X86ISelLowering.cpp revision c2616e43fd980505d3b29b92473d047f878f6708
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/VectorExtras.h"
28#include "llvm/Analysis/ScalarEvolutionExpressions.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/PseudoSourceValue.h"
36#include "llvm/CodeGen/SelectionDAG.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Target/TargetOptions.h"
40#include "llvm/ADT/SmallSet.h"
41#include "llvm/ADT/StringExtras.h"
42using namespace llvm;
43
44// Forward declarations.
45static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG);
46
47X86TargetLowering::X86TargetLowering(TargetMachine &TM)
48  : TargetLowering(TM) {
49  Subtarget = &TM.getSubtarget<X86Subtarget>();
50  X86ScalarSSEf64 = Subtarget->hasSSE2();
51  X86ScalarSSEf32 = Subtarget->hasSSE1();
52  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
53
54  bool Fast = false;
55
56  RegInfo = TM.getRegisterInfo();
57
58  // Set up the TargetLowering object.
59
60  // X86 is weird, it always uses i8 for shift amounts and setcc results.
61  setShiftAmountType(MVT::i8);
62  setSetCCResultContents(ZeroOrOneSetCCResult);
63  setSchedulingPreference(SchedulingForRegPressure);
64  setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0
65  setStackPointerRegisterToSaveRestore(X86StackPtr);
66
67  if (Subtarget->isTargetDarwin()) {
68    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
69    setUseUnderscoreSetJmp(false);
70    setUseUnderscoreLongJmp(false);
71  } else if (Subtarget->isTargetMingw()) {
72    // MS runtime is weird: it exports _setjmp, but longjmp!
73    setUseUnderscoreSetJmp(true);
74    setUseUnderscoreLongJmp(false);
75  } else {
76    setUseUnderscoreSetJmp(true);
77    setUseUnderscoreLongJmp(true);
78  }
79
80  // Set up the register classes.
81  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
82  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
83  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
84  if (Subtarget->is64Bit())
85    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
86
87  setLoadXAction(ISD::SEXTLOAD, MVT::i1, Promote);
88
89  // We don't accept any truncstore of integer registers.
90  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
91  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
92  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
93  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
94  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
95  setTruncStoreAction(MVT::i16, MVT::i8, Expand);
96
97  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
98  // operation.
99  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
100  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
101  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
102
103  if (Subtarget->is64Bit()) {
104    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
105    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
106  } else {
107    if (X86ScalarSSEf64)
108      // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
109      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Expand);
110    else
111      setOperationAction(ISD::UINT_TO_FP   , MVT::i32  , Promote);
112  }
113
114  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
115  // this operation.
116  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
117  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
118  // SSE has no i16 to fp conversion, only i32
119  if (X86ScalarSSEf32) {
120    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
121    // f32 and f64 cases are Legal, f80 case is not
122    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
123  } else {
124    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
125    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
126  }
127
128  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
129  // are Legal, f80 is custom lowered.
130  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
131  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
132
133  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
134  // this operation.
135  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
136  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
137
138  if (X86ScalarSSEf32) {
139    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
140    // f32 and f64 cases are Legal, f80 case is not
141    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
142  } else {
143    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
144    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
145  }
146
147  // Handle FP_TO_UINT by promoting the destination to a larger signed
148  // conversion.
149  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
150  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
151  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
152
153  if (Subtarget->is64Bit()) {
154    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
155    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
156  } else {
157    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
158      // Expand FP_TO_UINT into a select.
159      // FIXME: We would like to use a Custom expander here eventually to do
160      // the optimal thing for SSE vs. the default expansion in the legalizer.
161      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
162    else
163      // With SSE3 we can use fisttpll to convert to a signed i64.
164      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Promote);
165  }
166
167  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
168  if (!X86ScalarSSEf64) {
169    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
170    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
171  }
172
173  // Scalar integer divide and remainder are lowered to use operations that
174  // produce two results, to match the available instructions. This exposes
175  // the two-result form to trivial CSE, which is able to combine x/y and x%y
176  // into a single instruction.
177  //
178  // Scalar integer multiply-high is also lowered to use two-result
179  // operations, to match the available instructions. However, plain multiply
180  // (low) operations are left as Legal, as there are single-result
181  // instructions for this in x86. Using the two-result multiply instructions
182  // when both high and low results are needed must be arranged by dagcombine.
183  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
184  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
185  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
186  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
187  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
188  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
189  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
190  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
191  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
192  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
193  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
194  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
195  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
196  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
197  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
198  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
199  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
200  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
201  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
202  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
203  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
204  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
205  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
206  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
207
208  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
209  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
210  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
211  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
212  if (Subtarget->is64Bit())
213    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
214  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
215  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
216  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
217  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
218  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
219  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
220  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
221  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
222
223  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
224  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
225  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
226  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
227  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
228  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
229  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
230  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
231  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
232  if (Subtarget->is64Bit()) {
233    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
234    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
235    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
236  }
237
238  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
239  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
240
241  // These should be promoted to a larger select which is supported.
242  setOperationAction(ISD::SELECT           , MVT::i1   , Promote);
243  setOperationAction(ISD::SELECT           , MVT::i8   , Promote);
244  // X86 wants to expand cmov itself.
245  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
246  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
247  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
248  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
249  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
250  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
251  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
252  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
253  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
254  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
255  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
256  if (Subtarget->is64Bit()) {
257    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
258    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
259  }
260  // X86 ret instruction may pop stack.
261  setOperationAction(ISD::RET             , MVT::Other, Custom);
262  if (!Subtarget->is64Bit())
263    setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
264
265  // Darwin ABI issue.
266  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
267  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
268  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
269  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
270  if (Subtarget->is64Bit())
271    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
272  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
273  if (Subtarget->is64Bit()) {
274    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
275    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
276    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
277    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
278  }
279  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
280  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
281  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
282  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
283  if (Subtarget->is64Bit()) {
284    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
285    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
286    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
287  }
288
289  if (Subtarget->hasSSE1())
290    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
291
292  if (!Subtarget->hasSSE2())
293    setOperationAction(ISD::MEMBARRIER    , MVT::Other, Expand);
294
295  // Expand certain atomics
296  setOperationAction(ISD::ATOMIC_LCS     , MVT::i8, Custom);
297  setOperationAction(ISD::ATOMIC_LCS     , MVT::i16, Custom);
298  setOperationAction(ISD::ATOMIC_LCS     , MVT::i32, Custom);
299  setOperationAction(ISD::ATOMIC_LCS     , MVT::i64, Custom);
300  setOperationAction(ISD::ATOMIC_LSS     , MVT::i32, Expand);
301
302  // Use the default ISD::LOCATION, ISD::DECLARE expansion.
303  setOperationAction(ISD::LOCATION, MVT::Other, Expand);
304  // FIXME - use subtarget debug flags
305  if (!Subtarget->isTargetDarwin() &&
306      !Subtarget->isTargetELF() &&
307      !Subtarget->isTargetCygMing())
308    setOperationAction(ISD::LABEL, MVT::Other, Expand);
309
310  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
311  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
312  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
313  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
314  if (Subtarget->is64Bit()) {
315    // FIXME: Verify
316    setExceptionPointerRegister(X86::RAX);
317    setExceptionSelectorRegister(X86::RDX);
318  } else {
319    setExceptionPointerRegister(X86::EAX);
320    setExceptionSelectorRegister(X86::EDX);
321  }
322  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
323
324  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
325
326  setOperationAction(ISD::TRAP, MVT::Other, Legal);
327
328  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
329  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
330  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
331  if (Subtarget->is64Bit()) {
332    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
333    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
334  } else {
335    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
336    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
337  }
338
339  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
340  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
341  if (Subtarget->is64Bit())
342    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
343  if (Subtarget->isTargetCygMing())
344    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
345  else
346    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
347
348  if (X86ScalarSSEf64) {
349    // f32 and f64 use SSE.
350    // Set up the FP register classes.
351    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
352    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
353
354    // Use ANDPD to simulate FABS.
355    setOperationAction(ISD::FABS , MVT::f64, Custom);
356    setOperationAction(ISD::FABS , MVT::f32, Custom);
357
358    // Use XORP to simulate FNEG.
359    setOperationAction(ISD::FNEG , MVT::f64, Custom);
360    setOperationAction(ISD::FNEG , MVT::f32, Custom);
361
362    // Use ANDPD and ORPD to simulate FCOPYSIGN.
363    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
364    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
365
366    // We don't support sin/cos/fmod
367    setOperationAction(ISD::FSIN , MVT::f64, Expand);
368    setOperationAction(ISD::FCOS , MVT::f64, Expand);
369    setOperationAction(ISD::FSIN , MVT::f32, Expand);
370    setOperationAction(ISD::FCOS , MVT::f32, Expand);
371
372    // Expand FP immediates into loads from the stack, except for the special
373    // cases we handle.
374    addLegalFPImmediate(APFloat(+0.0)); // xorpd
375    addLegalFPImmediate(APFloat(+0.0f)); // xorps
376
377    // Floating truncations from f80 and extensions to f80 go through memory.
378    // If optimizing, we lie about this though and handle it in
379    // InstructionSelectPreprocess so that dagcombine2 can hack on these.
380    if (Fast) {
381      setConvertAction(MVT::f32, MVT::f80, Expand);
382      setConvertAction(MVT::f64, MVT::f80, Expand);
383      setConvertAction(MVT::f80, MVT::f32, Expand);
384      setConvertAction(MVT::f80, MVT::f64, Expand);
385    }
386  } else if (X86ScalarSSEf32) {
387    // Use SSE for f32, x87 for f64.
388    // Set up the FP register classes.
389    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
390    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
391
392    // Use ANDPS to simulate FABS.
393    setOperationAction(ISD::FABS , MVT::f32, Custom);
394
395    // Use XORP to simulate FNEG.
396    setOperationAction(ISD::FNEG , MVT::f32, Custom);
397
398    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
399
400    // Use ANDPS and ORPS to simulate FCOPYSIGN.
401    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
402    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
403
404    // We don't support sin/cos/fmod
405    setOperationAction(ISD::FSIN , MVT::f32, Expand);
406    setOperationAction(ISD::FCOS , MVT::f32, Expand);
407
408    // Special cases we handle for FP constants.
409    addLegalFPImmediate(APFloat(+0.0f)); // xorps
410    addLegalFPImmediate(APFloat(+0.0)); // FLD0
411    addLegalFPImmediate(APFloat(+1.0)); // FLD1
412    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
413    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
414
415    // SSE <-> X87 conversions go through memory.  If optimizing, we lie about
416    // this though and handle it in InstructionSelectPreprocess so that
417    // dagcombine2 can hack on these.
418    if (Fast) {
419      setConvertAction(MVT::f32, MVT::f64, Expand);
420      setConvertAction(MVT::f32, MVT::f80, Expand);
421      setConvertAction(MVT::f80, MVT::f32, Expand);
422      setConvertAction(MVT::f64, MVT::f32, Expand);
423      // And x87->x87 truncations also.
424      setConvertAction(MVT::f80, MVT::f64, Expand);
425    }
426
427    if (!UnsafeFPMath) {
428      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
429      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
430    }
431  } else {
432    // f32 and f64 in x87.
433    // Set up the FP register classes.
434    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
435    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
436
437    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
438    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
439    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
440    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
441
442    // Floating truncations go through memory.  If optimizing, we lie about
443    // this though and handle it in InstructionSelectPreprocess so that
444    // dagcombine2 can hack on these.
445    if (Fast) {
446      setConvertAction(MVT::f80, MVT::f32, Expand);
447      setConvertAction(MVT::f64, MVT::f32, Expand);
448      setConvertAction(MVT::f80, MVT::f64, Expand);
449    }
450
451    if (!UnsafeFPMath) {
452      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
453      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
454    }
455    addLegalFPImmediate(APFloat(+0.0)); // FLD0
456    addLegalFPImmediate(APFloat(+1.0)); // FLD1
457    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
458    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
459    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
460    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
461    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
462    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
463  }
464
465  // Long double always uses X87.
466  addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
467  setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
468  setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
469  {
470    APFloat TmpFlt(+0.0);
471    TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
472    addLegalFPImmediate(TmpFlt);  // FLD0
473    TmpFlt.changeSign();
474    addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
475    APFloat TmpFlt2(+1.0);
476    TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven);
477    addLegalFPImmediate(TmpFlt2);  // FLD1
478    TmpFlt2.changeSign();
479    addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
480  }
481
482  if (!UnsafeFPMath) {
483    setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
484    setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
485  }
486
487  // Always use a library call for pow.
488  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
489  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
490  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
491
492  // First set operation action for all vector types to expand. Then we
493  // will selectively turn on ones that can be effectively codegen'd.
494  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
495       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
496    setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
497    setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
498    setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
499    setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
500    setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
501    setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
502    setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
503    setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
504    setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
505    setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
506    setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
507    setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
508    setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
509    setOperationAction(ISD::VECTOR_SHUFFLE,     (MVT::ValueType)VT, Expand);
510    setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
511    setOperationAction(ISD::INSERT_VECTOR_ELT,  (MVT::ValueType)VT, Expand);
512    setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
513    setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
514    setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
515    setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
516    setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
517    setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
518    setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
519    setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
520    setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
521    setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
522    setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
523    setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
524    setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
525    setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
526    setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
527    setOperationAction(ISD::SHL, (MVT::ValueType)VT, Expand);
528    setOperationAction(ISD::SRA, (MVT::ValueType)VT, Expand);
529    setOperationAction(ISD::SRL, (MVT::ValueType)VT, Expand);
530    setOperationAction(ISD::ROTL, (MVT::ValueType)VT, Expand);
531    setOperationAction(ISD::ROTR, (MVT::ValueType)VT, Expand);
532    setOperationAction(ISD::BSWAP, (MVT::ValueType)VT, Expand);
533    setOperationAction(ISD::VSETCC, (MVT::ValueType)VT, Expand);
534  }
535
536  if (Subtarget->hasMMX()) {
537    addRegisterClass(MVT::v8i8,  X86::VR64RegisterClass);
538    addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
539    addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
540    addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
541
542    // FIXME: add MMX packed arithmetics
543
544    setOperationAction(ISD::ADD,                MVT::v8i8,  Legal);
545    setOperationAction(ISD::ADD,                MVT::v4i16, Legal);
546    setOperationAction(ISD::ADD,                MVT::v2i32, Legal);
547    setOperationAction(ISD::ADD,                MVT::v1i64, Legal);
548
549    setOperationAction(ISD::SUB,                MVT::v8i8,  Legal);
550    setOperationAction(ISD::SUB,                MVT::v4i16, Legal);
551    setOperationAction(ISD::SUB,                MVT::v2i32, Legal);
552    setOperationAction(ISD::SUB,                MVT::v1i64, Legal);
553
554    setOperationAction(ISD::MULHS,              MVT::v4i16, Legal);
555    setOperationAction(ISD::MUL,                MVT::v4i16, Legal);
556
557    setOperationAction(ISD::AND,                MVT::v8i8,  Promote);
558    AddPromotedToType (ISD::AND,                MVT::v8i8,  MVT::v1i64);
559    setOperationAction(ISD::AND,                MVT::v4i16, Promote);
560    AddPromotedToType (ISD::AND,                MVT::v4i16, MVT::v1i64);
561    setOperationAction(ISD::AND,                MVT::v2i32, Promote);
562    AddPromotedToType (ISD::AND,                MVT::v2i32, MVT::v1i64);
563    setOperationAction(ISD::AND,                MVT::v1i64, Legal);
564
565    setOperationAction(ISD::OR,                 MVT::v8i8,  Promote);
566    AddPromotedToType (ISD::OR,                 MVT::v8i8,  MVT::v1i64);
567    setOperationAction(ISD::OR,                 MVT::v4i16, Promote);
568    AddPromotedToType (ISD::OR,                 MVT::v4i16, MVT::v1i64);
569    setOperationAction(ISD::OR,                 MVT::v2i32, Promote);
570    AddPromotedToType (ISD::OR,                 MVT::v2i32, MVT::v1i64);
571    setOperationAction(ISD::OR,                 MVT::v1i64, Legal);
572
573    setOperationAction(ISD::XOR,                MVT::v8i8,  Promote);
574    AddPromotedToType (ISD::XOR,                MVT::v8i8,  MVT::v1i64);
575    setOperationAction(ISD::XOR,                MVT::v4i16, Promote);
576    AddPromotedToType (ISD::XOR,                MVT::v4i16, MVT::v1i64);
577    setOperationAction(ISD::XOR,                MVT::v2i32, Promote);
578    AddPromotedToType (ISD::XOR,                MVT::v2i32, MVT::v1i64);
579    setOperationAction(ISD::XOR,                MVT::v1i64, Legal);
580
581    setOperationAction(ISD::LOAD,               MVT::v8i8,  Promote);
582    AddPromotedToType (ISD::LOAD,               MVT::v8i8,  MVT::v1i64);
583    setOperationAction(ISD::LOAD,               MVT::v4i16, Promote);
584    AddPromotedToType (ISD::LOAD,               MVT::v4i16, MVT::v1i64);
585    setOperationAction(ISD::LOAD,               MVT::v2i32, Promote);
586    AddPromotedToType (ISD::LOAD,               MVT::v2i32, MVT::v1i64);
587    setOperationAction(ISD::LOAD,               MVT::v1i64, Legal);
588
589    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8i8,  Custom);
590    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i16, Custom);
591    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i32, Custom);
592    setOperationAction(ISD::BUILD_VECTOR,       MVT::v1i64, Custom);
593
594    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8i8,  Custom);
595    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i16, Custom);
596    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i32, Custom);
597    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v1i64, Custom);
598
599    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Custom);
600    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Custom);
601    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Custom);
602  }
603
604  if (Subtarget->hasSSE1()) {
605    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
606
607    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
608    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
609    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
610    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
611    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
612    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
613    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
614    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
615    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
616    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
617    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
618    setOperationAction(ISD::VSETCC,             MVT::v4f32, Legal);
619  }
620
621  if (Subtarget->hasSSE2()) {
622    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
623    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
624    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
625    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
626    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
627
628    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
629    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
630    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
631    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
632    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
633    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
634    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
635    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
636    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
637    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
638    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
639    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
640    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
641    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
642    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
643
644    setOperationAction(ISD::VSETCC,             MVT::v2f64, Legal);
645    setOperationAction(ISD::VSETCC,             MVT::v16i8, Legal);
646    setOperationAction(ISD::VSETCC,             MVT::v8i16, Legal);
647    setOperationAction(ISD::VSETCC,             MVT::v4i32, Legal);
648    setOperationAction(ISD::VSETCC,             MVT::v2i64, Legal);
649
650    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
651    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
652    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
653    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
654    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
655
656    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
657    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
658      // Do not attempt to custom lower non-power-of-2 vectors
659      if (!isPowerOf2_32(MVT::getVectorNumElements(VT)))
660        continue;
661      setOperationAction(ISD::BUILD_VECTOR,        (MVT::ValueType)VT, Custom);
662      setOperationAction(ISD::VECTOR_SHUFFLE,      (MVT::ValueType)VT, Custom);
663      setOperationAction(ISD::EXTRACT_VECTOR_ELT,  (MVT::ValueType)VT, Custom);
664    }
665    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
666    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
667    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
668    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
669    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
670    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
671    if (Subtarget->is64Bit()) {
672      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
673      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
674    }
675
676    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
677    for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
678      setOperationAction(ISD::AND,    (MVT::ValueType)VT, Promote);
679      AddPromotedToType (ISD::AND,    (MVT::ValueType)VT, MVT::v2i64);
680      setOperationAction(ISD::OR,     (MVT::ValueType)VT, Promote);
681      AddPromotedToType (ISD::OR,     (MVT::ValueType)VT, MVT::v2i64);
682      setOperationAction(ISD::XOR,    (MVT::ValueType)VT, Promote);
683      AddPromotedToType (ISD::XOR,    (MVT::ValueType)VT, MVT::v2i64);
684      setOperationAction(ISD::LOAD,   (MVT::ValueType)VT, Promote);
685      AddPromotedToType (ISD::LOAD,   (MVT::ValueType)VT, MVT::v2i64);
686      setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
687      AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
688    }
689
690    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
691
692    // Custom lower v2i64 and v2f64 selects.
