, SelectionDAG &DAG,
3110                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3111  unsigned NumElems = Mask.getNumOperands();
3112
3113  isLeft = true;
3114  unsigned NumZeros= getNumOfConsecutiveZeros(Op, Mask, NumElems, true, DAG);
3115  if (!NumZeros) {
3116    isLeft = false;
3117    NumZeros = getNumOfConsecutiveZeros(Op, Mask, NumElems, false, DAG);
3118    if (!NumZeros)
3119      return false;
3120  }
3121
3122  bool SeenV1 = false;
3123  bool SeenV2 = false;
3124  for (unsigned i = NumZeros; i < NumElems; ++i) {
3125    unsigned Val = isLeft ? (i - NumZeros) : i;
3126    SDValue Idx = Mask.getOperand(isLeft ? i : (i - NumZeros));
3127    if (Idx.getOpcode() == ISD::UNDEF)
3128      continue;
3129    unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
3130    if (Index < NumElems)
3131      SeenV1 = true;
3132    else {
3133      Index -= NumElems;
3134      SeenV2 = true;
3135    }
3136    if (Index != Val)
3137      return false;
3138  }
3139  if (SeenV1 && SeenV2)
3140    return false;
3141
3142  ShVal = SeenV1 ? Op.getOperand(0) : Op.getOperand(1);
3143  ShAmt = NumZeros;
3144  return true;
3145}
3146
3147
3148/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3149///
3150static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3151                                       unsigned NumNonZero, unsigned NumZero,
3152                                       SelectionDAG &DAG, TargetLowering &TLI) {
3153  if (NumNonZero > 8)
3154    return SDValue();
3155
3156  SDValue V(0, 0);
3157  bool First = true;
3158  for (unsigned i = 0; i < 16; ++i) {
3159    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3160    if (ThisIsNonZero && First) {
3161      if (NumZero)
3162        V = getZeroVector(MVT::v8i16, true, DAG);
3163      else
3164        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3165      First = false;
3166    }
3167
3168    if ((i & 1) != 0) {
3169      SDValue ThisElt(0, 0), LastElt(0, 0);
3170      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3171      if (LastIsNonZero) {
3172        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3173      }
3174      if (ThisIsNonZero) {
3175        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3176        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3177                              ThisElt, DAG.getConstant(8, MVT::i8));
3178        if (LastIsNonZero)
3179          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3180      } else
3181        ThisElt = LastElt;
3182
3183      if (ThisElt.getNode())
3184        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3185                        DAG.getIntPtrConstant(i/2));
3186    }
3187  }
3188
3189  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3190}
3191
3192/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3193///
3194static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3195                                       unsigned NumNonZero, unsigned NumZero,
3196                                       SelectionDAG &DAG, TargetLowering &TLI) {
3197  if (NumNonZero > 4)
3198    return SDValue();
3199
3200  SDValue V(0, 0);
3201  bool First = true;
3202  for (unsigned i = 0; i < 8; ++i) {
3203    bool isNonZero = (NonZeros & (1 << i)) != 0;
3204    if (isNonZero) {
3205      if (First) {
3206        if (NumZero)
3207          V = getZeroVector(MVT::v8i16, true, DAG);
3208        else
3209          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3210        First = false;
3211      }
3212      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3213                      DAG.getIntPtrConstant(i));
3214    }
3215  }
3216
3217  return V;
3218}
3219
3220/// getVShift - Return a vector logical shift node.
3221///
3222static SDValue getVShift(bool isLeft, MVT VT, SDValue SrcOp,
3223                           unsigned NumBits, SelectionDAG &DAG,
3224                           const TargetLowering &TLI) {
3225  bool isMMX = VT.getSizeInBits() == 64;
3226  MVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
3227  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3228  SrcOp = DAG.getNode(ISD::BIT_CONVERT, ShVT, SrcOp);
3229  return DAG.getNode(ISD::BIT_CONVERT, VT,
3230                     DAG.getNode(Opc, ShVT, SrcOp,
3231                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3232}
3233
3234SDValue
3235X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) {
3236  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
3237  if (ISD::isBuildVectorAllZeros(Op.getNode())
3238      || ISD::isBuildVectorAllOnes(Op.getNode())) {
3239    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
3240    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
3241    // eliminated on x86-32 hosts.
3242    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
3243      return Op;
3244
3245    if (ISD::isBuildVectorAllOnes(Op.getNode()))
3246      return getOnesVector(Op.getValueType(), DAG);
3247    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG);
3248  }
3249
3250  MVT VT = Op.getValueType();
3251  MVT EVT = VT.getVectorElementType();
3252  unsigned EVTBits = EVT.getSizeInBits();
3253
3254  unsigned NumElems = Op.getNumOperands();
3255  unsigned NumZero  = 0;
3256  unsigned NumNonZero = 0;
3257  unsigned NonZeros = 0;
3258  bool IsAllConstants = true;
3259  SmallSet<SDValue, 8> Values;
3260  for (unsigned i = 0; i < NumElems; ++i) {
3261    SDValue Elt = Op.getOperand(i);
3262    if (Elt.getOpcode() == ISD::UNDEF)
3263      continue;
3264    Values.insert(Elt);
3265    if (Elt.getOpcode() != ISD::Constant &&
3266        Elt.getOpcode() != ISD::ConstantFP)
3267      IsAllConstants = false;
3268    if (isZeroNode(Elt))
3269      NumZero++;
3270    else {
3271      NonZeros |= (1 << i);
3272      NumNonZero++;
3273    }
3274  }
3275
3276  if (NumNonZero == 0) {
3277    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3278    return DAG.getNode(ISD::UNDEF, VT);
3279  }
3280
3281  // Special case for single non-zero, non-undef, element.
3282  if (NumNonZero == 1 && NumElems <= 4) {
3283    unsigned Idx = CountTrailingZeros_32(NonZeros);
3284    SDValue Item = Op.getOperand(Idx);
3285
3286    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3287    // the value are obviously zero, truncate the value to i32 and do the
3288    // insertion that way.  Only do this if the value is non-constant or if the
3289    // value is a constant being inserted into element 0.  It is cheaper to do
3290    // a constant pool load than it is to do a movd + shuffle.
3291    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3292        (!IsAllConstants || Idx == 0)) {
3293      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3294        // Handle MMX and SSE both.
3295        MVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3296        unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
3297
3298        // Truncate the value (which may itself be a constant) to i32, and
3299        // convert it to a vector with movd (S2V+shuffle to zero extend).
3300        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3301        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3302        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
3303                                           Subtarget->hasSSE2(), DAG);
3304
3305        // Now we have our 32-bit value zero extended in the low element of
3306        // a vector.  If Idx != 0, swizzle it into place.
3307        if (Idx != 0) {
3308          SDValue Ops[] = {
3309            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3310            getSwapEltZeroMask(VecElts, Idx, DAG)
3311          };
3312          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3313        }
3314        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3315      }
3316    }
3317
3318    // If we have a constant or non-constant insertion into the low element of
3319    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3320    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3321    // depending on what the source datatype is.  Because we can only get here
3322    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3323    if (Idx == 0 &&
3324        // Don't do this for i64 values on x86-32.
3325        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3326      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3327      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3328      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3329                                         Subtarget->hasSSE2(), DAG);
3330    }
3331
3332    // Is it a vector logical left shift?
3333    if (NumElems == 2 && Idx == 1 &&
3334        isZeroNode(Op.getOperand(0)) && !isZeroNode(Op.getOperand(1))) {
3335      unsigned NumBits = VT.getSizeInBits();
3336      return getVShift(true, VT,
3337                       DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(1)),
3338                       NumBits/2, DAG, *this);
3339    }
3340
3341    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3342      return SDValue();
3343
3344    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3345    // is a non-constant being inserted into an element other than the low one,
3346    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3347    // movd/movss) to move this into the low element, then shuffle it into
3348    // place.
3349    if (EVTBits == 32) {
3350      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3351
3352      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3353      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
3354                                         Subtarget->hasSSE2(), DAG);
3355      MVT MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3356      MVT MaskEVT = MaskVT.getVectorElementType();
3357      SmallVector<SDValue, 8> MaskVec;
3358      for (unsigned i = 0; i < NumElems; i++)
3359        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3360      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3361                                   &MaskVec[0], MaskVec.size());
3362      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3363                         DAG.getNode(ISD::UNDEF, VT), Mask);
3364    }
3365  }
3366
3367  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3368  if (Values.size() == 1)
3369    return SDValue();
3370
3371  // A vector full of immediates; various special cases are already
3372  // handled, so this is best done with a single constant-pool load.
3373  if (IsAllConstants)
3374    return SDValue();
3375
3376  // Let legalizer expand 2-wide build_vectors.
3377  if (EVTBits == 64) {
3378    if (NumNonZero == 1) {
3379      // One half is zero or undef.
3380      unsigned Idx = CountTrailingZeros_32(NonZeros);
3381      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3382                                 Op.getOperand(Idx));
3383      return getShuffleVectorZeroOrUndef(V2, Idx, true,
3384                                         Subtarget->hasSSE2(), DAG);
3385    }
3386    return SDValue();
3387  }
3388
3389  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3390  if (EVTBits == 8 && NumElems == 16) {
3391    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3392                                        *this);
3393    if (V.getNode()) return V;
3394  }
3395
3396  if (EVTBits == 16 && NumElems == 8) {
3397    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3398                                        *this);
3399    if (V.getNode()) return V;
3400  }
3401
3402  // If element VT is == 32 bits, turn it into a number of shuffles.
3403  SmallVector<SDValue, 8> V;
3404  V.resize(NumElems);
3405  if (NumElems == 4 && NumZero > 0) {
3406    for (unsigned i = 0; i < 4; ++i) {
3407      bool isZero = !(NonZeros & (1 << i));
3408      if (isZero)
3409        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3410      else
3411        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3412    }
3413
3414    for (unsigned i = 0; i < 2; ++i) {
3415      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3416        default: break;
3417        case 0:
3418          V[i] = V[i*2];  // Must be a zero vector.
3419          break;
3420        case 1:
3421          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3422                             getMOVLMask(NumElems, DAG));
3423          break;
3424        case 2:
3425          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3426                             getMOVLMask(NumElems, DAG));
3427          break;
3428        case 3:
3429          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3430                             getUnpacklMask(NumElems, DAG));
3431          break;
3432      }
3433    }
3434
3435    MVT MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3436    MVT EVT = MaskVT.getVectorElementType();
3437    SmallVector<SDValue, 8> MaskVec;
3438    bool Reverse = (NonZeros & 0x3) == 2;
3439    for (unsigned i = 0; i < 2; ++i)
3440      if (Reverse)
3441        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3442      else
3443        MaskVec.push_back(DAG.getConstant(i, EVT));
3444    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3445    for (unsigned i = 0; i < 2; ++i)
3446      if (Reverse)
3447        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3448      else
3449        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3450    SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3451                                     &MaskVec[0], MaskVec.size());
3452    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3453  }
3454
3455  if (Values.size() > 2) {
3456    // Expand into a number of unpckl*.
3457    // e.g. for v4f32
3458    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3459    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3460    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3461    SDValue UnpckMask = getUnpacklMask(NumElems, DAG);
3462    for (unsigned i = 0; i < NumElems; ++i)
3463      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3464    NumElems >>= 1;
3465    while (NumElems != 0) {
3466      for (unsigned i = 0; i < NumElems; ++i)
3467        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3468                           UnpckMask);
3469      NumElems >>= 1;
3470    }
3471    return V[0];
3472  }
3473
3474  return SDValue();
3475}
3476
3477static
3478SDValue LowerVECTOR_SHUFFLEv8i16(SDValue V1, SDValue V2,
3479                                 SDValue PermMask, SelectionDAG &DAG,
3480                                 TargetLowering &TLI) {
3481  SDValue NewV;
3482  MVT MaskVT = MVT::getIntVectorWithNumElements(8);
3483  MVT MaskEVT = MaskVT.getVectorElementType();
3484  MVT PtrVT = TLI.getPointerTy();
3485  SmallVector<SDValue, 8> MaskElts(PermMask.getNode()->op_begin(),
3486                                   PermMask.getNode()->op_end());
3487
3488  // First record which half of which vector the low elements come from.
3489  SmallVector<unsigned, 4> LowQuad(4);
3490  for (unsigned i = 0; i < 4; ++i) {
3491    SDValue Elt = MaskElts[i];
3492    if (Elt.getOpcode() == ISD::UNDEF)
3493      continue;
3494    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3495    int QuadIdx = EltIdx / 4;
3496    ++LowQuad[QuadIdx];
3497  }
3498
3499  int BestLowQuad = -1;
3500  unsigned MaxQuad = 1;
3501  for (unsigned i = 0; i < 4; ++i) {
3502    if (LowQuad[i] > MaxQuad) {
3503      BestLowQuad = i;
3504      MaxQuad = LowQuad[i];
3505    }
3506  }
3507
3508  // Record which half of which vector the high elements come from.
3509  SmallVector<unsigned, 4> HighQuad(4);
3510  for (unsigned i = 4; i < 8; ++i) {
3511    SDValue Elt = MaskElts[i];
3512    if (Elt.getOpcode() == ISD::UNDEF)
3513      continue;
3514    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3515    int QuadIdx = EltIdx / 4;
3516    ++HighQuad[QuadIdx];
3517  }
3518
3519  int BestHighQuad = -1;
3520  MaxQuad = 1;
3521  for (unsigned i = 0; i < 4; ++i) {
3522    if (HighQuad[i] > MaxQuad) {
3523      BestHighQuad = i;
3524      MaxQuad = HighQuad[i];
3525    }
3526  }
3527
3528  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3529  if (BestLowQuad != -1 || BestHighQuad != -1) {
3530    // First sort the 4 chunks in order using shufpd.
3531    SmallVector<SDValue, 8> MaskVec;
3532
3533    if (BestLowQuad != -1)
3534      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3535    else
3536      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3537
3538    if (BestHighQuad != -1)
3539      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3540    else
3541      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3542
3543    SDValue Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3544    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3545                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3546                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3547    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3548
3549    // Now sort high and low parts separately.
3550    BitVector InOrder(8);
3551    if (BestLowQuad != -1) {
3552      // Sort lower half in order using PSHUFLW.
3553      MaskVec.clear();
3554      bool AnyOutOrder = false;
3555
3556      for (unsigned i = 0; i != 4; ++i) {
3557        SDValue Elt = MaskElts[i];
3558        if (Elt.getOpcode() == ISD::UNDEF) {
3559          MaskVec.push_back(Elt);
3560          InOrder.set(i);
3561        } else {
3562          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3563          if (EltIdx != i)
3564            AnyOutOrder = true;
3565
3566          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3567
3568          // If this element is in the right place after this shuffle, then
3569          // remember it.
3570          if ((int)(EltIdx / 4) == BestLowQuad)
3571            InOrder.set(i);
3572        }
3573      }
3574      if (AnyOutOrder) {
3575        for (unsigned i = 4; i != 8; ++i)
3576          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3577        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3578        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3579      }
3580    }
3581
3582    if (BestHighQuad != -1) {
3583      // Sort high half in order using PSHUFHW if possible.
3584      MaskVec.clear();
3585
3586      for (unsigned i = 0; i != 4; ++i)
3587        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3588
3589      bool AnyOutOrder = false;
3590      for (unsigned i = 4; i != 8; ++i) {
3591        SDValue Elt = MaskElts[i];
3592        if (Elt.getOpcode() == ISD::UNDEF) {
3593          MaskVec.push_back(Elt);
3594          InOrder.set(i);
3595        } else {
3596          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3597          if (EltIdx != i)
3598            AnyOutOrder = true;
3599
3600          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3601
3602          // If this element is in the right place after this shuffle, then
3603          // remember it.
3604          if ((int)(EltIdx / 4) == BestHighQuad)
3605            InOrder.set(i);
3606        }
3607      }
3608
3609      if (AnyOutOrder) {
3610        SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3611        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3612      }
3613    }
3614
3615    // The other elements are put in the right place using pextrw and pinsrw.
3616    for (unsigned i = 0; i != 8; ++i) {
3617      if (InOrder[i])
3618        continue;
3619      SDValue Elt = MaskElts[i];
3620      if (Elt.getOpcode() == ISD::UNDEF)
3621        continue;
3622      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3623      SDValue ExtOp = (EltIdx < 8)
3624        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3625                      DAG.getConstant(EltIdx, PtrVT))
3626        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3627                      DAG.getConstant(EltIdx - 8, PtrVT));
3628      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3629                         DAG.getConstant(i, PtrVT));
3630    }
3631
3632    return NewV;
3633  }
3634
3635  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use as
3636  // few as possible. First, let's find out how many elements are already in the
3637  // right order.
3638  unsigned V1InOrder = 0;
3639  unsigned V1FromV1 = 0;
3640  unsigned V2InOrder = 0;
3641  unsigned V2FromV2 = 0;
3642  SmallVector<SDValue, 8> V1Elts;
3643  SmallVector<SDValue, 8> V2Elts;
3644  for (unsigned i = 0; i < 8; ++i) {
3645    SDValue Elt = MaskElts[i];
3646    if (Elt.getOpcode() == ISD::UNDEF) {
3647      V1Elts.push_back(Elt);
3648      V2Elts.push_back(Elt);
3649      ++V1InOrder;
3650      ++V2InOrder;
3651      continue;
3652    }
3653    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3654    if (EltIdx == i) {
3655      V1Elts.push_back(Elt);
3656      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3657      ++V1InOrder;
3658    } else if (EltIdx == i+8) {
3659      V1Elts.push_back(Elt);
3660      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3661      ++V2InOrder;
3662    } else if (EltIdx < 8) {
3663      V1Elts.push_back(Elt);
3664      ++V1FromV1;
3665    } else {
3666      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3667      ++V2FromV2;
3668    }
3669  }
3670
3671  if (V2InOrder > V1InOrder) {
3672    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3673    std::swap(V1, V2);
3674    std::swap(V1Elts, V2Elts);
3675    std::swap(V1FromV1, V2FromV2);
3676  }
3677
3678  if ((V1FromV1 + V1InOrder) != 8) {
3679    // Some elements are from V2.
3680    if (V1FromV1) {
3681      // If there are elements that are from V1 but out of place,
3682      // then first sort them in place
3683      SmallVector<SDValue, 8> MaskVec;
3684      for (unsigned i = 0; i < 8; ++i) {
3685        SDValue Elt = V1Elts[i];
3686        if (Elt.getOpcode() == ISD::UNDEF) {
3687          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3688          continue;
3689        }
3690        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3691        if (EltIdx >= 8)
3692          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3693        else
3694          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3695      }
3696      SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3697      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3698    }
3699
3700    NewV = V1;
3701    for (unsigned i = 0; i < 8; ++i) {
3702      SDValue Elt = V1Elts[i];
3703      if (Elt.getOpcode() == ISD::UNDEF)
3704        continue;
3705      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3706      if (EltIdx < 8)
3707        continue;
3708      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3709                                    DAG.getConstant(EltIdx - 8, PtrVT));
3710      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3711                         DAG.getConstant(i, PtrVT));
3712    }
3713    return NewV;
3714  } else {
3715    // All elements are from V1.
3716    NewV = V1;
3717    for (unsigned i = 0; i < 8; ++i) {
3718      SDValue Elt = V1Elts[i];
3719      if (Elt.getOpcode() == ISD::UNDEF)
3720        continue;
3721      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3722      SDValue ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3723                                    DAG.getConstant(EltIdx, PtrVT));
3724      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3725                         DAG.getConstant(i, PtrVT));
3726    }
3727    return NewV;
3728  }
3729}
3730
3731/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3732/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3733/// done when every pair / quad of shuffle mask elements point to elements in
3734/// the right sequence. e.g.
3735/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3736static
3737SDValue RewriteAsNarrowerShuffle(SDValue V1, SDValue V2,
3738                                MVT VT,
3739                                SDValue PermMask, SelectionDAG &DAG,
3740                                TargetLowering &TLI) {
3741  unsigned NumElems = PermMask.getNumOperands();
3742  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3743  MVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3744  MVT MaskEltVT = MaskVT.getVectorElementType();
3745  MVT NewVT = MaskVT;
3746  switch (VT.getSimpleVT()) {
3747  default: assert(false && "Unexpected!");
3748  case MVT::v4f32: NewVT = MVT::v2f64; break;
3749  case MVT::v4i32: NewVT = MVT::v2i64; break;
3750  case MVT::v8i16: NewVT = MVT::v4i32; break;
3751  case MVT::v16i8: NewVT = MVT::v4i32; break;
3752  }
3753
3754  if (NewWidth == 2) {
3755    if (VT.isInteger())
3756      NewVT = MVT::v2i64;
3757    else
3758      NewVT = MVT::v2f64;
3759  }
3760  unsigned Scale = NumElems / NewWidth;
3761  SmallVector<SDValue, 8> MaskVec;
3762  for (unsigned i = 0; i < NumElems; i += Scale) {
3763    unsigned StartIdx = ~0U;
3764    for (unsigned j = 0; j < Scale; ++j) {
3765      SDValue Elt = PermMask.getOperand(i+j);
3766      if (Elt.getOpcode() == ISD::UNDEF)
3767        continue;
3768      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getZExtValue();
3769      if (StartIdx == ~0U)
3770        StartIdx = EltIdx - (EltIdx % Scale);
3771      if (EltIdx != StartIdx + j)
3772        return SDValue();
3773    }
3774    if (StartIdx == ~0U)
3775      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEltVT));
3776    else
3777      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MaskEltVT));
3778  }
3779
3780  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3781  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3782  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3783                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3784                                 &MaskVec[0], MaskVec.size()));
3785}
3786
3787/// getVZextMovL - Return a zero-extending vector move low node.
