X86ISelLowering.cpp revision bf010eb9110009d745382bf15131fbe556562ffe
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52using namespace llvm;
53
54STATISTIC(NumTailCalls, "Number of tail calls");
55
56// Forward declarations.
57static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
58                       SDValue V2);
59
60/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
61/// sets things up to match to an AVX VEXTRACTF128 instruction or a
62/// simple subregister reference.  Idx is an index in the 128 bits we
63/// want.  It need not be aligned to a 128-bit bounday.  That makes
64/// lowering EXTRACT_VECTOR_ELT operations easier.
65static SDValue Extract128BitVector(SDValue Vec,
66                                   SDValue Idx,
67                                   SelectionDAG &DAG,
68                                   DebugLoc dl) {
69  EVT VT = Vec.getValueType();
70  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
71  EVT ElVT = VT.getVectorElementType();
72  int Factor = VT.getSizeInBits()/128;
73  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
74                                  VT.getVectorNumElements()/Factor);
75
76  // Extract from UNDEF is UNDEF.
77  if (Vec.getOpcode() == ISD::UNDEF)
78    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
79
80  if (isa<ConstantSDNode>(Idx)) {
81    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
82
83    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
84    // we can match to VEXTRACTF128.
85    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
86
87    // This is the index of the first element of the 128-bit chunk
88    // we want.
89    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
90                                 * ElemsPerChunk);
91
92    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
93    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
94                                 VecIdx);
95
96    return Result;
97  }
98
99  return SDValue();
100}
101
102/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
103/// sets things up to match to an AVX VINSERTF128 instruction or a
104/// simple superregister reference.  Idx is an index in the 128 bits
105/// we want.  It need not be aligned to a 128-bit bounday.  That makes
106/// lowering INSERT_VECTOR_ELT operations easier.
107static SDValue Insert128BitVector(SDValue Result,
108                                  SDValue Vec,
109                                  SDValue Idx,
110                                  SelectionDAG &DAG,
111                                  DebugLoc dl) {
112  if (isa<ConstantSDNode>(Idx)) {
113    EVT VT = Vec.getValueType();
114    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
115
116    EVT ElVT = VT.getVectorElementType();
117    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
118    EVT ResultVT = Result.getValueType();
119
120    // Insert the relevant 128 bits.
121    unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
122
123    // This is the index of the first element of the 128-bit chunk
124    // we want.
125    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
126                                 * ElemsPerChunk);
127
128    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
129    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
130                         VecIdx);
131    return Result;
132  }
133
134  return SDValue();
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X8664_MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetELF())
148    return new TargetLoweringObjectFileELF();
149  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
150    return new TargetLoweringObjectFileCOFF();
151  llvm_unreachable("unknown subtarget type");
152}
153
154X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
155  : TargetLowering(TM, createTLOF(TM)) {
156  Subtarget = &TM.getSubtarget<X86Subtarget>();
157  X86ScalarSSEf64 = Subtarget->hasSSE2();
158  X86ScalarSSEf32 = Subtarget->hasSSE1();
159  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
160
161  RegInfo = TM.getRegisterInfo();
162  TD = getTargetData();
163
164  // Set up the TargetLowering object.
165  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
166
167  // X86 is weird, it always uses i8 for shift amounts and setcc results.
168  setBooleanContents(ZeroOrOneBooleanContent);
169  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
170  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
171
172  // For 64-bit since we have so many registers use the ILP scheduler, for
173  // 32-bit code use the register pressure specific scheduling.
174  // For 32 bit Atom, use Hybrid (register pressure + latency) scheduling.
175  if (Subtarget->is64Bit())
176    setSchedulingPreference(Sched::ILP);
177  else if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::Hybrid);
179  else
180    setSchedulingPreference(Sched::RegPressure);
181  setStackPointerRegisterToSaveRestore(X86StackPtr);
182
183  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
184    // Setup Windows compiler runtime calls.
185    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
186    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
187    setLibcallName(RTLIB::SREM_I64, "_allrem");
188    setLibcallName(RTLIB::UREM_I64, "_aullrem");
189    setLibcallName(RTLIB::MUL_I64, "_allmul");
190    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
191    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
192    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
195
196    // The _ftol2 runtime function has an unusual calling conv, which
197    // is modeled by a special pseudo-instruction.
198    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
199    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
200    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
201    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
202  }
203
204  if (Subtarget->isTargetDarwin()) {
205    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
206    setUseUnderscoreSetJmp(false);
207    setUseUnderscoreLongJmp(false);
208  } else if (Subtarget->isTargetMingw()) {
209    // MS runtime is weird: it exports _setjmp, but longjmp!
210    setUseUnderscoreSetJmp(true);
211    setUseUnderscoreLongJmp(false);
212  } else {
213    setUseUnderscoreSetJmp(true);
214    setUseUnderscoreLongJmp(true);
215  }
216
217  // Set up the register classes.
218  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
219  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
220  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
221  if (Subtarget->is64Bit())
222    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
223
224  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
225
226  // We don't accept any truncstore of integer registers.
227  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
228  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
229  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
230  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
233
234  // SETOEQ and SETUNE require checking two conditions.
235  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
236  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
237  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
238  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
239  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
241
242  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
243  // operation.
244  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
245  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
247
248  if (Subtarget->is64Bit()) {
249    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
250    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
251  } else if (!TM.Options.UseSoftFloat) {
252    // We have an algorithm for SSE2->double, and we turn this into a
253    // 64-bit FILD followed by conditional FADD for other targets.
254    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
255    // We have an algorithm for SSE2, and we turn this into a 64-bit
256    // FILD for other targets.
257    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
258  }
259
260  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
261  // this operation.
262  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
263  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
264
265  if (!TM.Options.UseSoftFloat) {
266    // SSE has no i16 to fp conversion, only i32
267    if (X86ScalarSSEf32) {
268      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
269      // f32 and f64 cases are Legal, f80 case is not
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
271    } else {
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
273      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
274    }
275  } else {
276    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
277    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
278  }
279
280  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
281  // are Legal, f80 is custom lowered.
282  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
283  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
284
285  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
286  // this operation.
287  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
288  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
289
290  if (X86ScalarSSEf32) {
291    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
292    // f32 and f64 cases are Legal, f80 case is not
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
294  } else {
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
296    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
297  }
298
299  // Handle FP_TO_UINT by promoting the destination to a larger signed
300  // conversion.
301  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
302  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
304
305  if (Subtarget->is64Bit()) {
306    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
307    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
308  } else if (!TM.Options.UseSoftFloat) {
309    // Since AVX is a superset of SSE3, only check for SSE here.
310    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
311      // Expand FP_TO_UINT into a select.
312      // FIXME: We would like to use a Custom expander here eventually to do
313      // the optimal thing for SSE vs. the default expansion in the legalizer.
314      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
315    else
316      // With SSE3 we can use fisttpll to convert to a signed i64; without
317      // SSE, we're stuck with a fistpll.
318      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
319  }
320
321  if (isTargetFTOL()) {
322    // Use the _ftol2 runtime function, which has a pseudo-instruction
323    // to handle its weird calling convention.
324    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
325  }
326
327  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
328  if (!X86ScalarSSEf64) {
329    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
330    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
331    if (Subtarget->is64Bit()) {
332      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
333      // Without SSE, i64->f64 goes through memory.
334      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
335    }
336  }
337
338  // Scalar integer divide and remainder are lowered to use operations that
339  // produce two results, to match the available instructions. This exposes
340  // the two-result form to trivial CSE, which is able to combine x/y and x%y
341  // into a single instruction.
342  //
343  // Scalar integer multiply-high is also lowered to use two-result
344  // operations, to match the available instructions. However, plain multiply
345  // (low) operations are left as Legal, as there are single-result
346  // instructions for this in x86. Using the two-result multiply instructions
347  // when both high and low results are needed must be arranged by dagcombine.
348  for (unsigned i = 0, e = 4; i != e; ++i) {
349    MVT VT = IntVTs[i];
350    setOperationAction(ISD::MULHS, VT, Expand);
351    setOperationAction(ISD::MULHU, VT, Expand);
352    setOperationAction(ISD::SDIV, VT, Expand);
353    setOperationAction(ISD::UDIV, VT, Expand);
354    setOperationAction(ISD::SREM, VT, Expand);
355    setOperationAction(ISD::UREM, VT, Expand);
356
357    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
358    setOperationAction(ISD::ADDC, VT, Custom);
359    setOperationAction(ISD::ADDE, VT, Custom);
360    setOperationAction(ISD::SUBC, VT, Custom);
361    setOperationAction(ISD::SUBE, VT, Custom);
362  }
363
364  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
365  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
366  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
367  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
368  if (Subtarget->is64Bit())
369    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
370  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
371  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
373  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
374  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
375  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
377  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
378
379  // Promote the i8 variants and force them on up to i32 which has a shorter
380  // encoding.
381  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
382  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
383  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
385  if (Subtarget->hasBMI()) {
386    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
387    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
388    if (Subtarget->is64Bit())
389      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
390  } else {
391    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
392    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
393    if (Subtarget->is64Bit())
394      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
395  }
396
397  if (Subtarget->hasLZCNT()) {
398    // When promoting the i8 variants, force them to i32 for a shorter
399    // encoding.
400    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
401    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
402    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
405    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
406    if (Subtarget->is64Bit())
407      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
408  } else {
409    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
410    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
411    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
412    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
413    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
415    if (Subtarget->is64Bit()) {
416      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
417      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
418    }
419  }
420
421  if (Subtarget->hasPOPCNT()) {
422    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
423  } else {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
425    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
426    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
427    if (Subtarget->is64Bit())
428      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
429  }
430
431  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
432  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
433
434  // These should be promoted to a larger select which is supported.
435  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
436  // X86 wants to expand cmov itself.
437  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
438  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
439  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
440  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
444  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
446  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
449  if (Subtarget->is64Bit()) {
450    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
451    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
452  }
453  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
454
455  // Darwin ABI issue.
456  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
457  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
458  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
459  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
460  if (Subtarget->is64Bit())
461    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
462  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
463  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
464  if (Subtarget->is64Bit()) {
465    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
466    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
467    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
468    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
469    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
470  }
471  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
472  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
473  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
474  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
475  if (Subtarget->is64Bit()) {
476    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
477    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
478    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
479  }
480
481  if (Subtarget->hasSSE1())
482    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
483
484  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
485  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
486
487  // On X86 and X86-64, atomic operations are lowered to locked instructions.
488  // Locked instructions, in turn, have implicit fence semantics (all memory
489  // operations are flushed before issuing the locked instruction, and they
490  // are not buffered), so we can fold away the common pattern of
491  // fence-atomic-fence.
492  setShouldFoldAtomicFences(true);
493
494  // Expand certain atomics
495  for (unsigned i = 0, e = 4; i != e; ++i) {
496    MVT VT = IntVTs[i];
497    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
498    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
499    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
500  }
501
502  if (!Subtarget->is64Bit()) {
503    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
511  }
512
513  if (Subtarget->hasCmpxchg16b()) {
514    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
515  }
516
517  // FIXME - use subtarget debug flags
518  if (!Subtarget->isTargetDarwin() &&
519      !Subtarget->isTargetELF() &&
520      !Subtarget->isTargetCygMing()) {
521    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
522  }
523
524  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
525  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
528  if (Subtarget->is64Bit()) {
529    setExceptionPointerRegister(X86::RAX);
530    setExceptionSelectorRegister(X86::RDX);
531  } else {
532    setExceptionPointerRegister(X86::EAX);
533    setExceptionSelectorRegister(X86::EDX);
534  }
535  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
536  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
537
538  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
539  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
540
541  setOperationAction(ISD::TRAP, MVT::Other, Legal);
542
543  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
544  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
545  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
546  if (Subtarget->is64Bit()) {
547    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
548    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
549  } else {
550    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
551    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
552  }
553
554  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
555  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
556
557  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
558    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
559                       MVT::i64 : MVT::i32, Custom);
560  else if (TM.Options.EnableSegmentedStacks)
561    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
562                       MVT::i64 : MVT::i32, Custom);
563  else
564    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
565                       MVT::i64 : MVT::i32, Expand);
566
567  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
568    // f32 and f64 use SSE.
569    // Set up the FP register classes.
570    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
571    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
572
573    // Use ANDPD to simulate FABS.
574    setOperationAction(ISD::FABS , MVT::f64, Custom);
575    setOperationAction(ISD::FABS , MVT::f32, Custom);
576
577    // Use XORP to simulate FNEG.
578    setOperationAction(ISD::FNEG , MVT::f64, Custom);
579    setOperationAction(ISD::FNEG , MVT::f32, Custom);
580
581    // Use ANDPD and ORPD to simulate FCOPYSIGN.
582    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
583    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
584
585    // Lower this to FGETSIGNx86 plus an AND.
586    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
587    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
588
589    // We don't support sin/cos/fmod
590    setOperationAction(ISD::FSIN , MVT::f64, Expand);
591    setOperationAction(ISD::FCOS , MVT::f64, Expand);
592    setOperationAction(ISD::FSIN , MVT::f32, Expand);
593    setOperationAction(ISD::FCOS , MVT::f32, Expand);
594
595    // Expand FP immediates into loads from the stack, except for the special
596    // cases we handle.
597    addLegalFPImmediate(APFloat(+0.0)); // xorpd
598    addLegalFPImmediate(APFloat(+0.0f)); // xorps
599  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
600    // Use SSE for f32, x87 for f64.
601    // Set up the FP register classes.
602    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
603    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
604
605    // Use ANDPS to simulate FABS.
606    setOperationAction(ISD::FABS , MVT::f32, Custom);
607
608    // Use XORP to simulate FNEG.
609    setOperationAction(ISD::FNEG , MVT::f32, Custom);
610
611    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
612
613    // Use ANDPS and ORPS to simulate FCOPYSIGN.
614    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
615    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
616
617    // We don't support sin/cos/fmod
618    setOperationAction(ISD::FSIN , MVT::f32, Expand);
619    setOperationAction(ISD::FCOS , MVT::f32, Expand);
620
621    // Special cases we handle for FP constants.
622    addLegalFPImmediate(APFloat(+0.0f)); // xorps
623    addLegalFPImmediate(APFloat(+0.0)); // FLD0
624    addLegalFPImmediate(APFloat(+1.0)); // FLD1
625    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
626    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
627
628    if (!TM.Options.UnsafeFPMath) {
629      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
630      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
631    }
632  } else if (!TM.Options.UseSoftFloat) {
633    // f32 and f64 in x87.
634    // Set up the FP register classes.
635    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
636    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
637
638    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
639    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
640    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
641    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
642
643    if (!TM.Options.UnsafeFPMath) {
644      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
645      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
646    }
647    addLegalFPImmediate(APFloat(+0.0)); // FLD0
648    addLegalFPImmediate(APFloat(+1.0)); // FLD1
649    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
650    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
651    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
652    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
653    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
654    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
655  }
656
657  // We don't support FMA.
658  setOperationAction(ISD::FMA, MVT::f64, Expand);
659  setOperationAction(ISD::FMA, MVT::f32, Expand);
660
661  // Long double always uses X87.
662  if (!TM.Options.UseSoftFloat) {
663    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
664    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
665    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
666    {
667      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
668      addLegalFPImmediate(TmpFlt);  // FLD0
669      TmpFlt.changeSign();
670      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
671
672      bool ignored;
673      APFloat TmpFlt2(+1.0);
674      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
675                      &ignored);
676      addLegalFPImmediate(TmpFlt2);  // FLD1
677      TmpFlt2.changeSign();
678      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
679    }
680
681    if (!TM.Options.UnsafeFPMath) {
682      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
683      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
684    }
685
686    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
687    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
688    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
689    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
690    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
691    setOperationAction(ISD::FMA, MVT::f80, Expand);
692  }
693
694  // Always use a library call for pow.
695  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
696  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
697  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
698
699  setOperationAction(ISD::FLOG, MVT::f80, Expand);
700  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
701  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
702  setOperationAction(ISD::FEXP, MVT::f80, Expand);
703  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
704
705  // First set operation action for all vector types to either promote
706  // (for widening) or expand (for scalarization). Then we will selectively
707  // turn on ones that can be effectively codegen'd.
708  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
709       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
710    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
725    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
728    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
762    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
765    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
767    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
768         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
769      setTruncStoreAction((MVT::SimpleValueType)VT,
770                          (MVT::SimpleValueType)InnerVT, Expand);
771    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
772    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
773    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
774  }
775
776  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
777  // with -msoft-float, disable use of MMX as well.
778  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
779    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
780    // No operations on x86mmx supported, everything uses intrinsics.
781  }
782
783  // MMX-sized vectors (other than x86mmx) are expected to be expanded
784  // into smaller operations.
785  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
786  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
787  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
788  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
789  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
790  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
791  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
792  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
793  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
794  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
795  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
796  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
797  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
798  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
799  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
800  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
801  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
802  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
803  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
805  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
806  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
807  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
808  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
810  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
811  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
812  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
814
815  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
816    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
817
818    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
819    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
820    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
821    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
823    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
824    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
825    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
826    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
827    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
828    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
829    setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
830  }
831
832  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
833    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
834
835    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
836    // registers cannot be used even for integer operations.
837    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
838    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
839    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
840    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
841
842    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
843    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
844    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
845    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
846    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
847    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
848    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
849    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
850    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
851    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
852    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
853    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
854    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
857    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
858
859    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
860    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
861    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
863
864    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
865    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
866    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
867    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
869
870    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
871    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
872    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
873    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
874    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
875
876    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
877    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
878      EVT VT = (MVT::SimpleValueType)i;
879      // Do not attempt to custom lower non-power-of-2 vectors
880      if (!isPowerOf2_32(VT.getVectorNumElements()))
881        continue;
882      // Do not attempt to custom lower non-128-bit vectors
883      if (!VT.is128BitVector())
884        continue;
885      setOperationAction(ISD::BUILD_VECTOR,
886                         VT.getSimpleVT().SimpleTy, Custom);
887      setOperationAction(ISD::VECTOR_SHUFFLE,
888                         VT.getSimpleVT().SimpleTy, Custom);
889      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
890                         VT.getSimpleVT().SimpleTy, Custom);
891    }
892
893    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
894    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
895    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
896    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
897    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
898    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
899
900    if (Subtarget->is64Bit()) {
901      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
902      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
903    }
904
905    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
906    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
907      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
908      EVT VT = SVT;
909
910      // Do not attempt to promote non-128-bit vectors
911      if (!VT.is128BitVector())
912        continue;
913
914      setOperationAction(ISD::AND,    SVT, Promote);
915      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
916      setOperationAction(ISD::OR,     SVT, Promote);
917      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
918      setOperationAction(ISD::XOR,    SVT, Promote);
919      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
920      setOperationAction(ISD::LOAD,   SVT, Promote);
921      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
922      setOperationAction(ISD::SELECT, SVT, Promote);
923      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
924    }
925
926    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
927
928    // Custom lower v2i64 and v2f64 selects.
929    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
930    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
931    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
932    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
933
934    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
935    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
936  }
937
938  if (Subtarget->hasSSE41()) {
939    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
940    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
941    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
942    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
943    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
944    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
945    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
946    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
947    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
948    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
949
950    // FIXME: Do we need to handle scalar-to-vector here?
951    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
952
953    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
954    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
955    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
956    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
957    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
958
959    // i8 and i16 vectors are custom , because the source register and source
960    // source memory operand types are not the same width.  f32 vectors are
961    // custom since the immediate controlling the insert encodes additional
962    // information.
963    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
964    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
965    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
966    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
967
968    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
969    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
970    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
971    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
972
973    // FIXME: these should be Legal but thats only for the case where
974    // the index is constant.  For now custom expand to deal with that.
975    if (Subtarget->is64Bit()) {
976      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
977      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
978    }
979  }
980
981  if (Subtarget->hasSSE2()) {
982    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
983    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
984
985    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
986    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
987
988    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
989    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
990
991    if (Subtarget->hasAVX2()) {
992      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
993      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
994
995      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
996      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
997
998      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
999    } else {
1000      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
1001      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
1002
1003      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
1004      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
1005
1006      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
1007    }
1008  }
1009
1010  if (Subtarget->hasSSE42())
1011    setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
1012
1013  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1014    addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
1015    addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
1016    addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
1017    addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
1018    addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
1019    addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
1020
1021    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1022    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1023    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1024
1025    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1026    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1027    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1028    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1029    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1030    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1031
1032    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1033    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1034    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1035    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1036    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1037    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1038
1039    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1040    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1041    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1042
1043    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1044    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1045    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1046    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1047    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1048    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1049
1050    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1051    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1052
1053    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1054    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1055
1056    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1057    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1058
1059    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1060    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1061    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1062    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1063
1064    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1065    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1066    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1067
1068    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1069    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1070    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1071    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1072
1073    if (Subtarget->hasAVX2()) {
1074      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1075      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1076      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1077      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1078
1079      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1080      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1081      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1082      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1083
1084      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1085      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1086      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1087      // Don't lower v32i8 because there is no 128-bit byte mul
1088
1089      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1090
1091      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1092      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1093
1094      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1095      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1096
1097      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1098    } else {
1099      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1100      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1101      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1102      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1103
1104      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1105      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1106      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1107      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1108
1109      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1110      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1111      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1112      // Don't lower v32i8 because there is no 128-bit byte mul
1113
1114      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1115      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1116
1117      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1118      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1119
1120      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1121    }
1122
1123    // Custom lower several nodes for 256-bit types.
1124    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1125                  i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1126      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1127      EVT VT = SVT;
1128
1129      // Extract subvector is special because the value type
1130      // (result) is 128-bit but the source is 256-bit wide.
1131      if (VT.is128BitVector())
1132        setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1133
1134      // Do not attempt to custom lower other non-256-bit vectors
1135      if (!VT.is256BitVector())
1136        continue;
1137
1138      setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1139      setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1140      setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1141      setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1142      setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1143      setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1144    }
1145
1146    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1147    for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1148      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1149      EVT VT = SVT;
1150
1151      // Do not attempt to promote non-256-bit vectors
1152      if (!VT.is256BitVector())
1153        continue;
1154
1155      setOperationAction(ISD::AND,    SVT, Promote);
1156      AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1157      setOperationAction(ISD::OR,     SVT, Promote);
1158      AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1159      setOperationAction(ISD::XOR,    SVT, Promote);
1160      AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1161      setOperationAction(ISD::LOAD,   SVT, Promote);
1162      AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1163      setOperationAction(ISD::SELECT, SVT, Promote);
1164      AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1165    }
1166  }
1167
1168  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1169  // of this type with custom code.
1170  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1171         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1172    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1173                       Custom);
1174  }
1175
1176  // We want to custom lower some of our intrinsics.
1177  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1178
1179
1180  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1181  // handle type legalization for these operations here.
1182  //
1183  // FIXME: We really should do custom legalization for addition and
1184  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1185  // than generic legalization for 64-bit multiplication-with-overflow, though.
1186  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1187    // Add/Sub/Mul with overflow operations are custom lowered.
1188    MVT VT = IntVTs[i];
1189    setOperationAction(ISD::SADDO, VT, Custom);
1190    setOperationAction(ISD::UADDO, VT, Custom);
1191    setOperationAction(ISD::SSUBO, VT, Custom);
1192    setOperationAction(ISD::USUBO, VT, Custom);
1193    setOperationAction(ISD::SMULO, VT, Custom);
1194    setOperationAction(ISD::UMULO, VT, Custom);
1195  }
1196
1197  // There are no 8-bit 3-address imul/mul instructions
1198  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1199  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1200
1201  if (!Subtarget->is64Bit()) {
1202    // These libcalls are not available in 32-bit.
1203    setLibcallName(RTLIB::SHL_I128, 0);
1204    setLibcallName(RTLIB::SRL_I128, 0);
1205    setLibcallName(RTLIB::SRA_I128, 0);
1206  }
1207
1208  // We have target-specific dag combine patterns for the following nodes:
1209  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1210  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1211  setTargetDAGCombine(ISD::VSELECT);
1212  setTargetDAGCombine(ISD::SELECT);
1213  setTargetDAGCombine(ISD::SHL);
1214  setTargetDAGCombine(ISD::SRA);
1215  setTargetDAGCombine(ISD::SRL);
1216  setTargetDAGCombine(ISD::OR);
1217  setTargetDAGCombine(ISD::AND);
1218  setTargetDAGCombine(ISD::ADD);
1219  setTargetDAGCombine(ISD::FADD);
1220  setTargetDAGCombine(ISD::FSUB);
1221  setTargetDAGCombine(ISD::SUB);
1222  setTargetDAGCombine(ISD::LOAD);
1223  setTargetDAGCombine(ISD::STORE);
1224  setTargetDAGCombine(ISD::ZERO_EXTEND);
1225  setTargetDAGCombine(ISD::SIGN_EXTEND);
1226  setTargetDAGCombine(ISD::TRUNCATE);
1227  setTargetDAGCombine(ISD::SINT_TO_FP);
1228  if (Subtarget->is64Bit())
1229    setTargetDAGCombine(ISD::MUL);
1230  if (Subtarget->hasBMI())
1231    setTargetDAGCombine(ISD::XOR);
1232
1233  computeRegisterProperties();
1234
1235  // On Darwin, -Os means optimize for size without hurting performance,
1236  // do not reduce the limit.
1237  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1238  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1239  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1240  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1241  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1242  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1243  setPrefLoopAlignment(4); // 2^4 bytes.
1244  benefitFromCodePlacementOpt = true;
1245
1246  setPrefFunctionAlignment(4); // 2^4 bytes.
1247}
1248
1249
1250EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1251  if (!VT.isVector()) return MVT::i8;
1252  return VT.changeVectorElementTypeToInteger();
1253}
1254
1255
1256/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1257/// the desired ByVal argument alignment.
1258static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1259  if (MaxAlign == 16)
1260    return;
1261  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1262    if (VTy->getBitWidth() == 128)
1263      MaxAlign = 16;
1264  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1265    unsigned EltAlign = 0;
1266    getMaxByValAlign(ATy->getElementType(), EltAlign);
1267    if (EltAlign > MaxAlign)
1268      MaxAlign = EltAlign;
1269  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1270    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1271      unsigned EltAlign = 0;
1272      getMaxByValAlign(STy->getElementType(i), EltAlign);
1273      if (EltAlign > MaxAlign)
1274        MaxAlign = EltAlign;
1275      if (MaxAlign == 16)
1276        break;
1277    }
1278  }
1279  return;
1280}
1281
1282/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1283/// function arguments in the caller parameter area. For X86, aggregates
1284/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1285/// are at 4-byte boundaries.
1286unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1287  if (Subtarget->is64Bit()) {
1288    // Max of 8 and alignment of type.
1289    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1290    if (TyAlign > 8)
1291      return TyAlign;
1292    return 8;
1293  }
1294
1295  unsigned Align = 4;
1296  if (Subtarget->hasSSE1())
1297    getMaxByValAlign(Ty, Align);
1298  return Align;
1299}
1300
1301/// getOptimalMemOpType - Returns the target specific optimal type for load
1302/// and store operations as a result of memset, memcpy, and memmove
1303/// lowering. If DstAlign is zero that means it's safe to destination
1304/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1305/// means there isn't a need to check it against alignment requirement,
1306/// probably because the source does not need to be loaded. If
1307/// 'IsZeroVal' is true, that means it's safe to return a
1308/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1309/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1310/// constant so it does not need to be loaded.
1311/// It returns EVT::Other if the type should be determined using generic
1312/// target-independent logic.
1313EVT
1314X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1315                                       unsigned DstAlign, unsigned SrcAlign,
1316                                       bool IsZeroVal,
1317                                       bool MemcpyStrSrc,
1318                                       MachineFunction &MF) const {
1319  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1320  // linux.  This is because the stack realignment code can't handle certain
1321  // cases like PR2962.  This should be removed when PR2962 is fixed.
1322  const Function *F = MF.getFunction();
1323  if (IsZeroVal &&
1324      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1325    if (Size >= 16 &&
1326        (Subtarget->isUnalignedMemAccessFast() ||
1327         ((DstAlign == 0 || DstAlign >= 16) &&
1328          (SrcAlign == 0 || SrcAlign >= 16))) &&
1329        Subtarget->getStackAlignment() >= 16) {
1330      if (Subtarget->getStackAlignment() >= 32) {
1331        if (Subtarget->hasAVX2())
1332          return MVT::v8i32;
1333        if (Subtarget->hasAVX())
1334          return MVT::v8f32;
1335      }
1336      if (Subtarget->hasSSE2())
1337        return MVT::v4i32;
1338      if (Subtarget->hasSSE1())
1339        return MVT::v4f32;
1340    } else if (!MemcpyStrSrc && Size >= 8 &&
1341               !Subtarget->is64Bit() &&
1342               Subtarget->getStackAlignment() >= 8 &&
1343               Subtarget->hasSSE2()) {
1344      // Do not use f64 to lower memcpy if source is string constant. It's
1345      // better to use i32 to avoid the loads.
1346      return MVT::f64;
1347    }
1348  }
1349  if (Subtarget->is64Bit() && Size >= 8)
1350    return MVT::i64;
1351  return MVT::i32;
1352}
1353
1354/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1355/// current function.  The returned value is a member of the
1356/// MachineJumpTableInfo::JTEntryKind enum.
1357unsigned X86TargetLowering::getJumpTableEncoding() const {
1358  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1359  // symbol.
1360  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1361      Subtarget->isPICStyleGOT())
1362    return MachineJumpTableInfo::EK_Custom32;
1363
1364  // Otherwise, use the normal jump table encoding heuristics.
1365  return TargetLowering::getJumpTableEncoding();
1366}
1367
1368const MCExpr *
1369X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1370                                             const MachineBasicBlock *MBB,
1371                                             unsigned uid,MCContext &Ctx) const{
1372  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1373         Subtarget->isPICStyleGOT());
1374  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1375  // entries.
1376  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1377                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1378}
1379
1380/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1381/// jumptable.
1382SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1383                                                    SelectionDAG &DAG) const {
1384  if (!Subtarget->is64Bit())
1385    // This doesn't have DebugLoc associated with it, but is not really the
1386    // same as a Register.
1387    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1388  return Table;
1389}
1390
1391/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1392/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1393/// MCExpr.
1394const MCExpr *X86TargetLowering::
1395getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1396                             MCContext &Ctx) const {
1397  // X86-64 uses RIP relative addressing based on the jump table label.
1398  if (Subtarget->isPICStyleRIPRel())
1399    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1400
1401  // Otherwise, the reference is relative to the PIC base.
1402  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1403}
1404
1405// FIXME: Why this routine is here? Move to RegInfo!
1406std::pair<const TargetRegisterClass*, uint8_t>
1407X86TargetLowering::findRepresentativeClass(EVT VT) const{
1408  const TargetRegisterClass *RRC = 0;
1409  uint8_t Cost = 1;
1410  switch (VT.getSimpleVT().SimpleTy) {
1411  default:
1412    return TargetLowering::findRepresentativeClass(VT);
1413  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1414    RRC = (Subtarget->is64Bit()
1415           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1416    break;
1417  case MVT::x86mmx:
1418    RRC = X86::VR64RegisterClass;
1419    break;
1420  case MVT::f32: case MVT::f64:
1421  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1422  case MVT::v4f32: case MVT::v2f64:
1423  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1424  case MVT::v4f64:
1425    RRC = X86::VR128RegisterClass;
1426    break;
1427  }
1428  return std::make_pair(RRC, Cost);
1429}
1430
1431bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1432                                               unsigned &Offset) const {
1433  if (!Subtarget->isTargetLinux())
1434    return false;
1435
1436  if (Subtarget->is64Bit()) {
1437    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1438    Offset = 0x28;
1439    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1440      AddressSpace = 256;
1441    else
1442      AddressSpace = 257;
1443  } else {
1444    // %gs:0x14 on i386
1445    Offset = 0x14;
1446    AddressSpace = 256;
1447  }
1448  return true;
1449}
1450
1451
1452//===----------------------------------------------------------------------===//
1453//               Return Value Calling Convention Implementation
1454//===----------------------------------------------------------------------===//
1455
1456#include "X86GenCallingConv.inc"
1457
1458bool
1459X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1460				  MachineFunction &MF, bool isVarArg,
1461                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1462                        LLVMContext &Context) const {
1463  SmallVector<CCValAssign, 16> RVLocs;
1464  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1465                 RVLocs, Context);
1466  return CCInfo.CheckReturn(Outs, RetCC_X86);
1467}
1468
1469SDValue
1470X86TargetLowering::LowerReturn(SDValue Chain,
1471                               CallingConv::ID CallConv, bool isVarArg,
1472                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1473                               const SmallVectorImpl<SDValue> &OutVals,
1474                               DebugLoc dl, SelectionDAG &DAG) const {
1475  MachineFunction &MF = DAG.getMachineFunction();
1476  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1477
1478  SmallVector<CCValAssign, 16> RVLocs;
1479  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1482
1483  // Add the regs to the liveout set for the function.
1484  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1485  for (unsigned i = 0; i != RVLocs.size(); ++i)
1486    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1487      MRI.addLiveOut(RVLocs[i].getLocReg());
1488
1489  SDValue Flag;
1490
1491  SmallVector<SDValue, 6> RetOps;
1492  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1493  // Operand #1 = Bytes To Pop
1494  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1495                   MVT::i16));
1496
1497  // Copy the result values into the output registers.
1498  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1499    CCValAssign &VA = RVLocs[i];
1500    assert(VA.isRegLoc() && "Can only return in registers!");
1501    SDValue ValToCopy = OutVals[i];
1502    EVT ValVT = ValToCopy.getValueType();
1503
1504    // If this is x86-64, and we disabled SSE, we can't return FP values,
1505    // or SSE or MMX vectors.
1506    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1507         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1508          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1509      report_fatal_error("SSE register return with SSE disabled");
1510    }
1511    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1512    // llvm-gcc has never done it right and no one has noticed, so this
1513    // should be OK for now.
1514    if (ValVT == MVT::f64 &&
1515        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1516      report_fatal_error("SSE2 register return with SSE2 disabled");
1517
1518    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1519    // the RET instruction and handled by the FP Stackifier.
1520    if (VA.getLocReg() == X86::ST0 ||
1521        VA.getLocReg() == X86::ST1) {
1522      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1523      // change the value to the FP stack register class.
1524      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1525        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1526      RetOps.push_back(ValToCopy);
1527      // Don't emit a copytoreg.
1528      continue;
1529    }
1530
1531    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1532    // which is returned in RAX / RDX.
1533    if (Subtarget->is64Bit()) {
1534      if (ValVT == MVT::x86mmx) {
1535        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1536          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1537          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1538                                  ValToCopy);
1539          // If we don't have SSE2 available, convert to v4f32 so the generated
1540          // register is legal.
1541          if (!Subtarget->hasSSE2())
1542            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1543        }
1544      }
1545    }
1546
1547    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1548    Flag = Chain.getValue(1);
1549  }
1550
1551  // The x86-64 ABI for returning structs by value requires that we copy
1552  // the sret argument into %rax for the return. We saved the argument into
1553  // a virtual register in the entry block, so now we copy the value out
1554  // and into %rax.
1555  if (Subtarget->is64Bit() &&
1556      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1557    MachineFunction &MF = DAG.getMachineFunction();
1558    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1559    unsigned Reg = FuncInfo->getSRetReturnReg();
1560    assert(Reg &&
1561           "SRetReturnReg should have been set in LowerFormalArguments().");
1562    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1563
1564    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1565    Flag = Chain.getValue(1);
1566
1567    // RAX now acts like a return value.
1568    MRI.addLiveOut(X86::RAX);
1569  }
1570
1571  RetOps[0] = Chain;  // Update chain.
1572
1573  // Add the flag if we have it.
1574  if (Flag.getNode())
1575    RetOps.push_back(Flag);
1576
1577  return DAG.getNode(X86ISD::RET_FLAG, dl,
1578                     MVT::Other, &RetOps[0], RetOps.size());
1579}
1580
1581bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1582  if (N->getNumValues() != 1)
1583    return false;
1584  if (!N->hasNUsesOfValue(1, 0))
1585    return false;
1586
1587  SDValue TCChain = Chain;
1588  SDNode *Copy = *N->use_begin();
1589  if (Copy->getOpcode() == ISD::CopyToReg) {
1590    // If the copy has a glue operand, we conservatively assume it isn't safe to
1591    // perform a tail call.
1592    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1593      return false;
1594    TCChain = Copy->getOperand(0);
1595  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1596    return false;
1597
1598  bool HasRet = false;
1599  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1600       UI != UE; ++UI) {
1601    if (UI->getOpcode() != X86ISD::RET_FLAG)
1602      return false;
1603    HasRet = true;
1604  }
1605
1606  if (!HasRet)
1607    return false;
1608
1609  Chain = TCChain;
1610  return true;
1611}
1612
1613EVT
1614X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1615                                            ISD::NodeType ExtendKind) const {
1616  MVT ReturnMVT;
1617  // TODO: Is this also valid on 32-bit?
1618  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1619    ReturnMVT = MVT::i8;
1620  else
1621    ReturnMVT = MVT::i32;
1622
1623  EVT MinVT = getRegisterType(Context, ReturnMVT);
1624  return VT.bitsLT(MinVT) ? MinVT : VT;
1625}
1626
1627/// LowerCallResult - Lower the result values of a call into the
1628/// appropriate copies out of appropriate physical registers.
1629///
1630SDValue
1631X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1632                                   CallingConv::ID CallConv, bool isVarArg,
1633                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1634                                   DebugLoc dl, SelectionDAG &DAG,
1635                                   SmallVectorImpl<SDValue> &InVals) const {
1636
1637  // Assign locations to each value returned by this call.
1638  SmallVector<CCValAssign, 16> RVLocs;
1639  bool Is64Bit = Subtarget->is64Bit();
1640  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1641		 getTargetMachine(), RVLocs, *DAG.getContext());
1642  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1643
1644  // Copy all of the result registers out of their specified physreg.
1645  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1646    CCValAssign &VA = RVLocs[i];
1647    EVT CopyVT = VA.getValVT();
1648
1649    // If this is x86-64, and we disabled SSE, we can't return FP values
1650    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1651        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1652      report_fatal_error("SSE register return with SSE disabled");
1653    }
1654
1655    SDValue Val;
1656
1657    // If this is a call to a function that returns an fp value on the floating
1658    // point stack, we must guarantee the the value is popped from the stack, so
1659    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1660    // if the return value is not used. We use the FpPOP_RETVAL instruction
1661    // instead.
1662    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1663      // If we prefer to use the value in xmm registers, copy it out as f80 and
1664      // use a truncate to move it from fp stack reg to xmm reg.
1665      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1666      SDValue Ops[] = { Chain, InFlag };
1667      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1668                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1669      Val = Chain.getValue(0);
1670
1671      // Round the f80 to the right size, which also moves it to the appropriate
1672      // xmm register.
1673      if (CopyVT != VA.getValVT())
1674        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1675                          // This truncation won't change the value.
1676                          DAG.getIntPtrConstant(1));
1677    } else {
1678      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1679                                 CopyVT, InFlag).getValue(1);
1680      Val = Chain.getValue(0);
1681    }
1682    InFlag = Chain.getValue(2);
1683    InVals.push_back(Val);
1684  }
1685
1686  return Chain;
1687}
1688
1689
1690//===----------------------------------------------------------------------===//
1691//                C & StdCall & Fast Calling Convention implementation
1692//===----------------------------------------------------------------------===//
1693//  StdCall calling convention seems to be standard for many Windows' API
1694//  routines and around. It differs from C calling convention just a little:
1695//  callee should clean up the stack, not caller. Symbols should be also
1696//  decorated in some fancy way :) It doesn't support any vector arguments.
1697//  For info on fast calling convention see Fast Calling Convention (tail call)
1698//  implementation LowerX86_32FastCCCallTo.
1699
1700/// CallIsStructReturn - Determines whether a call uses struct return
1701/// semantics.
1702static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1703  if (Outs.empty())
1704    return false;
1705
1706  return Outs[0].Flags.isSRet();
1707}
1708
1709/// ArgsAreStructReturn - Determines whether a function uses struct
1710/// return semantics.
1711static bool
1712ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1713  if (Ins.empty())
1714    return false;
1715
1716  return Ins[0].Flags.isSRet();
1717}
1718
1719/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1720/// by "Src" to address "Dst" with size and alignment information specified by
1721/// the specific parameter attribute. The copy will be passed as a byval
1722/// function parameter.
1723static SDValue
1724CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1725                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1726                          DebugLoc dl) {
1727  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1728
1729  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1730                       /*isVolatile*/false, /*AlwaysInline=*/true,
1731                       MachinePointerInfo(), MachinePointerInfo());
1732}
1733
1734/// IsTailCallConvention - Return true if the calling convention is one that
1735/// supports tail call optimization.
1736static bool IsTailCallConvention(CallingConv::ID CC) {
1737  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1738}
1739
1740bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1741  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1742    return false;
1743
1744  CallSite CS(CI);
1745  CallingConv::ID CalleeCC = CS.getCallingConv();
1746  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1747    return false;
1748
1749  return true;
1750}
1751
1752/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1753/// a tailcall target by changing its ABI.
1754static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1755                                   bool GuaranteedTailCallOpt) {
1756  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1757}
1758
1759SDValue
1760X86TargetLowering::LowerMemArgument(SDValue Chain,
1761                                    CallingConv::ID CallConv,
1762                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1763                                    DebugLoc dl, SelectionDAG &DAG,
1764                                    const CCValAssign &VA,
1765                                    MachineFrameInfo *MFI,
1766                                    unsigned i) const {
1767  // Create the nodes corresponding to a load from this parameter slot.
1768  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1769  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1770                              getTargetMachine().Options.GuaranteedTailCallOpt);
1771  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1772  EVT ValVT;
1773
1774  // If value is passed by pointer we have address passed instead of the value
1775  // itself.
1776  if (VA.getLocInfo() == CCValAssign::Indirect)
1777    ValVT = VA.getLocVT();
1778  else
1779    ValVT = VA.getValVT();
1780
1781  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1782  // changed with more analysis.
1783  // In case of tail call optimization mark all arguments mutable. Since they
1784  // could be overwritten by lowering of arguments in case of a tail call.
1785  if (Flags.isByVal()) {
1786    unsigned Bytes = Flags.getByValSize();
1787    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1788    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1789    return DAG.getFrameIndex(FI, getPointerTy());
1790  } else {
1791    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1792                                    VA.getLocMemOffset(), isImmutable);
1793    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1794    return DAG.getLoad(ValVT, dl, Chain, FIN,
1795                       MachinePointerInfo::getFixedStack(FI),
1796                       false, false, false, 0);
1797  }
1798}
1799
1800SDValue
1801X86TargetLowering::LowerFormalArguments(SDValue Chain,
1802                                        CallingConv::ID CallConv,
1803                                        bool isVarArg,
1804                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1805                                        DebugLoc dl,
1806                                        SelectionDAG &DAG,
1807                                        SmallVectorImpl<SDValue> &InVals)
1808                                          const {
1809  MachineFunction &MF = DAG.getMachineFunction();
1810  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1811
1812  const Function* Fn = MF.getFunction();
1813  if (Fn->hasExternalLinkage() &&
1814      Subtarget->isTargetCygMing() &&
1815      Fn->getName() == "main")
1816    FuncInfo->setForceFramePointer(true);
1817
1818  MachineFrameInfo *MFI = MF.getFrameInfo();
1819  bool Is64Bit = Subtarget->is64Bit();
1820  bool IsWindows = Subtarget->isTargetWindows();
1821  bool IsWin64 = Subtarget->isTargetWin64();
1822
1823  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1824         "Var args not supported with calling convention fastcc or ghc");
1825
1826  // Assign locations to all of the incoming arguments.
1827  SmallVector<CCValAssign, 16> ArgLocs;
1828  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1829                 ArgLocs, *DAG.getContext());
1830
1831  // Allocate shadow area for Win64
1832  if (IsWin64) {
1833    CCInfo.AllocateStack(32, 8);
1834  }
1835
1836  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1837
1838  unsigned LastVal = ~0U;
1839  SDValue ArgValue;
1840  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1841    CCValAssign &VA = ArgLocs[i];
1842    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1843    // places.
1844    assert(VA.getValNo() != LastVal &&
1845           "Don't support value assigned to multiple locs yet");
1846    (void)LastVal;
1847    LastVal = VA.getValNo();
1848
1849    if (VA.isRegLoc()) {
1850      EVT RegVT = VA.getLocVT();
1851      const TargetRegisterClass *RC;
1852      if (RegVT == MVT::i32)
1853        RC = X86::GR32RegisterClass;
1854      else if (Is64Bit && RegVT == MVT::i64)
1855        RC = X86::GR64RegisterClass;
1856      else if (RegVT == MVT::f32)
1857        RC = X86::FR32RegisterClass;
1858      else if (RegVT == MVT::f64)
1859        RC = X86::FR64RegisterClass;
1860      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1861        RC = X86::VR256RegisterClass;
1862      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1863        RC = X86::VR128RegisterClass;
1864      else if (RegVT == MVT::x86mmx)
1865        RC = X86::VR64RegisterClass;
1866      else
1867        llvm_unreachable("Unknown argument type!");
1868
1869      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1870      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1871
1872      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1873      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1874      // right size.
1875      if (VA.getLocInfo() == CCValAssign::SExt)
1876        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1877                               DAG.getValueType(VA.getValVT()));
1878      else if (VA.getLocInfo() == CCValAssign::ZExt)
1879        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1880                               DAG.getValueType(VA.getValVT()));
1881      else if (VA.getLocInfo() == CCValAssign::BCvt)
1882        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1883
1884      if (VA.isExtInLoc()) {
1885        // Handle MMX values passed in XMM regs.
1886        if (RegVT.isVector()) {
1887          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1888                                 ArgValue);
1889        } else
1890          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1891      }
1892    } else {
1893      assert(VA.isMemLoc());
1894      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1895    }
1896
1897    // If value is passed via pointer - do a load.
1898    if (VA.getLocInfo() == CCValAssign::Indirect)
1899      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1900                             MachinePointerInfo(), false, false, false, 0);
1901
1902    InVals.push_back(ArgValue);
1903  }
1904
1905  // The x86-64 ABI for returning structs by value requires that we copy
1906  // the sret argument into %rax for the return. Save the argument into
1907  // a virtual register so that we can access it from the return points.
1908  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1909    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1910    unsigned Reg = FuncInfo->getSRetReturnReg();
1911    if (!Reg) {
1912      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1913      FuncInfo->setSRetReturnReg(Reg);
1914    }
1915    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1916    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1917  }
1918
1919  unsigned StackSize = CCInfo.getNextStackOffset();
1920  // Align stack specially for tail calls.
1921  if (FuncIsMadeTailCallSafe(CallConv,
1922                             MF.getTarget().Options.GuaranteedTailCallOpt))
1923    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1924
1925  // If the function takes variable number of arguments, make a frame index for
1926  // the start of the first vararg value... for expansion of llvm.va_start.
1927  if (isVarArg) {
1928    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1929                    CallConv != CallingConv::X86_ThisCall)) {
1930      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1931    }
1932    if (Is64Bit) {
1933      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1934
1935      // FIXME: We should really autogenerate these arrays
1936      static const uint16_t GPR64ArgRegsWin64[] = {
1937        X86::RCX, X86::RDX, X86::R8,  X86::R9
1938      };
1939      static const uint16_t GPR64ArgRegs64Bit[] = {
1940        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1941      };
1942      static const uint16_t XMMArgRegs64Bit[] = {
1943        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1944        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1945      };
1946      const uint16_t *GPR64ArgRegs;
1947      unsigned NumXMMRegs = 0;
1948
1949      if (IsWin64) {
1950        // The XMM registers which might contain var arg parameters are shadowed
1951        // in their paired GPR.  So we only need to save the GPR to their home
1952        // slots.
1953        TotalNumIntRegs = 4;
1954        GPR64ArgRegs = GPR64ArgRegsWin64;
1955      } else {
1956        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1957        GPR64ArgRegs = GPR64ArgRegs64Bit;
1958
1959        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1960                                                TotalNumXMMRegs);
1961      }
1962      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1963                                                       TotalNumIntRegs);
1964
1965      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1966      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1967             "SSE register cannot be used when SSE is disabled!");
1968      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1969               NoImplicitFloatOps) &&
1970             "SSE register cannot be used when SSE is disabled!");
1971      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1972          !Subtarget->hasSSE1())
1973        // Kernel mode asks for SSE to be disabled, so don't push them
1974        // on the stack.
1975        TotalNumXMMRegs = 0;
1976
1977      if (IsWin64) {
1978        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1979        // Get to the caller-allocated home save location.  Add 8 to account
1980        // for the return address.
1981        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1982        FuncInfo->setRegSaveFrameIndex(
1983          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1984        // Fixup to set vararg frame on shadow area (4 x i64).
1985        if (NumIntRegs < 4)
1986          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1987      } else {
1988        // For X86-64, if there are vararg parameters that are passed via
1989        // registers, then we must store them to their spots on the stack so
1990        // they may be loaded by deferencing the result of va_next.
1991        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1992        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1993        FuncInfo->setRegSaveFrameIndex(
1994          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1995                               false));
1996      }
1997
1998      // Store the integer parameter registers.
1999      SmallVector<SDValue, 8> MemOps;
2000      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2001                                        getPointerTy());
2002      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2003      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2004        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2005                                  DAG.getIntPtrConstant(Offset));
2006        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2007                                     X86::GR64RegisterClass);
2008        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2009        SDValue Store =
2010          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2011                       MachinePointerInfo::getFixedStack(
2012                         FuncInfo->getRegSaveFrameIndex(), Offset),
2013                       false, false, 0);
2014        MemOps.push_back(Store);
2015        Offset += 8;
2016      }
2017
2018      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2019        // Now store the XMM (fp + vector) parameter registers.
2020        SmallVector<SDValue, 11> SaveXMMOps;
2021        SaveXMMOps.push_back(Chain);
2022
2023        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
2024        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2025        SaveXMMOps.push_back(ALVal);
2026
2027        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2028                               FuncInfo->getRegSaveFrameIndex()));
2029        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2030                               FuncInfo->getVarArgsFPOffset()));
2031
2032        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2033          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2034                                       X86::VR128RegisterClass);
2035          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2036          SaveXMMOps.push_back(Val);
2037        }
2038        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2039                                     MVT::Other,
2040                                     &SaveXMMOps[0], SaveXMMOps.size()));
2041      }
2042
2043      if (!MemOps.empty())
2044        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2045                            &MemOps[0], MemOps.size());
2046    }
2047  }
2048
2049  // Some CCs need callee pop.
2050  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2051                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2052    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2053  } else {
2054    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2055    // If this is an sret function, the return should pop the hidden pointer.
2056    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2057        ArgsAreStructReturn(Ins))
2058      FuncInfo->setBytesToPopOnReturn(4);
2059  }
2060
2061  if (!Is64Bit) {
2062    // RegSaveFrameIndex is X86-64 only.
2063    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2064    if (CallConv == CallingConv::X86_FastCall ||
2065        CallConv == CallingConv::X86_ThisCall)
2066      // fastcc functions can't have varargs.
2067      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2068  }
2069
2070  FuncInfo->setArgumentStackSize(StackSize);
2071
2072  return Chain;
2073}
2074
2075SDValue
2076X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2077                                    SDValue StackPtr, SDValue Arg,
2078                                    DebugLoc dl, SelectionDAG &DAG,
2079                                    const CCValAssign &VA,
2080                                    ISD::ArgFlagsTy Flags) const {
2081  unsigned LocMemOffset = VA.getLocMemOffset();
2082  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2083  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2084  if (Flags.isByVal())
2085    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2086
2087  return DAG.getStore(Chain, dl, Arg, PtrOff,
2088                      MachinePointerInfo::getStack(LocMemOffset),
2089                      false, false, 0);
2090}
2091
2092/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2093/// optimization is performed and it is required.
2094SDValue
2095X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2096                                           SDValue &OutRetAddr, SDValue Chain,
2097                                           bool IsTailCall, bool Is64Bit,
2098                                           int FPDiff, DebugLoc dl) const {
2099  // Adjust the Return address stack slot.
2100  EVT VT = getPointerTy();
2101  OutRetAddr = getReturnAddressFrameIndex(DAG);
2102
2103  // Load the "old" Return address.
2104  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2105                           false, false, false, 0);
2106  return SDValue(OutRetAddr.getNode(), 1);
2107}
2108
2109/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2110/// optimization is performed and it is required (FPDiff!=0).
2111static SDValue
2112EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2113                         SDValue Chain, SDValue RetAddrFrIdx,
2114                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2115  // Store the return address to the appropriate stack slot.
2116  if (!FPDiff) return Chain;
2117  // Calculate the new stack slot for the return address.
2118  int SlotSize = Is64Bit ? 8 : 4;
2119  int NewReturnAddrFI =
2120    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2121  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2122  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2123  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2124                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2125                       false, false, 0);
2126  return Chain;
2127}
2128
2129SDValue
2130X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2131                             CallingConv::ID CallConv, bool isVarArg,
2132                             bool doesNotRet, bool &isTailCall,
2133                             const SmallVectorImpl<ISD::OutputArg> &Outs,
2134                             const SmallVectorImpl<SDValue> &OutVals,
2135                             const SmallVectorImpl<ISD::InputArg> &Ins,
2136                             DebugLoc dl, SelectionDAG &DAG,
2137                             SmallVectorImpl<SDValue> &InVals) const {
2138  MachineFunction &MF = DAG.getMachineFunction();
2139  bool Is64Bit        = Subtarget->is64Bit();
2140  bool IsWin64        = Subtarget->isTargetWin64();
2141  bool IsWindows      = Subtarget->isTargetWindows();
2142  bool IsStructRet    = CallIsStructReturn(Outs);
2143  bool IsSibcall      = false;
2144
2145  if (MF.getTarget().Options.DisableTailCalls)
2146    isTailCall = false;
2147
2148  if (isTailCall) {
2149    // Check if it's really possible to do a tail call.
2150    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2151                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2152                                                   Outs, OutVals, Ins, DAG);
2153
2154    // Sibcalls are automatically detected tailcalls which do not require
2155    // ABI changes.
2156    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2157      IsSibcall = true;
2158
2159    if (isTailCall)
2160      ++NumTailCalls;
2161  }
2162
2163  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2164         "Var args not supported with calling convention fastcc or ghc");
2165
2166  // Analyze operands of the call, assigning locations to each operand.
2167  SmallVector<CCValAssign, 16> ArgLocs;
2168  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2169                 ArgLocs, *DAG.getContext());
2170
2171  // Allocate shadow area for Win64
2172  if (IsWin64) {
2173    CCInfo.AllocateStack(32, 8);
2174  }
2175
2176  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2177
2178  // Get a count of how many bytes are to be pushed on the stack.
2179  unsigned NumBytes = CCInfo.getNextStackOffset();
2180  if (IsSibcall)
2181    // This is a sibcall. The memory operands are available in caller's
2182    // own caller's stack.
2183    NumBytes = 0;
2184  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2185           IsTailCallConvention(CallConv))
2186    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2187
2188  int FPDiff = 0;
2189  if (isTailCall && !IsSibcall) {
2190    // Lower arguments at fp - stackoffset + fpdiff.
2191    unsigned NumBytesCallerPushed =
2192      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2193    FPDiff = NumBytesCallerPushed - NumBytes;
2194
2195    // Set the delta of movement of the returnaddr stackslot.
2196    // But only set if delta is greater than previous delta.
2197    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2198      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2199  }
2200
2201  if (!IsSibcall)
2202    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2203
2204  SDValue RetAddrFrIdx;
2205  // Load return address for tail calls.
2206  if (isTailCall && FPDiff)
2207    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2208                                    Is64Bit, FPDiff, dl);
2209
2210  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2211  SmallVector<SDValue, 8> MemOpChains;
2212  SDValue StackPtr;
2213
2214  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2215  // of tail call optimization arguments are handle later.
2216  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2217    CCValAssign &VA = ArgLocs[i];
2218    EVT RegVT = VA.getLocVT();
2219    SDValue Arg = OutVals[i];
2220    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2221    bool isByVal = Flags.isByVal();
2222
2223    // Promote the value if needed.
2224    switch (VA.getLocInfo()) {
2225    default: llvm_unreachable("Unknown loc info!");
2226    case CCValAssign::Full: break;
2227    case CCValAssign::SExt:
2228      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2229      break;
2230    case CCValAssign::ZExt:
2231      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2232      break;
2233    case CCValAssign::AExt:
2234      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2235        // Special case: passing MMX values in XMM registers.
2236        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2237        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2238        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2239      } else
2240        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2241      break;
2242    case CCValAssign::BCvt:
2243      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2244      break;
2245    case CCValAssign::Indirect: {
2246      // Store the argument.
2247      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2248      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2249      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2250                           MachinePointerInfo::getFixedStack(FI),
2251                           false, false, 0);
2252      Arg = SpillSlot;
2253      break;
2254    }
2255    }
2256
2257    if (VA.isRegLoc()) {
2258      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2259      if (isVarArg && IsWin64) {
2260        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2261        // shadow reg if callee is a varargs function.
2262        unsigned ShadowReg = 0;
2263        switch (VA.getLocReg()) {
2264        case X86::XMM0: ShadowReg = X86::RCX; break;
2265        case X86::XMM1: ShadowReg = X86::RDX; break;
2266        case X86::XMM2: ShadowReg = X86::R8; break;
2267        case X86::XMM3: ShadowReg = X86::R9; break;
2268        }
2269        if (ShadowReg)
2270          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2271      }
2272    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2273      assert(VA.isMemLoc());
2274      if (StackPtr.getNode() == 0)
2275        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2276      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2277                                             dl, DAG, VA, Flags));
2278    }
2279  }
2280
2281  if (!MemOpChains.empty())
2282    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2283                        &MemOpChains[0], MemOpChains.size());
2284
2285  // Build a sequence of copy-to-reg nodes chained together with token chain
2286  // and flag operands which copy the outgoing args into registers.
2287  SDValue InFlag;
2288  // Tail call byval lowering might overwrite argument registers so in case of
2289  // tail call optimization the copies to registers are lowered later.
2290  if (!isTailCall)
2291    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2292      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2293                               RegsToPass[i].second, InFlag);
2294      InFlag = Chain.getValue(1);
2295    }
2296
2297  if (Subtarget->isPICStyleGOT()) {
2298    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2299    // GOT pointer.
2300    if (!isTailCall) {
2301      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2302                               DAG.getNode(X86ISD::GlobalBaseReg,
2303                                           DebugLoc(), getPointerTy()),
2304                               InFlag);
2305      InFlag = Chain.getValue(1);
2306    } else {
2307      // If we are tail calling and generating PIC/GOT style code load the
2308      // address of the callee into ECX. The value in ecx is used as target of
2309      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2310      // for tail calls on PIC/GOT architectures. Normally we would just put the
2311      // address of GOT into ebx and then call target@PLT. But for tail calls
2312      // ebx would be restored (since ebx is callee saved) before jumping to the
2313      // target@PLT.
2314
2315      // Note: The actual moving to ECX is done further down.
2316      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2317      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2318          !G->getGlobal()->hasProtectedVisibility())
2319        Callee = LowerGlobalAddress(Callee, DAG);
2320      else if (isa<ExternalSymbolSDNode>(Callee))
2321        Callee = LowerExternalSymbol(Callee, DAG);
2322    }
2323  }
2324
2325  if (Is64Bit && isVarArg && !IsWin64) {
2326    // From AMD64 ABI document:
2327    // For calls that may call functions that use varargs or stdargs
2328    // (prototype-less calls or calls to functions containing ellipsis (...) in
2329    // the declaration) %al is used as hidden argument to specify the number
2330    // of SSE registers used. The contents of %al do not need to match exactly
2331    // the number of registers, but must be an ubound on the number of SSE
2332    // registers used and is in the range 0 - 8 inclusive.
2333
2334    // Count the number of XMM registers allocated.
2335    static const uint16_t XMMArgRegs[] = {
2336      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2337      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2338    };
2339    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2340    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2341           && "SSE registers cannot be used when SSE is disabled");
2342
2343    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2344                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2345    InFlag = Chain.getValue(1);
2346  }
2347
2348
2349  // For tail calls lower the arguments to the 'real' stack slot.
2350  if (isTailCall) {
2351    // Force all the incoming stack arguments to be loaded from the stack
2352    // before any new outgoing arguments are stored to the stack, because the
2353    // outgoing stack slots may alias the incoming argument stack slots, and
2354    // the alias isn't otherwise explicit. This is slightly more conservative
2355    // than necessary, because it means that each store effectively depends
2356    // on every argument instead of just those arguments it would clobber.