693    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
694    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
695    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
696    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
697
698  }
699
700  if (Subtarget->hasSSE41()) {
701    // FIXME: Do we need to handle scalar-to-vector here?
702    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
703
704    // i8 and i16 vectors are custom , because the source register and source
705    // source memory operand types are not the same width.  f32 vectors are
706    // custom since the immediate controlling the insert encodes additional
707    // information.
708    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
709    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
710    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Legal);
711    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
712
713    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
714    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
715    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
716    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
717
718    if (Subtarget->is64Bit()) {
719      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
720      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
721    }
722  }
723
724  // We want to custom lower some of our intrinsics.
725  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
726
727  // We have target-specific dag combine patterns for the following nodes:
728  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
729  setTargetDAGCombine(ISD::BUILD_VECTOR);
730  setTargetDAGCombine(ISD::SELECT);
731  setTargetDAGCombine(ISD::STORE);
732
733  computeRegisterProperties();
734
735  // FIXME: These should be based on subtarget info. Plus, the values should
736  // be smaller when we are in optimizing for size mode.
737  maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
738  maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
739  maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
740  allowUnalignedMemoryAccesses = true; // x86 supports it!
741  setPrefLoopAlignment(16);
742}
743
744
745MVT::ValueType
746X86TargetLowering::getSetCCResultType(const SDOperand &) const {
747  return MVT::i8;
748}
749
750
751/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
752/// the desired ByVal argument alignment.
753static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
754  if (MaxAlign == 16)
755    return;
756  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
757    if (VTy->getBitWidth() == 128)
758      MaxAlign = 16;
759  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
760    unsigned EltAlign = 0;
761    getMaxByValAlign(ATy->getElementType(), EltAlign);
762    if (EltAlign > MaxAlign)
763      MaxAlign = EltAlign;
764  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
765    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
766      unsigned EltAlign = 0;
767      getMaxByValAlign(STy->getElementType(i), EltAlign);
768      if (EltAlign > MaxAlign)
769        MaxAlign = EltAlign;
770      if (MaxAlign == 16)
771        break;
772    }
773  }
774  return;
775}
776
777/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
778/// function arguments in the caller parameter area. For X86, aggregates
779/// that contain SSE vectors are placed at 16-byte boundaries while the rest
780/// are at 4-byte boundaries.
781unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
782  if (Subtarget->is64Bit())
783    return getTargetData()->getABITypeAlignment(Ty);
784  unsigned Align = 4;
785  if (Subtarget->hasSSE1())
786    getMaxByValAlign(Ty, Align);
787  return Align;
788}
789
790/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
791/// jumptable.
792SDOperand X86TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
793                                                      SelectionDAG &DAG) const {
794  if (usesGlobalOffsetTable())
795    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
796  if (!Subtarget->isPICStyleRIPRel())
797    return DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy());
798  return Table;
799}
800
801//===----------------------------------------------------------------------===//
802//               Return Value Calling Convention Implementation
803//===----------------------------------------------------------------------===//
804
805#include "X86GenCallingConv.inc"
806
807/// LowerRET - Lower an ISD::RET node.
808SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
809  assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
810
811  SmallVector<CCValAssign, 16> RVLocs;
812  unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
813  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
814  CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
815  CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
816
817  // If this is the first return lowered for this function, add the regs to the
818  // liveout set for the function.
819  if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
820    for (unsigned i = 0; i != RVLocs.size(); ++i)
821      if (RVLocs[i].isRegLoc())
822        DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
823  }
824  SDOperand Chain = Op.getOperand(0);
825
826  // Handle tail call return.
827  Chain = GetPossiblePreceedingTailCall(Chain, X86ISD::TAILCALL);
828  if (Chain.getOpcode() == X86ISD::TAILCALL) {
829    SDOperand TailCall = Chain;
830    SDOperand TargetAddress = TailCall.getOperand(1);
831    SDOperand StackAdjustment = TailCall.getOperand(2);
832    assert(((TargetAddress.getOpcode() == ISD::Register &&
833               (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
834                cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
835              TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
836              TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
837             "Expecting an global address, external symbol, or register");
838    assert(StackAdjustment.getOpcode() == ISD::Constant &&
839           "Expecting a const value");
840
841    SmallVector<SDOperand,8> Operands;
842    Operands.push_back(Chain.getOperand(0));
843    Operands.push_back(TargetAddress);
844    Operands.push_back(StackAdjustment);
845    // Copy registers used by the call. Last operand is a flag so it is not
846    // copied.
847    for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
848      Operands.push_back(Chain.getOperand(i));
849    }
850    return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
851                       Operands.size());
852  }
853
854  // Regular return.
855  SDOperand Flag;
856
857  SmallVector<SDOperand, 6> RetOps;
858  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
859  // Operand #1 = Bytes To Pop
860  RetOps.push_back(DAG.getConstant(getBytesToPopOnReturn(), MVT::i16));
861
862  // Copy the result values into the output registers.
863  for (unsigned i = 0; i != RVLocs.size(); ++i) {
864    CCValAssign &VA = RVLocs[i];
865    assert(VA.isRegLoc() && "Can only return in registers!");
866    SDOperand ValToCopy = Op.getOperand(i*2+1);
867
868    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
869    // the RET instruction and handled by the FP Stackifier.
870    if (RVLocs[i].getLocReg() == X86::ST0 ||
871        RVLocs[i].getLocReg() == X86::ST1) {
872      // If this is a copy from an xmm register to ST(0), use an FPExtend to
873      // change the value to the FP stack register class.
874      if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT()))
875        ValToCopy = DAG.getNode(ISD::FP_EXTEND, MVT::f80, ValToCopy);
876      RetOps.push_back(ValToCopy);
877      // Don't emit a copytoreg.
878      continue;
879    }
880
881    Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), ValToCopy, Flag);
882    Flag = Chain.getValue(1);
883  }
884
885  // The x86-64 ABI for returning structs by value requires that we copy
886  // the sret argument into %rax for the return. We saved the argument into
887  // a virtual register in the entry block, so now we copy the value out
888  // and into %rax.
889  if (Subtarget->is64Bit() &&
890      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
891    MachineFunction &MF = DAG.getMachineFunction();
892    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
893    unsigned Reg = FuncInfo->getSRetReturnReg();
894    if (!Reg) {
895      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
896      FuncInfo->setSRetReturnReg(Reg);
897    }
898    SDOperand Val = DAG.getCopyFromReg(Chain, Reg, getPointerTy());
899
900    Chain = DAG.getCopyToReg(Chain, X86::RAX, Val, Flag);
901    Flag = Chain.getValue(1);
902  }
903
904  RetOps[0] = Chain;  // Update chain.
905
906  // Add the flag if we have it.
907  if (Flag.Val)
908    RetOps.push_back(Flag);
909
910  return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, &RetOps[0], RetOps.size());
911}
912
913
914/// LowerCallResult - Lower the result values of an ISD::CALL into the
915/// appropriate copies out of appropriate physical registers.  This assumes that
916/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
917/// being lowered.  The returns a SDNode with the same number of values as the
918/// ISD::CALL.
919SDNode *X86TargetLowering::
920LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
921                unsigned CallingConv, SelectionDAG &DAG) {
922
923  // Assign locations to each value returned by this call.
924  SmallVector<CCValAssign, 16> RVLocs;
925  bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
926  CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
927  CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
928
929  SmallVector<SDOperand, 8> ResultVals;
930
931  // Copy all of the result registers out of their specified physreg.
932  for (unsigned i = 0; i != RVLocs.size(); ++i) {
933    MVT::ValueType CopyVT = RVLocs[i].getValVT();
934
935    // If this is a call to a function that returns an fp value on the floating
936    // point stack, but where we prefer to use the value in xmm registers, copy
937    // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
938    if (RVLocs[i].getLocReg() == X86::ST0 &&
939        isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
940      CopyVT = MVT::f80;
941    }
942
943    Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
944                               CopyVT, InFlag).getValue(1);
945    SDOperand Val = Chain.getValue(0);
946    InFlag = Chain.getValue(2);
947
948    if (CopyVT != RVLocs[i].getValVT()) {
949      // Round the F80 the right size, which also moves to the appropriate xmm
950      // register.
951      Val = DAG.getNode(ISD::FP_ROUND, RVLocs[i].getValVT(), Val,
952                        // This truncation won't change the value.
953                        DAG.getIntPtrConstant(1));
954    }
955
956    ResultVals.push_back(Val);
957  }
958
959  // Merge everything together with a MERGE_VALUES node.
960  ResultVals.push_back(Chain);
961  return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
962                     &ResultVals[0], ResultVals.size()).Val;
963}
964
965
966//===----------------------------------------------------------------------===//
967//                C & StdCall & Fast Calling Convention implementation
968//===----------------------------------------------------------------------===//
969//  StdCall calling convention seems to be standard for many Windows' API
970//  routines and around. It differs from C calling convention just a little:
971//  callee should clean up the stack, not caller. Symbols should be also
972//  decorated in some fancy way :) It doesn't support any vector arguments.
973//  For info on fast calling convention see Fast Calling Convention (tail call)
974//  implementation LowerX86_32FastCCCallTo.
975
976/// AddLiveIn - This helper function adds the specified physical register to the
977/// MachineFunction as a live in value.  It also creates a corresponding virtual
978/// register for it.
979static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
980                          const TargetRegisterClass *RC) {
981  assert(RC->contains(PReg) && "Not the correct regclass!");
982  unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
983  MF.getRegInfo().addLiveIn(PReg, VReg);
984  return VReg;
985}
986
987/// CallIsStructReturn - Determines whether a CALL node uses struct return
988/// semantics.
989static bool CallIsStructReturn(SDOperand Op) {
990  unsigned NumOps = (Op.getNumOperands() - 5) / 2;
991  if (!NumOps)
992    return false;
993
994  return cast<ARG_FLAGSSDNode>(Op.getOperand(6))->getArgFlags().isSRet();
995}
996
997/// ArgsAreStructReturn - Determines whether a FORMAL_ARGUMENTS node uses struct
998/// return semantics.
999static bool ArgsAreStructReturn(SDOperand Op) {
1000  unsigned NumArgs = Op.Val->getNumValues() - 1;
1001  if (!NumArgs)
1002    return false;
1003
1004  return cast<ARG_FLAGSSDNode>(Op.getOperand(3))->getArgFlags().isSRet();
1005}
1006
1007/// IsCalleePop - Determines whether a CALL or FORMAL_ARGUMENTS node requires
1008/// the callee to pop its own arguments. Callee pop is necessary to support tail
1009/// calls.
1010bool X86TargetLowering::IsCalleePop(SDOperand Op) {
1011  bool IsVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1012  if (IsVarArg)
1013    return false;
1014
1015  switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1016  default:
1017    return false;
1018  case CallingConv::X86_StdCall:
1019    return !Subtarget->is64Bit();
1020  case CallingConv::X86_FastCall:
1021    return !Subtarget->is64Bit();
1022  case CallingConv::Fast:
1023    return PerformTailCallOpt;
1024  }
1025}
1026
1027/// CCAssignFnForNode - Selects the correct CCAssignFn for a CALL or
1028/// FORMAL_ARGUMENTS node.
1029CCAssignFn *X86TargetLowering::CCAssignFnForNode(SDOperand Op) const {
1030  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1031
1032  if (Subtarget->is64Bit()) {
1033    if (Subtarget->isTargetWin64())
1034      return CC_X86_Win64_C;
1035    else {
1036      if (CC == CallingConv::Fast && PerformTailCallOpt)
1037        return CC_X86_64_TailCall;
1038      else
1039        return CC_X86_64_C;
1040    }
1041  }
1042
1043  if (CC == CallingConv::X86_FastCall)
1044    return CC_X86_32_FastCall;
1045  else if (CC == CallingConv::Fast && PerformTailCallOpt)
1046    return CC_X86_32_TailCall;
1047  else
1048    return CC_X86_32_C;
1049}
1050
1051/// NameDecorationForFORMAL_ARGUMENTS - Selects the appropriate decoration to
1052/// apply to a MachineFunction containing a given FORMAL_ARGUMENTS node.
1053NameDecorationStyle
1054X86TargetLowering::NameDecorationForFORMAL_ARGUMENTS(SDOperand Op) {
1055  unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1056  if (CC == CallingConv::X86_FastCall)
1057    return FastCall;
1058  else if (CC == CallingConv::X86_StdCall)
1059    return StdCall;
1060  return None;
1061}
1062
1063
1064/// CallRequiresGOTInRegister - Check whether the call requires the GOT pointer
1065/// in a register before calling.
1066bool X86TargetLowering::CallRequiresGOTPtrInReg(bool Is64Bit, bool IsTailCall) {
1067  return !IsTailCall && !Is64Bit &&
1068    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1069    Subtarget->isPICStyleGOT();
1070}
1071
1072/// CallRequiresFnAddressInReg - Check whether the call requires the function
1073/// address to be loaded in a register.
1074bool
1075X86TargetLowering::CallRequiresFnAddressInReg(bool Is64Bit, bool IsTailCall) {
1076  return !Is64Bit && IsTailCall &&
1077    getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1078    Subtarget->isPICStyleGOT();
1079}
1080
1081/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1082/// by "Src" to address "Dst" with size and alignment information specified by
1083/// the specific parameter attribute. The copy will be passed as a byval
1084/// function parameter.
1085static SDOperand
1086CreateCopyOfByValArgument(SDOperand Src, SDOperand Dst, SDOperand Chain,
1087                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG) {
1088  SDOperand SizeNode     = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1089  return DAG.getMemcpy(Chain, Dst, Src, SizeNode, Flags.getByValAlign(),
1090                       /*AlwaysInline=*/true, NULL, 0, NULL, 0);
1091}
1092
1093SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
1094                                              const CCValAssign &VA,
1095                                              MachineFrameInfo *MFI,
1096                                              unsigned CC,
1097                                              SDOperand Root, unsigned i) {
1098  // Create the nodes corresponding to a load from this parameter slot.
1099  ISD::ArgFlagsTy Flags =
1100    cast<ARG_FLAGSSDNode>(Op.getOperand(3 + i))->getArgFlags();
1101  bool AlwaysUseMutable = (CC==CallingConv::Fast) && PerformTailCallOpt;
1102  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1103
1104  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1105  // changed with more analysis.
1106  // In case of tail call optimization mark all arguments mutable. Since they
1107  // could be overwritten by lowering of arguments in case of a tail call.
1108  int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
1109                                  VA.getLocMemOffset(), isImmutable);
1110  SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
1111  if (Flags.isByVal())
1112    return FIN;
1113  return DAG.getLoad(VA.getValVT(), Root, FIN,
1114                     PseudoSourceValue::getFixedStack(), FI);
1115}
1116
1117SDOperand
1118X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
1119  MachineFunction &MF = DAG.getMachineFunction();
1120  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1121
1122  const Function* Fn = MF.getFunction();
1123  if (Fn->hasExternalLinkage() &&
1124      Subtarget->isTargetCygMing() &&
1125      Fn->getName() == "main")
1126    FuncInfo->setForceFramePointer(true);
1127
1128  // Decorate the function name.
1129  FuncInfo->setDecorationStyle(NameDecorationForFORMAL_ARGUMENTS(Op));
1130
1131  MachineFrameInfo *MFI = MF.getFrameInfo();
1132  SDOperand Root = Op.getOperand(0);
1133  bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1134  unsigned CC = MF.getFunction()->getCallingConv();
1135  bool Is64Bit = Subtarget->is64Bit();
1136  bool IsWin64 = Subtarget->isTargetWin64();
1137
1138  assert(!(isVarArg && CC == CallingConv::Fast) &&
1139         "Var args not supported with calling convention fastcc");
1140
1141  // Assign locations to all of the incoming arguments.
1142  SmallVector<CCValAssign, 16> ArgLocs;
1143  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1144  CCInfo.AnalyzeFormalArguments(Op.Val, CCAssignFnForNode(Op));
1145
1146  SmallVector<SDOperand, 8> ArgValues;
1147  unsigned LastVal = ~0U;
1148  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1149    CCValAssign &VA = ArgLocs[i];
1150    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1151    // places.
1152    assert(VA.getValNo() != LastVal &&
1153           "Don't support value assigned to multiple locs yet");
1154    LastVal = VA.getValNo();
1155
1156    if (VA.isRegLoc()) {
1157      MVT::ValueType RegVT = VA.getLocVT();
1158      TargetRegisterClass *RC;
1159      if (RegVT == MVT::i32)
1160        RC = X86::GR32RegisterClass;
1161      else if (Is64Bit && RegVT == MVT::i64)
1162        RC = X86::GR64RegisterClass;
1163      else if (RegVT == MVT::f32)
1164        RC = X86::FR32RegisterClass;
1165      else if (RegVT == MVT::f64)
1166        RC = X86::FR64RegisterClass;
1167      else if (MVT::isVector(RegVT) && MVT::getSizeInBits(RegVT) == 128)
1168        RC = X86::VR128RegisterClass;
1169      else if (MVT::isVector(RegVT)) {
1170        assert(MVT::getSizeInBits(RegVT) == 64);
1171        if (!Is64Bit)
1172          RC = X86::VR64RegisterClass;     // MMX values are passed in MMXs.
1173        else {
1174          // Darwin calling convention passes MMX values in either GPRs or
1175          // XMMs in x86-64. Other targets pass them in memory.