3788///
3789static SDValue getVZextMovL(MVT VT, MVT OpVT,
3790                              SDValue SrcOp, SelectionDAG &DAG,
3791                              const X86Subtarget *Subtarget) {
3792  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3793    LoadSDNode *LD = NULL;
3794    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
3795      LD = dyn_cast<LoadSDNode>(SrcOp);
3796    if (!LD) {
3797      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3798      // instead.
3799      MVT EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3800      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3801          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3802          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3803          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3804        // PR2108
3805        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3806        return DAG.getNode(ISD::BIT_CONVERT, VT,
3807                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3808                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3809                                                   SrcOp.getOperand(0)
3810                                                          .getOperand(0))));
3811      }
3812    }
3813  }
3814
3815  return DAG.getNode(ISD::BIT_CONVERT, VT,
3816                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3817                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3818}
3819
3820/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
3821/// shuffles.
3822static SDValue
3823LowerVECTOR_SHUFFLE_4wide(SDValue V1, SDValue V2,
3824                          SDValue PermMask, MVT VT, SelectionDAG &DAG) {
3825  MVT MaskVT = PermMask.getValueType();
3826  MVT MaskEVT = MaskVT.getVectorElementType();
3827  SmallVector<std::pair<int, int>, 8> Locs;
3828  Locs.resize(4);
3829  SmallVector<SDValue, 8> Mask1(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3830  unsigned NumHi = 0;
3831  unsigned NumLo = 0;
3832  for (unsigned i = 0; i != 4; ++i) {
3833    SDValue Elt = PermMask.getOperand(i);
3834    if (Elt.getOpcode() == ISD::UNDEF) {
3835      Locs[i] = std::make_pair(-1, -1);
3836    } else {
3837      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3838      assert(Val < 8 && "Invalid VECTOR_SHUFFLE index!");
3839      if (Val < 4) {
3840        Locs[i] = std::make_pair(0, NumLo);
3841        Mask1[NumLo] = Elt;
3842        NumLo++;
3843      } else {
3844        Locs[i] = std::make_pair(1, NumHi);
3845        if (2+NumHi < 4)
3846          Mask1[2+NumHi] = Elt;
3847        NumHi++;
3848      }
3849    }
3850  }
3851
3852  if (NumLo <= 2 && NumHi <= 2) {
3853    // If no more than two elements come from either vector. This can be
3854    // implemented with two shuffles. First shuffle gather the elements.
3855    // The second shuffle, which takes the first shuffle as both of its
3856    // vector operands, put the elements into the right order.
3857    V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3858                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3859                                 &Mask1[0], Mask1.size()));
3860
3861    SmallVector<SDValue, 8> Mask2(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3862    for (unsigned i = 0; i != 4; ++i) {
3863      if (Locs[i].first == -1)
3864        continue;
3865      else {
3866        unsigned Idx = (i < 2) ? 0 : 4;
3867        Idx += Locs[i].first * 2 + Locs[i].second;
3868        Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3869      }
3870    }
3871
3872    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3873                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3874                                   &Mask2[0], Mask2.size()));
3875  } else if (NumLo == 3 || NumHi == 3) {
3876    // Otherwise, we must have three elements from one vector, call it X, and
3877    // one element from the other, call it Y.  First, use a shufps to build an
3878    // intermediate vector with the one element from Y and the element from X
3879    // that will be in the same half in the final destination (the indexes don't
3880    // matter). Then, use a shufps to build the final vector, taking the half
3881    // containing the element from Y from the intermediate, and the other half
3882    // from X.
3883    if (NumHi == 3) {
3884      // Normalize it so the 3 elements come from V1.
3885      PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3886      std::swap(V1, V2);
3887    }
3888
3889    // Find the element from V2.
3890    unsigned HiIndex;
3891    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
3892      SDValue Elt = PermMask.getOperand(HiIndex);
3893      if (Elt.getOpcode() == ISD::UNDEF)
3894        continue;
3895      unsigned Val = cast<ConstantSDNode>(Elt)->getZExtValue();
3896      if (Val >= 4)
3897        break;
3898    }
3899
3900    Mask1[0] = PermMask.getOperand(HiIndex);
3901    Mask1[1] = DAG.getNode(ISD::UNDEF, MaskEVT);
3902    Mask1[2] = PermMask.getOperand(HiIndex^1);
3903    Mask1[3] = DAG.getNode(ISD::UNDEF, MaskEVT);
3904    V2 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3905                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3906
3907    if (HiIndex >= 2) {
3908      Mask1[0] = PermMask.getOperand(0);
3909      Mask1[1] = PermMask.getOperand(1);
3910      Mask1[2] = DAG.getConstant(HiIndex & 1 ? 6 : 4, MaskEVT);
3911      Mask1[3] = DAG.getConstant(HiIndex & 1 ? 4 : 6, MaskEVT);
3912      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3913                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3914    } else {
3915      Mask1[0] = DAG.getConstant(HiIndex & 1 ? 2 : 0, MaskEVT);
3916      Mask1[1] = DAG.getConstant(HiIndex & 1 ? 0 : 2, MaskEVT);
3917      Mask1[2] = PermMask.getOperand(2);
3918      Mask1[3] = PermMask.getOperand(3);
3919      if (Mask1[2].getOpcode() != ISD::UNDEF)
3920        Mask1[2] =
3921          DAG.getConstant(cast<ConstantSDNode>(Mask1[2])->getZExtValue()+4,
3922                          MaskEVT);
3923      if (Mask1[3].getOpcode() != ISD::UNDEF)
3924        Mask1[3] =
3925          DAG.getConstant(cast<ConstantSDNode>(Mask1[3])->getZExtValue()+4,
3926                          MaskEVT);
3927      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1,
3928                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &Mask1[0], 4));
3929    }
3930  }
3931
3932  // Break it into (shuffle shuffle_hi, shuffle_lo).
3933  Locs.clear();
3934  SmallVector<SDValue,8> LoMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3935  SmallVector<SDValue,8> HiMask(4, DAG.getNode(ISD::UNDEF, MaskEVT));
3936  SmallVector<SDValue,8> *MaskPtr = &LoMask;
3937  unsigned MaskIdx = 0;
3938  unsigned LoIdx = 0;
3939  unsigned HiIdx = 2;
3940  for (unsigned i = 0; i != 4; ++i) {
3941    if (i == 2) {
3942      MaskPtr = &HiMask;
3943      MaskIdx = 1;
3944      LoIdx = 0;
3945      HiIdx = 2;
3946    }
3947    SDValue Elt = PermMask.getOperand(i);
3948    if (Elt.getOpcode() == ISD::UNDEF) {
3949      Locs[i] = std::make_pair(-1, -1);
3950    } else if (cast<ConstantSDNode>(Elt)->getZExtValue() < 4) {
3951      Locs[i] = std::make_pair(MaskIdx, LoIdx);
3952      (*MaskPtr)[LoIdx] = Elt;
3953      LoIdx++;
3954    } else {
3955      Locs[i] = std::make_pair(MaskIdx, HiIdx);
3956      (*MaskPtr)[HiIdx] = Elt;
3957      HiIdx++;
3958    }
3959  }
3960
3961  SDValue LoShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3962                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3963                                                &LoMask[0], LoMask.size()));
3964  SDValue HiShuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3965                                    DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3966                                                &HiMask[0], HiMask.size()));
3967  SmallVector<SDValue, 8> MaskOps;
3968  for (unsigned i = 0; i != 4; ++i) {
3969    if (Locs[i].first == -1) {
3970      MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3971    } else {
3972      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
3973      MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3974    }
3975  }
3976  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3977                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3978                                 &MaskOps[0], MaskOps.size()));
3979}
3980
3981SDValue
3982X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
3983  SDValue V1 = Op.getOperand(0);
3984  SDValue V2 = Op.getOperand(1);
3985  SDValue PermMask = Op.getOperand(2);
3986  MVT VT = Op.getValueType();
3987  unsigned NumElems = PermMask.getNumOperands();
3988  bool isMMX = VT.getSizeInBits() == 64;
3989  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3990  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3991  bool V1IsSplat = false;
3992  bool V2IsSplat = false;
3993
3994  if (isUndefShuffle(Op.getNode()))
3995    return DAG.getNode(ISD::UNDEF, VT);
3996
3997  if (isZeroShuffle(Op.getNode()))
3998    return getZeroVector(VT, Subtarget->hasSSE2(), DAG);
3999
4000  if (isIdentityMask(PermMask.getNode()))
4001    return V1;
4002  else if (isIdentityMask(PermMask.getNode(), true))
4003    return V2;
4004
4005  // Canonicalize movddup shuffles.
4006  if (V2IsUndef && Subtarget->hasSSE2() &&
4007      VT.getSizeInBits() == 128 &&
4008      X86::isMOVDDUPMask(PermMask.getNode()))
4009    return CanonicalizeMovddup(Op, V1, PermMask, DAG, Subtarget->hasSSE3());
4010
4011  if (isSplatMask(PermMask.getNode())) {
4012    if (isMMX || NumElems < 4) return Op;
4013    // Promote it to a v4{if}32 splat.
4014    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
4015  }
4016
4017  // If the shuffle can be profitably rewritten as a narrower shuffle, then
4018  // do it!
4019  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
4020    SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
4021    if (NewOp.getNode())
4022      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
4023  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
4024    // FIXME: Figure out a cleaner way to do this.
4025    // Try to make use of movq to zero out the top part.
4026    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
4027      SDValue NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4028                                                 DAG, *this);
4029      if (NewOp.getNode()) {
4030        SDValue NewV1 = NewOp.getOperand(0);
4031        SDValue NewV2 = NewOp.getOperand(1);
4032        SDValue NewMask = NewOp.getOperand(2);
4033        if (isCommutedMOVL(NewMask.getNode(), true, false)) {
4034          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
4035          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
4036        }
4037      }
4038    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
4039      SDValue NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
4040                                                DAG, *this);
4041      if (NewOp.getNode() && X86::isMOVLMask(NewOp.getOperand(2).getNode()))
4042        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
4043                             DAG, Subtarget);
4044    }
4045  }
4046
4047  // Check if this can be converted into a logical shift.
4048  bool isLeft = false;
4049  unsigned ShAmt = 0;
4050  SDValue ShVal;
4051  bool isShift = isVectorShift(Op, PermMask, DAG, isLeft, ShVal, ShAmt);
4052  if (isShift && ShVal.hasOneUse()) {
4053    // If the shifted value has multiple uses, it may be cheaper to use
4054    // v_set0 + movlhps or movhlps, etc.
4055    MVT EVT = VT.getVectorElementType();
4056    ShAmt *= EVT.getSizeInBits();
4057    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4058  }
4059
4060  if (X86::isMOVLMask(PermMask.getNode())) {
4061    if (V1IsUndef)
4062      return V2;
4063    if (ISD::isBuildVectorAllZeros(V1.getNode()))
4064      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
4065    if (!isMMX)
4066      return Op;
4067  }
4068
4069  if (!isMMX && (X86::isMOVSHDUPMask(PermMask.getNode()) ||
4070                 X86::isMOVSLDUPMask(PermMask.getNode()) ||
4071                 X86::isMOVHLPSMask(PermMask.getNode()) ||
4072                 X86::isMOVHPMask(PermMask.getNode()) ||
4073                 X86::isMOVLPMask(PermMask.getNode())))
4074    return Op;
4075
4076  if (ShouldXformToMOVHLPS(PermMask.getNode()) ||
4077      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), PermMask.getNode()))
4078    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4079
4080  if (isShift) {
4081    // No better options. Use a vshl / vsrl.
4082    MVT EVT = VT.getVectorElementType();
4083    ShAmt *= EVT.getSizeInBits();
4084    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this);
4085  }
4086
4087  bool Commuted = false;
4088  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
4089  // 1,1,1,1 -> v8i16 though.
4090  V1IsSplat = isSplatVector(V1.getNode());
4091  V2IsSplat = isSplatVector(V2.getNode());
4092
4093  // Canonicalize the splat or undef, if present, to be on the RHS.
4094  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
4095    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4096    std::swap(V1IsSplat, V2IsSplat);
4097    std::swap(V1IsUndef, V2IsUndef);
4098    Commuted = true;
4099  }
4100
4101  // FIXME: Figure out a cleaner way to do this.
4102  if (isCommutedMOVL(PermMask.getNode(), V2IsSplat, V2IsUndef)) {
4103    if (V2IsUndef) return V1;
4104    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4105    if (V2IsSplat) {
4106      // V2 is a splat, so the mask may be malformed. That is, it may point
4107      // to any V2 element. The instruction selectior won't like this. Get
4108      // a corrected mask and commute to form a proper MOVS{S|D}.
4109      SDValue NewMask = getMOVLMask(NumElems, DAG);
4110      if (NewMask.getNode() != PermMask.getNode())
4111        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4112    }
4113    return Op;
4114  }
4115
4116  if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4117      X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4118      X86::isUNPCKLMask(PermMask.getNode()) ||
4119      X86::isUNPCKHMask(PermMask.getNode()))
4120    return Op;
4121
4122  if (V2IsSplat) {
4123    // Normalize mask so all entries that point to V2 points to its first
4124    // element then try to match unpck{h|l} again. If match, return a
4125    // new vector_shuffle with the corrected mask.
4126    SDValue NewMask = NormalizeMask(PermMask, DAG);
4127    if (NewMask.getNode() != PermMask.getNode()) {
4128      if (X86::isUNPCKLMask(PermMask.getNode(), true)) {
4129        SDValue NewMask = getUnpacklMask(NumElems, DAG);
4130        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4131      } else if (X86::isUNPCKHMask(PermMask.getNode(), true)) {
4132        SDValue NewMask = getUnpackhMask(NumElems, DAG);
4133        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
4134      }
4135    }
4136  }
4137
4138  // Normalize the node to match x86 shuffle ops if needed
4139  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.getNode()))
4140      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4141
4142  if (Commuted) {
4143    // Commute is back and try unpck* again.
4144    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
4145    if (X86::isUNPCKL_v_undef_Mask(PermMask.getNode()) ||
4146        X86::isUNPCKH_v_undef_Mask(PermMask.getNode()) ||
4147        X86::isUNPCKLMask(PermMask.getNode()) ||
4148        X86::isUNPCKHMask(PermMask.getNode()))
4149      return Op;
4150  }
4151
4152  // Try PSHUF* first, then SHUFP*.
4153  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
4154  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
4155  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.getNode())) {
4156    if (V2.getOpcode() != ISD::UNDEF)
4157      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
4158                         DAG.getNode(ISD::UNDEF, VT), PermMask);
4159    return Op;
4160  }
4161
4162  if (!isMMX) {
4163    if (Subtarget->hasSSE2() &&
4164        (X86::isPSHUFDMask(PermMask.getNode()) ||
4165         X86::isPSHUFHWMask(PermMask.getNode()) ||
4166         X86::isPSHUFLWMask(PermMask.getNode()))) {
4167      MVT RVT = VT;
4168      if (VT == MVT::v4f32) {
4169        RVT = MVT::v4i32;
4170        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
4171                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
4172                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4173      } else if (V2.getOpcode() != ISD::UNDEF)
4174        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
4175                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
4176      if (RVT != VT)
4177        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
4178      return Op;
4179    }
4180
4181    // Binary or unary shufps.
4182    if (X86::isSHUFPMask(PermMask.getNode()) ||
4183        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.getNode())))
4184      return Op;
4185  }
4186
4187  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
4188  if (VT == MVT::v8i16) {
4189    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
4190    if (NewOp.getNode())
4191      return NewOp;
4192  }
4193
4194  // Handle all 4 wide cases with a number of shuffles except for MMX.
4195  if (NumElems == 4 && !isMMX)
4196    return LowerVECTOR_SHUFFLE_4wide(V1, V2, PermMask, VT, DAG);
4197
4198  return SDValue();
4199}
4200
4201SDValue
4202X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
4203                                                SelectionDAG &DAG) {
4204  MVT VT = Op.getValueType();
4205  if (VT.getSizeInBits() == 8) {
4206    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
4207                                    Op.getOperand(0), Op.getOperand(1));
4208    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4209                                    DAG.getValueType(VT));
4210    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4211  } else if (VT.getSizeInBits() == 16) {
4212    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
4213                                    Op.getOperand(0), Op.getOperand(1));
4214    SDValue Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
4215                                    DAG.getValueType(VT));
4216    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4217  } else if (VT == MVT::f32) {
4218    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
4219    // the result back to FR32 register. It's only worth matching if the
4220    // result has a single use which is a store or a bitcast to i32.  And in
4221    // the case of a store, it's not worth it if the index is a constant 0,
4222    // because a MOVSSmr can be used instead, which is smaller and faster.
4223    if (!Op.hasOneUse())
4224      return SDValue();
4225    SDNode *User = *Op.getNode()->use_begin();
4226    if ((User->getOpcode() != ISD::STORE ||
4227         (isa<ConstantSDNode>(Op.getOperand(1)) &&
4228          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
4229        (User->getOpcode() != ISD::BIT_CONVERT ||
4230         User->getValueType(0) != MVT::i32))
4231      return SDValue();
4232    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4233                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
4234                                    Op.getOperand(1));
4235    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
4236  }
4237  return SDValue();
4238}
4239
4240
4241SDValue
4242X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4243  if (!isa<ConstantSDNode>(Op.getOperand(1)))
4244    return SDValue();
4245
4246  if (Subtarget->hasSSE41()) {
4247    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
4248    if (Res.getNode())
4249      return Res;
4250  }
4251
4252  MVT VT = Op.getValueType();
4253  // TODO: handle v16i8.
4254  if (VT.getSizeInBits() == 16) {
4255    SDValue Vec = Op.getOperand(0);
4256    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4257    if (Idx == 0)
4258      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
4259                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
4260                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
4261                                     Op.getOperand(1)));
4262    // Transform it so it match pextrw which produces a 32-bit result.
4263    MVT EVT = (MVT::SimpleValueType)(VT.getSimpleVT()+1);
4264    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
4265                                    Op.getOperand(0), Op.getOperand(1));
4266    SDValue Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
4267                                    DAG.getValueType(VT));
4268    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
4269  } else if (VT.getSizeInBits() == 32) {
4270    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4271    if (Idx == 0)
4272      return Op;
4273    // SHUFPS the element to the lowest double word, then movss.
4274    MVT MaskVT = MVT::getIntVectorWithNumElements(4);
4275    SmallVector<SDValue, 8> IdxVec;
4276    IdxVec.
4277      push_back(DAG.getConstant(Idx, MaskVT.getVectorElementType()));
4278    IdxVec.
4279      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4280    IdxVec.
4281      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4282    IdxVec.
4283      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4284    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4285                                 &IdxVec[0], IdxVec.size());
4286    SDValue Vec = Op.getOperand(0);
4287    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4288                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4289    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4290                       DAG.getIntPtrConstant(0));
4291  } else if (VT.getSizeInBits() == 64) {
4292    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
4293    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
4294    //        to match extract_elt for f64.
4295    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4296    if (Idx == 0)
4297      return Op;
4298
4299    // UNPCKHPD the element to the lowest double word, then movsd.
4300    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
4301    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
4302    MVT MaskVT = MVT::getIntVectorWithNumElements(2);
4303    SmallVector<SDValue, 8> IdxVec;
4304    IdxVec.push_back(DAG.getConstant(1, MaskVT.getVectorElementType()));
4305    IdxVec.
4306      push_back(DAG.getNode(ISD::UNDEF, MaskVT.getVectorElementType()));
4307    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
4308                                 &IdxVec[0], IdxVec.size());
4309    SDValue Vec = Op.getOperand(0);
4310    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
4311                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
4312    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
4313                       DAG.getIntPtrConstant(0));
4314  }
4315
4316  return SDValue();
4317}
4318
4319SDValue
4320X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG){
4321  MVT VT = Op.getValueType();
4322  MVT EVT = VT.getVectorElementType();
4323
4324  SDValue N0 = Op.getOperand(0);
4325  SDValue N1 = Op.getOperand(1);
4326  SDValue N2 = Op.getOperand(2);
4327
4328  if ((EVT.getSizeInBits() == 8 || EVT.getSizeInBits() == 16) &&
4329      isa<ConstantSDNode>(N2)) {
4330    unsigned Opc = (EVT.getSizeInBits() == 8) ? X86ISD::PINSRB
4331                                                  : X86ISD::PINSRW;
4332    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
4333    // argument.
4334    if (N1.getValueType() != MVT::i32)
4335      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4336    if (N2.getValueType() != MVT::i32)
4337      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4338    return DAG.getNode(Opc, VT, N0, N1, N2);
4339  } else if (EVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
4340    // Bits [7:6] of the constant are the source select.  This will always be
4341    //  zero here.  The DAG Combiner may combine an extract_elt index into these
4342    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
4343    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
4344    // Bits [5:4] of the constant are the destination select.  This is the
4345    //  value of the incoming immediate.