2357    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2358
2359    SmallVector<SDValue, 8> MemOpChains2;
2360    SDValue FIN;
2361    int FI = 0;
2362    // Do not flag preceding copytoreg stuff together with the following stuff.
2363    InFlag = SDValue();
2364    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2365      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2366        CCValAssign &VA = ArgLocs[i];
2367        if (VA.isRegLoc())
2368          continue;
2369        assert(VA.isMemLoc());
2370        SDValue Arg = OutVals[i];
2371        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2372        // Create frame index.
2373        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2374        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2375        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2376        FIN = DAG.getFrameIndex(FI, getPointerTy());
2377
2378        if (Flags.isByVal()) {
2379          // Copy relative to framepointer.
2380          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2381          if (StackPtr.getNode() == 0)
2382            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2383                                          getPointerTy());
2384          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2385
2386          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2387                                                           ArgChain,
2388                                                           Flags, DAG, dl));
2389        } else {
2390          // Store relative to framepointer.
2391          MemOpChains2.push_back(
2392            DAG.getStore(ArgChain, dl, Arg, FIN,
2393                         MachinePointerInfo::getFixedStack(FI),
2394                         false, false, 0));
2395        }
2396      }
2397    }
2398
2399    if (!MemOpChains2.empty())
2400      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2401                          &MemOpChains2[0], MemOpChains2.size());
2402
2403    // Copy arguments to their registers.
2404    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2405      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2406                               RegsToPass[i].second, InFlag);
2407      InFlag = Chain.getValue(1);
2408    }
2409    InFlag =SDValue();
2410
2411    // Store the return address to the appropriate stack slot.
2412    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2413                                     FPDiff, dl);
2414  }
2415
2416  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2417    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2418    // In the 64-bit large code model, we have to make all calls
2419    // through a register, since the call instruction's 32-bit
2420    // pc-relative offset may not be large enough to hold the whole
2421    // address.
2422  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2423    // If the callee is a GlobalAddress node (quite common, every direct call
2424    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2425    // it.
2426
2427    // We should use extra load for direct calls to dllimported functions in
2428    // non-JIT mode.
2429    const GlobalValue *GV = G->getGlobal();
2430    if (!GV->hasDLLImportLinkage()) {
2431      unsigned char OpFlags = 0;
2432      bool ExtraLoad = false;
2433      unsigned WrapperKind = ISD::DELETED_NODE;
2434
2435      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2436      // external symbols most go through the PLT in PIC mode.  If the symbol
2437      // has hidden or protected visibility, or if it is static or local, then
2438      // we don't need to use the PLT - we can directly call it.
2439      if (Subtarget->isTargetELF() &&
2440          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2441          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2442        OpFlags = X86II::MO_PLT;
2443      } else if (Subtarget->isPICStyleStubAny() &&
2444                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2445                 (!Subtarget->getTargetTriple().isMacOSX() ||
2446                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2447        // PC-relative references to external symbols should go through $stub,
2448        // unless we're building with the leopard linker or later, which
2449        // automatically synthesizes these stubs.
2450        OpFlags = X86II::MO_DARWIN_STUB;
2451      } else if (Subtarget->isPICStyleRIPRel() &&
2452                 isa<Function>(GV) &&
2453                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2454        // If the function is marked as non-lazy, generate an indirect call
2455        // which loads from the GOT directly. This avoids runtime overhead
2456        // at the cost of eager binding (and one extra byte of encoding).
2457        OpFlags = X86II::MO_GOTPCREL;
2458        WrapperKind = X86ISD::WrapperRIP;
2459        ExtraLoad = true;
2460      }
2461
2462      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2463                                          G->getOffset(), OpFlags);
2464
2465      // Add a wrapper if needed.
2466      if (WrapperKind != ISD::DELETED_NODE)
2467        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2468      // Add extra indirection if needed.
2469      if (ExtraLoad)
2470        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2471                             MachinePointerInfo::getGOT(),
2472                             false, false, false, 0);
2473    }
2474  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2475    unsigned char OpFlags = 0;
2476
2477    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2478    // external symbols should go through the PLT.
2479    if (Subtarget->isTargetELF() &&
2480        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2481      OpFlags = X86II::MO_PLT;
2482    } else if (Subtarget->isPICStyleStubAny() &&
2483               (!Subtarget->getTargetTriple().isMacOSX() ||
2484                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2485      // PC-relative references to external symbols should go through $stub,
2486      // unless we're building with the leopard linker or later, which
2487      // automatically synthesizes these stubs.
2488      OpFlags = X86II::MO_DARWIN_STUB;
2489    }
2490
2491    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2492                                         OpFlags);
2493  }
2494
2495  // Returns a chain & a flag for retval copy to use.
2496  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2497  SmallVector<SDValue, 8> Ops;
2498
2499  if (!IsSibcall && isTailCall) {
2500    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2501                           DAG.getIntPtrConstant(0, true), InFlag);
2502    InFlag = Chain.getValue(1);
2503  }
2504
2505  Ops.push_back(Chain);
2506  Ops.push_back(Callee);
2507
2508  if (isTailCall)
2509    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2510
2511  // Add argument registers to the end of the list so that they are known live
2512  // into the call.
2513  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2514    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2515                                  RegsToPass[i].second.getValueType()));
2516
2517  // Add an implicit use GOT pointer in EBX.
2518  if (!isTailCall && Subtarget->isPICStyleGOT())
2519    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2520
2521  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2522  if (Is64Bit && isVarArg && !IsWin64)
2523    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2524
2525  // Add a register mask operand representing the call-preserved registers.
2526  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2527  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2528  assert(Mask && "Missing call preserved mask for calling convention");
2529  Ops.push_back(DAG.getRegisterMask(Mask));
2530
2531  if (InFlag.getNode())
2532    Ops.push_back(InFlag);
2533
2534  if (isTailCall) {
2535    // We used to do:
2536    //// If this is the first return lowered for this function, add the regs
2537    //// to the liveout set for the function.
2538    // This isn't right, although it's probably harmless on x86; liveouts
2539    // should be computed from returns not tail calls.  Consider a void
2540    // function making a tail call to a function returning int.
2541    return DAG.getNode(X86ISD::TC_RETURN, dl,
2542                       NodeTys, &Ops[0], Ops.size());
2543  }
2544
2545  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2546  InFlag = Chain.getValue(1);
2547
2548  // Create the CALLSEQ_END node.
2549  unsigned NumBytesForCalleeToPush;
2550  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2551                       getTargetMachine().Options.GuaranteedTailCallOpt))
2552    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2553  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2554           IsStructRet)
2555    // If this is a call to a struct-return function, the callee
2556    // pops the hidden struct pointer, so we have to push it back.
2557    // This is common for Darwin/X86, Linux & Mingw32 targets.
2558    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2559    NumBytesForCalleeToPush = 4;
2560  else
2561    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2562
2563  // Returns a flag for retval copy to use.
2564  if (!IsSibcall) {
2565    Chain = DAG.getCALLSEQ_END(Chain,
2566                               DAG.getIntPtrConstant(NumBytes, true),
2567                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2568                                                     true),
2569                               InFlag);
2570    InFlag = Chain.getValue(1);
2571  }
2572
2573  // Handle result values, copying them out of physregs into vregs that we
2574  // return.
2575  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2576                         Ins, dl, DAG, InVals);
2577}
2578
2579
2580//===----------------------------------------------------------------------===//
2581//                Fast Calling Convention (tail call) implementation
2582//===----------------------------------------------------------------------===//
2583
2584//  Like std call, callee cleans arguments, convention except that ECX is
2585//  reserved for storing the tail called function address. Only 2 registers are
2586//  free for argument passing (inreg). Tail call optimization is performed
2587//  provided:
2588//                * tailcallopt is enabled
2589//                * caller/callee are fastcc
2590//  On X86_64 architecture with GOT-style position independent code only local
2591//  (within module) calls are supported at the moment.
2592//  To keep the stack aligned according to platform abi the function
2593//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2594//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2595//  If a tail called function callee has more arguments than the caller the
2596//  caller needs to make sure that there is room to move the RETADDR to. This is
2597//  achieved by reserving an area the size of the argument delta right after the
2598//  original REtADDR, but before the saved framepointer or the spilled registers
2599//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2600//  stack layout:
2601//    arg1
2602//    arg2
2603//    RETADDR
2604//    [ new RETADDR
2605//      move area ]
2606//    (possible EBP)
2607//    ESI
2608//    EDI
2609//    local1 ..
2610
2611/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2612/// for a 16 byte align requirement.
2613unsigned
2614X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2615                                               SelectionDAG& DAG) const {
2616  MachineFunction &MF = DAG.getMachineFunction();
2617  const TargetMachine &TM = MF.getTarget();
2618  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2619  unsigned StackAlignment = TFI.getStackAlignment();
2620  uint64_t AlignMask = StackAlignment - 1;
2621  int64_t Offset = StackSize;
2622  uint64_t SlotSize = TD->getPointerSize();
2623  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2624    // Number smaller than 12 so just add the difference.
2625    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2626  } else {
2627    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2628    Offset = ((~AlignMask) & Offset) + StackAlignment +
2629      (StackAlignment-SlotSize);
2630  }
2631  return Offset;
2632}
2633
2634/// MatchingStackOffset - Return true if the given stack call argument is
2635/// already available in the same position (relatively) of the caller's
2636/// incoming argument stack.
2637static
2638bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2639                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2640                         const X86InstrInfo *TII) {
2641  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2642  int FI = INT_MAX;
2643  if (Arg.getOpcode() == ISD::CopyFromReg) {
2644    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2645    if (!TargetRegisterInfo::isVirtualRegister(VR))
2646      return false;
2647    MachineInstr *Def = MRI->getVRegDef(VR);
2648    if (!Def)
2649      return false;
2650    if (!Flags.isByVal()) {
2651      if (!TII->isLoadFromStackSlot(Def, FI))
2652        return false;
2653    } else {
2654      unsigned Opcode = Def->getOpcode();
2655      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2656          Def->getOperand(1).isFI()) {
2657        FI = Def->getOperand(1).getIndex();
2658        Bytes = Flags.getByValSize();
2659      } else
2660        return false;
2661    }
2662  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2663    if (Flags.isByVal())
2664      // ByVal argument is passed in as a pointer but it's now being
2665      // dereferenced. e.g.
2666      // define @foo(%struct.X* %A) {
2667      //   tail call @bar(%struct.X* byval %A)
2668      // }
2669      return false;
2670    SDValue Ptr = Ld->getBasePtr();
2671    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2672    if (!FINode)
2673      return false;
2674    FI = FINode->getIndex();
2675  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2676    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2677    FI = FINode->getIndex();
2678    Bytes = Flags.getByValSize();
2679  } else
2680    return false;
2681
2682  assert(FI != INT_MAX);
2683  if (!MFI->isFixedObjectIndex(FI))
2684    return false;
2685  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2686}
2687
2688/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2689/// for tail call optimization. Targets which want to do tail call
2690/// optimization should implement this function.
2691bool
2692X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2693                                                     CallingConv::ID CalleeCC,
2694                                                     bool isVarArg,
2695                                                     bool isCalleeStructRet,
2696                                                     bool isCallerStructRet,
2697                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2698                                    const SmallVectorImpl<SDValue> &OutVals,
2699                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2700                                                     SelectionDAG& DAG) const {
2701  if (!IsTailCallConvention(CalleeCC) &&
2702      CalleeCC != CallingConv::C)
2703    return false;
2704
2705  // If -tailcallopt is specified, make fastcc functions tail-callable.
2706  const MachineFunction &MF = DAG.getMachineFunction();
2707  const Function *CallerF = DAG.getMachineFunction().getFunction();
2708  CallingConv::ID CallerCC = CallerF->getCallingConv();
2709  bool CCMatch = CallerCC == CalleeCC;
2710
2711  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2712    if (IsTailCallConvention(CalleeCC) && CCMatch)
2713      return true;
2714    return false;
2715  }
2716
2717  // Look for obvious safe cases to perform tail call optimization that do not
2718  // require ABI changes. This is what gcc calls sibcall.
2719
2720  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2721  // emit a special epilogue.
2722  if (RegInfo->needsStackRealignment(MF))
2723    return false;
2724
2725  // Also avoid sibcall optimization if either caller or callee uses struct
2726  // return semantics.
2727  if (isCalleeStructRet || isCallerStructRet)
2728    return false;
2729
2730  // An stdcall caller is expected to clean up its arguments; the callee
2731  // isn't going to do that.
2732  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2733    return false;
2734
2735  // Do not sibcall optimize vararg calls unless all arguments are passed via
2736  // registers.
2737  if (isVarArg && !Outs.empty()) {
2738
2739    // Optimizing for varargs on Win64 is unlikely to be safe without
2740    // additional testing.
2741    if (Subtarget->isTargetWin64())
2742      return false;
2743
2744    SmallVector<CCValAssign, 16> ArgLocs;
2745    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2746		   getTargetMachine(), ArgLocs, *DAG.getContext());
2747
2748    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2749    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2750      if (!ArgLocs[i].isRegLoc())
2751        return false;
2752  }
2753
2754  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2755  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2756  // this into a sibcall.
2757  bool Unused = false;
2758  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2759    if (!Ins[i].Used) {
2760      Unused = true;
2761      break;
2762    }
2763  }
2764  if (Unused) {
2765    SmallVector<CCValAssign, 16> RVLocs;
2766    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2767		   getTargetMachine(), RVLocs, *DAG.getContext());
2768    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2769    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2770      CCValAssign &VA = RVLocs[i];
2771      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2772        return false;
2773    }
2774  }
2775
2776  // If the calling conventions do not match, then we'd better make sure the
2777  // results are returned in the same way as what the caller expects.
2778  if (!CCMatch) {
2779    SmallVector<CCValAssign, 16> RVLocs1;
2780    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2781		    getTargetMachine(), RVLocs1, *DAG.getContext());
2782    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2783
2784    SmallVector<CCValAssign, 16> RVLocs2;
2785    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2786		    getTargetMachine(), RVLocs2, *DAG.getContext());
2787    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2788
2789    if (RVLocs1.size() != RVLocs2.size())
2790      return false;
2791    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2792      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2793        return false;
2794      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2795        return false;
2796      if (RVLocs1[i].isRegLoc()) {
2797        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2798          return false;
2799      } else {
2800        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2801          return false;
2802      }
2803    }
2804  }
2805
2806  // If the callee takes no arguments then go on to check the results of the
2807  // call.
2808  if (!Outs.empty()) {
2809    // Check if stack adjustment is needed. For now, do not do this if any
2810    // argument is passed on the stack.
2811    SmallVector<CCValAssign, 16> ArgLocs;
2812    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2813		   getTargetMachine(), ArgLocs, *DAG.getContext());
2814
2815    // Allocate shadow area for Win64
2816    if (Subtarget->isTargetWin64()) {
2817      CCInfo.AllocateStack(32, 8);
2818    }
2819
2820    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2821    if (CCInfo.getNextStackOffset()) {
2822      MachineFunction &MF = DAG.getMachineFunction();
2823      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2824        return false;
2825
2826      // Check if the arguments are already laid out in the right way as
2827      // the caller's fixed stack objects.
2828      MachineFrameInfo *MFI = MF.getFrameInfo();
2829      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2830      const X86InstrInfo *TII =
2831        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2832      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2833        CCValAssign &VA = ArgLocs[i];
2834        SDValue Arg = OutVals[i];
2835        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2836        if (VA.getLocInfo() == CCValAssign::Indirect)
2837          return false;
2838        if (!VA.isRegLoc()) {
2839          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2840                                   MFI, MRI, TII))
2841            return false;
2842        }
2843      }
2844    }
2845
2846    // If the tailcall address may be in a register, then make sure it's
2847    // possible to register allocate for it. In 32-bit, the call address can
2848    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2849    // callee-saved registers are restored. These happen to be the same
2850    // registers used to pass 'inreg' arguments so watch out for those.
2851    if (!Subtarget->is64Bit() &&
2852        !isa<GlobalAddressSDNode>(Callee) &&
2853        !isa<ExternalSymbolSDNode>(Callee)) {
2854      unsigned NumInRegs = 0;
2855      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2856        CCValAssign &VA = ArgLocs[i];
2857        if (!VA.isRegLoc())
2858          continue;
2859        unsigned Reg = VA.getLocReg();
2860        switch (Reg) {
2861        default: break;
2862        case X86::EAX: case X86::EDX: case X86::ECX:
2863          if (++NumInRegs == 3)
2864            return false;
2865          break;
2866        }
2867      }
2868    }
2869  }
2870
2871  return true;
2872}
2873
2874FastISel *
2875X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2876  return X86::createFastISel(funcInfo);
2877}
2878
2879
2880//===----------------------------------------------------------------------===//
2881//                           Other Lowering Hooks
2882//===----------------------------------------------------------------------===//
2883
2884static bool MayFoldLoad(SDValue Op) {
2885  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2886}
2887
2888static bool MayFoldIntoStore(SDValue Op) {
2889  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2890}
2891
2892static bool isTargetShuffle(unsigned Opcode) {
2893  switch(Opcode) {
2894  default: return false;
2895  case X86ISD::PSHUFD:
2896  case X86ISD::PSHUFHW:
2897  case X86ISD::PSHUFLW:
2898  case X86ISD::SHUFP:
2899  case X86ISD::PALIGN:
2900  case X86ISD::MOVLHPS:
2901  case X86ISD::MOVLHPD:
2902  case X86ISD::MOVHLPS:
2903  case X86ISD::MOVLPS:
2904  case X86ISD::MOVLPD:
2905  case X86ISD::MOVSHDUP:
2906  case X86ISD::MOVSLDUP:
2907  case X86ISD::MOVDDUP:
2908  case X86ISD::MOVSS:
2909  case X86ISD::MOVSD:
2910  case X86ISD::UNPCKL:
2911  case X86ISD::UNPCKH:
2912  case X86ISD::VPERMILP:
2913  case X86ISD::VPERM2X128:
2914    return true;
2915  }
2916}
2917
2918static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2919                                    SDValue V1, SelectionDAG &DAG) {
2920  switch(Opc) {
2921  default: llvm_unreachable("Unknown x86 shuffle node");
2922  case X86ISD::MOVSHDUP:
2923  case X86ISD::MOVSLDUP:
2924  case X86ISD::MOVDDUP:
2925    return DAG.getNode(Opc, dl, VT, V1);
2926  }
2927}
2928
2929static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2930                                    SDValue V1, unsigned TargetMask,
2931                                    SelectionDAG &DAG) {
2932  switch(Opc) {
2933  default: llvm_unreachable("Unknown x86 shuffle node");
2934  case X86ISD::PSHUFD:
2935  case X86ISD::PSHUFHW:
2936  case X86ISD::PSHUFLW:
2937  case X86ISD::VPERMILP:
2938    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2939  }
2940}
2941
2942static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2943                                    SDValue V1, SDValue V2, unsigned TargetMask,
2944                                    SelectionDAG &DAG) {
2945  switch(Opc) {
2946  default: llvm_unreachable("Unknown x86 shuffle node");
2947  case X86ISD::PALIGN:
2948  case X86ISD::SHUFP:
2949  case X86ISD::VPERM2X128:
2950    return DAG.getNode(Opc, dl, VT, V1, V2,
2951                       DAG.getConstant(TargetMask, MVT::i8));
2952  }
2953}
2954
2955static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2956                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2957  switch(Opc) {
2958  default: llvm_unreachable("Unknown x86 shuffle node");
2959  case X86ISD::MOVLHPS:
2960  case X86ISD::MOVLHPD:
2961  case X86ISD::MOVHLPS:
2962  case X86ISD::MOVLPS:
2963  case X86ISD::MOVLPD:
2964  case X86ISD::MOVSS:
2965  case X86ISD::MOVSD:
2966  case X86ISD::UNPCKL:
2967  case X86ISD::UNPCKH:
2968    return DAG.getNode(Opc, dl, VT, V1, V2);
2969  }
2970}
2971
2972SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2973  MachineFunction &MF = DAG.getMachineFunction();
2974  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2975  int ReturnAddrIndex = FuncInfo->getRAIndex();
2976
2977  if (ReturnAddrIndex == 0) {
2978    // Set up a frame object for the return address.
2979    uint64_t SlotSize = TD->getPointerSize();
2980    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2981                                                           false);
2982    FuncInfo->setRAIndex(ReturnAddrIndex);
2983  }
2984
2985  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2986}
2987
2988
2989bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2990                                       bool hasSymbolicDisplacement) {
2991  // Offset should fit into 32 bit immediate field.
2992  if (!isInt<32>(Offset))
2993    return false;
2994
2995  // If we don't have a symbolic displacement - we don't have any extra
2996  // restrictions.
2997  if (!hasSymbolicDisplacement)
2998    return true;
2999
3000  // FIXME: Some tweaks might be needed for medium code model.
3001  if (M != CodeModel::Small && M != CodeModel::Kernel)
3002    return false;
3003
3004  // For small code model we assume that latest object is 16MB before end of 31
3005  // bits boundary. We may also accept pretty large negative constants knowing
3006  // that all objects are in the positive half of address space.
3007  if (M == CodeModel::Small && Offset < 16*1024*1024)
3008    return true;
3009
3010  // For kernel code model we know that all object resist in the negative half
3011  // of 32bits address space. We may not accept negative offsets, since they may
3012  // be just off and we may accept pretty large positive ones.
3013  if (M == CodeModel::Kernel && Offset > 0)
3014    return true;
3015
3016  return false;
3017}
3018
3019/// isCalleePop - Determines whether the callee is required to pop its
3020/// own arguments. Callee pop is necessary to support tail calls.
3021bool X86::isCalleePop(CallingConv::ID CallingConv,
3022                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3023  if (IsVarArg)
3024    return false;
3025
3026  switch (CallingConv) {
3027  default:
3028    return false;
3029  case CallingConv::X86_StdCall:
3030    return !is64Bit;
3031  case CallingConv::X86_FastCall:
3032    return !is64Bit;
3033  case CallingConv::X86_ThisCall:
3034    return !is64Bit;
3035  case CallingConv::Fast:
3036    return TailCallOpt;
3037  case CallingConv::GHC:
3038    return TailCallOpt;
3039  }
3040}
3041
3042/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3043/// specific condition code, returning the condition code and the LHS/RHS of the
3044/// comparison to make.
3045static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3046                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3047  if (!isFP) {
3048    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3049      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3050        // X > -1   -> X == 0, jump !sign.
3051        RHS = DAG.getConstant(0, RHS.getValueType());
3052        return X86::COND_NS;
3053      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3054        // X < 0   -> X == 0, jump on sign.
3055        return X86::COND_S;
3056      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3057        // X < 1   -> X <= 0
3058        RHS = DAG.getConstant(0, RHS.getValueType());
3059        return X86::COND_LE;
3060      }
3061    }
3062
3063    switch (SetCCOpcode) {
3064    default: llvm_unreachable("Invalid integer condition!");
3065    case ISD::SETEQ:  return X86::COND_E;
3066    case ISD::SETGT:  return X86::COND_G;
3067    case ISD::SETGE:  return X86::COND_GE;
3068    case ISD::SETLT:  return X86::COND_L;
3069    case ISD::SETLE:  return X86::COND_LE;
3070    case ISD::SETNE:  return X86::COND_NE;
3071    case ISD::SETULT: return X86::COND_B;
3072    case ISD::SETUGT: return X86::COND_A;
3073    case ISD::SETULE: return X86::COND_BE;
3074    case ISD::SETUGE: return X86::COND_AE;
3075    }
3076  }
3077
3078  // First determine if it is required or is profitable to flip the operands.
3079
3080  // If LHS is a foldable load, but RHS is not, flip the condition.
3081  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3082      !ISD::isNON_EXTLoad(RHS.getNode())) {
3083    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3084    std::swap(LHS, RHS);
3085  }
3086
3087  switch (SetCCOpcode) {
3088  default: break;
3089  case ISD::SETOLT:
3090  case ISD::SETOLE:
3091  case ISD::SETUGT:
3092  case ISD::SETUGE:
3093    std::swap(LHS, RHS);
3094    break;
3095  }
3096
3097  // On a floating point condition, the flags are set as follows:
3098  // ZF  PF  CF   op
3099  //  0 | 0 | 0 | X > Y
3100  //  0 | 0 | 1 | X < Y
3101  //  1 | 0 | 0 | X == Y
3102  //  1 | 1 | 1 | unordered
3103  switch (SetCCOpcode) {
3104  default: llvm_unreachable("Condcode should be pre-legalized away");
3105  case ISD::SETUEQ:
3106  case ISD::SETEQ:   return X86::COND_E;
3107  case ISD::SETOLT:              // flipped
3108  case ISD::SETOGT:
3109  case ISD::SETGT:   return X86::COND_A;
3110  case ISD::SETOLE:              // flipped
3111  case ISD::SETOGE:
3112  case ISD::SETGE:   return X86::COND_AE;
3113  case ISD::SETUGT:              // flipped
3114  case ISD::SETULT:
3115  case ISD::SETLT:   return X86::COND_B;
3116  case ISD::SETUGE:              // flipped
3117  case ISD::SETULE:
3118  case ISD::SETLE:   return X86::COND_BE;
3119  case ISD::SETONE:
3120  case ISD::SETNE:   return X86::COND_NE;
3121  case ISD::SETUO:   return X86::COND_P;
3122  case ISD::SETO:    return X86::COND_NP;
3123  case ISD::SETOEQ:
3124  case ISD::SETUNE:  return X86::COND_INVALID;
3125  }
3126}
3127
3128/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3129/// code. Current x86 isa includes the following FP cmov instructions:
3130/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3131static bool hasFPCMov(unsigned X86CC) {
3132  switch (X86CC) {
3133  default:
3134    return false;
3135  case X86::COND_B:
3136  case X86::COND_BE:
3137  case X86::COND_E:
3138  case X86::COND_P:
3139  case X86::COND_A:
3140  case X86::COND_AE:
3141  case X86::COND_NE:
3142  case X86::COND_NP:
3143    return true;
3144  }
3145}
3146
3147/// isFPImmLegal - Returns true if the target can instruction select the
3148/// specified FP immediate natively. If false, the legalizer will
3149/// materialize the FP immediate as a load from a constant pool.
3150bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3151  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3152    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3153      return true;
3154  }
3155  return false;
3156}
3157
3158/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3159/// the specified range (L, H].
3160static bool isUndefOrInRange(int Val, int Low, int Hi) {
3161  return (Val < 0) || (Val >= Low && Val < Hi);
3162}
3163
3164/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3165/// specified value.
3166static bool isUndefOrEqual(int Val, int CmpVal) {
3167  if (Val < 0 || Val == CmpVal)
3168    return true;
3169  return false;
3170}
3171
3172/// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3173/// from position Pos and ending in Pos+Size, falls within the specified
3174/// sequential range (L, L+Pos]. or is undef.
3175static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3176                                       int Pos, int Size, int Low) {
3177  for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3178    if (!isUndefOrEqual(Mask[i], Low))
3179      return false;
3180  return true;
3181}
3182
3183/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3184/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3185/// the second operand.
3186static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3187  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3188    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3189  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3190    return (Mask[0] < 2 && Mask[1] < 2);
3191  return false;
3192}
3193
3194/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3195/// is suitable for input to PSHUFHW.
3196static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT) {
3197  if (VT != MVT::v8i16)
3198    return false;
3199
3200  // Lower quadword copied in order or undef.
3201  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3202    return false;
3203
3204  // Upper quadword shuffled.
3205  for (unsigned i = 4; i != 8; ++i)
3206    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3207      return false;
3208
3209  return true;
3210}
3211
3212/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3213/// is suitable for input to PSHUFLW.
3214static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT) {
3215  if (VT != MVT::v8i16)
3216    return false;
3217
3218  // Upper quadword copied in order.
3219  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3220    return false;
3221
3222  // Lower quadword shuffled.
3223  for (unsigned i = 0; i != 4; ++i)
3224    if (Mask[i] >= 4)
3225      return false;
3226
3227  return true;
3228}
3229
3230/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3231/// is suitable for input to PALIGNR.
3232static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3233                          const X86Subtarget *Subtarget) {
3234  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3235      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3236    return false;
3237
3238  unsigned NumElts = VT.getVectorNumElements();
3239  unsigned NumLanes = VT.getSizeInBits()/128;
3240  unsigned NumLaneElts = NumElts/NumLanes;
3241
3242  // Do not handle 64-bit element shuffles with palignr.
3243  if (NumLaneElts == 2)
3244    return false;
3245
3246  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3247    unsigned i;
3248    for (i = 0; i != NumLaneElts; ++i) {
3249      if (Mask[i+l] >= 0)
3250        break;
3251    }
3252
3253    // Lane is all undef, go to next lane
3254    if (i == NumLaneElts)
3255      continue;
3256
3257    int Start = Mask[i+l];
3258
3259    // Make sure its in this lane in one of the sources
3260    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3261        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3262      return false;
3263
3264    // If not lane 0, then we must match lane 0
3265    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3266      return false;
3267
3268    // Correct second source to be contiguous with first source
3269    if (Start >= (int)NumElts)
3270      Start -= NumElts - NumLaneElts;
3271
3272    // Make sure we're shifting in the right direction.
3273    if (Start <= (int)(i+l))
3274      return false;
3275
3276    Start -= i;
3277
3278    // Check the rest of the elements to see if they are consecutive.
3279    for (++i; i != NumLaneElts; ++i) {
3280      int Idx = Mask[i+l];
3281
3282      // Make sure its in this lane
3283      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3284          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3285        return false;
3286
3287      // If not lane 0, then we must match lane 0
3288      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3289        return false;
3290
3291      if (Idx >= (int)NumElts)
3292        Idx -= NumElts - NumLaneElts;
3293
3294      if (!isUndefOrEqual(Idx, Start+i))
3295        return false;
3296
3297    }
3298  }
3299
3300  return true;
3301}
3302
3303/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3304/// the two vector operands have swapped position.
3305static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3306                                     unsigned NumElems) {
3307  for (unsigned i = 0; i != NumElems; ++i) {
3308    int idx = Mask[i];
3309    if (idx < 0)
3310      continue;
3311    else if (idx < (int)NumElems)
3312      Mask[i] = idx + NumElems;
3313    else
3314      Mask[i] = idx - NumElems;
3315  }
3316}
3317
3318/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3319/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3320/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3321/// reverse of what x86 shuffles want.
3322static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3323                        bool Commuted = false) {
3324  if (!HasAVX && VT.getSizeInBits() == 256)
3325    return false;
3326
3327  unsigned NumElems = VT.getVectorNumElements();
3328  unsigned NumLanes = VT.getSizeInBits()/128;
3329  unsigned NumLaneElems = NumElems/NumLanes;
3330
3331  if (NumLaneElems != 2 && NumLaneElems != 4)
3332    return false;
3333
3334  // VSHUFPSY divides the resulting vector into 4 chunks.
3335  // The sources are also splitted into 4 chunks, and each destination
3336  // chunk must come from a different source chunk.
3337  //
3338  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3339  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3340  //
3341  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3342  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3343  //
3344  // VSHUFPDY divides the resulting vector into 4 chunks.
3345  // The sources are also splitted into 4 chunks, and each destination
3346  // chunk must come from a different source chunk.
3347  //
3348  //  SRC1 =>      X3       X2       X1       X0
3349  //  SRC2 =>      Y3       Y2       Y1       Y0
3350  //
3351  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3352  //
3353  unsigned HalfLaneElems = NumLaneElems/2;
3354  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3355    for (unsigned i = 0; i != NumLaneElems; ++i) {
3356      int Idx = Mask[i+l];
3357      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3358      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3359        return false;
3360      // For VSHUFPSY, the mask of the second half must be the same as the
3361      // first but with the appropriate offsets. This works in the same way as
3362      // VPERMILPS works with masks.
3363      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3364        continue;
3365      if (!isUndefOrEqual(Idx, Mask[i]+l))
3366        return false;
3367    }
3368  }
3369
3370  return true;
3371}
3372
3373/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3374/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3375static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3376  unsigned NumElems = VT.getVectorNumElements();
3377
3378  if (VT.getSizeInBits() != 128)
3379    return false;
3380
3381  if (NumElems != 4)
3382    return false;
3383
3384  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3385  return isUndefOrEqual(Mask[0], 6) &&
3386         isUndefOrEqual(Mask[1], 7) &&
3387         isUndefOrEqual(Mask[2], 2) &&
3388         isUndefOrEqual(Mask[3], 3);
3389}
3390
3391/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3392/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3393/// <2, 3, 2, 3>
3394static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3395  unsigned NumElems = VT.getVectorNumElements();
3396
3397  if (VT.getSizeInBits() != 128)
3398    return false;
3399
3400  if (NumElems != 4)
3401    return false;
3402
3403  return isUndefOrEqual(Mask[0], 2) &&
3404         isUndefOrEqual(Mask[1], 3) &&
3405         isUndefOrEqual(Mask[2], 2) &&
3406         isUndefOrEqual(Mask[3], 3);
3407}
3408
3409/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3410/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3411static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3412  if (VT.getSizeInBits() != 128)
3413    return false;
3414
3415  unsigned NumElems = VT.getVectorNumElements();
3416
3417  if (NumElems != 2 && NumElems != 4)
3418    return false;
3419
3420  for (unsigned i = 0; i != NumElems/2; ++i)
3421    if (!isUndefOrEqual(Mask[i], i + NumElems))
3422      return false;
3423
3424  for (unsigned i = NumElems/2; i != NumElems; ++i)
3425    if (!isUndefOrEqual(Mask[i], i))
3426      return false;
3427
3428  return true;
3429}
3430
3431/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3432/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3433static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3434  unsigned NumElems = VT.getVectorNumElements();
3435
3436  if ((NumElems != 2 && NumElems != 4)
3437      || VT.getSizeInBits() > 128)
3438    return false;
3439
3440  for (unsigned i = 0; i != NumElems/2; ++i)
3441    if (!isUndefOrEqual(Mask[i], i))
3442      return false;
3443
3444  for (unsigned i = 0; i != NumElems/2; ++i)
3445    if (!isUndefOrEqual(Mask[i + NumElems/2], i + NumElems))
3446      return false;
3447
3448  return true;
3449}
3450
3451/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3452/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3453static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3454                         bool HasAVX2, bool V2IsSplat = false) {
3455  unsigned NumElts = VT.getVectorNumElements();
3456
3457  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3458         "Unsupported vector type for unpckh");
3459
3460  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3461      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3462    return false;
3463
3464  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3465  // independently on 128-bit lanes.
3466  unsigned NumLanes = VT.getSizeInBits()/128;
3467  unsigned NumLaneElts = NumElts/NumLanes;
3468
3469  for (unsigned l = 0; l != NumLanes; ++l) {
3470    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3471         i != (l+1)*NumLaneElts;
3472         i += 2, ++j) {
3473      int BitI  = Mask[i];
3474      int BitI1 = Mask[i+1];
3475      if (!isUndefOrEqual(BitI, j))
3476        return false;
3477      if (V2IsSplat) {
3478        if (!isUndefOrEqual(BitI1, NumElts))
3479          return false;
3480      } else {
3481        if (!isUndefOrEqual(BitI1, j + NumElts))
3482          return false;
3483      }
3484    }
3485  }
3486
3487  return true;
3488}
3489
3490/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3491/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3492static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3493                         bool HasAVX2, bool V2IsSplat = false) {
3494  unsigned NumElts = VT.getVectorNumElements();
3495
3496  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3497         "Unsupported vector type for unpckh");
3498
3499  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3500      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3501    return false;
3502
3503  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3504  // independently on 128-bit lanes.
3505  unsigned NumLanes = VT.getSizeInBits()/128;
3506  unsigned NumLaneElts = NumElts/NumLanes;
3507
3508  for (unsigned l = 0; l != NumLanes; ++l) {
3509    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3510         i != (l+1)*NumLaneElts; i += 2, ++j) {
3511      int BitI  = Mask[i];
3512      int BitI1 = Mask[i+1];
3513      if (!isUndefOrEqual(BitI, j))
3514        return false;
3515      if (V2IsSplat) {
3516        if (isUndefOrEqual(BitI1, NumElts))
3517          return false;
3518      } else {
3519        if (!isUndefOrEqual(BitI1, j+NumElts))
3520          return false;
3521      }
3522    }
3523  }
3524  return true;
3525}
3526
3527/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3528/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3529/// <0, 0, 1, 1>
3530static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3531                                  bool HasAVX2) {
3532  unsigned NumElts = VT.getVectorNumElements();
3533
3534  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3535         "Unsupported vector type for unpckh");
3536
3537  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3538      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3539    return false;
3540
3541  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3542  // FIXME: Need a better way to get rid of this, there's no latency difference
3543  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3544  // the former later. We should also remove the "_undef" special mask.
3545  if (NumElts == 4 && VT.getSizeInBits() == 256)
3546    return false;
3547
3548  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3549  // independently on 128-bit lanes.
3550  unsigned NumLanes = VT.getSizeInBits()/128;
3551  unsigned NumLaneElts = NumElts/NumLanes;
3552
3553  for (unsigned l = 0; l != NumLanes; ++l) {
3554    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3555         i != (l+1)*NumLaneElts;
3556         i += 2, ++j) {
3557      int BitI  = Mask[i];
3558      int BitI1 = Mask[i+1];
3559
3560      if (!isUndefOrEqual(BitI, j))
3561        return false;
3562      if (!isUndefOrEqual(BitI1, j))
3563        return false;
3564    }
3565  }
3566
3567  return true;
3568}
3569
3570/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3571/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3572/// <2, 2, 3, 3>
3573static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3574  unsigned NumElts = VT.getVectorNumElements();
3575
3576  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3577         "Unsupported vector type for unpckh");
3578
3579  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3580      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3581    return false;
3582
3583  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3584  // independently on 128-bit lanes.
3585  unsigned NumLanes = VT.getSizeInBits()/128;
3586  unsigned NumLaneElts = NumElts/NumLanes;
3587
3588  for (unsigned l = 0; l != NumLanes; ++l) {
3589    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3590         i != (l+1)*NumLaneElts; i += 2, ++j) {
3591      int BitI  = Mask[i];
3592      int BitI1 = Mask[i+1];
3593      if (!isUndefOrEqual(BitI, j))
3594        return false;
3595      if (!isUndefOrEqual(BitI1, j))
3596        return false;
3597    }
3598  }
3599  return true;
3600}
3601
3602/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3603/// specifies a shuffle of elements that is suitable for input to MOVSS,
3604/// MOVSD, and MOVD, i.e. setting the lowest element.
3605static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3606  if (VT.getVectorElementType().getSizeInBits() < 32)
3607    return false;
3608  if (VT.getSizeInBits() == 256)
3609    return false;
3610
3611  unsigned NumElts = VT.getVectorNumElements();
3612
3613  if (!isUndefOrEqual(Mask[0], NumElts))
3614    return false;
3615
3616  for (unsigned i = 1; i != NumElts; ++i)
3617    if (!isUndefOrEqual(Mask[i], i))
3618      return false;
3619
3620  return true;
3621}
3622
3623/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3624/// as permutations between 128-bit chunks or halves. As an example: this
3625/// shuffle bellow:
3626///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3627/// The first half comes from the second half of V1 and the second half from the
3628/// the second half of V2.
3629static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3630  if (!HasAVX || VT.getSizeInBits() != 256)
3631    return false;
3632
3633  // The shuffle result is divided into half A and half B. In total the two
3634  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3635  // B must come from C, D, E or F.
3636  unsigned HalfSize = VT.getVectorNumElements()/2;
3637  bool MatchA = false, MatchB = false;
3638
3639  // Check if A comes from one of C, D, E, F.
3640  for (unsigned Half = 0; Half != 4; ++Half) {
3641    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3642      MatchA = true;
3643      break;
3644    }
3645  }
3646
3647  // Check if B comes from one of C, D, E, F.
3648  for (unsigned Half = 0; Half != 4; ++Half) {
3649    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3650      MatchB = true;
3651      break;
3652    }
3653  }
3654
3655  return MatchA && MatchB;
3656}
3657
3658/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3659/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3660static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3661  EVT VT = SVOp->getValueType(0);
3662
3663  unsigned HalfSize = VT.getVectorNumElements()/2;
3664
3665  unsigned FstHalf = 0, SndHalf = 0;
3666  for (unsigned i = 0; i < HalfSize; ++i) {
3667    if (SVOp->getMaskElt(i) > 0) {
3668      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3669      break;
3670    }
3671  }
3672  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3673    if (SVOp->getMaskElt(i) > 0) {
3674      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3675      break;
3676    }
3677  }
3678
3679  return (FstHalf | (SndHalf << 4));
3680}
3681
3682/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3683/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3684/// Note that VPERMIL mask matching is different depending whether theunderlying
3685/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3686/// to the same elements of the low, but to the higher half of the source.
3687/// In VPERMILPD the two lanes could be shuffled independently of each other
3688/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3689static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3690  if (!HasAVX)
3691    return false;
3692
3693  unsigned NumElts = VT.getVectorNumElements();
3694  // Only match 256-bit with 32/64-bit types
3695  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3696    return false;
3697
3698  unsigned NumLanes = VT.getSizeInBits()/128;
3699  unsigned LaneSize = NumElts/NumLanes;
3700  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3701    for (unsigned i = 0; i != LaneSize; ++i) {
3702      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3703        return false;
3704      if (NumElts != 8 || l == 0)
3705        continue;
3706      // VPERMILPS handling
3707      if (Mask[i] < 0)
3708        continue;
3709      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3710        return false;
3711    }
3712  }
3713
3714  return true;
3715}
3716
3717/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3718/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3719/// element of vector 2 and the other elements to come from vector 1 in order.
3720static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3721                               bool V2IsSplat = false, bool V2IsUndef = false) {
3722  unsigned NumOps = VT.getVectorNumElements();
3723  if (VT.getSizeInBits() == 256)
3724    return false;
3725  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3726    return false;
3727
3728  if (!isUndefOrEqual(Mask[0], 0))
3729    return false;
3730
3731  for (unsigned i = 1; i != NumOps; ++i)
3732    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3733          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3734          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3735      return false;
3736
3737  return true;
3738}
3739
3740/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3741/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3742/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3743static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3744                           const X86Subtarget *Subtarget) {
3745  if (!Subtarget->hasSSE3())
3746    return false;
3747
3748  unsigned NumElems = VT.getVectorNumElements();
3749
3750  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3751      (VT.getSizeInBits() == 256 && NumElems != 8))
3752    return false;
3753
3754  // "i+1" is the value the indexed mask element must have
3755  for (unsigned i = 0; i != NumElems; i += 2)
3756    if (!isUndefOrEqual(Mask[i], i+1) ||
3757        !isUndefOrEqual(Mask[i+1], i+1))
3758      return false;
3759
3760  return true;
3761}
3762
3763/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3764/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3765/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3766static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3767                           const X86Subtarget *Subtarget) {
3768  if (!Subtarget->hasSSE3())
3769    return false;
3770
3771  unsigned NumElems = VT.getVectorNumElements();
3772
3773  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3774      (VT.getSizeInBits() == 256 && NumElems != 8))
3775    return false;
3776
3777  // "i" is the value the indexed mask element must have
3778  for (unsigned i = 0; i != NumElems; i += 2)
3779    if (!isUndefOrEqual(Mask[i], i) ||
3780        !isUndefOrEqual(Mask[i+1], i))
3781      return false;
3782
3783  return true;
3784}
3785
3786/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3787/// specifies a shuffle of elements that is suitable for input to 256-bit
3788/// version of MOVDDUP.
3789static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3790  unsigned NumElts = VT.getVectorNumElements();
3791
3792  if (!HasAVX || VT.getSizeInBits() != 256 || NumElts != 4)
3793    return false;
3794
3795  for (unsigned i = 0; i != NumElts/2; ++i)
3796    if (!isUndefOrEqual(Mask[i], 0))
3797      return false;
3798  for (unsigned i = NumElts/2; i != NumElts; ++i)
3799    if (!isUndefOrEqual(Mask[i], NumElts/2))
3800      return false;
3801  return true;
3802}
3803
3804/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3805/// specifies a shuffle of elements that is suitable for input to 128-bit
3806/// version of MOVDDUP.
3807static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3808  if (VT.getSizeInBits() != 128)
3809    return false;
3810
3811  unsigned e = VT.getVectorNumElements() / 2;
3812  for (unsigned i = 0; i != e; ++i)
3813    if (!isUndefOrEqual(Mask[i], i))
3814      return false;
3815  for (unsigned i = 0; i != e; ++i)
3816    if (!isUndefOrEqual(Mask[e+i], i))
3817      return false;
3818  return true;
3819}
3820
3821/// isVEXTRACTF128Index - Return true if the specified
3822/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3823/// suitable for input to VEXTRACTF128.
3824bool X86::isVEXTRACTF128Index(SDNode *N) {
3825  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3826    return false;
3827
3828  // The index should be aligned on a 128-bit boundary.
3829  uint64_t Index =
3830    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3831
3832  unsigned VL = N->getValueType(0).getVectorNumElements();
3833  unsigned VBits = N->getValueType(0).getSizeInBits();
3834  unsigned ElSize = VBits / VL;
3835  bool Result = (Index * ElSize) % 128 == 0;
3836
3837  return Result;
3838}
3839
3840/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3841/// operand specifies a subvector insert that is suitable for input to
3842/// VINSERTF128.
3843bool X86::isVINSERTF128Index(SDNode *N) {
3844  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3845    return false;
3846
3847  // The index should be aligned on a 128-bit boundary.
3848  uint64_t Index =
3849    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3850
3851  unsigned VL = N->getValueType(0).getVectorNumElements();
3852  unsigned VBits = N->getValueType(0).getSizeInBits();
3853  unsigned ElSize = VBits / VL;
3854  bool Result = (Index * ElSize) % 128 == 0;
3855
3856  return Result;
3857}
3858
3859/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3860/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3861/// Handles 128-bit and 256-bit.
3862static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3863  EVT VT = N->getValueType(0);
3864
3865  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3866         "Unsupported vector type for PSHUF/SHUFP");
3867
3868  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3869  // independently on 128-bit lanes.
3870  unsigned NumElts = VT.getVectorNumElements();
3871  unsigned NumLanes = VT.getSizeInBits()/128;
3872  unsigned NumLaneElts = NumElts/NumLanes;
3873
3874  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3875         "Only supports 2 or 4 elements per lane");
3876
3877  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3878  unsigned Mask = 0;
3879  for (unsigned i = 0; i != NumElts; ++i) {
3880    int Elt = N->getMaskElt(i);
3881    if (Elt < 0) continue;
3882    Elt %= NumLaneElts;
3883    unsigned ShAmt = i << Shift;
3884    if (ShAmt >= 8) ShAmt -= 8;
3885    Mask |= Elt << ShAmt;
3886  }
3887
3888  return Mask;
3889}
3890
3891/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3892/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3893static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3894  unsigned Mask = 0;
3895  // 8 nodes, but we only care about the last 4.
3896  for (unsigned i = 7; i >= 4; --i) {
3897    int Val = N->getMaskElt(i);
3898    if (Val >= 0)
3899      Mask |= (Val - 4);
3900    if (i != 4)
3901      Mask <<= 2;
3902  }
3903  return Mask;
3904}
3905
3906/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3907/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3908static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3909  unsigned Mask = 0;
3910  // 8 nodes, but we only care about the first 4.
3911  for (int i = 3; i >= 0; --i) {
3912    int Val = N->getMaskElt(i);
3913    if (Val >= 0)
3914      Mask |= Val;
3915    if (i != 0)
3916      Mask <<= 2;
3917  }
3918  return Mask;
3919}
3920
3921/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3922/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3923static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
3924  EVT VT = SVOp->getValueType(0);
3925  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
3926
3927  unsigned NumElts = VT.getVectorNumElements();
3928  unsigned NumLanes = VT.getSizeInBits()/128;
3929  unsigned NumLaneElts = NumElts/NumLanes;
3930
3931  int Val = 0;
3932  unsigned i;
3933  for (i = 0; i != NumElts; ++i) {
3934    Val = SVOp->getMaskElt(i);
3935    if (Val >= 0)
3936      break;
3937  }
3938  if (Val >= (int)NumElts)
3939    Val -= NumElts - NumLaneElts;
3940
3941  assert(Val - i > 0 && "PALIGNR imm should be positive");
3942  return (Val - i) * EltSize;
3943}
3944
3945/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3946/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3947/// instructions.
3948unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3949  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3950    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3951
3952  uint64_t Index =
3953    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3954
3955  EVT VecVT = N->getOperand(0).getValueType();
3956  EVT ElVT = VecVT.getVectorElementType();
3957
3958  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3959  return Index / NumElemsPerChunk;
3960}
3961
3962/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3963/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3964/// instructions.
3965unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3966  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3967    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3968
3969  uint64_t Index =
3970    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3971
3972  EVT VecVT = N->getValueType(0);
3973  EVT ElVT = VecVT.getVectorElementType();
3974
3975  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3976  return Index / NumElemsPerChunk;
3977}
3978
3979/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3980/// constant +0.0.
3981bool X86::isZeroNode(SDValue Elt) {
3982  return ((isa<ConstantSDNode>(Elt) &&
3983           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3984          (isa<ConstantFPSDNode>(Elt) &&
3985           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3986}
3987
3988/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3989/// their permute mask.
3990static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3991                                    SelectionDAG &DAG) {
3992  EVT VT = SVOp->getValueType(0);
3993  unsigned NumElems = VT.getVectorNumElements();
3994  SmallVector<int, 8> MaskVec;
3995
3996  for (unsigned i = 0; i != NumElems; ++i) {
3997    int idx = SVOp->getMaskElt(i);
3998    if (idx < 0)
3999      MaskVec.push_back(idx);
4000    else if (idx < (int)NumElems)
4001      MaskVec.push_back(idx + NumElems);
4002    else
4003      MaskVec.push_back(idx - NumElems);
4004  }
4005  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4006                              SVOp->getOperand(0), &MaskVec[0]);
4007}
4008
4009/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4010/// match movhlps. The lower half elements should come from upper half of
4011/// V1 (and in order), and the upper half elements should come from the upper
4012/// half of V2 (and in order).
4013static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4014  if (VT.getSizeInBits() != 128)
4015    return false;
4016  if (VT.getVectorNumElements() != 4)
4017    return false;
4018  for (unsigned i = 0, e = 2; i != e; ++i)
4019    if (!isUndefOrEqual(Mask[i], i+2))
4020      return false;
4021  for (unsigned i = 2; i != 4; ++i)
4022    if (!isUndefOrEqual(Mask[i], i+4))
4023      return false;
4024  return true;
4025}
4026
4027/// isScalarLoadToVector - Returns true if the node is a scalar load that
4028/// is promoted to a vector. It also returns the LoadSDNode by reference if
4029/// required.
4030static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4031  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4032    return false;
4033  N = N->getOperand(0).getNode();
4034  if (!ISD::isNON_EXTLoad(N))
4035    return false;
4036  if (LD)
4037    *LD = cast<LoadSDNode>(N);
4038  return true;
4039}
4040
4041// Test whether the given value is a vector value which will be legalized
4042// into a load.
4043static bool WillBeConstantPoolLoad(SDNode *N) {
4044  if (N->getOpcode() != ISD::BUILD_VECTOR)
4045    return false;
4046
4047  // Check for any non-constant elements.
4048  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4049    switch (N->getOperand(i).getNode()->getOpcode()) {
4050    case ISD::UNDEF:
4051    case ISD::ConstantFP:
4052    case ISD::Constant:
4053      break;
4054    default:
4055      return false;
4056    }
4057
4058  // Vectors of all-zeros and all-ones are materialized with special
4059  // instructions rather than being loaded.
4060  return !ISD::isBuildVectorAllZeros(N) &&
4061         !ISD::isBuildVectorAllOnes(N);
4062}
4063
4064/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4065/// match movlp{s|d}. The lower half elements should come from lower half of
4066/// V1 (and in order), and the upper half elements should come from the upper
4067/// half of V2 (and in order). And since V1 will become the source of the
4068/// MOVLP, it must be either a vector load or a scalar load to vector.
4069static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4070                               ArrayRef<int> Mask, EVT VT) {
4071  if (VT.getSizeInBits() != 128)
4072    return false;
4073
4074  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4075    return false;
4076  // Is V2 is a vector load, don't do this transformation. We will try to use
4077  // load folding shufps op.
4078  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4079    return false;
4080
4081  unsigned NumElems = VT.getVectorNumElements();
4082
4083  if (NumElems != 2 && NumElems != 4)
4084    return false;
4085  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4086    if (!isUndefOrEqual(Mask[i], i))
4087      return false;
4088  for (unsigned i = NumElems/2; i != NumElems; ++i)
4089    if (!isUndefOrEqual(Mask[i], i+NumElems))
4090      return false;
4091  return true;
4092}
4093
4094/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4095/// all the same.
4096static bool isSplatVector(SDNode *N) {
4097  if (N->getOpcode() != ISD::BUILD_VECTOR)
4098    return false;
4099
4100  SDValue SplatValue = N->getOperand(0);
4101  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4102    if (N->getOperand(i) != SplatValue)
4103      return false;
4104  return true;
4105}
4106
4107/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4108/// to an zero vector.
4109/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4110static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4111  SDValue V1 = N->getOperand(0);
4112  SDValue V2 = N->getOperand(1);
4113  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4114  for (unsigned i = 0; i != NumElems; ++i) {
4115    int Idx = N->getMaskElt(i);
4116    if (Idx >= (int)NumElems) {
4117      unsigned Opc = V2.getOpcode();
4118      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4119        continue;
4120      if (Opc != ISD::BUILD_VECTOR ||
4121          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4122        return false;
4123    } else if (Idx >= 0) {
4124      unsigned Opc = V1.getOpcode();
4125      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4126        continue;
4127      if (Opc != ISD::BUILD_VECTOR ||
4128          !X86::isZeroNode(V1.getOperand(Idx)))
4129        return false;
4130    }
4131  }
4132  return true;
4133}
4134
4135/// getZeroVector - Returns a vector of specified type with all zero elements.
4136///
4137static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4138                             SelectionDAG &DAG, DebugLoc dl) {
4139  assert(VT.isVector() && "Expected a vector type");
4140
4141  // Always build SSE zero vectors as <4 x i32> bitcasted
4142  // to their dest type. This ensures they get CSE'd.
4143  SDValue Vec;
4144  if (VT.getSizeInBits() == 128) {  // SSE
4145    if (Subtarget->hasSSE2()) {  // SSE2
4146      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4147      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4148    } else { // SSE1
4149      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4150      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4151    }
4152  } else if (VT.getSizeInBits() == 256) { // AVX
4153    if (Subtarget->hasAVX2()) { // AVX2
4154      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4155      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4156      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4157    } else {
4158      // 256-bit logic and arithmetic instructions in AVX are all
4159      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4160      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4161      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4162      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4163    }
4164  }
4165  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4166}
4167
4168/// getOnesVector - Returns a vector of specified type with all bits set.
4169/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4170/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4171/// Then bitcast to their original type, ensuring they get CSE'd.
4172static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4173                             DebugLoc dl) {
4174  assert(VT.isVector() && "Expected a vector type");
4175  assert((VT.is128BitVector() || VT.is256BitVector())
4176         && "Expected a 128-bit or 256-bit vector type");
4177
4178  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4179  SDValue Vec;
4180  if (VT.getSizeInBits() == 256) {
4181    if (HasAVX2) { // AVX2
4182      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4183      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4184    } else { // AVX
4185      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4186      SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4187                                Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4188      Vec = Insert128BitVector(InsV, Vec,
4189                    DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4190    }
4191  } else {
4192    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4193  }
4194
4195  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4196}
4197
4198/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4199/// that point to V2 points to its first element.
4200static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4201  for (unsigned i = 0; i != NumElems; ++i) {
4202    if (Mask[i] > (int)NumElems) {
4203      Mask[i] = NumElems;
4204    }
4205  }
4206}
4207
4208/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4209/// operation of specified width.
4210static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4211                       SDValue V2) {
4212  unsigned NumElems = VT.getVectorNumElements();
4213  SmallVector<int, 8> Mask;
4214  Mask.push_back(NumElems);
4215  for (unsigned i = 1; i != NumElems; ++i)
4216    Mask.push_back(i);
4217  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4218}
4219
4220/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4221static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4222                          SDValue V2) {
4223  unsigned NumElems = VT.getVectorNumElements();
4224  SmallVector<int, 8> Mask;
4225  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4226    Mask.push_back(i);
4227    Mask.push_back(i + NumElems);
4228  }
4229  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4230}
4231
4232/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4233static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4234                          SDValue V2) {
4235  unsigned NumElems = VT.getVectorNumElements();
4236  unsigned Half = NumElems/2;
4237  SmallVector<int, 8> Mask;
4238  for (unsigned i = 0; i != Half; ++i) {
4239    Mask.push_back(i + Half);
4240    Mask.push_back(i + NumElems + Half);
4241  }
4242  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4243}
4244
4245// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4246// a generic shuffle instruction because the target has no such instructions.
4247// Generate shuffles which repeat i16 and i8 several times until they can be
4248// represented by v4f32 and then be manipulated by target suported shuffles.
4249static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4250  EVT VT = V.getValueType();
4251  int NumElems = VT.getVectorNumElements();
4252  DebugLoc dl = V.getDebugLoc();
4253
4254  while (NumElems > 4) {
4255    if (EltNo < NumElems/2) {
4256      V = getUnpackl(DAG, dl, VT, V, V);
4257    } else {
4258      V = getUnpackh(DAG, dl, VT, V, V);
4259      EltNo -= NumElems/2;
4260    }
4261    NumElems >>= 1;
4262  }
4263  return V;
4264}
4265
4266/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4267static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4268  EVT VT = V.getValueType();
4269  DebugLoc dl = V.getDebugLoc();
4270  assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4271         && "Vector size not supported");
4272
4273  if (VT.getSizeInBits() == 128) {
4274    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4275    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4276    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4277                             &SplatMask[0]);
4278  } else {
4279    // To use VPERMILPS to splat scalars, the second half of indicies must
4280    // refer to the higher part, which is a duplication of the lower one,
4281    // because VPERMILPS can only handle in-lane permutations.
4282    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4283                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4284
4285    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4286    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4287                             &SplatMask[0]);
4288  }
4289
4290  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4291}
4292
4293/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4294static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4295  EVT SrcVT = SV->getValueType(0);
4296  SDValue V1 = SV->getOperand(0);
4297  DebugLoc dl = SV->getDebugLoc();
4298
4299  int EltNo = SV->getSplatIndex();
4300  int NumElems = SrcVT.getVectorNumElements();
4301  unsigned Size = SrcVT.getSizeInBits();
4302
4303  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4304          "Unknown how to promote splat for type");
4305
4306  // Extract the 128-bit part containing the splat element and update
4307  // the splat element index when it refers to the higher register.
4308  if (Size == 256) {
4309    unsigned Idx = (EltNo >= NumElems/2) ? NumElems/2 : 0;
4310    V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4311    if (Idx > 0)
4312      EltNo -= NumElems/2;
4313  }
4314
4315  // All i16 and i8 vector types can't be used directly by a generic shuffle
4316  // instruction because the target has no such instruction. Generate shuffles
4317  // which repeat i16 and i8 several times until they fit in i32, and then can
4318  // be manipulated by target suported shuffles.
4319  EVT EltVT = SrcVT.getVectorElementType();
4320  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4321    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4322
4323  // Recreate the 256-bit vector and place the same 128-bit vector
4324  // into the low and high part. This is necessary because we want
4325  // to use VPERM* to shuffle the vectors
4326  if (Size == 256) {
4327    SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4328                         DAG.getConstant(0, MVT::i32), DAG, dl);
4329    V1 = Insert128BitVector(InsV, V1,
4330               DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4331  }
4332
4333  return getLegalSplat(DAG, V1, EltNo);
4334}
4335
4336/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4337/// vector of zero or undef vector.  This produces a shuffle where the low
4338/// element of V2 is swizzled into the zero/undef vector, landing at element
4339/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4340static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4341                                           bool IsZero,
4342                                           const X86Subtarget *Subtarget,
4343                                           SelectionDAG &DAG) {
4344  EVT VT = V2.getValueType();
4345  SDValue V1 = IsZero
4346    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4347  unsigned NumElems = VT.getVectorNumElements();
4348  SmallVector<int, 16> MaskVec;
4349  for (unsigned i = 0; i != NumElems; ++i)
4350    // If this is the insertion idx, put the low elt of V2 here.