1176          if (RegVT != MVT::v1i64 && Subtarget->hasSSE2()) {
1177            RC = X86::VR128RegisterClass;  // MMX values are passed in XMMs.
1178            RegVT = MVT::v2i64;
1179          } else {
1180            RC = X86::GR64RegisterClass;   // v1i64 values are passed in GPRs.
1181            RegVT = MVT::i64;
1182          }
1183        }
1184      } else {
1185        assert(0 && "Unknown argument type!");
1186      }
1187
1188      unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1189      SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1190
1191      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1192      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1193      // right size.
1194      if (VA.getLocInfo() == CCValAssign::SExt)
1195        ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1196                               DAG.getValueType(VA.getValVT()));
1197      else if (VA.getLocInfo() == CCValAssign::ZExt)
1198        ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1199                               DAG.getValueType(VA.getValVT()));
1200
1201      if (VA.getLocInfo() != CCValAssign::Full)
1202        ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1203
1204      // Handle MMX values passed in GPRs.
1205      if (Is64Bit && RegVT != VA.getLocVT()) {
1206        if (MVT::getSizeInBits(RegVT) == 64 && RC == X86::GR64RegisterClass)
1207          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1208        else if (RC == X86::VR128RegisterClass) {
1209          ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i64, ArgValue,
1210                                 DAG.getConstant(0, MVT::i64));
1211          ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1212        }
1213      }
1214
1215      ArgValues.push_back(ArgValue);
1216    } else {
1217      assert(VA.isMemLoc());
1218      ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, CC, Root, i));
1219    }
1220  }
1221
1222  // The x86-64 ABI for returning structs by value requires that we copy
1223  // the sret argument into %rax for the return. Save the argument into
1224  // a virtual register so that we can access it from the return points.
1225  if (Is64Bit && DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1226    MachineFunction &MF = DAG.getMachineFunction();
1227    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1228    unsigned Reg = FuncInfo->getSRetReturnReg();
1229    if (!Reg) {
1230      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1231      FuncInfo->setSRetReturnReg(Reg);
1232    }
1233    SDOperand Copy = DAG.getCopyToReg(DAG.getEntryNode(), Reg, ArgValues[0]);
1234    Root = DAG.getNode(ISD::TokenFactor, MVT::Other, Copy, Root);
1235  }
1236
1237  unsigned StackSize = CCInfo.getNextStackOffset();
1238  // align stack specially for tail calls
1239  if (CC == CallingConv::Fast)
1240    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1241
1242  // If the function takes variable number of arguments, make a frame index for
1243  // the start of the first vararg value... for expansion of llvm.va_start.
1244  if (isVarArg) {
1245    if (Is64Bit || CC != CallingConv::X86_FastCall) {
1246      VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1247    }
1248    if (Is64Bit) {
1249      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1250
1251      // FIXME: We should really autogenerate these arrays
1252      static const unsigned GPR64ArgRegsWin64[] = {
1253        X86::RCX, X86::RDX, X86::R8,  X86::R9
1254      };
1255      static const unsigned XMMArgRegsWin64[] = {
1256        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
1257      };
1258      static const unsigned GPR64ArgRegs64Bit[] = {
1259        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1260      };
1261      static const unsigned XMMArgRegs64Bit[] = {
1262        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1263        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1264      };
1265      const unsigned *GPR64ArgRegs, *XMMArgRegs;
1266
1267      if (IsWin64) {
1268        TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
1269        GPR64ArgRegs = GPR64ArgRegsWin64;
1270        XMMArgRegs = XMMArgRegsWin64;
1271      } else {
1272        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1273        GPR64ArgRegs = GPR64ArgRegs64Bit;
1274        XMMArgRegs = XMMArgRegs64Bit;
1275      }
1276      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1277                                                       TotalNumIntRegs);
1278      unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
1279                                                       TotalNumXMMRegs);
1280
1281      // For X86-64, if there are vararg parameters that are passed via
1282      // registers, then we must store them to their spots on the stack so they
1283      // may be loaded by deferencing the result of va_next.
1284      VarArgsGPOffset = NumIntRegs * 8;
1285      VarArgsFPOffset = TotalNumIntRegs * 8 + NumXMMRegs * 16;
1286      RegSaveFrameIndex = MFI->CreateStackObject(TotalNumIntRegs * 8 +
1287                                                 TotalNumXMMRegs * 16, 16);
1288
1289      // Store the integer parameter registers.
1290      SmallVector<SDOperand, 8> MemOps;
1291      SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1292      SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1293                                  DAG.getIntPtrConstant(VarArgsGPOffset));
1294      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1295        unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1296                                  X86::GR64RegisterClass);
1297        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1298        SDOperand Store =
1299          DAG.getStore(Val.getValue(1), Val, FIN,
1300                       PseudoSourceValue::getFixedStack(),
1301                       RegSaveFrameIndex);
1302        MemOps.push_back(Store);
1303        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1304                          DAG.getIntPtrConstant(8));
1305      }
1306
1307      // Now store the XMM (fp + vector) parameter registers.
1308      FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1309                        DAG.getIntPtrConstant(VarArgsFPOffset));
1310      for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1311        unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1312                                  X86::VR128RegisterClass);
1313        SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1314        SDOperand Store =
1315          DAG.getStore(Val.getValue(1), Val, FIN,
1316                       PseudoSourceValue::getFixedStack(),
1317                       RegSaveFrameIndex);
1318        MemOps.push_back(Store);
1319        FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1320                          DAG.getIntPtrConstant(16));
1321      }
1322      if (!MemOps.empty())
1323          Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1324                             &MemOps[0], MemOps.size());
1325    }
1326  }
1327
1328  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1329  // arguments and the arguments after the retaddr has been pushed are
1330  // aligned.
1331  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1332      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1333      (StackSize & 7) == 0)
1334    StackSize += 4;
1335
1336  ArgValues.push_back(Root);
1337
1338  // Some CCs need callee pop.
1339  if (IsCalleePop(Op)) {
1340    BytesToPopOnReturn  = StackSize; // Callee pops everything.
1341    BytesCallerReserves = 0;
1342  } else {
1343    BytesToPopOnReturn  = 0; // Callee pops nothing.
1344    // If this is an sret function, the return should pop the hidden pointer.
1345    if (!Is64Bit && ArgsAreStructReturn(Op))
1346      BytesToPopOnReturn = 4;
1347    BytesCallerReserves = StackSize;
1348  }
1349
1350  if (!Is64Bit) {
1351    RegSaveFrameIndex = 0xAAAAAAA;   // RegSaveFrameIndex is X86-64 only.
1352    if (CC == CallingConv::X86_FastCall)
1353      VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs.
1354  }
1355
1356  FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1357
1358  // Return the new list of results.
1359  return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1360                     &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1361}
1362
1363SDOperand
1364X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1365                                    const SDOperand &StackPtr,
1366                                    const CCValAssign &VA,
1367                                    SDOperand Chain,
1368                                    SDOperand Arg) {
1369  unsigned LocMemOffset = VA.getLocMemOffset();
1370  SDOperand PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1371  PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1372  ISD::ArgFlagsTy Flags =
1373    cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->getArgFlags();
1374  if (Flags.isByVal()) {
1375    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG);
1376  }
1377  return DAG.getStore(Chain, Arg, PtrOff,
1378                      PseudoSourceValue::getStack(), LocMemOffset);
1379}
1380
1381/// EmitTailCallLoadRetAddr - Emit a load of return adress if tail call
1382/// optimization is performed and it is required.
1383SDOperand
1384X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1385                                           SDOperand &OutRetAddr,
1386                                           SDOperand Chain,
1387                                           bool IsTailCall,
1388                                           bool Is64Bit,
1389                                           int FPDiff) {
1390  if (!IsTailCall || FPDiff==0) return Chain;
1391
1392  // Adjust the Return address stack slot.
1393  MVT::ValueType VT = getPointerTy();
1394  OutRetAddr = getReturnAddressFrameIndex(DAG);
1395  // Load the "old" Return address.
1396  OutRetAddr = DAG.getLoad(VT, Chain,OutRetAddr, NULL, 0);
1397  return SDOperand(OutRetAddr.Val, 1);
1398}
1399
1400/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1401/// optimization is performed and it is required (FPDiff!=0).
1402static SDOperand
1403EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1404                         SDOperand Chain, SDOperand RetAddrFrIdx,
1405                         bool Is64Bit, int FPDiff) {
1406  // Store the return address to the appropriate stack slot.
1407  if (!FPDiff) return Chain;
1408  // Calculate the new stack slot for the return address.
1409  int SlotSize = Is64Bit ? 8 : 4;
1410  int NewReturnAddrFI =
1411    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
1412  MVT::ValueType VT = Is64Bit ? MVT::i64 : MVT::i32;
1413  SDOperand NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1414  Chain = DAG.getStore(Chain, RetAddrFrIdx, NewRetAddrFrIdx,
1415                       PseudoSourceValue::getFixedStack(), NewReturnAddrFI);
1416  return Chain;
1417}
1418
1419SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
1420  MachineFunction &MF = DAG.getMachineFunction();
1421  SDOperand Chain     = Op.getOperand(0);
1422  unsigned CC         = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
1423  bool isVarArg       = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1424  bool IsTailCall     = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0
1425                        && CC == CallingConv::Fast && PerformTailCallOpt;
1426  SDOperand Callee    = Op.getOperand(4);
1427  bool Is64Bit        = Subtarget->is64Bit();
1428  bool IsStructRet    = CallIsStructReturn(Op);
1429
1430  assert(!(isVarArg && CC == CallingConv::Fast) &&
1431         "Var args not supported with calling convention fastcc");
1432
1433  // Analyze operands of the call, assigning locations to each operand.
1434  SmallVector<CCValAssign, 16> ArgLocs;
1435  CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1436  CCInfo.AnalyzeCallOperands(Op.Val, CCAssignFnForNode(Op));
1437
1438  // Get a count of how many bytes are to be pushed on the stack.
1439  unsigned NumBytes = CCInfo.getNextStackOffset();
1440  if (CC == CallingConv::Fast)
1441    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1442
1443  // Make sure the instruction takes 8n+4 bytes to make sure the start of the
1444  // arguments and the arguments after the retaddr has been pushed are aligned.
1445  if (!Is64Bit && CC == CallingConv::X86_FastCall &&
1446      !Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows() &&
1447      (NumBytes & 7) == 0)
1448    NumBytes += 4;
1449
1450  int FPDiff = 0;
1451  if (IsTailCall) {
1452    // Lower arguments at fp - stackoffset + fpdiff.
1453    unsigned NumBytesCallerPushed =
1454      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1455    FPDiff = NumBytesCallerPushed - NumBytes;
1456
1457    // Set the delta of movement of the returnaddr stackslot.
1458    // But only set if delta is greater than previous delta.
1459    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1460      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1461  }
1462
1463  Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes));
1464
1465  SDOperand RetAddrFrIdx;
1466  // Load return adress for tail calls.
1467  Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, IsTailCall, Is64Bit,
1468                                  FPDiff);
1469
1470  SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1471  SmallVector<SDOperand, 8> MemOpChains;
1472  SDOperand StackPtr;
1473
1474  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1475  // of tail call optimization arguments are handle later.
1476  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1477    CCValAssign &VA = ArgLocs[i];
1478    SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1479    bool isByVal = cast<ARG_FLAGSSDNode>(Op.getOperand(6+2*VA.getValNo()))->
1480      getArgFlags().isByVal();
1481
1482    // Promote the value if needed.
1483    switch (VA.getLocInfo()) {
1484    default: assert(0 && "Unknown loc info!");
1485    case CCValAssign::Full: break;
1486    case CCValAssign::SExt:
1487      Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1488      break;
1489    case CCValAssign::ZExt:
1490      Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1491      break;
1492    case CCValAssign::AExt:
1493      Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1494      break;
1495    }
1496
1497    if (VA.isRegLoc()) {
1498      if (Is64Bit) {
1499        MVT::ValueType RegVT = VA.getLocVT();
1500        if (MVT::isVector(RegVT) && MVT::getSizeInBits(RegVT) == 64)
1501          switch (VA.getLocReg()) {
1502          default:
1503            break;
1504          case X86::RDI: case X86::RSI: case X86::RDX: case X86::RCX:
1505          case X86::R8: {
1506            // Special case: passing MMX values in GPR registers.
1507            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1508            break;
1509          }
1510          case X86::XMM0: case X86::XMM1: case X86::XMM2: case X86::XMM3:
1511          case X86::XMM4: case X86::XMM5: case X86::XMM6: case X86::XMM7: {
1512            // Special case: passing MMX values in XMM registers.
1513            Arg = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Arg);
1514            Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Arg);
1515            Arg = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
1516                              DAG.getNode(ISD::UNDEF, MVT::v2i64), Arg,
1517                              getMOVLMask(2, DAG));
1518            break;
1519          }
1520          }
1521      }
1522      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1523    } else {
1524      if (!IsTailCall || (IsTailCall && isByVal)) {
1525        assert(VA.isMemLoc());
1526        if (StackPtr.Val == 0)
1527          StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1528
1529        MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1530                                               Arg));
1531      }
1532    }
1533  }
1534
1535  if (!MemOpChains.empty())
1536    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1537                        &MemOpChains[0], MemOpChains.size());
1538
1539  // Build a sequence of copy-to-reg nodes chained together with token chain
1540  // and flag operands which copy the outgoing args into registers.
1541  SDOperand InFlag;
1542  // Tail call byval lowering might overwrite argument registers so in case of
1543  // tail call optimization the copies to registers are lowered later.
1544  if (!IsTailCall)
1545    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1546      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1547                               InFlag);
1548      InFlag = Chain.getValue(1);
1549    }
1550
1551  // ELF / PIC requires GOT in the EBX register before function calls via PLT
1552  // GOT pointer.
1553  if (CallRequiresGOTPtrInReg(Is64Bit, IsTailCall)) {
1554    Chain = DAG.getCopyToReg(Chain, X86::EBX,
1555                             DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1556                             InFlag);
1557    InFlag = Chain.getValue(1);
1558  }
1559  // If we are tail calling and generating PIC/GOT style code load the address
1560  // of the callee into ecx. The value in ecx is used as target of the tail
1561  // jump. This is done to circumvent the ebx/callee-saved problem for tail
1562  // calls on PIC/GOT architectures. Normally we would just put the address of
1563  // GOT into ebx and then call target@PLT. But for tail callss ebx would be
1564  // restored (since ebx is callee saved) before jumping to the target@PLT.
1565  if (CallRequiresFnAddressInReg(Is64Bit, IsTailCall)) {
1566    // Note: The actual moving to ecx is done further down.
1567    GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1568    if (G &&  !G->getGlobal()->hasHiddenVisibility() &&
1569        !G->getGlobal()->hasProtectedVisibility())
1570      Callee =  LowerGlobalAddress(Callee, DAG);
1571    else if (isa<ExternalSymbolSDNode>(Callee))
1572      Callee = LowerExternalSymbol(Callee,DAG);
1573  }
1574
1575  if (Is64Bit && isVarArg) {
1576    // From AMD64 ABI document:
1577    // For calls that may call functions that use varargs or stdargs
1578    // (prototype-less calls or calls to functions containing ellipsis (...) in
1579    // the declaration) %al is used as hidden argument to specify the number
1580    // of SSE registers used. The contents of %al do not need to match exactly
1581    // the number of registers, but must be an ubound on the number of SSE
1582    // registers used and is in the range 0 - 8 inclusive.
1583
1584    // FIXME: Verify this on Win64
1585    // Count the number of XMM registers allocated.
1586    static const unsigned XMMArgRegs[] = {
1587      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1588      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1589    };
1590    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1591
1592    Chain = DAG.getCopyToReg(Chain, X86::AL,
1593                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1594    InFlag = Chain.getValue(1);
1595  }
1596
1597
1598  // For tail calls lower the arguments to the 'real' stack slot.
1599  if (IsTailCall) {
1600    SmallVector<SDOperand, 8> MemOpChains2;
1601    SDOperand FIN;
1602    int FI = 0;
1603    // Do not flag preceeding copytoreg stuff together with the following stuff.
1604    InFlag = SDOperand();
1605    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1606      CCValAssign &VA = ArgLocs[i];
1607      if (!VA.isRegLoc()) {
1608        assert(VA.isMemLoc());
1609        SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1610        SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1611        ISD::ArgFlagsTy Flags =
1612          cast<ARG_FLAGSSDNode>(FlagsOp)->getArgFlags();
1613        // Create frame index.
1614        int32_t Offset = VA.getLocMemOffset()+FPDiff;
1615        uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1616        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1617        FIN = DAG.getFrameIndex(FI, getPointerTy());
1618
1619        if (Flags.isByVal()) {
1620          // Copy relative to framepointer.
1621          SDOperand Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
1622          if (StackPtr.Val == 0)
1623            StackPtr = DAG.getCopyFromReg(Chain, X86StackPtr, getPointerTy());
1624          Source = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, Source);
1625
1626          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, Chain,
1627                                                           Flags, DAG));
1628        } else {
1629          // Store relative to framepointer.
1630          MemOpChains2.push_back(
1631            DAG.getStore(Chain, Arg, FIN,
1632                         PseudoSourceValue::getFixedStack(), FI));
1633        }
1634      }
1635    }
1636
1637    if (!MemOpChains2.empty())
1638      Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1639                          &MemOpChains2[0], MemOpChains2.size());
1640
1641    // Copy arguments to their registers.
1642    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1643      Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1644                               InFlag);
1645      InFlag = Chain.getValue(1);
1646    }
1647    InFlag =SDOperand();
1648
1649    // Store the return address to the appropriate stack slot.
1650    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
1651                                     FPDiff);
1652  }
1653
1654  // If the callee is a GlobalAddress node (quite common, every direct call is)
1655  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1656  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1657    // We should use extra load for direct calls to dllimported functions in
1658    // non-JIT mode.
1659    if ((IsTailCall || !Is64Bit ||
1660         getTargetMachine().getCodeModel() != CodeModel::Large)
1661        && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1662                                           getTargetMachine(), true))
1663      Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1664  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1665    if (IsTailCall || !Is64Bit ||
1666        getTargetMachine().getCodeModel() != CodeModel::Large)
1667      Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1668  } else if (IsTailCall) {
1669    unsigned Opc = Is64Bit ? X86::R9 : X86::ECX;
1670
1671    Chain = DAG.getCopyToReg(Chain,
1672                             DAG.getRegister(Opc, getPointerTy()),
1673                             Callee,InFlag);
1674    Callee = DAG.getRegister(Opc, getPointerTy());
1675    // Add register as live out.
1676    DAG.getMachineFunction().getRegInfo().addLiveOut(Opc);
1677  }
1678
1679  // Returns a chain & a flag for retval copy to use.
1680  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1681  SmallVector<SDOperand, 8> Ops;
1682
1683  if (IsTailCall) {
1684    Ops.push_back(Chain);
1685    Ops.push_back(DAG.getIntPtrConstant(NumBytes));
1686    Ops.push_back(DAG.getIntPtrConstant(0));
1687    if (InFlag.Val)
1688      Ops.push_back(InFlag);
1689    Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1690    InFlag = Chain.getValue(1);
1691
1692    // Returns a chain & a flag for retval copy to use.