4346    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
4347    //   combine either bitwise AND or insert of float 0.0 to set these bits.
4348    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
4349    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
4350  }
4351  return SDValue();
4352}
4353
4354SDValue
4355X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
4356  MVT VT = Op.getValueType();
4357  MVT EVT = VT.getVectorElementType();
4358
4359  if (Subtarget->hasSSE41())
4360    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
4361
4362  if (EVT == MVT::i8)
4363    return SDValue();
4364
4365  SDValue N0 = Op.getOperand(0);
4366  SDValue N1 = Op.getOperand(1);
4367  SDValue N2 = Op.getOperand(2);
4368
4369  if (EVT.getSizeInBits() == 16) {
4370    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
4371    // as its second argument.
4372    if (N1.getValueType() != MVT::i32)
4373      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
4374    if (N2.getValueType() != MVT::i32)
4375      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
4376    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
4377  }
4378  return SDValue();
4379}
4380
4381SDValue
4382X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
4383  if (Op.getValueType() == MVT::v2f32)
4384    return DAG.getNode(ISD::BIT_CONVERT, MVT::v2f32,
4385                       DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i32,
4386                                   DAG.getNode(ISD::BIT_CONVERT, MVT::i32,
4387                                               Op.getOperand(0))));
4388
4389  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4390  MVT VT = MVT::v2i32;
4391  switch (Op.getValueType().getSimpleVT()) {
4392  default: break;
4393  case MVT::v16i8:
4394  case MVT::v8i16:
4395    VT = MVT::v4i32;
4396    break;
4397  }
4398  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4399                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4400}
4401
4402// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4403// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4404// one of the above mentioned nodes. It has to be wrapped because otherwise
4405// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4406// be used to form addressing mode. These wrapped nodes will be selected
4407// into MOV32ri.
4408SDValue
4409X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
4410  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4411  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(),
4412                                               getPointerTy(),
4413                                               CP->getAlignment());
4414  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4415  // With PIC, the address is actually $g + Offset.
4416  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4417      !Subtarget->isPICStyleRIPRel()) {
4418    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4419                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4420                         Result);
4421  }
4422
4423  return Result;
4424}
4425
4426SDValue
4427X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV,
4428                                      int64_t Offset,
4429                                      SelectionDAG &DAG) const {
4430  bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
4431  bool ExtraLoadRequired =
4432    Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false);
4433
4434  // Create the TargetGlobalAddress node, folding in the constant
4435  // offset if it is legal.
4436  SDValue Result;
4437  if (!IsPic && !ExtraLoadRequired && isInt32(Offset)) {
4438    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
4439    Offset = 0;
4440  } else
4441    Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0);
4442  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4443
4444  // With PIC, the address is actually $g + Offset.
4445  if (IsPic && !Subtarget->isPICStyleRIPRel()) {
4446    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4447                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4448                         Result);
4449  }
4450
4451  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4452  // load the value at address GV, not the value of GV itself. This means that
4453  // the GlobalAddress must be in the base or index register of the address, not
4454  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4455  // The same applies for external symbols during PIC codegen
4456  if (ExtraLoadRequired)
4457    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4458                         PseudoSourceValue::getGOT(), 0);
4459
4460  // If there was a non-zero offset that we didn't fold, create an explicit
4461  // addition for it.
4462  if (Offset != 0)
4463    Result = DAG.getNode(ISD::ADD, getPointerTy(), Result,
4464                         DAG.getConstant(Offset, getPointerTy()));
4465
4466  return Result;
4467}
4468
4469SDValue
4470X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) {
4471  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4472  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
4473  return LowerGlobalAddress(GV, Offset, DAG);
4474}
4475
4476// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4477static SDValue
4478LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4479                                const MVT PtrVT) {
4480  SDValue InFlag;
4481  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4482                                     DAG.getNode(X86ISD::GlobalBaseReg,
4483                                                 PtrVT), InFlag);
4484  InFlag = Chain.getValue(1);
4485
4486  // emit leal symbol@TLSGD(,%ebx,1), %eax
4487  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4488  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4489                                             GA->getValueType(0),
4490                                             GA->getOffset());
4491  SDValue Ops[] = { Chain,  TGA, InFlag };
4492  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4493  InFlag = Result.getValue(2);
4494  Chain = Result.getValue(1);
4495
4496  // call ___tls_get_addr. This function receives its argument in
4497  // the register EAX.
4498  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4499  InFlag = Chain.getValue(1);
4500
4501  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4502  SDValue Ops1[] = { Chain,
4503                      DAG.getTargetExternalSymbol("___tls_get_addr",
4504                                                  PtrVT),
4505                      DAG.getRegister(X86::EAX, PtrVT),
4506                      DAG.getRegister(X86::EBX, PtrVT),
4507                      InFlag };
4508  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4509  InFlag = Chain.getValue(1);
4510
4511  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4512}
4513
4514// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4515static SDValue
4516LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4517                                const MVT PtrVT) {
4518  SDValue InFlag, Chain;
4519
4520  // emit leaq symbol@TLSGD(%rip), %rdi
4521  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4522  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4523                                             GA->getValueType(0),
4524                                             GA->getOffset());
4525  SDValue Ops[]  = { DAG.getEntryNode(), TGA};
4526  SDValue Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4527  Chain  = Result.getValue(1);
4528  InFlag = Result.getValue(2);
4529
4530  // call __tls_get_addr. This function receives its argument in
4531  // the register RDI.
4532  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4533  InFlag = Chain.getValue(1);
4534
4535  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4536  SDValue Ops1[] = { Chain,
4537                      DAG.getTargetExternalSymbol("__tls_get_addr",
4538                                                  PtrVT),
4539                      DAG.getRegister(X86::RDI, PtrVT),
4540                      InFlag };
4541  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4542  InFlag = Chain.getValue(1);
4543
4544  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4545}
4546
4547// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4548// "local exec" model.
4549static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4550                                     const MVT PtrVT) {
4551  // Get the Thread Pointer
4552  SDValue ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4553  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4554  // exec)
4555  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4556                                             GA->getValueType(0),
4557                                             GA->getOffset());
4558  SDValue Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4559
4560  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4561    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4562                         PseudoSourceValue::getGOT(), 0);
4563
4564  // The address of the thread local variable is the add of the thread
4565  // pointer with the offset of the variable.
4566  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4567}
4568
4569SDValue
4570X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) {
4571  // TODO: implement the "local dynamic" model
4572  // TODO: implement the "initial exec"model for pic executables
4573  assert(Subtarget->isTargetELF() &&
4574         "TLS not implemented for non-ELF targets");
4575  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4576  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4577  // otherwise use the "Local Exec"TLS Model
4578  if (Subtarget->is64Bit()) {
4579    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4580  } else {
4581    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4582      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4583    else
4584      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4585  }
4586}
4587
4588SDValue
4589X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) {
4590  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4591  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4592  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4593  // With PIC, the address is actually $g + Offset.
4594  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4595      !Subtarget->isPICStyleRIPRel()) {
4596    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4597                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4598                         Result);
4599  }
4600
4601  return Result;
4602}
4603
4604SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) {
4605  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4606  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4607  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4608  // With PIC, the address is actually $g + Offset.
4609  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4610      !Subtarget->isPICStyleRIPRel()) {
4611    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4612                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4613                         Result);
4614  }
4615
4616  return Result;
4617}
4618
4619/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4620/// take a 2 x i32 value to shift plus a shift amount.
4621SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) {
4622  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4623  MVT VT = Op.getValueType();
4624  unsigned VTBits = VT.getSizeInBits();
4625  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4626  SDValue ShOpLo = Op.getOperand(0);
4627  SDValue ShOpHi = Op.getOperand(1);
4628  SDValue ShAmt  = Op.getOperand(2);
4629  SDValue Tmp1 = isSRA ?
4630    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4631    DAG.getConstant(0, VT);
4632
4633  SDValue Tmp2, Tmp3;
4634  if (Op.getOpcode() == ISD::SHL_PARTS) {
4635    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4636    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4637  } else {
4638    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4639    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4640  }
4641
4642  SDValue AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4643                                  DAG.getConstant(VTBits, MVT::i8));
4644  SDValue Cond = DAG.getNode(X86ISD::CMP, VT,
4645                               AndNode, DAG.getConstant(0, MVT::i8));
4646
4647  SDValue Hi, Lo;
4648  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4649  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
4650  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
4651
4652  if (Op.getOpcode() == ISD::SHL_PARTS) {
4653    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4654    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4655  } else {
4656    Lo = DAG.getNode(X86ISD::CMOV, VT, Ops0, 4);
4657    Hi = DAG.getNode(X86ISD::CMOV, VT, Ops1, 4);
4658  }
4659
4660  SDValue Ops[2] = { Lo, Hi };
4661  return DAG.getMergeValues(Ops, 2);
4662}
4663
4664SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4665  MVT SrcVT = Op.getOperand(0).getValueType();
4666  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
4667         "Unknown SINT_TO_FP to lower!");
4668
4669  // These are really Legal; caller falls through into that case.
4670  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4671    return SDValue();
4672  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4673      Subtarget->is64Bit())
4674    return SDValue();
4675
4676  unsigned Size = SrcVT.getSizeInBits()/8;
4677  MachineFunction &MF = DAG.getMachineFunction();
4678  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4679  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4680  SDValue Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4681                                 StackSlot,
4682                                 PseudoSourceValue::getFixedStack(SSFI), 0);
4683
4684  // Build the FILD
4685  SDVTList Tys;
4686  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4687  if (useSSE)
4688    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4689  else
4690    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4691  SmallVector<SDValue, 8> Ops;
4692  Ops.push_back(Chain);
4693  Ops.push_back(StackSlot);
4694  Ops.push_back(DAG.getValueType(SrcVT));
4695  SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4696                                 Tys, &Ops[0], Ops.size());
4697
4698  if (useSSE) {
4699    Chain = Result.getValue(1);
4700    SDValue InFlag = Result.getValue(2);
4701
4702    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4703    // shouldn't be necessary except that RFP cannot be live across
4704    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4705    MachineFunction &MF = DAG.getMachineFunction();
4706    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4707    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4708    Tys = DAG.getVTList(MVT::Other);
4709    SmallVector<SDValue, 8> Ops;
4710    Ops.push_back(Chain);
4711    Ops.push_back(Result);
4712    Ops.push_back(StackSlot);
4713    Ops.push_back(DAG.getValueType(Op.getValueType()));
4714    Ops.push_back(InFlag);
4715    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4716    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4717                         PseudoSourceValue::getFixedStack(SSFI), 0);
4718  }
4719
4720  return Result;
4721}
4722
4723SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4724  MVT SrcVT = Op.getOperand(0).getValueType();
4725  assert(SrcVT.getSimpleVT() == MVT::i64 && "Unknown UINT_TO_FP to lower!");
4726
4727  // We only handle SSE2 f64 target here; caller can handle the rest.
4728  if (Op.getValueType() != MVT::f64 || !X86ScalarSSEf64)
4729    return SDValue();
4730
4731  // This algorithm is not obvious.  Here it is in C code, more or less:
4732/*
4733 double uint64_to_double( uint32_t hi, uint32_t lo )
4734  {
4735    static const __m128i exp = { 0x4330000045300000ULL, 0 };
4736    static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
4737
4738    // copy ints to xmm registers
4739    __m128i xh = _mm_cvtsi32_si128( hi );
4740    __m128i xl = _mm_cvtsi32_si128( lo );
4741
4742    // combine into low half of a single xmm register
4743    __m128i x = _mm_unpacklo_epi32( xh, xl );
4744    __m128d d;
4745    double sd;
4746
4747    // merge in appropriate exponents to give the integer bits the
4748    // right magnitude
4749    x = _mm_unpacklo_epi32( x, exp );
4750
4751    // subtract away the biases to deal with the IEEE-754 double precision
4752    // implicit 1
4753    d = _mm_sub_pd( (__m128d) x, bias );
4754
4755    // All conversions up to here are exact. The correctly rounded result is
4756    // calculated using the
4757    // current rounding mode using the following horizontal add.
4758    d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
4759    _mm_store_sd( &sd, d );   //since we are returning doubles in XMM, this
4760    // store doesn't really need to be here (except maybe to zero the other
4761    // double)
4762    return sd;
4763  }
4764*/
4765
4766  // Build some magic constants.
4767  std::vector<Constant*>CV0;
4768  CV0.push_back(ConstantInt::get(APInt(32, 0x45300000)));
4769  CV0.push_back(ConstantInt::get(APInt(32, 0x43300000)));
4770  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4771  CV0.push_back(ConstantInt::get(APInt(32, 0)));
4772  Constant *C0 = ConstantVector::get(CV0);
4773  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 4);
4774
4775  std::vector<Constant*>CV1;
4776  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4530000000000000ULL))));
4777  CV1.push_back(ConstantFP::get(APFloat(APInt(64, 0x4330000000000000ULL))));
4778  Constant *C1 = ConstantVector::get(CV1);
4779  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 4);
4780
4781  SmallVector<SDValue, 4> MaskVec;
4782  MaskVec.push_back(DAG.getConstant(0, MVT::i32));
4783  MaskVec.push_back(DAG.getConstant(4, MVT::i32));
4784  MaskVec.push_back(DAG.getConstant(1, MVT::i32));
4785  MaskVec.push_back(DAG.getConstant(5, MVT::i32));
4786  SDValue UnpcklMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, &MaskVec[0],
4787                                   MaskVec.size());
4788  SmallVector<SDValue, 4> MaskVec2;
4789  MaskVec2.push_back(DAG.getConstant(1, MVT::i32));
4790  MaskVec2.push_back(DAG.getConstant(0, MVT::i32));
4791  SDValue ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec2[0],
4792                                 MaskVec2.size());
4793
4794  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4795                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4796                                        Op.getOperand(0),
4797                                        DAG.getIntPtrConstant(1)));
4798  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4i32,
4799                            DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
4800                                        Op.getOperand(0),
4801                                        DAG.getIntPtrConstant(0)));
4802  SDValue Unpck1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4803                                XR1, XR2, UnpcklMask);
4804  SDValue CLod0 = DAG.getLoad(MVT::v4i32, DAG.getEntryNode(), CPIdx0,
4805                         PseudoSourceValue::getConstantPool(), 0, false, 16);
4806  SDValue Unpck2 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32,
4807                                Unpck1, CLod0, UnpcklMask);
4808  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, MVT::v2f64, Unpck2);
4809  SDValue CLod1 = DAG.getLoad(MVT::v2f64, CLod0.getValue(1), CPIdx1,
4810                         PseudoSourceValue::getConstantPool(), 0, false, 16);
4811  SDValue Sub = DAG.getNode(ISD::FSUB, MVT::v2f64, XR2F, CLod1);
4812  // Add the halves; easiest way is to swap them into another reg first.
4813  SDValue Shuf = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2f64,
4814                             Sub, Sub, ShufMask);
4815  SDValue Add = DAG.getNode(ISD::FADD, MVT::v2f64, Shuf, Sub);
4816  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f64, Add,
4817                     DAG.getIntPtrConstant(0));
4818}
4819
4820std::pair<SDValue,SDValue> X86TargetLowering::
4821FP_TO_SINTHelper(SDValue Op, SelectionDAG &DAG) {
4822  assert(Op.getValueType().getSimpleVT() <= MVT::i64 &&
4823         Op.getValueType().getSimpleVT() >= MVT::i16 &&
4824         "Unknown FP_TO_SINT to lower!");
4825
4826  // These are really Legal.
4827  if (Op.getValueType() == MVT::i32 &&
4828      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4829    return std::make_pair(SDValue(), SDValue());
4830  if (Subtarget->is64Bit() &&
4831      Op.getValueType() == MVT::i64 &&
4832      Op.getOperand(0).getValueType() != MVT::f80)
4833    return std::make_pair(SDValue(), SDValue());
4834
4835  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4836  // stack slot.
4837  MachineFunction &MF = DAG.getMachineFunction();
4838  unsigned MemSize = Op.getValueType().getSizeInBits()/8;
4839  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4840  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4841  unsigned Opc;
4842  switch (Op.getValueType().getSimpleVT()) {
4843  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4844  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4845  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4846  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4847  }
4848
4849  SDValue Chain = DAG.getEntryNode();
4850  SDValue Value = Op.getOperand(0);
4851  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4852    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4853    Chain = DAG.getStore(Chain, Value, StackSlot,
4854                         PseudoSourceValue::getFixedStack(SSFI), 0);
4855    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4856    SDValue Ops[] = {
4857      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4858    };
4859    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4860    Chain = Value.getValue(1);
4861    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4862    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4863  }
4864
4865  // Build the FP_TO_INT*_IN_MEM
4866  SDValue Ops[] = { Chain, Value, StackSlot };
4867  SDValue FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4868
4869  return std::make_pair(FIST, StackSlot);
4870}
4871
4872SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
4873  std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(Op, DAG);
4874  SDValue FIST = Vals.first, StackSlot = Vals.second;
4875  if (FIST.getNode() == 0) return SDValue();
4876
4877  // Load the result.
4878  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4879}
4880
4881SDValue X86TargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) {
4882  MVT VT = Op.getValueType();
4883  MVT EltVT = VT;
4884  if (VT.isVector())
4885    EltVT = VT.getVectorElementType();
4886  std::vector<Constant*> CV;
4887  if (EltVT == MVT::f64) {
4888    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4889    CV.push_back(C);
4890    CV.push_back(C);
4891  } else {
4892    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4893    CV.push_back(C);
4894    CV.push_back(C);
4895    CV.push_back(C);
4896    CV.push_back(C);
4897  }
4898  Constant *C = ConstantVector::get(CV);
4899  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4900  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4901                               PseudoSourceValue::getConstantPool(), 0,
4902                               false, 16);
4903  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4904}
4905
4906SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) {
4907  MVT VT = Op.getValueType();
4908  MVT EltVT = VT;
4909  unsigned EltNum = 1;
4910  if (VT.isVector()) {
4911    EltVT = VT.getVectorElementType();
4912    EltNum = VT.getVectorNumElements();
4913  }
4914  std::vector<Constant*> CV;
4915  if (EltVT == MVT::f64) {
4916    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4917    CV.push_back(C);
4918    CV.push_back(C);
4919  } else {
4920    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4921    CV.push_back(C);
4922    CV.push_back(C);
4923    CV.push_back(C);
4924    CV.push_back(C);
4925  }
4926  Constant *C = ConstantVector::get(CV);
4927  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4928  SDValue Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4929                               PseudoSourceValue::getConstantPool(), 0,
4930                               false, 16);
4931  if (VT.isVector()) {
4932    return DAG.getNode(ISD::BIT_CONVERT, VT,
4933                       DAG.getNode(ISD::XOR, MVT::v2i64,
4934                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4935                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4936  } else {
4937    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4938  }
4939}
4940
4941SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
4942  SDValue Op0 = Op.getOperand(0);
4943  SDValue Op1 = Op.getOperand(1);
4944  MVT VT = Op.getValueType();
4945  MVT SrcVT = Op1.getValueType();
4946
4947  // If second operand is smaller, extend it first.
4948  if (SrcVT.bitsLT(VT)) {
4949    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4950    SrcVT = VT;
4951  }
4952  // And if it is bigger, shrink it first.
4953  if (SrcVT.bitsGT(VT)) {
4954    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4955    SrcVT = VT;
4956  }
4957
4958  // At this point the operands and the result should have the same
4959  // type, and that won't be f80 since that is not custom lowered.
4960
4961  // First get the sign bit of second operand.
4962  std::vector<Constant*> CV;
4963  if (SrcVT == MVT::f64) {
4964    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4965    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4966  } else {
4967    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4968    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4969    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4970    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4971  }
4972  Constant *C = ConstantVector::get(CV);
4973  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4974  SDValue Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4975                                PseudoSourceValue::getConstantPool(), 0,
4976                                false, 16);
4977  SDValue SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4978
4979  // Shift sign bit right or left if the two operands have different types.
4980  if (SrcVT.bitsGT(VT)) {
4981    // Op0 is MVT::f32, Op1 is MVT::f64.
4982    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4983    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4984                          DAG.getConstant(32, MVT::i32));
4985    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4986    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4987                          DAG.getIntPtrConstant(0));
4988  }
4989
4990  // Clear first operand sign bit.
4991  CV.clear();
4992  if (VT == MVT::f64) {
4993    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4994    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4995  } else {
4996    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4997    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4998    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4999    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
5000  }
5001  C = ConstantVector::get(CV);
5002  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
5003  SDValue Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
5004                                PseudoSourceValue::getConstantPool(), 0,
5005                                false, 16);
5006  SDValue Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
5007
5008  // Or the value with the sign bit.