4351    MaskVec.push_back(i == Idx ? NumElems : i);
4352  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4353}
4354
4355/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4356/// target specific opcode. Returns true if the Mask could be calculated.
4357/// Sets IsUnary to true if only uses one source.
4358static bool getTargetShuffleMask(SDNode *N, EVT VT,
4359                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4360  unsigned NumElems = VT.getVectorNumElements();
4361  SDValue ImmN;
4362
4363  IsUnary = false;
4364  switch(N->getOpcode()) {
4365  case X86ISD::SHUFP:
4366    ImmN = N->getOperand(N->getNumOperands()-1);
4367    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4368    break;
4369  case X86ISD::UNPCKH:
4370    DecodeUNPCKHMask(VT, Mask);
4371    break;
4372  case X86ISD::UNPCKL:
4373    DecodeUNPCKLMask(VT, Mask);
4374    break;
4375  case X86ISD::MOVHLPS:
4376    DecodeMOVHLPSMask(NumElems, Mask);
4377    break;
4378  case X86ISD::MOVLHPS:
4379    DecodeMOVLHPSMask(NumElems, Mask);
4380    break;
4381  case X86ISD::PSHUFD:
4382  case X86ISD::VPERMILP:
4383    ImmN = N->getOperand(N->getNumOperands()-1);
4384    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4385    IsUnary = true;
4386    break;
4387  case X86ISD::PSHUFHW:
4388    ImmN = N->getOperand(N->getNumOperands()-1);
4389    DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4390    IsUnary = true;
4391    break;
4392  case X86ISD::PSHUFLW:
4393    ImmN = N->getOperand(N->getNumOperands()-1);
4394    DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4395    IsUnary = true;
4396    break;
4397  case X86ISD::MOVSS:
4398  case X86ISD::MOVSD: {
4399    // The index 0 always comes from the first element of the second source,
4400    // this is why MOVSS and MOVSD are used in the first place. The other
4401    // elements come from the other positions of the first source vector
4402    Mask.push_back(NumElems);
4403    for (unsigned i = 1; i != NumElems; ++i) {
4404      Mask.push_back(i);
4405    }
4406    break;
4407  }
4408  case X86ISD::VPERM2X128:
4409    ImmN = N->getOperand(N->getNumOperands()-1);
4410    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4411    break;
4412  case X86ISD::MOVDDUP:
4413  case X86ISD::MOVLHPD:
4414  case X86ISD::MOVLPD:
4415  case X86ISD::MOVLPS:
4416  case X86ISD::MOVSHDUP:
4417  case X86ISD::MOVSLDUP:
4418  case X86ISD::PALIGN:
4419    // Not yet implemented
4420    return false;
4421  default: llvm_unreachable("unknown target shuffle node");
4422  }
4423
4424  return true;
4425}
4426
4427/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4428/// element of the result of the vector shuffle.
4429static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4430                                   unsigned Depth) {
4431  if (Depth == 6)
4432    return SDValue();  // Limit search depth.
4433
4434  SDValue V = SDValue(N, 0);
4435  EVT VT = V.getValueType();
4436  unsigned Opcode = V.getOpcode();
4437
4438  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4439  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4440    int Elt = SV->getMaskElt(Index);
4441
4442    if (Elt < 0)
4443      return DAG.getUNDEF(VT.getVectorElementType());
4444
4445    unsigned NumElems = VT.getVectorNumElements();
4446    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4447                                         : SV->getOperand(1);
4448    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4449  }
4450
4451  // Recurse into target specific vector shuffles to find scalars.
4452  if (isTargetShuffle(Opcode)) {
4453    unsigned NumElems = VT.getVectorNumElements();
4454    SmallVector<int, 16> ShuffleMask;
4455    SDValue ImmN;
4456    bool IsUnary;
4457
4458    if (!getTargetShuffleMask(N, VT, ShuffleMask, IsUnary))
4459      return SDValue();
4460
4461    int Elt = ShuffleMask[Index];
4462    if (Elt < 0)
4463      return DAG.getUNDEF(VT.getVectorElementType());
4464
4465    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4466                                           : N->getOperand(1);
4467    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4468                               Depth+1);
4469  }
4470
4471  // Actual nodes that may contain scalar elements
4472  if (Opcode == ISD::BITCAST) {
4473    V = V.getOperand(0);
4474    EVT SrcVT = V.getValueType();
4475    unsigned NumElems = VT.getVectorNumElements();
4476
4477    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4478      return SDValue();
4479  }
4480
4481  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4482    return (Index == 0) ? V.getOperand(0)
4483                        : DAG.getUNDEF(VT.getVectorElementType());
4484
4485  if (V.getOpcode() == ISD::BUILD_VECTOR)
4486    return V.getOperand(Index);
4487
4488  return SDValue();
4489}
4490
4491/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4492/// shuffle operation which come from a consecutively from a zero. The
4493/// search can start in two different directions, from left or right.
4494static
4495unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4496                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4497  unsigned i;
4498  for (i = 0; i != NumElems; ++i) {
4499    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4500    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4501    if (!(Elt.getNode() &&
4502         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4503      break;
4504  }
4505
4506  return i;
4507}
4508
4509/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4510/// correspond consecutively to elements from one of the vector operands,
4511/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4512static
4513bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4514                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4515                              unsigned NumElems, unsigned &OpNum) {
4516  bool SeenV1 = false;
4517  bool SeenV2 = false;
4518
4519  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4520    int Idx = SVOp->getMaskElt(i);
4521    // Ignore undef indicies
4522    if (Idx < 0)
4523      continue;
4524
4525    if (Idx < (int)NumElems)
4526      SeenV1 = true;
4527    else
4528      SeenV2 = true;
4529
4530    // Only accept consecutive elements from the same vector
4531    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4532      return false;
4533  }
4534
4535  OpNum = SeenV1 ? 0 : 1;
4536  return true;
4537}
4538
4539/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4540/// logical left shift of a vector.
4541static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4542                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4543  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4544  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4545              false /* check zeros from right */, DAG);
4546  unsigned OpSrc;
4547
4548  if (!NumZeros)
4549    return false;
4550
4551  // Considering the elements in the mask that are not consecutive zeros,
4552  // check if they consecutively come from only one of the source vectors.
4553  //
4554  //               V1 = {X, A, B, C}     0
4555  //                         \  \  \    /
4556  //   vector_shuffle V1, V2 <1, 2, 3, X>
4557  //
4558  if (!isShuffleMaskConsecutive(SVOp,
4559            0,                   // Mask Start Index
4560            NumElems-NumZeros,   // Mask End Index(exclusive)
4561            NumZeros,            // Where to start looking in the src vector
4562            NumElems,            // Number of elements in vector
4563            OpSrc))              // Which source operand ?
4564    return false;
4565
4566  isLeft = false;
4567  ShAmt = NumZeros;
4568  ShVal = SVOp->getOperand(OpSrc);
4569  return true;
4570}
4571
4572/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4573/// logical left shift of a vector.
4574static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4575                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4576  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4577  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4578              true /* check zeros from left */, DAG);
4579  unsigned OpSrc;
4580
4581  if (!NumZeros)
4582    return false;
4583
4584  // Considering the elements in the mask that are not consecutive zeros,
4585  // check if they consecutively come from only one of the source vectors.
4586  //
4587  //                           0    { A, B, X, X } = V2
4588  //                          / \    /  /
4589  //   vector_shuffle V1, V2 <X, X, 4, 5>
4590  //
4591  if (!isShuffleMaskConsecutive(SVOp,
4592            NumZeros,     // Mask Start Index
4593            NumElems,     // Mask End Index(exclusive)
4594            0,            // Where to start looking in the src vector
4595            NumElems,     // Number of elements in vector
4596            OpSrc))       // Which source operand ?
4597    return false;
4598
4599  isLeft = true;
4600  ShAmt = NumZeros;
4601  ShVal = SVOp->getOperand(OpSrc);
4602  return true;
4603}
4604
4605/// isVectorShift - Returns true if the shuffle can be implemented as a
4606/// logical left or right shift of a vector.
4607static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4608                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4609  // Although the logic below support any bitwidth size, there are no
4610  // shift instructions which handle more than 128-bit vectors.
4611  if (SVOp->getValueType(0).getSizeInBits() > 128)
4612    return false;
4613
4614  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4615      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4616    return true;
4617
4618  return false;
4619}
4620
4621/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4622///
4623static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4624                                       unsigned NumNonZero, unsigned NumZero,
4625                                       SelectionDAG &DAG,
4626                                       const X86Subtarget* Subtarget,
4627                                       const TargetLowering &TLI) {
4628  if (NumNonZero > 8)
4629    return SDValue();
4630
4631  DebugLoc dl = Op.getDebugLoc();
4632  SDValue V(0, 0);
4633  bool First = true;
4634  for (unsigned i = 0; i < 16; ++i) {
4635    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4636    if (ThisIsNonZero && First) {
4637      if (NumZero)
4638        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4639      else
4640        V = DAG.getUNDEF(MVT::v8i16);
4641      First = false;
4642    }
4643
4644    if ((i & 1) != 0) {
4645      SDValue ThisElt(0, 0), LastElt(0, 0);
4646      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4647      if (LastIsNonZero) {
4648        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4649                              MVT::i16, Op.getOperand(i-1));
4650      }
4651      if (ThisIsNonZero) {
4652        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4653        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4654                              ThisElt, DAG.getConstant(8, MVT::i8));
4655        if (LastIsNonZero)
4656          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4657      } else
4658        ThisElt = LastElt;
4659
4660      if (ThisElt.getNode())
4661        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4662                        DAG.getIntPtrConstant(i/2));
4663    }
4664  }
4665
4666  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4667}
4668
4669/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4670///
4671static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4672                                     unsigned NumNonZero, unsigned NumZero,
4673                                     SelectionDAG &DAG,
4674                                     const X86Subtarget* Subtarget,
4675                                     const TargetLowering &TLI) {
4676  if (NumNonZero > 4)
4677    return SDValue();
4678
4679  DebugLoc dl = Op.getDebugLoc();
4680  SDValue V(0, 0);
4681  bool First = true;
4682  for (unsigned i = 0; i < 8; ++i) {
4683    bool isNonZero = (NonZeros & (1 << i)) != 0;
4684    if (isNonZero) {
4685      if (First) {
4686        if (NumZero)
4687          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4688        else
4689          V = DAG.getUNDEF(MVT::v8i16);
4690        First = false;
4691      }
4692      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4693                      MVT::v8i16, V, Op.getOperand(i),
4694                      DAG.getIntPtrConstant(i));
4695    }
4696  }
4697
4698  return V;
4699}
4700
4701/// getVShift - Return a vector logical shift node.
4702///
4703static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4704                         unsigned NumBits, SelectionDAG &DAG,
4705                         const TargetLowering &TLI, DebugLoc dl) {
4706  assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4707  EVT ShVT = MVT::v2i64;
4708  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4709  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4710  return DAG.getNode(ISD::BITCAST, dl, VT,
4711                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4712                             DAG.getConstant(NumBits,
4713                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4714}
4715
4716SDValue
4717X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4718                                          SelectionDAG &DAG) const {
4719
4720  // Check if the scalar load can be widened into a vector load. And if
4721  // the address is "base + cst" see if the cst can be "absorbed" into
4722  // the shuffle mask.
4723  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4724    SDValue Ptr = LD->getBasePtr();
4725    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4726      return SDValue();
4727    EVT PVT = LD->getValueType(0);
4728    if (PVT != MVT::i32 && PVT != MVT::f32)
4729      return SDValue();
4730
4731    int FI = -1;
4732    int64_t Offset = 0;
4733    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4734      FI = FINode->getIndex();
4735      Offset = 0;
4736    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4737               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4738      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4739      Offset = Ptr.getConstantOperandVal(1);
4740      Ptr = Ptr.getOperand(0);
4741    } else {
4742      return SDValue();
4743    }
4744
4745    // FIXME: 256-bit vector instructions don't require a strict alignment,
4746    // improve this code to support it better.
4747    unsigned RequiredAlign = VT.getSizeInBits()/8;
4748    SDValue Chain = LD->getChain();
4749    // Make sure the stack object alignment is at least 16 or 32.
4750    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4751    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4752      if (MFI->isFixedObjectIndex(FI)) {
4753        // Can't change the alignment. FIXME: It's possible to compute
4754        // the exact stack offset and reference FI + adjust offset instead.
4755        // If someone *really* cares about this. That's the way to implement it.
4756        return SDValue();
4757      } else {
4758        MFI->setObjectAlignment(FI, RequiredAlign);
4759      }
4760    }
4761
4762    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4763    // Ptr + (Offset & ~15).
4764    if (Offset < 0)
4765      return SDValue();
4766    if ((Offset % RequiredAlign) & 3)
4767      return SDValue();
4768    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4769    if (StartOffset)
4770      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4771                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4772
4773    int EltNo = (Offset - StartOffset) >> 2;
4774    int NumElems = VT.getVectorNumElements();
4775
4776    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4777    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4778                             LD->getPointerInfo().getWithOffset(StartOffset),
4779                             false, false, false, 0);
4780
4781    SmallVector<int, 8> Mask;
4782    for (int i = 0; i < NumElems; ++i)
4783      Mask.push_back(EltNo);
4784
4785    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4786  }
4787
4788  return SDValue();
4789}
4790
4791/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4792/// vector of type 'VT', see if the elements can be replaced by a single large
4793/// load which has the same value as a build_vector whose operands are 'elts'.
4794///
4795/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4796///
4797/// FIXME: we'd also like to handle the case where the last elements are zero
4798/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4799/// There's even a handy isZeroNode for that purpose.
4800static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4801                                        DebugLoc &DL, SelectionDAG &DAG) {
4802  EVT EltVT = VT.getVectorElementType();
4803  unsigned NumElems = Elts.size();
4804
4805  LoadSDNode *LDBase = NULL;
4806  unsigned LastLoadedElt = -1U;
4807
4808  // For each element in the initializer, see if we've found a load or an undef.
4809  // If we don't find an initial load element, or later load elements are
4810  // non-consecutive, bail out.
4811  for (unsigned i = 0; i < NumElems; ++i) {
4812    SDValue Elt = Elts[i];
4813
4814    if (!Elt.getNode() ||
4815        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4816      return SDValue();
4817    if (!LDBase) {
4818      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4819        return SDValue();
4820      LDBase = cast<LoadSDNode>(Elt.getNode());
4821      LastLoadedElt = i;
4822      continue;
4823    }
4824    if (Elt.getOpcode() == ISD::UNDEF)
4825      continue;
4826
4827    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4828    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4829      return SDValue();
4830    LastLoadedElt = i;
4831  }
4832
4833  // If we have found an entire vector of loads and undefs, then return a large
4834  // load of the entire vector width starting at the base pointer.  If we found
4835  // consecutive loads for the low half, generate a vzext_load node.
4836  if (LastLoadedElt == NumElems - 1) {
4837    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4838      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4839                         LDBase->getPointerInfo(),
4840                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4841                         LDBase->isInvariant(), 0);
4842    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4843                       LDBase->getPointerInfo(),
4844                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4845                       LDBase->isInvariant(), LDBase->getAlignment());
4846  } else if (NumElems == 4 && LastLoadedElt == 1 &&
4847             DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4848    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4849    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4850    SDValue ResNode =
4851        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4852                                LDBase->getPointerInfo(),
4853                                LDBase->getAlignment(),
4854                                false/*isVolatile*/, true/*ReadMem*/,
4855                                false/*WriteMem*/);
4856    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4857  }
4858  return SDValue();
4859}
4860
4861/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4862/// to generate a splat value for the following cases:
4863/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4864/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4865/// a scalar load, or a constant.
4866/// The VBROADCAST node is returned when a pattern is found,
4867/// or SDValue() otherwise.
4868SDValue
4869X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
4870  if (!Subtarget->hasAVX())
4871    return SDValue();
4872
4873  EVT VT = Op.getValueType();
4874  DebugLoc dl = Op.getDebugLoc();
4875
4876  SDValue Ld;
4877  bool ConstSplatVal;
4878
4879  switch (Op.getOpcode()) {
4880    default:
4881      // Unknown pattern found.
4882      return SDValue();
4883
4884    case ISD::BUILD_VECTOR: {
4885      // The BUILD_VECTOR node must be a splat.
4886      if (!isSplatVector(Op.getNode()))
4887        return SDValue();
4888
4889      Ld = Op.getOperand(0);
4890      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4891                     Ld.getOpcode() == ISD::ConstantFP);
4892
4893      // The suspected load node has several users. Make sure that all
4894      // of its users are from the BUILD_VECTOR node.
4895      // Constants may have multiple users.
4896      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
4897        return SDValue();
4898      break;
4899    }
4900
4901    case ISD::VECTOR_SHUFFLE: {
4902      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4903
4904      // Shuffles must have a splat mask where the first element is
4905      // broadcasted.
4906      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
4907        return SDValue();
4908
4909      SDValue Sc = Op.getOperand(0);
4910      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR)
4911        return SDValue();
4912
4913      Ld = Sc.getOperand(0);
4914      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
4915                       Ld.getOpcode() == ISD::ConstantFP);
4916
4917      // The scalar_to_vector node and the suspected
4918      // load node must have exactly one user.
4919      // Constants may have multiple users.
4920      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
4921        return SDValue();
4922      break;
4923    }
4924  }
4925
4926  bool Is256 = VT.getSizeInBits() == 256;
4927  bool Is128 = VT.getSizeInBits() == 128;
4928
4929  // Handle the broadcasting a single constant scalar from the constant pool
4930  // into a vector. On Sandybridge it is still better to load a constant vector
4931  // from the constant pool and not to broadcast it from a scalar.
4932  if (ConstSplatVal && Subtarget->hasAVX2()) {
4933    EVT CVT = Ld.getValueType();
4934    assert(!CVT.isVector() && "Must not broadcast a vector type");
4935    unsigned ScalarSize = CVT.getSizeInBits();
4936
4937    if ((Is256 && (ScalarSize == 32 || ScalarSize == 64)) ||
4938        (Is128 && (ScalarSize == 32))) {
4939
4940      const Constant *C = 0;
4941      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
4942        C = CI->getConstantIntValue();
4943      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
4944        C = CF->getConstantFPValue();
4945
4946      assert(C && "Invalid constant type");
4947
4948      SDValue CP = DAG.getConstantPool(C, getPointerTy());
4949      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
4950      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
4951                         MachinePointerInfo::getConstantPool(),
4952                         false, false, false, Alignment);
4953
4954      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4955    }
4956  }
4957
4958  // The scalar source must be a normal load.
4959  if (!ISD::isNormalLoad(Ld.getNode()))
4960    return SDValue();
4961
4962  // Reject loads that have uses of the chain result
4963  if (Ld->hasAnyUseOfValue(1))
4964    return SDValue();
4965
4966  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
4967
4968  // VBroadcast to YMM
4969  if (Is256 && (ScalarSize == 32 || ScalarSize == 64))
4970    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4971
4972  // VBroadcast to XMM
4973  if (Is128 && (ScalarSize == 32))
4974    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4975
4976  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
4977  // double since there is vbroadcastsd xmm
4978  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
4979    // VBroadcast to YMM
4980    if (Is256 && (ScalarSize == 8 || ScalarSize == 16))
4981      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4982
4983    // VBroadcast to XMM
4984    if (Is128 && (ScalarSize ==  8 || ScalarSize == 16 || ScalarSize == 64))
4985      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
4986  }
4987
4988  // Unsupported broadcast.
4989  return SDValue();
4990}
4991
4992SDValue
4993X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4994  DebugLoc dl = Op.getDebugLoc();
4995
4996  EVT VT = Op.getValueType();
4997  EVT ExtVT = VT.getVectorElementType();
4998  unsigned NumElems = Op.getNumOperands();
4999
5000  // Vectors containing all zeros can be matched by pxor and xorps later
5001  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5002    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5003    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5004    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5005      return Op;
5006
5007    return getZeroVector(VT, Subtarget, DAG, dl);
5008  }
5009
5010  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5011  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5012  // vpcmpeqd on 256-bit vectors.
5013  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5014    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5015      return Op;
5016
5017    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5018  }
5019
5020  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5021  if (Broadcast.getNode())
5022    return Broadcast;
5023
5024  unsigned EVTBits = ExtVT.getSizeInBits();
5025
5026  unsigned NumZero  = 0;
5027  unsigned NumNonZero = 0;
5028  unsigned NonZeros = 0;
5029  bool IsAllConstants = true;
5030  SmallSet<SDValue, 8> Values;
5031  for (unsigned i = 0; i < NumElems; ++i) {
5032    SDValue Elt = Op.getOperand(i);
5033    if (Elt.getOpcode() == ISD::UNDEF)
5034      continue;
5035    Values.insert(Elt);
5036    if (Elt.getOpcode() != ISD::Constant &&
5037        Elt.getOpcode() != ISD::ConstantFP)
5038      IsAllConstants = false;
5039    if (X86::isZeroNode(Elt))
5040      NumZero++;
5041    else {
5042      NonZeros |= (1 << i);
5043      NumNonZero++;
5044    }
5045  }
5046
5047  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5048  if (NumNonZero == 0)
5049    return DAG.getUNDEF(VT);
5050
5051  // Special case for single non-zero, non-undef, element.
5052  if (NumNonZero == 1) {
5053    unsigned Idx = CountTrailingZeros_32(NonZeros);
5054    SDValue Item = Op.getOperand(Idx);
5055
5056    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5057    // the value are obviously zero, truncate the value to i32 and do the
5058    // insertion that way.  Only do this if the value is non-constant or if the
5059    // value is a constant being inserted into element 0.  It is cheaper to do
5060    // a constant pool load than it is to do a movd + shuffle.
5061    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5062        (!IsAllConstants || Idx == 0)) {
5063      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5064        // Handle SSE only.
5065        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5066        EVT VecVT = MVT::v4i32;
5067        unsigned VecElts = 4;
5068
5069        // Truncate the value (which may itself be a constant) to i32, and
5070        // convert it to a vector with movd (S2V+shuffle to zero extend).
5071        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5072        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5073        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5074
5075        // Now we have our 32-bit value zero extended in the low element of
5076        // a vector.  If Idx != 0, swizzle it into place.
5077        if (Idx != 0) {
5078          SmallVector<int, 4> Mask;
5079          Mask.push_back(Idx);
5080          for (unsigned i = 1; i != VecElts; ++i)
5081            Mask.push_back(i);
5082          Item = DAG.getVectorShuffle(VecVT, dl, Item,
5083                                      DAG.getUNDEF(Item.getValueType()),
5084                                      &Mask[0]);
5085        }
5086        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5087      }
5088    }
5089
5090    // If we have a constant or non-constant insertion into the low element of
5091    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5092    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5093    // depending on what the source datatype is.
5094    if (Idx == 0) {
5095      if (NumZero == 0)
5096        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5097
5098      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5099          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5100        if (VT.getSizeInBits() == 256) {
5101          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5102          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5103                             Item, DAG.getIntPtrConstant(0));
5104        }
5105        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5106        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5107        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5108        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5109      }
5110
5111      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5112        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5113        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5114        if (VT.getSizeInBits() == 256) {
5115          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5116          Item = Insert128BitVector(ZeroVec, Item, DAG.getConstant(0, MVT::i32),
5117                                    DAG, dl);
5118        } else {
5119          assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5120          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5121        }
5122        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5123      }
5124    }
5125
5126    // Is it a vector logical left shift?
5127    if (NumElems == 2 && Idx == 1 &&
5128        X86::isZeroNode(Op.getOperand(0)) &&
5129        !X86::isZeroNode(Op.getOperand(1))) {
5130      unsigned NumBits = VT.getSizeInBits();
5131      return getVShift(true, VT,
5132                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5133                                   VT, Op.getOperand(1)),
5134                       NumBits/2, DAG, *this, dl);
5135    }
5136
5137    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5138      return SDValue();
5139
5140    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5141    // is a non-constant being inserted into an element other than the low one,
5142    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5143    // movd/movss) to move this into the low element, then shuffle it into
5144    // place.
5145    if (EVTBits == 32) {
5146      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5147
5148      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5149      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5150      SmallVector<int, 8> MaskVec;
5151      for (unsigned i = 0; i < NumElems; i++)
5152        MaskVec.push_back(i == Idx ? 0 : 1);
5153      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5154    }
5155  }
5156
5157  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5158  if (Values.size() == 1) {
5159    if (EVTBits == 32) {
5160      // Instead of a shuffle like this:
5161      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5162      // Check if it's possible to issue this instead.
5163      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5164      unsigned Idx = CountTrailingZeros_32(NonZeros);
5165      SDValue Item = Op.getOperand(Idx);
5166      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5167        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5168    }
5169    return SDValue();
5170  }
5171
5172  // A vector full of immediates; various special cases are already
5173  // handled, so this is best done with a single constant-pool load.
5174  if (IsAllConstants)
5175    return SDValue();
5176
5177  // For AVX-length vectors, build the individual 128-bit pieces and use
5178  // shuffles to put them in place.
5179  if (VT.getSizeInBits() == 256) {
5180    SmallVector<SDValue, 32> V;
5181    for (unsigned i = 0; i != NumElems; ++i)
5182      V.push_back(Op.getOperand(i));
5183
5184    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5185
5186    // Build both the lower and upper subvector.
5187    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5188    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5189                                NumElems/2);
5190
5191    // Recreate the wider vector with the lower and upper part.
5192    SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5193                                DAG.getConstant(0, MVT::i32), DAG, dl);
5194    return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5195                              DAG, dl);
5196  }
5197
5198  // Let legalizer expand 2-wide build_vectors.
5199  if (EVTBits == 64) {
5200    if (NumNonZero == 1) {
5201      // One half is zero or undef.
5202      unsigned Idx = CountTrailingZeros_32(NonZeros);
5203      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5204                                 Op.getOperand(Idx));
5205      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5206    }
5207    return SDValue();
5208  }
5209
5210  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5211  if (EVTBits == 8 && NumElems == 16) {
5212    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5213                                        Subtarget, *this);
5214    if (V.getNode()) return V;
5215  }
5216
5217  if (EVTBits == 16 && NumElems == 8) {
5218    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5219                                      Subtarget, *this);
5220    if (V.getNode()) return V;
5221  }
5222
5223  // If element VT is == 32 bits, turn it into a number of shuffles.
5224  SmallVector<SDValue, 8> V(NumElems);
5225  if (NumElems == 4 && NumZero > 0) {
5226    for (unsigned i = 0; i < 4; ++i) {
5227      bool isZero = !(NonZeros & (1 << i));
5228      if (isZero)
5229        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5230      else
5231        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5232    }
5233
5234    for (unsigned i = 0; i < 2; ++i) {
5235      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5236        default: break;
5237        case 0:
5238          V[i] = V[i*2];  // Must be a zero vector.
5239          break;
5240        case 1:
5241          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5242          break;
5243        case 2:
5244          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5245          break;
5246        case 3:
5247          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5248          break;
5249      }
5250    }
5251
5252    bool Reverse1 = (NonZeros & 0x3) == 2;
5253    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5254    int MaskVec[] = {
5255      Reverse1 ? 1 : 0,
5256      Reverse1 ? 0 : 1,
5257      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5258      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5259    };
5260    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5261  }
5262
5263  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5264    // Check for a build vector of consecutive loads.
5265    for (unsigned i = 0; i < NumElems; ++i)
5266      V[i] = Op.getOperand(i);
5267
5268    // Check for elements which are consecutive loads.
5269    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5270    if (LD.getNode())
5271      return LD;
5272
5273    // For SSE 4.1, use insertps to put the high elements into the low element.
5274    if (getSubtarget()->hasSSE41()) {
5275      SDValue Result;
5276      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5277        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5278      else
5279        Result = DAG.getUNDEF(VT);
5280
5281      for (unsigned i = 1; i < NumElems; ++i) {
5282        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5283        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5284                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5285      }
5286      return Result;
5287    }
5288
5289    // Otherwise, expand into a number of unpckl*, start by extending each of
5290    // our (non-undef) elements to the full vector width with the element in the
5291    // bottom slot of the vector (which generates no code for SSE).
5292    for (unsigned i = 0; i < NumElems; ++i) {
5293      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5294        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5295      else
5296        V[i] = DAG.getUNDEF(VT);
5297    }
5298
5299    // Next, we iteratively mix elements, e.g. for v4f32:
5300    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5301    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5302    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5303    unsigned EltStride = NumElems >> 1;
5304    while (EltStride != 0) {
5305      for (unsigned i = 0; i < EltStride; ++i) {
5306        // If V[i+EltStride] is undef and this is the first round of mixing,
5307        // then it is safe to just drop this shuffle: V[i] is already in the
5308        // right place, the one element (since it's the first round) being
5309        // inserted as undef can be dropped.  This isn't safe for successive
5310        // rounds because they will permute elements within both vectors.
5311        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5312            EltStride == NumElems/2)
5313          continue;
5314
5315        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5316      }
5317      EltStride >>= 1;
5318    }
5319    return V[0];
5320  }
5321  return SDValue();
5322}
5323
5324// LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5325// them in a MMX register.  This is better than doing a stack convert.
5326static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5327  DebugLoc dl = Op.getDebugLoc();
5328  EVT ResVT = Op.getValueType();
5329
5330  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5331         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5332  int Mask[2];
5333  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5334  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5335  InVec = Op.getOperand(1);
5336  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5337    unsigned NumElts = ResVT.getVectorNumElements();
5338    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5339    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5340                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5341  } else {
5342    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5343    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5344    Mask[0] = 0; Mask[1] = 2;
5345    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5346  }
5347  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5348}
5349
5350// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5351// to create 256-bit vectors from two other 128-bit ones.
5352static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5353  DebugLoc dl = Op.getDebugLoc();
5354  EVT ResVT = Op.getValueType();
5355
5356  assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5357
5358  SDValue V1 = Op.getOperand(0);
5359  SDValue V2 = Op.getOperand(1);
5360  unsigned NumElems = ResVT.getVectorNumElements();
5361
5362  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5363                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5364  return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5365                            DAG, dl);
5366}
5367
5368SDValue
5369X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5370  EVT ResVT = Op.getValueType();
5371
5372  assert(Op.getNumOperands() == 2);
5373  assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5374         "Unsupported CONCAT_VECTORS for value type");
5375
5376  // We support concatenate two MMX registers and place them in a MMX register.
5377  // This is better than doing a stack convert.
5378  if (ResVT.is128BitVector())
5379    return LowerMMXCONCAT_VECTORS(Op, DAG);
5380
5381  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5382  // from two other 128-bit ones.
5383  return LowerAVXCONCAT_VECTORS(Op, DAG);
5384}
5385
5386// Try to lower a shuffle node into a simple blend instruction.
5387static SDValue LowerVECTOR_SHUFFLEtoBlend(SDValue Op,
5388                                          const X86Subtarget *Subtarget,
5389                                          SelectionDAG &DAG, EVT PtrTy) {
5390  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5391  SDValue V1 = SVOp->getOperand(0);
5392  SDValue V2 = SVOp->getOperand(1);
5393  DebugLoc dl = SVOp->getDebugLoc();
5394  LLVMContext *Context = DAG.getContext();
5395  EVT VT = Op.getValueType();
5396  EVT InVT = V1.getValueType();
5397  EVT EltVT = VT.getVectorElementType();
5398  unsigned EltSize = EltVT.getSizeInBits();
5399  int MaskSize = VT.getVectorNumElements();
5400  int InSize = InVT.getVectorNumElements();
5401
5402  // TODO: At the moment we only use AVX blends. We could also use SSE4 blends.
5403  if (!Subtarget->hasAVX())
5404    return SDValue();
5405
5406  if (MaskSize != InSize)
5407    return SDValue();
5408
5409  SmallVector<Constant*,2> MaskVals;
5410  ConstantInt *Zero = ConstantInt::get(*Context, APInt(EltSize, 0));
5411  ConstantInt *NegOne = ConstantInt::get(*Context, APInt(EltSize, -1));
5412
5413  for (int i = 0; i < MaskSize; ++i) {
5414    int EltIdx = SVOp->getMaskElt(i);
5415    if (EltIdx == i || EltIdx == -1)
5416      MaskVals.push_back(NegOne);
5417    else if (EltIdx == (i + MaskSize))
5418      MaskVals.push_back(Zero);
5419    else return SDValue();
5420  }
5421
5422  Constant *MaskC = ConstantVector::get(MaskVals);
5423  EVT MaskTy = EVT::getEVT(MaskC->getType());
5424  assert(MaskTy.getSizeInBits() == VT.getSizeInBits() && "Invalid mask size");
5425  SDValue MaskIdx = DAG.getConstantPool(MaskC, PtrTy);
5426  unsigned Alignment = cast<ConstantPoolSDNode>(MaskIdx)->getAlignment();
5427  SDValue Mask = DAG.getLoad(MaskTy, dl, DAG.getEntryNode(), MaskIdx,
5428                             MachinePointerInfo::getConstantPool(),
5429                             false, false, false, Alignment);
5430
5431  if (Subtarget->hasAVX2() && MaskTy == MVT::v32i8)
5432    return DAG.getNode(ISD::VSELECT, dl, VT, Mask, V1, V2);
5433
5434  if (Subtarget->hasAVX()) {
5435    switch (MaskTy.getSimpleVT().SimpleTy) {
5436    default: return SDValue();
5437    case MVT::v16i8:
5438    case MVT::v4i32:
5439    case MVT::v2i64:
5440    case MVT::v8i32:
5441    case MVT::v4i64:
5442             return DAG.getNode(ISD::VSELECT, dl, VT, Mask, V1, V2);
5443    }
5444  }
5445
5446  return SDValue();
5447}
5448
5449// v8i16 shuffles - Prefer shuffles in the following order:
5450// 1. [all]   pshuflw, pshufhw, optional move
5451// 2. [ssse3] 1 x pshufb
5452// 3. [ssse3] 2 x pshufb + 1 x por
5453// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5454SDValue
5455X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5456                                            SelectionDAG &DAG) const {
5457  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5458  SDValue V1 = SVOp->getOperand(0);
5459  SDValue V2 = SVOp->getOperand(1);
5460  DebugLoc dl = SVOp->getDebugLoc();
5461  SmallVector<int, 8> MaskVals;
5462
5463  // Determine if more than 1 of the words in each of the low and high quadwords
5464  // of the result come from the same quadword of one of the two inputs.  Undef
5465  // mask values count as coming from any quadword, for better codegen.
5466  unsigned LoQuad[] = { 0, 0, 0, 0 };
5467  unsigned HiQuad[] = { 0, 0, 0, 0 };
5468  std::bitset<4> InputQuads;
5469  for (unsigned i = 0; i < 8; ++i) {
5470    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5471    int EltIdx = SVOp->getMaskElt(i);
5472    MaskVals.push_back(EltIdx);
5473    if (EltIdx < 0) {
5474      ++Quad[0];
5475      ++Quad[1];
5476      ++Quad[2];
5477      ++Quad[3];
5478      continue;
5479    }
5480    ++Quad[EltIdx / 4];
5481    InputQuads.set(EltIdx / 4);
5482  }
5483
5484  int BestLoQuad = -1;
5485  unsigned MaxQuad = 1;
5486  for (unsigned i = 0; i < 4; ++i) {
5487    if (LoQuad[i] > MaxQuad) {
5488      BestLoQuad = i;
5489      MaxQuad = LoQuad[i];
5490    }
5491  }
5492
5493  int BestHiQuad = -1;
5494  MaxQuad = 1;
5495  for (unsigned i = 0; i < 4; ++i) {
5496    if (HiQuad[i] > MaxQuad) {
5497      BestHiQuad = i;
5498      MaxQuad = HiQuad[i];
5499    }
5500  }
5501
5502  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5503  // of the two input vectors, shuffle them into one input vector so only a
5504  // single pshufb instruction is necessary. If There are more than 2 input
5505  // quads, disable the next transformation since it does not help SSSE3.
5506  bool V1Used = InputQuads[0] || InputQuads[1];
5507  bool V2Used = InputQuads[2] || InputQuads[3];
5508  if (Subtarget->hasSSSE3()) {
5509    if (InputQuads.count() == 2 && V1Used && V2Used) {
5510      BestLoQuad = InputQuads[0] ? 0 : 1;
5511      BestHiQuad = InputQuads[2] ? 2 : 3;
5512    }
5513    if (InputQuads.count() > 2) {
5514      BestLoQuad = -1;
5515      BestHiQuad = -1;
5516    }
5517  }
5518
5519  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5520  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5521  // words from all 4 input quadwords.
5522  SDValue NewV;
5523  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5524    int MaskV[] = {
5525      BestLoQuad < 0 ? 0 : BestLoQuad,
5526      BestHiQuad < 0 ? 1 : BestHiQuad
5527    };
5528    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5529                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5530                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5531    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5532
5533    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5534    // source words for the shuffle, to aid later transformations.
5535    bool AllWordsInNewV = true;
5536    bool InOrder[2] = { true, true };
5537    for (unsigned i = 0; i != 8; ++i) {
5538      int idx = MaskVals[i];
5539      if (idx != (int)i)
5540        InOrder[i/4] = false;
5541      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5542        continue;
5543      AllWordsInNewV = false;
5544      break;
5545    }
5546
5547    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5548    if (AllWordsInNewV) {
5549      for (int i = 0; i != 8; ++i) {
5550        int idx = MaskVals[i];
5551        if (idx < 0)
5552          continue;
5553        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5554        if ((idx != i) && idx < 4)
5555          pshufhw = false;
5556        if ((idx != i) && idx > 3)
5557          pshuflw = false;
5558      }
5559      V1 = NewV;
5560      V2Used = false;
5561      BestLoQuad = 0;
5562      BestHiQuad = 1;
5563    }
5564
5565    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5566    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5567    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5568      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5569      unsigned TargetMask = 0;
5570      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5571                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5572      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5573      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5574                             getShufflePSHUFLWImmediate(SVOp);
5575      V1 = NewV.getOperand(0);
5576      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5577    }
5578  }
5579
5580  // If we have SSSE3, and all words of the result are from 1 input vector,
5581  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5582  // is present, fall back to case 4.
5583  if (Subtarget->hasSSSE3()) {
5584    SmallVector<SDValue,16> pshufbMask;
5585
5586    // If we have elements from both input vectors, set the high bit of the
5587    // shuffle mask element to zero out elements that come from V2 in the V1
5588    // mask, and elements that come from V1 in the V2 mask, so that the two
5589    // results can be OR'd together.
5590    bool TwoInputs = V1Used && V2Used;
5591    for (unsigned i = 0; i != 8; ++i) {
5592      int EltIdx = MaskVals[i] * 2;
5593      if (TwoInputs && (EltIdx >= 16)) {
5594        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5595        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5596        continue;
5597      }
5598      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5599      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5600    }
5601    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5602    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5603                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5604                                 MVT::v16i8, &pshufbMask[0], 16));
5605    if (!TwoInputs)
5606      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5607
5608    // Calculate the shuffle mask for the second input, shuffle it, and
5609    // OR it with the first shuffled input.
5610    pshufbMask.clear();
5611    for (unsigned i = 0; i != 8; ++i) {
5612      int EltIdx = MaskVals[i] * 2;
5613      if (EltIdx < 16) {
5614        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5615        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5616        continue;
5617      }
5618      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5619      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5620    }
5621    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5622    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5623                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5624                                 MVT::v16i8, &pshufbMask[0], 16));
5625    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5626    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5627  }
5628
5629  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5630  // and update MaskVals with new element order.
5631  std::bitset<8> InOrder;
5632  if (BestLoQuad >= 0) {
5633    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5634    for (int i = 0; i != 4; ++i) {
5635      int idx = MaskVals[i];
5636      if (idx < 0) {
5637        InOrder.set(i);
5638      } else if ((idx / 4) == BestLoQuad) {
5639        MaskV[i] = idx & 3;
5640        InOrder.set(i);
5641      }
5642    }
5643    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5644                                &MaskV[0]);
5645
5646    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5647      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5648      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5649                                  NewV.getOperand(0),
5650                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5651    }
5652  }
5653
5654  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5655  // and update MaskVals with the new element order.
5656  if (BestHiQuad >= 0) {
5657    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5658    for (unsigned i = 4; i != 8; ++i) {
5659      int idx = MaskVals[i];
5660      if (idx < 0) {
5661        InOrder.set(i);
5662      } else if ((idx / 4) == BestHiQuad) {
5663        MaskV[i] = (idx & 3) + 4;
5664        InOrder.set(i);
5665      }
5666    }
5667    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5668                                &MaskV[0]);
5669
5670    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5671      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5672      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5673                                  NewV.getOperand(0),
5674                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5675    }
5676  }
5677
5678  // In case BestHi & BestLo were both -1, which means each quadword has a word
5679  // from each of the four input quadwords, calculate the InOrder bitvector now
5680  // before falling through to the insert/extract cleanup.
5681  if (BestLoQuad == -1 && BestHiQuad == -1) {
5682    NewV = V1;
5683    for (int i = 0; i != 8; ++i)
5684      if (MaskVals[i] < 0 || MaskVals[i] == i)
5685        InOrder.set(i);
5686  }
5687
5688  // The other elements are put in the right place using pextrw and pinsrw.
5689  for (unsigned i = 0; i != 8; ++i) {
5690    if (InOrder[i])
5691      continue;
5692    int EltIdx = MaskVals[i];
5693    if (EltIdx < 0)
5694      continue;
5695    SDValue ExtOp = (EltIdx < 8)
5696    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5697                  DAG.getIntPtrConstant(EltIdx))
5698    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5699                  DAG.getIntPtrConstant(EltIdx - 8));
5700    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5701                       DAG.getIntPtrConstant(i));
5702  }
5703  return NewV;
5704}
5705
5706// v16i8 shuffles - Prefer shuffles in the following order:
5707// 1. [ssse3] 1 x pshufb
5708// 2. [ssse3] 2 x pshufb + 1 x por
5709// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5710static
5711SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5712                                 SelectionDAG &DAG,
5713                                 const X86TargetLowering &TLI) {
5714  SDValue V1 = SVOp->getOperand(0);
5715  SDValue V2 = SVOp->getOperand(1);
5716  DebugLoc dl = SVOp->getDebugLoc();
5717  ArrayRef<int> MaskVals = SVOp->getMask();
5718
5719  // If we have SSSE3, case 1 is generated when all result bytes come from
5720  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5721  // present, fall back to case 3.
5722  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5723  bool V1Only = true;
5724  bool V2Only = true;
5725  for (unsigned i = 0; i < 16; ++i) {
5726    int EltIdx = MaskVals[i];
5727    if (EltIdx < 0)
5728      continue;
5729    if (EltIdx < 16)
5730      V2Only = false;
5731    else
5732      V1Only = false;
5733  }
5734
5735  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5736  if (TLI.getSubtarget()->hasSSSE3()) {
5737    SmallVector<SDValue,16> pshufbMask;
5738
5739    // If all result elements are from one input vector, then only translate
5740    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5741    //
5742    // Otherwise, we have elements from both input vectors, and must zero out
5743    // elements that come from V2 in the first mask, and V1 in the second mask
5744    // so that we can OR them together.
5745    bool TwoInputs = !(V1Only || V2Only);
5746    for (unsigned i = 0; i != 16; ++i) {
5747      int EltIdx = MaskVals[i];
5748      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5749        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5750        continue;
5751      }
5752      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5753    }
5754    // If all the elements are from V2, assign it to V1 and return after
5755    // building the first pshufb.
5756    if (V2Only)
5757      V1 = V2;
5758    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5759                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5760                                 MVT::v16i8, &pshufbMask[0], 16));
5761    if (!TwoInputs)
5762      return V1;
5763
5764    // Calculate the shuffle mask for the second input, shuffle it, and
5765    // OR it with the first shuffled input.
5766    pshufbMask.clear();
5767    for (unsigned i = 0; i != 16; ++i) {
5768      int EltIdx = MaskVals[i];
5769      if (EltIdx < 16) {
5770        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5771        continue;
5772      }
5773      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5774    }
5775    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5776                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5777                                 MVT::v16i8, &pshufbMask[0], 16));
5778    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5779  }
5780
5781  // No SSSE3 - Calculate in place words and then fix all out of place words
5782  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5783  // the 16 different words that comprise the two doublequadword input vectors.
5784  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5785  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5786  SDValue NewV = V2Only ? V2 : V1;
5787  for (int i = 0; i != 8; ++i) {
5788    int Elt0 = MaskVals[i*2];
5789    int Elt1 = MaskVals[i*2+1];
5790
5791    // This word of the result is all undef, skip it.
5792    if (Elt0 < 0 && Elt1 < 0)
5793      continue;
5794
5795    // This word of the result is already in the correct place, skip it.
5796    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5797      continue;
5798    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5799      continue;
5800
5801    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5802    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5803    SDValue InsElt;
5804
5805    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5806    // using a single extract together, load it and store it.
5807    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5808      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5809                           DAG.getIntPtrConstant(Elt1 / 2));
5810      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5811                        DAG.getIntPtrConstant(i));
5812      continue;
5813    }
5814
5815    // If Elt1 is defined, extract it from the appropriate source.  If the
5816    // source byte is not also odd, shift the extracted word left 8 bits
5817    // otherwise clear the bottom 8 bits if we need to do an or.
5818    if (Elt1 >= 0) {
5819      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5820                           DAG.getIntPtrConstant(Elt1 / 2));
5821      if ((Elt1 & 1) == 0)
5822        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5823                             DAG.getConstant(8,
5824                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5825      else if (Elt0 >= 0)
5826        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5827                             DAG.getConstant(0xFF00, MVT::i16));
5828    }
5829    // If Elt0 is defined, extract it from the appropriate source.  If the
5830    // source byte is not also even, shift the extracted word right 8 bits. If
5831    // Elt1 was also defined, OR the extracted values together before
5832    // inserting them in the result.
5833    if (Elt0 >= 0) {
5834      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5835                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5836      if ((Elt0 & 1) != 0)
5837        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5838                              DAG.getConstant(8,
5839                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5840      else if (Elt1 >= 0)
5841        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5842                             DAG.getConstant(0x00FF, MVT::i16));
5843      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5844                         : InsElt0;
5845    }
5846    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5847                       DAG.getIntPtrConstant(i));
5848  }
5849  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5850}
5851
5852/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5853/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5854/// done when every pair / quad of shuffle mask elements point to elements in
5855/// the right sequence. e.g.
5856/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5857static
5858SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5859                                 SelectionDAG &DAG, DebugLoc dl) {
5860  EVT VT = SVOp->getValueType(0);
5861  SDValue V1 = SVOp->getOperand(0);
5862  SDValue V2 = SVOp->getOperand(1);
5863  unsigned NumElems = VT.getVectorNumElements();
5864  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5865  EVT NewVT;
5866  switch (VT.getSimpleVT().SimpleTy) {
5867  default: llvm_unreachable("Unexpected!");
5868  case MVT::v4f32: NewVT = MVT::v2f64; break;
5869  case MVT::v4i32: NewVT = MVT::v2i64; break;
5870  case MVT::v8i16: NewVT = MVT::v4i32; break;
5871  case MVT::v16i8: NewVT = MVT::v4i32; break;
5872  }
5873
5874  int Scale = NumElems / NewWidth;
5875  SmallVector<int, 8> MaskVec;
5876  for (unsigned i = 0; i < NumElems; i += Scale) {
5877    int StartIdx = -1;
5878    for (int j = 0; j < Scale; ++j) {
5879      int EltIdx = SVOp->getMaskElt(i+j);
5880      if (EltIdx < 0)
5881        continue;
5882      if (StartIdx == -1)
5883        StartIdx = EltIdx - (EltIdx % Scale);
5884      if (EltIdx != StartIdx + j)
5885        return SDValue();
5886    }
5887    if (StartIdx == -1)
5888      MaskVec.push_back(-1);
5889    else
5890      MaskVec.push_back(StartIdx / Scale);
5891  }
5892
5893  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5894  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5895  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5896}
5897
5898/// getVZextMovL - Return a zero-extending vector move low node.
5899///
5900static SDValue getVZextMovL(EVT VT, EVT OpVT,
5901                            SDValue SrcOp, SelectionDAG &DAG,
5902                            const X86Subtarget *Subtarget, DebugLoc dl) {
5903  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5904    LoadSDNode *LD = NULL;
5905    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5906      LD = dyn_cast<LoadSDNode>(SrcOp);
5907    if (!LD) {
5908      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5909      // instead.
5910      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5911      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5912          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5913          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5914          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5915        // PR2108
5916        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5917        return DAG.getNode(ISD::BITCAST, dl, VT,
5918                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5919                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5920                                                   OpVT,
5921                                                   SrcOp.getOperand(0)
5922                                                          .getOperand(0))));
5923      }
5924    }
5925  }
5926
5927  return DAG.getNode(ISD::BITCAST, dl, VT,
5928                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5929                                 DAG.getNode(ISD::BITCAST, dl,
5930                                             OpVT, SrcOp)));
5931}
5932
5933/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5934/// which could not be matched by any known target speficic shuffle
5935static SDValue
5936LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5937  EVT VT = SVOp->getValueType(0);
5938
5939  unsigned NumElems = VT.getVectorNumElements();
5940  unsigned NumLaneElems = NumElems / 2;
5941
5942  DebugLoc dl = SVOp->getDebugLoc();
5943  MVT EltVT = VT.getVectorElementType().getSimpleVT();
5944  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
5945  SDValue Shufs[2];
5946
5947  SmallVector<int, 16> Mask;
5948  for (unsigned l = 0; l < 2; ++l) {
5949    // Build a shuffle mask for the output, discovering on the fly which
5950    // input vectors to use as shuffle operands (recorded in InputUsed).
5951    // If building a suitable shuffle vector proves too hard, then bail
5952    // out with useBuildVector set.
5953    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
5954    unsigned LaneStart = l * NumLaneElems;
5955    for (unsigned i = 0; i != NumLaneElems; ++i) {
5956      // The mask element.  This indexes into the input.
5957      int Idx = SVOp->getMaskElt(i+LaneStart);
5958      if (Idx < 0) {
5959        // the mask element does not index into any input vector.
5960        Mask.push_back(-1);
5961        continue;
5962      }
5963
5964      // The input vector this mask element indexes into.
5965      int Input = Idx / NumLaneElems;
5966
5967      // Turn the index into an offset from the start of the input vector.
5968      Idx -= Input * NumLaneElems;
5969
5970      // Find or create a shuffle vector operand to hold this input.
5971      unsigned OpNo;
5972      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
5973        if (InputUsed[OpNo] == Input)
5974          // This input vector is already an operand.
5975          break;
5976        if (InputUsed[OpNo] < 0) {
5977          // Create a new operand for this input vector.
5978          InputUsed[OpNo] = Input;
5979          break;
5980        }
5981      }
5982
5983      if (OpNo >= array_lengthof(InputUsed)) {
5984        // More than two input vectors used! Give up.
5985        return SDValue();
5986      }
5987
5988      // Add the mask index for the new shuffle vector.
5989      Mask.push_back(Idx + OpNo * NumLaneElems);
5990    }
5991
5992    if (InputUsed[0] < 0) {
5993      // No input vectors were used! The result is undefined.
5994      Shufs[l] = DAG.getUNDEF(NVT);
5995    } else {
5996      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
5997                   DAG.getConstant((InputUsed[0] % 2) * NumLaneElems, MVT::i32),
5998                                   DAG, dl);
5999      // If only one input was used, use an undefined vector for the other.
6000      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6001        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6002                   DAG.getConstant((InputUsed[1] % 2) * NumLaneElems, MVT::i32),
6003                                   DAG, dl);
6004      // At least one input vector was used. Create a new shuffle vector.
6005      Shufs[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6006    }
6007
6008    Mask.clear();
6009  }
6010
6011  // Concatenate the result back
6012  SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Shufs[0],
6013                                 DAG.getConstant(0, MVT::i32), DAG, dl);
6014  return Insert128BitVector(V, Shufs[1],DAG.getConstant(NumLaneElems, MVT::i32),
6015                            DAG, dl);
6016}
6017
6018/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6019/// 4 elements, and match them with several different shuffle types.
6020static SDValue
6021LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6022  SDValue V1 = SVOp->getOperand(0);
6023  SDValue V2 = SVOp->getOperand(1);
6024  DebugLoc dl = SVOp->getDebugLoc();
6025  EVT VT = SVOp->getValueType(0);
6026
6027  assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6028
6029  std::pair<int, int> Locs[4];
6030  int Mask1[] = { -1, -1, -1, -1 };
6031  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6032
6033  unsigned NumHi = 0;
6034  unsigned NumLo = 0;
6035  for (unsigned i = 0; i != 4; ++i) {
6036    int Idx = PermMask[i];
6037    if (Idx < 0) {
6038      Locs[i] = std::make_pair(-1, -1);
6039    } else {
6040      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6041      if (Idx < 4) {
6042        Locs[i] = std::make_pair(0, NumLo);
6043        Mask1[NumLo] = Idx;
6044        NumLo++;
6045      } else {
6046        Locs[i] = std::make_pair(1, NumHi);
6047        if (2+NumHi < 4)
6048          Mask1[2+NumHi] = Idx;
6049        NumHi++;
6050      }
6051    }
6052  }
6053
6054  if (NumLo <= 2 && NumHi <= 2) {
6055    // If no more than two elements come from either vector. This can be
6056    // implemented with two shuffles. First shuffle gather the elements.
6057    // The second shuffle, which takes the first shuffle as both of its
6058    // vector operands, put the elements into the right order.
6059    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6060
6061    int Mask2[] = { -1, -1, -1, -1 };
6062
6063    for (unsigned i = 0; i != 4; ++i)
6064      if (Locs[i].first != -1) {
6065        unsigned Idx = (i < 2) ? 0 : 4;
6066        Idx += Locs[i].first * 2 + Locs[i].second;
6067        Mask2[i] = Idx;
6068      }
6069
6070    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6071  } else if (NumLo == 3 || NumHi == 3) {
6072    // Otherwise, we must have three elements from one vector, call it X, and
6073    // one element from the other, call it Y.  First, use a shufps to build an
6074    // intermediate vector with the one element from Y and the element from X
6075    // that will be in the same half in the final destination (the indexes don't
6076    // matter). Then, use a shufps to build the final vector, taking the half
6077    // containing the element from Y from the intermediate, and the other half
6078    // from X.
6079    if (NumHi == 3) {
6080      // Normalize it so the 3 elements come from V1.
6081      CommuteVectorShuffleMask(PermMask, 4);
6082      std::swap(V1, V2);
6083    }
6084
6085    // Find the element from V2.
6086    unsigned HiIndex;
6087    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6088      int Val = PermMask[HiIndex];
6089      if (Val < 0)
6090        continue;
6091      if (Val >= 4)
6092        break;
6093    }
6094
6095    Mask1[0] = PermMask[HiIndex];
6096    Mask1[1] = -1;
6097    Mask1[2] = PermMask[HiIndex^1];
6098    Mask1[3] = -1;
6099    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6100
6101    if (HiIndex >= 2) {
6102      Mask1[0] = PermMask[0];
6103      Mask1[1] = PermMask[1];
6104      Mask1[2] = HiIndex & 1 ? 6 : 4;
6105      Mask1[3] = HiIndex & 1 ? 4 : 6;
6106      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6107    } else {
6108      Mask1[0] = HiIndex & 1 ? 2 : 0;
6109      Mask1[1] = HiIndex & 1 ? 0 : 2;
6110      Mask1[2] = PermMask[2];
6111      Mask1[3] = PermMask[3];
6112      if (Mask1[2] >= 0)
6113        Mask1[2] += 4;
6114      if (Mask1[3] >= 0)
6115        Mask1[3] += 4;
6116      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6117    }
6118  }
6119
6120  // Break it into (shuffle shuffle_hi, shuffle_lo).
6121  int LoMask[] = { -1, -1, -1, -1 };
6122  int HiMask[] = { -1, -1, -1, -1 };
6123
6124  int *MaskPtr = LoMask;
6125  unsigned MaskIdx = 0;
6126  unsigned LoIdx = 0;
6127  unsigned HiIdx = 2;
6128  for (unsigned i = 0; i != 4; ++i) {
6129    if (i == 2) {
6130      MaskPtr = HiMask;
6131      MaskIdx = 1;
6132      LoIdx = 0;
6133      HiIdx = 2;
6134    }
6135    int Idx = PermMask[i];
6136    if (Idx < 0) {
6137      Locs[i] = std::make_pair(-1, -1);
6138    } else if (Idx < 4) {
6139      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6140      MaskPtr[LoIdx] = Idx;
6141      LoIdx++;
6142    } else {
6143      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6144      MaskPtr[HiIdx] = Idx;
6145      HiIdx++;
6146    }
6147  }
6148
6149  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6150  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6151  int MaskOps[] = { -1, -1, -1, -1 };
6152  for (unsigned i = 0; i != 4; ++i)
6153    if (Locs[i].first != -1)
6154      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6155  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6156}
6157
6158static bool MayFoldVectorLoad(SDValue V) {
6159  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6160    V = V.getOperand(0);
6161  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6162    V = V.getOperand(0);
6163  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6164      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6165    // BUILD_VECTOR (load), undef
6166    V = V.getOperand(0);
6167  if (MayFoldLoad(V))
6168    return true;
6169  return false;
6170}
6171
6172// FIXME: the version above should always be used. Since there's
6173// a bug where several vector shuffles can't be folded because the
6174// DAG is not updated during lowering and a node claims to have two
6175// uses while it only has one, use this version, and let isel match
6176// another instruction if the load really happens to have more than
6177// one use. Remove this version after this bug get fixed.
6178// rdar://8434668, PR8156
6179static bool RelaxedMayFoldVectorLoad(SDValue V) {
6180  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6181    V = V.getOperand(0);
6182  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6183    V = V.getOperand(0);
6184  if (ISD::isNormalLoad(V.getNode()))
6185    return true;
6186  return false;
6187}
6188
6189static
6190SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6191  EVT VT = Op.getValueType();
6192
6193  // Canonizalize to v2f64.
6194  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6195  return DAG.getNode(ISD::BITCAST, dl, VT,
6196                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6197                                          V1, DAG));
6198}
6199
6200static
6201SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6202                        bool HasSSE2) {
6203  SDValue V1 = Op.getOperand(0);
6204  SDValue V2 = Op.getOperand(1);
6205  EVT VT = Op.getValueType();
6206
6207  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6208
6209  if (HasSSE2 && VT == MVT::v2f64)
6210    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6211
6212  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6213  return DAG.getNode(ISD::BITCAST, dl, VT,
6214                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6215                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6216                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6217}
6218
6219static
6220SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6221  SDValue V1 = Op.getOperand(0);
6222  SDValue V2 = Op.getOperand(1);
6223  EVT VT = Op.getValueType();
6224
6225  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6226         "unsupported shuffle type");
6227
6228  if (V2.getOpcode() == ISD::UNDEF)
6229    V2 = V1;
6230
6231  // v4i32 or v4f32
6232  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6233}
6234
6235static
6236SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6237  SDValue V1 = Op.getOperand(0);
6238  SDValue V2 = Op.getOperand(1);
6239  EVT VT = Op.getValueType();
6240  unsigned NumElems = VT.getVectorNumElements();
6241
6242  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6243  // operand of these instructions is only memory, so check if there's a
6244  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6245  // same masks.
6246  bool CanFoldLoad = false;
6247
6248  // Trivial case, when V2 comes from a load.
6249  if (MayFoldVectorLoad(V2))
6250    CanFoldLoad = true;
6251
6252  // When V1 is a load, it can be folded later into a store in isel, example:
6253  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6254  //    turns into:
6255  //  (MOVLPSmr addr:$src1, VR128:$src2)
6256  // So, recognize this potential and also use MOVLPS or MOVLPD
6257  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6258    CanFoldLoad = true;
6259
6260  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6261  if (CanFoldLoad) {
6262    if (HasSSE2 && NumElems == 2)
6263      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6264
6265    if (NumElems == 4)
6266      // If we don't care about the second element, procede to use movss.
6267      if (SVOp->getMaskElt(1) != -1)
6268        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6269  }
6270
6271  // movl and movlp will both match v2i64, but v2i64 is never matched by
6272  // movl earlier because we make it strict to avoid messing with the movlp load
6273  // folding logic (see the code above getMOVLP call). Match it here then,
6274  // this is horrible, but will stay like this until we move all shuffle
6275  // matching to x86 specific nodes. Note that for the 1st condition all
6276  // types are matched with movsd.