1693    NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1694    Ops.clear();
1695  }
1696
1697  Ops.push_back(Chain);
1698  Ops.push_back(Callee);
1699
1700  if (IsTailCall)
1701    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1702
1703  // Add argument registers to the end of the list so that they are known live
1704  // into the call.
1705  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1706    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1707                                  RegsToPass[i].second.getValueType()));
1708
1709  // Add an implicit use GOT pointer in EBX.
1710  if (!IsTailCall && !Is64Bit &&
1711      getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1712      Subtarget->isPICStyleGOT())
1713    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1714
1715  // Add an implicit use of AL for x86 vararg functions.
1716  if (Is64Bit && isVarArg)
1717    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
1718
1719  if (InFlag.Val)
1720    Ops.push_back(InFlag);
1721
1722  if (IsTailCall) {
1723    assert(InFlag.Val &&
1724           "Flag must be set. Depend on flag being set in LowerRET");
1725    Chain = DAG.getNode(X86ISD::TAILCALL,
1726                        Op.Val->getVTList(), &Ops[0], Ops.size());
1727
1728    return SDOperand(Chain.Val, Op.ResNo);
1729  }
1730
1731  Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
1732  InFlag = Chain.getValue(1);
1733
1734  // Create the CALLSEQ_END node.
1735  unsigned NumBytesForCalleeToPush;
1736  if (IsCalleePop(Op))
1737    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
1738  else if (!Is64Bit && IsStructRet)
1739    // If this is is a call to a struct-return function, the callee
1740    // pops the hidden struct pointer, so we have to push it back.
1741    // This is common for Darwin/X86, Linux & Mingw32 targets.
1742    NumBytesForCalleeToPush = 4;
1743  else
1744    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
1745
1746  // Returns a flag for retval copy to use.
1747  Chain = DAG.getCALLSEQ_END(Chain,
1748                             DAG.getIntPtrConstant(NumBytes),
1749                             DAG.getIntPtrConstant(NumBytesForCalleeToPush),
1750                             InFlag);
1751  InFlag = Chain.getValue(1);
1752
1753  // Handle result values, copying them out of physregs into vregs that we
1754  // return.
1755  return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1756}
1757
1758
1759//===----------------------------------------------------------------------===//
1760//                Fast Calling Convention (tail call) implementation
1761//===----------------------------------------------------------------------===//
1762
1763//  Like std call, callee cleans arguments, convention except that ECX is
1764//  reserved for storing the tail called function address. Only 2 registers are
1765//  free for argument passing (inreg). Tail call optimization is performed
1766//  provided:
1767//                * tailcallopt is enabled
1768//                * caller/callee are fastcc
1769//  On X86_64 architecture with GOT-style position independent code only local
1770//  (within module) calls are supported at the moment.
1771//  To keep the stack aligned according to platform abi the function
1772//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
1773//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
1774//  If a tail called function callee has more arguments than the caller the
1775//  caller needs to make sure that there is room to move the RETADDR to. This is
1776//  achieved by reserving an area the size of the argument delta right after the
1777//  original REtADDR, but before the saved framepointer or the spilled registers
1778//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1779//  stack layout:
1780//    arg1
1781//    arg2
1782//    RETADDR
1783//    [ new RETADDR
1784//      move area ]
1785//    (possible EBP)
1786//    ESI
1787//    EDI
1788//    local1 ..
1789
1790/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1791/// for a 16 byte align requirement.
1792unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1793                                                        SelectionDAG& DAG) {
1794  if (PerformTailCallOpt) {
1795    MachineFunction &MF = DAG.getMachineFunction();
1796    const TargetMachine &TM = MF.getTarget();
1797    const TargetFrameInfo &TFI = *TM.getFrameInfo();
1798    unsigned StackAlignment = TFI.getStackAlignment();
1799    uint64_t AlignMask = StackAlignment - 1;
1800    int64_t Offset = StackSize;
1801    unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1802    if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1803      // Number smaller than 12 so just add the difference.
1804      Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1805    } else {
1806      // Mask out lower bits, add stackalignment once plus the 12 bytes.
1807      Offset = ((~AlignMask) & Offset) + StackAlignment +
1808        (StackAlignment-SlotSize);
1809    }
1810    StackSize = Offset;
1811  }
1812  return StackSize;
1813}
1814
1815/// IsEligibleForTailCallElimination - Check to see whether the next instruction
1816/// following the call is a return. A function is eligible if caller/callee
1817/// calling conventions match, currently only fastcc supports tail calls, and
1818/// the function CALL is immediatly followed by a RET.
1819bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1820                                                      SDOperand Ret,
1821                                                      SelectionDAG& DAG) const {
1822  if (!PerformTailCallOpt)
1823    return false;
1824
1825  if (CheckTailCallReturnConstraints(Call, Ret)) {
1826    MachineFunction &MF = DAG.getMachineFunction();
1827    unsigned CallerCC = MF.getFunction()->getCallingConv();
1828    unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1829    if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1830      SDOperand Callee = Call.getOperand(4);
1831      // On x86/32Bit PIC/GOT  tail calls are supported.
1832      if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1833          !Subtarget->isPICStyleGOT()|| !Subtarget->is64Bit())
1834        return true;
1835
1836      // Can only do local tail calls (in same module, hidden or protected) on
1837      // x86_64 PIC/GOT at the moment.
1838      if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1839        return G->getGlobal()->hasHiddenVisibility()
1840            || G->getGlobal()->hasProtectedVisibility();
1841    }
1842  }
1843
1844  return false;
1845}
1846
1847//===----------------------------------------------------------------------===//
1848//                           Other Lowering Hooks
1849//===----------------------------------------------------------------------===//
1850
1851
1852SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
1853  MachineFunction &MF = DAG.getMachineFunction();
1854  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1855  int ReturnAddrIndex = FuncInfo->getRAIndex();
1856
1857  if (ReturnAddrIndex == 0) {
1858    // Set up a frame object for the return address.
1859    if (Subtarget->is64Bit())
1860      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
1861    else
1862      ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
1863
1864    FuncInfo->setRAIndex(ReturnAddrIndex);
1865  }
1866
1867  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
1868}
1869
1870
1871
1872/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
1873/// specific condition code. It returns a false if it cannot do a direct
1874/// translation. X86CC is the translated CondCode.  LHS/RHS are modified as
1875/// needed.
1876static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
1877                           unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
1878                           SelectionDAG &DAG) {
1879  X86CC = X86::COND_INVALID;
1880  if (!isFP) {
1881    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
1882      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
1883        // X > -1   -> X == 0, jump !sign.
1884        RHS = DAG.getConstant(0, RHS.getValueType());
1885        X86CC = X86::COND_NS;
1886        return true;
1887      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
1888        // X < 0   -> X == 0, jump on sign.
1889        X86CC = X86::COND_S;
1890        return true;
1891      } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
1892        // X < 1   -> X <= 0
1893        RHS = DAG.getConstant(0, RHS.getValueType());
1894        X86CC = X86::COND_LE;
1895        return true;
1896      }
1897    }
1898
1899    switch (SetCCOpcode) {
1900    default: break;
1901    case ISD::SETEQ:  X86CC = X86::COND_E;  break;
1902    case ISD::SETGT:  X86CC = X86::COND_G;  break;
1903    case ISD::SETGE:  X86CC = X86::COND_GE; break;
1904    case ISD::SETLT:  X86CC = X86::COND_L;  break;
1905    case ISD::SETLE:  X86CC = X86::COND_LE; break;
1906    case ISD::SETNE:  X86CC = X86::COND_NE; break;
1907    case ISD::SETULT: X86CC = X86::COND_B;  break;
1908    case ISD::SETUGT: X86CC = X86::COND_A;  break;
1909    case ISD::SETULE: X86CC = X86::COND_BE; break;
1910    case ISD::SETUGE: X86CC = X86::COND_AE; break;
1911    }
1912  } else {
1913    // On a floating point condition, the flags are set as follows:
1914    // ZF  PF  CF   op
1915    //  0 | 0 | 0 | X > Y
1916    //  0 | 0 | 1 | X < Y
1917    //  1 | 0 | 0 | X == Y
1918    //  1 | 1 | 1 | unordered
1919    bool Flip = false;
1920    switch (SetCCOpcode) {
1921    default: break;
1922    case ISD::SETUEQ:
1923    case ISD::SETEQ: X86CC = X86::COND_E;  break;
1924    case ISD::SETOLT: Flip = true; // Fallthrough
1925    case ISD::SETOGT:
1926    case ISD::SETGT: X86CC = X86::COND_A;  break;
1927    case ISD::SETOLE: Flip = true; // Fallthrough
1928    case ISD::SETOGE:
1929    case ISD::SETGE: X86CC = X86::COND_AE; break;
1930    case ISD::SETUGT: Flip = true; // Fallthrough
1931    case ISD::SETULT:
1932    case ISD::SETLT: X86CC = X86::COND_B;  break;
1933    case ISD::SETUGE: Flip = true; // Fallthrough
1934    case ISD::SETULE:
1935    case ISD::SETLE: X86CC = X86::COND_BE; break;
1936    case ISD::SETONE:
1937    case ISD::SETNE: X86CC = X86::COND_NE; break;
1938    case ISD::SETUO: X86CC = X86::COND_P;  break;
1939    case ISD::SETO:  X86CC = X86::COND_NP; break;
1940    }
1941    if (Flip)
1942      std::swap(LHS, RHS);
1943  }
1944
1945  return X86CC != X86::COND_INVALID;
1946}
1947
1948/// hasFPCMov - is there a floating point cmov for the specific X86 condition
1949/// code. Current x86 isa includes the following FP cmov instructions:
1950/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
1951static bool hasFPCMov(unsigned X86CC) {
1952  switch (X86CC) {
1953  default:
1954    return false;
1955  case X86::COND_B:
1956  case X86::COND_BE:
1957  case X86::COND_E:
1958  case X86::COND_P:
1959  case X86::COND_A:
1960  case X86::COND_AE:
1961  case X86::COND_NE:
1962  case X86::COND_NP:
1963    return true;
1964  }
1965}
1966
1967/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode.  Return
1968/// true if Op is undef or if its value falls within the specified range (L, H].
1969static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
1970  if (Op.getOpcode() == ISD::UNDEF)
1971    return true;
1972
1973  unsigned Val = cast<ConstantSDNode>(Op)->getValue();
1974  return (Val >= Low && Val < Hi);
1975}
1976
1977/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode.  Return
1978/// true if Op is undef or if its value equal to the specified value.
1979static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
1980  if (Op.getOpcode() == ISD::UNDEF)
1981    return true;
1982  return cast<ConstantSDNode>(Op)->getValue() == Val;
1983}
1984
1985/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
1986/// specifies a shuffle of elements that is suitable for input to PSHUFD.
1987bool X86::isPSHUFDMask(SDNode *N) {
1988  assert(N->getOpcode() == ISD::BUILD_VECTOR);
1989
1990  if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
1991    return false;
1992
1993  // Check if the value doesn't reference the second vector.
1994  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1995    SDOperand Arg = N->getOperand(i);
1996    if (Arg.getOpcode() == ISD::UNDEF) continue;
1997    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
1998    if (cast<ConstantSDNode>(Arg)->getValue() >= e)
1999      return false;
2000  }
2001
2002  return true;
2003}
2004
2005/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2006/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2007bool X86::isPSHUFHWMask(SDNode *N) {
2008  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2009
2010  if (N->getNumOperands() != 8)
2011    return false;
2012
2013  // Lower quadword copied in order.
2014  for (unsigned i = 0; i != 4; ++i) {
2015    SDOperand Arg = N->getOperand(i);
2016    if (Arg.getOpcode() == ISD::UNDEF) continue;
2017    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2018    if (cast<ConstantSDNode>(Arg)->getValue() != i)
2019      return false;
2020  }
2021
2022  // Upper quadword shuffled.
2023  for (unsigned i = 4; i != 8; ++i) {
2024    SDOperand Arg = N->getOperand(i);
2025    if (Arg.getOpcode() == ISD::UNDEF) continue;
2026    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2027    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2028    if (Val < 4 || Val > 7)
2029      return false;
2030  }
2031
2032  return true;
2033}
2034
2035/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2036/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2037bool X86::isPSHUFLWMask(SDNode *N) {
2038  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2039
2040  if (N->getNumOperands() != 8)
2041    return false;
2042
2043  // Upper quadword copied in order.
2044  for (unsigned i = 4; i != 8; ++i)
2045    if (!isUndefOrEqual(N->getOperand(i), i))
2046      return false;
2047
2048  // Lower quadword shuffled.
2049  for (unsigned i = 0; i != 4; ++i)
2050    if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2051      return false;
2052
2053  return true;
2054}
2055
2056/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2057/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2058static bool isSHUFPMask(SDOperandPtr Elems, unsigned NumElems) {
2059  if (NumElems != 2 && NumElems != 4) return false;
2060
2061  unsigned Half = NumElems / 2;
2062  for (unsigned i = 0; i < Half; ++i)
2063    if (!isUndefOrInRange(Elems[i], 0, NumElems))
2064      return false;
2065  for (unsigned i = Half; i < NumElems; ++i)
2066    if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2067      return false;
2068
2069  return true;
2070}
2071
2072bool X86::isSHUFPMask(SDNode *N) {
2073  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2074  return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2075}
2076
2077/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2078/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2079/// half elements to come from vector 1 (which would equal the dest.) and
2080/// the upper half to come from vector 2.
2081static bool isCommutedSHUFP(SDOperandPtr Ops, unsigned NumOps) {
2082  if (NumOps != 2 && NumOps != 4) return false;
2083
2084  unsigned Half = NumOps / 2;
2085  for (unsigned i = 0; i < Half; ++i)
2086    if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2087      return false;
2088  for (unsigned i = Half; i < NumOps; ++i)
2089    if (!isUndefOrInRange(Ops[i], 0, NumOps))
2090      return false;
2091  return true;
2092}
2093
2094static bool isCommutedSHUFP(SDNode *N) {
2095  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2096  return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2097}
2098
2099/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2100/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2101bool X86::isMOVHLPSMask(SDNode *N) {
2102  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2103
2104  if (N->getNumOperands() != 4)
2105    return false;
2106
2107  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2108  return isUndefOrEqual(N->getOperand(0), 6) &&
2109         isUndefOrEqual(N->getOperand(1), 7) &&
2110         isUndefOrEqual(N->getOperand(2), 2) &&
2111         isUndefOrEqual(N->getOperand(3), 3);
2112}
2113
2114/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2115/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2116/// <2, 3, 2, 3>
2117bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2118  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2119
2120  if (N->getNumOperands() != 4)
2121    return false;
2122
2123  // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2124  return isUndefOrEqual(N->getOperand(0), 2) &&
2125         isUndefOrEqual(N->getOperand(1), 3) &&
2126         isUndefOrEqual(N->getOperand(2), 2) &&
2127         isUndefOrEqual(N->getOperand(3), 3);
2128}
2129
2130/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2131/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2132bool X86::isMOVLPMask(SDNode *N) {
2133  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2134
2135  unsigned NumElems = N->getNumOperands();
2136  if (NumElems != 2 && NumElems != 4)
2137    return false;
2138
2139  for (unsigned i = 0; i < NumElems/2; ++i)
2140    if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2141      return false;
2142
2143  for (unsigned i = NumElems/2; i < NumElems; ++i)
2144    if (!isUndefOrEqual(N->getOperand(i), i))
2145      return false;
2146
2147  return true;
2148}
2149
2150/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2151/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2152/// and MOVLHPS.
2153bool X86::isMOVHPMask(SDNode *N) {
2154  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2155
2156  unsigned NumElems = N->getNumOperands();
2157  if (NumElems != 2 && NumElems != 4)
2158    return false;
2159
2160  for (unsigned i = 0; i < NumElems/2; ++i)
2161    if (!isUndefOrEqual(N->getOperand(i), i))
2162      return false;
2163
2164  for (unsigned i = 0; i < NumElems/2; ++i) {
2165    SDOperand Arg = N->getOperand(i + NumElems/2);
2166    if (!isUndefOrEqual(Arg, i + NumElems))
2167      return false;
2168  }
2169
2170  return true;
2171}
2172
2173/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2174/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2175bool static isUNPCKLMask(SDOperandPtr Elts, unsigned NumElts,
2176                         bool V2IsSplat = false) {
2177  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2178    return false;
2179
2180  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2181    SDOperand BitI  = Elts[i];
2182    SDOperand BitI1 = Elts[i+1];
2183    if (!isUndefOrEqual(BitI, j))
2184      return false;
2185    if (V2IsSplat) {
2186      if (isUndefOrEqual(BitI1, NumElts))
2187        return false;
2188    } else {
2189      if (!isUndefOrEqual(BitI1, j + NumElts))
2190        return false;
2191    }
2192  }
2193
2194  return true;
2195}
2196
2197bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2198  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2199  return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2200}
2201
2202/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2203/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2204bool static isUNPCKHMask(SDOperandPtr Elts, unsigned NumElts,
2205                         bool V2IsSplat = false) {
2206  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2207    return false;
2208
2209  for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2210    SDOperand BitI  = Elts[i];
2211    SDOperand BitI1 = Elts[i+1];
2212    if (!isUndefOrEqual(BitI, j + NumElts/2))
2213      return false;
2214    if (V2IsSplat) {
2215      if (isUndefOrEqual(BitI1, NumElts))
2216        return false;
2217    } else {
2218      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2219        return false;
2220    }
2221  }
2222
2223  return true;
2224}
2225
2226bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2227  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2228  return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2229}
2230
2231/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2232/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2233/// <0, 0, 1, 1>
2234bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2235  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2236
2237  unsigned NumElems = N->getNumOperands();
2238  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2239    return false;
2240
2241  for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2242    SDOperand BitI  = N->getOperand(i);
2243    SDOperand BitI1 = N->getOperand(i+1);
2244
2245    if (!isUndefOrEqual(BitI, j))
2246      return false;
2247    if (!isUndefOrEqual(BitI1, j))
2248      return false;
2249  }
2250
2251  return true;
2252}
2253
2254/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2255/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2256/// <2, 2, 3, 3>
2257bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2258  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2259
2260  unsigned NumElems = N->getNumOperands();
2261  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2262    return false;
2263
2264  for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2265    SDOperand BitI  = N->getOperand(i);
2266    SDOperand BitI1 = N->getOperand(i + 1);
2267
2268    if (!isUndefOrEqual(BitI, j))
2269      return false;
2270    if (!isUndefOrEqual(BitI1, j))
2271      return false;
2272  }
2273
2274  return true;
2275}
2276
2277/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2278/// specifies a shuffle of elements that is suitable for input to MOVSS,
2279/// MOVSD, and MOVD, i.e. setting the lowest element.