5009  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
5010}
5011
5012SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) {
5013  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
5014  SDValue Cond;
5015  SDValue Op0 = Op.getOperand(0);
5016  SDValue Op1 = Op.getOperand(1);
5017  SDValue CC = Op.getOperand(2);
5018  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5019  unsigned X86CC;
5020
5021  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
5022                     Op0, Op1, DAG)) {
5023    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
5024    return DAG.getNode(X86ISD::SETCC, MVT::i8,
5025                       DAG.getConstant(X86CC, MVT::i8), Cond);
5026  }
5027
5028  assert(0 && "Illegal SetCC!");
5029  return SDValue();
5030}
5031
5032SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
5033  SDValue Cond;
5034  SDValue Op0 = Op.getOperand(0);
5035  SDValue Op1 = Op.getOperand(1);
5036  SDValue CC = Op.getOperand(2);
5037  MVT VT = Op.getValueType();
5038  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
5039  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
5040
5041  if (isFP) {
5042    unsigned SSECC = 8;
5043    MVT VT0 = Op0.getValueType();
5044    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
5045    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
5046    bool Swap = false;
5047
5048    switch (SetCCOpcode) {
5049    default: break;
5050    case ISD::SETOEQ:
5051    case ISD::SETEQ:  SSECC = 0; break;
5052    case ISD::SETOGT:
5053    case ISD::SETGT: Swap = true; // Fallthrough
5054    case ISD::SETLT:
5055    case ISD::SETOLT: SSECC = 1; break;
5056    case ISD::SETOGE:
5057    case ISD::SETGE: Swap = true; // Fallthrough
5058    case ISD::SETLE:
5059    case ISD::SETOLE: SSECC = 2; break;
5060    case ISD::SETUO:  SSECC = 3; break;
5061    case ISD::SETUNE:
5062    case ISD::SETNE:  SSECC = 4; break;
5063    case ISD::SETULE: Swap = true;
5064    case ISD::SETUGE: SSECC = 5; break;
5065    case ISD::SETULT: Swap = true;
5066    case ISD::SETUGT: SSECC = 6; break;
5067    case ISD::SETO:   SSECC = 7; break;
5068    }
5069    if (Swap)
5070      std::swap(Op0, Op1);
5071
5072    // In the two special cases we can't handle, emit two comparisons.
5073    if (SSECC == 8) {
5074      if (SetCCOpcode == ISD::SETUEQ) {
5075        SDValue UNORD, EQ;
5076        UNORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
5077        EQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
5078        return DAG.getNode(ISD::OR, VT, UNORD, EQ);
5079      }
5080      else if (SetCCOpcode == ISD::SETONE) {
5081        SDValue ORD, NEQ;
5082        ORD = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
5083        NEQ = DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
5084        return DAG.getNode(ISD::AND, VT, ORD, NEQ);
5085      }
5086      assert(0 && "Illegal FP comparison");
5087    }
5088    // Handle all other FP comparisons here.
5089    return DAG.getNode(Opc, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
5090  }
5091
5092  // We are handling one of the integer comparisons here.  Since SSE only has
5093  // GT and EQ comparisons for integer, swapping operands and multiple
5094  // operations may be required for some comparisons.
5095  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
5096  bool Swap = false, Invert = false, FlipSigns = false;
5097
5098  switch (VT.getSimpleVT()) {
5099  default: break;
5100  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
5101  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
5102  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
5103  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
5104  }
5105
5106  switch (SetCCOpcode) {
5107  default: break;
5108  case ISD::SETNE:  Invert = true;
5109  case ISD::SETEQ:  Opc = EQOpc; break;
5110  case ISD::SETLT:  Swap = true;
5111  case ISD::SETGT:  Opc = GTOpc; break;
5112  case ISD::SETGE:  Swap = true;
5113  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
5114  case ISD::SETULT: Swap = true;
5115  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
5116  case ISD::SETUGE: Swap = true;
5117  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
5118  }
5119  if (Swap)
5120    std::swap(Op0, Op1);
5121
5122  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
5123  // bits of the inputs before performing those operations.
5124  if (FlipSigns) {
5125    MVT EltVT = VT.getVectorElementType();
5126    SDValue SignBit = DAG.getConstant(EltVT.getIntegerVTSignBit(), EltVT);
5127    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
5128    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, VT, &SignBits[0],
5129                                    SignBits.size());
5130    Op0 = DAG.getNode(ISD::XOR, VT, Op0, SignVec);
5131    Op1 = DAG.getNode(ISD::XOR, VT, Op1, SignVec);
5132  }
5133
5134  SDValue Result = DAG.getNode(Opc, VT, Op0, Op1);
5135
5136  // If the logical-not of the result is required, perform that now.
5137  if (Invert) {
5138    MVT EltVT = VT.getVectorElementType();
5139    SDValue NegOne = DAG.getConstant(EltVT.getIntegerVTBitMask(), EltVT);
5140    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOne);
5141    SDValue NegOneV = DAG.getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0],
5142                                    NegOnes.size());
5143    Result = DAG.getNode(ISD::XOR, VT, Result, NegOneV);
5144  }
5145  return Result;
5146}
5147
5148// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
5149static bool isX86LogicalCmp(unsigned Opc) {
5150  return Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI;
5151}
5152
5153SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) {
5154  bool addTest = true;
5155  SDValue Cond  = Op.getOperand(0);
5156  SDValue CC;
5157
5158  if (Cond.getOpcode() == ISD::SETCC)
5159    Cond = LowerSETCC(Cond, DAG);
5160
5161  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5162  // setting operand in place of the X86ISD::SETCC.
5163  if (Cond.getOpcode() == X86ISD::SETCC) {
5164    CC = Cond.getOperand(0);
5165
5166    SDValue Cmp = Cond.getOperand(1);
5167    unsigned Opc = Cmp.getOpcode();
5168    MVT VT = Op.getValueType();
5169
5170    bool IllegalFPCMov = false;
5171    if (VT.isFloatingPoint() && !VT.isVector() &&
5172        !isScalarFPTypeInSSEReg(VT))  // FPStack?
5173      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
5174
5175    if (isX86LogicalCmp(Opc) && !IllegalFPCMov) {
5176      Cond = Cmp;
5177      addTest = false;
5178    }
5179  }
5180
5181  if (addTest) {
5182    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5183    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5184  }
5185
5186  const MVT *VTs = DAG.getNodeValueTypes(Op.getValueType(),
5187                                                    MVT::Flag);
5188  SmallVector<SDValue, 4> Ops;
5189  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
5190  // condition is true.
5191  Ops.push_back(Op.getOperand(2));
5192  Ops.push_back(Op.getOperand(1));
5193  Ops.push_back(CC);
5194  Ops.push_back(Cond);
5195  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
5196}
5197
5198// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
5199// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
5200// from the AND / OR.
5201static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
5202  Opc = Op.getOpcode();
5203  if (Opc != ISD::OR && Opc != ISD::AND)
5204    return false;
5205  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
5206          Op.getOperand(0).hasOneUse() &&
5207          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
5208          Op.getOperand(1).hasOneUse());
5209}
5210
5211SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) {
5212  bool addTest = true;
5213  SDValue Chain = Op.getOperand(0);
5214  SDValue Cond  = Op.getOperand(1);
5215  SDValue Dest  = Op.getOperand(2);
5216  SDValue CC;
5217
5218  if (Cond.getOpcode() == ISD::SETCC)
5219    Cond = LowerSETCC(Cond, DAG);
5220  else if (Cond.getOpcode() == X86ISD::ADD  ||
5221           Cond.getOpcode() == X86ISD::SUB  ||
5222           Cond.getOpcode() == X86ISD::SMUL ||
5223           Cond.getOpcode() == X86ISD::UMUL)
5224    Cond = LowerXALUO(Cond, DAG);
5225
5226  // If condition flag is set by a X86ISD::CMP, then use it as the condition
5227  // setting operand in place of the X86ISD::SETCC.
5228  if (Cond.getOpcode() == X86ISD::SETCC) {
5229    CC = Cond.getOperand(0);
5230
5231    SDValue Cmp = Cond.getOperand(1);
5232    unsigned Opc = Cmp.getOpcode();
5233    if (isX86LogicalCmp(Opc)) {
5234      Cond = Cmp;
5235      addTest = false;
5236    } else {
5237      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
5238      default: break;
5239      case X86::COND_O:
5240      case X86::COND_C:
5241        // These can only come from an arithmetic instruction with overflow, e.g.
5242        // SADDO, UADDO.
5243        Cond = Cond.getNode()->getOperand(1);
5244        addTest = false;
5245        break;
5246      }
5247    }
5248  } else {
5249    unsigned CondOpc;
5250    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
5251      SDValue Cmp = Cond.getOperand(0).getOperand(1);
5252      unsigned Opc = Cmp.getOpcode();
5253      if (CondOpc == ISD::OR) {
5254        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
5255        // two branches instead of an explicit OR instruction with a
5256        // separate test.
5257        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5258            isX86LogicalCmp(Opc)) {
5259          CC = Cond.getOperand(0).getOperand(0);
5260          Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5261                              Chain, Dest, CC, Cmp);
5262          CC = Cond.getOperand(1).getOperand(0);
5263          Cond = Cmp;
5264          addTest = false;
5265        }
5266      } else { // ISD::AND
5267        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
5268        // two branches instead of an explicit AND instruction with a
5269        // separate test. However, we only do this if this block doesn't
5270        // have a fall-through edge, because this requires an explicit
5271        // jmp when the condition is false.
5272        if (Cmp == Cond.getOperand(1).getOperand(1) &&
5273            isX86LogicalCmp(Opc) &&
5274            Op.getNode()->hasOneUse()) {
5275          X86::CondCode CCode =
5276            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
5277          CCode = X86::GetOppositeBranchCondition(CCode);
5278          CC = DAG.getConstant(CCode, MVT::i8);
5279          SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
5280          // Look for an unconditional branch following this conditional branch.
5281          // We need this because we need to reverse the successors in order
5282          // to implement FCMP_OEQ.
5283          if (User.getOpcode() == ISD::BR) {
5284            SDValue FalseBB = User.getOperand(1);
5285            SDValue NewBR =
5286              DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
5287            assert(NewBR == User);
5288            Dest = FalseBB;
5289
5290            Chain = DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5291                                Chain, Dest, CC, Cmp);
5292            X86::CondCode CCode =
5293              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
5294            CCode = X86::GetOppositeBranchCondition(CCode);
5295            CC = DAG.getConstant(CCode, MVT::i8);
5296            Cond = Cmp;
5297            addTest = false;
5298          }
5299        }
5300      }
5301    }
5302  }
5303
5304  if (addTest) {
5305    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
5306    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
5307  }
5308  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
5309                     Chain, Dest, CC, Cond);
5310}
5311
5312
5313// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
5314// Calls to _alloca is needed to probe the stack when allocating more than 4k
5315// bytes in one go. Touching the stack at 4K increments is necessary to ensure
5316// that the guard pages used by the OS virtual memory manager are allocated in
5317// correct sequence.
5318SDValue
5319X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
5320                                           SelectionDAG &DAG) {
5321  assert(Subtarget->isTargetCygMing() &&
5322         "This should be used only on Cygwin/Mingw targets");
5323
5324  // Get the inputs.
5325  SDValue Chain = Op.getOperand(0);
5326  SDValue Size  = Op.getOperand(1);
5327  // FIXME: Ensure alignment here
5328
5329  SDValue Flag;
5330
5331  MVT IntPtr = getPointerTy();
5332  MVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
5333
5334  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
5335
5336  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
5337  Flag = Chain.getValue(1);
5338
5339  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
5340  SDValue Ops[] = { Chain,
5341                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
5342                      DAG.getRegister(X86::EAX, IntPtr),
5343                      DAG.getRegister(X86StackPtr, SPTy),
5344                      Flag };
5345  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 5);
5346  Flag = Chain.getValue(1);
5347
5348  Chain = DAG.getCALLSEQ_END(Chain,
5349                             DAG.getIntPtrConstant(0, true),
5350                             DAG.getIntPtrConstant(0, true),
5351                             Flag);
5352
5353  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
5354
5355  SDValue Ops1[2] = { Chain.getValue(0), Chain };
5356  return DAG.getMergeValues(Ops1, 2);
5357}
5358
5359SDValue
5360X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
5361                                           SDValue Chain,
5362                                           SDValue Dst, SDValue Src,
5363                                           SDValue Size, unsigned Align,
5364                                           const Value *DstSV,
5365                                           uint64_t DstSVOff) {
5366  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5367
5368  // If not DWORD aligned or size is more than the threshold, call the library.
5369  // The libc version is likely to be faster for these cases. It can use the
5370  // address value and run time information about the CPU.
5371  if ((Align & 3) != 0 ||
5372      !ConstantSize ||
5373      ConstantSize->getZExtValue() >
5374        getSubtarget()->getMaxInlineSizeThreshold()) {
5375    SDValue InFlag(0, 0);
5376
5377    // Check to see if there is a specialized entry-point for memory zeroing.
5378    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
5379
5380    if (const char *bzeroEntry =  V &&
5381        V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
5382      MVT IntPtr = getPointerTy();
5383      const Type *IntPtrTy = TD->getIntPtrType();
5384      TargetLowering::ArgListTy Args;
5385      TargetLowering::ArgListEntry Entry;
5386      Entry.Node = Dst;
5387      Entry.Ty = IntPtrTy;
5388      Args.push_back(Entry);
5389      Entry.Node = Size;
5390      Args.push_back(Entry);
5391      std::pair<SDValue,SDValue> CallResult =
5392        LowerCallTo(Chain, Type::VoidTy, false, false, false, false,
5393                    CallingConv::C, false,
5394                    DAG.getExternalSymbol(bzeroEntry, IntPtr), Args, DAG);
5395      return CallResult.second;
5396    }
5397
5398    // Otherwise have the target-independent code call memset.
5399    return SDValue();
5400  }
5401
5402  uint64_t SizeVal = ConstantSize->getZExtValue();
5403  SDValue InFlag(0, 0);
5404  MVT AVT;
5405  SDValue Count;
5406  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
5407  unsigned BytesLeft = 0;
5408  bool TwoRepStos = false;
5409  if (ValC) {
5410    unsigned ValReg;
5411    uint64_t Val = ValC->getZExtValue() & 255;
5412
5413    // If the value is a constant, then we can potentially use larger sets.
5414    switch (Align & 3) {
5415    case 2:   // WORD aligned
5416      AVT = MVT::i16;
5417      ValReg = X86::AX;
5418      Val = (Val << 8) | Val;
5419      break;
5420    case 0:  // DWORD aligned
5421      AVT = MVT::i32;
5422      ValReg = X86::EAX;
5423      Val = (Val << 8)  | Val;
5424      Val = (Val << 16) | Val;
5425      if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
5426        AVT = MVT::i64;
5427        ValReg = X86::RAX;
5428        Val = (Val << 32) | Val;
5429      }
5430      break;
5431    default:  // Byte aligned
5432      AVT = MVT::i8;
5433      ValReg = X86::AL;
5434      Count = DAG.getIntPtrConstant(SizeVal);
5435      break;
5436    }
5437
5438    if (AVT.bitsGT(MVT::i8)) {
5439      unsigned UBytes = AVT.getSizeInBits() / 8;
5440      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
5441      BytesLeft = SizeVal % UBytes;
5442    }
5443
5444    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
5445                              InFlag);
5446    InFlag = Chain.getValue(1);
5447  } else {
5448    AVT = MVT::i8;
5449    Count  = DAG.getIntPtrConstant(SizeVal);
5450    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
5451    InFlag = Chain.getValue(1);
5452  }
5453
5454  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5455                            Count, InFlag);
5456  InFlag = Chain.getValue(1);
5457  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5458                            Dst, InFlag);
5459  InFlag = Chain.getValue(1);
5460
5461  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5462  SmallVector<SDValue, 8> Ops;
5463  Ops.push_back(Chain);
5464  Ops.push_back(DAG.getValueType(AVT));
5465  Ops.push_back(InFlag);
5466  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5467
5468  if (TwoRepStos) {
5469    InFlag = Chain.getValue(1);
5470    Count  = Size;
5471    MVT CVT = Count.getValueType();
5472    SDValue Left = DAG.getNode(ISD::AND, CVT, Count,
5473                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
5474    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
5475                              Left, InFlag);
5476    InFlag = Chain.getValue(1);
5477    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5478    Ops.clear();
5479    Ops.push_back(Chain);
5480    Ops.push_back(DAG.getValueType(MVT::i8));
5481    Ops.push_back(InFlag);
5482    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
5483  } else if (BytesLeft) {
5484    // Handle the last 1 - 7 bytes.
5485    unsigned Offset = SizeVal - BytesLeft;
5486    MVT AddrVT = Dst.getValueType();
5487    MVT SizeVT = Size.getValueType();
5488
5489    Chain = DAG.getMemset(Chain,
5490                          DAG.getNode(ISD::ADD, AddrVT, Dst,
5491                                      DAG.getConstant(Offset, AddrVT)),
5492                          Src,
5493                          DAG.getConstant(BytesLeft, SizeVT),
5494                          Align, DstSV, DstSVOff + Offset);
5495  }
5496
5497  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
5498  return Chain;
5499}
5500
5501SDValue
5502X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
5503                                      SDValue Chain, SDValue Dst, SDValue Src,
5504                                      SDValue Size, unsigned Align,
5505                                      bool AlwaysInline,
5506                                      const Value *DstSV, uint64_t DstSVOff,
5507                                      const Value *SrcSV, uint64_t SrcSVOff) {
5508  // This requires the copy size to be a constant, preferrably
5509  // within a subtarget-specific limit.
5510  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
5511  if (!ConstantSize)
5512    return SDValue();
5513  uint64_t SizeVal = ConstantSize->getZExtValue();
5514  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
5515    return SDValue();
5516
5517  /// If not DWORD aligned, call the library.
5518  if ((Align & 3) != 0)
5519    return SDValue();
5520
5521  // DWORD aligned
5522  MVT AVT = MVT::i32;
5523  if (Subtarget->is64Bit() && ((Align & 0x7) == 0))  // QWORD aligned
5524    AVT = MVT::i64;
5525
5526  unsigned UBytes = AVT.getSizeInBits() / 8;
5527  unsigned CountVal = SizeVal / UBytes;
5528  SDValue Count = DAG.getIntPtrConstant(CountVal);
5529  unsigned BytesLeft = SizeVal % UBytes;
5530
5531  SDValue InFlag(0, 0);
5532  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
5533                            Count, InFlag);
5534  InFlag = Chain.getValue(1);
5535  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
5536                            Dst, InFlag);
5537  InFlag = Chain.getValue(1);
5538  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
5539                            Src, InFlag);
5540  InFlag = Chain.getValue(1);
5541
5542  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5543  SmallVector<SDValue, 8> Ops;
5544  Ops.push_back(Chain);
5545  Ops.push_back(DAG.getValueType(AVT));
5546  Ops.push_back(InFlag);
5547  SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
5548
5549  SmallVector<SDValue, 4> Results;
5550  Results.push_back(RepMovs);
5551  if (BytesLeft) {
5552    // Handle the last 1 - 7 bytes.
5553    unsigned Offset = SizeVal - BytesLeft;
5554    MVT DstVT = Dst.getValueType();
5555    MVT SrcVT = Src.getValueType();
5556    MVT SizeVT = Size.getValueType();
5557    Results.push_back(DAG.getMemcpy(Chain,
5558                                    DAG.getNode(ISD::ADD, DstVT, Dst,
5559                                                DAG.getConstant(Offset, DstVT)),
5560                                    DAG.getNode(ISD::ADD, SrcVT, Src,
5561                                                DAG.getConstant(Offset, SrcVT)),
5562                                    DAG.getConstant(BytesLeft, SizeVT),
5563                                    Align, AlwaysInline,
5564                                    DstSV, DstSVOff + Offset,
5565                                    SrcSV, SrcSVOff + Offset));
5566  }
5567
5568  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
5569}
5570
5571SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) {
5572  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
5573
5574  if (!Subtarget->is64Bit()) {
5575    // vastart just stores the address of the VarArgsFrameIndex slot into the
5576    // memory location argument.
5577    SDValue FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5578    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
5579  }
5580
5581  // __va_list_tag:
5582  //   gp_offset         (0 - 6 * 8)
5583  //   fp_offset         (48 - 48 + 8 * 16)
5584  //   overflow_arg_area (point to parameters coming in memory).
5585  //   reg_save_area
5586  SmallVector<SDValue, 8> MemOps;
5587  SDValue FIN = Op.getOperand(1);
5588  // Store gp_offset
5589  SDValue Store = DAG.getStore(Op.getOperand(0),
5590                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
5591                                 FIN, SV, 0);
5592  MemOps.push_back(Store);
5593
5594  // Store fp_offset
5595  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5596  Store = DAG.getStore(Op.getOperand(0),
5597                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
5598                       FIN, SV, 0);
5599  MemOps.push_back(Store);
5600
5601  // Store ptr to overflow_arg_area
5602  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
5603  SDValue OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
5604  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
5605  MemOps.push_back(Store);
5606
5607  // Store ptr to reg_save_area.
5608  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
5609  SDValue RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
5610  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
5611  MemOps.push_back(Store);
5612  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
5613}
5614
5615SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) {
5616  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5617  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
5618  SDValue Chain = Op.getOperand(0);
5619  SDValue SrcPtr = Op.getOperand(1);
5620  SDValue SrcSV = Op.getOperand(2);
5621
5622  assert(0 && "VAArgInst is not yet implemented for x86-64!");
5623  abort();
5624  return SDValue();
5625}
5626
5627SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) {
5628  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5629  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5630  SDValue Chain = Op.getOperand(0);
5631  SDValue DstPtr = Op.getOperand(1);
5632  SDValue SrcPtr = Op.getOperand(2);
5633  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5634  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5635
5636  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5637                       DAG.getIntPtrConstant(24), 8, false,
5638                       DstSV, 0, SrcSV, 0);
5639}
5640
5641SDValue
5642X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) {
5643  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5644  switch (IntNo) {
5645  default: return SDValue();    // Don't custom lower most intrinsics.