6277  if (HasSSE2) {
6278    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6279    // as to remove this logic from here, as much as possible
6280    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6281      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6282    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6283  }
6284
6285  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6286
6287  // Invert the operand order and use SHUFPS to match it.
6288  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6289                              getShuffleSHUFImmediate(SVOp), DAG);
6290}
6291
6292SDValue
6293X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6294  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6295  EVT VT = Op.getValueType();
6296  DebugLoc dl = Op.getDebugLoc();
6297  SDValue V1 = Op.getOperand(0);
6298  SDValue V2 = Op.getOperand(1);
6299
6300  if (isZeroShuffle(SVOp))
6301    return getZeroVector(VT, Subtarget, DAG, dl);
6302
6303  // Handle splat operations
6304  if (SVOp->isSplat()) {
6305    unsigned NumElem = VT.getVectorNumElements();
6306    int Size = VT.getSizeInBits();
6307
6308    // Use vbroadcast whenever the splat comes from a foldable load
6309    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6310    if (Broadcast.getNode())
6311      return Broadcast;
6312
6313    // Handle splats by matching through known shuffle masks
6314    if ((Size == 128 && NumElem <= 4) ||
6315        (Size == 256 && NumElem < 8))
6316      return SDValue();
6317
6318    // All remaning splats are promoted to target supported vector shuffles.
6319    return PromoteSplat(SVOp, DAG);
6320  }
6321
6322  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6323  // do it!
6324  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6325    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6326    if (NewOp.getNode())
6327      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6328  } else if ((VT == MVT::v4i32 ||
6329             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6330    // FIXME: Figure out a cleaner way to do this.
6331    // Try to make use of movq to zero out the top part.
6332    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6333      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6334      if (NewOp.getNode()) {
6335        EVT NewVT = NewOp.getValueType();
6336        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6337                               NewVT, true, false))
6338          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6339                              DAG, Subtarget, dl);
6340      }
6341    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6342      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6343      if (NewOp.getNode()) {
6344        EVT NewVT = NewOp.getValueType();
6345        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6346          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6347                              DAG, Subtarget, dl);
6348      }
6349    }
6350  }
6351  return SDValue();
6352}
6353
6354SDValue
6355X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6356  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6357  SDValue V1 = Op.getOperand(0);
6358  SDValue V2 = Op.getOperand(1);
6359  EVT VT = Op.getValueType();
6360  DebugLoc dl = Op.getDebugLoc();
6361  unsigned NumElems = VT.getVectorNumElements();
6362  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6363  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6364  bool V1IsSplat = false;
6365  bool V2IsSplat = false;
6366  bool HasSSE2 = Subtarget->hasSSE2();
6367  bool HasAVX    = Subtarget->hasAVX();
6368  bool HasAVX2   = Subtarget->hasAVX2();
6369  MachineFunction &MF = DAG.getMachineFunction();
6370  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6371
6372  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6373
6374  if (V1IsUndef && V2IsUndef)
6375    return DAG.getUNDEF(VT);
6376
6377  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6378
6379  // Vector shuffle lowering takes 3 steps:
6380  //
6381  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6382  //    narrowing and commutation of operands should be handled.
6383  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6384  //    shuffle nodes.
6385  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6386  //    so the shuffle can be broken into other shuffles and the legalizer can
6387  //    try the lowering again.
6388  //
6389  // The general idea is that no vector_shuffle operation should be left to
6390  // be matched during isel, all of them must be converted to a target specific
6391  // node here.
6392
6393  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6394  // narrowing and commutation of operands should be handled. The actual code
6395  // doesn't include all of those, work in progress...
6396  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6397  if (NewOp.getNode())
6398    return NewOp;
6399
6400  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6401
6402  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6403  // unpckh_undef). Only use pshufd if speed is more important than size.
6404  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6405    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6406  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6407    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6408
6409  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6410      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6411    return getMOVDDup(Op, dl, V1, DAG);
6412
6413  if (isMOVHLPS_v_undef_Mask(M, VT))
6414    return getMOVHighToLow(Op, dl, DAG);
6415
6416  // Use to match splats
6417  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6418      (VT == MVT::v2f64 || VT == MVT::v2i64))
6419    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6420
6421  if (isPSHUFDMask(M, VT)) {
6422    // The actual implementation will match the mask in the if above and then
6423    // during isel it can match several different instructions, not only pshufd
6424    // as its name says, sad but true, emulate the behavior for now...
6425    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6426      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6427
6428    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6429
6430    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6431      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6432
6433    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6434      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6435
6436    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6437                                TargetMask, DAG);
6438  }
6439
6440  // Check if this can be converted into a logical shift.
6441  bool isLeft = false;
6442  unsigned ShAmt = 0;
6443  SDValue ShVal;
6444  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6445  if (isShift && ShVal.hasOneUse()) {
6446    // If the shifted value has multiple uses, it may be cheaper to use
6447    // v_set0 + movlhps or movhlps, etc.
6448    EVT EltVT = VT.getVectorElementType();
6449    ShAmt *= EltVT.getSizeInBits();
6450    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6451  }
6452
6453  if (isMOVLMask(M, VT)) {
6454    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6455      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6456    if (!isMOVLPMask(M, VT)) {
6457      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6458        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6459
6460      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6461        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6462    }
6463  }
6464
6465  // FIXME: fold these into legal mask.
6466  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6467    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6468
6469  if (isMOVHLPSMask(M, VT))
6470    return getMOVHighToLow(Op, dl, DAG);
6471
6472  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6473    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6474
6475  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6476    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6477
6478  if (isMOVLPMask(M, VT))
6479    return getMOVLP(Op, dl, DAG, HasSSE2);
6480
6481  if (ShouldXformToMOVHLPS(M, VT) ||
6482      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6483    return CommuteVectorShuffle(SVOp, DAG);
6484
6485  if (isShift) {
6486    // No better options. Use a vshldq / vsrldq.
6487    EVT EltVT = VT.getVectorElementType();
6488    ShAmt *= EltVT.getSizeInBits();
6489    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6490  }
6491
6492  bool Commuted = false;
6493  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6494  // 1,1,1,1 -> v8i16 though.
6495  V1IsSplat = isSplatVector(V1.getNode());
6496  V2IsSplat = isSplatVector(V2.getNode());
6497
6498  // Canonicalize the splat or undef, if present, to be on the RHS.
6499  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6500    CommuteVectorShuffleMask(M, NumElems);
6501    std::swap(V1, V2);
6502    std::swap(V1IsSplat, V2IsSplat);
6503    Commuted = true;
6504  }
6505
6506  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6507    // Shuffling low element of v1 into undef, just return v1.
6508    if (V2IsUndef)
6509      return V1;
6510    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6511    // the instruction selector will not match, so get a canonical MOVL with
6512    // swapped operands to undo the commute.
6513    return getMOVL(DAG, dl, VT, V2, V1);
6514  }
6515
6516  if (isUNPCKLMask(M, VT, HasAVX2))
6517    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6518
6519  if (isUNPCKHMask(M, VT, HasAVX2))
6520    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6521
6522  if (V2IsSplat) {
6523    // Normalize mask so all entries that point to V2 points to its first
6524    // element then try to match unpck{h|l} again. If match, return a
6525    // new vector_shuffle with the corrected mask.p
6526    SmallVector<int, 8> NewMask(M.begin(), M.end());
6527    NormalizeMask(NewMask, NumElems);
6528    if (isUNPCKLMask(NewMask, VT, HasAVX2, true)) {
6529      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6530    } else if (isUNPCKHMask(NewMask, VT, HasAVX2, true)) {
6531      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6532    }
6533  }
6534
6535  if (Commuted) {
6536    // Commute is back and try unpck* again.
6537    // FIXME: this seems wrong.
6538    CommuteVectorShuffleMask(M, NumElems);
6539    std::swap(V1, V2);
6540    std::swap(V1IsSplat, V2IsSplat);
6541    Commuted = false;
6542
6543    if (isUNPCKLMask(M, VT, HasAVX2))
6544      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6545
6546    if (isUNPCKHMask(M, VT, HasAVX2))
6547      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6548  }
6549
6550  // Normalize the node to match x86 shuffle ops if needed
6551  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6552    return CommuteVectorShuffle(SVOp, DAG);
6553
6554  // The checks below are all present in isShuffleMaskLegal, but they are
6555  // inlined here right now to enable us to directly emit target specific
6556  // nodes, and remove one by one until they don't return Op anymore.
6557
6558  if (isPALIGNRMask(M, VT, Subtarget))
6559    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6560                                getShufflePALIGNRImmediate(SVOp),
6561                                DAG);
6562
6563  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6564      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6565    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6566      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6567  }
6568
6569  if (isPSHUFHWMask(M, VT))
6570    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6571                                getShufflePSHUFHWImmediate(SVOp),
6572                                DAG);
6573
6574  if (isPSHUFLWMask(M, VT))
6575    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6576                                getShufflePSHUFLWImmediate(SVOp),
6577                                DAG);
6578
6579  if (isSHUFPMask(M, VT, HasAVX))
6580    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6581                                getShuffleSHUFImmediate(SVOp), DAG);
6582
6583  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6584    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6585  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6586    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6587
6588  //===--------------------------------------------------------------------===//
6589  // Generate target specific nodes for 128 or 256-bit shuffles only
6590  // supported in the AVX instruction set.
6591  //
6592
6593  // Handle VMOVDDUPY permutations
6594  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6595    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6596
6597  // Handle VPERMILPS/D* permutations
6598  if (isVPERMILPMask(M, VT, HasAVX)) {
6599    if (HasAVX2 && VT == MVT::v8i32)
6600      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6601                                  getShuffleSHUFImmediate(SVOp), DAG);
6602    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6603                                getShuffleSHUFImmediate(SVOp), DAG);
6604  }
6605
6606  // Handle VPERM2F128/VPERM2I128 permutations
6607  if (isVPERM2X128Mask(M, VT, HasAVX))
6608    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6609                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6610
6611  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(Op, Subtarget, DAG, getPointerTy());
6612  if (BlendOp.getNode())
6613    return BlendOp;
6614
6615  //===--------------------------------------------------------------------===//
6616  // Since no target specific shuffle was selected for this generic one,
6617  // lower it into other known shuffles. FIXME: this isn't true yet, but
6618  // this is the plan.
6619  //
6620
6621  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6622  if (VT == MVT::v8i16) {
6623    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6624    if (NewOp.getNode())
6625      return NewOp;
6626  }
6627
6628  if (VT == MVT::v16i8) {
6629    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6630    if (NewOp.getNode())
6631      return NewOp;
6632  }
6633
6634  // Handle all 128-bit wide vectors with 4 elements, and match them with
6635  // several different shuffle types.
6636  if (NumElems == 4 && VT.getSizeInBits() == 128)
6637    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6638
6639  // Handle general 256-bit shuffles
6640  if (VT.is256BitVector())
6641    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6642
6643  return SDValue();
6644}
6645
6646SDValue
6647X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6648                                                SelectionDAG &DAG) const {
6649  EVT VT = Op.getValueType();
6650  DebugLoc dl = Op.getDebugLoc();
6651
6652  if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6653    return SDValue();
6654
6655  if (VT.getSizeInBits() == 8) {
6656    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6657                                    Op.getOperand(0), Op.getOperand(1));
6658    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6659                                    DAG.getValueType(VT));
6660    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6661  } else if (VT.getSizeInBits() == 16) {
6662    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6663    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6664    if (Idx == 0)
6665      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6666                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6667                                     DAG.getNode(ISD::BITCAST, dl,
6668                                                 MVT::v4i32,
6669                                                 Op.getOperand(0)),
6670                                     Op.getOperand(1)));
6671    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6672                                    Op.getOperand(0), Op.getOperand(1));
6673    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6674                                    DAG.getValueType(VT));
6675    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6676  } else if (VT == MVT::f32) {
6677    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6678    // the result back to FR32 register. It's only worth matching if the
6679    // result has a single use which is a store or a bitcast to i32.  And in
6680    // the case of a store, it's not worth it if the index is a constant 0,
6681    // because a MOVSSmr can be used instead, which is smaller and faster.
6682    if (!Op.hasOneUse())
6683      return SDValue();
6684    SDNode *User = *Op.getNode()->use_begin();
6685    if ((User->getOpcode() != ISD::STORE ||
6686         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6687          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6688        (User->getOpcode() != ISD::BITCAST ||
6689         User->getValueType(0) != MVT::i32))
6690      return SDValue();
6691    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6692                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6693                                              Op.getOperand(0)),
6694                                              Op.getOperand(1));
6695    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6696  } else if (VT == MVT::i32 || VT == MVT::i64) {
6697    // ExtractPS/pextrq works with constant index.
6698    if (isa<ConstantSDNode>(Op.getOperand(1)))
6699      return Op;
6700  }
6701  return SDValue();
6702}
6703
6704
6705SDValue
6706X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6707                                           SelectionDAG &DAG) const {
6708  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6709    return SDValue();
6710
6711  SDValue Vec = Op.getOperand(0);
6712  EVT VecVT = Vec.getValueType();
6713
6714  // If this is a 256-bit vector result, first extract the 128-bit vector and
6715  // then extract the element from the 128-bit vector.
6716  if (VecVT.getSizeInBits() == 256) {
6717    DebugLoc dl = Op.getNode()->getDebugLoc();
6718    unsigned NumElems = VecVT.getVectorNumElements();
6719    SDValue Idx = Op.getOperand(1);
6720    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6721
6722    // Get the 128-bit vector.
6723    bool Upper = IdxVal >= NumElems/2;
6724    Vec = Extract128BitVector(Vec,
6725                    DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6726
6727    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6728                    Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6729  }
6730
6731  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6732
6733  if (Subtarget->hasSSE41()) {
6734    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6735    if (Res.getNode())
6736      return Res;
6737  }
6738
6739  EVT VT = Op.getValueType();
6740  DebugLoc dl = Op.getDebugLoc();
6741  // TODO: handle v16i8.
6742  if (VT.getSizeInBits() == 16) {
6743    SDValue Vec = Op.getOperand(0);
6744    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6745    if (Idx == 0)
6746      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6747                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6748                                     DAG.getNode(ISD::BITCAST, dl,
6749                                                 MVT::v4i32, Vec),
6750                                     Op.getOperand(1)));
6751    // Transform it so it match pextrw which produces a 32-bit result.
6752    EVT EltVT = MVT::i32;
6753    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6754                                    Op.getOperand(0), Op.getOperand(1));
6755    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6756                                    DAG.getValueType(VT));
6757    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6758  } else if (VT.getSizeInBits() == 32) {
6759    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6760    if (Idx == 0)
6761      return Op;
6762
6763    // SHUFPS the element to the lowest double word, then movss.
6764    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6765    EVT VVT = Op.getOperand(0).getValueType();
6766    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6767                                       DAG.getUNDEF(VVT), Mask);
6768    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6769                       DAG.getIntPtrConstant(0));
6770  } else if (VT.getSizeInBits() == 64) {
6771    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6772    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6773    //        to match extract_elt for f64.
6774    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6775    if (Idx == 0)
6776      return Op;
6777
6778    // UNPCKHPD the element to the lowest double word, then movsd.
6779    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6780    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6781    int Mask[2] = { 1, -1 };
6782    EVT VVT = Op.getOperand(0).getValueType();
6783    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6784                                       DAG.getUNDEF(VVT), Mask);
6785    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6786                       DAG.getIntPtrConstant(0));
6787  }
6788
6789  return SDValue();
6790}
6791
6792SDValue
6793X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6794                                               SelectionDAG &DAG) const {
6795  EVT VT = Op.getValueType();
6796  EVT EltVT = VT.getVectorElementType();
6797  DebugLoc dl = Op.getDebugLoc();
6798
6799  SDValue N0 = Op.getOperand(0);
6800  SDValue N1 = Op.getOperand(1);
6801  SDValue N2 = Op.getOperand(2);
6802
6803  if (VT.getSizeInBits() == 256)
6804    return SDValue();
6805
6806  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6807      isa<ConstantSDNode>(N2)) {
6808    unsigned Opc;
6809    if (VT == MVT::v8i16)
6810      Opc = X86ISD::PINSRW;
6811    else if (VT == MVT::v16i8)
6812      Opc = X86ISD::PINSRB;
6813    else
6814      Opc = X86ISD::PINSRB;
6815
6816    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6817    // argument.
6818    if (N1.getValueType() != MVT::i32)
6819      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6820    if (N2.getValueType() != MVT::i32)
6821      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6822    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6823  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6824    // Bits [7:6] of the constant are the source select.  This will always be
6825    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6826    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6827    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6828    // Bits [5:4] of the constant are the destination select.  This is the
6829    //  value of the incoming immediate.
6830    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6831    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6832    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6833    // Create this as a scalar to vector..
6834    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6835    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6836  } else if ((EltVT == MVT::i32 || EltVT == MVT::i64) &&
6837             isa<ConstantSDNode>(N2)) {
6838    // PINSR* works with constant index.
6839    return Op;
6840  }
6841  return SDValue();
6842}
6843
6844SDValue
6845X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6846  EVT VT = Op.getValueType();
6847  EVT EltVT = VT.getVectorElementType();
6848
6849  DebugLoc dl = Op.getDebugLoc();
6850  SDValue N0 = Op.getOperand(0);
6851  SDValue N1 = Op.getOperand(1);
6852  SDValue N2 = Op.getOperand(2);
6853
6854  // If this is a 256-bit vector result, first extract the 128-bit vector,
6855  // insert the element into the extracted half and then place it back.
6856  if (VT.getSizeInBits() == 256) {
6857    if (!isa<ConstantSDNode>(N2))
6858      return SDValue();
6859
6860    // Get the desired 128-bit vector half.
6861    unsigned NumElems = VT.getVectorNumElements();
6862    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6863    bool Upper = IdxVal >= NumElems/2;
6864    SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
6865    SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
6866
6867    // Insert the element into the desired half.
6868    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
6869                 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
6870
6871    // Insert the changed part back to the 256-bit vector
6872    return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
6873  }
6874
6875  if (Subtarget->hasSSE41())
6876    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6877
6878  if (EltVT == MVT::i8)
6879    return SDValue();
6880
6881  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6882    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6883    // as its second argument.
6884    if (N1.getValueType() != MVT::i32)
6885      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6886    if (N2.getValueType() != MVT::i32)
6887      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6888    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6889  }
6890  return SDValue();
6891}
6892
6893SDValue
6894X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6895  LLVMContext *Context = DAG.getContext();
6896  DebugLoc dl = Op.getDebugLoc();
6897  EVT OpVT = Op.getValueType();
6898
6899  // If this is a 256-bit vector result, first insert into a 128-bit
6900  // vector and then insert into the 256-bit vector.
6901  if (OpVT.getSizeInBits() > 128) {
6902    // Insert into a 128-bit vector.
6903    EVT VT128 = EVT::getVectorVT(*Context,
6904                                 OpVT.getVectorElementType(),
6905                                 OpVT.getVectorNumElements() / 2);
6906
6907    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6908
6909    // Insert the 128-bit vector.
6910    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6911                              DAG.getConstant(0, MVT::i32),
6912                              DAG, dl);
6913  }
6914
6915  if (Op.getValueType() == MVT::v1i64 &&
6916      Op.getOperand(0).getValueType() == MVT::i64)
6917    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6918
6919  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6920  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6921         "Expected an SSE type!");
6922  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6923                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6924}
6925
6926// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6927// a simple subregister reference or explicit instructions to grab
6928// upper bits of a vector.
6929SDValue
6930X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6931  if (Subtarget->hasAVX()) {
6932    DebugLoc dl = Op.getNode()->getDebugLoc();
6933    SDValue Vec = Op.getNode()->getOperand(0);
6934    SDValue Idx = Op.getNode()->getOperand(1);
6935
6936    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6937        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6938        return Extract128BitVector(Vec, Idx, DAG, dl);
6939    }
6940  }
6941  return SDValue();
6942}
6943
6944// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6945// simple superregister reference or explicit instructions to insert
6946// the upper bits of a vector.
6947SDValue
6948X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6949  if (Subtarget->hasAVX()) {
6950    DebugLoc dl = Op.getNode()->getDebugLoc();
6951    SDValue Vec = Op.getNode()->getOperand(0);
6952    SDValue SubVec = Op.getNode()->getOperand(1);
6953    SDValue Idx = Op.getNode()->getOperand(2);
6954
6955    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6956        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6957      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6958    }
6959  }
6960  return SDValue();
6961}
6962
6963// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6964// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6965// one of the above mentioned nodes. It has to be wrapped because otherwise
6966// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6967// be used to form addressing mode. These wrapped nodes will be selected
6968// into MOV32ri.
6969SDValue
6970X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6971  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6972
6973  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6974  // global base reg.
6975  unsigned char OpFlag = 0;
6976  unsigned WrapperKind = X86ISD::Wrapper;
6977  CodeModel::Model M = getTargetMachine().getCodeModel();
6978
6979  if (Subtarget->isPICStyleRIPRel() &&
6980      (M == CodeModel::Small || M == CodeModel::Kernel))
6981    WrapperKind = X86ISD::WrapperRIP;
6982  else if (Subtarget->isPICStyleGOT())
6983    OpFlag = X86II::MO_GOTOFF;
6984  else if (Subtarget->isPICStyleStubPIC())
6985    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6986
6987  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6988                                             CP->getAlignment(),
6989                                             CP->getOffset(), OpFlag);
6990  DebugLoc DL = CP->getDebugLoc();
6991  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6992  // With PIC, the address is actually $g + Offset.
6993  if (OpFlag) {
6994    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6995                         DAG.getNode(X86ISD::GlobalBaseReg,
6996                                     DebugLoc(), getPointerTy()),
6997                         Result);
6998  }
6999
7000  return Result;
7001}
7002
7003SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7004  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7005
7006  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7007  // global base reg.
7008  unsigned char OpFlag = 0;
7009  unsigned WrapperKind = X86ISD::Wrapper;
7010  CodeModel::Model M = getTargetMachine().getCodeModel();
7011
7012  if (Subtarget->isPICStyleRIPRel() &&
7013      (M == CodeModel::Small || M == CodeModel::Kernel))
7014    WrapperKind = X86ISD::WrapperRIP;
7015  else if (Subtarget->isPICStyleGOT())
7016    OpFlag = X86II::MO_GOTOFF;
7017  else if (Subtarget->isPICStyleStubPIC())
7018    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7019
7020  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7021                                          OpFlag);
7022  DebugLoc DL = JT->getDebugLoc();
7023  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7024
7025  // With PIC, the address is actually $g + Offset.
7026  if (OpFlag)
7027    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7028                         DAG.getNode(X86ISD::GlobalBaseReg,
7029                                     DebugLoc(), getPointerTy()),
7030                         Result);
7031
7032  return Result;
7033}
7034
7035SDValue
7036X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7037  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7038
7039  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7040  // global base reg.
7041  unsigned char OpFlag = 0;
7042  unsigned WrapperKind = X86ISD::Wrapper;
7043  CodeModel::Model M = getTargetMachine().getCodeModel();
7044
7045  if (Subtarget->isPICStyleRIPRel() &&
7046      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7047    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7048      OpFlag = X86II::MO_GOTPCREL;
7049    WrapperKind = X86ISD::WrapperRIP;
7050  } else if (Subtarget->isPICStyleGOT()) {
7051    OpFlag = X86II::MO_GOT;
7052  } else if (Subtarget->isPICStyleStubPIC()) {
7053    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7054  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7055    OpFlag = X86II::MO_DARWIN_NONLAZY;
7056  }
7057
7058  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7059
7060  DebugLoc DL = Op.getDebugLoc();
7061  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7062
7063
7064  // With PIC, the address is actually $g + Offset.
7065  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7066      !Subtarget->is64Bit()) {
7067    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7068                         DAG.getNode(X86ISD::GlobalBaseReg,
7069                                     DebugLoc(), getPointerTy()),
7070                         Result);
7071  }
7072
7073  // For symbols that require a load from a stub to get the address, emit the
7074  // load.
7075  if (isGlobalStubReference(OpFlag))
7076    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7077                         MachinePointerInfo::getGOT(), false, false, false, 0);
7078
7079  return Result;
7080}
7081
7082SDValue
7083X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7084  // Create the TargetBlockAddressAddress node.
7085  unsigned char OpFlags =
7086    Subtarget->ClassifyBlockAddressReference();
7087  CodeModel::Model M = getTargetMachine().getCodeModel();
7088  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7089  DebugLoc dl = Op.getDebugLoc();
7090  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7091                                       /*isTarget=*/true, OpFlags);
7092
7093  if (Subtarget->isPICStyleRIPRel() &&
7094      (M == CodeModel::Small || M == CodeModel::Kernel))
7095    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7096  else
7097    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7098
7099  // With PIC, the address is actually $g + Offset.
7100  if (isGlobalRelativeToPICBase(OpFlags)) {
7101    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7102                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7103                         Result);
7104  }
7105
7106  return Result;
7107}
7108
7109SDValue
7110X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7111                                      int64_t Offset,
7112                                      SelectionDAG &DAG) const {
7113  // Create the TargetGlobalAddress node, folding in the constant
7114  // offset if it is legal.
7115  unsigned char OpFlags =
7116    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7117  CodeModel::Model M = getTargetMachine().getCodeModel();
7118  SDValue Result;
7119  if (OpFlags == X86II::MO_NO_FLAG &&
7120      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7121    // A direct static reference to a global.
7122    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7123    Offset = 0;
7124  } else {
7125    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7126  }
7127
7128  if (Subtarget->isPICStyleRIPRel() &&
7129      (M == CodeModel::Small || M == CodeModel::Kernel))
7130    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7131  else
7132    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7133
7134  // With PIC, the address is actually $g + Offset.
7135  if (isGlobalRelativeToPICBase(OpFlags)) {
7136    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7137                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7138                         Result);
7139  }
7140
7141  // For globals that require a load from a stub to get the address, emit the
7142  // load.
7143  if (isGlobalStubReference(OpFlags))
7144    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7145                         MachinePointerInfo::getGOT(), false, false, false, 0);
7146
7147  // If there was a non-zero offset that we didn't fold, create an explicit
7148  // addition for it.
7149  if (Offset != 0)
7150    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7151                         DAG.getConstant(Offset, getPointerTy()));
7152
7153  return Result;
7154}
7155
7156SDValue
7157X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7158  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7159  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7160  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7161}
7162
7163static SDValue
7164GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7165           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7166           unsigned char OperandFlags) {
7167  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7168  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7169  DebugLoc dl = GA->getDebugLoc();
7170  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7171                                           GA->getValueType(0),
7172                                           GA->getOffset(),
7173                                           OperandFlags);
7174  if (InFlag) {
7175    SDValue Ops[] = { Chain,  TGA, *InFlag };
7176    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7177  } else {
7178    SDValue Ops[]  = { Chain, TGA };
7179    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7180  }
7181
7182  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7183  MFI->setAdjustsStack(true);
7184
7185  SDValue Flag = Chain.getValue(1);
7186  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7187}
7188
7189// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7190static SDValue
7191LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7192                                const EVT PtrVT) {
7193  SDValue InFlag;
7194  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7195  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7196                                     DAG.getNode(X86ISD::GlobalBaseReg,
7197                                                 DebugLoc(), PtrVT), InFlag);
7198  InFlag = Chain.getValue(1);
7199
7200  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7201}
7202
7203// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7204static SDValue
7205LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7206                                const EVT PtrVT) {
7207  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7208                    X86::RAX, X86II::MO_TLSGD);
7209}
7210
7211// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7212// "local exec" model.
7213static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7214                                   const EVT PtrVT, TLSModel::Model model,
7215                                   bool is64Bit) {
7216  DebugLoc dl = GA->getDebugLoc();
7217
7218  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7219  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7220                                                         is64Bit ? 257 : 256));
7221
7222  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7223                                      DAG.getIntPtrConstant(0),
7224                                      MachinePointerInfo(Ptr),
7225                                      false, false, false, 0);
7226
7227  unsigned char OperandFlags = 0;
7228  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7229  // initialexec.
7230  unsigned WrapperKind = X86ISD::Wrapper;
7231  if (model == TLSModel::LocalExec) {
7232    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7233  } else if (is64Bit) {
7234    assert(model == TLSModel::InitialExec);
7235    OperandFlags = X86II::MO_GOTTPOFF;
7236    WrapperKind = X86ISD::WrapperRIP;
7237  } else {
7238    assert(model == TLSModel::InitialExec);
7239    OperandFlags = X86II::MO_INDNTPOFF;
7240  }
7241
7242  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7243  // exec)
7244  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7245                                           GA->getValueType(0),
7246                                           GA->getOffset(), OperandFlags);
7247  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7248
7249  if (model == TLSModel::InitialExec)
7250    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7251                         MachinePointerInfo::getGOT(), false, false, false, 0);
7252
7253  // The address of the thread local variable is the add of the thread
7254  // pointer with the offset of the variable.
7255  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7256}
7257
7258SDValue
7259X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7260
7261  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7262  const GlobalValue *GV = GA->getGlobal();
7263
7264  if (Subtarget->isTargetELF()) {
7265    // TODO: implement the "local dynamic" model
7266    // TODO: implement the "initial exec"model for pic executables
7267
7268    // If GV is an alias then use the aliasee for determining
7269    // thread-localness.
7270    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7271      GV = GA->resolveAliasedGlobal(false);
7272
7273    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7274
7275    switch (model) {
7276      case TLSModel::GeneralDynamic:
7277      case TLSModel::LocalDynamic: // not implemented
7278        if (Subtarget->is64Bit())
7279          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7280        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7281
7282      case TLSModel::InitialExec:
7283      case TLSModel::LocalExec:
7284        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7285                                   Subtarget->is64Bit());
7286    }
7287  } else if (Subtarget->isTargetDarwin()) {
7288    // Darwin only has one model of TLS.  Lower to that.
7289    unsigned char OpFlag = 0;
7290    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7291                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7292
7293    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7294    // global base reg.
7295    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7296                  !Subtarget->is64Bit();
7297    if (PIC32)
7298      OpFlag = X86II::MO_TLVP_PIC_BASE;
7299    else
7300      OpFlag = X86II::MO_TLVP;
7301    DebugLoc DL = Op.getDebugLoc();
7302    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7303                                                GA->getValueType(0),
7304                                                GA->getOffset(), OpFlag);
7305    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7306
7307    // With PIC32, the address is actually $g + Offset.
7308    if (PIC32)
7309      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7310                           DAG.getNode(X86ISD::GlobalBaseReg,
7311                                       DebugLoc(), getPointerTy()),
7312                           Offset);
7313
7314    // Lowering the machine isd will make sure everything is in the right
7315    // location.
7316    SDValue Chain = DAG.getEntryNode();
7317    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7318    SDValue Args[] = { Chain, Offset };
7319    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7320
7321    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7322    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7323    MFI->setAdjustsStack(true);
7324
7325    // And our return value (tls address) is in the standard call return value
7326    // location.
7327    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7328    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7329                              Chain.getValue(1));
7330  } else if (Subtarget->isTargetWindows()) {
7331    // Just use the implicit TLS architecture
7332    // Need to generate someting similar to:
7333    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7334    //                                  ; from TEB
7335    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7336    //   mov     rcx, qword [rdx+rcx*8]
7337    //   mov     eax, .tls$:tlsvar
7338    //   [rax+rcx] contains the address
7339    // Windows 64bit: gs:0x58
7340    // Windows 32bit: fs:__tls_array
7341
7342    // If GV is an alias then use the aliasee for determining
7343    // thread-localness.
7344    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7345      GV = GA->resolveAliasedGlobal(false);
7346    DebugLoc dl = GA->getDebugLoc();
7347    SDValue Chain = DAG.getEntryNode();
7348
7349    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7350    // %gs:0x58 (64-bit).
7351    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7352                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7353                                                             256)
7354                                        : Type::getInt32PtrTy(*DAG.getContext(),
7355                                                              257));
7356
7357    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7358                                        Subtarget->is64Bit()
7359                                        ? DAG.getIntPtrConstant(0x58)
7360                                        : DAG.getExternalSymbol("_tls_array",
7361                                                                getPointerTy()),
7362                                        MachinePointerInfo(Ptr),
7363                                        false, false, false, 0);
7364
7365    // Load the _tls_index variable
7366    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7367    if (Subtarget->is64Bit())
7368      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7369                           IDX, MachinePointerInfo(), MVT::i32,
7370                           false, false, 0);
7371    else
7372      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7373                        false, false, false, 0);
7374
7375    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7376		                            getPointerTy());
7377    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7378
7379    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7380    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7381                      false, false, false, 0);
7382
7383    // Get the offset of start of .tls section
7384    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7385                                             GA->getValueType(0),
7386                                             GA->getOffset(), X86II::MO_SECREL);
7387    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7388
7389    // The address of the thread local variable is the add of the thread
7390    // pointer with the offset of the variable.
7391    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7392  }
7393
7394  llvm_unreachable("TLS not implemented for this target.");
7395}
7396
7397
7398/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7399/// and take a 2 x i32 value to shift plus a shift amount.
7400SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7401  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7402  EVT VT = Op.getValueType();
7403  unsigned VTBits = VT.getSizeInBits();
7404  DebugLoc dl = Op.getDebugLoc();
7405  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7406  SDValue ShOpLo = Op.getOperand(0);
7407  SDValue ShOpHi = Op.getOperand(1);
7408  SDValue ShAmt  = Op.getOperand(2);
7409  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7410                                     DAG.getConstant(VTBits - 1, MVT::i8))
7411                       : DAG.getConstant(0, VT);
7412
7413  SDValue Tmp2, Tmp3;
7414  if (Op.getOpcode() == ISD::SHL_PARTS) {
7415    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7416    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7417  } else {
7418    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7419    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7420  }
7421
7422  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7423                                DAG.getConstant(VTBits, MVT::i8));
7424  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7425                             AndNode, DAG.getConstant(0, MVT::i8));
7426
7427  SDValue Hi, Lo;
7428  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7429  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7430  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7431
7432  if (Op.getOpcode() == ISD::SHL_PARTS) {
7433    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7434    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7435  } else {
7436    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7437    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7438  }
7439
7440  SDValue Ops[2] = { Lo, Hi };
7441  return DAG.getMergeValues(Ops, 2, dl);
7442}
7443
7444SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7445                                           SelectionDAG &DAG) const {
7446  EVT SrcVT = Op.getOperand(0).getValueType();
7447
7448  if (SrcVT.isVector())
7449    return SDValue();
7450
7451  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7452         "Unknown SINT_TO_FP to lower!");
7453
7454  // These are really Legal; return the operand so the caller accepts it as
7455  // Legal.
7456  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7457    return Op;
7458  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7459      Subtarget->is64Bit()) {
7460    return Op;
7461  }
7462
7463  DebugLoc dl = Op.getDebugLoc();
7464  unsigned Size = SrcVT.getSizeInBits()/8;
7465  MachineFunction &MF = DAG.getMachineFunction();
7466  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7467  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7468  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7469                               StackSlot,
7470                               MachinePointerInfo::getFixedStack(SSFI),
7471                               false, false, 0);
7472  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7473}
7474
7475SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7476                                     SDValue StackSlot,
7477                                     SelectionDAG &DAG) const {
7478  // Build the FILD
7479  DebugLoc DL = Op.getDebugLoc();
7480  SDVTList Tys;
7481  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7482  if (useSSE)
7483    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7484  else
7485    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7486
7487  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7488
7489  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7490  MachineMemOperand *MMO;
7491  if (FI) {
7492    int SSFI = FI->getIndex();
7493    MMO =
7494      DAG.getMachineFunction()
7495      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7496                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7497  } else {
7498    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7499    StackSlot = StackSlot.getOperand(1);
7500  }
7501  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7502  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7503                                           X86ISD::FILD, DL,
7504                                           Tys, Ops, array_lengthof(Ops),
7505                                           SrcVT, MMO);
7506
7507  if (useSSE) {
7508    Chain = Result.getValue(1);
7509    SDValue InFlag = Result.getValue(2);
7510
7511    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7512    // shouldn't be necessary except that RFP cannot be live across
7513    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7514    MachineFunction &MF = DAG.getMachineFunction();
7515    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7516    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7517    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7518    Tys = DAG.getVTList(MVT::Other);
7519    SDValue Ops[] = {
7520      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7521    };
7522    MachineMemOperand *MMO =
7523      DAG.getMachineFunction()
7524      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7525                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7526
7527    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7528                                    Ops, array_lengthof(Ops),
7529                                    Op.getValueType(), MMO);
7530    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7531                         MachinePointerInfo::getFixedStack(SSFI),
7532                         false, false, false, 0);
7533  }
7534
7535  return Result;
7536}
7537
7538// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7539SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7540                                               SelectionDAG &DAG) const {
7541  // This algorithm is not obvious. Here it is what we're trying to output:
7542  /*
7543     movq       %rax,  %xmm0
7544     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7545     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7546     #ifdef __SSE3__
7547       haddpd   %xmm0, %xmm0
7548     #else
7549       pshufd   $0x4e, %xmm0, %xmm1
7550       addpd    %xmm1, %xmm0
7551     #endif
7552  */
7553
7554  DebugLoc dl = Op.getDebugLoc();
7555  LLVMContext *Context = DAG.getContext();
7556
7557  // Build some magic constants.
7558  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7559  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7560  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7561
7562  SmallVector<Constant*,2> CV1;
7563  CV1.push_back(
7564        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7565  CV1.push_back(
7566        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7567  Constant *C1 = ConstantVector::get(CV1);
7568  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7569
7570  // Load the 64-bit value into an XMM register.
7571  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7572                            Op.getOperand(0));
7573  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7574                              MachinePointerInfo::getConstantPool(),
7575                              false, false, false, 16);
7576  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7577                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7578                              CLod0);
7579
7580  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7581                              MachinePointerInfo::getConstantPool(),
7582                              false, false, false, 16);
7583  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7584  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7585  SDValue Result;
7586
7587  if (Subtarget->hasSSE3()) {
7588    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7589    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7590  } else {
7591    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7592    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7593                                           S2F, 0x4E, DAG);
7594    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7595                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7596                         Sub);
7597  }
7598
7599  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7600                     DAG.getIntPtrConstant(0));
7601}
7602
7603// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7604SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7605                                               SelectionDAG &DAG) const {
7606  DebugLoc dl = Op.getDebugLoc();
7607  // FP constant to bias correct the final result.
7608  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7609                                   MVT::f64);
7610
7611  // Load the 32-bit value into an XMM register.
7612  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7613                             Op.getOperand(0));
7614
7615  // Zero out the upper parts of the register.
7616  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7617
7618  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7619                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7620                     DAG.getIntPtrConstant(0));
7621
7622  // Or the load with the bias.
7623  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7624                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7625                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7626                                                   MVT::v2f64, Load)),
7627                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7628                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7629                                                   MVT::v2f64, Bias)));
7630  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7631                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7632                   DAG.getIntPtrConstant(0));
7633
7634  // Subtract the bias.
7635  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7636
7637  // Handle final rounding.
7638  EVT DestVT = Op.getValueType();
7639
7640  if (DestVT.bitsLT(MVT::f64)) {
7641    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7642                       DAG.getIntPtrConstant(0));
7643  } else if (DestVT.bitsGT(MVT::f64)) {
7644    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7645  }
7646
7647  // Handle final rounding.
7648  return Sub;
7649}
7650
7651SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7652                                           SelectionDAG &DAG) const {
7653  SDValue N0 = Op.getOperand(0);
7654  DebugLoc dl = Op.getDebugLoc();
7655
7656  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7657  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7658  // the optimization here.
7659  if (DAG.SignBitIsZero(N0))
7660    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7661
7662  EVT SrcVT = N0.getValueType();
7663  EVT DstVT = Op.getValueType();
7664  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7665    return LowerUINT_TO_FP_i64(Op, DAG);
7666  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7667    return LowerUINT_TO_FP_i32(Op, DAG);
7668  else if (Subtarget->is64Bit() &&
7669           SrcVT == MVT::i64 && DstVT == MVT::f32)
7670    return SDValue();
7671
7672  // Make a 64-bit buffer, and use it to build an FILD.
7673  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7674  if (SrcVT == MVT::i32) {
7675    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7676    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7677                                     getPointerTy(), StackSlot, WordOff);
7678    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7679                                  StackSlot, MachinePointerInfo(),
7680                                  false, false, 0);
7681    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7682                                  OffsetSlot, MachinePointerInfo(),
7683                                  false, false, 0);
7684    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7685    return Fild;
7686  }
7687
7688  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7689  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7690                               StackSlot, MachinePointerInfo(),
7691                               false, false, 0);
7692  // For i64 source, we need to add the appropriate power of 2 if the input
7693  // was negative.  This is the same as the optimization in
7694  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7695  // we must be careful to do the computation in x87 extended precision, not
7696  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7697  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7698  MachineMemOperand *MMO =
7699    DAG.getMachineFunction()
7700    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7701                          MachineMemOperand::MOLoad, 8, 8);
7702
7703  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7704  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7705  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7706                                         MVT::i64, MMO);
7707
7708  APInt FF(32, 0x5F800000ULL);
7709
7710  // Check whether the sign bit is set.
7711  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7712                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7713                                 ISD::SETLT);
7714
7715  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7716  SDValue FudgePtr = DAG.getConstantPool(
7717                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7718                                         getPointerTy());
7719
7720  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7721  SDValue Zero = DAG.getIntPtrConstant(0);
7722  SDValue Four = DAG.getIntPtrConstant(4);
7723  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7724                               Zero, Four);
7725  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7726
7727  // Load the value out, extending it from f32 to f80.
7728  // FIXME: Avoid the extend by constructing the right constant pool?
7729  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7730                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7731                                 MVT::f32, false, false, 4);
7732  // Extend everything to 80 bits to force it to be done on x87.
7733  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7734  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7735}
7736
7737std::pair<SDValue,SDValue> X86TargetLowering::
7738FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7739  DebugLoc DL = Op.getDebugLoc();
7740
7741  EVT DstTy = Op.getValueType();
7742
7743  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7744    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7745    DstTy = MVT::i64;
7746  }
7747
7748  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7749         DstTy.getSimpleVT() >= MVT::i16 &&
7750         "Unknown FP_TO_INT to lower!");
7751
7752  // These are really Legal.
7753  if (DstTy == MVT::i32 &&
7754      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7755    return std::make_pair(SDValue(), SDValue());
7756  if (Subtarget->is64Bit() &&
7757      DstTy == MVT::i64 &&
7758      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7759    return std::make_pair(SDValue(), SDValue());
7760
7761  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
7762  // stack slot, or into the FTOL runtime function.
7763  MachineFunction &MF = DAG.getMachineFunction();
7764  unsigned MemSize = DstTy.getSizeInBits()/8;
7765  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7766  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7767
7768  unsigned Opc;
7769  if (!IsSigned && isIntegerTypeFTOL(DstTy))
7770    Opc = X86ISD::WIN_FTOL;
7771  else
7772    switch (DstTy.getSimpleVT().SimpleTy) {
7773    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7774    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7775    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7776    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7777    }
7778
7779  SDValue Chain = DAG.getEntryNode();
7780  SDValue Value = Op.getOperand(0);
7781  EVT TheVT = Op.getOperand(0).getValueType();
7782  // FIXME This causes a redundant load/store if the SSE-class value is already
7783  // in memory, such as if it is on the callstack.
7784  if (isScalarFPTypeInSSEReg(TheVT)) {
7785    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7786    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7787                         MachinePointerInfo::getFixedStack(SSFI),
7788                         false, false, 0);
7789    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7790    SDValue Ops[] = {
7791      Chain, StackSlot, DAG.getValueType(TheVT)
7792    };
7793
7794    MachineMemOperand *MMO =
7795      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7796                              MachineMemOperand::MOLoad, MemSize, MemSize);
7797    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7798                                    DstTy, MMO);
7799    Chain = Value.getValue(1);
7800    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7801    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7802  }
7803
7804  MachineMemOperand *MMO =
7805    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7806                            MachineMemOperand::MOStore, MemSize, MemSize);
7807
7808  if (Opc != X86ISD::WIN_FTOL) {
7809    // Build the FP_TO_INT*_IN_MEM
7810    SDValue Ops[] = { Chain, Value, StackSlot };
7811    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7812                                           Ops, 3, DstTy, MMO);
7813    return std::make_pair(FIST, StackSlot);
7814  } else {
7815    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
7816      DAG.getVTList(MVT::Other, MVT::Glue),
7817      Chain, Value);
7818    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
7819      MVT::i32, ftol.getValue(1));
7820    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
7821      MVT::i32, eax.getValue(2));
7822    SDValue Ops[] = { eax, edx };
7823    SDValue pair = IsReplace
7824      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
7825      : DAG.getMergeValues(Ops, 2, DL);
7826    return std::make_pair(pair, SDValue());
7827  }
7828}
7829
7830SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7831                                           SelectionDAG &DAG) const {
7832  if (Op.getValueType().isVector())
7833    return SDValue();
7834
7835  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7836    /*IsSigned=*/ true, /*IsReplace=*/ false);
7837  SDValue FIST = Vals.first, StackSlot = Vals.second;
7838  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7839  if (FIST.getNode() == 0) return Op;
7840
7841  if (StackSlot.getNode())
7842    // Load the result.
7843    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7844                       FIST, StackSlot, MachinePointerInfo(),
7845                       false, false, false, 0);
7846  else
7847    // The node is the result.
7848    return FIST;
7849}
7850
7851SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7852                                           SelectionDAG &DAG) const {
7853  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
7854    /*IsSigned=*/ false, /*IsReplace=*/ false);
7855  SDValue FIST = Vals.first, StackSlot = Vals.second;
7856  assert(FIST.getNode() && "Unexpected failure");
7857
7858  if (StackSlot.getNode())
7859    // Load the result.
7860    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7861                       FIST, StackSlot, MachinePointerInfo(),
7862                       false, false, false, 0);
7863  else
7864    // The node is the result.
7865    return FIST;
7866}
7867
7868SDValue X86TargetLowering::LowerFABS(SDValue Op,
7869                                     SelectionDAG &DAG) const {
7870  LLVMContext *Context = DAG.getContext();
7871  DebugLoc dl = Op.getDebugLoc();
7872  EVT VT = Op.getValueType();
7873  EVT EltVT = VT;
7874  if (VT.isVector())
7875    EltVT = VT.getVectorElementType();
7876  Constant *C;
7877  if (EltVT == MVT::f64) {
7878    C = ConstantVector::getSplat(2,
7879                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7880  } else {
7881    C = ConstantVector::getSplat(4,
7882               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7883  }
7884  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7885  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7886                             MachinePointerInfo::getConstantPool(),
7887                             false, false, false, 16);
7888  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7889}
7890
7891SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7892  LLVMContext *Context = DAG.getContext();
7893  DebugLoc dl = Op.getDebugLoc();
7894  EVT VT = Op.getValueType();
7895  EVT EltVT = VT;
7896  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
7897  if (VT.isVector()) {
7898    EltVT = VT.getVectorElementType();
7899    NumElts = VT.getVectorNumElements();
7900  }
7901  Constant *C;
7902  if (EltVT == MVT::f64)
7903    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7904  else
7905    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7906  C = ConstantVector::getSplat(NumElts, C);
7907  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7908  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7909                             MachinePointerInfo::getConstantPool(),
7910                             false, false, false, 16);
7911  if (VT.isVector()) {
7912    MVT XORVT = VT.getSizeInBits() == 128 ? MVT::v2i64 : MVT::v4i64;
7913    return DAG.getNode(ISD::BITCAST, dl, VT,
7914                       DAG.getNode(ISD::XOR, dl, XORVT,
7915                    DAG.getNode(ISD::BITCAST, dl, XORVT,
7916                                Op.getOperand(0)),
7917                    DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
7918  } else {
7919    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7920  }
7921}
7922
7923SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7924  LLVMContext *Context = DAG.getContext();
7925  SDValue Op0 = Op.getOperand(0);
7926  SDValue Op1 = Op.getOperand(1);
7927  DebugLoc dl = Op.getDebugLoc();
7928  EVT VT = Op.getValueType();
7929  EVT SrcVT = Op1.getValueType();
7930
7931  // If second operand is smaller, extend it first.
7932  if (SrcVT.bitsLT(VT)) {
7933    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7934    SrcVT = VT;
7935  }
7936  // And if it is bigger, shrink it first.
7937  if (SrcVT.bitsGT(VT)) {
7938    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7939    SrcVT = VT;
7940  }
7941
7942  // At this point the operands and the result should have the same
7943  // type, and that won't be f80 since that is not custom lowered.
7944
7945  // First get the sign bit of second operand.
7946  SmallVector<Constant*,4> CV;
7947  if (SrcVT == MVT::f64) {
7948    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7949    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7950  } else {
7951    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7952    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7953    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7954    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7955  }
7956  Constant *C = ConstantVector::get(CV);
7957  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7958  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7959                              MachinePointerInfo::getConstantPool(),
7960                              false, false, false, 16);
7961  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7962
7963  // Shift sign bit right or left if the two operands have different types.
7964  if (SrcVT.bitsGT(VT)) {
7965    // Op0 is MVT::f32, Op1 is MVT::f64.
7966    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7967    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7968                          DAG.getConstant(32, MVT::i32));
7969    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7970    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7971                          DAG.getIntPtrConstant(0));
7972  }
7973
7974  // Clear first operand sign bit.
7975  CV.clear();
7976  if (VT == MVT::f64) {
7977    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7978    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7979  } else {
7980    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7981    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7982    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7983    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7984  }
7985  C = ConstantVector::get(CV);
7986  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7987  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7988                              MachinePointerInfo::getConstantPool(),
7989                              false, false, false, 16);
7990  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7991
7992  // Or the value with the sign bit.
7993  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7994}
7995
7996SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
7997  SDValue N0 = Op.getOperand(0);
7998  DebugLoc dl = Op.getDebugLoc();
7999  EVT VT = Op.getValueType();
8000
8001  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8002  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8003                                  DAG.getConstant(1, VT));
8004  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8005}
8006
8007/// Emit nodes that will be selected as "test Op0,Op0", or something
8008/// equivalent.
8009SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8010                                    SelectionDAG &DAG) const {
8011  DebugLoc dl = Op.getDebugLoc();
8012
8013  // CF and OF aren't always set the way we want. Determine which
8014  // of these we need.
8015  bool NeedCF = false;
8016  bool NeedOF = false;
8017  switch (X86CC) {
8018  default: break;
8019  case X86::COND_A: case X86::COND_AE:
8020  case X86::COND_B: case X86::COND_BE:
8021    NeedCF = true;
8022    break;
8023  case X86::COND_G: case X86::COND_GE:
8024  case X86::COND_L: case X86::COND_LE:
8025  case X86::COND_O: case X86::COND_NO:
8026    NeedOF = true;
8027    break;
8028  }
8029
8030  // See if we can use the EFLAGS value from the operand instead of
8031  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8032  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8033  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8034    // Emit a CMP with 0, which is the TEST pattern.
8035    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8036                       DAG.getConstant(0, Op.getValueType()));
8037
8038  unsigned Opcode = 0;
8039  unsigned NumOperands = 0;
8040  switch (Op.getNode()->getOpcode()) {
8041  case ISD::ADD:
8042    // Due to an isel shortcoming, be conservative if this add is likely to be
8043    // selected as part of a load-modify-store instruction. When the root node
8044    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8045    // uses of other nodes in the match, such as the ADD in this case. This
8046    // leads to the ADD being left around and reselected, with the result being
8047    // two adds in the output.  Alas, even if none our users are stores, that
8048    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8049    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8050    // climbing the DAG back to the root, and it doesn't seem to be worth the
8051    // effort.
8052    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8053         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8054      if (UI->getOpcode() != ISD::CopyToReg &&
8055          UI->getOpcode() != ISD::SETCC &&
8056          UI->getOpcode() != ISD::STORE)
8057        goto default_case;
8058
8059    if (ConstantSDNode *C =
8060        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8061      // An add of one will be selected as an INC.
8062      if (C->getAPIntValue() == 1) {
8063        Opcode = X86ISD::INC;
8064        NumOperands = 1;
8065        break;
8066      }
8067
8068      // An add of negative one (subtract of one) will be selected as a DEC.
8069      if (C->getAPIntValue().isAllOnesValue()) {
8070        Opcode = X86ISD::DEC;
8071        NumOperands = 1;
8072        break;
8073      }
8074    }
8075
8076    // Otherwise use a regular EFLAGS-setting add.
8077    Opcode = X86ISD::ADD;
8078    NumOperands = 2;
8079    break;
8080  case ISD::AND: {
8081    // If the primary and result isn't used, don't bother using X86ISD::AND,
8082    // because a TEST instruction will be better.
8083    bool NonFlagUse = false;
8084    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8085           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8086      SDNode *User = *UI;
8087      unsigned UOpNo = UI.getOperandNo();
8088      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8089        // Look pass truncate.
8090        UOpNo = User->use_begin().getOperandNo();
8091        User = *User->use_begin();
8092      }
8093
8094      if (User->getOpcode() != ISD::BRCOND &&
8095          User->getOpcode() != ISD::SETCC &&
8096          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8097        NonFlagUse = true;
8098        break;
8099      }
8100    }
8101
8102    if (!NonFlagUse)
8103      break;
8104  }
8105    // FALL THROUGH
8106  case ISD::SUB:
8107  case ISD::OR:
8108  case ISD::XOR:
8109    // Due to the ISEL shortcoming noted above, be conservative if this op is
8110    // likely to be selected as part of a load-modify-store instruction.
8111    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8112           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8113      if (UI->getOpcode() == ISD::STORE)
8114        goto default_case;
8115
8116    // Otherwise use a regular EFLAGS-setting instruction.
8117    switch (Op.getNode()->getOpcode()) {
8118    default: llvm_unreachable("unexpected operator!");
8119    case ISD::SUB: Opcode = X86ISD::SUB; break;
8120    case ISD::OR:  Opcode = X86ISD::OR;  break;
8121    case ISD::XOR: Opcode = X86ISD::XOR; break;
8122    case ISD::AND: Opcode = X86ISD::AND; break;
8123    }
8124
8125    NumOperands = 2;
8126    break;
8127  case X86ISD::ADD:
8128  case X86ISD::SUB:
8129  case X86ISD::INC:
8130  case X86ISD::DEC:
8131  case X86ISD::OR:
8132  case X86ISD::XOR:
8133  case X86ISD::AND:
8134    return SDValue(Op.getNode(), 1);
8135  default:
8136  default_case:
8137    break;
8138  }
8139
8140  if (Opcode == 0)
8141    // Emit a CMP with 0, which is the TEST pattern.
8142    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8143                       DAG.getConstant(0, Op.getValueType()));
8144
8145  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8146  SmallVector<SDValue, 4> Ops;
8147  for (unsigned i = 0; i != NumOperands; ++i)
8148    Ops.push_back(Op.getOperand(i));
8149
8150  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8151  DAG.ReplaceAllUsesWith(Op, New);
8152  return SDValue(New.getNode(), 1);
8153}
8154
8155/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8156/// equivalent.
8157SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8158                                   SelectionDAG &DAG) const {
8159  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8160    if (C->getAPIntValue() == 0)
8161      return EmitTest(Op0, X86CC, DAG);
8162
8163  DebugLoc dl = Op0.getDebugLoc();
8164  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8165}
8166
8167/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8168/// if it's possible.
8169SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8170                                     DebugLoc dl, SelectionDAG &DAG) const {
8171  SDValue Op0 = And.getOperand(0);
8172  SDValue Op1 = And.getOperand(1);
8173  if (Op0.getOpcode() == ISD::TRUNCATE)
8174    Op0 = Op0.getOperand(0);
8175  if (Op1.getOpcode() == ISD::TRUNCATE)
8176    Op1 = Op1.getOperand(0);
8177
8178  SDValue LHS, RHS;
8179  if (Op1.getOpcode() == ISD::SHL)
8180    std::swap(Op0, Op1);
8181  if (Op0.getOpcode() == ISD::SHL) {
8182    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8183      if (And00C->getZExtValue() == 1) {
8184        // If we looked past a truncate, check that it's only truncating away
8185        // known zeros.
8186        unsigned BitWidth = Op0.getValueSizeInBits();
8187        unsigned AndBitWidth = And.getValueSizeInBits();
8188        if (BitWidth > AndBitWidth) {
8189          APInt Zeros, Ones;
8190          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8191          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8192            return SDValue();
8193        }
8194        LHS = Op1;
8195        RHS = Op0.getOperand(1);
8196      }
8197  } else if (Op1.getOpcode() == ISD::Constant) {
8198    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8199    uint64_t AndRHSVal = AndRHS->getZExtValue();
8200    SDValue AndLHS = Op0;
8201
8202    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8203      LHS = AndLHS.getOperand(0);
8204      RHS = AndLHS.getOperand(1);
8205    }
8206
8207    // Use BT if the immediate can't be encoded in a TEST instruction.
8208    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8209      LHS = AndLHS;
8210      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8211    }
8212  }
8213
8214  if (LHS.getNode()) {
8215    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8216    // instruction.  Since the shift amount is in-range-or-undefined, we know
8217    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8218    // the encoding for the i16 version is larger than the i32 version.
8219    // Also promote i16 to i32 for performance / code size reason.
8220    if (LHS.getValueType() == MVT::i8 ||
8221        LHS.getValueType() == MVT::i16)
8222      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8223
8224    // If the operand types disagree, extend the shift amount to match.  Since
8225    // BT ignores high bits (like shifts) we can use anyextend.
8226    if (LHS.getValueType() != RHS.getValueType())
8227      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8228
8229    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8230    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8231    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8232                       DAG.getConstant(Cond, MVT::i8), BT);
8233  }
8234
8235  return SDValue();
8236}
8237
8238SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8239
8240  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8241
8242  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8243  SDValue Op0 = Op.getOperand(0);
8244  SDValue Op1 = Op.getOperand(1);
8245  DebugLoc dl = Op.getDebugLoc();
8246  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8247
8248  // Optimize to BT if possible.
8249  // Lower (X & (1 << N)) == 0 to BT(X, N).
8250  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8251  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8252  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8253      Op1.getOpcode() == ISD::Constant &&
8254      cast<ConstantSDNode>(Op1)->isNullValue() &&
8255      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8256    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8257    if (NewSetCC.getNode())
8258      return NewSetCC;
8259  }
8260
8261  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8262  // these.
8263  if (Op1.getOpcode() == ISD::Constant &&
8264      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8265       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8266      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8267
8268    // If the input is a setcc, then reuse the input setcc or use a new one with
8269    // the inverted condition.
8270    if (Op0.getOpcode() == X86ISD::SETCC) {
8271      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8272      bool Invert = (CC == ISD::SETNE) ^
8273        cast<ConstantSDNode>(Op1)->isNullValue();
8274      if (!Invert) return Op0;
8275
8276      CCode = X86::GetOppositeBranchCondition(CCode);
8277      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8278                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8279    }
8280  }
8281
8282  bool isFP = Op1.getValueType().isFloatingPoint();
8283  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8284  if (X86CC == X86::COND_INVALID)
8285    return SDValue();
8286
8287  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8288  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8289                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8290}
8291
8292// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8293// ones, and then concatenate the result back.