2280static bool isMOVLMask(SDOperandPtr Elts, unsigned NumElts) {
2281  if (NumElts != 2 && NumElts != 4)
2282    return false;
2283
2284  if (!isUndefOrEqual(Elts[0], NumElts))
2285    return false;
2286
2287  for (unsigned i = 1; i < NumElts; ++i) {
2288    if (!isUndefOrEqual(Elts[i], i))
2289      return false;
2290  }
2291
2292  return true;
2293}
2294
2295bool X86::isMOVLMask(SDNode *N) {
2296  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2297  return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2298}
2299
2300/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2301/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
2302/// element of vector 2 and the other elements to come from vector 1 in order.
2303static bool isCommutedMOVL(SDOperandPtr Ops, unsigned NumOps,
2304                           bool V2IsSplat = false,
2305                           bool V2IsUndef = false) {
2306  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2307    return false;
2308
2309  if (!isUndefOrEqual(Ops[0], 0))
2310    return false;
2311
2312  for (unsigned i = 1; i < NumOps; ++i) {
2313    SDOperand Arg = Ops[i];
2314    if (!(isUndefOrEqual(Arg, i+NumOps) ||
2315          (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2316          (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2317      return false;
2318  }
2319
2320  return true;
2321}
2322
2323static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2324                           bool V2IsUndef = false) {
2325  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2326  return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2327                        V2IsSplat, V2IsUndef);
2328}
2329
2330/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2331/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2332bool X86::isMOVSHDUPMask(SDNode *N) {
2333  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2334
2335  if (N->getNumOperands() != 4)
2336    return false;
2337
2338  // Expect 1, 1, 3, 3
2339  for (unsigned i = 0; i < 2; ++i) {
2340    SDOperand Arg = N->getOperand(i);
2341    if (Arg.getOpcode() == ISD::UNDEF) continue;
2342    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2343    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2344    if (Val != 1) return false;
2345  }
2346
2347  bool HasHi = false;
2348  for (unsigned i = 2; i < 4; ++i) {
2349    SDOperand Arg = N->getOperand(i);
2350    if (Arg.getOpcode() == ISD::UNDEF) continue;
2351    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2352    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2353    if (Val != 3) return false;
2354    HasHi = true;
2355  }
2356
2357  // Don't use movshdup if it can be done with a shufps.
2358  return HasHi;
2359}
2360
2361/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2362/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2363bool X86::isMOVSLDUPMask(SDNode *N) {
2364  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2365
2366  if (N->getNumOperands() != 4)
2367    return false;
2368
2369  // Expect 0, 0, 2, 2
2370  for (unsigned i = 0; i < 2; ++i) {
2371    SDOperand Arg = N->getOperand(i);
2372    if (Arg.getOpcode() == ISD::UNDEF) continue;
2373    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2374    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2375    if (Val != 0) return false;
2376  }
2377
2378  bool HasHi = false;
2379  for (unsigned i = 2; i < 4; ++i) {
2380    SDOperand Arg = N->getOperand(i);
2381    if (Arg.getOpcode() == ISD::UNDEF) continue;
2382    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2383    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2384    if (Val != 2) return false;
2385    HasHi = true;
2386  }
2387
2388  // Don't use movshdup if it can be done with a shufps.
2389  return HasHi;
2390}
2391
2392/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2393/// specifies a identity operation on the LHS or RHS.
2394static bool isIdentityMask(SDNode *N, bool RHS = false) {
2395  unsigned NumElems = N->getNumOperands();
2396  for (unsigned i = 0; i < NumElems; ++i)
2397    if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2398      return false;
2399  return true;
2400}
2401
2402/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2403/// a splat of a single element.
2404static bool isSplatMask(SDNode *N) {
2405  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2406
2407  // This is a splat operation if each element of the permute is the same, and
2408  // if the value doesn't reference the second vector.
2409  unsigned NumElems = N->getNumOperands();
2410  SDOperand ElementBase;
2411  unsigned i = 0;
2412  for (; i != NumElems; ++i) {
2413    SDOperand Elt = N->getOperand(i);
2414    if (isa<ConstantSDNode>(Elt)) {
2415      ElementBase = Elt;
2416      break;
2417    }
2418  }
2419
2420  if (!ElementBase.Val)
2421    return false;
2422
2423  for (; i != NumElems; ++i) {
2424    SDOperand Arg = N->getOperand(i);
2425    if (Arg.getOpcode() == ISD::UNDEF) continue;
2426    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2427    if (Arg != ElementBase) return false;
2428  }
2429
2430  // Make sure it is a splat of the first vector operand.
2431  return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2432}
2433
2434/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2435/// a splat of a single element and it's a 2 or 4 element mask.
2436bool X86::isSplatMask(SDNode *N) {
2437  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2438
2439  // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2440  if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2441    return false;
2442  return ::isSplatMask(N);
2443}
2444
2445/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2446/// specifies a splat of zero element.
2447bool X86::isSplatLoMask(SDNode *N) {
2448  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2449
2450  for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2451    if (!isUndefOrEqual(N->getOperand(i), 0))
2452      return false;
2453  return true;
2454}
2455
2456/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2457/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2458/// instructions.
2459unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2460  unsigned NumOperands = N->getNumOperands();
2461  unsigned Shift = (NumOperands == 4) ? 2 : 1;
2462  unsigned Mask = 0;
2463  for (unsigned i = 0; i < NumOperands; ++i) {
2464    unsigned Val = 0;
2465    SDOperand Arg = N->getOperand(NumOperands-i-1);
2466    if (Arg.getOpcode() != ISD::UNDEF)
2467      Val = cast<ConstantSDNode>(Arg)->getValue();
2468    if (Val >= NumOperands) Val -= NumOperands;
2469    Mask |= Val;
2470    if (i != NumOperands - 1)
2471      Mask <<= Shift;
2472  }
2473
2474  return Mask;
2475}
2476
2477/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2478/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2479/// instructions.
2480unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2481  unsigned Mask = 0;
2482  // 8 nodes, but we only care about the last 4.
2483  for (unsigned i = 7; i >= 4; --i) {
2484    unsigned Val = 0;
2485    SDOperand Arg = N->getOperand(i);
2486    if (Arg.getOpcode() != ISD::UNDEF)
2487      Val = cast<ConstantSDNode>(Arg)->getValue();
2488    Mask |= (Val - 4);
2489    if (i != 4)
2490      Mask <<= 2;
2491  }
2492
2493  return Mask;
2494}
2495
2496/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2497/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2498/// instructions.
2499unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2500  unsigned Mask = 0;
2501  // 8 nodes, but we only care about the first 4.
2502  for (int i = 3; i >= 0; --i) {
2503    unsigned Val = 0;
2504    SDOperand Arg = N->getOperand(i);
2505    if (Arg.getOpcode() != ISD::UNDEF)
2506      Val = cast<ConstantSDNode>(Arg)->getValue();
2507    Mask |= Val;
2508    if (i != 0)
2509      Mask <<= 2;
2510  }
2511
2512  return Mask;
2513}
2514
2515/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2516/// specifies a 8 element shuffle that can be broken into a pair of
2517/// PSHUFHW and PSHUFLW.
2518static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2519  assert(N->getOpcode() == ISD::BUILD_VECTOR);
2520
2521  if (N->getNumOperands() != 8)
2522    return false;
2523
2524  // Lower quadword shuffled.
2525  for (unsigned i = 0; i != 4; ++i) {
2526    SDOperand Arg = N->getOperand(i);
2527    if (Arg.getOpcode() == ISD::UNDEF) continue;
2528    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2529    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2530    if (Val >= 4)
2531      return false;
2532  }
2533
2534  // Upper quadword shuffled.
2535  for (unsigned i = 4; i != 8; ++i) {
2536    SDOperand Arg = N->getOperand(i);
2537    if (Arg.getOpcode() == ISD::UNDEF) continue;
2538    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2539    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2540    if (Val < 4 || Val > 7)
2541      return false;
2542  }
2543
2544  return true;
2545}
2546
2547/// CommuteVectorShuffle - Swap vector_shuffle operands as well as
2548/// values in ther permute mask.
2549static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2550                                      SDOperand &V2, SDOperand &Mask,
2551                                      SelectionDAG &DAG) {
2552  MVT::ValueType VT = Op.getValueType();
2553  MVT::ValueType MaskVT = Mask.getValueType();
2554  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2555  unsigned NumElems = Mask.getNumOperands();
2556  SmallVector<SDOperand, 8> MaskVec;
2557
2558  for (unsigned i = 0; i != NumElems; ++i) {
2559    SDOperand Arg = Mask.getOperand(i);
2560    if (Arg.getOpcode() == ISD::UNDEF) {
2561      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2562      continue;
2563    }
2564    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2565    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2566    if (Val < NumElems)
2567      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2568    else
2569      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2570  }
2571
2572  std::swap(V1, V2);
2573  Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2574  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2575}
2576
2577/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
2578/// the two vector operands have swapped position.
2579static
2580SDOperand CommuteVectorShuffleMask(SDOperand Mask, SelectionDAG &DAG) {
2581  MVT::ValueType MaskVT = Mask.getValueType();
2582  MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2583  unsigned NumElems = Mask.getNumOperands();
2584  SmallVector<SDOperand, 8> MaskVec;
2585  for (unsigned i = 0; i != NumElems; ++i) {
2586    SDOperand Arg = Mask.getOperand(i);
2587    if (Arg.getOpcode() == ISD::UNDEF) {
2588      MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2589      continue;
2590    }
2591    assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2592    unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2593    if (Val < NumElems)
2594      MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2595    else
2596      MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2597  }
2598  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], NumElems);
2599}
2600
2601
2602/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2603/// match movhlps. The lower half elements should come from upper half of
2604/// V1 (and in order), and the upper half elements should come from the upper
2605/// half of V2 (and in order).
2606static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2607  unsigned NumElems = Mask->getNumOperands();
2608  if (NumElems != 4)
2609    return false;
2610  for (unsigned i = 0, e = 2; i != e; ++i)
2611    if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2612      return false;
2613  for (unsigned i = 2; i != 4; ++i)
2614    if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2615      return false;
2616  return true;
2617}
2618
2619/// isScalarLoadToVector - Returns true if the node is a scalar load that
2620/// is promoted to a vector. It also returns the LoadSDNode by reference if
2621/// required.
2622static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
2623  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2624    N = N->getOperand(0).Val;
2625    if (ISD::isNON_EXTLoad(N)) {
2626      if (LD)
2627        *LD = cast<LoadSDNode>(N);
2628      return true;
2629    }
2630  }
2631  return false;
2632}
2633
2634/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2635/// match movlp{s|d}. The lower half elements should come from lower half of
2636/// V1 (and in order), and the upper half elements should come from the upper
2637/// half of V2 (and in order). And since V1 will become the source of the
2638/// MOVLP, it must be either a vector load or a scalar load to vector.
2639static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2640  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2641    return false;
2642  // Is V2 is a vector load, don't do this transformation. We will try to use
2643  // load folding shufps op.
2644  if (ISD::isNON_EXTLoad(V2))
2645    return false;
2646
2647  unsigned NumElems = Mask->getNumOperands();
2648  if (NumElems != 2 && NumElems != 4)
2649    return false;
2650  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2651    if (!isUndefOrEqual(Mask->getOperand(i), i))
2652      return false;
2653  for (unsigned i = NumElems/2; i != NumElems; ++i)
2654    if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2655      return false;
2656  return true;
2657}
2658
2659/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2660/// all the same.
2661static bool isSplatVector(SDNode *N) {
2662  if (N->getOpcode() != ISD::BUILD_VECTOR)
2663    return false;
2664
2665  SDOperand SplatValue = N->getOperand(0);
2666  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2667    if (N->getOperand(i) != SplatValue)
2668      return false;
2669  return true;
2670}
2671
2672/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2673/// to an undef.
2674static bool isUndefShuffle(SDNode *N) {
2675  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2676    return false;
2677
2678  SDOperand V1 = N->getOperand(0);
2679  SDOperand V2 = N->getOperand(1);
2680  SDOperand Mask = N->getOperand(2);
2681  unsigned NumElems = Mask.getNumOperands();
2682  for (unsigned i = 0; i != NumElems; ++i) {
2683    SDOperand Arg = Mask.getOperand(i);
2684    if (Arg.getOpcode() != ISD::UNDEF) {
2685      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2686      if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2687        return false;
2688      else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2689        return false;
2690    }
2691  }
2692  return true;
2693}
2694
2695/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2696/// constant +0.0.
2697static inline bool isZeroNode(SDOperand Elt) {
2698  return ((isa<ConstantSDNode>(Elt) &&
2699           cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2700          (isa<ConstantFPSDNode>(Elt) &&
2701           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
2702}
2703
2704/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2705/// to an zero vector.
2706static bool isZeroShuffle(SDNode *N) {
2707  if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2708    return false;
2709
2710  SDOperand V1 = N->getOperand(0);
2711  SDOperand V2 = N->getOperand(1);
2712  SDOperand Mask = N->getOperand(2);
2713  unsigned NumElems = Mask.getNumOperands();
2714  for (unsigned i = 0; i != NumElems; ++i) {
2715    SDOperand Arg = Mask.getOperand(i);
2716    if (Arg.getOpcode() == ISD::UNDEF)
2717      continue;
2718
2719    unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2720    if (Idx < NumElems) {
2721      unsigned Opc = V1.Val->getOpcode();
2722      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.Val))
2723        continue;
2724      if (Opc != ISD::BUILD_VECTOR ||
2725          !isZeroNode(V1.Val->getOperand(Idx)))
2726        return false;
2727    } else if (Idx >= NumElems) {
2728      unsigned Opc = V2.Val->getOpcode();
2729      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.Val))
2730        continue;
2731      if (Opc != ISD::BUILD_VECTOR ||
2732          !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2733        return false;
2734    }
2735  }
2736  return true;
2737}
2738
2739/// getZeroVector - Returns a vector of specified type with all zero elements.
2740///
2741static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2742  assert(MVT::isVector(VT) && "Expected a vector type");
2743
2744  // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2745  // type.  This ensures they get CSE'd.
2746  SDOperand Cst = DAG.getTargetConstant(0, MVT::i32);
2747  SDOperand Vec;
2748  if (MVT::getSizeInBits(VT) == 64)  // MMX
2749    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2750  else                                              // SSE
2751    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2752  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2753}
2754
2755/// getOnesVector - Returns a vector of specified type with all bits set.
2756///
2757static SDOperand getOnesVector(MVT::ValueType VT, SelectionDAG &DAG) {
2758  assert(MVT::isVector(VT) && "Expected a vector type");
2759
2760  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
2761  // type.  This ensures they get CSE'd.
2762  SDOperand Cst = DAG.getTargetConstant(~0U, MVT::i32);
2763  SDOperand Vec;
2764  if (MVT::getSizeInBits(VT) == 64)  // MMX
2765    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, Cst, Cst);
2766  else                                              // SSE
2767    Vec = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Cst, Cst, Cst, Cst);
2768  return DAG.getNode(ISD::BIT_CONVERT, VT, Vec);
2769}
2770
2771
2772/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2773/// that point to V2 points to its first element.
2774static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2775  assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2776
2777  bool Changed = false;
2778  SmallVector<SDOperand, 8> MaskVec;
2779  unsigned NumElems = Mask.getNumOperands();
2780  for (unsigned i = 0; i != NumElems; ++i) {
2781    SDOperand Arg = Mask.getOperand(i);
2782    if (Arg.getOpcode() != ISD::UNDEF) {
2783      unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2784      if (Val > NumElems) {
2785        Arg = DAG.getConstant(NumElems, Arg.getValueType());
2786        Changed = true;
2787      }
2788    }
2789    MaskVec.push_back(Arg);
2790  }
2791
2792  if (Changed)
2793    Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2794                       &MaskVec[0], MaskVec.size());
2795  return Mask;
2796}
2797
2798/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2799/// operation of specified width.
2800static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2801  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2802  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2803
2804  SmallVector<SDOperand, 8> MaskVec;
2805  MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2806  for (unsigned i = 1; i != NumElems; ++i)
2807    MaskVec.push_back(DAG.getConstant(i, BaseVT));
2808  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2809}
2810
2811/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2812/// of specified width.
2813static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2814  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2815  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2816  SmallVector<SDOperand, 8> MaskVec;
2817  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2818    MaskVec.push_back(DAG.getConstant(i,            BaseVT));
2819    MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2820  }
2821  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2822}
2823
2824/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2825/// of specified width.
2826static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2827  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2828  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2829  unsigned Half = NumElems/2;
2830  SmallVector<SDOperand, 8> MaskVec;
2831  for (unsigned i = 0; i != Half; ++i) {
2832    MaskVec.push_back(DAG.getConstant(i + Half,            BaseVT));
2833    MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2834  }
2835  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2836}
2837
2838/// getSwapEltZeroMask - Returns a vector_shuffle mask for a shuffle that swaps
2839/// element #0 of a vector with the specified index, leaving the rest of the
2840/// elements in place.
2841static SDOperand getSwapEltZeroMask(unsigned NumElems, unsigned DestElt,
2842                                   SelectionDAG &DAG) {
2843  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2844  MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2845  SmallVector<SDOperand, 8> MaskVec;
2846  // Element #0 of the result gets the elt we are replacing.
2847  MaskVec.push_back(DAG.getConstant(DestElt, BaseVT));
2848  for (unsigned i = 1; i != NumElems; ++i)
2849    MaskVec.push_back(DAG.getConstant(i == DestElt ? 0 : i, BaseVT));
2850  return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2851}
2852
2853/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
2854static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG, bool HasSSE2) {
2855  MVT::ValueType PVT = HasSSE2 ? MVT::v4i32 : MVT::v4f32;
2856  MVT::ValueType VT = Op.getValueType();
2857  if (PVT == VT)
2858    return Op;
2859  SDOperand V1 = Op.getOperand(0);
2860  SDOperand Mask = Op.getOperand(2);
2861  unsigned NumElems = Mask.getNumOperands();
2862  // Special handling of v4f32 -> v4i32.
2863  if (VT != MVT::v4f32) {
2864    Mask = getUnpacklMask(NumElems, DAG);
2865    while (NumElems > 4) {
2866      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2867      NumElems >>= 1;
2868    }
2869    Mask = getZeroVector(MVT::v4i32, DAG);
2870  }
2871
2872  V1 = DAG.getNode(ISD::BIT_CONVERT, PVT, V1);
2873  SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, PVT, V1,
2874                                  DAG.getNode(ISD::UNDEF, PVT), Mask);
2875  return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2876}
2877
2878/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2879/// vector of zero or undef vector.  This produces a shuffle where the low
2880/// element of V2 is swizzled into the zero/undef vector, landing at element
2881/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
2882static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, unsigned Idx,
2883                                             bool isZero, SelectionDAG &DAG) {
2884  MVT::ValueType VT = V2.getValueType();
2885  SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2886  unsigned NumElems = MVT::getVectorNumElements(V2.getValueType());
2887  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2888  MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2889  SmallVector<SDOperand, 16> MaskVec;
2890  for (unsigned i = 0; i != NumElems; ++i)
2891    if (i == Idx)  // If this is the insertion idx, put the low elt of V2 here.