5646  // Comparison intrinsics.
5647  case Intrinsic::x86_sse_comieq_ss:
5648  case Intrinsic::x86_sse_comilt_ss:
5649  case Intrinsic::x86_sse_comile_ss:
5650  case Intrinsic::x86_sse_comigt_ss:
5651  case Intrinsic::x86_sse_comige_ss:
5652  case Intrinsic::x86_sse_comineq_ss:
5653  case Intrinsic::x86_sse_ucomieq_ss:
5654  case Intrinsic::x86_sse_ucomilt_ss:
5655  case Intrinsic::x86_sse_ucomile_ss:
5656  case Intrinsic::x86_sse_ucomigt_ss:
5657  case Intrinsic::x86_sse_ucomige_ss:
5658  case Intrinsic::x86_sse_ucomineq_ss:
5659  case Intrinsic::x86_sse2_comieq_sd:
5660  case Intrinsic::x86_sse2_comilt_sd:
5661  case Intrinsic::x86_sse2_comile_sd:
5662  case Intrinsic::x86_sse2_comigt_sd:
5663  case Intrinsic::x86_sse2_comige_sd:
5664  case Intrinsic::x86_sse2_comineq_sd:
5665  case Intrinsic::x86_sse2_ucomieq_sd:
5666  case Intrinsic::x86_sse2_ucomilt_sd:
5667  case Intrinsic::x86_sse2_ucomile_sd:
5668  case Intrinsic::x86_sse2_ucomigt_sd:
5669  case Intrinsic::x86_sse2_ucomige_sd:
5670  case Intrinsic::x86_sse2_ucomineq_sd: {
5671    unsigned Opc = 0;
5672    ISD::CondCode CC = ISD::SETCC_INVALID;
5673    switch (IntNo) {
5674    default: break;
5675    case Intrinsic::x86_sse_comieq_ss:
5676    case Intrinsic::x86_sse2_comieq_sd:
5677      Opc = X86ISD::COMI;
5678      CC = ISD::SETEQ;
5679      break;
5680    case Intrinsic::x86_sse_comilt_ss:
5681    case Intrinsic::x86_sse2_comilt_sd:
5682      Opc = X86ISD::COMI;
5683      CC = ISD::SETLT;
5684      break;
5685    case Intrinsic::x86_sse_comile_ss:
5686    case Intrinsic::x86_sse2_comile_sd:
5687      Opc = X86ISD::COMI;
5688      CC = ISD::SETLE;
5689      break;
5690    case Intrinsic::x86_sse_comigt_ss:
5691    case Intrinsic::x86_sse2_comigt_sd:
5692      Opc = X86ISD::COMI;
5693      CC = ISD::SETGT;
5694      break;
5695    case Intrinsic::x86_sse_comige_ss:
5696    case Intrinsic::x86_sse2_comige_sd:
5697      Opc = X86ISD::COMI;
5698      CC = ISD::SETGE;
5699      break;
5700    case Intrinsic::x86_sse_comineq_ss:
5701    case Intrinsic::x86_sse2_comineq_sd:
5702      Opc = X86ISD::COMI;
5703      CC = ISD::SETNE;
5704      break;
5705    case Intrinsic::x86_sse_ucomieq_ss:
5706    case Intrinsic::x86_sse2_ucomieq_sd:
5707      Opc = X86ISD::UCOMI;
5708      CC = ISD::SETEQ;
5709      break;
5710    case Intrinsic::x86_sse_ucomilt_ss:
5711    case Intrinsic::x86_sse2_ucomilt_sd:
5712      Opc = X86ISD::UCOMI;
5713      CC = ISD::SETLT;
5714      break;
5715    case Intrinsic::x86_sse_ucomile_ss:
5716    case Intrinsic::x86_sse2_ucomile_sd:
5717      Opc = X86ISD::UCOMI;
5718      CC = ISD::SETLE;
5719      break;
5720    case Intrinsic::x86_sse_ucomigt_ss:
5721    case Intrinsic::x86_sse2_ucomigt_sd:
5722      Opc = X86ISD::UCOMI;
5723      CC = ISD::SETGT;
5724      break;
5725    case Intrinsic::x86_sse_ucomige_ss:
5726    case Intrinsic::x86_sse2_ucomige_sd:
5727      Opc = X86ISD::UCOMI;
5728      CC = ISD::SETGE;
5729      break;
5730    case Intrinsic::x86_sse_ucomineq_ss:
5731    case Intrinsic::x86_sse2_ucomineq_sd:
5732      Opc = X86ISD::UCOMI;
5733      CC = ISD::SETNE;
5734      break;
5735    }
5736
5737    unsigned X86CC;
5738    SDValue LHS = Op.getOperand(1);
5739    SDValue RHS = Op.getOperand(2);
5740    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5741
5742    SDValue Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5743    SDValue SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5744                                DAG.getConstant(X86CC, MVT::i8), Cond);
5745    return DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, SetCC);
5746  }
5747
5748  // Fix vector shift instructions where the last operand is a non-immediate
5749  // i32 value.
5750  case Intrinsic::x86_sse2_pslli_w:
5751  case Intrinsic::x86_sse2_pslli_d:
5752  case Intrinsic::x86_sse2_pslli_q:
5753  case Intrinsic::x86_sse2_psrli_w:
5754  case Intrinsic::x86_sse2_psrli_d:
5755  case Intrinsic::x86_sse2_psrli_q:
5756  case Intrinsic::x86_sse2_psrai_w:
5757  case Intrinsic::x86_sse2_psrai_d:
5758  case Intrinsic::x86_mmx_pslli_w:
5759  case Intrinsic::x86_mmx_pslli_d:
5760  case Intrinsic::x86_mmx_pslli_q:
5761  case Intrinsic::x86_mmx_psrli_w:
5762  case Intrinsic::x86_mmx_psrli_d:
5763  case Intrinsic::x86_mmx_psrli_q:
5764  case Intrinsic::x86_mmx_psrai_w:
5765  case Intrinsic::x86_mmx_psrai_d: {
5766    SDValue ShAmt = Op.getOperand(2);
5767    if (isa<ConstantSDNode>(ShAmt))
5768      return SDValue();
5769
5770    unsigned NewIntNo = 0;
5771    MVT ShAmtVT = MVT::v4i32;
5772    switch (IntNo) {
5773    case Intrinsic::x86_sse2_pslli_w:
5774      NewIntNo = Intrinsic::x86_sse2_psll_w;
5775      break;
5776    case Intrinsic::x86_sse2_pslli_d:
5777      NewIntNo = Intrinsic::x86_sse2_psll_d;
5778      break;
5779    case Intrinsic::x86_sse2_pslli_q:
5780      NewIntNo = Intrinsic::x86_sse2_psll_q;
5781      break;
5782    case Intrinsic::x86_sse2_psrli_w:
5783      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5784      break;
5785    case Intrinsic::x86_sse2_psrli_d:
5786      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5787      break;
5788    case Intrinsic::x86_sse2_psrli_q:
5789      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5790      break;
5791    case Intrinsic::x86_sse2_psrai_w:
5792      NewIntNo = Intrinsic::x86_sse2_psra_w;
5793      break;
5794    case Intrinsic::x86_sse2_psrai_d:
5795      NewIntNo = Intrinsic::x86_sse2_psra_d;
5796      break;
5797    default: {
5798      ShAmtVT = MVT::v2i32;
5799      switch (IntNo) {
5800      case Intrinsic::x86_mmx_pslli_w:
5801        NewIntNo = Intrinsic::x86_mmx_psll_w;
5802        break;
5803      case Intrinsic::x86_mmx_pslli_d:
5804        NewIntNo = Intrinsic::x86_mmx_psll_d;
5805        break;
5806      case Intrinsic::x86_mmx_pslli_q:
5807        NewIntNo = Intrinsic::x86_mmx_psll_q;
5808        break;
5809      case Intrinsic::x86_mmx_psrli_w:
5810        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5811        break;
5812      case Intrinsic::x86_mmx_psrli_d:
5813        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5814        break;
5815      case Intrinsic::x86_mmx_psrli_q:
5816        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5817        break;
5818      case Intrinsic::x86_mmx_psrai_w:
5819        NewIntNo = Intrinsic::x86_mmx_psra_w;
5820        break;
5821      case Intrinsic::x86_mmx_psrai_d:
5822        NewIntNo = Intrinsic::x86_mmx_psra_d;
5823        break;
5824      default: abort();  // Can't reach here.
5825      }
5826      break;
5827    }
5828    }
5829    MVT VT = Op.getValueType();
5830    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5831                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5832    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5833                       DAG.getConstant(NewIntNo, MVT::i32),
5834                       Op.getOperand(1), ShAmt);
5835  }
5836  }
5837}
5838
5839SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
5840  // Depths > 0 not supported yet!
5841  if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
5842    return SDValue();
5843
5844  // Just load the return address
5845  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
5846  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5847}
5848
5849SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
5850  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
5851  MFI->setFrameAddressIsTaken(true);
5852  MVT VT = Op.getValueType();
5853  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5854  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
5855  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), FrameReg, VT);
5856  while (Depth--)
5857    FrameAddr = DAG.getLoad(VT, DAG.getEntryNode(), FrameAddr, NULL, 0);
5858  return FrameAddr;
5859}
5860
5861SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
5862                                                     SelectionDAG &DAG) {
5863  return DAG.getIntPtrConstant(2*TD->getPointerSize());
5864}
5865
5866SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
5867{
5868  MachineFunction &MF = DAG.getMachineFunction();
5869  SDValue Chain     = Op.getOperand(0);
5870  SDValue Offset    = Op.getOperand(1);
5871  SDValue Handler   = Op.getOperand(2);
5872
5873  SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
5874                                  getPointerTy());
5875  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
5876
5877  SDValue StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5878                                  DAG.getIntPtrConstant(-TD->getPointerSize()));
5879  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5880  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5881  Chain = DAG.getCopyToReg(Chain, StoreAddrReg, StoreAddr);
5882  MF.getRegInfo().addLiveOut(StoreAddrReg);
5883
5884  return DAG.getNode(X86ISD::EH_RETURN,
5885                     MVT::Other,
5886                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
5887}
5888
5889SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
5890                                             SelectionDAG &DAG) {
5891  SDValue Root = Op.getOperand(0);
5892  SDValue Trmp = Op.getOperand(1); // trampoline
5893  SDValue FPtr = Op.getOperand(2); // nested function
5894  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
5895
5896  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5897
5898  const X86InstrInfo *TII =
5899    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5900
5901  if (Subtarget->is64Bit()) {
5902    SDValue OutChains[6];
5903
5904    // Large code-model.
5905
5906    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5907    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5908
5909    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
5910    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
5911
5912    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5913
5914    // Load the pointer to the nested function into R11.
5915    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5916    SDValue Addr = Trmp;
5917    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5918                                TrmpAddr, 0);
5919
5920    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5921    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5922
5923    // Load the 'nest' parameter value into R10.
5924    // R10 is specified in X86CallingConv.td
5925    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5926    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5927    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5928                                TrmpAddr, 10);
5929
5930    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5931    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5932
5933    // Jump to the nested function.
5934    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5935    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5936    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5937                                TrmpAddr, 20);
5938
5939    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5940    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5941    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5942                                TrmpAddr, 22);
5943
5944    SDValue Ops[] =
5945      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5946    return DAG.getMergeValues(Ops, 2);
5947  } else {
5948    const Function *Func =
5949      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5950    unsigned CC = Func->getCallingConv();
5951    unsigned NestReg;
5952
5953    switch (CC) {
5954    default:
5955      assert(0 && "Unsupported calling convention");
5956    case CallingConv::C:
5957    case CallingConv::X86_StdCall: {
5958      // Pass 'nest' parameter in ECX.
5959      // Must be kept in sync with X86CallingConv.td
5960      NestReg = X86::ECX;
5961
5962      // Check that ECX wasn't needed by an 'inreg' parameter.
5963      const FunctionType *FTy = Func->getFunctionType();
5964      const AttrListPtr &Attrs = Func->getAttributes();
5965
5966      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5967        unsigned InRegCount = 0;
5968        unsigned Idx = 1;
5969
5970        for (FunctionType::param_iterator I = FTy->param_begin(),
5971             E = FTy->param_end(); I != E; ++I, ++Idx)
5972          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
5973            // FIXME: should only count parameters that are lowered to integers.
5974            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
5975
5976        if (InRegCount > 2) {
5977          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5978          abort();
5979        }
5980      }
5981      break;
5982    }
5983    case CallingConv::X86_FastCall:
5984    case CallingConv::Fast:
5985      // Pass 'nest' parameter in EAX.
5986      // Must be kept in sync with X86CallingConv.td
5987      NestReg = X86::EAX;
5988      break;
5989    }
5990
5991    SDValue OutChains[4];
5992    SDValue Addr, Disp;
5993
5994    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5995    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5996
5997    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5998    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
5999    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
6000                                Trmp, TrmpAddr, 0);
6001
6002    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
6003    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
6004
6005    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
6006    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
6007    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
6008                                TrmpAddr, 5, false, 1);
6009
6010    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
6011    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
6012
6013    SDValue Ops[] =
6014      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
6015    return DAG.getMergeValues(Ops, 2);
6016  }
6017}
6018
6019SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) {
6020  /*
6021   The rounding mode is in bits 11:10 of FPSR, and has the following
6022   settings:
6023     00 Round to nearest
6024     01 Round to -inf
6025     10 Round to +inf
6026     11 Round to 0
6027
6028  FLT_ROUNDS, on the other hand, expects the following:
6029    -1 Undefined
6030     0 Round to 0
6031     1 Round to nearest
6032     2 Round to +inf
6033     3 Round to -inf
6034
6035  To perform the conversion, we do:
6036    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
6037  */
6038
6039  MachineFunction &MF = DAG.getMachineFunction();
6040  const TargetMachine &TM = MF.getTarget();
6041  const TargetFrameInfo &TFI = *TM.getFrameInfo();
6042  unsigned StackAlignment = TFI.getStackAlignment();
6043  MVT VT = Op.getValueType();
6044
6045  // Save FP Control Word to stack slot
6046  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
6047  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6048
6049  SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
6050                              DAG.getEntryNode(), StackSlot);
6051
6052  // Load FP Control Word from stack slot
6053  SDValue CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
6054
6055  // Transform as necessary
6056  SDValue CWD1 =
6057    DAG.getNode(ISD::SRL, MVT::i16,
6058                DAG.getNode(ISD::AND, MVT::i16,
6059                            CWD, DAG.getConstant(0x800, MVT::i16)),
6060                DAG.getConstant(11, MVT::i8));
6061  SDValue CWD2 =
6062    DAG.getNode(ISD::SRL, MVT::i16,
6063                DAG.getNode(ISD::AND, MVT::i16,
6064                            CWD, DAG.getConstant(0x400, MVT::i16)),
6065                DAG.getConstant(9, MVT::i8));
6066
6067  SDValue RetVal =
6068    DAG.getNode(ISD::AND, MVT::i16,
6069                DAG.getNode(ISD::ADD, MVT::i16,
6070                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
6071                            DAG.getConstant(1, MVT::i16)),
6072                DAG.getConstant(3, MVT::i16));
6073
6074
6075  return DAG.getNode((VT.getSizeInBits() < 16 ?
6076                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
6077}
6078
6079SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) {
6080  MVT VT = Op.getValueType();
6081  MVT OpVT = VT;
6082  unsigned NumBits = VT.getSizeInBits();
6083
6084  Op = Op.getOperand(0);
6085  if (VT == MVT::i8) {
6086    // Zero extend to i32 since there is not an i8 bsr.
6087    OpVT = MVT::i32;
6088    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6089  }
6090
6091  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
6092  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6093  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
6094
6095  // If src is zero (i.e. bsr sets ZF), returns NumBits.
6096  SmallVector<SDValue, 4> Ops;
6097  Ops.push_back(Op);
6098  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
6099  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6100  Ops.push_back(Op.getValue(1));
6101  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6102
6103  // Finally xor with NumBits-1.
6104  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
6105
6106  if (VT == MVT::i8)
6107    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6108  return Op;
6109}
6110
6111SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
6112  MVT VT = Op.getValueType();
6113  MVT OpVT = VT;
6114  unsigned NumBits = VT.getSizeInBits();
6115
6116  Op = Op.getOperand(0);
6117  if (VT == MVT::i8) {
6118    OpVT = MVT::i32;
6119    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
6120  }
6121
6122  // Issue a bsf (scan bits forward) which also sets EFLAGS.
6123  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
6124  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
6125
6126  // If src is zero (i.e. bsf sets ZF), returns NumBits.
6127  SmallVector<SDValue, 4> Ops;
6128  Ops.push_back(Op);
6129  Ops.push_back(DAG.getConstant(NumBits, OpVT));
6130  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
6131  Ops.push_back(Op.getValue(1));
6132  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
6133
6134  if (VT == MVT::i8)
6135    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
6136  return Op;
6137}
6138
6139SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) {
6140  MVT VT = Op.getValueType();
6141  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
6142
6143  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
6144  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
6145  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
6146  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
6147  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
6148  //
6149  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
6150  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
6151  //  return AloBlo + AloBhi + AhiBlo;
6152
6153  SDValue A = Op.getOperand(0);
6154  SDValue B = Op.getOperand(1);
6155
6156  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6157                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6158                       A, DAG.getConstant(32, MVT::i32));
6159  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6160                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
6161                       B, DAG.getConstant(32, MVT::i32));
6162  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6163                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6164                       A, B);
6165  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6166                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6167                       A, Bhi);
6168  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6169                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
6170                       Ahi, B);
6171  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6172                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6173                       AloBhi, DAG.getConstant(32, MVT::i32));
6174  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
6175                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
6176                       AhiBlo, DAG.getConstant(32, MVT::i32));
6177  SDValue Res = DAG.getNode(ISD::ADD, VT, AloBlo, AloBhi);
6178  Res = DAG.getNode(ISD::ADD, VT, Res, AhiBlo);
6179  return Res;
6180}
6181
6182
6183SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) {
6184  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
6185  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
6186  // looks for this combo and may remove the "setcc" instruction if the "setcc"
6187  // has only one use.
6188  SDNode *N = Op.getNode();
6189  SDValue LHS = N->getOperand(0);
6190  SDValue RHS = N->getOperand(1);
6191  unsigned BaseOp = 0;
6192  unsigned Cond = 0;
6193
6194  switch (Op.getOpcode()) {
6195  default: assert(0 && "Unknown ovf instruction!");
6196  case ISD::SADDO:
6197    BaseOp = X86ISD::ADD;
6198    Cond = X86::COND_O;
6199    break;
6200  case ISD::UADDO:
6201    BaseOp = X86ISD::ADD;
6202    Cond = X86::COND_C;
6203    break;
6204  case ISD::SSUBO:
6205    BaseOp = X86ISD::SUB;
6206    Cond = X86::COND_O;
6207    break;
6208  case ISD::USUBO:
6209    BaseOp = X86ISD::SUB;
6210    Cond = X86::COND_C;
6211    break;
6212  case ISD::SMULO:
6213    BaseOp = X86ISD::SMUL;
6214    Cond = X86::COND_O;
6215    break;
6216  case ISD::UMULO:
6217    BaseOp = X86ISD::UMUL;
6218    Cond = X86::COND_C;
6219    break;
6220  }
6221
6222  // Also sets EFLAGS.
6223  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
6224  SDValue Sum = DAG.getNode(BaseOp, VTs, LHS, RHS);
6225
6226  SDValue SetCC =
6227    DAG.getNode(X86ISD::SETCC, N->getValueType(1),
6228                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
6229
6230  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
6231  return Sum;
6232}
6233
6234SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) {
6235  MVT T = Op.getValueType();
6236  unsigned Reg = 0;
6237  unsigned size = 0;
6238  switch(T.getSimpleVT()) {
6239  default:
6240    assert(false && "Invalid value type!");
6241  case MVT::i8:  Reg = X86::AL;  size = 1; break;
6242  case MVT::i16: Reg = X86::AX;  size = 2; break;
6243  case MVT::i32: Reg = X86::EAX; size = 4; break;
6244  case MVT::i64:
6245    assert(Subtarget->is64Bit() && "Node not type legal!");
6246    Reg = X86::RAX; size = 8;
6247    break;
6248  }
6249  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
6250                                    Op.getOperand(2), SDValue());
6251  SDValue Ops[] = { cpIn.getValue(0),
6252                    Op.getOperand(1),
6253                    Op.getOperand(3),
6254                    DAG.getTargetConstant(size, MVT::i8),
6255                    cpIn.getValue(1) };
6256  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6257  SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
6258  SDValue cpOut =
6259    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
6260  return cpOut;
6261}
6262
6263SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
6264                                                 SelectionDAG &DAG) {
6265  assert(Subtarget->is64Bit() && "Result not type legalized?");
6266  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6267  SDValue TheChain = Op.getOperand(0);
6268  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
6269  SDValue rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
6270  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX, MVT::i64,
6271                                   rax.getValue(2));
6272  SDValue Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
6273                            DAG.getConstant(32, MVT::i8));
6274  SDValue Ops[] = {
6275    DAG.getNode(ISD::OR, MVT::i64, rax, Tmp),
6276    rdx.getValue(1)
6277  };
6278  return DAG.getMergeValues(Ops, 2);
6279}
6280
6281SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) {
6282  SDNode *Node = Op.getNode();
6283  MVT T = Node->getValueType(0);
6284  SDValue negOp = DAG.getNode(ISD::SUB, T,
6285                                DAG.getConstant(0, T), Node->getOperand(2));
6286  return DAG.getAtomic((Op.getOpcode()==ISD::ATOMIC_LOAD_SUB_8 ?