8294static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8295  EVT VT = Op.getValueType();
8296
8297  assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8298         "Unsupported value type for operation");
8299
8300  int NumElems = VT.getVectorNumElements();
8301  DebugLoc dl = Op.getDebugLoc();
8302  SDValue CC = Op.getOperand(2);
8303  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8304  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8305
8306  // Extract the LHS vectors
8307  SDValue LHS = Op.getOperand(0);
8308  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8309  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8310
8311  // Extract the RHS vectors
8312  SDValue RHS = Op.getOperand(1);
8313  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8314  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8315
8316  // Issue the operation on the smaller types and concatenate the result back
8317  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8318  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8319  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8320                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8321                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8322}
8323
8324
8325SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8326  SDValue Cond;
8327  SDValue Op0 = Op.getOperand(0);
8328  SDValue Op1 = Op.getOperand(1);
8329  SDValue CC = Op.getOperand(2);
8330  EVT VT = Op.getValueType();
8331  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8332  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8333  DebugLoc dl = Op.getDebugLoc();
8334
8335  if (isFP) {
8336    unsigned SSECC = 8;
8337    EVT EltVT = Op0.getValueType().getVectorElementType();
8338    assert(EltVT == MVT::f32 || EltVT == MVT::f64); (void)EltVT;
8339
8340    bool Swap = false;
8341
8342    // SSE Condition code mapping:
8343    //  0 - EQ
8344    //  1 - LT
8345    //  2 - LE
8346    //  3 - UNORD
8347    //  4 - NEQ
8348    //  5 - NLT
8349    //  6 - NLE
8350    //  7 - ORD
8351    switch (SetCCOpcode) {
8352    default: break;
8353    case ISD::SETOEQ:
8354    case ISD::SETEQ:  SSECC = 0; break;
8355    case ISD::SETOGT:
8356    case ISD::SETGT: Swap = true; // Fallthrough
8357    case ISD::SETLT:
8358    case ISD::SETOLT: SSECC = 1; break;
8359    case ISD::SETOGE:
8360    case ISD::SETGE: Swap = true; // Fallthrough
8361    case ISD::SETLE:
8362    case ISD::SETOLE: SSECC = 2; break;
8363    case ISD::SETUO:  SSECC = 3; break;
8364    case ISD::SETUNE:
8365    case ISD::SETNE:  SSECC = 4; break;
8366    case ISD::SETULE: Swap = true;
8367    case ISD::SETUGE: SSECC = 5; break;
8368    case ISD::SETULT: Swap = true;
8369    case ISD::SETUGT: SSECC = 6; break;
8370    case ISD::SETO:   SSECC = 7; break;
8371    }
8372    if (Swap)
8373      std::swap(Op0, Op1);
8374
8375    // In the two special cases we can't handle, emit two comparisons.
8376    if (SSECC == 8) {
8377      if (SetCCOpcode == ISD::SETUEQ) {
8378        SDValue UNORD, EQ;
8379        UNORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8380                            DAG.getConstant(3, MVT::i8));
8381        EQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8382                         DAG.getConstant(0, MVT::i8));
8383        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8384      } else if (SetCCOpcode == ISD::SETONE) {
8385        SDValue ORD, NEQ;
8386        ORD = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8387                          DAG.getConstant(7, MVT::i8));
8388        NEQ = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8389                          DAG.getConstant(4, MVT::i8));
8390        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8391      }
8392      llvm_unreachable("Illegal FP comparison");
8393    }
8394    // Handle all other FP comparisons here.
8395    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8396                       DAG.getConstant(SSECC, MVT::i8));
8397  }
8398
8399  // Break 256-bit integer vector compare into smaller ones.
8400  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
8401    return Lower256IntVSETCC(Op, DAG);
8402
8403  // We are handling one of the integer comparisons here.  Since SSE only has
8404  // GT and EQ comparisons for integer, swapping operands and multiple
8405  // operations may be required for some comparisons.
8406  unsigned Opc = 0;
8407  bool Swap = false, Invert = false, FlipSigns = false;
8408
8409  switch (SetCCOpcode) {
8410  default: break;
8411  case ISD::SETNE:  Invert = true;
8412  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8413  case ISD::SETLT:  Swap = true;
8414  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8415  case ISD::SETGE:  Swap = true;
8416  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8417  case ISD::SETULT: Swap = true;
8418  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8419  case ISD::SETUGE: Swap = true;
8420  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8421  }
8422  if (Swap)
8423    std::swap(Op0, Op1);
8424
8425  // Check that the operation in question is available (most are plain SSE2,
8426  // but PCMPGTQ and PCMPEQQ have different requirements).
8427  if (Opc == X86ISD::PCMPGT && VT == MVT::v2i64 && !Subtarget->hasSSE42())
8428    return SDValue();
8429  if (Opc == X86ISD::PCMPEQ && VT == MVT::v2i64 && !Subtarget->hasSSE41())
8430    return SDValue();
8431
8432  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8433  // bits of the inputs before performing those operations.
8434  if (FlipSigns) {
8435    EVT EltVT = VT.getVectorElementType();
8436    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8437                                      EltVT);
8438    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8439    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8440                                    SignBits.size());
8441    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8442    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8443  }
8444
8445  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8446
8447  // If the logical-not of the result is required, perform that now.
8448  if (Invert)
8449    Result = DAG.getNOT(dl, Result, VT);
8450
8451  return Result;
8452}
8453
8454// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8455static bool isX86LogicalCmp(SDValue Op) {
8456  unsigned Opc = Op.getNode()->getOpcode();
8457  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8458    return true;
8459  if (Op.getResNo() == 1 &&
8460      (Opc == X86ISD::ADD ||
8461       Opc == X86ISD::SUB ||
8462       Opc == X86ISD::ADC ||
8463       Opc == X86ISD::SBB ||
8464       Opc == X86ISD::SMUL ||
8465       Opc == X86ISD::UMUL ||
8466       Opc == X86ISD::INC ||
8467       Opc == X86ISD::DEC ||
8468       Opc == X86ISD::OR ||
8469       Opc == X86ISD::XOR ||
8470       Opc == X86ISD::AND))
8471    return true;
8472
8473  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8474    return true;
8475
8476  return false;
8477}
8478
8479static bool isZero(SDValue V) {
8480  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8481  return C && C->isNullValue();
8482}
8483
8484static bool isAllOnes(SDValue V) {
8485  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8486  return C && C->isAllOnesValue();
8487}
8488
8489SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8490  bool addTest = true;
8491  SDValue Cond  = Op.getOperand(0);
8492  SDValue Op1 = Op.getOperand(1);
8493  SDValue Op2 = Op.getOperand(2);
8494  DebugLoc DL = Op.getDebugLoc();
8495  SDValue CC;
8496
8497  if (Cond.getOpcode() == ISD::SETCC) {
8498    SDValue NewCond = LowerSETCC(Cond, DAG);
8499    if (NewCond.getNode())
8500      Cond = NewCond;
8501  }
8502
8503  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8504  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8505  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8506  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8507  if (Cond.getOpcode() == X86ISD::SETCC &&
8508      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8509      isZero(Cond.getOperand(1).getOperand(1))) {
8510    SDValue Cmp = Cond.getOperand(1);
8511
8512    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8513
8514    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8515        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8516      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8517
8518      SDValue CmpOp0 = Cmp.getOperand(0);
8519      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8520                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8521
8522      SDValue Res =   // Res = 0 or -1.
8523        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8524                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8525
8526      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8527        Res = DAG.getNOT(DL, Res, Res.getValueType());
8528
8529      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8530      if (N2C == 0 || !N2C->isNullValue())
8531        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8532      return Res;
8533    }
8534  }
8535
8536  // Look past (and (setcc_carry (cmp ...)), 1).
8537  if (Cond.getOpcode() == ISD::AND &&
8538      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8539    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8540    if (C && C->getAPIntValue() == 1)
8541      Cond = Cond.getOperand(0);
8542  }
8543
8544  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8545  // setting operand in place of the X86ISD::SETCC.
8546  unsigned CondOpcode = Cond.getOpcode();
8547  if (CondOpcode == X86ISD::SETCC ||
8548      CondOpcode == X86ISD::SETCC_CARRY) {
8549    CC = Cond.getOperand(0);
8550
8551    SDValue Cmp = Cond.getOperand(1);
8552    unsigned Opc = Cmp.getOpcode();
8553    EVT VT = Op.getValueType();
8554
8555    bool IllegalFPCMov = false;
8556    if (VT.isFloatingPoint() && !VT.isVector() &&
8557        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8558      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8559
8560    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8561        Opc == X86ISD::BT) { // FIXME
8562      Cond = Cmp;
8563      addTest = false;
8564    }
8565  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8566             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8567             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8568              Cond.getOperand(0).getValueType() != MVT::i8)) {
8569    SDValue LHS = Cond.getOperand(0);
8570    SDValue RHS = Cond.getOperand(1);
8571    unsigned X86Opcode;
8572    unsigned X86Cond;
8573    SDVTList VTs;
8574    switch (CondOpcode) {
8575    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8576    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8577    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8578    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8579    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8580    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8581    default: llvm_unreachable("unexpected overflowing operator");
8582    }
8583    if (CondOpcode == ISD::UMULO)
8584      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8585                          MVT::i32);
8586    else
8587      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8588
8589    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8590
8591    if (CondOpcode == ISD::UMULO)
8592      Cond = X86Op.getValue(2);
8593    else
8594      Cond = X86Op.getValue(1);
8595
8596    CC = DAG.getConstant(X86Cond, MVT::i8);
8597    addTest = false;
8598  }
8599
8600  if (addTest) {
8601    // Look pass the truncate.
8602    if (Cond.getOpcode() == ISD::TRUNCATE)
8603      Cond = Cond.getOperand(0);
8604
8605    // We know the result of AND is compared against zero. Try to match
8606    // it to BT.
8607    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8608      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8609      if (NewSetCC.getNode()) {
8610        CC = NewSetCC.getOperand(0);
8611        Cond = NewSetCC.getOperand(1);
8612        addTest = false;
8613      }
8614    }
8615  }
8616
8617  if (addTest) {
8618    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8619    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8620  }
8621
8622  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8623  // a <  b ?  0 : -1 -> RES = setcc_carry
8624  // a >= b ? -1 :  0 -> RES = setcc_carry
8625  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8626  if (Cond.getOpcode() == X86ISD::CMP) {
8627    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8628
8629    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8630        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8631      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8632                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8633      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8634        return DAG.getNOT(DL, Res, Res.getValueType());
8635      return Res;
8636    }
8637  }
8638
8639  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8640  // condition is true.
8641  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8642  SDValue Ops[] = { Op2, Op1, CC, Cond };
8643  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8644}
8645
8646// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8647// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8648// from the AND / OR.
8649static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8650  Opc = Op.getOpcode();
8651  if (Opc != ISD::OR && Opc != ISD::AND)
8652    return false;
8653  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8654          Op.getOperand(0).hasOneUse() &&
8655          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8656          Op.getOperand(1).hasOneUse());
8657}
8658
8659// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8660// 1 and that the SETCC node has a single use.
8661static bool isXor1OfSetCC(SDValue Op) {
8662  if (Op.getOpcode() != ISD::XOR)
8663    return false;
8664  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8665  if (N1C && N1C->getAPIntValue() == 1) {
8666    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8667      Op.getOperand(0).hasOneUse();
8668  }
8669  return false;
8670}
8671
8672SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8673  bool addTest = true;
8674  SDValue Chain = Op.getOperand(0);
8675  SDValue Cond  = Op.getOperand(1);
8676  SDValue Dest  = Op.getOperand(2);
8677  DebugLoc dl = Op.getDebugLoc();
8678  SDValue CC;
8679  bool Inverted = false;
8680
8681  if (Cond.getOpcode() == ISD::SETCC) {
8682    // Check for setcc([su]{add,sub,mul}o == 0).
8683    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
8684        isa<ConstantSDNode>(Cond.getOperand(1)) &&
8685        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
8686        Cond.getOperand(0).getResNo() == 1 &&
8687        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
8688         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
8689         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
8690         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
8691         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
8692         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
8693      Inverted = true;
8694      Cond = Cond.getOperand(0);
8695    } else {
8696      SDValue NewCond = LowerSETCC(Cond, DAG);
8697      if (NewCond.getNode())
8698        Cond = NewCond;
8699    }
8700  }
8701#if 0
8702  // FIXME: LowerXALUO doesn't handle these!!
8703  else if (Cond.getOpcode() == X86ISD::ADD  ||
8704           Cond.getOpcode() == X86ISD::SUB  ||
8705           Cond.getOpcode() == X86ISD::SMUL ||
8706           Cond.getOpcode() == X86ISD::UMUL)
8707    Cond = LowerXALUO(Cond, DAG);
8708#endif
8709
8710  // Look pass (and (setcc_carry (cmp ...)), 1).
8711  if (Cond.getOpcode() == ISD::AND &&
8712      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8713    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8714    if (C && C->getAPIntValue() == 1)
8715      Cond = Cond.getOperand(0);
8716  }
8717
8718  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8719  // setting operand in place of the X86ISD::SETCC.
8720  unsigned CondOpcode = Cond.getOpcode();
8721  if (CondOpcode == X86ISD::SETCC ||
8722      CondOpcode == X86ISD::SETCC_CARRY) {
8723    CC = Cond.getOperand(0);
8724
8725    SDValue Cmp = Cond.getOperand(1);
8726    unsigned Opc = Cmp.getOpcode();
8727    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8728    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8729      Cond = Cmp;
8730      addTest = false;
8731    } else {
8732      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8733      default: break;
8734      case X86::COND_O:
8735      case X86::COND_B:
8736        // These can only come from an arithmetic instruction with overflow,
8737        // e.g. SADDO, UADDO.
8738        Cond = Cond.getNode()->getOperand(1);
8739        addTest = false;
8740        break;
8741      }
8742    }
8743  }
8744  CondOpcode = Cond.getOpcode();
8745  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8746      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8747      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8748       Cond.getOperand(0).getValueType() != MVT::i8)) {
8749    SDValue LHS = Cond.getOperand(0);
8750    SDValue RHS = Cond.getOperand(1);
8751    unsigned X86Opcode;
8752    unsigned X86Cond;
8753    SDVTList VTs;
8754    switch (CondOpcode) {
8755    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8756    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8757    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8758    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8759    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8760    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8761    default: llvm_unreachable("unexpected overflowing operator");
8762    }
8763    if (Inverted)
8764      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
8765    if (CondOpcode == ISD::UMULO)
8766      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8767                          MVT::i32);
8768    else
8769      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8770
8771    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
8772
8773    if (CondOpcode == ISD::UMULO)
8774      Cond = X86Op.getValue(2);
8775    else
8776      Cond = X86Op.getValue(1);
8777
8778    CC = DAG.getConstant(X86Cond, MVT::i8);
8779    addTest = false;
8780  } else {
8781    unsigned CondOpc;
8782    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8783      SDValue Cmp = Cond.getOperand(0).getOperand(1);
8784      if (CondOpc == ISD::OR) {
8785        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8786        // two branches instead of an explicit OR instruction with a
8787        // separate test.
8788        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8789            isX86LogicalCmp(Cmp)) {
8790          CC = Cond.getOperand(0).getOperand(0);
8791          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8792                              Chain, Dest, CC, Cmp);
8793          CC = Cond.getOperand(1).getOperand(0);
8794          Cond = Cmp;
8795          addTest = false;
8796        }
8797      } else { // ISD::AND
8798        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8799        // two branches instead of an explicit AND instruction with a
8800        // separate test. However, we only do this if this block doesn't
8801        // have a fall-through edge, because this requires an explicit
8802        // jmp when the condition is false.
8803        if (Cmp == Cond.getOperand(1).getOperand(1) &&
8804            isX86LogicalCmp(Cmp) &&
8805            Op.getNode()->hasOneUse()) {
8806          X86::CondCode CCode =
8807            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8808          CCode = X86::GetOppositeBranchCondition(CCode);
8809          CC = DAG.getConstant(CCode, MVT::i8);
8810          SDNode *User = *Op.getNode()->use_begin();
8811          // Look for an unconditional branch following this conditional branch.
8812          // We need this because we need to reverse the successors in order
8813          // to implement FCMP_OEQ.
8814          if (User->getOpcode() == ISD::BR) {
8815            SDValue FalseBB = User->getOperand(1);
8816            SDNode *NewBR =
8817              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8818            assert(NewBR == User);
8819            (void)NewBR;
8820            Dest = FalseBB;
8821
8822            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8823                                Chain, Dest, CC, Cmp);
8824            X86::CondCode CCode =
8825              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8826            CCode = X86::GetOppositeBranchCondition(CCode);
8827            CC = DAG.getConstant(CCode, MVT::i8);
8828            Cond = Cmp;
8829            addTest = false;
8830          }
8831        }
8832      }
8833    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8834      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8835      // It should be transformed during dag combiner except when the condition
8836      // is set by a arithmetics with overflow node.
8837      X86::CondCode CCode =
8838        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8839      CCode = X86::GetOppositeBranchCondition(CCode);
8840      CC = DAG.getConstant(CCode, MVT::i8);
8841      Cond = Cond.getOperand(0).getOperand(1);
8842      addTest = false;
8843    } else if (Cond.getOpcode() == ISD::SETCC &&
8844               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
8845      // For FCMP_OEQ, we can emit
8846      // two branches instead of an explicit AND instruction with a
8847      // separate test. However, we only do this if this block doesn't
8848      // have a fall-through edge, because this requires an explicit
8849      // jmp when the condition is false.
8850      if (Op.getNode()->hasOneUse()) {
8851        SDNode *User = *Op.getNode()->use_begin();
8852        // Look for an unconditional branch following this conditional branch.
8853        // We need this because we need to reverse the successors in order
8854        // to implement FCMP_OEQ.
8855        if (User->getOpcode() == ISD::BR) {
8856          SDValue FalseBB = User->getOperand(1);
8857          SDNode *NewBR =
8858            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8859          assert(NewBR == User);
8860          (void)NewBR;
8861          Dest = FalseBB;
8862
8863          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8864                                    Cond.getOperand(0), Cond.getOperand(1));
8865          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8866          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8867                              Chain, Dest, CC, Cmp);
8868          CC = DAG.getConstant(X86::COND_P, MVT::i8);
8869          Cond = Cmp;
8870          addTest = false;
8871        }
8872      }
8873    } else if (Cond.getOpcode() == ISD::SETCC &&
8874               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
8875      // For FCMP_UNE, we can emit
8876      // two branches instead of an explicit AND instruction with a
8877      // separate test. However, we only do this if this block doesn't
8878      // have a fall-through edge, because this requires an explicit
8879      // jmp when the condition is false.
8880      if (Op.getNode()->hasOneUse()) {
8881        SDNode *User = *Op.getNode()->use_begin();
8882        // Look for an unconditional branch following this conditional branch.
8883        // We need this because we need to reverse the successors in order
8884        // to implement FCMP_UNE.
8885        if (User->getOpcode() == ISD::BR) {
8886          SDValue FalseBB = User->getOperand(1);
8887          SDNode *NewBR =
8888            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8889          assert(NewBR == User);
8890          (void)NewBR;
8891
8892          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
8893                                    Cond.getOperand(0), Cond.getOperand(1));
8894          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8895          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8896                              Chain, Dest, CC, Cmp);
8897          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
8898          Cond = Cmp;
8899          addTest = false;
8900          Dest = FalseBB;
8901        }
8902      }
8903    }
8904  }
8905
8906  if (addTest) {
8907    // Look pass the truncate.
8908    if (Cond.getOpcode() == ISD::TRUNCATE)
8909      Cond = Cond.getOperand(0);
8910
8911    // We know the result of AND is compared against zero. Try to match
8912    // it to BT.
8913    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8914      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8915      if (NewSetCC.getNode()) {
8916        CC = NewSetCC.getOperand(0);
8917        Cond = NewSetCC.getOperand(1);
8918        addTest = false;
8919      }
8920    }
8921  }
8922
8923  if (addTest) {
8924    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8925    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8926  }
8927  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8928                     Chain, Dest, CC, Cond);
8929}
8930
8931
8932// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8933// Calls to _alloca is needed to probe the stack when allocating more than 4k
8934// bytes in one go. Touching the stack at 4K increments is necessary to ensure
8935// that the guard pages used by the OS virtual memory manager are allocated in
8936// correct sequence.
8937SDValue
8938X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8939                                           SelectionDAG &DAG) const {
8940  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8941          getTargetMachine().Options.EnableSegmentedStacks) &&
8942         "This should be used only on Windows targets or when segmented stacks "
8943         "are being used");
8944  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8945  DebugLoc dl = Op.getDebugLoc();
8946
8947  // Get the inputs.
8948  SDValue Chain = Op.getOperand(0);
8949  SDValue Size  = Op.getOperand(1);
8950  // FIXME: Ensure alignment here
8951
8952  bool Is64Bit = Subtarget->is64Bit();
8953  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8954
8955  if (getTargetMachine().Options.EnableSegmentedStacks) {
8956    MachineFunction &MF = DAG.getMachineFunction();
8957    MachineRegisterInfo &MRI = MF.getRegInfo();
8958
8959    if (Is64Bit) {
8960      // The 64 bit implementation of segmented stacks needs to clobber both r10
8961      // r11. This makes it impossible to use it along with nested parameters.
8962      const Function *F = MF.getFunction();
8963
8964      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8965           I != E; I++)
8966        if (I->hasNestAttr())
8967          report_fatal_error("Cannot use segmented stacks with functions that "
8968                             "have nested arguments.");
8969    }
8970
8971    const TargetRegisterClass *AddrRegClass =
8972      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8973    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8974    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8975    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8976                                DAG.getRegister(Vreg, SPTy));
8977    SDValue Ops1[2] = { Value, Chain };
8978    return DAG.getMergeValues(Ops1, 2, dl);
8979  } else {
8980    SDValue Flag;
8981    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8982
8983    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8984    Flag = Chain.getValue(1);
8985    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8986
8987    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8988    Flag = Chain.getValue(1);
8989
8990    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8991
8992    SDValue Ops1[2] = { Chain.getValue(0), Chain };
8993    return DAG.getMergeValues(Ops1, 2, dl);
8994  }
8995}
8996
8997SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8998  MachineFunction &MF = DAG.getMachineFunction();
8999  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9000
9001  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9002  DebugLoc DL = Op.getDebugLoc();
9003
9004  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9005    // vastart just stores the address of the VarArgsFrameIndex slot into the
9006    // memory location argument.
9007    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9008                                   getPointerTy());
9009    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9010                        MachinePointerInfo(SV), false, false, 0);
9011  }
9012
9013  // __va_list_tag:
9014  //   gp_offset         (0 - 6 * 8)
9015  //   fp_offset         (48 - 48 + 8 * 16)
9016  //   overflow_arg_area (point to parameters coming in memory).
9017  //   reg_save_area
9018  SmallVector<SDValue, 8> MemOps;
9019  SDValue FIN = Op.getOperand(1);
9020  // Store gp_offset
9021  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9022                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9023                                               MVT::i32),
9024                               FIN, MachinePointerInfo(SV), false, false, 0);
9025  MemOps.push_back(Store);
9026
9027  // Store fp_offset
9028  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9029                    FIN, DAG.getIntPtrConstant(4));
9030  Store = DAG.getStore(Op.getOperand(0), DL,
9031                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9032                                       MVT::i32),
9033                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9034  MemOps.push_back(Store);
9035
9036  // Store ptr to overflow_arg_area
9037  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9038                    FIN, DAG.getIntPtrConstant(4));
9039  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9040                                    getPointerTy());
9041  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9042                       MachinePointerInfo(SV, 8),
9043                       false, false, 0);
9044  MemOps.push_back(Store);
9045
9046  // Store ptr to reg_save_area.
9047  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9048                    FIN, DAG.getIntPtrConstant(8));
9049  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9050                                    getPointerTy());
9051  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9052                       MachinePointerInfo(SV, 16), false, false, 0);
9053  MemOps.push_back(Store);
9054  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9055                     &MemOps[0], MemOps.size());
9056}
9057
9058SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9059  assert(Subtarget->is64Bit() &&
9060         "LowerVAARG only handles 64-bit va_arg!");
9061  assert((Subtarget->isTargetLinux() ||
9062          Subtarget->isTargetDarwin()) &&
9063          "Unhandled target in LowerVAARG");
9064  assert(Op.getNode()->getNumOperands() == 4);
9065  SDValue Chain = Op.getOperand(0);
9066  SDValue SrcPtr = Op.getOperand(1);
9067  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9068  unsigned Align = Op.getConstantOperandVal(3);
9069  DebugLoc dl = Op.getDebugLoc();
9070
9071  EVT ArgVT = Op.getNode()->getValueType(0);
9072  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9073  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9074  uint8_t ArgMode;
9075
9076  // Decide which area this value should be read from.
9077  // TODO: Implement the AMD64 ABI in its entirety. This simple
9078  // selection mechanism works only for the basic types.
9079  if (ArgVT == MVT::f80) {
9080    llvm_unreachable("va_arg for f80 not yet implemented");
9081  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9082    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9083  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9084    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9085  } else {
9086    llvm_unreachable("Unhandled argument type in LowerVAARG");
9087  }
9088
9089  if (ArgMode == 2) {
9090    // Sanity Check: Make sure using fp_offset makes sense.
9091    assert(!getTargetMachine().Options.UseSoftFloat &&
9092           !(DAG.getMachineFunction()
9093                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9094           Subtarget->hasSSE1());
9095  }
9096
9097  // Insert VAARG_64 node into the DAG
9098  // VAARG_64 returns two values: Variable Argument Address, Chain
9099  SmallVector<SDValue, 11> InstOps;
9100  InstOps.push_back(Chain);
9101  InstOps.push_back(SrcPtr);
9102  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9103  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9104  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9105  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9106  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9107                                          VTs, &InstOps[0], InstOps.size(),
9108                                          MVT::i64,
9109                                          MachinePointerInfo(SV),
9110                                          /*Align=*/0,
9111                                          /*Volatile=*/false,
9112                                          /*ReadMem=*/true,
9113                                          /*WriteMem=*/true);
9114  Chain = VAARG.getValue(1);
9115
9116  // Load the next argument and return it
9117  return DAG.getLoad(ArgVT, dl,
9118                     Chain,
9119                     VAARG,
9120                     MachinePointerInfo(),
9121                     false, false, false, 0);
9122}
9123
9124SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9125  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9126  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9127  SDValue Chain = Op.getOperand(0);
9128  SDValue DstPtr = Op.getOperand(1);
9129  SDValue SrcPtr = Op.getOperand(2);
9130  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9131  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9132  DebugLoc DL = Op.getDebugLoc();
9133
9134  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9135                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9136                       false,
9137                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9138}
9139
9140// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9141// may or may not be a constant. Takes immediate version of shift as input.
9142static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9143                                   SDValue SrcOp, SDValue ShAmt,
9144                                   SelectionDAG &DAG) {
9145  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9146
9147  if (isa<ConstantSDNode>(ShAmt)) {
9148    switch (Opc) {
9149      default: llvm_unreachable("Unknown target vector shift node");
9150      case X86ISD::VSHLI:
9151      case X86ISD::VSRLI:
9152      case X86ISD::VSRAI:
9153        return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9154    }
9155  }
9156
9157  // Change opcode to non-immediate version
9158  switch (Opc) {
9159    default: llvm_unreachable("Unknown target vector shift node");
9160    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9161    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9162    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9163  }
9164
9165  // Need to build a vector containing shift amount
9166  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9167  SDValue ShOps[4];
9168  ShOps[0] = ShAmt;
9169  ShOps[1] = DAG.getConstant(0, MVT::i32);
9170  ShOps[2] = DAG.getUNDEF(MVT::i32);
9171  ShOps[3] = DAG.getUNDEF(MVT::i32);
9172  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9173  ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9174  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9175}
9176
9177SDValue
9178X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9179  DebugLoc dl = Op.getDebugLoc();
9180  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9181  switch (IntNo) {
9182  default: return SDValue();    // Don't custom lower most intrinsics.
9183  // Comparison intrinsics.
9184  case Intrinsic::x86_sse_comieq_ss:
9185  case Intrinsic::x86_sse_comilt_ss:
9186  case Intrinsic::x86_sse_comile_ss:
9187  case Intrinsic::x86_sse_comigt_ss:
9188  case Intrinsic::x86_sse_comige_ss:
9189  case Intrinsic::x86_sse_comineq_ss:
9190  case Intrinsic::x86_sse_ucomieq_ss:
9191  case Intrinsic::x86_sse_ucomilt_ss:
9192  case Intrinsic::x86_sse_ucomile_ss:
9193  case Intrinsic::x86_sse_ucomigt_ss:
9194  case Intrinsic::x86_sse_ucomige_ss:
9195  case Intrinsic::x86_sse_ucomineq_ss:
9196  case Intrinsic::x86_sse2_comieq_sd:
9197  case Intrinsic::x86_sse2_comilt_sd:
9198  case Intrinsic::x86_sse2_comile_sd:
9199  case Intrinsic::x86_sse2_comigt_sd:
9200  case Intrinsic::x86_sse2_comige_sd:
9201  case Intrinsic::x86_sse2_comineq_sd:
9202  case Intrinsic::x86_sse2_ucomieq_sd:
9203  case Intrinsic::x86_sse2_ucomilt_sd:
9204  case Intrinsic::x86_sse2_ucomile_sd:
9205  case Intrinsic::x86_sse2_ucomigt_sd:
9206  case Intrinsic::x86_sse2_ucomige_sd:
9207  case Intrinsic::x86_sse2_ucomineq_sd: {
9208    unsigned Opc = 0;
9209    ISD::CondCode CC = ISD::SETCC_INVALID;
9210    switch (IntNo) {
9211    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9212    case Intrinsic::x86_sse_comieq_ss:
9213    case Intrinsic::x86_sse2_comieq_sd:
9214      Opc = X86ISD::COMI;
9215      CC = ISD::SETEQ;
9216      break;
9217    case Intrinsic::x86_sse_comilt_ss:
9218    case Intrinsic::x86_sse2_comilt_sd:
9219      Opc = X86ISD::COMI;
9220      CC = ISD::SETLT;
9221      break;
9222    case Intrinsic::x86_sse_comile_ss:
9223    case Intrinsic::x86_sse2_comile_sd:
9224      Opc = X86ISD::COMI;
9225      CC = ISD::SETLE;
9226      break;
9227    case Intrinsic::x86_sse_comigt_ss:
9228    case Intrinsic::x86_sse2_comigt_sd:
9229      Opc = X86ISD::COMI;
9230      CC = ISD::SETGT;
9231      break;
9232    case Intrinsic::x86_sse_comige_ss:
9233    case Intrinsic::x86_sse2_comige_sd:
9234      Opc = X86ISD::COMI;
9235      CC = ISD::SETGE;
9236      break;
9237    case Intrinsic::x86_sse_comineq_ss:
9238    case Intrinsic::x86_sse2_comineq_sd:
9239      Opc = X86ISD::COMI;
9240      CC = ISD::SETNE;
9241      break;
9242    case Intrinsic::x86_sse_ucomieq_ss:
9243    case Intrinsic::x86_sse2_ucomieq_sd:
9244      Opc = X86ISD::UCOMI;
9245      CC = ISD::SETEQ;
9246      break;
9247    case Intrinsic::x86_sse_ucomilt_ss:
9248    case Intrinsic::x86_sse2_ucomilt_sd:
9249      Opc = X86ISD::UCOMI;
9250      CC = ISD::SETLT;
9251      break;
9252    case Intrinsic::x86_sse_ucomile_ss:
9253    case Intrinsic::x86_sse2_ucomile_sd:
9254      Opc = X86ISD::UCOMI;
9255      CC = ISD::SETLE;
9256      break;
9257    case Intrinsic::x86_sse_ucomigt_ss:
9258    case Intrinsic::x86_sse2_ucomigt_sd:
9259      Opc = X86ISD::UCOMI;
9260      CC = ISD::SETGT;
9261      break;
9262    case Intrinsic::x86_sse_ucomige_ss:
9263    case Intrinsic::x86_sse2_ucomige_sd:
9264      Opc = X86ISD::UCOMI;
9265      CC = ISD::SETGE;
9266      break;
9267    case Intrinsic::x86_sse_ucomineq_ss:
9268    case Intrinsic::x86_sse2_ucomineq_sd:
9269      Opc = X86ISD::UCOMI;
9270      CC = ISD::SETNE;
9271      break;
9272    }
9273
9274    SDValue LHS = Op.getOperand(1);
9275    SDValue RHS = Op.getOperand(2);
9276    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9277    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9278    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9279    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9280                                DAG.getConstant(X86CC, MVT::i8), Cond);
9281    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9282  }
9283  // XOP comparison intrinsics
9284  case Intrinsic::x86_xop_vpcomltb:
9285  case Intrinsic::x86_xop_vpcomltw:
9286  case Intrinsic::x86_xop_vpcomltd:
9287  case Intrinsic::x86_xop_vpcomltq:
9288  case Intrinsic::x86_xop_vpcomltub:
9289  case Intrinsic::x86_xop_vpcomltuw:
9290  case Intrinsic::x86_xop_vpcomltud:
9291  case Intrinsic::x86_xop_vpcomltuq:
9292  case Intrinsic::x86_xop_vpcomleb:
9293  case Intrinsic::x86_xop_vpcomlew:
9294  case Intrinsic::x86_xop_vpcomled:
9295  case Intrinsic::x86_xop_vpcomleq:
9296  case Intrinsic::x86_xop_vpcomleub:
9297  case Intrinsic::x86_xop_vpcomleuw:
9298  case Intrinsic::x86_xop_vpcomleud:
9299  case Intrinsic::x86_xop_vpcomleuq:
9300  case Intrinsic::x86_xop_vpcomgtb:
9301  case Intrinsic::x86_xop_vpcomgtw:
9302  case Intrinsic::x86_xop_vpcomgtd:
9303  case Intrinsic::x86_xop_vpcomgtq:
9304  case Intrinsic::x86_xop_vpcomgtub:
9305  case Intrinsic::x86_xop_vpcomgtuw:
9306  case Intrinsic::x86_xop_vpcomgtud:
9307  case Intrinsic::x86_xop_vpcomgtuq:
9308  case Intrinsic::x86_xop_vpcomgeb:
9309  case Intrinsic::x86_xop_vpcomgew:
9310  case Intrinsic::x86_xop_vpcomged:
9311  case Intrinsic::x86_xop_vpcomgeq:
9312  case Intrinsic::x86_xop_vpcomgeub:
9313  case Intrinsic::x86_xop_vpcomgeuw:
9314  case Intrinsic::x86_xop_vpcomgeud:
9315  case Intrinsic::x86_xop_vpcomgeuq:
9316  case Intrinsic::x86_xop_vpcomeqb:
9317  case Intrinsic::x86_xop_vpcomeqw:
9318  case Intrinsic::x86_xop_vpcomeqd:
9319  case Intrinsic::x86_xop_vpcomeqq:
9320  case Intrinsic::x86_xop_vpcomequb:
9321  case Intrinsic::x86_xop_vpcomequw:
9322  case Intrinsic::x86_xop_vpcomequd:
9323  case Intrinsic::x86_xop_vpcomequq:
9324  case Intrinsic::x86_xop_vpcomneb:
9325  case Intrinsic::x86_xop_vpcomnew:
9326  case Intrinsic::x86_xop_vpcomned:
9327  case Intrinsic::x86_xop_vpcomneq:
9328  case Intrinsic::x86_xop_vpcomneub:
9329  case Intrinsic::x86_xop_vpcomneuw:
9330  case Intrinsic::x86_xop_vpcomneud:
9331  case Intrinsic::x86_xop_vpcomneuq:
9332  case Intrinsic::x86_xop_vpcomfalseb:
9333  case Intrinsic::x86_xop_vpcomfalsew:
9334  case Intrinsic::x86_xop_vpcomfalsed:
9335  case Intrinsic::x86_xop_vpcomfalseq:
9336  case Intrinsic::x86_xop_vpcomfalseub:
9337  case Intrinsic::x86_xop_vpcomfalseuw:
9338  case Intrinsic::x86_xop_vpcomfalseud:
9339  case Intrinsic::x86_xop_vpcomfalseuq:
9340  case Intrinsic::x86_xop_vpcomtrueb:
9341  case Intrinsic::x86_xop_vpcomtruew:
9342  case Intrinsic::x86_xop_vpcomtrued:
9343  case Intrinsic::x86_xop_vpcomtrueq:
9344  case Intrinsic::x86_xop_vpcomtrueub:
9345  case Intrinsic::x86_xop_vpcomtrueuw:
9346  case Intrinsic::x86_xop_vpcomtrueud:
9347  case Intrinsic::x86_xop_vpcomtrueuq: {
9348    unsigned CC = 0;
9349    unsigned Opc = 0;
9350
9351    switch (IntNo) {
9352    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9353    case Intrinsic::x86_xop_vpcomltb:
9354    case Intrinsic::x86_xop_vpcomltw:
9355    case Intrinsic::x86_xop_vpcomltd:
9356    case Intrinsic::x86_xop_vpcomltq:
9357      CC = 0;
9358      Opc = X86ISD::VPCOM;
9359      break;
9360    case Intrinsic::x86_xop_vpcomltub:
9361    case Intrinsic::x86_xop_vpcomltuw:
9362    case Intrinsic::x86_xop_vpcomltud:
9363    case Intrinsic::x86_xop_vpcomltuq:
9364      CC = 0;
9365      Opc = X86ISD::VPCOMU;
9366      break;
9367    case Intrinsic::x86_xop_vpcomleb:
9368    case Intrinsic::x86_xop_vpcomlew:
9369    case Intrinsic::x86_xop_vpcomled:
9370    case Intrinsic::x86_xop_vpcomleq:
9371      CC = 1;
9372      Opc = X86ISD::VPCOM;
9373      break;
9374    case Intrinsic::x86_xop_vpcomleub:
9375    case Intrinsic::x86_xop_vpcomleuw:
9376    case Intrinsic::x86_xop_vpcomleud:
9377    case Intrinsic::x86_xop_vpcomleuq:
9378      CC = 1;
9379      Opc = X86ISD::VPCOMU;
9380      break;
9381    case Intrinsic::x86_xop_vpcomgtb:
9382    case Intrinsic::x86_xop_vpcomgtw:
9383    case Intrinsic::x86_xop_vpcomgtd:
9384    case Intrinsic::x86_xop_vpcomgtq:
9385      CC = 2;
9386      Opc = X86ISD::VPCOM;
9387      break;
9388    case Intrinsic::x86_xop_vpcomgtub:
9389    case Intrinsic::x86_xop_vpcomgtuw:
9390    case Intrinsic::x86_xop_vpcomgtud:
9391    case Intrinsic::x86_xop_vpcomgtuq:
9392      CC = 2;
9393      Opc = X86ISD::VPCOMU;
9394      break;
9395    case Intrinsic::x86_xop_vpcomgeb:
9396    case Intrinsic::x86_xop_vpcomgew:
9397    case Intrinsic::x86_xop_vpcomged:
9398    case Intrinsic::x86_xop_vpcomgeq:
9399      CC = 3;
9400      Opc = X86ISD::VPCOM;
9401      break;
9402    case Intrinsic::x86_xop_vpcomgeub:
9403    case Intrinsic::x86_xop_vpcomgeuw:
9404    case Intrinsic::x86_xop_vpcomgeud:
9405    case Intrinsic::x86_xop_vpcomgeuq:
9406      CC = 3;
9407      Opc = X86ISD::VPCOMU;
9408      break;
9409    case Intrinsic::x86_xop_vpcomeqb:
9410    case Intrinsic::x86_xop_vpcomeqw:
9411    case Intrinsic::x86_xop_vpcomeqd:
9412    case Intrinsic::x86_xop_vpcomeqq:
9413      CC = 4;
9414      Opc = X86ISD::VPCOM;
9415      break;
9416    case Intrinsic::x86_xop_vpcomequb:
9417    case Intrinsic::x86_xop_vpcomequw:
9418    case Intrinsic::x86_xop_vpcomequd:
9419    case Intrinsic::x86_xop_vpcomequq:
9420      CC = 4;
9421      Opc = X86ISD::VPCOMU;
9422      break;
9423    case Intrinsic::x86_xop_vpcomneb:
9424    case Intrinsic::x86_xop_vpcomnew:
9425    case Intrinsic::x86_xop_vpcomned:
9426    case Intrinsic::x86_xop_vpcomneq:
9427      CC = 5;
9428      Opc = X86ISD::VPCOM;
9429      break;
9430    case Intrinsic::x86_xop_vpcomneub:
9431    case Intrinsic::x86_xop_vpcomneuw:
9432    case Intrinsic::x86_xop_vpcomneud:
9433    case Intrinsic::x86_xop_vpcomneuq:
9434      CC = 5;
9435      Opc = X86ISD::VPCOMU;
9436      break;
9437    case Intrinsic::x86_xop_vpcomfalseb:
9438    case Intrinsic::x86_xop_vpcomfalsew:
9439    case Intrinsic::x86_xop_vpcomfalsed:
9440    case Intrinsic::x86_xop_vpcomfalseq:
9441      CC = 6;
9442      Opc = X86ISD::VPCOM;
9443      break;
9444    case Intrinsic::x86_xop_vpcomfalseub:
9445    case Intrinsic::x86_xop_vpcomfalseuw:
9446    case Intrinsic::x86_xop_vpcomfalseud:
9447    case Intrinsic::x86_xop_vpcomfalseuq:
9448      CC = 6;
9449      Opc = X86ISD::VPCOMU;
9450      break;
9451    case Intrinsic::x86_xop_vpcomtrueb:
9452    case Intrinsic::x86_xop_vpcomtruew:
9453    case Intrinsic::x86_xop_vpcomtrued:
9454    case Intrinsic::x86_xop_vpcomtrueq:
9455      CC = 7;
9456      Opc = X86ISD::VPCOM;
9457      break;
9458    case Intrinsic::x86_xop_vpcomtrueub:
9459    case Intrinsic::x86_xop_vpcomtrueuw:
9460    case Intrinsic::x86_xop_vpcomtrueud:
9461    case Intrinsic::x86_xop_vpcomtrueuq:
9462      CC = 7;
9463      Opc = X86ISD::VPCOMU;
9464      break;
9465    }
9466
9467    SDValue LHS = Op.getOperand(1);
9468    SDValue RHS = Op.getOperand(2);
9469    return DAG.getNode(Opc, dl, Op.getValueType(), LHS, RHS,
9470                       DAG.getConstant(CC, MVT::i8));
9471  }
9472
9473  // Arithmetic intrinsics.
9474  case Intrinsic::x86_sse2_pmulu_dq:
9475  case Intrinsic::x86_avx2_pmulu_dq:
9476    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9477                       Op.getOperand(1), Op.getOperand(2));
9478  case Intrinsic::x86_sse3_hadd_ps:
9479  case Intrinsic::x86_sse3_hadd_pd:
9480  case Intrinsic::x86_avx_hadd_ps_256:
9481  case Intrinsic::x86_avx_hadd_pd_256:
9482    return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9483                       Op.getOperand(1), Op.getOperand(2));
9484  case Intrinsic::x86_sse3_hsub_ps:
9485  case Intrinsic::x86_sse3_hsub_pd:
9486  case Intrinsic::x86_avx_hsub_ps_256:
9487  case Intrinsic::x86_avx_hsub_pd_256:
9488    return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9489                       Op.getOperand(1), Op.getOperand(2));
9490  case Intrinsic::x86_ssse3_phadd_w_128:
9491  case Intrinsic::x86_ssse3_phadd_d_128:
9492  case Intrinsic::x86_avx2_phadd_w:
9493  case Intrinsic::x86_avx2_phadd_d:
9494    return DAG.getNode(X86ISD::HADD, dl, Op.getValueType(),
9495                       Op.getOperand(1), Op.getOperand(2));
9496  case Intrinsic::x86_ssse3_phsub_w_128:
9497  case Intrinsic::x86_ssse3_phsub_d_128:
9498  case Intrinsic::x86_avx2_phsub_w:
9499  case Intrinsic::x86_avx2_phsub_d:
9500    return DAG.getNode(X86ISD::HSUB, dl, Op.getValueType(),
9501                       Op.getOperand(1), Op.getOperand(2));
9502  case Intrinsic::x86_avx2_psllv_d:
9503  case Intrinsic::x86_avx2_psllv_q:
9504  case Intrinsic::x86_avx2_psllv_d_256:
9505  case Intrinsic::x86_avx2_psllv_q_256:
9506    return DAG.getNode(ISD::SHL, dl, Op.getValueType(),
9507                      Op.getOperand(1), Op.getOperand(2));
9508  case Intrinsic::x86_avx2_psrlv_d:
9509  case Intrinsic::x86_avx2_psrlv_q:
9510  case Intrinsic::x86_avx2_psrlv_d_256:
9511  case Intrinsic::x86_avx2_psrlv_q_256:
9512    return DAG.getNode(ISD::SRL, dl, Op.getValueType(),
9513                      Op.getOperand(1), Op.getOperand(2));
9514  case Intrinsic::x86_avx2_psrav_d:
9515  case Intrinsic::x86_avx2_psrav_d_256:
9516    return DAG.getNode(ISD::SRA, dl, Op.getValueType(),
9517                      Op.getOperand(1), Op.getOperand(2));
9518  case Intrinsic::x86_ssse3_pshuf_b_128:
9519  case Intrinsic::x86_avx2_pshuf_b:
9520    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9521                       Op.getOperand(1), Op.getOperand(2));
9522  case Intrinsic::x86_ssse3_psign_b_128:
9523  case Intrinsic::x86_ssse3_psign_w_128:
9524  case Intrinsic::x86_ssse3_psign_d_128:
9525  case Intrinsic::x86_avx2_psign_b:
9526  case Intrinsic::x86_avx2_psign_w:
9527  case Intrinsic::x86_avx2_psign_d:
9528    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9529                       Op.getOperand(1), Op.getOperand(2));
9530  case Intrinsic::x86_sse41_insertps:
9531    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9532                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9533  case Intrinsic::x86_avx_vperm2f128_ps_256:
9534  case Intrinsic::x86_avx_vperm2f128_pd_256:
9535  case Intrinsic::x86_avx_vperm2f128_si_256:
9536  case Intrinsic::x86_avx2_vperm2i128:
9537    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9538                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9539  case Intrinsic::x86_avx_vpermil_ps:
9540  case Intrinsic::x86_avx_vpermil_pd:
9541  case Intrinsic::x86_avx_vpermil_ps_256:
9542  case Intrinsic::x86_avx_vpermil_pd_256:
9543    return DAG.getNode(X86ISD::VPERMILP, dl, Op.getValueType(),
9544                       Op.getOperand(1), Op.getOperand(2));
9545
9546  // ptest and testp intrinsics. The intrinsic these come from are designed to
9547  // return an integer value, not just an instruction so lower it to the ptest
9548  // or testp pattern and a setcc for the result.
9549  case Intrinsic::x86_sse41_ptestz:
9550  case Intrinsic::x86_sse41_ptestc:
9551  case Intrinsic::x86_sse41_ptestnzc:
9552  case Intrinsic::x86_avx_ptestz_256:
9553  case Intrinsic::x86_avx_ptestc_256:
9554  case Intrinsic::x86_avx_ptestnzc_256:
9555  case Intrinsic::x86_avx_vtestz_ps:
9556  case Intrinsic::x86_avx_vtestc_ps:
9557  case Intrinsic::x86_avx_vtestnzc_ps:
9558  case Intrinsic::x86_avx_vtestz_pd:
9559  case Intrinsic::x86_avx_vtestc_pd:
9560  case Intrinsic::x86_avx_vtestnzc_pd:
9561  case Intrinsic::x86_avx_vtestz_ps_256:
9562  case Intrinsic::x86_avx_vtestc_ps_256:
9563  case Intrinsic::x86_avx_vtestnzc_ps_256:
9564  case Intrinsic::x86_avx_vtestz_pd_256:
9565  case Intrinsic::x86_avx_vtestc_pd_256:
9566  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9567    bool IsTestPacked = false;
9568    unsigned X86CC = 0;
9569    switch (IntNo) {
9570    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9571    case Intrinsic::x86_avx_vtestz_ps:
9572    case Intrinsic::x86_avx_vtestz_pd:
9573    case Intrinsic::x86_avx_vtestz_ps_256:
9574    case Intrinsic::x86_avx_vtestz_pd_256:
9575      IsTestPacked = true; // Fallthrough
9576    case Intrinsic::x86_sse41_ptestz:
9577    case Intrinsic::x86_avx_ptestz_256:
9578      // ZF = 1
9579      X86CC = X86::COND_E;
9580      break;
9581    case Intrinsic::x86_avx_vtestc_ps:
9582    case Intrinsic::x86_avx_vtestc_pd:
9583    case Intrinsic::x86_avx_vtestc_ps_256:
9584    case Intrinsic::x86_avx_vtestc_pd_256:
9585      IsTestPacked = true; // Fallthrough
9586    case Intrinsic::x86_sse41_ptestc:
9587    case Intrinsic::x86_avx_ptestc_256:
9588      // CF = 1
9589      X86CC = X86::COND_B;
9590      break;
9591    case Intrinsic::x86_avx_vtestnzc_ps:
9592    case Intrinsic::x86_avx_vtestnzc_pd:
9593    case Intrinsic::x86_avx_vtestnzc_ps_256:
9594    case Intrinsic::x86_avx_vtestnzc_pd_256:
9595      IsTestPacked = true; // Fallthrough
9596    case Intrinsic::x86_sse41_ptestnzc:
9597    case Intrinsic::x86_avx_ptestnzc_256:
9598      // ZF and CF = 0
9599      X86CC = X86::COND_A;
9600      break;
9601    }
9602
9603    SDValue LHS = Op.getOperand(1);
9604    SDValue RHS = Op.getOperand(2);
9605    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9606    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9607    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9608    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9609    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9610  }
9611
9612  // SSE/AVX shift intrinsics
9613  case Intrinsic::x86_sse2_psll_w:
9614  case Intrinsic::x86_sse2_psll_d:
9615  case Intrinsic::x86_sse2_psll_q:
9616  case Intrinsic::x86_avx2_psll_w:
9617  case Intrinsic::x86_avx2_psll_d:
9618  case Intrinsic::x86_avx2_psll_q:
9619    return DAG.getNode(X86ISD::VSHL, dl, Op.getValueType(),
9620                       Op.getOperand(1), Op.getOperand(2));
9621  case Intrinsic::x86_sse2_psrl_w:
9622  case Intrinsic::x86_sse2_psrl_d:
9623  case Intrinsic::x86_sse2_psrl_q:
9624  case Intrinsic::x86_avx2_psrl_w:
9625  case Intrinsic::x86_avx2_psrl_d:
9626  case Intrinsic::x86_avx2_psrl_q:
9627    return DAG.getNode(X86ISD::VSRL, dl, Op.getValueType(),
9628                       Op.getOperand(1), Op.getOperand(2));
9629  case Intrinsic::x86_sse2_psra_w:
9630  case Intrinsic::x86_sse2_psra_d:
9631  case Intrinsic::x86_avx2_psra_w:
9632  case Intrinsic::x86_avx2_psra_d:
9633    return DAG.getNode(X86ISD::VSRA, dl, Op.getValueType(),
9634                       Op.getOperand(1), Op.getOperand(2));
9635  case Intrinsic::x86_sse2_pslli_w:
9636  case Intrinsic::x86_sse2_pslli_d:
9637  case Intrinsic::x86_sse2_pslli_q:
9638  case Intrinsic::x86_avx2_pslli_w:
9639  case Intrinsic::x86_avx2_pslli_d:
9640  case Intrinsic::x86_avx2_pslli_q:
9641    return getTargetVShiftNode(X86ISD::VSHLI, dl, Op.getValueType(),
9642                               Op.getOperand(1), Op.getOperand(2), DAG);
9643  case Intrinsic::x86_sse2_psrli_w:
9644  case Intrinsic::x86_sse2_psrli_d:
9645  case Intrinsic::x86_sse2_psrli_q:
9646  case Intrinsic::x86_avx2_psrli_w:
9647  case Intrinsic::x86_avx2_psrli_d:
9648  case Intrinsic::x86_avx2_psrli_q:
9649    return getTargetVShiftNode(X86ISD::VSRLI, dl, Op.getValueType(),
9650                               Op.getOperand(1), Op.getOperand(2), DAG);
9651  case Intrinsic::x86_sse2_psrai_w:
9652  case Intrinsic::x86_sse2_psrai_d:
9653  case Intrinsic::x86_avx2_psrai_w:
9654  case Intrinsic::x86_avx2_psrai_d:
9655    return getTargetVShiftNode(X86ISD::VSRAI, dl, Op.getValueType(),
9656                               Op.getOperand(1), Op.getOperand(2), DAG);
9657  // Fix vector shift instructions where the last operand is a non-immediate
9658  // i32 value.
9659  case Intrinsic::x86_mmx_pslli_w:
9660  case Intrinsic::x86_mmx_pslli_d:
9661  case Intrinsic::x86_mmx_pslli_q:
9662  case Intrinsic::x86_mmx_psrli_w:
9663  case Intrinsic::x86_mmx_psrli_d:
9664  case Intrinsic::x86_mmx_psrli_q:
9665  case Intrinsic::x86_mmx_psrai_w:
9666  case Intrinsic::x86_mmx_psrai_d: {
9667    SDValue ShAmt = Op.getOperand(2);
9668    if (isa<ConstantSDNode>(ShAmt))
9669      return SDValue();
9670
9671    unsigned NewIntNo = 0;
9672    switch (IntNo) {
9673    case Intrinsic::x86_mmx_pslli_w:
9674      NewIntNo = Intrinsic::x86_mmx_psll_w;
9675      break;
9676    case Intrinsic::x86_mmx_pslli_d:
9677      NewIntNo = Intrinsic::x86_mmx_psll_d;
9678      break;
9679    case Intrinsic::x86_mmx_pslli_q:
9680      NewIntNo = Intrinsic::x86_mmx_psll_q;
9681      break;
9682    case Intrinsic::x86_mmx_psrli_w:
9683      NewIntNo = Intrinsic::x86_mmx_psrl_w;
9684      break;
9685    case Intrinsic::x86_mmx_psrli_d:
9686      NewIntNo = Intrinsic::x86_mmx_psrl_d;
9687      break;
9688    case Intrinsic::x86_mmx_psrli_q:
9689      NewIntNo = Intrinsic::x86_mmx_psrl_q;
9690      break;
9691    case Intrinsic::x86_mmx_psrai_w:
9692      NewIntNo = Intrinsic::x86_mmx_psra_w;
9693      break;
9694    case Intrinsic::x86_mmx_psrai_d:
9695      NewIntNo = Intrinsic::x86_mmx_psra_d;
9696      break;
9697    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9698    }
9699
9700    // The vector shift intrinsics with scalars uses 32b shift amounts but
9701    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9702    // to be zero.
9703    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, ShAmt,
9704                         DAG.getConstant(0, MVT::i32));
9705// FIXME this must be lowered to get rid of the invalid type.
9706
9707    EVT VT = Op.getValueType();
9708    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9709    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9710                       DAG.getConstant(NewIntNo, MVT::i32),
9711                       Op.getOperand(1), ShAmt);
9712  }
9713  }
9714}
9715
9716SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9717                                           SelectionDAG &DAG) const {
9718  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9719  MFI->setReturnAddressIsTaken(true);
9720
9721  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9722  DebugLoc dl = Op.getDebugLoc();
9723
9724  if (Depth > 0) {
9725    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9726    SDValue Offset =
9727      DAG.getConstant(TD->getPointerSize(),
9728                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9729    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9730                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
9731                                   FrameAddr, Offset),
9732                       MachinePointerInfo(), false, false, false, 0);
9733  }
9734
9735  // Just load the return address.
9736  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9737  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9738                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
9739}
9740
9741SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9742  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9743  MFI->setFrameAddressIsTaken(true);
9744
9745  EVT VT = Op.getValueType();
9746  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9747  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9748  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9749  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9750  while (Depth--)
9751    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9752                            MachinePointerInfo(),
9753                            false, false, false, 0);
9754  return FrameAddr;
9755}
9756
9757SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9758                                                     SelectionDAG &DAG) const {
9759  return DAG.getIntPtrConstant(2*TD->getPointerSize());
9760}
9761
9762SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9763  MachineFunction &MF = DAG.getMachineFunction();
9764  SDValue Chain     = Op.getOperand(0);
9765  SDValue Offset    = Op.getOperand(1);
9766  SDValue Handler   = Op.getOperand(2);
9767  DebugLoc dl       = Op.getDebugLoc();
9768
9769  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9770                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9771                                     getPointerTy());
9772  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9773
9774  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9775                                  DAG.getIntPtrConstant(TD->getPointerSize()));
9776  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9777  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9778                       false, false, 0);
9779  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9780  MF.getRegInfo().addLiveOut(StoreAddrReg);
9781
9782  return DAG.getNode(X86ISD::EH_RETURN, dl,
9783                     MVT::Other,
9784                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9785}
9786
9787SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9788                                                  SelectionDAG &DAG) const {
9789  return Op.getOperand(0);
9790}
9791
9792SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9793                                                SelectionDAG &DAG) const {
9794  SDValue Root = Op.getOperand(0);
9795  SDValue Trmp = Op.getOperand(1); // trampoline
9796  SDValue FPtr = Op.getOperand(2); // nested function
9797  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9798  DebugLoc dl  = Op.getDebugLoc();
9799
9800  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9801
9802  if (Subtarget->is64Bit()) {
9803    SDValue OutChains[6];
9804
9805    // Large code-model.
9806    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9807    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9808
9809    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9810    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9811
9812    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9813
9814    // Load the pointer to the nested function into R11.
9815    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9816    SDValue Addr = Trmp;
9817    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9818                                Addr, MachinePointerInfo(TrmpAddr),
9819                                false, false, 0);
9820
9821    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9822                       DAG.getConstant(2, MVT::i64));
9823    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9824                                MachinePointerInfo(TrmpAddr, 2),
9825                                false, false, 2);
9826
9827    // Load the 'nest' parameter value into R10.
9828    // R10 is specified in X86CallingConv.td
9829    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9830    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9831                       DAG.getConstant(10, MVT::i64));
9832    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9833                                Addr, MachinePointerInfo(TrmpAddr, 10),
9834                                false, false, 0);
9835
9836    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9837                       DAG.getConstant(12, MVT::i64));
9838    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9839                                MachinePointerInfo(TrmpAddr, 12),
9840                                false, false, 2);
9841
9842    // Jump to the nested function.
9843    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9844    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9845                       DAG.getConstant(20, MVT::i64));
9846    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9847                                Addr, MachinePointerInfo(TrmpAddr, 20),
9848                                false, false, 0);
9849
9850    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9851    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9852                       DAG.getConstant(22, MVT::i64));
9853    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9854                                MachinePointerInfo(TrmpAddr, 22),
9855                                false, false, 0);
9856
9857    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9858  } else {
9859    const Function *Func =
9860      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9861    CallingConv::ID CC = Func->getCallingConv();
9862    unsigned NestReg;
9863
9864    switch (CC) {
9865    default:
9866      llvm_unreachable("Unsupported calling convention");
9867    case CallingConv::C:
9868    case CallingConv::X86_StdCall: {
9869      // Pass 'nest' parameter in ECX.
9870      // Must be kept in sync with X86CallingConv.td
9871      NestReg = X86::ECX;
9872
9873      // Check that ECX wasn't needed by an 'inreg' parameter.
9874      FunctionType *FTy = Func->getFunctionType();
9875      const AttrListPtr &Attrs = Func->getAttributes();
9876
9877      if (!Attrs.isEmpty() && !Func->isVarArg()) {
9878        unsigned InRegCount = 0;
9879        unsigned Idx = 1;
9880
9881        for (FunctionType::param_iterator I = FTy->param_begin(),
9882             E = FTy->param_end(); I != E; ++I, ++Idx)
9883          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9884            // FIXME: should only count parameters that are lowered to integers.
9885            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9886
9887        if (InRegCount > 2) {
9888          report_fatal_error("Nest register in use - reduce number of inreg"
9889                             " parameters!");
9890        }
9891      }
9892      break;
9893    }
9894    case CallingConv::X86_FastCall:
9895    case CallingConv::X86_ThisCall:
9896    case CallingConv::Fast:
9897      // Pass 'nest' parameter in EAX.
9898      // Must be kept in sync with X86CallingConv.td
9899      NestReg = X86::EAX;
9900      break;
9901    }
9902
9903    SDValue OutChains[4];
9904    SDValue Addr, Disp;
9905
9906    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9907                       DAG.getConstant(10, MVT::i32));
9908    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9909
9910    // This is storing the opcode for MOV32ri.