2892      MaskVec.push_back(DAG.getConstant(NumElems, EVT));
2893    else
2894      MaskVec.push_back(DAG.getConstant(i, EVT));
2895  SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2896                               &MaskVec[0], MaskVec.size());
2897  return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2898}
2899
2900/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2901///
2902static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2903                                       unsigned NumNonZero, unsigned NumZero,
2904                                       SelectionDAG &DAG, TargetLowering &TLI) {
2905  if (NumNonZero > 8)
2906    return SDOperand();
2907
2908  SDOperand V(0, 0);
2909  bool First = true;
2910  for (unsigned i = 0; i < 16; ++i) {
2911    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
2912    if (ThisIsNonZero && First) {
2913      if (NumZero)
2914        V = getZeroVector(MVT::v8i16, DAG);
2915      else
2916        V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2917      First = false;
2918    }
2919
2920    if ((i & 1) != 0) {
2921      SDOperand ThisElt(0, 0), LastElt(0, 0);
2922      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
2923      if (LastIsNonZero) {
2924        LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
2925      }
2926      if (ThisIsNonZero) {
2927        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
2928        ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
2929                              ThisElt, DAG.getConstant(8, MVT::i8));
2930        if (LastIsNonZero)
2931          ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
2932      } else
2933        ThisElt = LastElt;
2934
2935      if (ThisElt.Val)
2936        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
2937                        DAG.getIntPtrConstant(i/2));
2938    }
2939  }
2940
2941  return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
2942}
2943
2944/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
2945///
2946static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
2947                                       unsigned NumNonZero, unsigned NumZero,
2948                                       SelectionDAG &DAG, TargetLowering &TLI) {
2949  if (NumNonZero > 4)
2950    return SDOperand();
2951
2952  SDOperand V(0, 0);
2953  bool First = true;
2954  for (unsigned i = 0; i < 8; ++i) {
2955    bool isNonZero = (NonZeros & (1 << i)) != 0;
2956    if (isNonZero) {
2957      if (First) {
2958        if (NumZero)
2959          V = getZeroVector(MVT::v8i16, DAG);
2960        else
2961          V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
2962        First = false;
2963      }
2964      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
2965                      DAG.getIntPtrConstant(i));
2966    }
2967  }
2968
2969  return V;
2970}
2971
2972SDOperand
2973X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2974  // All zero's are handled with pxor, all one's are handled with pcmpeqd.
2975  if (ISD::isBuildVectorAllZeros(Op.Val) || ISD::isBuildVectorAllOnes(Op.Val)) {
2976    // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
2977    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
2978    // eliminated on x86-32 hosts.
2979    if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
2980      return Op;
2981
2982    if (ISD::isBuildVectorAllOnes(Op.Val))
2983      return getOnesVector(Op.getValueType(), DAG);
2984    return getZeroVector(Op.getValueType(), DAG);
2985  }
2986
2987  MVT::ValueType VT = Op.getValueType();
2988  MVT::ValueType EVT = MVT::getVectorElementType(VT);
2989  unsigned EVTBits = MVT::getSizeInBits(EVT);
2990
2991  unsigned NumElems = Op.getNumOperands();
2992  unsigned NumZero  = 0;
2993  unsigned NumNonZero = 0;
2994  unsigned NonZeros = 0;
2995  bool IsAllConstants = true;
2996  SmallSet<SDOperand, 8> Values;
2997  for (unsigned i = 0; i < NumElems; ++i) {
2998    SDOperand Elt = Op.getOperand(i);
2999    if (Elt.getOpcode() == ISD::UNDEF)
3000      continue;
3001    Values.insert(Elt);
3002    if (Elt.getOpcode() != ISD::Constant &&
3003        Elt.getOpcode() != ISD::ConstantFP)
3004      IsAllConstants = false;
3005    if (isZeroNode(Elt))
3006      NumZero++;
3007    else {
3008      NonZeros |= (1 << i);
3009      NumNonZero++;
3010    }
3011  }
3012
3013  if (NumNonZero == 0) {
3014    // All undef vector. Return an UNDEF.  All zero vectors were handled above.
3015    return DAG.getNode(ISD::UNDEF, VT);
3016  }
3017
3018  // Special case for single non-zero, non-undef, element.
3019  if (NumNonZero == 1 && NumElems <= 4) {
3020    unsigned Idx = CountTrailingZeros_32(NonZeros);
3021    SDOperand Item = Op.getOperand(Idx);
3022
3023    // If this is an insertion of an i64 value on x86-32, and if the top bits of
3024    // the value are obviously zero, truncate the value to i32 and do the
3025    // insertion that way.  Only do this if the value is non-constant or if the
3026    // value is a constant being inserted into element 0.  It is cheaper to do
3027    // a constant pool load than it is to do a movd + shuffle.
3028    if (EVT == MVT::i64 && !Subtarget->is64Bit() &&
3029        (!IsAllConstants || Idx == 0)) {
3030      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
3031        // Handle MMX and SSE both.
3032        MVT::ValueType VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
3033        MVT::ValueType VecElts = VT == MVT::v2i64 ? 4 : 2;
3034
3035        // Truncate the value (which may itself be a constant) to i32, and
3036        // convert it to a vector with movd (S2V+shuffle to zero extend).
3037        Item = DAG.getNode(ISD::TRUNCATE, MVT::i32, Item);
3038        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VecVT, Item);
3039        Item = getShuffleVectorZeroOrUndef(Item, 0, true, DAG);
3040
3041        // Now we have our 32-bit value zero extended in the low element of
3042        // a vector.  If Idx != 0, swizzle it into place.
3043        if (Idx != 0) {
3044          SDOperand Ops[] = {
3045            Item, DAG.getNode(ISD::UNDEF, Item.getValueType()),
3046            getSwapEltZeroMask(VecElts, Idx, DAG)
3047          };
3048          Item = DAG.getNode(ISD::VECTOR_SHUFFLE, VecVT, Ops, 3);
3049        }
3050        return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Item);
3051      }
3052    }
3053
3054    // If we have a constant or non-constant insertion into the low element of
3055    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
3056    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
3057    // depending on what the source datatype is.  Because we can only get here
3058    // when NumElems <= 4, this only needs to handle i32/f32/i64/f64.
3059    if (Idx == 0 &&
3060        // Don't do this for i64 values on x86-32.
3061        (EVT != MVT::i64 || Subtarget->is64Bit())) {
3062      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3063      // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3064      return getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
3065    }
3066
3067    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
3068      return SDOperand();
3069
3070    // Otherwise, if this is a vector with i32 or f32 elements, and the element
3071    // is a non-constant being inserted into an element other than the low one,
3072    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
3073    // movd/movss) to move this into the low element, then shuffle it into
3074    // place.
3075    if (EVTBits == 32) {
3076      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3077
3078      // Turn it into a shuffle of zero and zero-extended scalar to vector.
3079      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, DAG);
3080      MVT::ValueType MaskVT  = MVT::getIntVectorWithNumElements(NumElems);
3081      MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3082      SmallVector<SDOperand, 8> MaskVec;
3083      for (unsigned i = 0; i < NumElems; i++)
3084        MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3085      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3086                                   &MaskVec[0], MaskVec.size());
3087      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3088                         DAG.getNode(ISD::UNDEF, VT), Mask);
3089    }
3090  }
3091
3092  // Splat is obviously ok. Let legalizer expand it to a shuffle.
3093  if (Values.size() == 1)
3094    return SDOperand();
3095
3096  // A vector full of immediates; various special cases are already
3097  // handled, so this is best done with a single constant-pool load.
3098  if (IsAllConstants)
3099    return SDOperand();
3100
3101  // Let legalizer expand 2-wide build_vectors.
3102  if (EVTBits == 64) {
3103    if (NumNonZero == 1) {
3104      // One half is zero or undef.
3105      unsigned Idx = CountTrailingZeros_32(NonZeros);
3106      SDOperand V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT,
3107                                 Op.getOperand(Idx));
3108      return getShuffleVectorZeroOrUndef(V2, Idx, true, DAG);
3109    }
3110    return SDOperand();
3111  }
3112
3113  // If element VT is < 32 bits, convert it to inserts into a zero vector.
3114  if (EVTBits == 8 && NumElems == 16) {
3115    SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3116                                        *this);
3117    if (V.Val) return V;
3118  }
3119
3120  if (EVTBits == 16 && NumElems == 8) {
3121    SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3122                                        *this);
3123    if (V.Val) return V;
3124  }
3125
3126  // If element VT is == 32 bits, turn it into a number of shuffles.
3127  SmallVector<SDOperand, 8> V;
3128  V.resize(NumElems);
3129  if (NumElems == 4 && NumZero > 0) {
3130    for (unsigned i = 0; i < 4; ++i) {
3131      bool isZero = !(NonZeros & (1 << i));
3132      if (isZero)
3133        V[i] = getZeroVector(VT, DAG);
3134      else
3135        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3136    }
3137
3138    for (unsigned i = 0; i < 2; ++i) {
3139      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3140        default: break;
3141        case 0:
3142          V[i] = V[i*2];  // Must be a zero vector.
3143          break;
3144        case 1:
3145          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3146                             getMOVLMask(NumElems, DAG));
3147          break;
3148        case 2:
3149          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3150                             getMOVLMask(NumElems, DAG));
3151          break;
3152        case 3:
3153          V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3154                             getUnpacklMask(NumElems, DAG));
3155          break;
3156      }
3157    }
3158
3159    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3160    MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3161    SmallVector<SDOperand, 8> MaskVec;
3162    bool Reverse = (NonZeros & 0x3) == 2;
3163    for (unsigned i = 0; i < 2; ++i)
3164      if (Reverse)
3165        MaskVec.push_back(DAG.getConstant(1-i, EVT));
3166      else
3167        MaskVec.push_back(DAG.getConstant(i, EVT));
3168    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3169    for (unsigned i = 0; i < 2; ++i)
3170      if (Reverse)
3171        MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3172      else
3173        MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3174    SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3175                                     &MaskVec[0], MaskVec.size());
3176    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3177  }
3178
3179  if (Values.size() > 2) {
3180    // Expand into a number of unpckl*.
3181    // e.g. for v4f32
3182    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3183    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3184    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
3185    SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3186    for (unsigned i = 0; i < NumElems; ++i)
3187      V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3188    NumElems >>= 1;
3189    while (NumElems != 0) {
3190      for (unsigned i = 0; i < NumElems; ++i)
3191        V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3192                           UnpckMask);
3193      NumElems >>= 1;
3194    }
3195    return V[0];
3196  }
3197
3198  return SDOperand();
3199}
3200
3201static
3202SDOperand LowerVECTOR_SHUFFLEv8i16(SDOperand V1, SDOperand V2,
3203                                   SDOperand PermMask, SelectionDAG &DAG,
3204                                   TargetLowering &TLI) {
3205  SDOperand NewV;
3206  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(8);
3207  MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3208  MVT::ValueType PtrVT = TLI.getPointerTy();
3209  SmallVector<SDOperand, 8> MaskElts(PermMask.Val->op_begin(),
3210                                     PermMask.Val->op_end());
3211
3212  // First record which half of which vector the low elements come from.
3213  SmallVector<unsigned, 4> LowQuad(4);
3214  for (unsigned i = 0; i < 4; ++i) {
3215    SDOperand Elt = MaskElts[i];
3216    if (Elt.getOpcode() == ISD::UNDEF)
3217      continue;
3218    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3219    int QuadIdx = EltIdx / 4;
3220    ++LowQuad[QuadIdx];
3221  }
3222  int BestLowQuad = -1;
3223  unsigned MaxQuad = 1;
3224  for (unsigned i = 0; i < 4; ++i) {
3225    if (LowQuad[i] > MaxQuad) {
3226      BestLowQuad = i;
3227      MaxQuad = LowQuad[i];
3228    }
3229  }
3230
3231  // Record which half of which vector the high elements come from.
3232  SmallVector<unsigned, 4> HighQuad(4);
3233  for (unsigned i = 4; i < 8; ++i) {
3234    SDOperand Elt = MaskElts[i];
3235    if (Elt.getOpcode() == ISD::UNDEF)
3236      continue;
3237    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3238    int QuadIdx = EltIdx / 4;
3239    ++HighQuad[QuadIdx];
3240  }
3241  int BestHighQuad = -1;
3242  MaxQuad = 1;
3243  for (unsigned i = 0; i < 4; ++i) {
3244    if (HighQuad[i] > MaxQuad) {
3245      BestHighQuad = i;
3246      MaxQuad = HighQuad[i];
3247    }
3248  }
3249
3250  // If it's possible to sort parts of either half with PSHUF{H|L}W, then do it.
3251  if (BestLowQuad != -1 || BestHighQuad != -1) {
3252    // First sort the 4 chunks in order using shufpd.
3253    SmallVector<SDOperand, 8> MaskVec;
3254    if (BestLowQuad != -1)
3255      MaskVec.push_back(DAG.getConstant(BestLowQuad, MVT::i32));
3256    else
3257      MaskVec.push_back(DAG.getConstant(0, MVT::i32));
3258    if (BestHighQuad != -1)
3259      MaskVec.push_back(DAG.getConstant(BestHighQuad, MVT::i32));
3260    else
3261      MaskVec.push_back(DAG.getConstant(1, MVT::i32));
3262    SDOperand Mask= DAG.getNode(ISD::BUILD_VECTOR, MVT::v2i32, &MaskVec[0],2);
3263    NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v2i64,
3264                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V1),
3265                       DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, V2), Mask);
3266    NewV = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, NewV);
3267
3268    // Now sort high and low parts separately.
3269    BitVector InOrder(8);
3270    if (BestLowQuad != -1) {
3271      // Sort lower half in order using PSHUFLW.
3272      MaskVec.clear();
3273      bool AnyOutOrder = false;
3274      for (unsigned i = 0; i != 4; ++i) {
3275        SDOperand Elt = MaskElts[i];
3276        if (Elt.getOpcode() == ISD::UNDEF) {
3277          MaskVec.push_back(Elt);
3278          InOrder.set(i);
3279        } else {
3280          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3281          if (EltIdx != i)
3282            AnyOutOrder = true;
3283          MaskVec.push_back(DAG.getConstant(EltIdx % 4, MaskEVT));
3284          // If this element is in the right place after this shuffle, then
3285          // remember it.
3286          if ((int)(EltIdx / 4) == BestLowQuad)
3287            InOrder.set(i);
3288        }
3289      }
3290      if (AnyOutOrder) {
3291        for (unsigned i = 4; i != 8; ++i)
3292          MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3293        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3294        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3295      }
3296    }
3297
3298    if (BestHighQuad != -1) {
3299      // Sort high half in order using PSHUFHW if possible.
3300      MaskVec.clear();
3301      for (unsigned i = 0; i != 4; ++i)
3302        MaskVec.push_back(DAG.getConstant(i, MaskEVT));
3303      bool AnyOutOrder = false;
3304      for (unsigned i = 4; i != 8; ++i) {
3305        SDOperand Elt = MaskElts[i];
3306        if (Elt.getOpcode() == ISD::UNDEF) {
3307          MaskVec.push_back(Elt);
3308          InOrder.set(i);
3309        } else {
3310          unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3311          if (EltIdx != i)
3312            AnyOutOrder = true;
3313          MaskVec.push_back(DAG.getConstant((EltIdx % 4) + 4, MaskEVT));
3314          // If this element is in the right place after this shuffle, then
3315          // remember it.
3316          if ((int)(EltIdx / 4) == BestHighQuad)
3317            InOrder.set(i);
3318        }
3319      }
3320      if (AnyOutOrder) {
3321        SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3322        NewV = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, NewV, NewV, Mask);
3323      }
3324    }
3325
3326    // The other elements are put in the right place using pextrw and pinsrw.
3327    for (unsigned i = 0; i != 8; ++i) {
3328      if (InOrder[i])
3329        continue;
3330      SDOperand Elt = MaskElts[i];
3331      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3332      if (EltIdx == i)
3333        continue;
3334      SDOperand ExtOp = (EltIdx < 8)
3335        ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3336                      DAG.getConstant(EltIdx, PtrVT))
3337        : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3338                      DAG.getConstant(EltIdx - 8, PtrVT));
3339      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3340                         DAG.getConstant(i, PtrVT));
3341    }
3342    return NewV;
3343  }
3344
3345  // PSHUF{H|L}W are not used. Lower into extracts and inserts but try to use
3346  ///as few as possible.
3347  // First, let's find out how many elements are already in the right order.
3348  unsigned V1InOrder = 0;
3349  unsigned V1FromV1 = 0;
3350  unsigned V2InOrder = 0;
3351  unsigned V2FromV2 = 0;
3352  SmallVector<SDOperand, 8> V1Elts;
3353  SmallVector<SDOperand, 8> V2Elts;
3354  for (unsigned i = 0; i < 8; ++i) {
3355    SDOperand Elt = MaskElts[i];
3356    if (Elt.getOpcode() == ISD::UNDEF) {
3357      V1Elts.push_back(Elt);
3358      V2Elts.push_back(Elt);
3359      ++V1InOrder;
3360      ++V2InOrder;
3361      continue;
3362    }
3363    unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3364    if (EltIdx == i) {
3365      V1Elts.push_back(Elt);
3366      V2Elts.push_back(DAG.getConstant(i+8, MaskEVT));
3367      ++V1InOrder;
3368    } else if (EltIdx == i+8) {
3369      V1Elts.push_back(Elt);
3370      V2Elts.push_back(DAG.getConstant(i, MaskEVT));
3371      ++V2InOrder;
3372    } else if (EltIdx < 8) {
3373      V1Elts.push_back(Elt);
3374      ++V1FromV1;
3375    } else {
3376      V2Elts.push_back(DAG.getConstant(EltIdx-8, MaskEVT));
3377      ++V2FromV2;
3378    }
3379  }
3380
3381  if (V2InOrder > V1InOrder) {
3382    PermMask = CommuteVectorShuffleMask(PermMask, DAG);
3383    std::swap(V1, V2);
3384    std::swap(V1Elts, V2Elts);
3385    std::swap(V1FromV1, V2FromV2);
3386  }
3387
3388  if ((V1FromV1 + V1InOrder) != 8) {
3389    // Some elements are from V2.