6287                                        ISD::ATOMIC_LOAD_ADD_8 :
6288                        Op.getOpcode()==ISD::ATOMIC_LOAD_SUB_16 ?
6289                                        ISD::ATOMIC_LOAD_ADD_16 :
6290                        Op.getOpcode()==ISD::ATOMIC_LOAD_SUB_32 ?
6291                                        ISD::ATOMIC_LOAD_ADD_32 :
6292                                        ISD::ATOMIC_LOAD_ADD_64),
6293                       Node->getOperand(0),
6294                       Node->getOperand(1), negOp,
6295                       cast<AtomicSDNode>(Node)->getSrcValue(),
6296                       cast<AtomicSDNode>(Node)->getAlignment());
6297}
6298
6299/// LowerOperation - Provide custom lowering hooks for some operations.
6300///
6301SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
6302  switch (Op.getOpcode()) {
6303  default: assert(0 && "Should not custom lower this!");
6304  case ISD::ATOMIC_CMP_SWAP_8:
6305  case ISD::ATOMIC_CMP_SWAP_16:
6306  case ISD::ATOMIC_CMP_SWAP_32:
6307  case ISD::ATOMIC_CMP_SWAP_64: return LowerCMP_SWAP(Op,DAG);
6308  case ISD::ATOMIC_LOAD_SUB_8:
6309  case ISD::ATOMIC_LOAD_SUB_16:
6310  case ISD::ATOMIC_LOAD_SUB_32: return LowerLOAD_SUB(Op,DAG);
6311  case ISD::ATOMIC_LOAD_SUB_64: return LowerLOAD_SUB(Op,DAG);
6312  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
6313  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
6314  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
6315  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
6316  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
6317  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
6318  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
6319  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
6320  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
6321  case ISD::SHL_PARTS:
6322  case ISD::SRA_PARTS:
6323  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
6324  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
6325  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
6326  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
6327  case ISD::FABS:               return LowerFABS(Op, DAG);
6328  case ISD::FNEG:               return LowerFNEG(Op, DAG);
6329  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
6330  case ISD::SETCC:              return LowerSETCC(Op, DAG);
6331  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
6332  case ISD::SELECT:             return LowerSELECT(Op, DAG);
6333  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
6334  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
6335  case ISD::CALL:               return LowerCALL(Op, DAG);
6336  case ISD::RET:                return LowerRET(Op, DAG);
6337  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
6338  case ISD::VASTART:            return LowerVASTART(Op, DAG);
6339  case ISD::VAARG:              return LowerVAARG(Op, DAG);
6340  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
6341  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
6342  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
6343  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
6344  case ISD::FRAME_TO_ARGS_OFFSET:
6345                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
6346  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
6347  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
6348  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
6349  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
6350  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
6351  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
6352  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
6353  case ISD::SADDO:
6354  case ISD::UADDO:
6355  case ISD::SSUBO:
6356  case ISD::USUBO:
6357  case ISD::SMULO:
6358  case ISD::UMULO:              return LowerXALUO(Op, DAG);
6359  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
6360  }
6361}
6362
6363void X86TargetLowering::
6364ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
6365                        SelectionDAG &DAG, unsigned NewOp) {
6366  MVT T = Node->getValueType(0);
6367  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
6368
6369  SDValue Chain = Node->getOperand(0);
6370  SDValue In1 = Node->getOperand(1);
6371  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6372                             Node->getOperand(2), DAG.getIntPtrConstant(0));
6373  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
6374                             Node->getOperand(2), DAG.getIntPtrConstant(1));
6375  // This is a generalized SDNode, not an AtomicSDNode, so it doesn't
6376  // have a MemOperand.  Pass the info through as a normal operand.
6377  SDValue LSI = DAG.getMemOperand(cast<MemSDNode>(Node)->getMemOperand());
6378  SDValue Ops[] = { Chain, In1, In2L, In2H, LSI };
6379  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
6380  SDValue Result = DAG.getNode(NewOp, Tys, Ops, 5);
6381  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
6382  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2));
6383  Results.push_back(Result.getValue(2));
6384}
6385
6386/// ReplaceNodeResults - Replace a node with an illegal result type
6387/// with a new node built out of custom code.
6388void X86TargetLowering::ReplaceNodeResults(SDNode *N,
6389                                           SmallVectorImpl<SDValue>&Results,
6390                                           SelectionDAG &DAG) {
6391  switch (N->getOpcode()) {
6392  default:
6393    assert(false && "Do not know how to custom type legalize this operation!");
6394    return;
6395  case ISD::FP_TO_SINT: {
6396    std::pair<SDValue,SDValue> Vals = FP_TO_SINTHelper(SDValue(N, 0), DAG);
6397    SDValue FIST = Vals.first, StackSlot = Vals.second;
6398    if (FIST.getNode() != 0) {
6399      MVT VT = N->getValueType(0);
6400      // Return a load from the stack slot.
6401      Results.push_back(DAG.getLoad(VT, FIST, StackSlot, NULL, 0));
6402    }
6403    return;
6404  }
6405  case ISD::READCYCLECOUNTER: {
6406    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6407    SDValue TheChain = N->getOperand(0);
6408    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
6409    SDValue eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
6410    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX, MVT::i32,
6411                                     eax.getValue(2));
6412    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
6413    SDValue Ops[] = { eax, edx };
6414    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2));
6415    Results.push_back(edx.getValue(1));
6416    return;
6417  }
6418  case ISD::ATOMIC_CMP_SWAP_64: {
6419    MVT T = N->getValueType(0);
6420    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
6421    SDValue cpInL, cpInH;
6422    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(2),
6423                        DAG.getConstant(0, MVT::i32));
6424    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(2),
6425                        DAG.getConstant(1, MVT::i32));
6426    cpInL = DAG.getCopyToReg(N->getOperand(0), X86::EAX, cpInL, SDValue());
6427    cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX, cpInH,
6428                             cpInL.getValue(1));
6429    SDValue swapInL, swapInH;
6430    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(3),
6431                          DAG.getConstant(0, MVT::i32));
6432    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, N->getOperand(3),
6433                          DAG.getConstant(1, MVT::i32));
6434    swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX, swapInL,
6435                               cpInH.getValue(1));
6436    swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX, swapInH,
6437                               swapInL.getValue(1));
6438    SDValue Ops[] = { swapInH.getValue(0),
6439                      N->getOperand(1),
6440                      swapInH.getValue(1) };
6441    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
6442    SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
6443    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
6444                                        Result.getValue(1));
6445    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
6446                                        cpOutL.getValue(2));
6447    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
6448    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2));
6449    Results.push_back(cpOutH.getValue(1));
6450    return;
6451  }
6452  case ISD::ATOMIC_LOAD_ADD_64:
6453    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
6454    return;
6455  case ISD::ATOMIC_LOAD_AND_64:
6456    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
6457    return;
6458  case ISD::ATOMIC_LOAD_NAND_64:
6459    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
6460    return;
6461  case ISD::ATOMIC_LOAD_OR_64:
6462    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
6463    return;
6464  case ISD::ATOMIC_LOAD_SUB_64:
6465    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
6466    return;
6467  case ISD::ATOMIC_LOAD_XOR_64:
6468    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
6469    return;
6470  case ISD::ATOMIC_SWAP_64:
6471    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
6472    return;
6473  }
6474}
6475
6476const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
6477  switch (Opcode) {
6478  default: return NULL;
6479  case X86ISD::BSF:                return "X86ISD::BSF";
6480  case X86ISD::BSR:                return "X86ISD::BSR";
6481  case X86ISD::SHLD:               return "X86ISD::SHLD";
6482  case X86ISD::SHRD:               return "X86ISD::SHRD";
6483  case X86ISD::FAND:               return "X86ISD::FAND";
6484  case X86ISD::FOR:                return "X86ISD::FOR";
6485  case X86ISD::FXOR:               return "X86ISD::FXOR";
6486  case X86ISD::FSRL:               return "X86ISD::FSRL";
6487  case X86ISD::FILD:               return "X86ISD::FILD";
6488  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
6489  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
6490  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
6491  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
6492  case X86ISD::FLD:                return "X86ISD::FLD";
6493  case X86ISD::FST:                return "X86ISD::FST";
6494  case X86ISD::CALL:               return "X86ISD::CALL";
6495  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
6496  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
6497  case X86ISD::CMP:                return "X86ISD::CMP";
6498  case X86ISD::COMI:               return "X86ISD::COMI";
6499  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
6500  case X86ISD::SETCC:              return "X86ISD::SETCC";
6501  case X86ISD::CMOV:               return "X86ISD::CMOV";
6502  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
6503  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
6504  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
6505  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
6506  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
6507  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
6508  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
6509  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
6510  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
6511  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
6512  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
6513  case X86ISD::FMAX:               return "X86ISD::FMAX";
6514  case X86ISD::FMIN:               return "X86ISD::FMIN";
6515  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
6516  case X86ISD::FRCP:               return "X86ISD::FRCP";
6517  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
6518  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
6519  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
6520  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
6521  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
6522  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
6523  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
6524  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
6525  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
6526  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
6527  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
6528  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
6529  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
6530  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
6531  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
6532  case X86ISD::VSHL:               return "X86ISD::VSHL";
6533  case X86ISD::VSRL:               return "X86ISD::VSRL";
6534  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
6535  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
6536  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
6537  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
6538  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
6539  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
6540  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
6541  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
6542  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
6543  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
6544  case X86ISD::ADD:                return "X86ISD::ADD";
6545  case X86ISD::SUB:                return "X86ISD::SUB";
6546  case X86ISD::SMUL:               return "X86ISD::SMUL";
6547  case X86ISD::UMUL:               return "X86ISD::UMUL";
6548  }
6549}
6550
6551// isLegalAddressingMode - Return true if the addressing mode represented
6552// by AM is legal for this target, for a load/store of the specified type.
6553bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
6554                                              const Type *Ty) const {
6555  // X86 supports extremely general addressing modes.
6556
6557  // X86 allows a sign-extended 32-bit immediate field as a displacement.
6558  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
6559    return false;
6560
6561  if (AM.BaseGV) {
6562    // We can only fold this if we don't need an extra load.
6563    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
6564      return false;
6565    // If BaseGV requires a register, we cannot also have a BaseReg.
6566    if (Subtarget->GVRequiresRegister(AM.BaseGV, getTargetMachine(), false) &&
6567        AM.HasBaseReg)
6568      return false;
6569
6570    // X86-64 only supports addr of globals in small code model.
6571    if (Subtarget->is64Bit()) {
6572      if (getTargetMachine().getCodeModel() != CodeModel::Small)
6573        return false;
6574      // If lower 4G is not available, then we must use rip-relative addressing.
6575      if (AM.BaseOffs || AM.Scale > 1)
6576        return false;
6577    }
6578  }
6579
6580  switch (AM.Scale) {
6581  case 0:
6582  case 1:
6583  case 2:
6584  case 4:
6585  case 8:
6586    // These scales always work.
6587    break;
6588  case 3:
6589  case 5:
6590  case 9:
6591    // These scales are formed with basereg+scalereg.  Only accept if there is
6592    // no basereg yet.
6593    if (AM.HasBaseReg)
6594      return false;
6595    break;
6596  default:  // Other stuff never works.
6597    return false;
6598  }
6599
6600  return true;
6601}
6602
6603
6604bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
6605  if (!Ty1->isInteger() || !Ty2->isInteger())
6606    return false;
6607  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
6608  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
6609  if (NumBits1 <= NumBits2)
6610    return false;
6611  return Subtarget->is64Bit() || NumBits1 < 64;
6612}
6613
6614bool X86TargetLowering::isTruncateFree(MVT VT1, MVT VT2) const {
6615  if (!VT1.isInteger() || !VT2.isInteger())
6616    return false;
6617  unsigned NumBits1 = VT1.getSizeInBits();
6618  unsigned NumBits2 = VT2.getSizeInBits();
6619  if (NumBits1 <= NumBits2)
6620    return false;
6621  return Subtarget->is64Bit() || NumBits1 < 64;
6622}
6623
6624/// isShuffleMaskLegal - Targets can use this to indicate that they only
6625/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6626/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6627/// are assumed to be legal.
6628bool
6629X86TargetLowering::isShuffleMaskLegal(SDValue Mask, MVT VT) const {
6630  // Only do shuffles on 128-bit vector types for now.
6631  if (VT.getSizeInBits() == 64) return false;
6632  return (Mask.getNode()->getNumOperands() <= 4 ||
6633          isIdentityMask(Mask.getNode()) ||
6634          isIdentityMask(Mask.getNode(), true) ||
6635          isSplatMask(Mask.getNode())  ||
6636          isPSHUFHW_PSHUFLWMask(Mask.getNode()) ||
6637          X86::isUNPCKLMask(Mask.getNode()) ||
6638          X86::isUNPCKHMask(Mask.getNode()) ||
6639          X86::isUNPCKL_v_undef_Mask(Mask.getNode()) ||
6640          X86::isUNPCKH_v_undef_Mask(Mask.getNode()));
6641}
6642
6643bool
6644X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDValue> &BVOps,
6645                                          MVT EVT, SelectionDAG &DAG) const {
6646  unsigned NumElts = BVOps.size();
6647  // Only do shuffles on 128-bit vector types for now.
6648  if (EVT.getSizeInBits() * NumElts == 64) return false;
6649  if (NumElts == 2) return true;
6650  if (NumElts == 4) {
6651    return (isMOVLMask(&BVOps[0], 4)  ||
6652            isCommutedMOVL(&BVOps[0], 4, true) ||
6653            isSHUFPMask(&BVOps[0], 4) ||
6654            isCommutedSHUFP(&BVOps[0], 4));
6655  }
6656  return false;
6657}
6658
6659//===----------------------------------------------------------------------===//
6660//                           X86 Scheduler Hooks
6661//===----------------------------------------------------------------------===//
6662
6663// private utility function
6664MachineBasicBlock *
6665X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
6666                                                       MachineBasicBlock *MBB,
6667                                                       unsigned regOpc,
6668                                                       unsigned immOpc,
6669                                                       unsigned LoadOpc,
6670                                                       unsigned CXchgOpc,
6671                                                       unsigned copyOpc,
6672                                                       unsigned notOpc,
6673                                                       unsigned EAXreg,
6674                                                       TargetRegisterClass *RC,
6675                                                       bool invSrc) {
6676  // For the atomic bitwise operator, we generate
6677  //   thisMBB:
6678  //   newMBB:
6679  //     ld  t1 = [bitinstr.addr]
6680  //     op  t2 = t1, [bitinstr.val]
6681  //     mov EAX = t1
6682  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6683  //     bz  newMBB
6684  //     fallthrough -->nextMBB
6685  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6686  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6687  MachineFunction::iterator MBBIter = MBB;
6688  ++MBBIter;
6689
6690  /// First build the CFG
6691  MachineFunction *F = MBB->getParent();
6692  MachineBasicBlock *thisMBB = MBB;
6693  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6694  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6695  F->insert(MBBIter, newMBB);
6696  F->insert(MBBIter, nextMBB);
6697
6698  // Move all successors to thisMBB to nextMBB
6699  nextMBB->transferSuccessors(thisMBB);
6700
6701  // Update thisMBB to fall through to newMBB
6702  thisMBB->addSuccessor(newMBB);
6703
6704  // newMBB jumps to itself and fall through to nextMBB
6705  newMBB->addSuccessor(nextMBB);
6706  newMBB->addSuccessor(newMBB);
6707
6708  // Insert instructions into newMBB based on incoming instruction
6709  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
6710  MachineOperand& destOper = bInstr->getOperand(0);
6711  MachineOperand* argOpers[6];
6712  int numArgs = bInstr->getNumOperands() - 1;
6713  for (int i=0; i < numArgs; ++i)
6714    argOpers[i] = &bInstr->getOperand(i+1);
6715
6716  // x86 address has 4 operands: base, index, scale, and displacement
6717  int lastAddrIndx = 3; // [0,3]
6718  int valArgIndx = 4;
6719
6720  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6721  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(LoadOpc), t1);
6722  for (int i=0; i <= lastAddrIndx; ++i)
6723    (*MIB).addOperand(*argOpers[i]);
6724
6725  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
6726  if (invSrc) {
6727    MIB = BuildMI(newMBB, TII->get(notOpc), tt).addReg(t1);
6728  }
6729  else
6730    tt = t1;
6731
6732  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6733  assert((argOpers[valArgIndx]->isReg() ||
6734          argOpers[valArgIndx]->isImm()) &&
6735         "invalid operand");
6736  if (argOpers[valArgIndx]->isReg())
6737    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
6738  else
6739    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
6740  MIB.addReg(tt);
6741  (*MIB).addOperand(*argOpers[valArgIndx]);
6742
6743  MIB = BuildMI(newMBB, TII->get(copyOpc), EAXreg);
6744  MIB.addReg(t1);
6745
6746  MIB = BuildMI(newMBB, TII->get(CXchgOpc));
6747  for (int i=0; i <= lastAddrIndx; ++i)
6748    (*MIB).addOperand(*argOpers[i]);
6749  MIB.addReg(t2);
6750  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6751  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6752
6753  MIB = BuildMI(newMBB, TII->get(copyOpc), destOper.getReg());
6754  MIB.addReg(EAXreg);
6755
6756  // insert branch
6757  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6758
6759  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6760  return nextMBB;
6761}
6762
6763// private utility function:  64 bit atomics on 32 bit host.
6764MachineBasicBlock *
6765X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
6766                                                       MachineBasicBlock *MBB,
6767                                                       unsigned regOpcL,
6768                                                       unsigned regOpcH,
6769                                                       unsigned immOpcL,
6770                                                       unsigned immOpcH,
6771                                                       bool invSrc) {
6772  // For the atomic bitwise operator, we generate
6773  //   thisMBB (instructions are in pairs, except cmpxchg8b)
6774  //     ld t1,t2 = [bitinstr.addr]
6775  //   newMBB:
6776  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
6777  //     op  t5, t6 <- out1, out2, [bitinstr.val]
6778  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
6779  //     mov ECX, EBX <- t5, t6
6780  //     mov EAX, EDX <- t1, t2
6781  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
6782  //     mov t3, t4 <- EAX, EDX
6783  //     bz  newMBB
6784  //     result in out1, out2
6785  //     fallthrough -->nextMBB
6786
6787  const TargetRegisterClass *RC = X86::GR32RegisterClass;
6788  const unsigned LoadOpc = X86::MOV32rm;
6789  const unsigned copyOpc = X86::MOV32rr;
6790  const unsigned NotOpc = X86::NOT32r;
6791  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6792  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6793  MachineFunction::iterator MBBIter = MBB;
6794  ++MBBIter;
6795
6796  /// First build the CFG
6797  MachineFunction *F = MBB->getParent();
6798  MachineBasicBlock *thisMBB = MBB;
6799  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6800  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6801  F->insert(MBBIter, newMBB);
6802  F->insert(MBBIter, nextMBB);
6803
6804  // Move all successors to thisMBB to nextMBB
6805  nextMBB->transferSuccessors(thisMBB);
6806
6807  // Update thisMBB to fall through to newMBB
6808  thisMBB->addSuccessor(newMBB);
6809
6810  // newMBB jumps to itself and fall through to nextMBB
6811  newMBB->addSuccessor(nextMBB);
6812  newMBB->addSuccessor(newMBB);
6813
6814  // Insert instructions into newMBB based on incoming instruction
6815  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
6816  assert(bInstr->getNumOperands() < 18 && "unexpected number of operands");
6817  MachineOperand& dest1Oper = bInstr->getOperand(0);
6818  MachineOperand& dest2Oper = bInstr->getOperand(1);
6819  MachineOperand* argOpers[6];
6820  for (int i=0; i < 6; ++i)
6821    argOpers[i] = &bInstr->getOperand(i+2);
6822
6823  // x86 address has 4 operands: base, index, scale, and displacement
6824  int lastAddrIndx = 3; // [0,3]
6825
6826  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
6827  MachineInstrBuilder MIB = BuildMI(thisMBB, TII->get(LoadOpc), t1);
6828  for (int i=0; i <= lastAddrIndx; ++i)
6829    (*MIB).addOperand(*argOpers[i]);
6830  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
6831  MIB = BuildMI(thisMBB, TII->get(LoadOpc), t2);
6832  // add 4 to displacement.