9911    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9912    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9913    OutChains[0] = DAG.getStore(Root, dl,
9914                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9915                                Trmp, MachinePointerInfo(TrmpAddr),
9916                                false, false, 0);
9917
9918    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9919                       DAG.getConstant(1, MVT::i32));
9920    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9921                                MachinePointerInfo(TrmpAddr, 1),
9922                                false, false, 1);
9923
9924    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9925    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9926                       DAG.getConstant(5, MVT::i32));
9927    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9928                                MachinePointerInfo(TrmpAddr, 5),
9929                                false, false, 1);
9930
9931    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9932                       DAG.getConstant(6, MVT::i32));
9933    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9934                                MachinePointerInfo(TrmpAddr, 6),
9935                                false, false, 1);
9936
9937    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9938  }
9939}
9940
9941SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9942                                            SelectionDAG &DAG) const {
9943  /*
9944   The rounding mode is in bits 11:10 of FPSR, and has the following
9945   settings:
9946     00 Round to nearest
9947     01 Round to -inf
9948     10 Round to +inf
9949     11 Round to 0
9950
9951  FLT_ROUNDS, on the other hand, expects the following:
9952    -1 Undefined
9953     0 Round to 0
9954     1 Round to nearest
9955     2 Round to +inf
9956     3 Round to -inf
9957
9958  To perform the conversion, we do:
9959    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9960  */
9961
9962  MachineFunction &MF = DAG.getMachineFunction();
9963  const TargetMachine &TM = MF.getTarget();
9964  const TargetFrameLowering &TFI = *TM.getFrameLowering();
9965  unsigned StackAlignment = TFI.getStackAlignment();
9966  EVT VT = Op.getValueType();
9967  DebugLoc DL = Op.getDebugLoc();
9968
9969  // Save FP Control Word to stack slot
9970  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9971  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9972
9973
9974  MachineMemOperand *MMO =
9975   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9976                           MachineMemOperand::MOStore, 2, 2);
9977
9978  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9979  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9980                                          DAG.getVTList(MVT::Other),
9981                                          Ops, 2, MVT::i16, MMO);
9982
9983  // Load FP Control Word from stack slot
9984  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9985                            MachinePointerInfo(), false, false, false, 0);
9986
9987  // Transform as necessary
9988  SDValue CWD1 =
9989    DAG.getNode(ISD::SRL, DL, MVT::i16,
9990                DAG.getNode(ISD::AND, DL, MVT::i16,
9991                            CWD, DAG.getConstant(0x800, MVT::i16)),
9992                DAG.getConstant(11, MVT::i8));
9993  SDValue CWD2 =
9994    DAG.getNode(ISD::SRL, DL, MVT::i16,
9995                DAG.getNode(ISD::AND, DL, MVT::i16,
9996                            CWD, DAG.getConstant(0x400, MVT::i16)),
9997                DAG.getConstant(9, MVT::i8));
9998
9999  SDValue RetVal =
10000    DAG.getNode(ISD::AND, DL, MVT::i16,
10001                DAG.getNode(ISD::ADD, DL, MVT::i16,
10002                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10003                            DAG.getConstant(1, MVT::i16)),
10004                DAG.getConstant(3, MVT::i16));
10005
10006
10007  return DAG.getNode((VT.getSizeInBits() < 16 ?
10008                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10009}
10010
10011SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10012  EVT VT = Op.getValueType();
10013  EVT OpVT = VT;
10014  unsigned NumBits = VT.getSizeInBits();
10015  DebugLoc dl = Op.getDebugLoc();
10016
10017  Op = Op.getOperand(0);
10018  if (VT == MVT::i8) {
10019    // Zero extend to i32 since there is not an i8 bsr.
10020    OpVT = MVT::i32;
10021    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10022  }
10023
10024  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10025  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10026  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10027
10028  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10029  SDValue Ops[] = {
10030    Op,
10031    DAG.getConstant(NumBits+NumBits-1, OpVT),
10032    DAG.getConstant(X86::COND_E, MVT::i8),
10033    Op.getValue(1)
10034  };
10035  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10036
10037  // Finally xor with NumBits-1.
10038  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10039
10040  if (VT == MVT::i8)
10041    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10042  return Op;
10043}
10044
10045SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10046                                                SelectionDAG &DAG) const {
10047  EVT VT = Op.getValueType();
10048  EVT OpVT = VT;
10049  unsigned NumBits = VT.getSizeInBits();
10050  DebugLoc dl = Op.getDebugLoc();
10051
10052  Op = Op.getOperand(0);
10053  if (VT == MVT::i8) {
10054    // Zero extend to i32 since there is not an i8 bsr.
10055    OpVT = MVT::i32;
10056    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10057  }
10058
10059  // Issue a bsr (scan bits in reverse).
10060  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10061  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10062
10063  // And xor with NumBits-1.
10064  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10065
10066  if (VT == MVT::i8)
10067    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10068  return Op;
10069}
10070
10071SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10072  EVT VT = Op.getValueType();
10073  unsigned NumBits = VT.getSizeInBits();
10074  DebugLoc dl = Op.getDebugLoc();
10075  Op = Op.getOperand(0);
10076
10077  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10078  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10079  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10080
10081  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10082  SDValue Ops[] = {
10083    Op,
10084    DAG.getConstant(NumBits, VT),
10085    DAG.getConstant(X86::COND_E, MVT::i8),
10086    Op.getValue(1)
10087  };
10088  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10089}
10090
10091// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10092// ones, and then concatenate the result back.
10093static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10094  EVT VT = Op.getValueType();
10095
10096  assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
10097         "Unsupported value type for operation");
10098
10099  int NumElems = VT.getVectorNumElements();
10100  DebugLoc dl = Op.getDebugLoc();
10101  SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10102  SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10103
10104  // Extract the LHS vectors
10105  SDValue LHS = Op.getOperand(0);
10106  SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10107  SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10108
10109  // Extract the RHS vectors
10110  SDValue RHS = Op.getOperand(1);
10111  SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
10112  SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
10113
10114  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10115  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10116
10117  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10118                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10119                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10120}
10121
10122SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10123  assert(Op.getValueType().getSizeInBits() == 256 &&
10124         Op.getValueType().isInteger() &&
10125         "Only handle AVX 256-bit vector integer operation");
10126  return Lower256IntArith(Op, DAG);
10127}
10128
10129SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10130  assert(Op.getValueType().getSizeInBits() == 256 &&
10131         Op.getValueType().isInteger() &&
10132         "Only handle AVX 256-bit vector integer operation");
10133  return Lower256IntArith(Op, DAG);
10134}
10135
10136SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10137  EVT VT = Op.getValueType();
10138
10139  // Decompose 256-bit ops into smaller 128-bit ops.
10140  if (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2())
10141    return Lower256IntArith(Op, DAG);
10142
10143  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10144         "Only know how to lower V2I64/V4I64 multiply");
10145
10146  DebugLoc dl = Op.getDebugLoc();
10147
10148  //  Ahi = psrlqi(a, 32);
10149  //  Bhi = psrlqi(b, 32);
10150  //
10151  //  AloBlo = pmuludq(a, b);
10152  //  AloBhi = pmuludq(a, Bhi);
10153  //  AhiBlo = pmuludq(Ahi, b);
10154
10155  //  AloBhi = psllqi(AloBhi, 32);
10156  //  AhiBlo = psllqi(AhiBlo, 32);
10157  //  return AloBlo + AloBhi + AhiBlo;
10158
10159  SDValue A = Op.getOperand(0);
10160  SDValue B = Op.getOperand(1);
10161
10162  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10163
10164  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10165  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10166
10167  // Bit cast to 32-bit vectors for MULUDQ
10168  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10169  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10170  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10171  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10172  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10173
10174  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10175  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10176  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10177
10178  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10179  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10180
10181  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10182  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10183}
10184
10185SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10186
10187  EVT VT = Op.getValueType();
10188  DebugLoc dl = Op.getDebugLoc();
10189  SDValue R = Op.getOperand(0);
10190  SDValue Amt = Op.getOperand(1);
10191  LLVMContext *Context = DAG.getContext();
10192
10193  if (!Subtarget->hasSSE2())
10194    return SDValue();
10195
10196  // Optimize shl/srl/sra with constant shift amount.
10197  if (isSplatVector(Amt.getNode())) {
10198    SDValue SclrAmt = Amt->getOperand(0);
10199    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10200      uint64_t ShiftAmt = C->getZExtValue();
10201
10202      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10203          (Subtarget->hasAVX2() &&
10204           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10205        if (Op.getOpcode() == ISD::SHL)
10206          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10207                             DAG.getConstant(ShiftAmt, MVT::i32));
10208        if (Op.getOpcode() == ISD::SRL)
10209          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10210                             DAG.getConstant(ShiftAmt, MVT::i32));
10211        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10212          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10213                             DAG.getConstant(ShiftAmt, MVT::i32));
10214      }
10215
10216      if (VT == MVT::v16i8) {
10217        if (Op.getOpcode() == ISD::SHL) {
10218          // Make a large shift.
10219          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10220                                    DAG.getConstant(ShiftAmt, MVT::i32));
10221          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10222          // Zero out the rightmost bits.
10223          SmallVector<SDValue, 16> V(16,
10224                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10225                                                     MVT::i8));
10226          return DAG.getNode(ISD::AND, dl, VT, SHL,
10227                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10228        }
10229        if (Op.getOpcode() == ISD::SRL) {
10230          // Make a large shift.
10231          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10232                                    DAG.getConstant(ShiftAmt, MVT::i32));
10233          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10234          // Zero out the leftmost bits.
10235          SmallVector<SDValue, 16> V(16,
10236                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10237                                                     MVT::i8));
10238          return DAG.getNode(ISD::AND, dl, VT, SRL,
10239                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10240        }
10241        if (Op.getOpcode() == ISD::SRA) {
10242          if (ShiftAmt == 7) {
10243            // R s>> 7  ===  R s< 0
10244            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10245            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10246          }
10247
10248          // R s>> a === ((R u>> a) ^ m) - m
10249          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10250          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10251                                                         MVT::i8));
10252          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10253          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10254          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10255          return Res;
10256        }
10257      }
10258
10259      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10260        if (Op.getOpcode() == ISD::SHL) {
10261          // Make a large shift.
10262          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10263                                    DAG.getConstant(ShiftAmt, MVT::i32));
10264          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10265          // Zero out the rightmost bits.
10266          SmallVector<SDValue, 32> V(32,
10267                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10268                                                     MVT::i8));
10269          return DAG.getNode(ISD::AND, dl, VT, SHL,
10270                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10271        }
10272        if (Op.getOpcode() == ISD::SRL) {
10273          // Make a large shift.
10274          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10275                                    DAG.getConstant(ShiftAmt, MVT::i32));
10276          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10277          // Zero out the leftmost bits.
10278          SmallVector<SDValue, 32> V(32,
10279                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10280                                                     MVT::i8));
10281          return DAG.getNode(ISD::AND, dl, VT, SRL,
10282                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10283        }
10284        if (Op.getOpcode() == ISD::SRA) {
10285          if (ShiftAmt == 7) {
10286            // R s>> 7  ===  R s< 0
10287            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10288            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10289          }
10290
10291          // R s>> a === ((R u>> a) ^ m) - m
10292          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10293          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10294                                                         MVT::i8));
10295          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10296          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10297          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10298          return Res;
10299        }
10300      }
10301    }
10302  }
10303
10304  // Lower SHL with variable shift amount.
10305  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10306    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10307                     DAG.getConstant(23, MVT::i32));
10308
10309    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10310    Constant *C = ConstantDataVector::get(*Context, CV);
10311    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10312    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10313                                 MachinePointerInfo::getConstantPool(),
10314                                 false, false, false, 16);
10315
10316    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10317    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10318    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10319    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10320  }
10321  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10322    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10323
10324    // a = a << 5;
10325    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10326                     DAG.getConstant(5, MVT::i32));
10327    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10328
10329    // Turn 'a' into a mask suitable for VSELECT
10330    SDValue VSelM = DAG.getConstant(0x80, VT);
10331    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10332    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10333
10334    SDValue CM1 = DAG.getConstant(0x0f, VT);
10335    SDValue CM2 = DAG.getConstant(0x3f, VT);
10336
10337    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10338    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10339    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10340                            DAG.getConstant(4, MVT::i32), DAG);
10341    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10342    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10343
10344    // a += a
10345    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10346    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10347    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10348
10349    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10350    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10351    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10352                            DAG.getConstant(2, MVT::i32), DAG);
10353    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10354    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10355
10356    // a += a
10357    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10358    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10359    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10360
10361    // return VSELECT(r, r+r, a);
10362    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10363                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10364    return R;
10365  }
10366
10367  // Decompose 256-bit shifts into smaller 128-bit shifts.
10368  if (VT.getSizeInBits() == 256) {
10369    unsigned NumElems = VT.getVectorNumElements();
10370    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10371    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10372
10373    // Extract the two vectors
10374    SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
10375    SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
10376                                     DAG, dl);
10377
10378    // Recreate the shift amount vectors
10379    SDValue Amt1, Amt2;
10380    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10381      // Constant shift amount
10382      SmallVector<SDValue, 4> Amt1Csts;
10383      SmallVector<SDValue, 4> Amt2Csts;
10384      for (unsigned i = 0; i != NumElems/2; ++i)
10385        Amt1Csts.push_back(Amt->getOperand(i));
10386      for (unsigned i = NumElems/2; i != NumElems; ++i)
10387        Amt2Csts.push_back(Amt->getOperand(i));
10388
10389      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10390                                 &Amt1Csts[0], NumElems/2);
10391      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10392                                 &Amt2Csts[0], NumElems/2);
10393    } else {
10394      // Variable shift amount
10395      Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
10396      Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
10397                                 DAG, dl);
10398    }
10399
10400    // Issue new vector shifts for the smaller types
10401    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10402    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10403
10404    // Concatenate the result back
10405    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10406  }
10407
10408  return SDValue();
10409}
10410
10411SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10412  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10413  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10414  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10415  // has only one use.
10416  SDNode *N = Op.getNode();
10417  SDValue LHS = N->getOperand(0);
10418  SDValue RHS = N->getOperand(1);
10419  unsigned BaseOp = 0;
10420  unsigned Cond = 0;
10421  DebugLoc DL = Op.getDebugLoc();
10422  switch (Op.getOpcode()) {
10423  default: llvm_unreachable("Unknown ovf instruction!");
10424  case ISD::SADDO:
10425    // A subtract of one will be selected as a INC. Note that INC doesn't
10426    // set CF, so we can't do this for UADDO.
10427    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10428      if (C->isOne()) {
10429        BaseOp = X86ISD::INC;
10430        Cond = X86::COND_O;
10431        break;
10432      }
10433    BaseOp = X86ISD::ADD;
10434    Cond = X86::COND_O;
10435    break;
10436  case ISD::UADDO:
10437    BaseOp = X86ISD::ADD;
10438    Cond = X86::COND_B;
10439    break;
10440  case ISD::SSUBO:
10441    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10442    // set CF, so we can't do this for USUBO.
10443    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10444      if (C->isOne()) {
10445        BaseOp = X86ISD::DEC;
10446        Cond = X86::COND_O;
10447        break;
10448      }
10449    BaseOp = X86ISD::SUB;
10450    Cond = X86::COND_O;
10451    break;
10452  case ISD::USUBO:
10453    BaseOp = X86ISD::SUB;
10454    Cond = X86::COND_B;
10455    break;
10456  case ISD::SMULO:
10457    BaseOp = X86ISD::SMUL;
10458    Cond = X86::COND_O;
10459    break;
10460  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10461    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10462                                 MVT::i32);
10463    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10464
10465    SDValue SetCC =
10466      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10467                  DAG.getConstant(X86::COND_O, MVT::i32),
10468                  SDValue(Sum.getNode(), 2));
10469
10470    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10471  }
10472  }
10473
10474  // Also sets EFLAGS.
10475  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10476  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10477
10478  SDValue SetCC =
10479    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10480                DAG.getConstant(Cond, MVT::i32),
10481                SDValue(Sum.getNode(), 1));
10482
10483  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10484}
10485
10486SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10487                                                  SelectionDAG &DAG) const {
10488  DebugLoc dl = Op.getDebugLoc();
10489  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10490  EVT VT = Op.getValueType();
10491
10492  if (!Subtarget->hasSSE2() || !VT.isVector())
10493    return SDValue();
10494
10495  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10496                      ExtraVT.getScalarType().getSizeInBits();
10497  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10498
10499  switch (VT.getSimpleVT().SimpleTy) {
10500    default: return SDValue();
10501    case MVT::v8i32:
10502    case MVT::v16i16:
10503      if (!Subtarget->hasAVX())
10504        return SDValue();
10505      if (!Subtarget->hasAVX2()) {
10506        // needs to be split
10507        int NumElems = VT.getVectorNumElements();
10508        SDValue Idx0 = DAG.getConstant(0, MVT::i32);
10509        SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
10510
10511        // Extract the LHS vectors
10512        SDValue LHS = Op.getOperand(0);
10513        SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
10514        SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
10515
10516        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10517        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10518
10519        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10520        int ExtraNumElems = ExtraVT.getVectorNumElements();
10521        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10522                                   ExtraNumElems/2);
10523        SDValue Extra = DAG.getValueType(ExtraVT);
10524
10525        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10526        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10527
10528        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10529      }
10530      // fall through
10531    case MVT::v4i32:
10532    case MVT::v8i16: {
10533      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10534                                         Op.getOperand(0), ShAmt, DAG);
10535      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10536    }
10537  }
10538}
10539
10540
10541SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10542  DebugLoc dl = Op.getDebugLoc();
10543
10544  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10545  // There isn't any reason to disable it if the target processor supports it.
10546  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10547    SDValue Chain = Op.getOperand(0);
10548    SDValue Zero = DAG.getConstant(0, MVT::i32);
10549    SDValue Ops[] = {
10550      DAG.getRegister(X86::ESP, MVT::i32), // Base
10551      DAG.getTargetConstant(1, MVT::i8),   // Scale
10552      DAG.getRegister(0, MVT::i32),        // Index
10553      DAG.getTargetConstant(0, MVT::i32),  // Disp
10554      DAG.getRegister(0, MVT::i32),        // Segment.
10555      Zero,
10556      Chain
10557    };
10558    SDNode *Res =
10559      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10560                          array_lengthof(Ops));
10561    return SDValue(Res, 0);
10562  }
10563
10564  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10565  if (!isDev)
10566    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10567
10568  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10569  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10570  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10571  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10572
10573  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10574  if (!Op1 && !Op2 && !Op3 && Op4)
10575    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10576
10577  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10578  if (Op1 && !Op2 && !Op3 && !Op4)
10579    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10580
10581  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10582  //           (MFENCE)>;
10583  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10584}
10585
10586SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10587                                             SelectionDAG &DAG) const {
10588  DebugLoc dl = Op.getDebugLoc();
10589  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10590    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10591  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10592    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10593
10594  // The only fence that needs an instruction is a sequentially-consistent
10595  // cross-thread fence.
10596  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10597    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10598    // no-sse2). There isn't any reason to disable it if the target processor
10599    // supports it.
10600    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
10601      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10602
10603    SDValue Chain = Op.getOperand(0);
10604    SDValue Zero = DAG.getConstant(0, MVT::i32);
10605    SDValue Ops[] = {
10606      DAG.getRegister(X86::ESP, MVT::i32), // Base
10607      DAG.getTargetConstant(1, MVT::i8),   // Scale
10608      DAG.getRegister(0, MVT::i32),        // Index
10609      DAG.getTargetConstant(0, MVT::i32),  // Disp
10610      DAG.getRegister(0, MVT::i32),        // Segment.
10611      Zero,
10612      Chain
10613    };
10614    SDNode *Res =
10615      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10616                         array_lengthof(Ops));
10617    return SDValue(Res, 0);
10618  }
10619
10620  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10621  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10622}
10623
10624
10625SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10626  EVT T = Op.getValueType();
10627  DebugLoc DL = Op.getDebugLoc();
10628  unsigned Reg = 0;
10629  unsigned size = 0;
10630  switch(T.getSimpleVT().SimpleTy) {
10631  default: llvm_unreachable("Invalid value type!");
10632  case MVT::i8:  Reg = X86::AL;  size = 1; break;
10633  case MVT::i16: Reg = X86::AX;  size = 2; break;
10634  case MVT::i32: Reg = X86::EAX; size = 4; break;
10635  case MVT::i64:
10636    assert(Subtarget->is64Bit() && "Node not type legal!");
10637    Reg = X86::RAX; size = 8;
10638    break;
10639  }
10640  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10641                                    Op.getOperand(2), SDValue());
10642  SDValue Ops[] = { cpIn.getValue(0),
10643                    Op.getOperand(1),
10644                    Op.getOperand(3),
10645                    DAG.getTargetConstant(size, MVT::i8),
10646                    cpIn.getValue(1) };
10647  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10648  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10649  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10650                                           Ops, 5, T, MMO);
10651  SDValue cpOut =
10652    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10653  return cpOut;
10654}
10655
10656SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10657                                                 SelectionDAG &DAG) const {
10658  assert(Subtarget->is64Bit() && "Result not type legalized?");
10659  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10660  SDValue TheChain = Op.getOperand(0);
10661  DebugLoc dl = Op.getDebugLoc();
10662  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10663  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10664  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10665                                   rax.getValue(2));
10666  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10667                            DAG.getConstant(32, MVT::i8));
10668  SDValue Ops[] = {
10669    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10670    rdx.getValue(1)
10671  };
10672  return DAG.getMergeValues(Ops, 2, dl);
10673}
10674
10675SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10676                                            SelectionDAG &DAG) const {
10677  EVT SrcVT = Op.getOperand(0).getValueType();
10678  EVT DstVT = Op.getValueType();
10679  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
10680         Subtarget->hasMMX() && "Unexpected custom BITCAST");
10681  assert((DstVT == MVT::i64 ||
10682          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10683         "Unexpected custom BITCAST");
10684  // i64 <=> MMX conversions are Legal.
10685  if (SrcVT==MVT::i64 && DstVT.isVector())
10686    return Op;
10687  if (DstVT==MVT::i64 && SrcVT.isVector())
10688    return Op;
10689  // MMX <=> MMX conversions are Legal.
10690  if (SrcVT.isVector() && DstVT.isVector())
10691    return Op;
10692  // All other conversions need to be expanded.
10693  return SDValue();
10694}
10695
10696SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10697  SDNode *Node = Op.getNode();
10698  DebugLoc dl = Node->getDebugLoc();
10699  EVT T = Node->getValueType(0);
10700  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10701                              DAG.getConstant(0, T), Node->getOperand(2));
10702  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10703                       cast<AtomicSDNode>(Node)->getMemoryVT(),
10704                       Node->getOperand(0),
10705                       Node->getOperand(1), negOp,
10706                       cast<AtomicSDNode>(Node)->getSrcValue(),
10707                       cast<AtomicSDNode>(Node)->getAlignment(),
10708                       cast<AtomicSDNode>(Node)->getOrdering(),
10709                       cast<AtomicSDNode>(Node)->getSynchScope());
10710}
10711
10712static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10713  SDNode *Node = Op.getNode();
10714  DebugLoc dl = Node->getDebugLoc();
10715  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10716
10717  // Convert seq_cst store -> xchg
10718  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10719  // FIXME: On 32-bit, store -> fist or movq would be more efficient
10720  //        (The only way to get a 16-byte store is cmpxchg16b)
10721  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10722  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10723      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10724    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10725                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
10726                                 Node->getOperand(0),
10727                                 Node->getOperand(1), Node->getOperand(2),
10728                                 cast<AtomicSDNode>(Node)->getMemOperand(),
10729                                 cast<AtomicSDNode>(Node)->getOrdering(),
10730                                 cast<AtomicSDNode>(Node)->getSynchScope());
10731    return Swap.getValue(1);
10732  }
10733  // Other atomic stores have a simple pattern.
10734  return Op;
10735}
10736
10737static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10738  EVT VT = Op.getNode()->getValueType(0);
10739
10740  // Let legalize expand this if it isn't a legal type yet.
10741  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10742    return SDValue();
10743
10744  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10745
10746  unsigned Opc;
10747  bool ExtraOp = false;
10748  switch (Op.getOpcode()) {
10749  default: llvm_unreachable("Invalid code");
10750  case ISD::ADDC: Opc = X86ISD::ADD; break;
10751  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10752  case ISD::SUBC: Opc = X86ISD::SUB; break;
10753  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10754  }
10755
10756  if (!ExtraOp)
10757    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10758                       Op.getOperand(1));
10759  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10760                     Op.getOperand(1), Op.getOperand(2));
10761}
10762
10763/// LowerOperation - Provide custom lowering hooks for some operations.
10764///
10765SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10766  switch (Op.getOpcode()) {
10767  default: llvm_unreachable("Should not custom lower this!");
10768  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10769  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10770  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10771  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10772  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10773  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10774  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10775  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10776  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10777  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10778  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10779  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10780  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10781  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10782  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10783  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10784  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10785  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10786  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10787  case ISD::SHL_PARTS:
10788  case ISD::SRA_PARTS:
10789  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10790  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10791  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10792  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10793  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10794  case ISD::FABS:               return LowerFABS(Op, DAG);
10795  case ISD::FNEG:               return LowerFNEG(Op, DAG);
10796  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10797  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10798  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10799  case ISD::SELECT:             return LowerSELECT(Op, DAG);
10800  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10801  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10802  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10803  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10804  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10805  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10806  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10807  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10808  case ISD::FRAME_TO_ARGS_OFFSET:
10809                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10810  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10811  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10812  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10813  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10814  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10815  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10816  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
10817  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10818  case ISD::MUL:                return LowerMUL(Op, DAG);
10819  case ISD::SRA:
10820  case ISD::SRL:
10821  case ISD::SHL:                return LowerShift(Op, DAG);
10822  case ISD::SADDO:
10823  case ISD::UADDO:
10824  case ISD::SSUBO:
10825  case ISD::USUBO:
10826  case ISD::SMULO:
10827  case ISD::UMULO:              return LowerXALUO(Op, DAG);
10828  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10829  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10830  case ISD::ADDC:
10831  case ISD::ADDE:
10832  case ISD::SUBC:
10833  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10834  case ISD::ADD:                return LowerADD(Op, DAG);
10835  case ISD::SUB:                return LowerSUB(Op, DAG);
10836  }
10837}
10838
10839static void ReplaceATOMIC_LOAD(SDNode *Node,
10840                                  SmallVectorImpl<SDValue> &Results,
10841                                  SelectionDAG &DAG) {
10842  DebugLoc dl = Node->getDebugLoc();
10843  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10844
10845  // Convert wide load -> cmpxchg8b/cmpxchg16b
10846  // FIXME: On 32-bit, load -> fild or movq would be more efficient
10847  //        (The only way to get a 16-byte load is cmpxchg16b)
10848  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10849  SDValue Zero = DAG.getConstant(0, VT);
10850  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10851                               Node->getOperand(0),
10852                               Node->getOperand(1), Zero, Zero,
10853                               cast<AtomicSDNode>(Node)->getMemOperand(),
10854                               cast<AtomicSDNode>(Node)->getOrdering(),
10855                               cast<AtomicSDNode>(Node)->getSynchScope());
10856  Results.push_back(Swap.getValue(0));
10857  Results.push_back(Swap.getValue(1));
10858}
10859
10860void X86TargetLowering::
10861ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10862                        SelectionDAG &DAG, unsigned NewOp) const {
10863  DebugLoc dl = Node->getDebugLoc();
10864  assert (Node->getValueType(0) == MVT::i64 &&
10865          "Only know how to expand i64 atomics");
10866
10867  SDValue Chain = Node->getOperand(0);
10868  SDValue In1 = Node->getOperand(1);
10869  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10870                             Node->getOperand(2), DAG.getIntPtrConstant(0));
10871  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10872                             Node->getOperand(2), DAG.getIntPtrConstant(1));
10873  SDValue Ops[] = { Chain, In1, In2L, In2H };
10874  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10875  SDValue Result =
10876    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10877                            cast<MemSDNode>(Node)->getMemOperand());
10878  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10879  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10880  Results.push_back(Result.getValue(2));
10881}
10882
10883/// ReplaceNodeResults - Replace a node with an illegal result type
10884/// with a new node built out of custom code.
10885void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10886                                           SmallVectorImpl<SDValue>&Results,
10887                                           SelectionDAG &DAG) const {
10888  DebugLoc dl = N->getDebugLoc();
10889  switch (N->getOpcode()) {
10890  default:
10891    llvm_unreachable("Do not know how to custom type legalize this operation!");
10892  case ISD::SIGN_EXTEND_INREG:
10893  case ISD::ADDC:
10894  case ISD::ADDE:
10895  case ISD::SUBC:
10896  case ISD::SUBE:
10897    // We don't want to expand or promote these.
10898    return;
10899  case ISD::FP_TO_SINT:
10900  case ISD::FP_TO_UINT: {
10901    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
10902
10903    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
10904      return;
10905
10906    std::pair<SDValue,SDValue> Vals =
10907        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
10908    SDValue FIST = Vals.first, StackSlot = Vals.second;
10909    if (FIST.getNode() != 0) {
10910      EVT VT = N->getValueType(0);
10911      // Return a load from the stack slot.
10912      if (StackSlot.getNode() != 0)
10913        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10914                                      MachinePointerInfo(),
10915                                      false, false, false, 0));
10916      else
10917        Results.push_back(FIST);
10918    }
10919    return;
10920  }
10921  case ISD::READCYCLECOUNTER: {
10922    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10923    SDValue TheChain = N->getOperand(0);
10924    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10925    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10926                                     rd.getValue(1));
10927    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10928                                     eax.getValue(2));
10929    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10930    SDValue Ops[] = { eax, edx };
10931    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10932    Results.push_back(edx.getValue(1));
10933    return;
10934  }
10935  case ISD::ATOMIC_CMP_SWAP: {
10936    EVT T = N->getValueType(0);
10937    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10938    bool Regs64bit = T == MVT::i128;
10939    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10940    SDValue cpInL, cpInH;
10941    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10942                        DAG.getConstant(0, HalfT));
10943    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10944                        DAG.getConstant(1, HalfT));
10945    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10946                             Regs64bit ? X86::RAX : X86::EAX,
10947                             cpInL, SDValue());
10948    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10949                             Regs64bit ? X86::RDX : X86::EDX,
10950                             cpInH, cpInL.getValue(1));
10951    SDValue swapInL, swapInH;
10952    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10953                          DAG.getConstant(0, HalfT));
10954    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10955                          DAG.getConstant(1, HalfT));
10956    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10957                               Regs64bit ? X86::RBX : X86::EBX,
10958                               swapInL, cpInH.getValue(1));
10959    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10960                               Regs64bit ? X86::RCX : X86::ECX,
10961                               swapInH, swapInL.getValue(1));
10962    SDValue Ops[] = { swapInH.getValue(0),
10963                      N->getOperand(1),
10964                      swapInH.getValue(1) };
10965    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10966    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10967    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10968                                  X86ISD::LCMPXCHG8_DAG;
10969    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10970                                             Ops, 3, T, MMO);
10971    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10972                                        Regs64bit ? X86::RAX : X86::EAX,
10973                                        HalfT, Result.getValue(1));
10974    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10975                                        Regs64bit ? X86::RDX : X86::EDX,
10976                                        HalfT, cpOutL.getValue(2));
10977    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10978    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10979    Results.push_back(cpOutH.getValue(1));
10980    return;
10981  }
10982  case ISD::ATOMIC_LOAD_ADD:
10983    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10984    return;
10985  case ISD::ATOMIC_LOAD_AND:
10986    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10987    return;
10988  case ISD::ATOMIC_LOAD_NAND:
10989    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10990    return;
10991  case ISD::ATOMIC_LOAD_OR:
10992    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10993    return;
10994  case ISD::ATOMIC_LOAD_SUB:
10995    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10996    return;
10997  case ISD::ATOMIC_LOAD_XOR:
10998    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10999    return;
11000  case ISD::ATOMIC_SWAP:
11001    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
11002    return;
11003  case ISD::ATOMIC_LOAD:
11004    ReplaceATOMIC_LOAD(N, Results, DAG);
11005  }
11006}
11007
11008const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11009  switch (Opcode) {
11010  default: return NULL;
11011  case X86ISD::BSF:                return "X86ISD::BSF";
11012  case X86ISD::BSR:                return "X86ISD::BSR";
11013  case X86ISD::SHLD:               return "X86ISD::SHLD";
11014  case X86ISD::SHRD:               return "X86ISD::SHRD";
11015  case X86ISD::FAND:               return "X86ISD::FAND";
11016  case X86ISD::FOR:                return "X86ISD::FOR";
11017  case X86ISD::FXOR:               return "X86ISD::FXOR";
11018  case X86ISD::FSRL:               return "X86ISD::FSRL";
11019  case X86ISD::FILD:               return "X86ISD::FILD";
11020  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11021  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11022  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11023  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11024  case X86ISD::FLD:                return "X86ISD::FLD";
11025  case X86ISD::FST:                return "X86ISD::FST";
11026  case X86ISD::CALL:               return "X86ISD::CALL";
11027  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11028  case X86ISD::BT:                 return "X86ISD::BT";
11029  case X86ISD::CMP:                return "X86ISD::CMP";
11030  case X86ISD::COMI:               return "X86ISD::COMI";
11031  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11032  case X86ISD::SETCC:              return "X86ISD::SETCC";
11033  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11034  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11035  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11036  case X86ISD::CMOV:               return "X86ISD::CMOV";
11037  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11038  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11039  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11040  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11041  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11042  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11043  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11044  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11045  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11046  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11047  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11048  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11049  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11050  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11051  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11052  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11053  case X86ISD::HADD:               return "X86ISD::HADD";
11054  case X86ISD::HSUB:               return "X86ISD::HSUB";
11055  case X86ISD::FHADD:              return "X86ISD::FHADD";
11056  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11057  case X86ISD::FMAX:               return "X86ISD::FMAX";
11058  case X86ISD::FMIN:               return "X86ISD::FMIN";
11059  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11060  case X86ISD::FRCP:               return "X86ISD::FRCP";
11061  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11062  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11063  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11064  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11065  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11066  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11067  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11068  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11069  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11070  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11071  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11072  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11073  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11074  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11075  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11076  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11077  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11078  case X86ISD::VSHL:               return "X86ISD::VSHL";
11079  case X86ISD::VSRL:               return "X86ISD::VSRL";
11080  case X86ISD::VSRA:               return "X86ISD::VSRA";
11081  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11082  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11083  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11084  case X86ISD::CMPP:               return "X86ISD::CMPP";
11085  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11086  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11087  case X86ISD::ADD:                return "X86ISD::ADD";
11088  case X86ISD::SUB:                return "X86ISD::SUB";
11089  case X86ISD::ADC:                return "X86ISD::ADC";
11090  case X86ISD::SBB:                return "X86ISD::SBB";
11091  case X86ISD::SMUL:               return "X86ISD::SMUL";
11092  case X86ISD::UMUL:               return "X86ISD::UMUL";
11093  case X86ISD::INC:                return "X86ISD::INC";
11094  case X86ISD::DEC:                return "X86ISD::DEC";
11095  case X86ISD::OR:                 return "X86ISD::OR";
11096  case X86ISD::XOR:                return "X86ISD::XOR";
11097  case X86ISD::AND:                return "X86ISD::AND";
11098  case X86ISD::ANDN:               return "X86ISD::ANDN";
11099  case X86ISD::BLSI:               return "X86ISD::BLSI";
11100  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11101  case X86ISD::BLSR:               return "X86ISD::BLSR";
11102  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11103  case X86ISD::PTEST:              return "X86ISD::PTEST";
11104  case X86ISD::TESTP:              return "X86ISD::TESTP";
11105  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11106  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11107  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11108  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11109  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11110  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11111  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11112  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11113  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11114  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11115  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11116  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11117  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11118  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11119  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11120  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11121  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11122  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11123  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11124  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11125  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11126  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11127  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11128  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11129  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11130  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11131  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11132  }
11133}
11134
11135// isLegalAddressingMode - Return true if the addressing mode represented
11136// by AM is legal for this target, for a load/store of the specified type.
11137bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11138                                              Type *Ty) const {
11139  // X86 supports extremely general addressing modes.
11140  CodeModel::Model M = getTargetMachine().getCodeModel();
11141  Reloc::Model R = getTargetMachine().getRelocationModel();
11142
11143  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11144  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11145    return false;
11146
11147  if (AM.BaseGV) {
11148    unsigned GVFlags =
11149      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11150
11151    // If a reference to this global requires an extra load, we can't fold it.
11152    if (isGlobalStubReference(GVFlags))
11153      return false;
11154
11155    // If BaseGV requires a register for the PIC base, we cannot also have a
11156    // BaseReg specified.
11157    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11158      return false;
11159
11160    // If lower 4G is not available, then we must use rip-relative addressing.
11161    if ((M != CodeModel::Small || R != Reloc::Static) &&
11162        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11163      return false;
11164  }
11165
11166  switch (AM.Scale) {
11167  case 0:
11168  case 1:
11169  case 2:
11170  case 4:
11171  case 8:
11172    // These scales always work.
11173    break;
11174  case 3:
11175  case 5:
11176  case 9:
11177    // These scales are formed with basereg+scalereg.  Only accept if there is
11178    // no basereg yet.
11179    if (AM.HasBaseReg)
11180      return false;
11181    break;
11182  default:  // Other stuff never works.
11183    return false;
11184  }
11185
11186  return true;
11187}
11188
11189
11190bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11191  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11192    return false;
11193  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11194  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11195  if (NumBits1 <= NumBits2)
11196    return false;
11197  return true;
11198}
11199
11200bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11201  if (!VT1.isInteger() || !VT2.isInteger())
11202    return false;
11203  unsigned NumBits1 = VT1.getSizeInBits();
11204  unsigned NumBits2 = VT2.getSizeInBits();
11205  if (NumBits1 <= NumBits2)
11206    return false;
11207  return true;
11208}
11209
11210bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11211  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11212  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11213}
11214
11215bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11216  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11217  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11218}
11219
11220bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11221  // i16 instructions are longer (0x66 prefix) and potentially slower.
11222  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11223}
11224
11225/// isShuffleMaskLegal - Targets can use this to indicate that they only
11226/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11227/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11228/// are assumed to be legal.
11229bool
11230X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11231                                      EVT VT) const {
11232  // Very little shuffling can be done for 64-bit vectors right now.
11233  if (VT.getSizeInBits() == 64)
11234    return false;
11235
11236  // FIXME: pshufb, blends, shifts.
11237  return (VT.getVectorNumElements() == 2 ||
11238          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11239          isMOVLMask(M, VT) ||
11240          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11241          isPSHUFDMask(M, VT) ||
11242          isPSHUFHWMask(M, VT) ||
11243          isPSHUFLWMask(M, VT) ||
11244          isPALIGNRMask(M, VT, Subtarget) ||
11245          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11246          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11247          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11248          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11249}
11250
11251bool
11252X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11253                                          EVT VT) const {
11254  unsigned NumElts = VT.getVectorNumElements();
11255  // FIXME: This collection of masks seems suspect.
11256  if (NumElts == 2)
11257    return true;
11258  if (NumElts == 4 && VT.getSizeInBits() == 128) {
11259    return (isMOVLMask(Mask, VT)  ||
11260            isCommutedMOVLMask(Mask, VT, true) ||
11261            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11262            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11263  }
11264  return false;
11265}
11266
11267//===----------------------------------------------------------------------===//
11268//                           X86 Scheduler Hooks
11269//===----------------------------------------------------------------------===//
11270
11271// private utility function
11272MachineBasicBlock *
11273X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11274                                                       MachineBasicBlock *MBB,
11275                                                       unsigned regOpc,
11276                                                       unsigned immOpc,
11277                                                       unsigned LoadOpc,
11278                                                       unsigned CXchgOpc,
11279                                                       unsigned notOpc,
11280                                                       unsigned EAXreg,
11281                                                 const TargetRegisterClass *RC,
11282                                                       bool invSrc) const {
11283  // For the atomic bitwise operator, we generate
11284  //   thisMBB:
11285  //   newMBB:
11286  //     ld  t1 = [bitinstr.addr]
11287  //     op  t2 = t1, [bitinstr.val]
11288  //     mov EAX = t1
11289  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11290  //     bz  newMBB
11291  //     fallthrough -->nextMBB
11292  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11293  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11294  MachineFunction::iterator MBBIter = MBB;
11295  ++MBBIter;
11296
11297  /// First build the CFG
11298  MachineFunction *F = MBB->getParent();
11299  MachineBasicBlock *thisMBB = MBB;
11300  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11301  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11302  F->insert(MBBIter, newMBB);
11303  F->insert(MBBIter, nextMBB);
11304
11305  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11306  nextMBB->splice(nextMBB->begin(), thisMBB,
11307                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11308                  thisMBB->end());
11309  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11310
11311  // Update thisMBB to fall through to newMBB
11312  thisMBB->addSuccessor(newMBB);
11313
11314  // newMBB jumps to itself and fall through to nextMBB
11315  newMBB->addSuccessor(nextMBB);
11316  newMBB->addSuccessor(newMBB);
11317
11318  // Insert instructions into newMBB based on incoming instruction
11319  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11320         "unexpected number of operands");
11321  DebugLoc dl = bInstr->getDebugLoc();
11322  MachineOperand& destOper = bInstr->getOperand(0);
11323  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11324  int numArgs = bInstr->getNumOperands() - 1;
11325  for (int i=0; i < numArgs; ++i)
11326    argOpers[i] = &bInstr->getOperand(i+1);
11327
11328  // x86 address has 4 operands: base, index, scale, and displacement
11329  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11330  int valArgIndx = lastAddrIndx + 1;
11331
11332  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11333  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11334  for (int i=0; i <= lastAddrIndx; ++i)
11335    (*MIB).addOperand(*argOpers[i]);
11336
11337  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
11338  if (invSrc) {
11339    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
11340  }
11341  else
11342    tt = t1;
11343
11344  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11345  assert((argOpers[valArgIndx]->isReg() ||
11346          argOpers[valArgIndx]->isImm()) &&
11347         "invalid operand");
11348  if (argOpers[valArgIndx]->isReg())
11349    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11350  else
11351    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11352  MIB.addReg(tt);
11353  (*MIB).addOperand(*argOpers[valArgIndx]);
11354
11355  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11356  MIB.addReg(t1);
11357
11358  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11359  for (int i=0; i <= lastAddrIndx; ++i)
11360    (*MIB).addOperand(*argOpers[i]);
11361  MIB.addReg(t2);
11362  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11363  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11364                    bInstr->memoperands_end());
11365
11366  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11367  MIB.addReg(EAXreg);
11368
11369  // insert branch
11370  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11371
11372  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11373  return nextMBB;
11374}
11375
11376// private utility function:  64 bit atomics on 32 bit host.
11377MachineBasicBlock *
11378X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11379                                                       MachineBasicBlock *MBB,
11380                                                       unsigned regOpcL,
11381                                                       unsigned regOpcH,
11382                                                       unsigned immOpcL,
11383                                                       unsigned immOpcH,
11384                                                       bool invSrc) const {
11385  // For the atomic bitwise operator, we generate
11386  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11387  //     ld t1,t2 = [bitinstr.addr]
11388  //   newMBB:
11389  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11390  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11391  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11392  //     mov ECX, EBX <- t5, t6
11393  //     mov EAX, EDX <- t1, t2
11394  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11395  //     mov t3, t4 <- EAX, EDX
11396  //     bz  newMBB
11397  //     result in out1, out2
11398  //     fallthrough -->nextMBB
11399
11400  const TargetRegisterClass *RC = X86::GR32RegisterClass;
11401  const unsigned LoadOpc = X86::MOV32rm;
11402  const unsigned NotOpc = X86::NOT32r;
11403  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11404  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11405  MachineFunction::iterator MBBIter = MBB;
11406  ++MBBIter;
11407
11408  /// First build the CFG
11409  MachineFunction *F = MBB->getParent();
11410  MachineBasicBlock *thisMBB = MBB;
11411  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11412  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11413  F->insert(MBBIter, newMBB);
11414  F->insert(MBBIter, nextMBB);
11415
11416  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11417  nextMBB->splice(nextMBB->begin(), thisMBB,
11418                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11419                  thisMBB->end());
11420  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11421
11422  // Update thisMBB to fall through to newMBB
11423  thisMBB->addSuccessor(newMBB);
11424
11425  // newMBB jumps to itself and fall through to nextMBB
11426  newMBB->addSuccessor(nextMBB);
11427  newMBB->addSuccessor(newMBB);
11428
11429  DebugLoc dl = bInstr->getDebugLoc();
11430  // Insert instructions into newMBB based on incoming instruction
11431  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11432  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11433         "unexpected number of operands");
11434  MachineOperand& dest1Oper = bInstr->getOperand(0);
11435  MachineOperand& dest2Oper = bInstr->getOperand(1);
11436  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11437  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11438    argOpers[i] = &bInstr->getOperand(i+2);
11439
11440    // We use some of the operands multiple times, so conservatively just
11441    // clear any kill flags that might be present.
11442    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11443      argOpers[i]->setIsKill(false);
11444  }
11445
11446  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11447  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11448
11449  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11450  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11451  for (int i=0; i <= lastAddrIndx; ++i)
11452    (*MIB).addOperand(*argOpers[i]);
11453  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11454  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11455  // add 4 to displacement.
11456  for (int i=0; i <= lastAddrIndx-2; ++i)
11457    (*MIB).addOperand(*argOpers[i]);
11458  MachineOperand newOp3 = *(argOpers[3]);
11459  if (newOp3.isImm())
11460    newOp3.setImm(newOp3.getImm()+4);
11461  else
11462    newOp3.setOffset(newOp3.getOffset()+4);
11463  (*MIB).addOperand(newOp3);
11464  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11465
11466  // t3/4 are defined later, at the bottom of the loop
11467  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11468  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11469  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11470    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11471  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11472    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11473
11474  // The subsequent operations should be using the destination registers of
11475  //the PHI instructions.
11476  if (invSrc) {
11477    t1 = F->getRegInfo().createVirtualRegister(RC);
11478    t2 = F->getRegInfo().createVirtualRegister(RC);
11479    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11480    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11481  } else {
11482    t1 = dest1Oper.getReg();
11483    t2 = dest2Oper.getReg();
11484  }
11485
11486  int valArgIndx = lastAddrIndx + 1;
11487  assert((argOpers[valArgIndx]->isReg() ||
11488          argOpers[valArgIndx]->isImm()) &&
11489         "invalid operand");
11490  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11491  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11492  if (argOpers[valArgIndx]->isReg())
11493    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11494  else
11495    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11496  if (regOpcL != X86::MOV32rr)
11497    MIB.addReg(t1);
11498  (*MIB).addOperand(*argOpers[valArgIndx]);
11499  assert(argOpers[valArgIndx + 1]->isReg() ==
11500         argOpers[valArgIndx]->isReg());
11501  assert(argOpers[valArgIndx + 1]->isImm() ==
11502         argOpers[valArgIndx]->isImm());
11503  if (argOpers[valArgIndx + 1]->isReg())
11504    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11505  else
11506    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11507  if (regOpcH != X86::MOV32rr)
11508    MIB.addReg(t2);
11509  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11510
11511  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11512  MIB.addReg(t1);
11513  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11514  MIB.addReg(t2);
11515
11516  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11517  MIB.addReg(t5);
11518  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11519  MIB.addReg(t6);
11520
11521  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11522  for (int i=0; i <= lastAddrIndx; ++i)
11523    (*MIB).addOperand(*argOpers[i]);
11524
11525  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11526  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11527                    bInstr->memoperands_end());
11528
11529  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11530  MIB.addReg(X86::EAX);
11531  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11532  MIB.addReg(X86::EDX);
11533
11534  // insert branch
11535  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11536
11537  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11538  return nextMBB;
11539}
11540
11541// private utility function
11542MachineBasicBlock *
11543X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11544                                                      MachineBasicBlock *MBB,
11545                                                      unsigned cmovOpc) const {
11546  // For the atomic min/max operator, we generate
11547  //   thisMBB:
11548  //   newMBB:
11549  //     ld t1 = [min/max.addr]
11550  //     mov t2 = [min/max.val]
11551  //     cmp  t1, t2
11552  //     cmov[cond] t2 = t1
11553  //     mov EAX = t1
11554  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11555  //     bz   newMBB
11556  //     fallthrough -->nextMBB
11557  //
11558  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11559  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11560  MachineFunction::iterator MBBIter = MBB;
11561  ++MBBIter;
11562
11563  /// First build the CFG
11564  MachineFunction *F = MBB->getParent();
11565  MachineBasicBlock *thisMBB = MBB;
11566  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11567  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11568  F->insert(MBBIter, newMBB);
11569  F->insert(MBBIter, nextMBB);
11570
11571  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11572  nextMBB->splice(nextMBB->begin(), thisMBB,
11573                  llvm::next(MachineBasicBlock::iterator(mInstr)),
11574                  thisMBB->end());
11575  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11576
11577  // Update thisMBB to fall through to newMBB
11578  thisMBB->addSuccessor(newMBB);
11579
11580  // newMBB jumps to newMBB and fall through to nextMBB
11581  newMBB->addSuccessor(nextMBB);
11582  newMBB->addSuccessor(newMBB);
11583
11584  DebugLoc dl = mInstr->getDebugLoc();
11585  // Insert instructions into newMBB based on incoming instruction
11586  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11587         "unexpected number of operands");
11588  MachineOperand& destOper = mInstr->getOperand(0);
11589  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11590  int numArgs = mInstr->getNumOperands() - 1;
11591  for (int i=0; i < numArgs; ++i)
11592    argOpers[i] = &mInstr->getOperand(i+1);
11593
11594  // x86 address has 4 operands: base, index, scale, and displacement
11595  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11596  int valArgIndx = lastAddrIndx + 1;
11597
11598  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11599  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11600  for (int i=0; i <= lastAddrIndx; ++i)
11601    (*MIB).addOperand(*argOpers[i]);
11602
11603  // We only support register and immediate values
11604  assert((argOpers[valArgIndx]->isReg() ||
11605          argOpers[valArgIndx]->isImm()) &&
11606         "invalid operand");
11607
11608  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11609  if (argOpers[valArgIndx]->isReg())
11610    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11611  else
11612    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11613  (*MIB).addOperand(*argOpers[valArgIndx]);
11614
11615  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11616  MIB.addReg(t1);
11617
11618  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11619  MIB.addReg(t1);
11620  MIB.addReg(t2);
11621
11622  // Generate movc
11623  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11624  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11625  MIB.addReg(t2);
11626  MIB.addReg(t1);
11627
11628  // Cmp and exchange if none has modified the memory location
11629  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11630  for (int i=0; i <= lastAddrIndx; ++i)
11631    (*MIB).addOperand(*argOpers[i]);
11632  MIB.addReg(t3);
11633  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11634  (*MIB).setMemRefs(mInstr->memoperands_begin(),
11635                    mInstr->memoperands_end());
11636
11637  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11638  MIB.addReg(X86::EAX);
11639
11640  // insert branch
11641  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11642
11643  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11644  return nextMBB;
11645}
11646
11647// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11648// or XMM0_V32I8 in AVX all of this code can be replaced with that
11649// in the .td file.
11650MachineBasicBlock *
11651X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11652                            unsigned numArgs, bool memArg) const {
11653  assert(Subtarget->hasSSE42() &&
11654         "Target must have SSE4.2 or AVX features enabled");
11655
11656  DebugLoc dl = MI->getDebugLoc();
11657  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11658  unsigned Opc;
11659  if (!Subtarget->hasAVX()) {
11660    if (memArg)
11661      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11662    else
11663      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11664  } else {
11665    if (memArg)
11666      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11667    else
11668      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11669  }
11670
11671  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11672  for (unsigned i = 0; i < numArgs; ++i) {
11673    MachineOperand &Op = MI->getOperand(i+1);
11674    if (!(Op.isReg() && Op.isImplicit()))
11675      MIB.addOperand(Op);
11676  }
11677  BuildMI(*BB, MI, dl,
11678    TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11679             MI->getOperand(0).getReg())
11680    .addReg(X86::XMM0);
11681
11682  MI->eraseFromParent();
11683  return BB;
11684}
11685
11686MachineBasicBlock *
11687X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11688  DebugLoc dl = MI->getDebugLoc();
11689  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11690
11691  // Address into RAX/EAX, other two args into ECX, EDX.
11692  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11693  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11694  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11695  for (int i = 0; i < X86::AddrNumOperands; ++i)
11696    MIB.addOperand(MI->getOperand(i));
11697
11698  unsigned ValOps = X86::AddrNumOperands;
11699  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11700    .addReg(MI->getOperand(ValOps).getReg());
11701  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11702    .addReg(MI->getOperand(ValOps+1).getReg());
11703
11704  // The instruction doesn't actually take any operands though.
11705  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11706
11707  MI->eraseFromParent(); // The pseudo is gone now.
11708  return BB;
11709}
11710
11711MachineBasicBlock *
11712X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11713  DebugLoc dl = MI->getDebugLoc();
11714  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11715
11716  // First arg in ECX, the second in EAX.
11717  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11718    .addReg(MI->getOperand(0).getReg());
11719  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11720    .addReg(MI->getOperand(1).getReg());
11721
11722  // The instruction doesn't actually take any operands though.
11723  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11724
11725  MI->eraseFromParent(); // The pseudo is gone now.
11726  return BB;
11727}
11728
11729MachineBasicBlock *
11730X86TargetLowering::EmitVAARG64WithCustomInserter(
11731                   MachineInstr *MI,
11732                   MachineBasicBlock *MBB) const {
11733  // Emit va_arg instruction on X86-64.
11734
11735  // Operands to this pseudo-instruction:
11736  // 0  ) Output        : destination address (reg)
11737  // 1-5) Input         : va_list address (addr, i64mem)
11738  // 6  ) ArgSize       : Size (in bytes) of vararg type
11739  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11740  // 8  ) Align         : Alignment of type
11741  // 9  ) EFLAGS (implicit-def)
11742
11743  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11744  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11745
11746  unsigned DestReg = MI->getOperand(0).getReg();
11747  MachineOperand &Base = MI->getOperand(1);
11748  MachineOperand &Scale = MI->getOperand(2);
11749  MachineOperand &Index = MI->getOperand(3);
11750  MachineOperand &Disp = MI->getOperand(4);
11751  MachineOperand &Segment = MI->getOperand(5);
11752  unsigned ArgSize = MI->getOperand(6).getImm();
11753  unsigned ArgMode = MI->getOperand(7).getImm();
11754  unsigned Align = MI->getOperand(8).getImm();
11755
11756  // Memory Reference
11757  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11758  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11759  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11760
11761  // Machine Information
11762  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11763  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11764  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11765  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11766  DebugLoc DL = MI->getDebugLoc();
11767
11768  // struct va_list {
11769  //   i32   gp_offset
11770  //   i32   fp_offset
11771  //   i64   overflow_area (address)
11772  //   i64   reg_save_area (address)
11773  // }
11774  // sizeof(va_list) = 24
11775  // alignment(va_list) = 8
11776
11777  unsigned TotalNumIntRegs = 6;
11778  unsigned TotalNumXMMRegs = 8;
11779  bool UseGPOffset = (ArgMode == 1);
11780  bool UseFPOffset = (ArgMode == 2);
11781  unsigned MaxOffset = TotalNumIntRegs * 8 +
11782                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11783
11784  /* Align ArgSize to a multiple of 8 */
11785  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11786  bool NeedsAlign = (Align > 8);
11787
11788  MachineBasicBlock *thisMBB = MBB;
11789  MachineBasicBlock *overflowMBB;
11790  MachineBasicBlock *offsetMBB;
11791  MachineBasicBlock *endMBB;
11792
11793  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11794  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11795  unsigned OffsetReg = 0;
11796
11797  if (!UseGPOffset && !UseFPOffset) {
11798    // If we only pull from the overflow region, we don't create a branch.
11799    // We don't need to alter control flow.
11800    OffsetDestReg = 0; // unused
11801    OverflowDestReg = DestReg;
11802
11803    offsetMBB = NULL;
11804    overflowMBB = thisMBB;
11805    endMBB = thisMBB;
11806  } else {
11807    // First emit code to check if gp_offset (or fp_offset) is below the bound.
11808    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11809    // If not, pull from overflow_area. (branch to overflowMBB)
11810    //
11811    //       thisMBB
11812    //         |     .
11813    //         |        .
11814    //     offsetMBB   overflowMBB
11815    //         |        .
11816    //         |     .
11817    //        endMBB
11818
11819    // Registers for the PHI in endMBB
11820    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11821    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11822
11823    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11824    MachineFunction *MF = MBB->getParent();
11825    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11826    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11827    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11828
11829    MachineFunction::iterator MBBIter = MBB;
11830    ++MBBIter;
11831
11832    // Insert the new basic blocks
11833    MF->insert(MBBIter, offsetMBB);
11834    MF->insert(MBBIter, overflowMBB);
11835    MF->insert(MBBIter, endMBB);
11836
11837    // Transfer the remainder of MBB and its successor edges to endMBB.
11838    endMBB->splice(endMBB->begin(), thisMBB,
11839                    llvm::next(MachineBasicBlock::iterator(MI)),
11840                    thisMBB->end());
11841    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11842
11843    // Make offsetMBB and overflowMBB successors of thisMBB
11844    thisMBB->addSuccessor(offsetMBB);
11845    thisMBB->addSuccessor(overflowMBB);
11846
11847    // endMBB is a successor of both offsetMBB and overflowMBB
11848    offsetMBB->addSuccessor(endMBB);
11849    overflowMBB->addSuccessor(endMBB);
11850
11851    // Load the offset value into a register
11852    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11853    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11854      .addOperand(Base)
11855      .addOperand(Scale)
11856      .addOperand(Index)
11857      .addDisp(Disp, UseFPOffset ? 4 : 0)
11858      .addOperand(Segment)
11859      .setMemRefs(MMOBegin, MMOEnd);
11860
11861    // Check if there is enough room left to pull this argument.
11862    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11863      .addReg(OffsetReg)
11864      .addImm(MaxOffset + 8 - ArgSizeA8);
11865
11866    // Branch to "overflowMBB" if offset >= max
11867    // Fall through to "offsetMBB" otherwise
11868    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11869      .addMBB(overflowMBB);
11870  }
11871
11872  // In offsetMBB, emit code to use the reg_save_area.
11873  if (offsetMBB) {
11874    assert(OffsetReg != 0);
11875
11876    // Read the reg_save_area address.
11877    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11878    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11879      .addOperand(Base)
11880      .addOperand(Scale)
11881      .addOperand(Index)
11882      .addDisp(Disp, 16)
11883      .addOperand(Segment)
11884      .setMemRefs(MMOBegin, MMOEnd);
11885
11886    // Zero-extend the offset
11887    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11888      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11889        .addImm(0)
11890        .addReg(OffsetReg)
11891        .addImm(X86::sub_32bit);
11892
11893    // Add the offset to the reg_save_area to get the final address.
11894    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11895      .addReg(OffsetReg64)
11896      .addReg(RegSaveReg);
11897
11898    // Compute the offset for the next argument
11899    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11900    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11901      .addReg(OffsetReg)
11902      .addImm(UseFPOffset ? 16 : 8);
11903
11904    // Store it back into the va_list.
11905    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11906      .addOperand(Base)
11907      .addOperand(Scale)
11908      .addOperand(Index)
11909      .addDisp(Disp, UseFPOffset ? 4 : 0)
11910      .addOperand(Segment)
11911      .addReg(NextOffsetReg)
11912      .setMemRefs(MMOBegin, MMOEnd);
11913
11914    // Jump to endMBB
11915    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11916      .addMBB(endMBB);
11917  }
11918
11919  //
11920  // Emit code to use overflow area
11921  //
11922
11923  // Load the overflow_area address into a register.
11924  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11925  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11926    .addOperand(Base)
11927    .addOperand(Scale)
11928    .addOperand(Index)
11929    .addDisp(Disp, 8)
11930    .addOperand(Segment)
11931    .setMemRefs(MMOBegin, MMOEnd);
11932
11933  // If we need to align it, do so. Otherwise, just copy the address
11934  // to OverflowDestReg.
11935  if (NeedsAlign) {
11936    // Align the overflow address
11937    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11938    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11939
11940    // aligned_addr = (addr + (align-1)) & ~(align-1)
11941    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11942      .addReg(OverflowAddrReg)
11943      .addImm(Align-1);
11944
11945    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11946      .addReg(TmpReg)
11947      .addImm(~(uint64_t)(Align-1));
11948  } else {
11949    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11950      .addReg(OverflowAddrReg);
11951  }
11952
11953  // Compute the next overflow address after this argument.
11954  // (the overflow address should be kept 8-byte aligned)
11955  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11956  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11957    .addReg(OverflowDestReg)
11958    .addImm(ArgSizeA8);
11959
11960  // Store the new overflow address.
11961  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11962    .addOperand(Base)
11963    .addOperand(Scale)
11964    .addOperand(Index)
11965    .addDisp(Disp, 8)
11966    .addOperand(Segment)
11967    .addReg(NextAddrReg)
11968    .setMemRefs(MMOBegin, MMOEnd);
11969
11970  // If we branched, emit the PHI to the front of endMBB.