3390    if (V1FromV1) {
3391      // If there are elements that are from V1 but out of place,
3392      // then first sort them in place
3393      SmallVector<SDOperand, 8> MaskVec;
3394      for (unsigned i = 0; i < 8; ++i) {
3395        SDOperand Elt = V1Elts[i];
3396        if (Elt.getOpcode() == ISD::UNDEF) {
3397          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3398          continue;
3399        }
3400        unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3401        if (EltIdx >= 8)
3402          MaskVec.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3403        else
3404          MaskVec.push_back(DAG.getConstant(EltIdx, MaskEVT));
3405      }
3406      SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], 8);
3407      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v8i16, V1, V1, Mask);
3408    }
3409
3410    NewV = V1;
3411    for (unsigned i = 0; i < 8; ++i) {
3412      SDOperand Elt = V1Elts[i];
3413      if (Elt.getOpcode() == ISD::UNDEF)
3414        continue;
3415      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3416      if (EltIdx < 8)
3417        continue;
3418      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V2,
3419                                    DAG.getConstant(EltIdx - 8, PtrVT));
3420      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3421                         DAG.getConstant(i, PtrVT));
3422    }
3423    return NewV;
3424  } else {
3425    // All elements are from V1.
3426    NewV = V1;
3427    for (unsigned i = 0; i < 8; ++i) {
3428      SDOperand Elt = V1Elts[i];
3429      if (Elt.getOpcode() == ISD::UNDEF)
3430        continue;
3431      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3432      SDOperand ExtOp = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i16, V1,
3433                                    DAG.getConstant(EltIdx, PtrVT));
3434      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, NewV, ExtOp,
3435                         DAG.getConstant(i, PtrVT));
3436    }
3437    return NewV;
3438  }
3439}
3440
3441/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
3442/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
3443/// done when every pair / quad of shuffle mask elements point to elements in
3444/// the right sequence. e.g.
3445/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
3446static
3447SDOperand RewriteAsNarrowerShuffle(SDOperand V1, SDOperand V2,
3448                                MVT::ValueType VT,
3449                                SDOperand PermMask, SelectionDAG &DAG,
3450                                TargetLowering &TLI) {
3451  unsigned NumElems = PermMask.getNumOperands();
3452  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
3453  MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
3454  MVT::ValueType NewVT = MaskVT;
3455  switch (VT) {
3456  case MVT::v4f32: NewVT = MVT::v2f64; break;
3457  case MVT::v4i32: NewVT = MVT::v2i64; break;
3458  case MVT::v8i16: NewVT = MVT::v4i32; break;
3459  case MVT::v16i8: NewVT = MVT::v4i32; break;
3460  default: assert(false && "Unexpected!");
3461  }
3462
3463  if (NewWidth == 2) {
3464    if (MVT::isInteger(VT))
3465      NewVT = MVT::v2i64;
3466    else
3467      NewVT = MVT::v2f64;
3468  }
3469  unsigned Scale = NumElems / NewWidth;
3470  SmallVector<SDOperand, 8> MaskVec;
3471  for (unsigned i = 0; i < NumElems; i += Scale) {
3472    unsigned StartIdx = ~0U;
3473    for (unsigned j = 0; j < Scale; ++j) {
3474      SDOperand Elt = PermMask.getOperand(i+j);
3475      if (Elt.getOpcode() == ISD::UNDEF)
3476        continue;
3477      unsigned EltIdx = cast<ConstantSDNode>(Elt)->getValue();
3478      if (StartIdx == ~0U)
3479        StartIdx = EltIdx - (EltIdx % Scale);
3480      if (EltIdx != StartIdx + j)
3481        return SDOperand();
3482    }
3483    if (StartIdx == ~0U)
3484      MaskVec.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
3485    else
3486      MaskVec.push_back(DAG.getConstant(StartIdx / Scale, MVT::i32));
3487  }
3488
3489  V1 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V1);
3490  V2 = DAG.getNode(ISD::BIT_CONVERT, NewVT, V2);
3491  return DAG.getNode(ISD::VECTOR_SHUFFLE, NewVT, V1, V2,
3492                     DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3493                                 &MaskVec[0], MaskVec.size()));
3494}
3495
3496/// getVZextMovL - Return a zero-extending vector move low node.
3497///
3498static SDOperand getVZextMovL(MVT::ValueType VT, MVT::ValueType OpVT,
3499                               SDOperand SrcOp, SelectionDAG &DAG,
3500                               const X86Subtarget *Subtarget) {
3501  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
3502    LoadSDNode *LD = NULL;
3503    if (!isScalarLoadToVector(SrcOp.Val, &LD))
3504      LD = dyn_cast<LoadSDNode>(SrcOp);
3505    if (!LD) {
3506      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
3507      // instead.
3508      MVT::ValueType EVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
3509      if ((EVT != MVT::i64 || Subtarget->is64Bit()) &&
3510          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
3511          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
3512          SrcOp.getOperand(0).getOperand(0).getValueType() == EVT) {
3513        // PR2108
3514        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
3515        return DAG.getNode(ISD::BIT_CONVERT, VT,
3516                           DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3517                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, OpVT,
3518                                                   SrcOp.getOperand(0).getOperand(0))));
3519      }
3520    }
3521  }
3522
3523  return DAG.getNode(ISD::BIT_CONVERT, VT,
3524                     DAG.getNode(X86ISD::VZEXT_MOVL, OpVT,
3525                                 DAG.getNode(ISD::BIT_CONVERT, OpVT, SrcOp)));
3526}
3527
3528SDOperand
3529X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3530  SDOperand V1 = Op.getOperand(0);
3531  SDOperand V2 = Op.getOperand(1);
3532  SDOperand PermMask = Op.getOperand(2);
3533  MVT::ValueType VT = Op.getValueType();
3534  unsigned NumElems = PermMask.getNumOperands();
3535  bool isMMX = MVT::getSizeInBits(VT) == 64;
3536  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3537  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3538  bool V1IsSplat = false;
3539  bool V2IsSplat = false;
3540
3541  if (isUndefShuffle(Op.Val))
3542    return DAG.getNode(ISD::UNDEF, VT);
3543
3544  if (isZeroShuffle(Op.Val))
3545    return getZeroVector(VT, DAG);
3546
3547  if (isIdentityMask(PermMask.Val))
3548    return V1;
3549  else if (isIdentityMask(PermMask.Val, true))
3550    return V2;
3551
3552  if (isSplatMask(PermMask.Val)) {
3553    if (isMMX || NumElems < 4) return Op;
3554    // Promote it to a v4{if}32 splat.
3555    return PromoteSplat(Op, DAG, Subtarget->hasSSE2());
3556  }
3557
3558  // If the shuffle can be profitably rewritten as a narrower shuffle, then
3559  // do it!
3560  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
3561    SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask, DAG, *this);
3562    if (NewOp.Val)
3563      return DAG.getNode(ISD::BIT_CONVERT, VT, LowerVECTOR_SHUFFLE(NewOp, DAG));
3564  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
3565    // FIXME: Figure out a cleaner way to do this.
3566    // Try to make use of movq to zero out the top part.
3567    if (ISD::isBuildVectorAllZeros(V2.Val)) {
3568      SDOperand NewOp = RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3569                                                 DAG, *this);
3570      if (NewOp.Val) {
3571        SDOperand NewV1 = NewOp.getOperand(0);
3572        SDOperand NewV2 = NewOp.getOperand(1);
3573        SDOperand NewMask = NewOp.getOperand(2);
3574        if (isCommutedMOVL(NewMask.Val, true, false)) {
3575          NewOp = CommuteVectorShuffle(NewOp, NewV1, NewV2, NewMask, DAG);
3576          return getVZextMovL(VT, NewOp.getValueType(), NewV2, DAG, Subtarget);
3577        }
3578      }
3579    } else if (ISD::isBuildVectorAllZeros(V1.Val)) {
3580      SDOperand NewOp= RewriteAsNarrowerShuffle(V1, V2, VT, PermMask,
3581                                                DAG, *this);
3582      if (NewOp.Val && X86::isMOVLMask(NewOp.getOperand(2).Val))
3583        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
3584                             DAG, Subtarget);
3585    }
3586  }
3587
3588  if (X86::isMOVLMask(PermMask.Val)) {
3589    if (V1IsUndef)
3590      return V2;
3591    if (ISD::isBuildVectorAllZeros(V1.Val))
3592      return getVZextMovL(VT, VT, V2, DAG, Subtarget);
3593    return Op;
3594  }
3595
3596  if (X86::isMOVSHDUPMask(PermMask.Val) ||
3597      X86::isMOVSLDUPMask(PermMask.Val) ||
3598      X86::isMOVHLPSMask(PermMask.Val) ||
3599      X86::isMOVHPMask(PermMask.Val) ||
3600      X86::isMOVLPMask(PermMask.Val))
3601    return Op;
3602
3603  if (ShouldXformToMOVHLPS(PermMask.Val) ||
3604      ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3605    return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3606
3607  bool Commuted = false;
3608  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
3609  // 1,1,1,1 -> v8i16 though.
3610  V1IsSplat = isSplatVector(V1.Val);
3611  V2IsSplat = isSplatVector(V2.Val);
3612
3613  // Canonicalize the splat or undef, if present, to be on the RHS.
3614  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3615    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3616    std::swap(V1IsSplat, V2IsSplat);
3617    std::swap(V1IsUndef, V2IsUndef);
3618    Commuted = true;
3619  }
3620
3621  // FIXME: Figure out a cleaner way to do this.
3622  if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3623    if (V2IsUndef) return V1;
3624    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3625    if (V2IsSplat) {
3626      // V2 is a splat, so the mask may be malformed. That is, it may point
3627      // to any V2 element. The instruction selectior won't like this. Get
3628      // a corrected mask and commute to form a proper MOVS{S|D}.
3629      SDOperand NewMask = getMOVLMask(NumElems, DAG);
3630      if (NewMask.Val != PermMask.Val)
3631        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3632    }
3633    return Op;
3634  }
3635
3636  if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3637      X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3638      X86::isUNPCKLMask(PermMask.Val) ||
3639      X86::isUNPCKHMask(PermMask.Val))
3640    return Op;
3641
3642  if (V2IsSplat) {
3643    // Normalize mask so all entries that point to V2 points to its first
3644    // element then try to match unpck{h|l} again. If match, return a
3645    // new vector_shuffle with the corrected mask.
3646    SDOperand NewMask = NormalizeMask(PermMask, DAG);
3647    if (NewMask.Val != PermMask.Val) {
3648      if (X86::isUNPCKLMask(PermMask.Val, true)) {
3649        SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3650        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3651      } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3652        SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3653        return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3654      }
3655    }
3656  }
3657
3658  // Normalize the node to match x86 shuffle ops if needed
3659  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3660      Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3661
3662  if (Commuted) {
3663    // Commute is back and try unpck* again.
3664    Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3665    if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3666        X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3667        X86::isUNPCKLMask(PermMask.Val) ||
3668        X86::isUNPCKHMask(PermMask.Val))
3669      return Op;
3670  }
3671
3672  // Try PSHUF* first, then SHUFP*.
3673  // MMX doesn't have PSHUFD but it does have PSHUFW. While it's theoretically
3674  // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3675  if (isMMX && NumElems == 4 && X86::isPSHUFDMask(PermMask.Val)) {
3676    if (V2.getOpcode() != ISD::UNDEF)
3677      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3678                         DAG.getNode(ISD::UNDEF, VT), PermMask);
3679    return Op;
3680  }
3681
3682  if (!isMMX) {
3683    if (Subtarget->hasSSE2() &&
3684        (X86::isPSHUFDMask(PermMask.Val) ||
3685         X86::isPSHUFHWMask(PermMask.Val) ||
3686         X86::isPSHUFLWMask(PermMask.Val))) {
3687      MVT::ValueType RVT = VT;
3688      if (VT == MVT::v4f32) {
3689        RVT = MVT::v4i32;
3690        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT,
3691                         DAG.getNode(ISD::BIT_CONVERT, RVT, V1),
3692                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
3693      } else if (V2.getOpcode() != ISD::UNDEF)
3694        Op = DAG.getNode(ISD::VECTOR_SHUFFLE, RVT, V1,
3695                         DAG.getNode(ISD::UNDEF, RVT), PermMask);
3696      if (RVT != VT)
3697        Op = DAG.getNode(ISD::BIT_CONVERT, VT, Op);
3698      return Op;
3699    }
3700
3701    // Binary or unary shufps.
3702    if (X86::isSHUFPMask(PermMask.Val) ||
3703        (V2.getOpcode() == ISD::UNDEF && X86::isPSHUFDMask(PermMask.Val)))
3704      return Op;
3705  }
3706
3707  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
3708  if (VT == MVT::v8i16) {
3709    SDOperand NewOp = LowerVECTOR_SHUFFLEv8i16(V1, V2, PermMask, DAG, *this);
3710    if (NewOp.Val)
3711      return NewOp;
3712  }
3713
3714  // Handle all 4 wide cases with a number of shuffles.
3715  if (NumElems == 4 && !isMMX) {
3716    // Don't do this for MMX.
3717    MVT::ValueType MaskVT = PermMask.getValueType();
3718    MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3719    SmallVector<std::pair<int, int>, 8> Locs;
3720    Locs.reserve(NumElems);
3721    SmallVector<SDOperand, 8> Mask1(NumElems,
3722                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3723    SmallVector<SDOperand, 8> Mask2(NumElems,
3724                                    DAG.getNode(ISD::UNDEF, MaskEVT));
3725    unsigned NumHi = 0;
3726    unsigned NumLo = 0;
3727    // If no more than two elements come from either vector. This can be
3728    // implemented with two shuffles. First shuffle gather the elements.
3729    // The second shuffle, which takes the first shuffle as both of its
3730    // vector operands, put the elements into the right order.
3731    for (unsigned i = 0; i != NumElems; ++i) {
3732      SDOperand Elt = PermMask.getOperand(i);
3733      if (Elt.getOpcode() == ISD::UNDEF) {
3734        Locs[i] = std::make_pair(-1, -1);
3735      } else {
3736        unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3737        if (Val < NumElems) {
3738          Locs[i] = std::make_pair(0, NumLo);
3739          Mask1[NumLo] = Elt;
3740          NumLo++;
3741        } else {
3742          Locs[i] = std::make_pair(1, NumHi);
3743          if (2+NumHi < NumElems)
3744            Mask1[2+NumHi] = Elt;
3745          NumHi++;
3746        }
3747      }
3748    }
3749    if (NumLo <= 2 && NumHi <= 2) {
3750      V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3751                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3752                                   &Mask1[0], Mask1.size()));
3753      for (unsigned i = 0; i != NumElems; ++i) {
3754        if (Locs[i].first == -1)
3755          continue;
3756        else {
3757          unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3758          Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3759          Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3760        }
3761      }
3762
3763      return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3764                         DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3765                                     &Mask2[0], Mask2.size()));
3766    }
3767
3768    // Break it into (shuffle shuffle_hi, shuffle_lo).
3769    Locs.clear();
3770    SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3771    SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3772    SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3773    unsigned MaskIdx = 0;
3774    unsigned LoIdx = 0;
3775    unsigned HiIdx = NumElems/2;
3776    for (unsigned i = 0; i != NumElems; ++i) {
3777      if (i == NumElems/2) {
3778        MaskPtr = &HiMask;
3779        MaskIdx = 1;
3780        LoIdx = 0;
3781        HiIdx = NumElems/2;
3782      }
3783      SDOperand Elt = PermMask.getOperand(i);
3784      if (Elt.getOpcode() == ISD::UNDEF) {
3785        Locs[i] = std::make_pair(-1, -1);
3786      } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3787        Locs[i] = std::make_pair(MaskIdx, LoIdx);
3788        (*MaskPtr)[LoIdx] = Elt;
3789        LoIdx++;
3790      } else {
3791        Locs[i] = std::make_pair(MaskIdx, HiIdx);
3792        (*MaskPtr)[HiIdx] = Elt;
3793        HiIdx++;
3794      }
3795    }
3796
3797    SDOperand LoShuffle =
3798      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3799                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3800                              &LoMask[0], LoMask.size()));
3801    SDOperand HiShuffle =
3802      DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3803                  DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3804                              &HiMask[0], HiMask.size()));
3805    SmallVector<SDOperand, 8> MaskOps;
3806    for (unsigned i = 0; i != NumElems; ++i) {
3807      if (Locs[i].first == -1) {
3808        MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3809      } else {
3810        unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3811        MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3812      }
3813    }
3814    return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3815                       DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3816                                   &MaskOps[0], MaskOps.size()));
3817  }
3818
3819  return SDOperand();
3820}
3821
3822SDOperand
3823X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDOperand Op,
3824                                                SelectionDAG &DAG) {
3825  MVT::ValueType VT = Op.getValueType();
3826  if (MVT::getSizeInBits(VT) == 8) {
3827    SDOperand Extract = DAG.getNode(X86ISD::PEXTRB, MVT::i32,
3828                                    Op.getOperand(0), Op.getOperand(1));
3829    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3830                                    DAG.getValueType(VT));
3831    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3832  } else if (MVT::getSizeInBits(VT) == 16) {
3833    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, MVT::i32,
3834                                    Op.getOperand(0), Op.getOperand(1));
3835    SDOperand Assert  = DAG.getNode(ISD::AssertZext, MVT::i32, Extract,
3836                                    DAG.getValueType(VT));
3837    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3838  } else if (VT == MVT::f32) {
3839    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
3840    // the result back to FR32 register. It's only worth matching if the
3841    // result has a single use which is a store or a bitcast to i32.
3842    if (!Op.hasOneUse())
3843      return SDOperand();
3844    SDNode *User = Op.Val->use_begin()->getUser();
3845    if (User->getOpcode() != ISD::STORE &&
3846        (User->getOpcode() != ISD::BIT_CONVERT ||
3847         User->getValueType(0) != MVT::i32))
3848      return SDOperand();
3849    SDOperand Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3850                    DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Op.getOperand(0)),
3851                                    Op.getOperand(1));
3852    return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Extract);
3853  }
3854  return SDOperand();
3855}
3856
3857
3858SDOperand
3859X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3860  if (!isa<ConstantSDNode>(Op.getOperand(1)))
3861    return SDOperand();
3862
3863  if (Subtarget->hasSSE41()) {
3864    SDOperand Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
3865    if (Res.Val)
3866      return Res;
3867  }
3868
3869  MVT::ValueType VT = Op.getValueType();
3870  // TODO: handle v16i8.
3871  if (MVT::getSizeInBits(VT) == 16) {
3872    SDOperand Vec = Op.getOperand(0);
3873    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3874    if (Idx == 0)
3875      return DAG.getNode(ISD::TRUNCATE, MVT::i16,
3876                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32,
3877                                 DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, Vec),
3878                                     Op.getOperand(1)));
3879    // Transform it so it match pextrw which produces a 32-bit result.
3880    MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3881    SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3882                                    Op.getOperand(0), Op.getOperand(1));
3883    SDOperand Assert  = DAG.getNode(ISD::AssertZext, EVT, Extract,
3884                                    DAG.getValueType(VT));
3885    return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3886  } else if (MVT::getSizeInBits(VT) == 32) {
3887    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3888    if (Idx == 0)
3889      return Op;
3890    // SHUFPS the element to the lowest double word, then movss.
3891    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3892    SmallVector<SDOperand, 8> IdxVec;
3893    IdxVec.
3894      push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3895    IdxVec.
3896      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3897    IdxVec.