6833  for (int i=0; i <= lastAddrIndx-1; ++i)
6834    (*MIB).addOperand(*argOpers[i]);
6835  MachineOperand newOp3 = *(argOpers[3]);
6836  if (newOp3.isImm())
6837    newOp3.setImm(newOp3.getImm()+4);
6838  else
6839    newOp3.setOffset(newOp3.getOffset()+4);
6840  (*MIB).addOperand(newOp3);
6841
6842  // t3/4 are defined later, at the bottom of the loop
6843  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
6844  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
6845  BuildMI(newMBB, TII->get(X86::PHI), dest1Oper.getReg())
6846    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
6847  BuildMI(newMBB, TII->get(X86::PHI), dest2Oper.getReg())
6848    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
6849
6850  unsigned tt1 = F->getRegInfo().createVirtualRegister(RC);
6851  unsigned tt2 = F->getRegInfo().createVirtualRegister(RC);
6852  if (invSrc) {
6853    MIB = BuildMI(newMBB, TII->get(NotOpc), tt1).addReg(t1);
6854    MIB = BuildMI(newMBB, TII->get(NotOpc), tt2).addReg(t2);
6855  } else {
6856    tt1 = t1;
6857    tt2 = t2;
6858  }
6859
6860  assert((argOpers[4]->isReg() || argOpers[4]->isImm()) &&
6861         "invalid operand");
6862  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
6863  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
6864  if (argOpers[4]->isReg())
6865    MIB = BuildMI(newMBB, TII->get(regOpcL), t5);
6866  else
6867    MIB = BuildMI(newMBB, TII->get(immOpcL), t5);
6868  if (regOpcL != X86::MOV32rr)
6869    MIB.addReg(tt1);
6870  (*MIB).addOperand(*argOpers[4]);
6871  assert(argOpers[5]->isReg() == argOpers[4]->isReg());
6872  assert(argOpers[5]->isImm() == argOpers[4]->isImm());
6873  if (argOpers[5]->isReg())
6874    MIB = BuildMI(newMBB, TII->get(regOpcH), t6);
6875  else
6876    MIB = BuildMI(newMBB, TII->get(immOpcH), t6);
6877  if (regOpcH != X86::MOV32rr)
6878    MIB.addReg(tt2);
6879  (*MIB).addOperand(*argOpers[5]);
6880
6881  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EAX);
6882  MIB.addReg(t1);
6883  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EDX);
6884  MIB.addReg(t2);
6885
6886  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::EBX);
6887  MIB.addReg(t5);
6888  MIB = BuildMI(newMBB, TII->get(copyOpc), X86::ECX);
6889  MIB.addReg(t6);
6890
6891  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG8B));
6892  for (int i=0; i <= lastAddrIndx; ++i)
6893    (*MIB).addOperand(*argOpers[i]);
6894
6895  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6896  (*MIB).addMemOperand(*F, *bInstr->memoperands_begin());
6897
6898  MIB = BuildMI(newMBB, TII->get(copyOpc), t3);
6899  MIB.addReg(X86::EAX);
6900  MIB = BuildMI(newMBB, TII->get(copyOpc), t4);
6901  MIB.addReg(X86::EDX);
6902
6903  // insert branch
6904  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
6905
6906  F->DeleteMachineInstr(bInstr);   // The pseudo instruction is gone now.
6907  return nextMBB;
6908}
6909
6910// private utility function
6911MachineBasicBlock *
6912X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
6913                                                      MachineBasicBlock *MBB,
6914                                                      unsigned cmovOpc) {
6915  // For the atomic min/max operator, we generate
6916  //   thisMBB:
6917  //   newMBB:
6918  //     ld t1 = [min/max.addr]
6919  //     mov t2 = [min/max.val]
6920  //     cmp  t1, t2
6921  //     cmov[cond] t2 = t1
6922  //     mov EAX = t1
6923  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
6924  //     bz   newMBB
6925  //     fallthrough -->nextMBB
6926  //
6927  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6928  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
6929  MachineFunction::iterator MBBIter = MBB;
6930  ++MBBIter;
6931
6932  /// First build the CFG
6933  MachineFunction *F = MBB->getParent();
6934  MachineBasicBlock *thisMBB = MBB;
6935  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
6936  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
6937  F->insert(MBBIter, newMBB);
6938  F->insert(MBBIter, nextMBB);
6939
6940  // Move all successors to thisMBB to nextMBB
6941  nextMBB->transferSuccessors(thisMBB);
6942
6943  // Update thisMBB to fall through to newMBB
6944  thisMBB->addSuccessor(newMBB);
6945
6946  // newMBB jumps to newMBB and fall through to nextMBB
6947  newMBB->addSuccessor(nextMBB);
6948  newMBB->addSuccessor(newMBB);
6949
6950  // Insert instructions into newMBB based on incoming instruction
6951  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
6952  MachineOperand& destOper = mInstr->getOperand(0);
6953  MachineOperand* argOpers[6];
6954  int numArgs = mInstr->getNumOperands() - 1;
6955  for (int i=0; i < numArgs; ++i)
6956    argOpers[i] = &mInstr->getOperand(i+1);
6957
6958  // x86 address has 4 operands: base, index, scale, and displacement
6959  int lastAddrIndx = 3; // [0,3]
6960  int valArgIndx = 4;
6961
6962  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6963  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
6964  for (int i=0; i <= lastAddrIndx; ++i)
6965    (*MIB).addOperand(*argOpers[i]);
6966
6967  // We only support register and immediate values
6968  assert((argOpers[valArgIndx]->isReg() ||
6969          argOpers[valArgIndx]->isImm()) &&
6970         "invalid operand");
6971
6972  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6973  if (argOpers[valArgIndx]->isReg())
6974    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6975  else
6976    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
6977  (*MIB).addOperand(*argOpers[valArgIndx]);
6978
6979  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
6980  MIB.addReg(t1);
6981
6982  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
6983  MIB.addReg(t1);
6984  MIB.addReg(t2);
6985
6986  // Generate movc
6987  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
6988  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
6989  MIB.addReg(t2);
6990  MIB.addReg(t1);
6991
6992  // Cmp and exchange if none has modified the memory location
6993  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
6994  for (int i=0; i <= lastAddrIndx; ++i)
6995    (*MIB).addOperand(*argOpers[i]);
6996  MIB.addReg(t3);
6997  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
6998  (*MIB).addMemOperand(*F, *mInstr->memoperands_begin());
6999
7000  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
7001  MIB.addReg(X86::EAX);
7002
7003  // insert branch
7004  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
7005
7006  F->DeleteMachineInstr(mInstr);   // The pseudo instruction is gone now.
7007  return nextMBB;
7008}
7009
7010
7011MachineBasicBlock *
7012X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
7013                                               MachineBasicBlock *BB) {
7014  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
7015  switch (MI->getOpcode()) {
7016  default: assert(false && "Unexpected instr type to insert");
7017  case X86::CMOV_V1I64:
7018  case X86::CMOV_FR32:
7019  case X86::CMOV_FR64:
7020  case X86::CMOV_V4F32:
7021  case X86::CMOV_V2F64:
7022  case X86::CMOV_V2I64: {
7023    // To "insert" a SELECT_CC instruction, we actually have to insert the
7024    // diamond control-flow pattern.  The incoming instruction knows the
7025    // destination vreg to set, the condition code register to branch on, the
7026    // true/false values to select between, and a branch opcode to use.
7027    const BasicBlock *LLVM_BB = BB->getBasicBlock();
7028    MachineFunction::iterator It = BB;
7029    ++It;
7030
7031    //  thisMBB:
7032    //  ...
7033    //   TrueVal = ...
7034    //   cmpTY ccX, r1, r2
7035    //   bCC copy1MBB
7036    //   fallthrough --> copy0MBB
7037    MachineBasicBlock *thisMBB = BB;
7038    MachineFunction *F = BB->getParent();
7039    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
7040    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
7041    unsigned Opc =
7042      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
7043    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
7044    F->insert(It, copy0MBB);
7045    F->insert(It, sinkMBB);
7046    // Update machine-CFG edges by transferring all successors of the current
7047    // block to the new block which will contain the Phi node for the select.
7048    sinkMBB->transferSuccessors(BB);
7049
7050    // Add the true and fallthrough blocks as its successors.
7051    BB->addSuccessor(copy0MBB);
7052    BB->addSuccessor(sinkMBB);
7053
7054    //  copy0MBB:
7055    //   %FalseValue = ...
7056    //   # fallthrough to sinkMBB
7057    BB = copy0MBB;
7058
7059    // Update machine-CFG edges
7060    BB->addSuccessor(sinkMBB);
7061
7062    //  sinkMBB:
7063    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
7064    //  ...
7065    BB = sinkMBB;
7066    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
7067      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
7068      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
7069
7070    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7071    return BB;
7072  }
7073
7074  case X86::FP32_TO_INT16_IN_MEM:
7075  case X86::FP32_TO_INT32_IN_MEM:
7076  case X86::FP32_TO_INT64_IN_MEM:
7077  case X86::FP64_TO_INT16_IN_MEM:
7078  case X86::FP64_TO_INT32_IN_MEM:
7079  case X86::FP64_TO_INT64_IN_MEM:
7080  case X86::FP80_TO_INT16_IN_MEM:
7081  case X86::FP80_TO_INT32_IN_MEM:
7082  case X86::FP80_TO_INT64_IN_MEM: {
7083    // Change the floating point control register to use "round towards zero"
7084    // mode when truncating to an integer value.
7085    MachineFunction *F = BB->getParent();
7086    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
7087    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
7088
7089    // Load the old value of the high byte of the control word...
7090    unsigned OldCW =
7091      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
7092    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
7093
7094    // Set the high part to be round to zero...
7095    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
7096      .addImm(0xC7F);
7097
7098    // Reload the modified control word now...
7099    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
7100
7101    // Restore the memory image of control word to original value
7102    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
7103      .addReg(OldCW);
7104
7105    // Get the X86 opcode to use.
7106    unsigned Opc;
7107    switch (MI->getOpcode()) {
7108    default: assert(0 && "illegal opcode!");
7109    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
7110    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
7111    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
7112    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
7113    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
7114    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
7115    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
7116    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
7117    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
7118    }
7119
7120    X86AddressMode AM;
7121    MachineOperand &Op = MI->getOperand(0);
7122    if (Op.isReg()) {
7123      AM.BaseType = X86AddressMode::RegBase;
7124      AM.Base.Reg = Op.getReg();
7125    } else {
7126      AM.BaseType = X86AddressMode::FrameIndexBase;
7127      AM.Base.FrameIndex = Op.getIndex();
7128    }
7129    Op = MI->getOperand(1);
7130    if (Op.isImm())
7131      AM.Scale = Op.getImm();
7132    Op = MI->getOperand(2);
7133    if (Op.isImm())
7134      AM.IndexReg = Op.getImm();
7135    Op = MI->getOperand(3);
7136    if (Op.isGlobal()) {
7137      AM.GV = Op.getGlobal();
7138    } else {
7139      AM.Disp = Op.getImm();
7140    }
7141    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
7142                      .addReg(MI->getOperand(4).getReg());
7143
7144    // Reload the original control word now.
7145    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
7146
7147    F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now.
7148    return BB;
7149  }
7150  case X86::ATOMAND32:
7151    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7152                                               X86::AND32ri, X86::MOV32rm,
7153                                               X86::LCMPXCHG32, X86::MOV32rr,
7154                                               X86::NOT32r, X86::EAX,
7155                                               X86::GR32RegisterClass);
7156  case X86::ATOMOR32:
7157    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
7158                                               X86::OR32ri, X86::MOV32rm,
7159                                               X86::LCMPXCHG32, X86::MOV32rr,
7160                                               X86::NOT32r, X86::EAX,
7161                                               X86::GR32RegisterClass);
7162  case X86::ATOMXOR32:
7163    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
7164                                               X86::XOR32ri, X86::MOV32rm,
7165                                               X86::LCMPXCHG32, X86::MOV32rr,
7166                                               X86::NOT32r, X86::EAX,
7167                                               X86::GR32RegisterClass);
7168  case X86::ATOMNAND32:
7169    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
7170                                               X86::AND32ri, X86::MOV32rm,
7171                                               X86::LCMPXCHG32, X86::MOV32rr,
7172                                               X86::NOT32r, X86::EAX,
7173                                               X86::GR32RegisterClass, true);
7174  case X86::ATOMMIN32:
7175    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
7176  case X86::ATOMMAX32:
7177    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
7178  case X86::ATOMUMIN32:
7179    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
7180  case X86::ATOMUMAX32:
7181    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
7182
7183  case X86::ATOMAND16:
7184    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7185                                               X86::AND16ri, X86::MOV16rm,
7186                                               X86::LCMPXCHG16, X86::MOV16rr,
7187                                               X86::NOT16r, X86::AX,
7188                                               X86::GR16RegisterClass);
7189  case X86::ATOMOR16:
7190    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
7191                                               X86::OR16ri, X86::MOV16rm,
7192                                               X86::LCMPXCHG16, X86::MOV16rr,
7193                                               X86::NOT16r, X86::AX,
7194                                               X86::GR16RegisterClass);
7195  case X86::ATOMXOR16:
7196    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
7197                                               X86::XOR16ri, X86::MOV16rm,
7198                                               X86::LCMPXCHG16, X86::MOV16rr,
7199                                               X86::NOT16r, X86::AX,
7200                                               X86::GR16RegisterClass);
7201  case X86::ATOMNAND16:
7202    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
7203                                               X86::AND16ri, X86::MOV16rm,
7204                                               X86::LCMPXCHG16, X86::MOV16rr,
7205                                               X86::NOT16r, X86::AX,
7206                                               X86::GR16RegisterClass, true);
7207  case X86::ATOMMIN16:
7208    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
7209  case X86::ATOMMAX16:
7210    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
7211  case X86::ATOMUMIN16:
7212    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
7213  case X86::ATOMUMAX16:
7214    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
7215
7216  case X86::ATOMAND8:
7217    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7218                                               X86::AND8ri, X86::MOV8rm,
7219                                               X86::LCMPXCHG8, X86::MOV8rr,
7220                                               X86::NOT8r, X86::AL,
7221                                               X86::GR8RegisterClass);
7222  case X86::ATOMOR8:
7223    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
7224                                               X86::OR8ri, X86::MOV8rm,
7225                                               X86::LCMPXCHG8, X86::MOV8rr,
7226                                               X86::NOT8r, X86::AL,
7227                                               X86::GR8RegisterClass);
7228  case X86::ATOMXOR8:
7229    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
7230                                               X86::XOR8ri, X86::MOV8rm,
7231                                               X86::LCMPXCHG8, X86::MOV8rr,
7232                                               X86::NOT8r, X86::AL,
7233                                               X86::GR8RegisterClass);
7234  case X86::ATOMNAND8:
7235    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
7236                                               X86::AND8ri, X86::MOV8rm,
7237                                               X86::LCMPXCHG8, X86::MOV8rr,
7238                                               X86::NOT8r, X86::AL,
7239                                               X86::GR8RegisterClass, true);
7240  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
7241  // This group is for 64-bit host.
7242  case X86::ATOMAND64:
7243    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7244                                               X86::AND64ri32, X86::MOV64rm,
7245                                               X86::LCMPXCHG64, X86::MOV64rr,
7246                                               X86::NOT64r, X86::RAX,
7247                                               X86::GR64RegisterClass);
7248  case X86::ATOMOR64:
7249    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
7250                                               X86::OR64ri32, X86::MOV64rm,
7251                                               X86::LCMPXCHG64, X86::MOV64rr,
7252                                               X86::NOT64r, X86::RAX,
7253                                               X86::GR64RegisterClass);
7254  case X86::ATOMXOR64:
7255    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
7256                                               X86::XOR64ri32, X86::MOV64rm,
7257                                               X86::LCMPXCHG64, X86::MOV64rr,
7258                                               X86::NOT64r, X86::RAX,
7259                                               X86::GR64RegisterClass);
7260  case X86::ATOMNAND64:
7261    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
7262                                               X86::AND64ri32, X86::MOV64rm,
7263                                               X86::LCMPXCHG64, X86::MOV64rr,
7264                                               X86::NOT64r, X86::RAX,
7265                                               X86::GR64RegisterClass, true);
7266  case X86::ATOMMIN64:
7267    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
7268  case X86::ATOMMAX64:
7269    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
7270  case X86::ATOMUMIN64:
7271    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
7272  case X86::ATOMUMAX64:
7273    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
7274
7275  // This group does 64-bit operations on a 32-bit host.
7276  case X86::ATOMAND6432:
7277    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7278                                               X86::AND32rr, X86::AND32rr,
7279                                               X86::AND32ri, X86::AND32ri,
7280                                               false);
7281  case X86::ATOMOR6432:
7282    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7283                                               X86::OR32rr, X86::OR32rr,
7284                                               X86::OR32ri, X86::OR32ri,
7285                                               false);
7286  case X86::ATOMXOR6432:
7287    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7288                                               X86::XOR32rr, X86::XOR32rr,
7289                                               X86::XOR32ri, X86::XOR32ri,
7290                                               false);
7291  case X86::ATOMNAND6432:
7292    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7293                                               X86::AND32rr, X86::AND32rr,
7294                                               X86::AND32ri, X86::AND32ri,
7295                                               true);
7296  case X86::ATOMADD6432:
7297    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7298                                               X86::ADD32rr, X86::ADC32rr,
7299                                               X86::ADD32ri, X86::ADC32ri,
7300                                               false);
7301  case X86::ATOMSUB6432:
7302    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7303                                               X86::SUB32rr, X86::SBB32rr,
7304                                               X86::SUB32ri, X86::SBB32ri,
7305                                               false);
7306  case X86::ATOMSWAP6432:
7307    return EmitAtomicBit6432WithCustomInserter(MI, BB,
7308                                               X86::MOV32rr, X86::MOV32rr,
7309                                               X86::MOV32ri, X86::MOV32ri,
7310                                               false);
7311  }
7312}
7313
7314//===----------------------------------------------------------------------===//
7315//                           X86 Optimization Hooks
7316//===----------------------------------------------------------------------===//
7317
7318void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
7319                                                       const APInt &Mask,
7320                                                       APInt &KnownZero,
7321                                                       APInt &KnownOne,
7322                                                       const SelectionDAG &DAG,
7323                                                       unsigned Depth) const {
7324  unsigned Opc = Op.getOpcode();
7325  assert((Opc >= ISD::BUILTIN_OP_END ||
7326          Opc == ISD::INTRINSIC_WO_CHAIN ||
7327          Opc == ISD::INTRINSIC_W_CHAIN ||
7328          Opc == ISD::INTRINSIC_VOID) &&
7329         "Should use MaskedValueIsZero if you don't know whether Op"
7330         " is a target node!");
7331
7332  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
7333  switch (Opc) {
7334  default: break;
7335  case X86ISD::SETCC:
7336    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
7337                                       Mask.getBitWidth() - 1);
7338    break;
7339  }
7340}
7341
7342/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
7343/// node is a GlobalAddress + offset.
7344bool X86TargetLowering::isGAPlusOffset(SDNode *N,
7345                                       GlobalValue* &GA, int64_t &Offset) const{
7346  if (N->getOpcode() == X86ISD::Wrapper) {
7347    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
7348      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
7349      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
7350      return true;
7351    }
7352  }
7353  return TargetLowering::isGAPlusOffset(N, GA, Offset);
7354}
7355
7356static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
7357                               const TargetLowering &TLI) {
7358  GlobalValue *GV;
7359  int64_t Offset = 0;
7360  if (TLI.isGAPlusOffset(Base, GV, Offset))
7361    return (GV->getAlignment() >= N && (Offset % N) == 0);
7362  // DAG combine handles the stack object case.
7363  return false;
7364}
7365
7366static bool EltsFromConsecutiveLoads(SDNode *N, SDValue PermMask,
7367                                     unsigned NumElems, MVT EVT,
7368                                     SDNode *&Base,
7369                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
7370                                     const TargetLowering &TLI) {
7371  Base = NULL;
7372  for (unsigned i = 0; i < NumElems; ++i) {
7373    SDValue Idx = PermMask.getOperand(i);
7374    if (Idx.getOpcode() == ISD::UNDEF) {
7375      if (!Base)
7376        return false;
7377      continue;
7378    }
7379
7380    SDValue Elt = DAG.getShuffleScalarElt(N, i);
7381    if (!Elt.getNode() ||
7382        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
7383      return false;
7384    if (!Base) {
7385      Base = Elt.getNode();
7386      if (Base->getOpcode() == ISD::UNDEF)
7387        return false;
7388      continue;
7389    }
7390    if (Elt.getOpcode() == ISD::UNDEF)
7391      continue;
7392
7393    if (!TLI.isConsecutiveLoad(Elt.getNode(), Base,
7394                               EVT.getSizeInBits()/8, i, MFI))
7395      return false;
7396  }
7397  return true;
7398}
7399
7400/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
7401/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
7402/// if the load addresses are consecutive, non-overlapping, and in the right
7403/// order.
7404static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
7405                                       const TargetLowering &TLI) {
7406  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7407  MVT VT = N->getValueType(0);
7408  MVT EVT = VT.getVectorElementType();
7409  SDValue PermMask = N->getOperand(2);
7410  unsigned NumElems = PermMask.getNumOperands();
7411  SDNode *Base = NULL;
7412  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
7413                                DAG, MFI, TLI))
7414    return SDValue();
7415
7416  LoadSDNode *LD = cast<LoadSDNode>(Base);
7417  if (isBaseAlignmentOfN(16, Base->getOperand(1).getNode(), TLI))
7418    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7419                       LD->getSrcValueOffset(), LD->isVolatile());
7420  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
7421                     LD->getSrcValueOffset(), LD->isVolatile(),
7422                     LD->getAlignment());
7423}
7424
7425/// PerformBuildVectorCombine - build_vector 0,(load i64 / f64) -> movq / movsd.