11971  if (offsetMBB) {
11972    BuildMI(*endMBB, endMBB->begin(), DL,
11973            TII->get(X86::PHI), DestReg)
11974      .addReg(OffsetDestReg).addMBB(offsetMBB)
11975      .addReg(OverflowDestReg).addMBB(overflowMBB);
11976  }
11977
11978  // Erase the pseudo instruction
11979  MI->eraseFromParent();
11980
11981  return endMBB;
11982}
11983
11984MachineBasicBlock *
11985X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11986                                                 MachineInstr *MI,
11987                                                 MachineBasicBlock *MBB) const {
11988  // Emit code to save XMM registers to the stack. The ABI says that the
11989  // number of registers to save is given in %al, so it's theoretically
11990  // possible to do an indirect jump trick to avoid saving all of them,
11991  // however this code takes a simpler approach and just executes all
11992  // of the stores if %al is non-zero. It's less code, and it's probably
11993  // easier on the hardware branch predictor, and stores aren't all that
11994  // expensive anyway.
11995
11996  // Create the new basic blocks. One block contains all the XMM stores,
11997  // and one block is the final destination regardless of whether any
11998  // stores were performed.
11999  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12000  MachineFunction *F = MBB->getParent();
12001  MachineFunction::iterator MBBIter = MBB;
12002  ++MBBIter;
12003  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12004  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12005  F->insert(MBBIter, XMMSaveMBB);
12006  F->insert(MBBIter, EndMBB);
12007
12008  // Transfer the remainder of MBB and its successor edges to EndMBB.
12009  EndMBB->splice(EndMBB->begin(), MBB,
12010                 llvm::next(MachineBasicBlock::iterator(MI)),
12011                 MBB->end());
12012  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12013
12014  // The original block will now fall through to the XMM save block.
12015  MBB->addSuccessor(XMMSaveMBB);
12016  // The XMMSaveMBB will fall through to the end block.
12017  XMMSaveMBB->addSuccessor(EndMBB);
12018
12019  // Now add the instructions.
12020  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12021  DebugLoc DL = MI->getDebugLoc();
12022
12023  unsigned CountReg = MI->getOperand(0).getReg();
12024  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12025  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12026
12027  if (!Subtarget->isTargetWin64()) {
12028    // If %al is 0, branch around the XMM save block.
12029    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12030    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12031    MBB->addSuccessor(EndMBB);
12032  }
12033
12034  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12035  // In the XMM save block, save all the XMM argument registers.
12036  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12037    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12038    MachineMemOperand *MMO =
12039      F->getMachineMemOperand(
12040          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12041        MachineMemOperand::MOStore,
12042        /*Size=*/16, /*Align=*/16);
12043    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12044      .addFrameIndex(RegSaveFrameIndex)
12045      .addImm(/*Scale=*/1)
12046      .addReg(/*IndexReg=*/0)
12047      .addImm(/*Disp=*/Offset)
12048      .addReg(/*Segment=*/0)
12049      .addReg(MI->getOperand(i).getReg())
12050      .addMemOperand(MMO);
12051  }
12052
12053  MI->eraseFromParent();   // The pseudo instruction is gone now.
12054
12055  return EndMBB;
12056}
12057
12058// The EFLAGS operand of SelectItr might be missing a kill marker
12059// because there were multiple uses of EFLAGS, and ISel didn't know
12060// which to mark. Figure out whether SelectItr should have had a
12061// kill marker, and set it if it should. Returns the correct kill
12062// marker value.
12063static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12064                                     MachineBasicBlock* BB,
12065                                     const TargetRegisterInfo* TRI) {
12066  // Scan forward through BB for a use/def of EFLAGS.
12067  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12068  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12069    const MachineInstr& mi = *miI;
12070    if (mi.readsRegister(X86::EFLAGS))
12071      return false;
12072    if (mi.definesRegister(X86::EFLAGS))
12073      break; // Should have kill-flag - update below.
12074  }
12075
12076  // If we hit the end of the block, check whether EFLAGS is live into a
12077  // successor.
12078  if (miI == BB->end()) {
12079    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12080                                          sEnd = BB->succ_end();
12081         sItr != sEnd; ++sItr) {
12082      MachineBasicBlock* succ = *sItr;
12083      if (succ->isLiveIn(X86::EFLAGS))
12084        return false;
12085    }
12086  }
12087
12088  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12089  // out. SelectMI should have a kill flag on EFLAGS.
12090  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12091  return true;
12092}
12093
12094MachineBasicBlock *
12095X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12096                                     MachineBasicBlock *BB) const {
12097  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12098  DebugLoc DL = MI->getDebugLoc();
12099
12100  // To "insert" a SELECT_CC instruction, we actually have to insert the
12101  // diamond control-flow pattern.  The incoming instruction knows the
12102  // destination vreg to set, the condition code register to branch on, the
12103  // true/false values to select between, and a branch opcode to use.
12104  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12105  MachineFunction::iterator It = BB;
12106  ++It;
12107
12108  //  thisMBB:
12109  //  ...
12110  //   TrueVal = ...
12111  //   cmpTY ccX, r1, r2
12112  //   bCC copy1MBB
12113  //   fallthrough --> copy0MBB
12114  MachineBasicBlock *thisMBB = BB;
12115  MachineFunction *F = BB->getParent();
12116  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12117  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12118  F->insert(It, copy0MBB);
12119  F->insert(It, sinkMBB);
12120
12121  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12122  // live into the sink and copy blocks.
12123  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12124  if (!MI->killsRegister(X86::EFLAGS) &&
12125      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12126    copy0MBB->addLiveIn(X86::EFLAGS);
12127    sinkMBB->addLiveIn(X86::EFLAGS);
12128  }
12129
12130  // Transfer the remainder of BB and its successor edges to sinkMBB.
12131  sinkMBB->splice(sinkMBB->begin(), BB,
12132                  llvm::next(MachineBasicBlock::iterator(MI)),
12133                  BB->end());
12134  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12135
12136  // Add the true and fallthrough blocks as its successors.
12137  BB->addSuccessor(copy0MBB);
12138  BB->addSuccessor(sinkMBB);
12139
12140  // Create the conditional branch instruction.
12141  unsigned Opc =
12142    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12143  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12144
12145  //  copy0MBB:
12146  //   %FalseValue = ...
12147  //   # fallthrough to sinkMBB
12148  copy0MBB->addSuccessor(sinkMBB);
12149
12150  //  sinkMBB:
12151  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12152  //  ...
12153  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12154          TII->get(X86::PHI), MI->getOperand(0).getReg())
12155    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12156    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12157
12158  MI->eraseFromParent();   // The pseudo instruction is gone now.
12159  return sinkMBB;
12160}
12161
12162MachineBasicBlock *
12163X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12164                                        bool Is64Bit) const {
12165  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12166  DebugLoc DL = MI->getDebugLoc();
12167  MachineFunction *MF = BB->getParent();
12168  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12169
12170  assert(getTargetMachine().Options.EnableSegmentedStacks);
12171
12172  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12173  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12174
12175  // BB:
12176  //  ... [Till the alloca]
12177  // If stacklet is not large enough, jump to mallocMBB
12178  //
12179  // bumpMBB:
12180  //  Allocate by subtracting from RSP
12181  //  Jump to continueMBB
12182  //
12183  // mallocMBB:
12184  //  Allocate by call to runtime
12185  //
12186  // continueMBB:
12187  //  ...
12188  //  [rest of original BB]
12189  //
12190
12191  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12192  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12193  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12194
12195  MachineRegisterInfo &MRI = MF->getRegInfo();
12196  const TargetRegisterClass *AddrRegClass =
12197    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12198
12199  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12200    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12201    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12202    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12203    sizeVReg = MI->getOperand(1).getReg(),
12204    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12205
12206  MachineFunction::iterator MBBIter = BB;
12207  ++MBBIter;
12208
12209  MF->insert(MBBIter, bumpMBB);
12210  MF->insert(MBBIter, mallocMBB);
12211  MF->insert(MBBIter, continueMBB);
12212
12213  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12214                      (MachineBasicBlock::iterator(MI)), BB->end());
12215  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12216
12217  // Add code to the main basic block to check if the stack limit has been hit,
12218  // and if so, jump to mallocMBB otherwise to bumpMBB.
12219  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12220  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12221    .addReg(tmpSPVReg).addReg(sizeVReg);
12222  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12223    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12224    .addReg(SPLimitVReg);
12225  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12226
12227  // bumpMBB simply decreases the stack pointer, since we know the current
12228  // stacklet has enough space.
12229  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12230    .addReg(SPLimitVReg);
12231  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12232    .addReg(SPLimitVReg);
12233  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12234
12235  // Calls into a routine in libgcc to allocate more space from the heap.
12236  const uint32_t *RegMask =
12237    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12238  if (Is64Bit) {
12239    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12240      .addReg(sizeVReg);
12241    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12242      .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI)
12243      .addRegMask(RegMask)
12244      .addReg(X86::RAX, RegState::ImplicitDefine);
12245  } else {
12246    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12247      .addImm(12);
12248    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12249    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12250      .addExternalSymbol("__morestack_allocate_stack_space")
12251      .addRegMask(RegMask)
12252      .addReg(X86::EAX, RegState::ImplicitDefine);
12253  }
12254
12255  if (!Is64Bit)
12256    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12257      .addImm(16);
12258
12259  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12260    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12261  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12262
12263  // Set up the CFG correctly.
12264  BB->addSuccessor(bumpMBB);
12265  BB->addSuccessor(mallocMBB);
12266  mallocMBB->addSuccessor(continueMBB);
12267  bumpMBB->addSuccessor(continueMBB);
12268
12269  // Take care of the PHI nodes.
12270  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12271          MI->getOperand(0).getReg())
12272    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12273    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12274
12275  // Delete the original pseudo instruction.
12276  MI->eraseFromParent();
12277
12278  // And we're done.
12279  return continueMBB;
12280}
12281
12282MachineBasicBlock *
12283X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12284                                          MachineBasicBlock *BB) const {
12285  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12286  DebugLoc DL = MI->getDebugLoc();
12287
12288  assert(!Subtarget->isTargetEnvMacho());
12289
12290  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12291  // non-trivial part is impdef of ESP.
12292
12293  if (Subtarget->isTargetWin64()) {
12294    if (Subtarget->isTargetCygMing()) {
12295      // ___chkstk(Mingw64):
12296      // Clobbers R10, R11, RAX and EFLAGS.
12297      // Updates RSP.
12298      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12299        .addExternalSymbol("___chkstk")
12300        .addReg(X86::RAX, RegState::Implicit)
12301        .addReg(X86::RSP, RegState::Implicit)
12302        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12303        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12304        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12305    } else {
12306      // __chkstk(MSVCRT): does not update stack pointer.
12307      // Clobbers R10, R11 and EFLAGS.
12308      // FIXME: RAX(allocated size) might be reused and not killed.
12309      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12310        .addExternalSymbol("__chkstk")
12311        .addReg(X86::RAX, RegState::Implicit)
12312        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12313      // RAX has the offset to subtracted from RSP.
12314      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12315        .addReg(X86::RSP)
12316        .addReg(X86::RAX);
12317    }
12318  } else {
12319    const char *StackProbeSymbol =
12320      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12321
12322    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12323      .addExternalSymbol(StackProbeSymbol)
12324      .addReg(X86::EAX, RegState::Implicit)
12325      .addReg(X86::ESP, RegState::Implicit)
12326      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12327      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12328      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12329  }
12330
12331  MI->eraseFromParent();   // The pseudo instruction is gone now.
12332  return BB;
12333}
12334
12335MachineBasicBlock *
12336X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12337                                      MachineBasicBlock *BB) const {
12338  // This is pretty easy.  We're taking the value that we received from
12339  // our load from the relocation, sticking it in either RDI (x86-64)
12340  // or EAX and doing an indirect call.  The return value will then
12341  // be in the normal return register.
12342  const X86InstrInfo *TII
12343    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12344  DebugLoc DL = MI->getDebugLoc();
12345  MachineFunction *F = BB->getParent();
12346
12347  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12348  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12349
12350  // Get a register mask for the lowered call.
12351  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12352  // proper register mask.
12353  const uint32_t *RegMask =
12354    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12355  if (Subtarget->is64Bit()) {
12356    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12357                                      TII->get(X86::MOV64rm), X86::RDI)
12358    .addReg(X86::RIP)
12359    .addImm(0).addReg(0)
12360    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12361                      MI->getOperand(3).getTargetFlags())
12362    .addReg(0);
12363    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12364    addDirectMem(MIB, X86::RDI);
12365    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12366  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12367    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12368                                      TII->get(X86::MOV32rm), X86::EAX)
12369    .addReg(0)
12370    .addImm(0).addReg(0)
12371    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12372                      MI->getOperand(3).getTargetFlags())
12373    .addReg(0);
12374    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12375    addDirectMem(MIB, X86::EAX);
12376    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12377  } else {
12378    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12379                                      TII->get(X86::MOV32rm), X86::EAX)
12380    .addReg(TII->getGlobalBaseReg(F))
12381    .addImm(0).addReg(0)
12382    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12383                      MI->getOperand(3).getTargetFlags())
12384    .addReg(0);
12385    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12386    addDirectMem(MIB, X86::EAX);
12387    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12388  }
12389
12390  MI->eraseFromParent(); // The pseudo instruction is gone now.
12391  return BB;
12392}
12393
12394MachineBasicBlock *
12395X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12396                                               MachineBasicBlock *BB) const {
12397  switch (MI->getOpcode()) {
12398  default: llvm_unreachable("Unexpected instr type to insert");
12399  case X86::TAILJMPd64:
12400  case X86::TAILJMPr64:
12401  case X86::TAILJMPm64:
12402    llvm_unreachable("TAILJMP64 would not be touched here.");
12403  case X86::TCRETURNdi64:
12404  case X86::TCRETURNri64:
12405  case X86::TCRETURNmi64:
12406    return BB;
12407  case X86::WIN_ALLOCA:
12408    return EmitLoweredWinAlloca(MI, BB);
12409  case X86::SEG_ALLOCA_32:
12410    return EmitLoweredSegAlloca(MI, BB, false);
12411  case X86::SEG_ALLOCA_64:
12412    return EmitLoweredSegAlloca(MI, BB, true);
12413  case X86::TLSCall_32:
12414  case X86::TLSCall_64:
12415    return EmitLoweredTLSCall(MI, BB);
12416  case X86::CMOV_GR8:
12417  case X86::CMOV_FR32:
12418  case X86::CMOV_FR64:
12419  case X86::CMOV_V4F32:
12420  case X86::CMOV_V2F64:
12421  case X86::CMOV_V2I64:
12422  case X86::CMOV_V8F32:
12423  case X86::CMOV_V4F64:
12424  case X86::CMOV_V4I64:
12425  case X86::CMOV_GR16:
12426  case X86::CMOV_GR32:
12427  case X86::CMOV_RFP32:
12428  case X86::CMOV_RFP64:
12429  case X86::CMOV_RFP80:
12430    return EmitLoweredSelect(MI, BB);
12431
12432  case X86::FP32_TO_INT16_IN_MEM:
12433  case X86::FP32_TO_INT32_IN_MEM:
12434  case X86::FP32_TO_INT64_IN_MEM:
12435  case X86::FP64_TO_INT16_IN_MEM:
12436  case X86::FP64_TO_INT32_IN_MEM:
12437  case X86::FP64_TO_INT64_IN_MEM:
12438  case X86::FP80_TO_INT16_IN_MEM:
12439  case X86::FP80_TO_INT32_IN_MEM:
12440  case X86::FP80_TO_INT64_IN_MEM: {
12441    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12442    DebugLoc DL = MI->getDebugLoc();
12443
12444    // Change the floating point control register to use "round towards zero"
12445    // mode when truncating to an integer value.
12446    MachineFunction *F = BB->getParent();
12447    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12448    addFrameReference(BuildMI(*BB, MI, DL,
12449                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12450
12451    // Load the old value of the high byte of the control word...
12452    unsigned OldCW =
12453      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12454    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12455                      CWFrameIdx);
12456
12457    // Set the high part to be round to zero...
12458    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12459      .addImm(0xC7F);
12460
12461    // Reload the modified control word now...
12462    addFrameReference(BuildMI(*BB, MI, DL,
12463                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12464
12465    // Restore the memory image of control word to original value
12466    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12467      .addReg(OldCW);
12468
12469    // Get the X86 opcode to use.
12470    unsigned Opc;
12471    switch (MI->getOpcode()) {
12472    default: llvm_unreachable("illegal opcode!");
12473    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12474    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12475    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12476    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12477    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12478    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12479    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12480    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12481    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12482    }
12483
12484    X86AddressMode AM;
12485    MachineOperand &Op = MI->getOperand(0);
12486    if (Op.isReg()) {
12487      AM.BaseType = X86AddressMode::RegBase;
12488      AM.Base.Reg = Op.getReg();
12489    } else {
12490      AM.BaseType = X86AddressMode::FrameIndexBase;
12491      AM.Base.FrameIndex = Op.getIndex();
12492    }
12493    Op = MI->getOperand(1);
12494    if (Op.isImm())
12495      AM.Scale = Op.getImm();
12496    Op = MI->getOperand(2);
12497    if (Op.isImm())
12498      AM.IndexReg = Op.getImm();
12499    Op = MI->getOperand(3);
12500    if (Op.isGlobal()) {
12501      AM.GV = Op.getGlobal();
12502    } else {
12503      AM.Disp = Op.getImm();
12504    }
12505    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12506                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12507
12508    // Reload the original control word now.
12509    addFrameReference(BuildMI(*BB, MI, DL,
12510                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12511
12512    MI->eraseFromParent();   // The pseudo instruction is gone now.
12513    return BB;
12514  }
12515    // String/text processing lowering.
12516  case X86::PCMPISTRM128REG:
12517  case X86::VPCMPISTRM128REG:
12518    return EmitPCMP(MI, BB, 3, false /* in-mem */);
12519  case X86::PCMPISTRM128MEM:
12520  case X86::VPCMPISTRM128MEM:
12521    return EmitPCMP(MI, BB, 3, true /* in-mem */);
12522  case X86::PCMPESTRM128REG:
12523  case X86::VPCMPESTRM128REG:
12524    return EmitPCMP(MI, BB, 5, false /* in mem */);
12525  case X86::PCMPESTRM128MEM:
12526  case X86::VPCMPESTRM128MEM:
12527    return EmitPCMP(MI, BB, 5, true /* in mem */);
12528
12529    // Thread synchronization.
12530  case X86::MONITOR:
12531    return EmitMonitor(MI, BB);
12532  case X86::MWAIT:
12533    return EmitMwait(MI, BB);
12534
12535    // Atomic Lowering.
12536  case X86::ATOMAND32:
12537    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12538                                               X86::AND32ri, X86::MOV32rm,
12539                                               X86::LCMPXCHG32,
12540                                               X86::NOT32r, X86::EAX,
12541                                               X86::GR32RegisterClass);
12542  case X86::ATOMOR32:
12543    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12544                                               X86::OR32ri, X86::MOV32rm,
12545                                               X86::LCMPXCHG32,
12546                                               X86::NOT32r, X86::EAX,
12547                                               X86::GR32RegisterClass);
12548  case X86::ATOMXOR32:
12549    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12550                                               X86::XOR32ri, X86::MOV32rm,
12551                                               X86::LCMPXCHG32,
12552                                               X86::NOT32r, X86::EAX,
12553                                               X86::GR32RegisterClass);
12554  case X86::ATOMNAND32:
12555    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12556                                               X86::AND32ri, X86::MOV32rm,
12557                                               X86::LCMPXCHG32,
12558                                               X86::NOT32r, X86::EAX,
12559                                               X86::GR32RegisterClass, true);
12560  case X86::ATOMMIN32:
12561    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12562  case X86::ATOMMAX32:
12563    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12564  case X86::ATOMUMIN32:
12565    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12566  case X86::ATOMUMAX32:
12567    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12568
12569  case X86::ATOMAND16:
12570    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12571                                               X86::AND16ri, X86::MOV16rm,
12572                                               X86::LCMPXCHG16,
12573                                               X86::NOT16r, X86::AX,
12574                                               X86::GR16RegisterClass);
12575  case X86::ATOMOR16:
12576    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12577                                               X86::OR16ri, X86::MOV16rm,
12578                                               X86::LCMPXCHG16,
12579                                               X86::NOT16r, X86::AX,
12580                                               X86::GR16RegisterClass);
12581  case X86::ATOMXOR16:
12582    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12583                                               X86::XOR16ri, X86::MOV16rm,
12584                                               X86::LCMPXCHG16,
12585                                               X86::NOT16r, X86::AX,
12586                                               X86::GR16RegisterClass);
12587  case X86::ATOMNAND16:
12588    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12589                                               X86::AND16ri, X86::MOV16rm,
12590                                               X86::LCMPXCHG16,
12591                                               X86::NOT16r, X86::AX,
12592                                               X86::GR16RegisterClass, true);
12593  case X86::ATOMMIN16:
12594    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12595  case X86::ATOMMAX16:
12596    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12597  case X86::ATOMUMIN16:
12598    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12599  case X86::ATOMUMAX16:
12600    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12601
12602  case X86::ATOMAND8:
12603    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12604                                               X86::AND8ri, X86::MOV8rm,
12605                                               X86::LCMPXCHG8,
12606                                               X86::NOT8r, X86::AL,
12607                                               X86::GR8RegisterClass);
12608  case X86::ATOMOR8:
12609    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12610                                               X86::OR8ri, X86::MOV8rm,
12611                                               X86::LCMPXCHG8,
12612                                               X86::NOT8r, X86::AL,
12613                                               X86::GR8RegisterClass);
12614  case X86::ATOMXOR8:
12615    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12616                                               X86::XOR8ri, X86::MOV8rm,
12617                                               X86::LCMPXCHG8,
12618                                               X86::NOT8r, X86::AL,
12619                                               X86::GR8RegisterClass);
12620  case X86::ATOMNAND8:
12621    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12622                                               X86::AND8ri, X86::MOV8rm,
12623                                               X86::LCMPXCHG8,
12624                                               X86::NOT8r, X86::AL,
12625                                               X86::GR8RegisterClass, true);
12626  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12627  // This group is for 64-bit host.
12628  case X86::ATOMAND64:
12629    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12630                                               X86::AND64ri32, X86::MOV64rm,
12631                                               X86::LCMPXCHG64,
12632                                               X86::NOT64r, X86::RAX,
12633                                               X86::GR64RegisterClass);
12634  case X86::ATOMOR64:
12635    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12636                                               X86::OR64ri32, X86::MOV64rm,
12637                                               X86::LCMPXCHG64,
12638                                               X86::NOT64r, X86::RAX,
12639                                               X86::GR64RegisterClass);
12640  case X86::ATOMXOR64:
12641    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12642                                               X86::XOR64ri32, X86::MOV64rm,
12643                                               X86::LCMPXCHG64,
12644                                               X86::NOT64r, X86::RAX,
12645                                               X86::GR64RegisterClass);
12646  case X86::ATOMNAND64:
12647    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12648                                               X86::AND64ri32, X86::MOV64rm,
12649                                               X86::LCMPXCHG64,
12650                                               X86::NOT64r, X86::RAX,
12651                                               X86::GR64RegisterClass, true);
12652  case X86::ATOMMIN64:
12653    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12654  case X86::ATOMMAX64:
12655    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12656  case X86::ATOMUMIN64:
12657    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12658  case X86::ATOMUMAX64:
12659    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12660
12661  // This group does 64-bit operations on a 32-bit host.
12662  case X86::ATOMAND6432:
12663    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12664                                               X86::AND32rr, X86::AND32rr,
12665                                               X86::AND32ri, X86::AND32ri,
12666                                               false);
12667  case X86::ATOMOR6432:
12668    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12669                                               X86::OR32rr, X86::OR32rr,
12670                                               X86::OR32ri, X86::OR32ri,
12671                                               false);
12672  case X86::ATOMXOR6432:
12673    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12674                                               X86::XOR32rr, X86::XOR32rr,
12675                                               X86::XOR32ri, X86::XOR32ri,
12676                                               false);
12677  case X86::ATOMNAND6432:
12678    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12679                                               X86::AND32rr, X86::AND32rr,
12680                                               X86::AND32ri, X86::AND32ri,
12681                                               true);
12682  case X86::ATOMADD6432:
12683    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12684                                               X86::ADD32rr, X86::ADC32rr,
12685                                               X86::ADD32ri, X86::ADC32ri,
12686                                               false);
12687  case X86::ATOMSUB6432:
12688    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12689                                               X86::SUB32rr, X86::SBB32rr,
12690                                               X86::SUB32ri, X86::SBB32ri,
12691                                               false);
12692  case X86::ATOMSWAP6432:
12693    return EmitAtomicBit6432WithCustomInserter(MI, BB,
12694                                               X86::MOV32rr, X86::MOV32rr,
12695                                               X86::MOV32ri, X86::MOV32ri,
12696                                               false);
12697  case X86::VASTART_SAVE_XMM_REGS:
12698    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12699
12700  case X86::VAARG_64:
12701    return EmitVAARG64WithCustomInserter(MI, BB);
12702  }
12703}
12704
12705//===----------------------------------------------------------------------===//
12706//                           X86 Optimization Hooks
12707//===----------------------------------------------------------------------===//
12708
12709void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12710                                                       APInt &KnownZero,
12711                                                       APInt &KnownOne,
12712                                                       const SelectionDAG &DAG,
12713                                                       unsigned Depth) const {
12714  unsigned BitWidth = KnownZero.getBitWidth();
12715  unsigned Opc = Op.getOpcode();
12716  assert((Opc >= ISD::BUILTIN_OP_END ||
12717          Opc == ISD::INTRINSIC_WO_CHAIN ||
12718          Opc == ISD::INTRINSIC_W_CHAIN ||
12719          Opc == ISD::INTRINSIC_VOID) &&
12720         "Should use MaskedValueIsZero if you don't know whether Op"
12721         " is a target node!");
12722
12723  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
12724  switch (Opc) {
12725  default: break;
12726  case X86ISD::ADD:
12727  case X86ISD::SUB:
12728  case X86ISD::ADC:
12729  case X86ISD::SBB:
12730  case X86ISD::SMUL:
12731  case X86ISD::UMUL:
12732  case X86ISD::INC:
12733  case X86ISD::DEC:
12734  case X86ISD::OR:
12735  case X86ISD::XOR:
12736  case X86ISD::AND:
12737    // These nodes' second result is a boolean.
12738    if (Op.getResNo() == 0)
12739      break;
12740    // Fallthrough
12741  case X86ISD::SETCC:
12742    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
12743    break;
12744  case ISD::INTRINSIC_WO_CHAIN: {
12745    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12746    unsigned NumLoBits = 0;
12747    switch (IntId) {
12748    default: break;
12749    case Intrinsic::x86_sse_movmsk_ps:
12750    case Intrinsic::x86_avx_movmsk_ps_256:
12751    case Intrinsic::x86_sse2_movmsk_pd:
12752    case Intrinsic::x86_avx_movmsk_pd_256:
12753    case Intrinsic::x86_mmx_pmovmskb:
12754    case Intrinsic::x86_sse2_pmovmskb_128:
12755    case Intrinsic::x86_avx2_pmovmskb: {
12756      // High bits of movmskp{s|d}, pmovmskb are known zero.
12757      switch (IntId) {
12758        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
12759        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12760        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12761        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12762        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12763        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12764        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12765        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
12766      }
12767      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
12768      break;
12769    }
12770    }
12771    break;
12772  }
12773  }
12774}
12775
12776unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12777                                                         unsigned Depth) const {
12778  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12779  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12780    return Op.getValueType().getScalarType().getSizeInBits();
12781
12782  // Fallback case.
12783  return 1;
12784}
12785
12786/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12787/// node is a GlobalAddress + offset.
12788bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12789                                       const GlobalValue* &GA,
12790                                       int64_t &Offset) const {
12791  if (N->getOpcode() == X86ISD::Wrapper) {
12792    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12793      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12794      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12795      return true;
12796    }
12797  }
12798  return TargetLowering::isGAPlusOffset(N, GA, Offset);
12799}
12800
12801/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12802/// same as extracting the high 128-bit part of 256-bit vector and then
12803/// inserting the result into the low part of a new 256-bit vector
12804static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12805  EVT VT = SVOp->getValueType(0);
12806  int NumElems = VT.getVectorNumElements();
12807
12808  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12809  for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12810    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12811        SVOp->getMaskElt(j) >= 0)
12812      return false;
12813
12814  return true;
12815}
12816
12817/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12818/// same as extracting the low 128-bit part of 256-bit vector and then
12819/// inserting the result into the high part of a new 256-bit vector
12820static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12821  EVT VT = SVOp->getValueType(0);
12822  int NumElems = VT.getVectorNumElements();
12823
12824  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12825  for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12826    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12827        SVOp->getMaskElt(j) >= 0)
12828      return false;
12829
12830  return true;
12831}
12832
12833/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
12834static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12835                                        TargetLowering::DAGCombinerInfo &DCI,
12836                                        const X86Subtarget* Subtarget) {
12837  DebugLoc dl = N->getDebugLoc();
12838  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12839  SDValue V1 = SVOp->getOperand(0);
12840  SDValue V2 = SVOp->getOperand(1);
12841  EVT VT = SVOp->getValueType(0);
12842  int NumElems = VT.getVectorNumElements();
12843
12844  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12845      V2.getOpcode() == ISD::CONCAT_VECTORS) {
12846    //
12847    //                   0,0,0,...
12848    //                      |
12849    //    V      UNDEF    BUILD_VECTOR    UNDEF
12850    //     \      /           \           /
12851    //  CONCAT_VECTOR         CONCAT_VECTOR
12852    //         \                  /
12853    //          \                /
12854    //          RESULT: V + zero extended
12855    //
12856    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12857        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12858        V1.getOperand(1).getOpcode() != ISD::UNDEF)
12859      return SDValue();
12860
12861    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12862      return SDValue();
12863
12864    // To match the shuffle mask, the first half of the mask should
12865    // be exactly the first vector, and all the rest a splat with the
12866    // first element of the second one.
12867    for (int i = 0; i < NumElems/2; ++i)
12868      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12869          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12870        return SDValue();
12871
12872    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
12873    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
12874      SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
12875      SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
12876      SDValue ResNode =
12877        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
12878                                Ld->getMemoryVT(),
12879                                Ld->getPointerInfo(),
12880                                Ld->getAlignment(),
12881                                false/*isVolatile*/, true/*ReadMem*/,
12882                                false/*WriteMem*/);
12883      return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
12884    }
12885
12886    // Emit a zeroed vector and insert the desired subvector on its
12887    // first half.
12888    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
12889    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12890                         DAG.getConstant(0, MVT::i32), DAG, dl);
12891    return DCI.CombineTo(N, InsV);
12892  }
12893
12894  //===--------------------------------------------------------------------===//
12895  // Combine some shuffles into subvector extracts and inserts:
12896  //
12897
12898  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12899  if (isShuffleHigh128VectorInsertLow(SVOp)) {
12900    SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12901                                    DAG, dl);
12902    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12903                                      V, DAG.getConstant(0, MVT::i32), DAG, dl);
12904    return DCI.CombineTo(N, InsV);
12905  }
12906
12907  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12908  if (isShuffleLow128VectorInsertHigh(SVOp)) {
12909    SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12910    SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12911                             V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12912    return DCI.CombineTo(N, InsV);
12913  }
12914
12915  return SDValue();
12916}
12917
12918/// PerformShuffleCombine - Performs several different shuffle combines.
12919static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12920                                     TargetLowering::DAGCombinerInfo &DCI,
12921                                     const X86Subtarget *Subtarget) {
12922  DebugLoc dl = N->getDebugLoc();
12923  EVT VT = N->getValueType(0);
12924
12925  // Don't create instructions with illegal types after legalize types has run.
12926  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12927  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12928    return SDValue();
12929
12930  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12931  if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12932      N->getOpcode() == ISD::VECTOR_SHUFFLE)
12933    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
12934
12935  // Only handle 128 wide vector from here on.
12936  if (VT.getSizeInBits() != 128)
12937    return SDValue();
12938
12939  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12940  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12941  // consecutive, non-overlapping, and in the right order.
12942  SmallVector<SDValue, 16> Elts;
12943  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12944    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12945
12946  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12947}
12948
12949
12950/// PerformTruncateCombine - Converts truncate operation to
12951/// a sequence of vector shuffle operations.
12952/// It is possible when we truncate 256-bit vector to 128-bit vector
12953
12954SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
12955                                                  DAGCombinerInfo &DCI) const {
12956  if (!DCI.isBeforeLegalizeOps())
12957    return SDValue();
12958
12959  if (!Subtarget->hasAVX()) return SDValue();
12960
12961  EVT VT = N->getValueType(0);
12962  SDValue Op = N->getOperand(0);
12963  EVT OpVT = Op.getValueType();
12964  DebugLoc dl = N->getDebugLoc();
12965
12966  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
12967
12968    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12969                          DAG.getIntPtrConstant(0));
12970
12971    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
12972                          DAG.getIntPtrConstant(2));
12973
12974    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
12975    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
12976
12977    // PSHUFD
12978    int ShufMask1[] = {0, 2, 0, 0};
12979
12980    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, DAG.getUNDEF(VT),
12981                                ShufMask1);
12982    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, DAG.getUNDEF(VT),
12983                                ShufMask1);
12984
12985    // MOVLHPS
12986    int ShufMask2[] = {0, 1, 4, 5};
12987
12988    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
12989  }
12990  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
12991
12992    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12993                          DAG.getIntPtrConstant(0));
12994
12995    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
12996                          DAG.getIntPtrConstant(4));
12997
12998    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
12999    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13000
13001    // PSHUFB
13002    int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13003                      -1, -1, -1, -1, -1, -1, -1, -1};
13004
13005    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo,
13006                                DAG.getUNDEF(MVT::v16i8),
13007                                ShufMask1);
13008    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi,
13009                                DAG.getUNDEF(MVT::v16i8),
13010                                ShufMask1);
13011
13012    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13013    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13014
13015    // MOVLHPS
13016    int ShufMask2[] = {0, 1, 4, 5};
13017
13018    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13019    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13020  }
13021
13022  return SDValue();
13023}
13024
13025/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13026/// specific shuffle of a load can be folded into a single element load.
13027/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13028/// shuffles have been customed lowered so we need to handle those here.
13029static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13030                                         TargetLowering::DAGCombinerInfo &DCI) {
13031  if (DCI.isBeforeLegalizeOps())
13032    return SDValue();
13033
13034  SDValue InVec = N->getOperand(0);
13035  SDValue EltNo = N->getOperand(1);
13036
13037  if (!isa<ConstantSDNode>(EltNo))
13038    return SDValue();
13039
13040  EVT VT = InVec.getValueType();
13041
13042  bool HasShuffleIntoBitcast = false;
13043  if (InVec.getOpcode() == ISD::BITCAST) {
13044    // Don't duplicate a load with other uses.
13045    if (!InVec.hasOneUse())
13046      return SDValue();
13047    EVT BCVT = InVec.getOperand(0).getValueType();
13048    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13049      return SDValue();
13050    InVec = InVec.getOperand(0);
13051    HasShuffleIntoBitcast = true;
13052  }
13053
13054  if (!isTargetShuffle(InVec.getOpcode()))
13055    return SDValue();
13056
13057  // Don't duplicate a load with other uses.
13058  if (!InVec.hasOneUse())
13059    return SDValue();
13060
13061  SmallVector<int, 16> ShuffleMask;
13062  bool UnaryShuffle;
13063  if (!getTargetShuffleMask(InVec.getNode(), VT, ShuffleMask, UnaryShuffle))
13064    return SDValue();
13065
13066  // Select the input vector, guarding against out of range extract vector.
13067  unsigned NumElems = VT.getVectorNumElements();
13068  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13069  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13070  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13071                                         : InVec.getOperand(1);
13072
13073  // If inputs to shuffle are the same for both ops, then allow 2 uses
13074  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13075
13076  if (LdNode.getOpcode() == ISD::BITCAST) {
13077    // Don't duplicate a load with other uses.
13078    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13079      return SDValue();
13080
13081    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13082    LdNode = LdNode.getOperand(0);
13083  }
13084
13085  if (!ISD::isNormalLoad(LdNode.getNode()))
13086    return SDValue();
13087
13088  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13089
13090  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13091    return SDValue();
13092
13093  if (HasShuffleIntoBitcast) {
13094    // If there's a bitcast before the shuffle, check if the load type and
13095    // alignment is valid.
13096    unsigned Align = LN0->getAlignment();
13097    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13098    unsigned NewAlign = TLI.getTargetData()->
13099      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13100
13101    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13102      return SDValue();
13103  }
13104
13105  // All checks match so transform back to vector_shuffle so that DAG combiner
13106  // can finish the job
13107  DebugLoc dl = N->getDebugLoc();
13108
13109  // Create shuffle node taking into account the case that its a unary shuffle
13110  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13111  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13112                                 InVec.getOperand(0), Shuffle,
13113                                 &ShuffleMask[0]);
13114  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13115  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13116                     EltNo);
13117}
13118
13119/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13120/// generation and convert it from being a bunch of shuffles and extracts
13121/// to a simple store and scalar loads to extract the elements.
13122static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13123                                         TargetLowering::DAGCombinerInfo &DCI) {
13124  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13125  if (NewOp.getNode())
13126    return NewOp;
13127
13128  SDValue InputVector = N->getOperand(0);
13129
13130  // Only operate on vectors of 4 elements, where the alternative shuffling
13131  // gets to be more expensive.
13132  if (InputVector.getValueType() != MVT::v4i32)
13133    return SDValue();
13134
13135  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13136  // single use which is a sign-extend or zero-extend, and all elements are
13137  // used.
13138  SmallVector<SDNode *, 4> Uses;
13139  unsigned ExtractedElements = 0;
13140  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13141       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13142    if (UI.getUse().getResNo() != InputVector.getResNo())
13143      return SDValue();
13144
13145    SDNode *Extract = *UI;
13146    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13147      return SDValue();
13148
13149    if (Extract->getValueType(0) != MVT::i32)
13150      return SDValue();
13151    if (!Extract->hasOneUse())
13152      return SDValue();
13153    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13154        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13155      return SDValue();
13156    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13157      return SDValue();
13158
13159    // Record which element was extracted.
13160    ExtractedElements |=
13161      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13162
13163    Uses.push_back(Extract);
13164  }
13165
13166  // If not all the elements were used, this may not be worthwhile.
13167  if (ExtractedElements != 15)
13168    return SDValue();
13169
13170  // Ok, we've now decided to do the transformation.
13171  DebugLoc dl = InputVector.getDebugLoc();
13172
13173  // Store the value to a temporary stack slot.
13174  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13175  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13176                            MachinePointerInfo(), false, false, 0);
13177
13178  // Replace each use (extract) with a load of the appropriate element.
13179  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13180       UE = Uses.end(); UI != UE; ++UI) {
13181    SDNode *Extract = *UI;
13182
13183    // cOMpute the element's address.
13184    SDValue Idx = Extract->getOperand(1);
13185    unsigned EltSize =
13186        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13187    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13188    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13189    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13190
13191    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13192                                     StackPtr, OffsetVal);
13193
13194    // Load the scalar.
13195    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13196                                     ScalarAddr, MachinePointerInfo(),
13197                                     false, false, false, 0);
13198
13199    // Replace the exact with the load.
13200    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13201  }
13202
13203  // The replacement was made in place; don't return anything.
13204  return SDValue();
13205}
13206
13207/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13208/// nodes.
13209static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13210                                    TargetLowering::DAGCombinerInfo &DCI,
13211                                    const X86Subtarget *Subtarget) {
13212
13213
13214  DebugLoc DL = N->getDebugLoc();
13215  SDValue Cond = N->getOperand(0);
13216  // Get the LHS/RHS of the select.
13217  SDValue LHS = N->getOperand(1);
13218  SDValue RHS = N->getOperand(2);
13219  EVT VT = LHS.getValueType();
13220
13221  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13222  // instructions match the semantics of the common C idiom x<y?x:y but not
13223  // x<=y?x:y, because of how they handle negative zero (which can be
13224  // ignored in unsafe-math mode).
13225  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13226      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13227      (Subtarget->hasSSE2() ||
13228       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13229    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13230
13231    unsigned Opcode = 0;
13232    // Check for x CC y ? x : y.
13233    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13234        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13235      switch (CC) {
13236      default: break;
13237      case ISD::SETULT:
13238        // Converting this to a min would handle NaNs incorrectly, and swapping
13239        // the operands would cause it to handle comparisons between positive
13240        // and negative zero incorrectly.
13241        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13242          if (!DAG.getTarget().Options.UnsafeFPMath &&
13243              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13244            break;
13245          std::swap(LHS, RHS);
13246        }
13247        Opcode = X86ISD::FMIN;
13248        break;
13249      case ISD::SETOLE:
13250        // Converting this to a min would handle comparisons between positive
13251        // and negative zero incorrectly.
13252        if (!DAG.getTarget().Options.UnsafeFPMath &&
13253            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13254          break;
13255        Opcode = X86ISD::FMIN;
13256        break;
13257      case ISD::SETULE:
13258        // Converting this to a min would handle both negative zeros and NaNs
13259        // incorrectly, but we can swap the operands to fix both.
13260        std::swap(LHS, RHS);
13261      case ISD::SETOLT:
13262      case ISD::SETLT:
13263      case ISD::SETLE:
13264        Opcode = X86ISD::FMIN;
13265        break;
13266
13267      case ISD::SETOGE:
13268        // Converting this to a max would handle comparisons between positive
13269        // and negative zero incorrectly.
13270        if (!DAG.getTarget().Options.UnsafeFPMath &&
13271            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13272          break;
13273        Opcode = X86ISD::FMAX;
13274        break;
13275      case ISD::SETUGT:
13276        // Converting this to a max would handle NaNs incorrectly, and swapping
13277        // the operands would cause it to handle comparisons between positive
13278        // and negative zero incorrectly.
13279        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13280          if (!DAG.getTarget().Options.UnsafeFPMath &&
13281              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13282            break;
13283          std::swap(LHS, RHS);
13284        }
13285        Opcode = X86ISD::FMAX;
13286        break;
13287      case ISD::SETUGE:
13288        // Converting this to a max would handle both negative zeros and NaNs
13289        // incorrectly, but we can swap the operands to fix both.
13290        std::swap(LHS, RHS);
13291      case ISD::SETOGT:
13292      case ISD::SETGT:
13293      case ISD::SETGE:
13294        Opcode = X86ISD::FMAX;
13295        break;
13296      }
13297    // Check for x CC y ? y : x -- a min/max with reversed arms.
13298    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13299               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13300      switch (CC) {
13301      default: break;
13302      case ISD::SETOGE:
13303        // Converting this to a min would handle comparisons between positive
13304        // and negative zero incorrectly, and swapping the operands would
13305        // cause it to handle NaNs incorrectly.
13306        if (!DAG.getTarget().Options.UnsafeFPMath &&
13307            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13308          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13309            break;
13310          std::swap(LHS, RHS);
13311        }
13312        Opcode = X86ISD::FMIN;
13313        break;
13314      case ISD::SETUGT:
13315        // Converting this to a min would handle NaNs incorrectly.
13316        if (!DAG.getTarget().Options.UnsafeFPMath &&
13317            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13318          break;
13319        Opcode = X86ISD::FMIN;
13320        break;
13321      case ISD::SETUGE:
13322        // Converting this to a min would handle both negative zeros and NaNs
13323        // incorrectly, but we can swap the operands to fix both.
13324        std::swap(LHS, RHS);
13325      case ISD::SETOGT:
13326      case ISD::SETGT:
13327      case ISD::SETGE:
13328        Opcode = X86ISD::FMIN;
13329        break;
13330
13331      case ISD::SETULT:
13332        // Converting this to a max would handle NaNs incorrectly.
13333        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13334          break;
13335        Opcode = X86ISD::FMAX;
13336        break;
13337      case ISD::SETOLE:
13338        // Converting this to a max would handle comparisons between positive
13339        // and negative zero incorrectly, and swapping the operands would
13340        // cause it to handle NaNs incorrectly.
13341        if (!DAG.getTarget().Options.UnsafeFPMath &&
13342            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13343          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13344            break;
13345          std::swap(LHS, RHS);
13346        }
13347        Opcode = X86ISD::FMAX;
13348        break;
13349      case ISD::SETULE:
13350        // Converting this to a max would handle both negative zeros and NaNs
13351        // incorrectly, but we can swap the operands to fix both.
13352        std::swap(LHS, RHS);
13353      case ISD::SETOLT:
13354      case ISD::SETLT:
13355      case ISD::SETLE:
13356        Opcode = X86ISD::FMAX;
13357        break;
13358      }
13359    }
13360
13361    if (Opcode)
13362      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13363  }
13364
13365  // If this is a select between two integer constants, try to do some
13366  // optimizations.
13367  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13368    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13369      // Don't do this for crazy integer types.
13370      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13371        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13372        // so that TrueC (the true value) is larger than FalseC.
13373        bool NeedsCondInvert = false;
13374
13375        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13376            // Efficiently invertible.
13377            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13378             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13379              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13380          NeedsCondInvert = true;
13381          std::swap(TrueC, FalseC);
13382        }
13383
13384        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13385        if (FalseC->getAPIntValue() == 0 &&
13386            TrueC->getAPIntValue().isPowerOf2()) {
13387          if (NeedsCondInvert) // Invert the condition if needed.
13388            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13389                               DAG.getConstant(1, Cond.getValueType()));
13390
13391          // Zero extend the condition if needed.
13392          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13393
13394          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13395          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13396                             DAG.getConstant(ShAmt, MVT::i8));
13397        }
13398
13399        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13400        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13401          if (NeedsCondInvert) // Invert the condition if needed.
13402            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13403                               DAG.getConstant(1, Cond.getValueType()));
13404
13405          // Zero extend the condition if needed.
13406          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13407                             FalseC->getValueType(0), Cond);
13408          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13409                             SDValue(FalseC, 0));
13410        }
13411
13412        // Optimize cases that will turn into an LEA instruction.  This requires
13413        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13414        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13415          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13416          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13417
13418          bool isFastMultiplier = false;
13419          if (Diff < 10) {
13420            switch ((unsigned char)Diff) {
13421              default: break;
13422              case 1:  // result = add base, cond
13423              case 2:  // result = lea base(    , cond*2)
13424              case 3:  // result = lea base(cond, cond*2)
13425              case 4:  // result = lea base(    , cond*4)
13426              case 5:  // result = lea base(cond, cond*4)
13427              case 8:  // result = lea base(    , cond*8)
13428              case 9:  // result = lea base(cond, cond*8)
13429                isFastMultiplier = true;
13430                break;
13431            }
13432          }
13433
13434          if (isFastMultiplier) {
13435            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13436            if (NeedsCondInvert) // Invert the condition if needed.
13437              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13438                                 DAG.getConstant(1, Cond.getValueType()));
13439
13440            // Zero extend the condition if needed.
13441            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13442                               Cond);
13443            // Scale the condition by the difference.
13444            if (Diff != 1)
13445              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13446                                 DAG.getConstant(Diff, Cond.getValueType()));
13447
13448            // Add the base if non-zero.
13449            if (FalseC->getAPIntValue() != 0)
13450              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13451                                 SDValue(FalseC, 0));
13452            return Cond;
13453          }
13454        }
13455      }
13456  }
13457
13458  // Canonicalize max and min:
13459  // (x > y) ? x : y -> (x >= y) ? x : y
13460  // (x < y) ? x : y -> (x <= y) ? x : y
13461  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13462  // the need for an extra compare
13463  // against zero. e.g.
13464  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13465  // subl   %esi, %edi
13466  // testl  %edi, %edi
13467  // movl   $0, %eax
13468  // cmovgl %edi, %eax
13469  // =>
13470  // xorl   %eax, %eax
13471  // subl   %esi, $edi
13472  // cmovsl %eax, %edi
13473  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13474      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13475      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13476    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13477    switch (CC) {
13478    default: break;
13479    case ISD::SETLT:
13480    case ISD::SETGT: {
13481      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13482      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13483                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13484      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13485    }
13486    }
13487  }
13488
13489  // If we know that this node is legal then we know that it is going to be
13490  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13491  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13492  // to simplify previous instructions.
13493  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13494  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13495      !DCI.isBeforeLegalize() &&
13496      TLI.isOperationLegal(ISD::VSELECT, VT)) {
13497    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
13498    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
13499    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
13500
13501    APInt KnownZero, KnownOne;
13502    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
13503                                          DCI.isBeforeLegalizeOps());
13504    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
13505        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
13506      DCI.CommitTargetLoweringOpt(TLO);
13507  }
13508
13509  return SDValue();
13510}
13511
13512/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
13513static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
13514                                  TargetLowering::DAGCombinerInfo &DCI) {
13515  DebugLoc DL = N->getDebugLoc();
13516
13517  // If the flag operand isn't dead, don't touch this CMOV.
13518  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
13519    return SDValue();
13520
13521  SDValue FalseOp = N->getOperand(0);
13522  SDValue TrueOp = N->getOperand(1);
13523  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
13524  SDValue Cond = N->getOperand(3);
13525  if (CC == X86::COND_E || CC == X86::COND_NE) {
13526    switch (Cond.getOpcode()) {
13527    default: break;
13528    case X86ISD::BSR:
13529    case X86ISD::BSF:
13530      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
13531      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
13532        return (CC == X86::COND_E) ? FalseOp : TrueOp;
13533    }
13534  }
13535
13536  // If this is a select between two integer constants, try to do some
13537  // optimizations.  Note that the operands are ordered the opposite of SELECT
13538  // operands.
13539  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
13540    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
13541      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
13542      // larger than FalseC (the false value).
13543      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
13544        CC = X86::GetOppositeBranchCondition(CC);
13545        std::swap(TrueC, FalseC);
13546      }
13547
13548      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
13549      // This is efficient for any integer data type (including i8/i16) and
13550      // shift amount.
13551      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
13552        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13553                           DAG.getConstant(CC, MVT::i8), Cond);
13554
13555        // Zero extend the condition if needed.
13556        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
13557
13558        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13559        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
13560                           DAG.getConstant(ShAmt, MVT::i8));
13561        if (N->getNumValues() == 2)  // Dead flag value?
13562          return DCI.CombineTo(N, Cond, SDValue());
13563        return Cond;
13564      }
13565
13566      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
13567      // for any integer data type, including i8/i16.
13568      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13569        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13570                           DAG.getConstant(CC, MVT::i8), Cond);
13571
13572        // Zero extend the condition if needed.
13573        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13574                           FalseC->getValueType(0), Cond);
13575        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13576                           SDValue(FalseC, 0));
13577
13578        if (N->getNumValues() == 2)  // Dead flag value?
13579          return DCI.CombineTo(N, Cond, SDValue());
13580        return Cond;
13581      }
13582
13583      // Optimize cases that will turn into an LEA instruction.  This requires
13584      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13585      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13586        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13587        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13588
13589        bool isFastMultiplier = false;
13590        if (Diff < 10) {
13591          switch ((unsigned char)Diff) {
13592          default: break;
13593          case 1:  // result = add base, cond
13594          case 2:  // result = lea base(    , cond*2)
13595          case 3:  // result = lea base(cond, cond*2)
13596          case 4:  // result = lea base(    , cond*4)
13597          case 5:  // result = lea base(cond, cond*4)
13598          case 8:  // result = lea base(    , cond*8)
13599          case 9:  // result = lea base(cond, cond*8)
13600            isFastMultiplier = true;
13601            break;
13602          }
13603        }
13604
13605        if (isFastMultiplier) {
13606          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13607          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
13608                             DAG.getConstant(CC, MVT::i8), Cond);
13609          // Zero extend the condition if needed.
13610          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13611                             Cond);
13612          // Scale the condition by the difference.
13613          if (Diff != 1)
13614            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13615                               DAG.getConstant(Diff, Cond.getValueType()));
13616
13617          // Add the base if non-zero.
13618          if (FalseC->getAPIntValue() != 0)
13619            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13620                               SDValue(FalseC, 0));
13621          if (N->getNumValues() == 2)  // Dead flag value?
13622            return DCI.CombineTo(N, Cond, SDValue());
13623          return Cond;
13624        }
13625      }
13626    }
13627  }
13628  return SDValue();
13629}
13630
13631
13632/// PerformMulCombine - Optimize a single multiply with constant into two
13633/// in order to implement it with two cheaper instructions, e.g.
13634/// LEA + SHL, LEA + LEA.
13635static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13636                                 TargetLowering::DAGCombinerInfo &DCI) {
13637  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13638    return SDValue();
13639
13640  EVT VT = N->getValueType(0);
13641  if (VT != MVT::i64)
13642    return SDValue();
13643
13644  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13645  if (!C)
13646    return SDValue();
13647  uint64_t MulAmt = C->getZExtValue();
13648  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13649    return SDValue();
13650
13651  uint64_t MulAmt1 = 0;
13652  uint64_t MulAmt2 = 0;
13653  if ((MulAmt % 9) == 0) {
13654    MulAmt1 = 9;
13655    MulAmt2 = MulAmt / 9;
13656  } else if ((MulAmt % 5) == 0) {
13657    MulAmt1 = 5;
13658    MulAmt2 = MulAmt / 5;
13659  } else if ((MulAmt % 3) == 0) {
13660    MulAmt1 = 3;
13661    MulAmt2 = MulAmt / 3;
13662  }
13663  if (MulAmt2 &&
13664      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13665    DebugLoc DL = N->getDebugLoc();
13666
13667    if (isPowerOf2_64(MulAmt2) &&
13668        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13669      // If second multiplifer is pow2, issue it first. We want the multiply by
13670      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13671      // is an add.
13672      std::swap(MulAmt1, MulAmt2);
13673
13674    SDValue NewMul;
13675    if (isPowerOf2_64(MulAmt1))
13676      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13677                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13678    else
13679      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13680                           DAG.getConstant(MulAmt1, VT));
13681
13682    if (isPowerOf2_64(MulAmt2))
13683      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13684                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13685    else
13686      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13687                           DAG.getConstant(MulAmt2, VT));
13688
13689    // Do not add new nodes to DAG combiner worklist.
13690    DCI.CombineTo(N, NewMul, false);
13691  }
13692  return SDValue();
13693}
13694
13695static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13696  SDValue N0 = N->getOperand(0);
13697  SDValue N1 = N->getOperand(1);
13698  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13699  EVT VT = N0.getValueType();
13700
13701  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13702  // since the result of setcc_c is all zero's or all ones.
13703  if (VT.isInteger() && !VT.isVector() &&
13704      N1C && N0.getOpcode() == ISD::AND &&
13705      N0.getOperand(1).getOpcode() == ISD::Constant) {
13706    SDValue N00 = N0.getOperand(0);
13707    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13708        ((N00.getOpcode() == ISD::ANY_EXTEND ||
13709          N00.getOpcode() == ISD::ZERO_EXTEND) &&
13710         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13711      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13712      APInt ShAmt = N1C->getAPIntValue();
13713      Mask = Mask.shl(ShAmt);
13714      if (Mask != 0)
13715        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13716                           N00, DAG.getConstant(Mask, VT));
13717    }
13718  }
13719
13720
13721  // Hardware support for vector shifts is sparse which makes us scalarize the
13722  // vector operations in many cases. Also, on sandybridge ADD is faster than
13723  // shl.
13724  // (shl V, 1) -> add V,V
13725  if (isSplatVector(N1.getNode())) {
13726    assert(N0.getValueType().isVector() && "Invalid vector shift type");
13727    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
13728    // We shift all of the values by one. In many cases we do not have
13729    // hardware support for this operation. This is better expressed as an ADD
13730    // of two values.
13731    if (N1C && (1 == N1C->getZExtValue())) {
13732      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
13733    }
13734  }
13735
13736  return SDValue();
13737}
13738
13739/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13740///                       when possible.
13741static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13742                                   TargetLowering::DAGCombinerInfo &DCI,
13743                                   const X86Subtarget *Subtarget) {
13744  EVT VT = N->getValueType(0);
13745  if (N->getOpcode() == ISD::SHL) {
13746    SDValue V = PerformSHLCombine(N, DAG);
13747    if (V.getNode()) return V;
13748  }
13749
13750  // On X86 with SSE2 support, we can transform this to a vector shift if
13751  // all elements are shifted by the same amount.  We can't do this in legalize
13752  // because the a constant vector is typically transformed to a constant pool
13753  // so we have no knowledge of the shift amount.
13754  if (!Subtarget->hasSSE2())
13755    return SDValue();
13756
13757  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
13758      (!Subtarget->hasAVX2() ||
13759       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
13760    return SDValue();
13761
13762  SDValue ShAmtOp = N->getOperand(1);
13763  EVT EltVT = VT.getVectorElementType();
13764  DebugLoc DL = N->getDebugLoc();
13765  SDValue BaseShAmt = SDValue();
13766  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13767    unsigned NumElts = VT.getVectorNumElements();
13768    unsigned i = 0;
13769    for (; i != NumElts; ++i) {
13770      SDValue Arg = ShAmtOp.getOperand(i);
13771      if (Arg.getOpcode() == ISD::UNDEF) continue;
13772      BaseShAmt = Arg;
13773      break;
13774    }
13775    // Handle the case where the build_vector is all undef
13776    // FIXME: Should DAG allow this?
13777    if (i == NumElts)
13778      return SDValue();
13779
13780    for (; i != NumElts; ++i) {
13781      SDValue Arg = ShAmtOp.getOperand(i);
13782      if (Arg.getOpcode() == ISD::UNDEF) continue;
13783      if (Arg != BaseShAmt) {
13784        return SDValue();
13785      }
13786    }
13787  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13788             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13789    SDValue InVec = ShAmtOp.getOperand(0);
13790    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13791      unsigned NumElts = InVec.getValueType().getVectorNumElements();
13792      unsigned i = 0;
13793      for (; i != NumElts; ++i) {
13794        SDValue Arg = InVec.getOperand(i);
13795        if (Arg.getOpcode() == ISD::UNDEF) continue;
13796        BaseShAmt = Arg;
13797        break;
13798      }
13799    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13800       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13801         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13802         if (C->getZExtValue() == SplatIdx)
13803           BaseShAmt = InVec.getOperand(1);
13804       }
13805    }
13806    if (BaseShAmt.getNode() == 0) {
13807      // Don't create instructions with illegal types after legalize
13808      // types has run.
13809      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
13810          !DCI.isBeforeLegalize())
13811        return SDValue();
13812
13813      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13814                              DAG.getIntPtrConstant(0));
13815    }
13816  } else
13817    return SDValue();
13818
13819  // The shift amount is an i32.
13820  if (EltVT.bitsGT(MVT::i32))
13821    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13822  else if (EltVT.bitsLT(MVT::i32))
13823    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13824
13825  // The shift amount is identical so we can do a vector shift.
13826  SDValue  ValOp = N->getOperand(0);
13827  switch (N->getOpcode()) {
13828  default:
13829    llvm_unreachable("Unknown shift opcode!");
13830  case ISD::SHL:
13831    switch (VT.getSimpleVT().SimpleTy) {
13832    default: return SDValue();
13833    case MVT::v2i64:
13834    case MVT::v4i32:
13835    case MVT::v8i16:
13836    case MVT::v4i64:
13837    case MVT::v8i32:
13838    case MVT::v16i16:
13839      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
13840    }
13841  case ISD::SRA:
13842    switch (VT.getSimpleVT().SimpleTy) {
13843    default: return SDValue();
13844    case MVT::v4i32:
13845    case MVT::v8i16:
13846    case MVT::v8i32:
13847    case MVT::v16i16:
13848      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
13849    }
13850  case ISD::SRL:
13851    switch (VT.getSimpleVT().SimpleTy) {
13852    default: return SDValue();
13853    case MVT::v2i64:
13854    case MVT::v4i32:
13855    case MVT::v8i16:
13856    case MVT::v4i64:
13857    case MVT::v8i32:
13858    case MVT::v16i16:
13859      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
13860    }
13861  }
13862}
13863
13864
13865// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13866// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13867// and friends.  Likewise for OR -> CMPNEQSS.
13868static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13869                            TargetLowering::DAGCombinerInfo &DCI,
13870                            const X86Subtarget *Subtarget) {
13871  unsigned opcode;
13872
13873  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13874  // we're requiring SSE2 for both.
13875  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13876    SDValue N0 = N->getOperand(0);
13877    SDValue N1 = N->getOperand(1);
13878    SDValue CMP0 = N0->getOperand(1);
13879    SDValue CMP1 = N1->getOperand(1);
13880    DebugLoc DL = N->getDebugLoc();
13881
13882    // The SETCCs should both refer to the same CMP.