7426static SDValue PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
7427                                         const X86Subtarget *Subtarget,
7428                                         const TargetLowering &TLI) {
7429  unsigned NumOps = N->getNumOperands();
7430
7431  // Ignore single operand BUILD_VECTOR.
7432  if (NumOps == 1)
7433    return SDValue();
7434
7435  MVT VT = N->getValueType(0);
7436  MVT EVT = VT.getVectorElementType();
7437  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
7438    // We are looking for load i64 and zero extend. We want to transform
7439    // it before legalizer has a chance to expand it. Also look for i64
7440    // BUILD_PAIR bit casted to f64.
7441    return SDValue();
7442  // This must be an insertion into a zero vector.
7443  SDValue HighElt = N->getOperand(1);
7444  if (!isZeroNode(HighElt))
7445    return SDValue();
7446
7447  // Value must be a load.
7448  SDNode *Base = N->getOperand(0).getNode();
7449  if (!isa<LoadSDNode>(Base)) {
7450    if (Base->getOpcode() != ISD::BIT_CONVERT)
7451      return SDValue();
7452    Base = Base->getOperand(0).getNode();
7453    if (!isa<LoadSDNode>(Base))
7454      return SDValue();
7455  }
7456
7457  // Transform it into VZEXT_LOAD addr.
7458  LoadSDNode *LD = cast<LoadSDNode>(Base);
7459
7460  // Load must not be an extload.
7461  if (LD->getExtensionType() != ISD::NON_EXTLOAD)
7462    return SDValue();
7463
7464  SDVTList Tys = DAG.getVTList(VT, MVT::Other);
7465  SDValue Ops[] = { LD->getChain(), LD->getBasePtr() };
7466  SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, Tys, Ops, 2);
7467  DAG.ReplaceAllUsesOfValueWith(SDValue(Base, 1), ResNode.getValue(1));
7468  return ResNode;
7469}
7470
7471/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
7472static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
7473                                      const X86Subtarget *Subtarget) {
7474  SDValue Cond = N->getOperand(0);
7475
7476  // If we have SSE[12] support, try to form min/max nodes.
7477  if (Subtarget->hasSSE2() &&
7478      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
7479    if (Cond.getOpcode() == ISD::SETCC) {
7480      // Get the LHS/RHS of the select.
7481      SDValue LHS = N->getOperand(1);
7482      SDValue RHS = N->getOperand(2);
7483      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
7484
7485      unsigned Opcode = 0;
7486      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
7487        switch (CC) {
7488        default: break;
7489        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
7490        case ISD::SETULE:
7491        case ISD::SETLE:
7492          if (!UnsafeFPMath) break;
7493          // FALL THROUGH.
7494        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
7495        case ISD::SETLT:
7496          Opcode = X86ISD::FMIN;
7497          break;
7498
7499        case ISD::SETOGT: // (X > Y) ? X : Y -> max
7500        case ISD::SETUGT:
7501        case ISD::SETGT:
7502          if (!UnsafeFPMath) break;
7503          // FALL THROUGH.
7504        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
7505        case ISD::SETGE:
7506          Opcode = X86ISD::FMAX;
7507          break;
7508        }
7509      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
7510        switch (CC) {
7511        default: break;
7512        case ISD::SETOGT: // (X > Y) ? Y : X -> min
7513        case ISD::SETUGT:
7514        case ISD::SETGT:
7515          if (!UnsafeFPMath) break;
7516          // FALL THROUGH.
7517        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
7518        case ISD::SETGE:
7519          Opcode = X86ISD::FMIN;
7520          break;
7521
7522        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
7523        case ISD::SETULE:
7524        case ISD::SETLE:
7525          if (!UnsafeFPMath) break;
7526          // FALL THROUGH.
7527        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
7528        case ISD::SETLT:
7529          Opcode = X86ISD::FMAX;
7530          break;
7531        }
7532      }
7533
7534      if (Opcode)
7535        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
7536    }
7537
7538  }
7539
7540  return SDValue();
7541}
7542
7543/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
7544static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
7545                                     const X86Subtarget *Subtarget) {
7546  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
7547  // the FP state in cases where an emms may be missing.
7548  // A preferable solution to the general problem is to figure out the right
7549  // places to insert EMMS.  This qualifies as a quick hack.
7550  StoreSDNode *St = cast<StoreSDNode>(N);
7551  if (St->getValue().getValueType().isVector() &&
7552      St->getValue().getValueType().getSizeInBits() == 64 &&
7553      isa<LoadSDNode>(St->getValue()) &&
7554      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
7555      St->getChain().hasOneUse() && !St->isVolatile()) {
7556    SDNode* LdVal = St->getValue().getNode();
7557    LoadSDNode *Ld = 0;
7558    int TokenFactorIndex = -1;
7559    SmallVector<SDValue, 8> Ops;
7560    SDNode* ChainVal = St->getChain().getNode();
7561    // Must be a store of a load.  We currently handle two cases:  the load
7562    // is a direct child, and it's under an intervening TokenFactor.  It is
7563    // possible to dig deeper under nested TokenFactors.
7564    if (ChainVal == LdVal)
7565      Ld = cast<LoadSDNode>(St->getChain());
7566    else if (St->getValue().hasOneUse() &&
7567             ChainVal->getOpcode() == ISD::TokenFactor) {
7568      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
7569        if (ChainVal->getOperand(i).getNode() == LdVal) {
7570          TokenFactorIndex = i;
7571          Ld = cast<LoadSDNode>(St->getValue());
7572        } else
7573          Ops.push_back(ChainVal->getOperand(i));
7574      }
7575    }
7576    if (Ld) {
7577      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
7578      if (Subtarget->is64Bit()) {
7579        SDValue NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
7580                                      Ld->getBasePtr(), Ld->getSrcValue(),
7581                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
7582                                      Ld->getAlignment());
7583        SDValue NewChain = NewLd.getValue(1);
7584        if (TokenFactorIndex != -1) {
7585          Ops.push_back(NewChain);
7586          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7587                                 Ops.size());
7588        }
7589        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
7590                            St->getSrcValue(), St->getSrcValueOffset(),
7591                            St->isVolatile(), St->getAlignment());
7592      }
7593
7594      // Otherwise, lower to two 32-bit copies.
7595      SDValue LoAddr = Ld->getBasePtr();
7596      SDValue HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7597                                     DAG.getConstant(4, MVT::i32));
7598
7599      SDValue LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
7600                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
7601                                   Ld->isVolatile(), Ld->getAlignment());
7602      SDValue HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
7603                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
7604                                   Ld->isVolatile(),
7605                                   MinAlign(Ld->getAlignment(), 4));
7606
7607      SDValue NewChain = LoLd.getValue(1);
7608      if (TokenFactorIndex != -1) {
7609        Ops.push_back(LoLd);
7610        Ops.push_back(HiLd);
7611        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
7612                               Ops.size());
7613      }
7614
7615      LoAddr = St->getBasePtr();
7616      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
7617                           DAG.getConstant(4, MVT::i32));
7618
7619      SDValue LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
7620                          St->getSrcValue(), St->getSrcValueOffset(),
7621                          St->isVolatile(), St->getAlignment());
7622      SDValue HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
7623                                    St->getSrcValue(),
7624                                    St->getSrcValueOffset() + 4,
7625                                    St->isVolatile(),
7626                                    MinAlign(St->getAlignment(), 4));
7627      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
7628    }
7629  }
7630  return SDValue();
7631}
7632
7633/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
7634/// X86ISD::FXOR nodes.
7635static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
7636  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
7637  // F[X]OR(0.0, x) -> x
7638  // F[X]OR(x, 0.0) -> x
7639  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7640    if (C->getValueAPF().isPosZero())
7641      return N->getOperand(1);
7642  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7643    if (C->getValueAPF().isPosZero())
7644      return N->getOperand(0);
7645  return SDValue();
7646}
7647
7648/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
7649static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
7650  // FAND(0.0, x) -> 0.0
7651  // FAND(x, 0.0) -> 0.0
7652  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
7653    if (C->getValueAPF().isPosZero())
7654      return N->getOperand(0);
7655  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
7656    if (C->getValueAPF().isPosZero())
7657      return N->getOperand(1);
7658  return SDValue();
7659}
7660
7661
7662SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
7663                                             DAGCombinerInfo &DCI) const {
7664  SelectionDAG &DAG = DCI.DAG;
7665  switch (N->getOpcode()) {
7666  default: break;
7667  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
7668  case ISD::BUILD_VECTOR:
7669    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
7670  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
7671  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
7672  case X86ISD::FXOR:
7673  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
7674  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
7675  }
7676
7677  return SDValue();
7678}
7679
7680//===----------------------------------------------------------------------===//
7681//                           X86 Inline Assembly Support
7682//===----------------------------------------------------------------------===//
7683
7684/// getConstraintType - Given a constraint letter, return the type of
7685/// constraint it is for this target.
7686X86TargetLowering::ConstraintType
7687X86TargetLowering::getConstraintType(const std::string &Constraint) const {
7688  if (Constraint.size() == 1) {
7689    switch (Constraint[0]) {
7690    case 'A':
7691      return C_Register;
7692    case 'f':
7693    case 'r':
7694    case 'R':
7695    case 'l':
7696    case 'q':
7697    case 'Q':
7698    case 'x':
7699    case 'y':
7700    case 'Y':
7701      return C_RegisterClass;
7702    default:
7703      break;
7704    }
7705  }
7706  return TargetLowering::getConstraintType(Constraint);
7707}
7708
7709/// LowerXConstraint - try to replace an X constraint, which matches anything,
7710/// with another that has more specific requirements based on the type of the
7711/// corresponding operand.
7712const char *X86TargetLowering::
7713LowerXConstraint(MVT ConstraintVT) const {
7714  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
7715  // 'f' like normal targets.
7716  if (ConstraintVT.isFloatingPoint()) {
7717    if (Subtarget->hasSSE2())
7718      return "Y";
7719    if (Subtarget->hasSSE1())
7720      return "x";
7721  }
7722
7723  return TargetLowering::LowerXConstraint(ConstraintVT);
7724}
7725
7726/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
7727/// vector.  If it is invalid, don't add anything to Ops.
7728void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
7729                                                     char Constraint,
7730                                                     bool hasMemory,
7731                                                     std::vector<SDValue>&Ops,
7732                                                     SelectionDAG &DAG) const {
7733  SDValue Result(0, 0);
7734
7735  switch (Constraint) {
7736  default: break;
7737  case 'I':
7738    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7739      if (C->getZExtValue() <= 31) {
7740        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7741        break;
7742      }
7743    }
7744    return;
7745  case 'J':
7746    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7747      if (C->getZExtValue() <= 63) {
7748        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7749        break;
7750      }
7751    }
7752    return;
7753  case 'N':
7754    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
7755      if (C->getZExtValue() <= 255) {
7756        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
7757        break;
7758      }
7759    }
7760    return;
7761  case 'i': {
7762    // Literal immediates are always ok.
7763    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
7764      Result = DAG.getTargetConstant(CST->getZExtValue(), Op.getValueType());
7765      break;
7766    }
7767
7768    // If we are in non-pic codegen mode, we allow the address of a global (with
7769    // an optional displacement) to be used with 'i'.
7770    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
7771    int64_t Offset = 0;
7772
7773    // Match either (GA) or (GA+C)
7774    if (GA) {
7775      Offset = GA->getOffset();
7776    } else if (Op.getOpcode() == ISD::ADD) {
7777      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7778      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7779      if (C && GA) {
7780        Offset = GA->getOffset()+C->getZExtValue();
7781      } else {
7782        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7783        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
7784        if (C && GA)
7785          Offset = GA->getOffset()+C->getZExtValue();
7786        else
7787          C = 0, GA = 0;
7788      }
7789    }
7790
7791    if (GA) {
7792      if (hasMemory)
7793        Op = LowerGlobalAddress(GA->getGlobal(), Offset, DAG);
7794      else
7795        Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
7796                                        Offset);
7797      Result = Op;
7798      break;
7799    }
7800
7801    // Otherwise, not valid for this mode.
7802    return;
7803  }
7804  }
7805
7806  if (Result.getNode()) {
7807    Ops.push_back(Result);
7808    return;
7809  }
7810  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
7811                                                      Ops, DAG);
7812}
7813
7814std::vector<unsigned> X86TargetLowering::
7815getRegClassForInlineAsmConstraint(const std::string &Constraint,
7816                                  MVT VT) const {
7817  if (Constraint.size() == 1) {
7818    // FIXME: not handling fp-stack yet!
7819    switch (Constraint[0]) {      // GCC X86 Constraint Letters
7820    default: break;  // Unknown constraint letter
7821    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
7822    case 'Q':   // Q_REGS
7823      if (VT == MVT::i32)
7824        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
7825      else if (VT == MVT::i16)
7826        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
7827      else if (VT == MVT::i8)
7828        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
7829      else if (VT == MVT::i64)
7830        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
7831      break;
7832    }
7833  }
7834
7835  return std::vector<unsigned>();
7836}
7837
7838std::pair<unsigned, const TargetRegisterClass*>
7839X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
7840                                                MVT VT) const {
7841  // First, see if this is a constraint that directly corresponds to an LLVM
7842  // register class.
7843  if (Constraint.size() == 1) {
7844    // GCC Constraint Letters
7845    switch (Constraint[0]) {
7846    default: break;
7847    case 'r':   // GENERAL_REGS
7848    case 'R':   // LEGACY_REGS
7849    case 'l':   // INDEX_REGS
7850      if (VT == MVT::i8)
7851        return std::make_pair(0U, X86::GR8RegisterClass);
7852      if (VT == MVT::i16)
7853        return std::make_pair(0U, X86::GR16RegisterClass);
7854      if (VT == MVT::i32 || !Subtarget->is64Bit())
7855        return std::make_pair(0U, X86::GR32RegisterClass);
7856      return std::make_pair(0U, X86::GR64RegisterClass);
7857    case 'f':  // FP Stack registers.
7858      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
7859      // value to the correct fpstack register class.
7860      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
7861        return std::make_pair(0U, X86::RFP32RegisterClass);
7862      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
7863        return std::make_pair(0U, X86::RFP64RegisterClass);
7864      return std::make_pair(0U, X86::RFP80RegisterClass);
7865    case 'y':   // MMX_REGS if MMX allowed.
7866      if (!Subtarget->hasMMX()) break;
7867      return std::make_pair(0U, X86::VR64RegisterClass);
7868    case 'Y':   // SSE_REGS if SSE2 allowed
7869      if (!Subtarget->hasSSE2()) break;
7870      // FALL THROUGH.
7871    case 'x':   // SSE_REGS if SSE1 allowed
7872      if (!Subtarget->hasSSE1()) break;
7873
7874      switch (VT.getSimpleVT()) {
7875      default: break;
7876      // Scalar SSE types.
7877      case MVT::f32:
7878      case MVT::i32:
7879        return std::make_pair(0U, X86::FR32RegisterClass);
7880      case MVT::f64:
7881      case MVT::i64:
7882        return std::make_pair(0U, X86::FR64RegisterClass);
7883      // Vector types.
7884      case MVT::v16i8:
7885      case MVT::v8i16:
7886      case MVT::v4i32:
7887      case MVT::v2i64:
7888      case MVT::v4f32:
7889      case MVT::v2f64:
7890        return std::make_pair(0U, X86::VR128RegisterClass);
7891      }
7892      break;
7893    }
7894  }
7895
7896  // Use the default implementation in TargetLowering to convert the register
7897  // constraint into a member of a register class.
7898  std::pair<unsigned, const TargetRegisterClass*> Res;
7899  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
7900
7901  // Not found as a standard register?
7902  if (Res.second == 0) {
7903    // GCC calls "st(0)" just plain "st".
7904    if (StringsEqualNoCase("{st}", Constraint)) {
7905      Res.first = X86::ST0;
7906      Res.second = X86::RFP80RegisterClass;
7907    }
7908    // 'A' means EAX + EDX.
7909    if (Constraint == "A") {
7910      Res.first = X86::EAX;
7911      Res.second = X86::GRADRegisterClass;
7912    }
7913    return Res;
7914  }
7915
7916  // Otherwise, check to see if this is a register class of the wrong value
7917  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
7918  // turn into {ax},{dx}.
7919  if (Res.second->hasType(VT))
7920    return Res;   // Correct type already, nothing to do.
7921
7922  // All of the single-register GCC register classes map their values onto
7923  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
7924  // really want an 8-bit or 32-bit register, map to the appropriate register
7925  // class and return the appropriate register.
7926  if (Res.second == X86::GR16RegisterClass) {
7927    if (VT == MVT::i8) {
7928      unsigned DestReg = 0;
7929      switch (Res.first) {
7930      default: break;
7931      case X86::AX: DestReg = X86::AL; break;
7932      case X86::DX: DestReg = X86::DL; break;
7933      case X86::CX: DestReg = X86::CL; break;
7934      case X86::BX: DestReg = X86::BL; break;
7935      }
7936      if (DestReg) {
7937        Res.first = DestReg;
7938        Res.second = Res.second = X86::GR8RegisterClass;
7939      }
7940    } else if (VT == MVT::i32) {
7941      unsigned DestReg = 0;
7942      switch (Res.first) {
7943      default: break;
7944      case X86::AX: DestReg = X86::EAX; break;
7945      case X86::DX: DestReg = X86::EDX; break;
7946      case X86::CX: DestReg = X86::ECX; break;
7947      case X86::BX: DestReg = X86::EBX; break;
7948      case X86::SI: DestReg = X86::ESI; break;
7949      case X86::DI: DestReg = X86::EDI; break;
7950      case X86::BP: DestReg = X86::EBP; break;
7951      case X86::SP: DestReg = X86::ESP; break;
7952      }
7953      if (DestReg) {
7954        Res.first = DestReg;
7955        Res.second = Res.second = X86::GR32RegisterClass;
7956      }
7957    } else if (VT == MVT::i64) {
7958      unsigned DestReg = 0;
7959      switch (Res.first) {
7960      default: break;
7961      case X86::AX: DestReg = X86::RAX; break;
7962      case X86::DX: DestReg = X86::RDX; break;
7963      case X86::CX: DestReg = X86::RCX; break;
7964      case X86::BX: DestReg = X86::RBX; break;
7965      case X86::SI: DestReg = X86::RSI; break;
7966      case X86::DI: DestReg = X86::RDI; break;
7967      case X86::BP: DestReg = X86::RBP; break;
7968      case X86::SP: DestReg = X86::RSP; break;
7969      }
7970      if (DestReg) {
7971        Res.first = DestReg;
7972        Res.second = Res.second = X86::GR64RegisterClass;
7973      }
7974    }
7975  } else if (Res.second == X86::FR32RegisterClass ||
7976             Res.second == X86::FR64RegisterClass ||
7977             Res.second == X86::VR128RegisterClass) {
7978    // Handle references to XMM physical registers that got mapped into the
7979    // wrong class.  This can happen with constraints like {xmm0} where the
7980    // target independent register mapper will just pick the first match it can
7981    // find, ignoring the required type.
7982    if (VT == MVT::f32)
7983      Res.second = X86::FR32RegisterClass;
7984    else if (VT == MVT::f64)
7985      Res.second = X86::FR64RegisterClass;
7986    else if (X86::VR128RegisterClass->hasType(VT))
7987      Res.second = X86::VR128RegisterClass;
7988  }
7989
7990  return Res;
7991}
7992
7993//===----------------------------------------------------------------------===//
7994//                           X86 Widen vector type
7995//===----------------------------------------------------------------------===//
7996
7997/// getWidenVectorType: given a vector type, returns the type to widen
7998/// to (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
7999/// If there is no vector type that we want to widen to, returns MVT::Other
8000/// When and where to widen is target dependent based on the cost of
8001/// scalarizing vs using the wider vector type.
8002
8003MVT X86TargetLowering::getWidenVectorType(MVT VT) {
8004  assert(VT.isVector());
8005  if (isTypeLegal(VT))
8006    return VT;
8007
8008  // TODO: In computeRegisterProperty, we can compute the list of legal vector
8009  //       type based on element type.  This would speed up our search (though
8010  //       it may not be worth it since the size of the list is relatively
8011  //       small).
8012  MVT EltVT = VT.getVectorElementType();
8013  unsigned NElts = VT.getVectorNumElements();
8014
8015  // On X86, it make sense to widen any vector wider than 1
8016  if (NElts <= 1)
8017    return MVT::Other;
8018
8019  for (unsigned nVT = MVT::FIRST_VECTOR_VALUETYPE;
8020       nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
8021    MVT SVT = (MVT::SimpleValueType)nVT;
8022
8023    if (isTypeLegal(SVT) &&
8024        SVT.getVectorElementType() == EltVT &&
8025        SVT.getVectorNumElements() > NElts)
8026      return SVT;
8027  }
8028  return MVT::Other;
8029}
8030