13883    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13884      return SDValue();
13885
13886    SDValue CMP00 = CMP0->getOperand(0);
13887    SDValue CMP01 = CMP0->getOperand(1);
13888    EVT     VT    = CMP00.getValueType();
13889
13890    if (VT == MVT::f32 || VT == MVT::f64) {
13891      bool ExpectingFlags = false;
13892      // Check for any users that want flags:
13893      for (SDNode::use_iterator UI = N->use_begin(),
13894             UE = N->use_end();
13895           !ExpectingFlags && UI != UE; ++UI)
13896        switch (UI->getOpcode()) {
13897        default:
13898        case ISD::BR_CC:
13899        case ISD::BRCOND:
13900        case ISD::SELECT:
13901          ExpectingFlags = true;
13902          break;
13903        case ISD::CopyToReg:
13904        case ISD::SIGN_EXTEND:
13905        case ISD::ZERO_EXTEND:
13906        case ISD::ANY_EXTEND:
13907          break;
13908        }
13909
13910      if (!ExpectingFlags) {
13911        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13912        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13913
13914        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13915          X86::CondCode tmp = cc0;
13916          cc0 = cc1;
13917          cc1 = tmp;
13918        }
13919
13920        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13921            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13922          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13923          X86ISD::NodeType NTOperator = is64BitFP ?
13924            X86ISD::FSETCCsd : X86ISD::FSETCCss;
13925          // FIXME: need symbolic constants for these magic numbers.
13926          // See X86ATTInstPrinter.cpp:printSSECC().
13927          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13928          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13929                                              DAG.getConstant(x86cc, MVT::i8));
13930          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13931                                              OnesOrZeroesF);
13932          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13933                                      DAG.getConstant(1, MVT::i32));
13934          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13935          return OneBitOfTruth;
13936        }
13937      }
13938    }
13939  }
13940  return SDValue();
13941}
13942
13943/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13944/// so it can be folded inside ANDNP.
13945static bool CanFoldXORWithAllOnes(const SDNode *N) {
13946  EVT VT = N->getValueType(0);
13947
13948  // Match direct AllOnes for 128 and 256-bit vectors
13949  if (ISD::isBuildVectorAllOnes(N))
13950    return true;
13951
13952  // Look through a bit convert.
13953  if (N->getOpcode() == ISD::BITCAST)
13954    N = N->getOperand(0).getNode();
13955
13956  // Sometimes the operand may come from a insert_subvector building a 256-bit
13957  // allones vector
13958  if (VT.getSizeInBits() == 256 &&
13959      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13960    SDValue V1 = N->getOperand(0);
13961    SDValue V2 = N->getOperand(1);
13962
13963    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13964        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13965        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13966        ISD::isBuildVectorAllOnes(V2.getNode()))
13967      return true;
13968  }
13969
13970  return false;
13971}
13972
13973static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13974                                 TargetLowering::DAGCombinerInfo &DCI,
13975                                 const X86Subtarget *Subtarget) {
13976  if (DCI.isBeforeLegalizeOps())
13977    return SDValue();
13978
13979  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13980  if (R.getNode())
13981    return R;
13982
13983  EVT VT = N->getValueType(0);
13984
13985  // Create ANDN, BLSI, and BLSR instructions
13986  // BLSI is X & (-X)
13987  // BLSR is X & (X-1)
13988  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13989    SDValue N0 = N->getOperand(0);
13990    SDValue N1 = N->getOperand(1);
13991    DebugLoc DL = N->getDebugLoc();
13992
13993    // Check LHS for not
13994    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13995      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13996    // Check RHS for not
13997    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13998      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13999
14000    // Check LHS for neg
14001    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14002        isZero(N0.getOperand(0)))
14003      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14004
14005    // Check RHS for neg
14006    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14007        isZero(N1.getOperand(0)))
14008      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14009
14010    // Check LHS for X-1
14011    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14012        isAllOnes(N0.getOperand(1)))
14013      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14014
14015    // Check RHS for X-1
14016    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14017        isAllOnes(N1.getOperand(1)))
14018      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14019
14020    return SDValue();
14021  }
14022
14023  // Want to form ANDNP nodes:
14024  // 1) In the hopes of then easily combining them with OR and AND nodes
14025  //    to form PBLEND/PSIGN.
14026  // 2) To match ANDN packed intrinsics
14027  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14028    return SDValue();
14029
14030  SDValue N0 = N->getOperand(0);
14031  SDValue N1 = N->getOperand(1);
14032  DebugLoc DL = N->getDebugLoc();
14033
14034  // Check LHS for vnot
14035  if (N0.getOpcode() == ISD::XOR &&
14036      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14037      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14038    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14039
14040  // Check RHS for vnot
14041  if (N1.getOpcode() == ISD::XOR &&
14042      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14043      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14044    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14045
14046  return SDValue();
14047}
14048
14049static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14050                                TargetLowering::DAGCombinerInfo &DCI,
14051                                const X86Subtarget *Subtarget) {
14052  if (DCI.isBeforeLegalizeOps())
14053    return SDValue();
14054
14055  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14056  if (R.getNode())
14057    return R;
14058
14059  EVT VT = N->getValueType(0);
14060
14061  SDValue N0 = N->getOperand(0);
14062  SDValue N1 = N->getOperand(1);
14063
14064  // look for psign/blend
14065  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14066    if (!Subtarget->hasSSSE3() ||
14067        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14068      return SDValue();
14069
14070    // Canonicalize pandn to RHS
14071    if (N0.getOpcode() == X86ISD::ANDNP)
14072      std::swap(N0, N1);
14073    // or (and (m, y), (pandn m, x))
14074    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14075      SDValue Mask = N1.getOperand(0);
14076      SDValue X    = N1.getOperand(1);
14077      SDValue Y;
14078      if (N0.getOperand(0) == Mask)
14079        Y = N0.getOperand(1);
14080      if (N0.getOperand(1) == Mask)
14081        Y = N0.getOperand(0);
14082
14083      // Check to see if the mask appeared in both the AND and ANDNP and
14084      if (!Y.getNode())
14085        return SDValue();
14086
14087      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14088      // Look through mask bitcast.
14089      if (Mask.getOpcode() == ISD::BITCAST)
14090        Mask = Mask.getOperand(0);
14091      if (X.getOpcode() == ISD::BITCAST)
14092        X = X.getOperand(0);
14093      if (Y.getOpcode() == ISD::BITCAST)
14094        Y = Y.getOperand(0);
14095
14096      EVT MaskVT = Mask.getValueType();
14097
14098      // Validate that the Mask operand is a vector sra node.
14099      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14100      // there is no psrai.b
14101      if (Mask.getOpcode() != X86ISD::VSRAI)
14102        return SDValue();
14103
14104      // Check that the SRA is all signbits.
14105      SDValue SraC = Mask.getOperand(1);
14106      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14107      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14108      if ((SraAmt + 1) != EltBits)
14109        return SDValue();
14110
14111      DebugLoc DL = N->getDebugLoc();
14112
14113      // Now we know we at least have a plendvb with the mask val.  See if
14114      // we can form a psignb/w/d.
14115      // psign = x.type == y.type == mask.type && y = sub(0, x);
14116      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14117          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14118          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14119        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14120               "Unsupported VT for PSIGN");
14121        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14122        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14123      }
14124      // PBLENDVB only available on SSE 4.1
14125      if (!Subtarget->hasSSE41())
14126        return SDValue();
14127
14128      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14129
14130      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14131      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14132      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14133      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14134      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14135    }
14136  }
14137
14138  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14139    return SDValue();
14140
14141  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14142  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14143    std::swap(N0, N1);
14144  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14145    return SDValue();
14146  if (!N0.hasOneUse() || !N1.hasOneUse())
14147    return SDValue();
14148
14149  SDValue ShAmt0 = N0.getOperand(1);
14150  if (ShAmt0.getValueType() != MVT::i8)
14151    return SDValue();
14152  SDValue ShAmt1 = N1.getOperand(1);
14153  if (ShAmt1.getValueType() != MVT::i8)
14154    return SDValue();
14155  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14156    ShAmt0 = ShAmt0.getOperand(0);
14157  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14158    ShAmt1 = ShAmt1.getOperand(0);
14159
14160  DebugLoc DL = N->getDebugLoc();
14161  unsigned Opc = X86ISD::SHLD;
14162  SDValue Op0 = N0.getOperand(0);
14163  SDValue Op1 = N1.getOperand(0);
14164  if (ShAmt0.getOpcode() == ISD::SUB) {
14165    Opc = X86ISD::SHRD;
14166    std::swap(Op0, Op1);
14167    std::swap(ShAmt0, ShAmt1);
14168  }
14169
14170  unsigned Bits = VT.getSizeInBits();
14171  if (ShAmt1.getOpcode() == ISD::SUB) {
14172    SDValue Sum = ShAmt1.getOperand(0);
14173    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14174      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14175      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14176        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14177      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14178        return DAG.getNode(Opc, DL, VT,
14179                           Op0, Op1,
14180                           DAG.getNode(ISD::TRUNCATE, DL,
14181                                       MVT::i8, ShAmt0));
14182    }
14183  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14184    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14185    if (ShAmt0C &&
14186        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14187      return DAG.getNode(Opc, DL, VT,
14188                         N0.getOperand(0), N1.getOperand(0),
14189                         DAG.getNode(ISD::TRUNCATE, DL,
14190                                       MVT::i8, ShAmt0));
14191  }
14192
14193  return SDValue();
14194}
14195
14196// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14197static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14198                                 TargetLowering::DAGCombinerInfo &DCI,
14199                                 const X86Subtarget *Subtarget) {
14200  if (DCI.isBeforeLegalizeOps())
14201    return SDValue();
14202
14203  EVT VT = N->getValueType(0);
14204
14205  if (VT != MVT::i32 && VT != MVT::i64)
14206    return SDValue();
14207
14208  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14209
14210  // Create BLSMSK instructions by finding X ^ (X-1)
14211  SDValue N0 = N->getOperand(0);
14212  SDValue N1 = N->getOperand(1);
14213  DebugLoc DL = N->getDebugLoc();
14214
14215  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14216      isAllOnes(N0.getOperand(1)))
14217    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14218
14219  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14220      isAllOnes(N1.getOperand(1)))
14221    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14222
14223  return SDValue();
14224}
14225
14226/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14227static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14228                                   const X86Subtarget *Subtarget) {
14229  LoadSDNode *Ld = cast<LoadSDNode>(N);
14230  EVT RegVT = Ld->getValueType(0);
14231  EVT MemVT = Ld->getMemoryVT();
14232  DebugLoc dl = Ld->getDebugLoc();
14233  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14234
14235  ISD::LoadExtType Ext = Ld->getExtensionType();
14236
14237  // If this is a vector EXT Load then attempt to optimize it using a
14238  // shuffle. We need SSE4 for the shuffles.
14239  // TODO: It is possible to support ZExt by zeroing the undef values
14240  // during the shuffle phase or after the shuffle.
14241  if (RegVT.isVector() && RegVT.isInteger() &&
14242      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14243    assert(MemVT != RegVT && "Cannot extend to the same type");
14244    assert(MemVT.isVector() && "Must load a vector from memory");
14245
14246    unsigned NumElems = RegVT.getVectorNumElements();
14247    unsigned RegSz = RegVT.getSizeInBits();
14248    unsigned MemSz = MemVT.getSizeInBits();
14249    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14250    // All sizes must be a power of two
14251    if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
14252
14253    // Attempt to load the original value using a single load op.
14254    // Find a scalar type which is equal to the loaded word size.
14255    MVT SclrLoadTy = MVT::i8;
14256    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14257         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14258      MVT Tp = (MVT::SimpleValueType)tp;
14259      if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
14260        SclrLoadTy = Tp;
14261        break;
14262      }
14263    }
14264
14265    // Proceed if a load word is found.
14266    if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
14267
14268    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
14269      RegSz/SclrLoadTy.getSizeInBits());
14270
14271    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
14272                                  RegSz/MemVT.getScalarType().getSizeInBits());
14273    // Can't shuffle using an illegal type.
14274    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14275
14276    // Perform a single load.
14277    SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
14278                                  Ld->getBasePtr(),
14279                                  Ld->getPointerInfo(), Ld->isVolatile(),
14280                                  Ld->isNonTemporal(), Ld->isInvariant(),
14281                                  Ld->getAlignment());
14282
14283    // Insert the word loaded into a vector.
14284    SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
14285      LoadUnitVecVT, ScalarLoad);
14286
14287    // Bitcast the loaded value to a vector of the original element type, in
14288    // the size of the target vector type.
14289    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT,
14290                                    ScalarInVector);
14291    unsigned SizeRatio = RegSz/MemSz;
14292
14293    // Redistribute the loaded elements into the different locations.
14294    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14295    for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
14296
14297    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
14298                                DAG.getUNDEF(SlicedVec.getValueType()),
14299                                ShuffleVec.data());
14300
14301    // Bitcast to the requested type.
14302    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
14303    // Replace the original load with the new sequence
14304    // and return the new chain.
14305    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
14306    return SDValue(ScalarLoad.getNode(), 1);
14307  }
14308
14309  return SDValue();
14310}
14311
14312/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
14313static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
14314                                   const X86Subtarget *Subtarget) {
14315  StoreSDNode *St = cast<StoreSDNode>(N);
14316  EVT VT = St->getValue().getValueType();
14317  EVT StVT = St->getMemoryVT();
14318  DebugLoc dl = St->getDebugLoc();
14319  SDValue StoredVal = St->getOperand(1);
14320  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14321
14322  // If we are saving a concatenation of two XMM registers, perform two stores.
14323  // This is better in Sandy Bridge cause one 256-bit mem op is done via two
14324  // 128-bit ones. If in the future the cost becomes only one memory access the
14325  // first version would be better.
14326  if (VT.getSizeInBits() == 256 &&
14327    StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
14328    StoredVal.getNumOperands() == 2) {
14329
14330    SDValue Value0 = StoredVal.getOperand(0);
14331    SDValue Value1 = StoredVal.getOperand(1);
14332
14333    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
14334    SDValue Ptr0 = St->getBasePtr();
14335    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
14336
14337    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
14338                                St->getPointerInfo(), St->isVolatile(),
14339                                St->isNonTemporal(), St->getAlignment());
14340    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
14341                                St->getPointerInfo(), St->isVolatile(),
14342                                St->isNonTemporal(), St->getAlignment());
14343    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
14344  }
14345
14346  // Optimize trunc store (of multiple scalars) to shuffle and store.
14347  // First, pack all of the elements in one place. Next, store to memory
14348  // in fewer chunks.
14349  if (St->isTruncatingStore() && VT.isVector()) {
14350    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14351    unsigned NumElems = VT.getVectorNumElements();
14352    assert(StVT != VT && "Cannot truncate to the same type");
14353    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
14354    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
14355
14356    // From, To sizes and ElemCount must be pow of two
14357    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
14358    // We are going to use the original vector elt for storing.
14359    // Accumulated smaller vector elements must be a multiple of the store size.
14360    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
14361
14362    unsigned SizeRatio  = FromSz / ToSz;
14363
14364    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
14365
14366    // Create a type on which we perform the shuffle
14367    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
14368            StVT.getScalarType(), NumElems*SizeRatio);
14369
14370    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
14371
14372    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
14373    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
14374    for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
14375
14376    // Can't shuffle using an illegal type
14377    if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
14378
14379    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
14380                                DAG.getUNDEF(WideVec.getValueType()),
14381                                ShuffleVec.data());
14382    // At this point all of the data is stored at the bottom of the
14383    // register. We now need to save it to mem.
14384
14385    // Find the largest store unit
14386    MVT StoreType = MVT::i8;
14387    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14388         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14389      MVT Tp = (MVT::SimpleValueType)tp;
14390      if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
14391        StoreType = Tp;
14392    }
14393
14394    // Bitcast the original vector into a vector of store-size units
14395    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
14396            StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
14397    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
14398    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
14399    SmallVector<SDValue, 8> Chains;
14400    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
14401                                        TLI.getPointerTy());
14402    SDValue Ptr = St->getBasePtr();
14403
14404    // Perform one or more big stores into memory.
14405    for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
14406      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
14407                                   StoreType, ShuffWide,
14408                                   DAG.getIntPtrConstant(i));
14409      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
14410                                St->getPointerInfo(), St->isVolatile(),
14411                                St->isNonTemporal(), St->getAlignment());
14412      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14413      Chains.push_back(Ch);
14414    }
14415
14416    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
14417                               Chains.size());
14418  }
14419
14420
14421  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
14422  // the FP state in cases where an emms may be missing.
14423  // A preferable solution to the general problem is to figure out the right
14424  // places to insert EMMS.  This qualifies as a quick hack.
14425
14426  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
14427  if (VT.getSizeInBits() != 64)
14428    return SDValue();
14429
14430  const Function *F = DAG.getMachineFunction().getFunction();
14431  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
14432  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
14433                     && Subtarget->hasSSE2();
14434  if ((VT.isVector() ||
14435       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
14436      isa<LoadSDNode>(St->getValue()) &&
14437      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
14438      St->getChain().hasOneUse() && !St->isVolatile()) {
14439    SDNode* LdVal = St->getValue().getNode();
14440    LoadSDNode *Ld = 0;
14441    int TokenFactorIndex = -1;
14442    SmallVector<SDValue, 8> Ops;
14443    SDNode* ChainVal = St->getChain().getNode();
14444    // Must be a store of a load.  We currently handle two cases:  the load
14445    // is a direct child, and it's under an intervening TokenFactor.  It is
14446    // possible to dig deeper under nested TokenFactors.
14447    if (ChainVal == LdVal)
14448      Ld = cast<LoadSDNode>(St->getChain());
14449    else if (St->getValue().hasOneUse() &&
14450             ChainVal->getOpcode() == ISD::TokenFactor) {
14451      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
14452        if (ChainVal->getOperand(i).getNode() == LdVal) {
14453          TokenFactorIndex = i;
14454          Ld = cast<LoadSDNode>(St->getValue());
14455        } else
14456          Ops.push_back(ChainVal->getOperand(i));
14457      }
14458    }
14459
14460    if (!Ld || !ISD::isNormalLoad(Ld))
14461      return SDValue();
14462
14463    // If this is not the MMX case, i.e. we are just turning i64 load/store
14464    // into f64 load/store, avoid the transformation if there are multiple
14465    // uses of the loaded value.
14466    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
14467      return SDValue();
14468
14469    DebugLoc LdDL = Ld->getDebugLoc();
14470    DebugLoc StDL = N->getDebugLoc();
14471    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
14472    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
14473    // pair instead.
14474    if (Subtarget->is64Bit() || F64IsLegal) {
14475      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
14476      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
14477                                  Ld->getPointerInfo(), Ld->isVolatile(),
14478                                  Ld->isNonTemporal(), Ld->isInvariant(),
14479                                  Ld->getAlignment());
14480      SDValue NewChain = NewLd.getValue(1);
14481      if (TokenFactorIndex != -1) {
14482        Ops.push_back(NewChain);
14483        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14484                               Ops.size());
14485      }
14486      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
14487                          St->getPointerInfo(),
14488                          St->isVolatile(), St->isNonTemporal(),
14489                          St->getAlignment());
14490    }
14491
14492    // Otherwise, lower to two pairs of 32-bit loads / stores.
14493    SDValue LoAddr = Ld->getBasePtr();
14494    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
14495                                 DAG.getConstant(4, MVT::i32));
14496
14497    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
14498                               Ld->getPointerInfo(),
14499                               Ld->isVolatile(), Ld->isNonTemporal(),
14500                               Ld->isInvariant(), Ld->getAlignment());
14501    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
14502                               Ld->getPointerInfo().getWithOffset(4),
14503                               Ld->isVolatile(), Ld->isNonTemporal(),
14504                               Ld->isInvariant(),
14505                               MinAlign(Ld->getAlignment(), 4));
14506
14507    SDValue NewChain = LoLd.getValue(1);
14508    if (TokenFactorIndex != -1) {
14509      Ops.push_back(LoLd);
14510      Ops.push_back(HiLd);
14511      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
14512                             Ops.size());
14513    }
14514
14515    LoAddr = St->getBasePtr();
14516    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
14517                         DAG.getConstant(4, MVT::i32));
14518
14519    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
14520                                St->getPointerInfo(),
14521                                St->isVolatile(), St->isNonTemporal(),
14522                                St->getAlignment());
14523    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
14524                                St->getPointerInfo().getWithOffset(4),
14525                                St->isVolatile(),
14526                                St->isNonTemporal(),
14527                                MinAlign(St->getAlignment(), 4));
14528    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
14529  }
14530  return SDValue();
14531}
14532
14533/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
14534/// and return the operands for the horizontal operation in LHS and RHS.  A
14535/// horizontal operation performs the binary operation on successive elements
14536/// of its first operand, then on successive elements of its second operand,
14537/// returning the resulting values in a vector.  For example, if
14538///   A = < float a0, float a1, float a2, float a3 >
14539/// and
14540///   B = < float b0, float b1, float b2, float b3 >
14541/// then the result of doing a horizontal operation on A and B is
14542///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
14543/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
14544/// A horizontal-op B, for some already available A and B, and if so then LHS is
14545/// set to A, RHS to B, and the routine returns 'true'.
14546/// Note that the binary operation should have the property that if one of the
14547/// operands is UNDEF then the result is UNDEF.
14548static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
14549  // Look for the following pattern: if
14550  //   A = < float a0, float a1, float a2, float a3 >
14551  //   B = < float b0, float b1, float b2, float b3 >
14552  // and
14553  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
14554  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
14555  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
14556  // which is A horizontal-op B.
14557
14558  // At least one of the operands should be a vector shuffle.
14559  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
14560      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
14561    return false;
14562
14563  EVT VT = LHS.getValueType();
14564
14565  assert((VT.is128BitVector() || VT.is256BitVector()) &&
14566         "Unsupported vector type for horizontal add/sub");
14567
14568  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
14569  // operate independently on 128-bit lanes.
14570  unsigned NumElts = VT.getVectorNumElements();
14571  unsigned NumLanes = VT.getSizeInBits()/128;
14572  unsigned NumLaneElts = NumElts / NumLanes;
14573  assert((NumLaneElts % 2 == 0) &&
14574         "Vector type should have an even number of elements in each lane");
14575  unsigned HalfLaneElts = NumLaneElts/2;
14576
14577  // View LHS in the form
14578  //   LHS = VECTOR_SHUFFLE A, B, LMask
14579  // If LHS is not a shuffle then pretend it is the shuffle
14580  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
14581  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
14582  // type VT.
14583  SDValue A, B;
14584  SmallVector<int, 16> LMask(NumElts);
14585  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14586    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
14587      A = LHS.getOperand(0);
14588    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
14589      B = LHS.getOperand(1);
14590    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
14591    std::copy(Mask.begin(), Mask.end(), LMask.begin());
14592  } else {
14593    if (LHS.getOpcode() != ISD::UNDEF)
14594      A = LHS;
14595    for (unsigned i = 0; i != NumElts; ++i)
14596      LMask[i] = i;
14597  }
14598
14599  // Likewise, view RHS in the form
14600  //   RHS = VECTOR_SHUFFLE C, D, RMask
14601  SDValue C, D;
14602  SmallVector<int, 16> RMask(NumElts);
14603  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
14604    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
14605      C = RHS.getOperand(0);
14606    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
14607      D = RHS.getOperand(1);
14608    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
14609    std::copy(Mask.begin(), Mask.end(), RMask.begin());
14610  } else {
14611    if (RHS.getOpcode() != ISD::UNDEF)
14612      C = RHS;
14613    for (unsigned i = 0; i != NumElts; ++i)
14614      RMask[i] = i;
14615  }
14616
14617  // Check that the shuffles are both shuffling the same vectors.
14618  if (!(A == C && B == D) && !(A == D && B == C))
14619    return false;
14620
14621  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
14622  if (!A.getNode() && !B.getNode())
14623    return false;
14624
14625  // If A and B occur in reverse order in RHS, then "swap" them (which means
14626  // rewriting the mask).
14627  if (A != C)
14628    CommuteVectorShuffleMask(RMask, NumElts);
14629
14630  // At this point LHS and RHS are equivalent to
14631  //   LHS = VECTOR_SHUFFLE A, B, LMask
14632  //   RHS = VECTOR_SHUFFLE A, B, RMask
14633  // Check that the masks correspond to performing a horizontal operation.
14634  for (unsigned i = 0; i != NumElts; ++i) {
14635    int LIdx = LMask[i], RIdx = RMask[i];
14636
14637    // Ignore any UNDEF components.
14638    if (LIdx < 0 || RIdx < 0 ||
14639        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
14640        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
14641      continue;
14642
14643    // Check that successive elements are being operated on.  If not, this is
14644    // not a horizontal operation.
14645    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
14646    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
14647    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
14648    if (!(LIdx == Index && RIdx == Index + 1) &&
14649        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
14650      return false;
14651  }
14652
14653  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
14654  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
14655  return true;
14656}
14657
14658/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
14659static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
14660                                  const X86Subtarget *Subtarget) {
14661  EVT VT = N->getValueType(0);
14662  SDValue LHS = N->getOperand(0);
14663  SDValue RHS = N->getOperand(1);
14664
14665  // Try to synthesize horizontal adds from adds of shuffles.
14666  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14667       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14668      isHorizontalBinOp(LHS, RHS, true))
14669    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
14670  return SDValue();
14671}
14672
14673/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
14674static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
14675                                  const X86Subtarget *Subtarget) {
14676  EVT VT = N->getValueType(0);
14677  SDValue LHS = N->getOperand(0);
14678  SDValue RHS = N->getOperand(1);
14679
14680  // Try to synthesize horizontal subs from subs of shuffles.
14681  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
14682       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
14683      isHorizontalBinOp(LHS, RHS, false))
14684    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
14685  return SDValue();
14686}
14687
14688/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
14689/// X86ISD::FXOR nodes.
14690static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
14691  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
14692  // F[X]OR(0.0, x) -> x
14693  // F[X]OR(x, 0.0) -> x
14694  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14695    if (C->getValueAPF().isPosZero())
14696      return N->getOperand(1);
14697  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14698    if (C->getValueAPF().isPosZero())
14699      return N->getOperand(0);
14700  return SDValue();
14701}
14702
14703/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
14704static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
14705  // FAND(0.0, x) -> 0.0
14706  // FAND(x, 0.0) -> 0.0
14707  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
14708    if (C->getValueAPF().isPosZero())
14709      return N->getOperand(0);
14710  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14711    if (C->getValueAPF().isPosZero())
14712      return N->getOperand(1);
14713  return SDValue();
14714}
14715
14716static SDValue PerformBTCombine(SDNode *N,
14717                                SelectionDAG &DAG,
14718                                TargetLowering::DAGCombinerInfo &DCI) {
14719  // BT ignores high bits in the bit index operand.
14720  SDValue Op1 = N->getOperand(1);
14721  if (Op1.hasOneUse()) {
14722    unsigned BitWidth = Op1.getValueSizeInBits();
14723    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14724    APInt KnownZero, KnownOne;
14725    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14726                                          !DCI.isBeforeLegalizeOps());
14727    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14728    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14729        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14730      DCI.CommitTargetLoweringOpt(TLO);
14731  }
14732  return SDValue();
14733}
14734
14735static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14736  SDValue Op = N->getOperand(0);
14737  if (Op.getOpcode() == ISD::BITCAST)
14738    Op = Op.getOperand(0);
14739  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14740  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14741      VT.getVectorElementType().getSizeInBits() ==
14742      OpVT.getVectorElementType().getSizeInBits()) {
14743    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14744  }
14745  return SDValue();
14746}
14747
14748static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
14749                                  TargetLowering::DAGCombinerInfo &DCI,
14750                                  const X86Subtarget *Subtarget) {
14751  if (!DCI.isBeforeLegalizeOps())
14752    return SDValue();
14753
14754  if (!Subtarget->hasAVX())
14755    return SDValue();
14756
14757  // Optimize vectors in AVX mode
14758  // Sign extend  v8i16 to v8i32 and
14759  //              v4i32 to v4i64
14760  //
14761  // Divide input vector into two parts
14762  // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
14763  // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
14764  // concat the vectors to original VT
14765
14766  EVT VT = N->getValueType(0);
14767  SDValue Op = N->getOperand(0);
14768  EVT OpVT = Op.getValueType();
14769  DebugLoc dl = N->getDebugLoc();
14770
14771  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
14772      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
14773
14774    unsigned NumElems = OpVT.getVectorNumElements();
14775    SmallVector<int,8> ShufMask1(NumElems, -1);
14776    for (unsigned i = 0; i < NumElems/2; i++) ShufMask1[i] = i;
14777
14778    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14779                                        ShufMask1.data());
14780
14781    SmallVector<int,8> ShufMask2(NumElems, -1);
14782    for (unsigned i = 0; i < NumElems/2; i++) ShufMask2[i] = i + NumElems/2;
14783
14784    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, DAG.getUNDEF(OpVT),
14785                                        ShufMask2.data());
14786
14787    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
14788                                  VT.getVectorNumElements()/2);
14789
14790    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
14791    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
14792
14793    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14794  }
14795  return SDValue();
14796}
14797
14798static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
14799                                  const X86Subtarget *Subtarget) {
14800  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14801  //           (and (i32 x86isd::setcc_carry), 1)
14802  // This eliminates the zext. This transformation is necessary because
14803  // ISD::SETCC is always legalized to i8.
14804  DebugLoc dl = N->getDebugLoc();
14805  SDValue N0 = N->getOperand(0);
14806  EVT VT = N->getValueType(0);
14807  EVT OpVT = N0.getValueType();
14808
14809  if (N0.getOpcode() == ISD::AND &&
14810      N0.hasOneUse() &&
14811      N0.getOperand(0).hasOneUse()) {
14812    SDValue N00 = N0.getOperand(0);
14813    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14814      return SDValue();
14815    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14816    if (!C || C->getZExtValue() != 1)
14817      return SDValue();
14818    return DAG.getNode(ISD::AND, dl, VT,
14819                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14820                                   N00.getOperand(0), N00.getOperand(1)),
14821                       DAG.getConstant(1, VT));
14822  }
14823  // Optimize vectors in AVX mode:
14824  //
14825  //   v8i16 -> v8i32
14826  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
14827  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
14828  //   Concat upper and lower parts.
14829  //
14830  //   v4i32 -> v4i64
14831  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
14832  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
14833  //   Concat upper and lower parts.
14834  //
14835  if (Subtarget->hasAVX()) {
14836
14837    if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16))  ||
14838      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
14839
14840      SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
14841      SDValue OpLo = getTargetShuffleNode(X86ISD::UNPCKL, dl, OpVT, N0, ZeroVec, DAG);
14842      SDValue OpHi = getTargetShuffleNode(X86ISD::UNPCKH, dl, OpVT, N0, ZeroVec, DAG);
14843
14844      EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
14845        VT.getVectorNumElements()/2);
14846
14847      OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
14848      OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
14849
14850      return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
14851    }
14852  }
14853
14854
14855  return SDValue();
14856}
14857
14858// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
14859static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14860  unsigned X86CC = N->getConstantOperandVal(0);
14861  SDValue EFLAG = N->getOperand(1);
14862  DebugLoc DL = N->getDebugLoc();
14863
14864  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14865  // a zext and produces an all-ones bit which is more useful than 0/1 in some
14866  // cases.
14867  if (X86CC == X86::COND_B)
14868    return DAG.getNode(ISD::AND, DL, MVT::i8,
14869                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14870                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
14871                       DAG.getConstant(1, MVT::i8));
14872
14873  return SDValue();
14874}
14875
14876static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14877                                        const X86TargetLowering *XTLI) {
14878  SDValue Op0 = N->getOperand(0);
14879  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14880  // a 32-bit target where SSE doesn't support i64->FP operations.
14881  if (Op0.getOpcode() == ISD::LOAD) {
14882    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14883    EVT VT = Ld->getValueType(0);
14884    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14885        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14886        !XTLI->getSubtarget()->is64Bit() &&
14887        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14888      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14889                                          Ld->getChain(), Op0, DAG);
14890      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14891      return FILDChain;
14892    }
14893  }
14894  return SDValue();
14895}
14896
14897// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
14898static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14899                                 X86TargetLowering::DAGCombinerInfo &DCI) {
14900  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14901  // the result is either zero or one (depending on the input carry bit).
14902  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14903  if (X86::isZeroNode(N->getOperand(0)) &&
14904      X86::isZeroNode(N->getOperand(1)) &&
14905      // We don't have a good way to replace an EFLAGS use, so only do this when
14906      // dead right now.
14907      SDValue(N, 1).use_empty()) {
14908    DebugLoc DL = N->getDebugLoc();
14909    EVT VT = N->getValueType(0);
14910    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14911    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14912                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14913                                           DAG.getConstant(X86::COND_B,MVT::i8),
14914                                           N->getOperand(2)),
14915                               DAG.getConstant(1, VT));
14916    return DCI.CombineTo(N, Res1, CarryOut);
14917  }
14918
14919  return SDValue();
14920}
14921
14922// fold (add Y, (sete  X, 0)) -> adc  0, Y
14923//      (add Y, (setne X, 0)) -> sbb -1, Y
14924//      (sub (sete  X, 0), Y) -> sbb  0, Y
14925//      (sub (setne X, 0), Y) -> adc -1, Y
14926static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14927  DebugLoc DL = N->getDebugLoc();
14928
14929  // Look through ZExts.
14930  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14931  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14932    return SDValue();
14933
14934  SDValue SetCC = Ext.getOperand(0);
14935  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14936    return SDValue();
14937
14938  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14939  if (CC != X86::COND_E && CC != X86::COND_NE)
14940    return SDValue();
14941
14942  SDValue Cmp = SetCC.getOperand(1);
14943  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14944      !X86::isZeroNode(Cmp.getOperand(1)) ||
14945      !Cmp.getOperand(0).getValueType().isInteger())
14946    return SDValue();
14947
14948  SDValue CmpOp0 = Cmp.getOperand(0);
14949  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14950                               DAG.getConstant(1, CmpOp0.getValueType()));
14951
14952  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14953  if (CC == X86::COND_NE)
14954    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14955                       DL, OtherVal.getValueType(), OtherVal,
14956                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14957  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14958                     DL, OtherVal.getValueType(), OtherVal,
14959                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14960}
14961
14962/// PerformADDCombine - Do target-specific dag combines on integer adds.
14963static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
14964                                 const X86Subtarget *Subtarget) {
14965  EVT VT = N->getValueType(0);
14966  SDValue Op0 = N->getOperand(0);
14967  SDValue Op1 = N->getOperand(1);
14968
14969  // Try to synthesize horizontal adds from adds of shuffles.
14970  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
14971       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
14972      isHorizontalBinOp(Op0, Op1, true))
14973    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
14974
14975  return OptimizeConditionalInDecrement(N, DAG);
14976}
14977
14978static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
14979                                 const X86Subtarget *Subtarget) {
14980  SDValue Op0 = N->getOperand(0);
14981  SDValue Op1 = N->getOperand(1);
14982
14983  // X86 can't encode an immediate LHS of a sub. See if we can push the
14984  // negation into a preceding instruction.
14985  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14986    // If the RHS of the sub is a XOR with one use and a constant, invert the
14987    // immediate. Then add one to the LHS of the sub so we can turn
14988    // X-Y -> X+~Y+1, saving one register.
14989    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14990        isa<ConstantSDNode>(Op1.getOperand(1))) {
14991      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14992      EVT VT = Op0.getValueType();
14993      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14994                                   Op1.getOperand(0),
14995                                   DAG.getConstant(~XorC, VT));
14996      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14997                         DAG.getConstant(C->getAPIntValue()+1, VT));
14998    }
14999  }
15000
15001  // Try to synthesize horizontal adds from adds of shuffles.
15002  EVT VT = N->getValueType(0);
15003  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15004       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15005      isHorizontalBinOp(Op0, Op1, true))
15006    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15007
15008  return OptimizeConditionalInDecrement(N, DAG);
15009}
15010
15011SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15012                                             DAGCombinerInfo &DCI) const {
15013  SelectionDAG &DAG = DCI.DAG;
15014  switch (N->getOpcode()) {
15015  default: break;
15016  case ISD::EXTRACT_VECTOR_ELT:
15017    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15018  case ISD::VSELECT:
15019  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15020  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
15021  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15022  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15023  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15024  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15025  case ISD::SHL:
15026  case ISD::SRA:
15027  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15028  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15029  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15030  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15031  case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
15032  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15033  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15034  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15035  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15036  case X86ISD::FXOR:
15037  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15038  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15039  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15040  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
15041  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, Subtarget);
15042  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
15043  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
15044  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
15045  case X86ISD::SHUFP:       // Handle all target specific shuffles
15046  case X86ISD::PALIGN:
15047  case X86ISD::UNPCKH:
15048  case X86ISD::UNPCKL:
15049  case X86ISD::MOVHLPS:
15050  case X86ISD::MOVLHPS:
15051  case X86ISD::PSHUFD:
15052  case X86ISD::PSHUFHW:
15053  case X86ISD::PSHUFLW:
15054  case X86ISD::MOVSS:
15055  case X86ISD::MOVSD:
15056  case X86ISD::VPERMILP:
15057  case X86ISD::VPERM2X128:
15058  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
15059  }
15060
15061  return SDValue();
15062}
15063
15064/// isTypeDesirableForOp - Return true if the target has native support for
15065/// the specified value type and it is 'desirable' to use the type for the
15066/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
15067/// instruction encodings are longer and some i16 instructions are slow.
15068bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
15069  if (!isTypeLegal(VT))
15070    return false;
15071  if (VT != MVT::i16)
15072    return true;
15073
15074  switch (Opc) {
15075  default:
15076    return true;
15077  case ISD::LOAD:
15078  case ISD::SIGN_EXTEND:
15079  case ISD::ZERO_EXTEND:
15080  case ISD::ANY_EXTEND:
15081  case ISD::SHL:
15082  case ISD::SRL:
15083  case ISD::SUB:
15084  case ISD::ADD:
15085  case ISD::MUL:
15086  case ISD::AND:
15087  case ISD::OR:
15088  case ISD::XOR:
15089    return false;
15090  }
15091}
15092
15093/// IsDesirableToPromoteOp - This method query the target whether it is
15094/// beneficial for dag combiner to promote the specified node. If true, it
15095/// should return the desired promotion type by reference.
15096bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
15097  EVT VT = Op.getValueType();
15098  if (VT != MVT::i16)
15099    return false;
15100
15101  bool Promote = false;
15102  bool Commute = false;
15103  switch (Op.getOpcode()) {
15104  default: break;
15105  case ISD::LOAD: {
15106    LoadSDNode *LD = cast<LoadSDNode>(Op);
15107    // If the non-extending load has a single use and it's not live out, then it
15108    // might be folded.
15109    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
15110                                                     Op.hasOneUse()*/) {
15111      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
15112             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
15113        // The only case where we'd want to promote LOAD (rather then it being
15114        // promoted as an operand is when it's only use is liveout.
15115        if (UI->getOpcode() != ISD::CopyToReg)
15116          return false;
15117      }
15118    }
15119    Promote = true;
15120    break;
15121  }
15122  case ISD::SIGN_EXTEND:
15123  case ISD::ZERO_EXTEND:
15124  case ISD::ANY_EXTEND:
15125    Promote = true;
15126    break;
15127  case ISD::SHL:
15128  case ISD::SRL: {
15129    SDValue N0 = Op.getOperand(0);
15130    // Look out for (store (shl (load), x)).
15131    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
15132      return false;
15133    Promote = true;
15134    break;
15135  }
15136  case ISD::ADD:
15137  case ISD::MUL:
15138  case ISD::AND:
15139  case ISD::OR:
15140  case ISD::XOR:
15141    Commute = true;
15142    // fallthrough
15143  case ISD::SUB: {
15144    SDValue N0 = Op.getOperand(0);
15145    SDValue N1 = Op.getOperand(1);
15146    if (!Commute && MayFoldLoad(N1))
15147      return false;
15148    // Avoid disabling potential load folding opportunities.
15149    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
15150      return false;
15151    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
15152      return false;
15153    Promote = true;
15154  }
15155  }
15156
15157  PVT = MVT::i32;
15158  return Promote;
15159}
15160
15161//===----------------------------------------------------------------------===//
15162//                           X86 Inline Assembly Support
15163//===----------------------------------------------------------------------===//
15164
15165namespace {
15166  // Helper to match a string separated by whitespace.
15167  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
15168    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
15169
15170    for (unsigned i = 0, e = args.size(); i != e; ++i) {
15171      StringRef piece(*args[i]);
15172      if (!s.startswith(piece)) // Check if the piece matches.
15173        return false;
15174
15175      s = s.substr(piece.size());
15176      StringRef::size_type pos = s.find_first_not_of(" \t");
15177      if (pos == 0) // We matched a prefix.
15178        return false;
15179
15180      s = s.substr(pos);
15181    }
15182
15183    return s.empty();
15184  }
15185  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
15186}
15187
15188bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
15189  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15190
15191  std::string AsmStr = IA->getAsmString();
15192
15193  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15194  if (!Ty || Ty->getBitWidth() % 16 != 0)
15195    return false;
15196
15197  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
15198  SmallVector<StringRef, 4> AsmPieces;
15199  SplitString(AsmStr, AsmPieces, ";\n");
15200
15201  switch (AsmPieces.size()) {
15202  default: return false;
15203  case 1:
15204    // FIXME: this should verify that we are targeting a 486 or better.  If not,
15205    // we will turn this bswap into something that will be lowered to logical
15206    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
15207    // lower so don't worry about this.
15208    // bswap $0
15209    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
15210        matchAsm(AsmPieces[0], "bswapl", "$0") ||
15211        matchAsm(AsmPieces[0], "bswapq", "$0") ||
15212        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
15213        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
15214        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
15215      // No need to check constraints, nothing other than the equivalent of
15216      // "=r,0" would be valid here.
15217      return IntrinsicLowering::LowerToByteSwap(CI);
15218    }
15219
15220    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
15221    if (CI->getType()->isIntegerTy(16) &&
15222        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15223        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
15224         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
15225      AsmPieces.clear();
15226      const std::string &ConstraintsStr = IA->getConstraintString();
15227      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15228      std::sort(AsmPieces.begin(), AsmPieces.end());
15229      if (AsmPieces.size() == 4 &&
15230          AsmPieces[0] == "~{cc}" &&
15231          AsmPieces[1] == "~{dirflag}" &&
15232          AsmPieces[2] == "~{flags}" &&
15233          AsmPieces[3] == "~{fpsr}")
15234      return IntrinsicLowering::LowerToByteSwap(CI);
15235    }
15236    break;
15237  case 3:
15238    if (CI->getType()->isIntegerTy(32) &&
15239        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
15240        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
15241        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
15242        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
15243      AsmPieces.clear();
15244      const std::string &ConstraintsStr = IA->getConstraintString();
15245      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
15246      std::sort(AsmPieces.begin(), AsmPieces.end());
15247      if (AsmPieces.size() == 4 &&
15248          AsmPieces[0] == "~{cc}" &&
15249          AsmPieces[1] == "~{dirflag}" &&
15250          AsmPieces[2] == "~{flags}" &&
15251          AsmPieces[3] == "~{fpsr}")
15252        return IntrinsicLowering::LowerToByteSwap(CI);
15253    }
15254
15255    if (CI->getType()->isIntegerTy(64)) {
15256      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
15257      if (Constraints.size() >= 2 &&
15258          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
15259          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
15260        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
15261        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
15262            matchAsm(AsmPieces[1], "bswap", "%edx") &&
15263            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
15264          return IntrinsicLowering::LowerToByteSwap(CI);
15265      }
15266    }
15267    break;
15268  }
15269  return false;
15270}
15271
15272
15273
15274/// getConstraintType - Given a constraint letter, return the type of
15275/// constraint it is for this target.
15276X86TargetLowering::ConstraintType
15277X86TargetLowering::getConstraintType(const std::string &Constraint) const {
15278  if (Constraint.size() == 1) {
15279    switch (Constraint[0]) {
15280    case 'R':
15281    case 'q':
15282    case 'Q':
15283    case 'f':
15284    case 't':
15285    case 'u':
15286    case 'y':
15287    case 'x':
15288    case 'Y':
15289    case 'l':
15290      return C_RegisterClass;
15291    case 'a':
15292    case 'b':
15293    case 'c':
15294    case 'd':
15295    case 'S':
15296    case 'D':
15297    case 'A':
15298      return C_Register;
15299    case 'I':
15300    case 'J':
15301    case 'K':
15302    case 'L':
15303    case 'M':
15304    case 'N':
15305    case 'G':
15306    case 'C':
15307    case 'e':
15308    case 'Z':
15309      return C_Other;
15310    default:
15311      break;
15312    }
15313  }
15314  return TargetLowering::getConstraintType(Constraint);
15315}
15316
15317/// Examine constraint type and operand type and determine a weight value.
15318/// This object must already have been set up with the operand type
15319/// and the current alternative constraint selected.
15320TargetLowering::ConstraintWeight
15321  X86TargetLowering::getSingleConstraintMatchWeight(
15322    AsmOperandInfo &info, const char *constraint) const {
15323  ConstraintWeight weight = CW_Invalid;
15324  Value *CallOperandVal = info.CallOperandVal;
15325    // If we don't have a value, we can't do a match,
15326    // but allow it at the lowest weight.
15327  if (CallOperandVal == NULL)
15328    return CW_Default;
15329  Type *type = CallOperandVal->getType();
15330  // Look at the constraint type.
15331  switch (*constraint) {
15332  default:
15333    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15334  case 'R':
15335  case 'q':
15336  case 'Q':
15337  case 'a':
15338  case 'b':
15339  case 'c':
15340  case 'd':
15341  case 'S':
15342  case 'D':
15343  case 'A':
15344    if (CallOperandVal->getType()->isIntegerTy())
15345      weight = CW_SpecificReg;
15346    break;
15347  case 'f':
15348  case 't':
15349  case 'u':
15350      if (type->isFloatingPointTy())
15351        weight = CW_SpecificReg;
15352      break;
15353  case 'y':
15354      if (type->isX86_MMXTy() && Subtarget->hasMMX())
15355        weight = CW_SpecificReg;
15356      break;
15357  case 'x':
15358  case 'Y':
15359    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
15360        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
15361      weight = CW_Register;
15362    break;
15363  case 'I':
15364    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
15365      if (C->getZExtValue() <= 31)
15366        weight = CW_Constant;
15367    }
15368    break;
15369  case 'J':
15370    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15371      if (C->getZExtValue() <= 63)
15372        weight = CW_Constant;
15373    }
15374    break;
15375  case 'K':
15376    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15377      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
15378        weight = CW_Constant;
15379    }
15380    break;
15381  case 'L':
15382    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15383      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
15384        weight = CW_Constant;
15385    }
15386    break;
15387  case 'M':
15388    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15389      if (C->getZExtValue() <= 3)
15390        weight = CW_Constant;
15391    }
15392    break;
15393  case 'N':
15394    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15395      if (C->getZExtValue() <= 0xff)
15396        weight = CW_Constant;
15397    }
15398    break;
15399  case 'G':
15400  case 'C':
15401    if (dyn_cast<ConstantFP>(CallOperandVal)) {
15402      weight = CW_Constant;
15403    }
15404    break;
15405  case 'e':
15406    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15407      if ((C->getSExtValue() >= -0x80000000LL) &&
15408          (C->getSExtValue() <= 0x7fffffffLL))
15409        weight = CW_Constant;
15410    }
15411    break;
15412  case 'Z':
15413    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
15414      if (C->getZExtValue() <= 0xffffffff)
15415        weight = CW_Constant;
15416    }
15417    break;
15418  }
15419  return weight;
15420}
15421
15422/// LowerXConstraint - try to replace an X constraint, which matches anything,
15423/// with another that has more specific requirements based on the type of the
15424/// corresponding operand.
15425const char *X86TargetLowering::
15426LowerXConstraint(EVT ConstraintVT) const {
15427  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
15428  // 'f' like normal targets.
15429  if (ConstraintVT.isFloatingPoint()) {
15430    if (Subtarget->hasSSE2())
15431      return "Y";
15432    if (Subtarget->hasSSE1())
15433      return "x";
15434  }
15435
15436  return TargetLowering::LowerXConstraint(ConstraintVT);
15437}
15438
15439/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
15440/// vector.  If it is invalid, don't add anything to Ops.
15441void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15442                                                     std::string &Constraint,
15443                                                     std::vector<SDValue>&Ops,
15444                                                     SelectionDAG &DAG) const {
15445  SDValue Result(0, 0);
15446
15447  // Only support length 1 constraints for now.
15448  if (Constraint.length() > 1) return;
15449
15450  char ConstraintLetter = Constraint[0];
15451  switch (ConstraintLetter) {
15452  default: break;
15453  case 'I':
15454    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15455      if (C->getZExtValue() <= 31) {
15456        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15457        break;
15458      }
15459    }
15460    return;
15461  case 'J':
15462    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15463      if (C->getZExtValue() <= 63) {
15464        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15465        break;
15466      }
15467    }
15468    return;
15469  case 'K':
15470    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15471      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
15472        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15473        break;
15474      }
15475    }
15476    return;
15477  case 'N':
15478    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15479      if (C->getZExtValue() <= 255) {
15480        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15481        break;
15482      }
15483    }
15484    return;
15485  case 'e': {
15486    // 32-bit signed value
15487    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15488      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15489                                           C->getSExtValue())) {
15490        // Widen to 64 bits here to get it sign extended.
15491        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
15492        break;
15493      }
15494    // FIXME gcc accepts some relocatable values here too, but only in certain
15495    // memory models; it's complicated.
15496    }
15497    return;
15498  }
15499  case 'Z': {
15500    // 32-bit unsigned value
15501    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15502      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
15503                                           C->getZExtValue())) {
15504        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
15505        break;
15506      }
15507    }
15508    // FIXME gcc accepts some relocatable values here too, but only in certain
15509    // memory models; it's complicated.
15510    return;
15511  }
15512  case 'i': {
15513    // Literal immediates are always ok.
15514    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
15515      // Widen to 64 bits here to get it sign extended.
15516      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
15517      break;
15518    }
15519
15520    // In any sort of PIC mode addresses need to be computed at runtime by
15521    // adding in a register or some sort of table lookup.  These can't
15522    // be used as immediates.
15523    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
15524      return;
15525
15526    // If we are in non-pic codegen mode, we allow the address of a global (with
15527    // an optional displacement) to be used with 'i'.
15528    GlobalAddressSDNode *GA = 0;
15529    int64_t Offset = 0;
15530
15531    // Match either (GA), (GA+C), (GA+C1+C2), etc.
15532    while (1) {
15533      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
15534        Offset += GA->getOffset();
15535        break;
15536      } else if (Op.getOpcode() == ISD::ADD) {
15537        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15538          Offset += C->getZExtValue();
15539          Op = Op.getOperand(0);
15540          continue;
15541        }
15542      } else if (Op.getOpcode() == ISD::SUB) {
15543        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
15544          Offset += -C->getZExtValue();
15545          Op = Op.getOperand(0);
15546          continue;
15547        }
15548      }
15549
15550      // Otherwise, this isn't something we can handle, reject it.
15551      return;
15552    }
15553
15554    const GlobalValue *GV = GA->getGlobal();
15555    // If we require an extra load to get this address, as in PIC mode, we
15556    // can't accept it.
15557    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
15558                                                        getTargetMachine())))
15559      return;
15560
15561    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
15562                                        GA->getValueType(0), Offset);
15563    break;
15564  }
15565  }
15566
15567  if (Result.getNode()) {
15568    Ops.push_back(Result);
15569    return;
15570  }
15571  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15572}
15573
15574std::pair<unsigned, const TargetRegisterClass*>
15575X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
15576                                                EVT VT) const {
15577  // First, see if this is a constraint that directly corresponds to an LLVM
15578  // register class.
15579  if (Constraint.size() == 1) {
15580    // GCC Constraint Letters
15581    switch (Constraint[0]) {
15582    default: break;
15583      // TODO: Slight differences here in allocation order and leaving
15584      // RIP in the class. Do they matter any more here than they do
15585      // in the normal allocation?
15586    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
15587      if (Subtarget->is64Bit()) {
15588	if (VT == MVT::i32 || VT == MVT::f32)
15589	  return std::make_pair(0U, X86::GR32RegisterClass);
15590	else if (VT == MVT::i16)
15591	  return std::make_pair(0U, X86::GR16RegisterClass);
15592	else if (VT == MVT::i8 || VT == MVT::i1)
15593	  return std::make_pair(0U, X86::GR8RegisterClass);
15594	else if (VT == MVT::i64 || VT == MVT::f64)
15595	  return std::make_pair(0U, X86::GR64RegisterClass);
15596	break;
15597      }
15598      // 32-bit fallthrough
15599    case 'Q':   // Q_REGS
15600      if (VT == MVT::i32 || VT == MVT::f32)
15601	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
15602      else if (VT == MVT::i16)
15603	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
15604      else if (VT == MVT::i8 || VT == MVT::i1)
15605	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
15606      else if (VT == MVT::i64)
15607	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
15608      break;
15609    case 'r':   // GENERAL_REGS
15610    case 'l':   // INDEX_REGS
15611      if (VT == MVT::i8 || VT == MVT::i1)
15612        return std::make_pair(0U, X86::GR8RegisterClass);
15613      if (VT == MVT::i16)
15614        return std::make_pair(0U, X86::GR16RegisterClass);
15615      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
15616        return std::make_pair(0U, X86::GR32RegisterClass);
15617      return std::make_pair(0U, X86::GR64RegisterClass);
15618    case 'R':   // LEGACY_REGS
15619      if (VT == MVT::i8 || VT == MVT::i1)
15620        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
15621      if (VT == MVT::i16)
15622        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
15623      if (VT == MVT::i32 || !Subtarget->is64Bit())
15624        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
15625      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
15626    case 'f':  // FP Stack registers.
15627      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
15628      // value to the correct fpstack register class.
15629      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
15630        return std::make_pair(0U, X86::RFP32RegisterClass);
15631      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
15632        return std::make_pair(0U, X86::RFP64RegisterClass);
15633      return std::make_pair(0U, X86::RFP80RegisterClass);
15634    case 'y':   // MMX_REGS if MMX allowed.
15635      if (!Subtarget->hasMMX()) break;
15636      return std::make_pair(0U, X86::VR64RegisterClass);
15637    case 'Y':   // SSE_REGS if SSE2 allowed
15638      if (!Subtarget->hasSSE2()) break;
15639      // FALL THROUGH.
15640    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
15641      if (!Subtarget->hasSSE1()) break;
15642
15643      switch (VT.getSimpleVT().SimpleTy) {
15644      default: break;
15645      // Scalar SSE types.
15646      case MVT::f32:
15647      case MVT::i32:
15648        return std::make_pair(0U, X86::FR32RegisterClass);
15649      case MVT::f64:
15650      case MVT::i64:
15651        return std::make_pair(0U, X86::FR64RegisterClass);
15652      // Vector types.
15653      case MVT::v16i8:
15654      case MVT::v8i16:
15655      case MVT::v4i32:
15656      case MVT::v2i64:
15657      case MVT::v4f32:
15658      case MVT::v2f64:
15659        return std::make_pair(0U, X86::VR128RegisterClass);
15660      // AVX types.
15661      case MVT::v32i8:
15662      case MVT::v16i16:
15663      case MVT::v8i32:
15664      case MVT::v4i64:
15665      case MVT::v8f32:
15666      case MVT::v4f64:
15667        return std::make_pair(0U, X86::VR256RegisterClass);
15668
15669      }
15670      break;
15671    }
15672  }
15673
15674  // Use the default implementation in TargetLowering to convert the register
15675  // constraint into a member of a register class.
15676  std::pair<unsigned, const TargetRegisterClass*> Res;
15677  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
15678
15679  // Not found as a standard register?
15680  if (Res.second == 0) {
15681    // Map st(0) -> st(7) -> ST0
15682    if (Constraint.size() == 7 && Constraint[0] == '{' &&
15683        tolower(Constraint[1]) == 's' &&
15684        tolower(Constraint[2]) == 't' &&
15685        Constraint[3] == '(' &&
15686        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
15687        Constraint[5] == ')' &&
15688        Constraint[6] == '}') {
15689
15690      Res.first = X86::ST0+Constraint[4]-'0';
15691      Res.second = X86::RFP80RegisterClass;
15692      return Res;
15693    }
15694
15695    // GCC allows "st(0)" to be called just plain "st".
15696    if (StringRef("{st}").equals_lower(Constraint)) {
15697      Res.first = X86::ST0;
15698      Res.second = X86::RFP80RegisterClass;
15699      return Res;
15700    }
15701
15702    // flags -> EFLAGS
15703    if (StringRef("{flags}").equals_lower(Constraint)) {
15704      Res.first = X86::EFLAGS;
15705      Res.second = X86::CCRRegisterClass;
15706      return Res;
15707    }
15708
15709    // 'A' means EAX + EDX.
15710    if (Constraint == "A") {
15711      Res.first = X86::EAX;
15712      Res.second = X86::GR32_ADRegisterClass;
15713      return Res;
15714    }
15715    return Res;
15716  }
15717
15718  // Otherwise, check to see if this is a register class of the wrong value
15719  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
15720  // turn into {ax},{dx}.
15721  if (Res.second->hasType(VT))
15722    return Res;   // Correct type already, nothing to do.
15723
15724  // All of the single-register GCC register classes map their values onto
15725  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
15726  // really want an 8-bit or 32-bit register, map to the appropriate register
15727  // class and return the appropriate register.
15728  if (Res.second == X86::GR16RegisterClass) {
15729    if (VT == MVT::i8) {
15730      unsigned DestReg = 0;
15731      switch (Res.first) {
15732      default: break;
15733      case X86::AX: DestReg = X86::AL; break;
15734      case X86::DX: DestReg = X86::DL; break;
15735      case X86::CX: DestReg = X86::CL; break;
15736      case X86::BX: DestReg = X86::BL; break;
15737      }
15738      if (DestReg) {
15739        Res.first = DestReg;
15740        Res.second = X86::GR8RegisterClass;
15741      }
15742    } else if (VT == MVT::i32) {
15743      unsigned DestReg = 0;
15744      switch (Res.first) {
15745      default: break;
15746      case X86::AX: DestReg = X86::EAX; break;
15747      case X86::DX: DestReg = X86::EDX; break;
15748      case X86::CX: DestReg = X86::ECX; break;
15749      case X86::BX: DestReg = X86::EBX; break;
15750      case X86::SI: DestReg = X86::ESI; break;
15751      case X86::DI: DestReg = X86::EDI; break;
15752      case X86::BP: DestReg = X86::EBP; break;
15753      case X86::SP: DestReg = X86::ESP; break;
15754      }
15755      if (DestReg) {
15756        Res.first = DestReg;
15757        Res.second = X86::GR32RegisterClass;
15758      }
15759    } else if (VT == MVT::i64) {
15760      unsigned DestReg = 0;
15761      switch (Res.first) {
15762      default: break;
15763      case X86::AX: DestReg = X86::RAX; break;
15764      case X86::DX: DestReg = X86::RDX; break;
15765      case X86::CX: DestReg = X86::RCX; break;
15766      case X86::BX: DestReg = X86::RBX; break;
15767      case X86::SI: DestReg = X86::RSI; break;
15768      case X86::DI: DestReg = X86::RDI; break;
15769      case X86::BP: DestReg = X86::RBP; break;
15770      case X86::SP: DestReg = X86::RSP; break;
15771      }
15772      if (DestReg) {
15773        Res.first = DestReg;
15774        Res.second = X86::GR64RegisterClass;
15775      }
15776    }
15777  } else if (Res.second == X86::FR32RegisterClass ||
15778             Res.second == X86::FR64RegisterClass ||
15779             Res.second == X86::VR128RegisterClass) {
15780    // Handle references to XMM physical registers that got mapped into the
15781    // wrong class.  This can happen with constraints like {xmm0} where the
15782    // target independent register mapper will just pick the first match it can
15783    // find, ignoring the required type.
15784    if (VT == MVT::f32)
15785      Res.second = X86::FR32RegisterClass;
15786    else if (VT == MVT::f64)
15787      Res.second = X86::FR64RegisterClass;
15788    else if (X86::VR128RegisterClass->hasType(VT))
15789      Res.second = X86::VR128RegisterClass;
15790  }
15791
15792  return Res;
15793}
15794