3898      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3899    IdxVec.
3900      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3901    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3902                                 &IdxVec[0], IdxVec.size());
3903    SDOperand Vec = Op.getOperand(0);
3904    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3905                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3906    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3907                       DAG.getIntPtrConstant(0));
3908  } else if (MVT::getSizeInBits(VT) == 64) {
3909    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
3910    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
3911    //        to match extract_elt for f64.
3912    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3913    if (Idx == 0)
3914      return Op;
3915
3916    // UNPCKHPD the element to the lowest double word, then movsd.
3917    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3918    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3919    MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3920    SmallVector<SDOperand, 8> IdxVec;
3921    IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
3922    IdxVec.
3923      push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3924    SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3925                                 &IdxVec[0], IdxVec.size());
3926    SDOperand Vec = Op.getOperand(0);
3927    Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3928                      Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3929    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3930                       DAG.getIntPtrConstant(0));
3931  }
3932
3933  return SDOperand();
3934}
3935
3936SDOperand
3937X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDOperand Op, SelectionDAG &DAG){
3938  MVT::ValueType VT = Op.getValueType();
3939  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3940
3941  SDOperand N0 = Op.getOperand(0);
3942  SDOperand N1 = Op.getOperand(1);
3943  SDOperand N2 = Op.getOperand(2);
3944
3945  if ((MVT::getSizeInBits(EVT) == 8) || (MVT::getSizeInBits(EVT) == 16)) {
3946    unsigned Opc = (MVT::getSizeInBits(EVT) == 8) ? X86ISD::PINSRB
3947                                                  : X86ISD::PINSRW;
3948    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
3949    // argument.
3950    if (N1.getValueType() != MVT::i32)
3951      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3952    if (N2.getValueType() != MVT::i32)
3953      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3954    return DAG.getNode(Opc, VT, N0, N1, N2);
3955  } else if (EVT == MVT::f32) {
3956    // Bits [7:6] of the constant are the source select.  This will always be
3957    //  zero here.  The DAG Combiner may combine an extract_elt index into these
3958    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
3959    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
3960    // Bits [5:4] of the constant are the destination select.  This is the
3961    //  value of the incoming immediate.
3962    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
3963    //   combine either bitwise AND or insert of float 0.0 to set these bits.
3964    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue() << 4);
3965    return DAG.getNode(X86ISD::INSERTPS, VT, N0, N1, N2);
3966  }
3967  return SDOperand();
3968}
3969
3970SDOperand
3971X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3972  MVT::ValueType VT = Op.getValueType();
3973  MVT::ValueType EVT = MVT::getVectorElementType(VT);
3974
3975  if (Subtarget->hasSSE41())
3976    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
3977
3978  if (EVT == MVT::i8)
3979    return SDOperand();
3980
3981  SDOperand N0 = Op.getOperand(0);
3982  SDOperand N1 = Op.getOperand(1);
3983  SDOperand N2 = Op.getOperand(2);
3984
3985  if (MVT::getSizeInBits(EVT) == 16) {
3986    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3987    // as its second argument.
3988    if (N1.getValueType() != MVT::i32)
3989      N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3990    if (N2.getValueType() != MVT::i32)
3991      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getValue());
3992    return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3993  }
3994  return SDOperand();
3995}
3996
3997SDOperand
3998X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3999  SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
4000  MVT::ValueType VT = MVT::v2i32;
4001  switch (Op.getValueType()) {
4002  default: break;
4003  case MVT::v16i8:
4004  case MVT::v8i16:
4005    VT = MVT::v4i32;
4006    break;
4007  }
4008  return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(),
4009                     DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, AnyExt));
4010}
4011
4012// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
4013// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
4014// one of the above mentioned nodes. It has to be wrapped because otherwise
4015// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
4016// be used to form addressing mode. These wrapped nodes will be selected
4017// into MOV32ri.
4018SDOperand
4019X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
4020  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
4021  SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
4022                                               getPointerTy(),
4023                                               CP->getAlignment());
4024  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4025  // With PIC, the address is actually $g + Offset.
4026  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4027      !Subtarget->isPICStyleRIPRel()) {
4028    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4029                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4030                         Result);
4031  }
4032
4033  return Result;
4034}
4035
4036SDOperand
4037X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
4038  GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4039  SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
4040  // If it's a debug information descriptor, don't mess with it.
4041  if (DAG.isVerifiedDebugInfoDesc(Op))
4042    return Result;
4043  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4044  // With PIC, the address is actually $g + Offset.
4045  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4046      !Subtarget->isPICStyleRIPRel()) {
4047    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4048                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4049                         Result);
4050  }
4051
4052  // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
4053  // load the value at address GV, not the value of GV itself. This means that
4054  // the GlobalAddress must be in the base or index register of the address, not
4055  // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
4056  // The same applies for external symbols during PIC codegen
4057  if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
4058    Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result,
4059                         PseudoSourceValue::getGOT(), 0);
4060
4061  return Result;
4062}
4063
4064// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
4065static SDOperand
4066LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4067                                const MVT::ValueType PtrVT) {
4068  SDOperand InFlag;
4069  SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
4070                                     DAG.getNode(X86ISD::GlobalBaseReg,
4071                                                 PtrVT), InFlag);
4072  InFlag = Chain.getValue(1);
4073
4074  // emit leal symbol@TLSGD(,%ebx,1), %eax
4075  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4076  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4077                                             GA->getValueType(0),
4078                                             GA->getOffset());
4079  SDOperand Ops[] = { Chain,  TGA, InFlag };
4080  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
4081  InFlag = Result.getValue(2);
4082  Chain = Result.getValue(1);
4083
4084  // call ___tls_get_addr. This function receives its argument in
4085  // the register EAX.
4086  Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
4087  InFlag = Chain.getValue(1);
4088
4089  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4090  SDOperand Ops1[] = { Chain,
4091                      DAG.getTargetExternalSymbol("___tls_get_addr",
4092                                                  PtrVT),
4093                      DAG.getRegister(X86::EAX, PtrVT),
4094                      DAG.getRegister(X86::EBX, PtrVT),
4095                      InFlag };
4096  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
4097  InFlag = Chain.getValue(1);
4098
4099  return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
4100}
4101
4102// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
4103static SDOperand
4104LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4105                                const MVT::ValueType PtrVT) {
4106  SDOperand InFlag, Chain;
4107
4108  // emit leaq symbol@TLSGD(%rip), %rdi
4109  SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
4110  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4111                                             GA->getValueType(0),
4112                                             GA->getOffset());
4113  SDOperand Ops[]  = { DAG.getEntryNode(), TGA};
4114  SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 2);
4115  Chain  = Result.getValue(1);
4116  InFlag = Result.getValue(2);
4117
4118  // call ___tls_get_addr. This function receives its argument in
4119  // the register RDI.
4120  Chain = DAG.getCopyToReg(Chain, X86::RDI, Result, InFlag);
4121  InFlag = Chain.getValue(1);
4122
4123  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4124  SDOperand Ops1[] = { Chain,
4125                      DAG.getTargetExternalSymbol("___tls_get_addr",
4126                                                  PtrVT),
4127                      DAG.getRegister(X86::RDI, PtrVT),
4128                      InFlag };
4129  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 4);
4130  InFlag = Chain.getValue(1);
4131
4132  return DAG.getCopyFromReg(Chain, X86::RAX, PtrVT, InFlag);
4133}
4134
4135// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
4136// "local exec" model.
4137static SDOperand
4138LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
4139                         const MVT::ValueType PtrVT) {
4140  // Get the Thread Pointer
4141  SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
4142  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
4143  // exec)
4144  SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
4145                                             GA->getValueType(0),
4146                                             GA->getOffset());
4147  SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
4148
4149  if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
4150    Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset,
4151                         PseudoSourceValue::getGOT(), 0);
4152
4153  // The address of the thread local variable is the add of the thread
4154  // pointer with the offset of the variable.
4155  return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
4156}
4157
4158SDOperand
4159X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
4160  // TODO: implement the "local dynamic" model
4161  // TODO: implement the "initial exec"model for pic executables
4162  assert(Subtarget->isTargetELF() &&
4163         "TLS not implemented for non-ELF targets");
4164  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
4165  // If the relocation model is PIC, use the "General Dynamic" TLS Model,
4166  // otherwise use the "Local Exec"TLS Model
4167  if (Subtarget->is64Bit()) {
4168    return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
4169  } else {
4170    if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
4171      return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
4172    else
4173      return LowerToTLSExecModel(GA, DAG, getPointerTy());
4174  }
4175}
4176
4177SDOperand
4178X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
4179  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
4180  SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
4181  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4182  // With PIC, the address is actually $g + Offset.
4183  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4184      !Subtarget->isPICStyleRIPRel()) {
4185    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4186                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4187                         Result);
4188  }
4189
4190  return Result;
4191}
4192
4193SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
4194  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
4195  SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
4196  Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
4197  // With PIC, the address is actually $g + Offset.
4198  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
4199      !Subtarget->isPICStyleRIPRel()) {
4200    Result = DAG.getNode(ISD::ADD, getPointerTy(),
4201                         DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
4202                         Result);
4203  }
4204
4205  return Result;
4206}
4207
4208/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
4209/// take a 2 x i32 value to shift plus a shift amount.
4210SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
4211  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4212  MVT::ValueType VT = Op.getValueType();
4213  unsigned VTBits = MVT::getSizeInBits(VT);
4214  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
4215  SDOperand ShOpLo = Op.getOperand(0);
4216  SDOperand ShOpHi = Op.getOperand(1);
4217  SDOperand ShAmt  = Op.getOperand(2);
4218  SDOperand Tmp1 = isSRA ?
4219    DAG.getNode(ISD::SRA, VT, ShOpHi, DAG.getConstant(VTBits - 1, MVT::i8)) :
4220    DAG.getConstant(0, VT);
4221
4222  SDOperand Tmp2, Tmp3;
4223  if (Op.getOpcode() == ISD::SHL_PARTS) {
4224    Tmp2 = DAG.getNode(X86ISD::SHLD, VT, ShOpHi, ShOpLo, ShAmt);
4225    Tmp3 = DAG.getNode(ISD::SHL, VT, ShOpLo, ShAmt);
4226  } else {
4227    Tmp2 = DAG.getNode(X86ISD::SHRD, VT, ShOpLo, ShOpHi, ShAmt);
4228    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, VT, ShOpHi, ShAmt);
4229  }
4230
4231  const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
4232  SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
4233                                  DAG.getConstant(VTBits, MVT::i8));
4234  SDOperand Cond = DAG.getNode(X86ISD::CMP, VT,
4235                               AndNode, DAG.getConstant(0, MVT::i8));
4236
4237  SDOperand Hi, Lo;
4238  SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4239  VTs = DAG.getNodeValueTypes(VT, MVT::Flag);
4240  SmallVector<SDOperand, 4> Ops;
4241  if (Op.getOpcode() == ISD::SHL_PARTS) {
4242    Ops.push_back(Tmp2);
4243    Ops.push_back(Tmp3);
4244    Ops.push_back(CC);
4245    Ops.push_back(Cond);
4246    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4247
4248    Ops.clear();
4249    Ops.push_back(Tmp3);
4250    Ops.push_back(Tmp1);
4251    Ops.push_back(CC);
4252    Ops.push_back(Cond);
4253    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4254  } else {
4255    Ops.push_back(Tmp2);
4256    Ops.push_back(Tmp3);
4257    Ops.push_back(CC);
4258    Ops.push_back(Cond);
4259    Lo = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4260
4261    Ops.clear();
4262    Ops.push_back(Tmp3);
4263    Ops.push_back(Tmp1);
4264    Ops.push_back(CC);
4265    Ops.push_back(Cond);
4266    Hi = DAG.getNode(X86ISD::CMOV, VT, &Ops[0], Ops.size());
4267  }
4268
4269  VTs = DAG.getNodeValueTypes(VT, VT);
4270  Ops.clear();
4271  Ops.push_back(Lo);
4272  Ops.push_back(Hi);
4273  return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
4274}
4275
4276SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
4277  MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
4278  assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
4279         "Unknown SINT_TO_FP to lower!");
4280
4281  // These are really Legal; caller falls through into that case.
4282  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
4283    return SDOperand();
4284  if (SrcVT == MVT::i64 && Op.getValueType() != MVT::f80 &&
4285      Subtarget->is64Bit())
4286    return SDOperand();
4287
4288  unsigned Size = MVT::getSizeInBits(SrcVT)/8;
4289  MachineFunction &MF = DAG.getMachineFunction();
4290  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
4291  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4292  SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
4293                                 StackSlot,
4294                                 PseudoSourceValue::getFixedStack(),
4295                                 SSFI);
4296
4297  // Build the FILD
4298  SDVTList Tys;
4299  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
4300  if (useSSE)
4301    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
4302  else
4303    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
4304  SmallVector<SDOperand, 8> Ops;
4305  Ops.push_back(Chain);
4306  Ops.push_back(StackSlot);
4307  Ops.push_back(DAG.getValueType(SrcVT));
4308  SDOperand Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD,
4309                                 Tys, &Ops[0], Ops.size());
4310
4311  if (useSSE) {
4312    Chain = Result.getValue(1);
4313    SDOperand InFlag = Result.getValue(2);
4314
4315    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
4316    // shouldn't be necessary except that RFP cannot be live across
4317    // multiple blocks. When stackifier is fixed, they can be uncoupled.
4318    MachineFunction &MF = DAG.getMachineFunction();
4319    int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
4320    SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4321    Tys = DAG.getVTList(MVT::Other);
4322    SmallVector<SDOperand, 8> Ops;
4323    Ops.push_back(Chain);
4324    Ops.push_back(Result);
4325    Ops.push_back(StackSlot);
4326    Ops.push_back(DAG.getValueType(Op.getValueType()));
4327    Ops.push_back(InFlag);
4328    Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
4329    Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot,
4330                         PseudoSourceValue::getFixedStack(), SSFI);
4331  }
4332
4333  return Result;
4334}
4335
4336std::pair<SDOperand,SDOperand> X86TargetLowering::
4337FP_TO_SINTHelper(SDOperand Op, SelectionDAG &DAG) {
4338  assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
4339         "Unknown FP_TO_SINT to lower!");
4340
4341  // These are really Legal.
4342  if (Op.getValueType() == MVT::i32 &&
4343      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
4344    return std::make_pair(SDOperand(), SDOperand());
4345  if (Subtarget->is64Bit() &&
4346      Op.getValueType() == MVT::i64 &&
4347      Op.getOperand(0).getValueType() != MVT::f80)
4348    return std::make_pair(SDOperand(), SDOperand());
4349
4350  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
4351  // stack slot.
4352  MachineFunction &MF = DAG.getMachineFunction();
4353  unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
4354  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4355  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4356  unsigned Opc;
4357  switch (Op.getValueType()) {
4358  default: assert(0 && "Invalid FP_TO_SINT to lower!");
4359  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
4360  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
4361  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
4362  }
4363
4364  SDOperand Chain = DAG.getEntryNode();
4365  SDOperand Value = Op.getOperand(0);
4366  if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
4367    assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
4368    Chain = DAG.getStore(Chain, Value, StackSlot,
4369                         PseudoSourceValue::getFixedStack(), SSFI);
4370    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
4371    SDOperand Ops[] = {
4372      Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
4373    };
4374    Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
4375    Chain = Value.getValue(1);
4376    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
4377    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
4378  }
4379
4380  // Build the FP_TO_INT*_IN_MEM
4381  SDOperand Ops[] = { Chain, Value, StackSlot };
4382  SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
4383
4384  return std::make_pair(FIST, StackSlot);
4385}
4386
4387SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
4388  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(Op, DAG);
4389  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4390  if (FIST.Val == 0) return SDOperand();
4391
4392  // Load the result.
4393  return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
4394}
4395
4396SDNode *X86TargetLowering::ExpandFP_TO_SINT(SDNode *N, SelectionDAG &DAG) {
4397  std::pair<SDOperand,SDOperand> Vals = FP_TO_SINTHelper(SDOperand(N, 0), DAG);
4398  SDOperand FIST = Vals.first, StackSlot = Vals.second;
4399  if (FIST.Val == 0) return 0;
4400
4401  // Return an i64 load from the stack slot.
4402  SDOperand Res = DAG.getLoad(MVT::i64, FIST, StackSlot, NULL, 0);
4403
4404  // Use a MERGE_VALUES node to drop the chain result value.
4405  return DAG.getNode(ISD::MERGE_VALUES, MVT::i64, Res).Val;
4406}
4407
4408SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
4409  MVT::ValueType VT = Op.getValueType();
4410  MVT::ValueType EltVT = VT;
4411  if (MVT::isVector(VT))
4412    EltVT = MVT::getVectorElementType(VT);
4413  std::vector<Constant*> CV;
4414  if (EltVT == MVT::f64) {
4415    Constant *C = ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63))));
4416    CV.push_back(C);
4417    CV.push_back(C);
4418  } else {
4419    Constant *C = ConstantFP::get(APFloat(APInt(32, ~(1U << 31))));
4420    CV.push_back(C);
4421    CV.push_back(C);
4422    CV.push_back(C);
4423    CV.push_back(C);
4424  }
4425  Constant *C = ConstantVector::get(CV);
4426  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4427  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4428                               PseudoSourceValue::getConstantPool(), 0,
4429                               false, 16);
4430  return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
4431}
4432
4433SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4434  MVT::ValueType VT = Op.getValueType();
4435  MVT::ValueType EltVT = VT;
4436  unsigned EltNum = 1;
4437  if (MVT::isVector(VT)) {
4438    EltVT = MVT::getVectorElementType(VT);
4439    EltNum = MVT::getVectorNumElements(VT);
4440  }
4441  std::vector<Constant*> CV;
4442  if (EltVT == MVT::f64) {
4443    Constant *C = ConstantFP::get(APFloat(APInt(64, 1ULL << 63)));
4444    CV.push_back(C);
4445    CV.push_back(C);
4446  } else {
4447    Constant *C = ConstantFP::get(APFloat(APInt(32, 1U << 31)));
4448    CV.push_back(C);
4449    CV.push_back(C);
4450    CV.push_back(C);
4451    CV.push_back(C);
4452  }
4453  Constant *C = ConstantVector::get(CV);
4454  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4455  SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4456                               PseudoSourceValue::getConstantPool(), 0,
4457                               false, 16);
4458  if (MVT::isVector(VT)) {
4459    return DAG.getNode(ISD::BIT_CONVERT, VT,
4460                       DAG.getNode(ISD::XOR, MVT::v2i64,
4461                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4462                    DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4463  } else {
4464    return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4465  }
4466}
4467
4468SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4469  SDOperand Op0 = Op.getOperand(0);
4470  SDOperand Op1 = Op.getOperand(1);
4471  MVT::ValueType VT = Op.getValueType();
4472  MVT::ValueType SrcVT = Op1.getValueType();
4473
4474  // If second operand is smaller, extend it first.
4475  if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4476    Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4477    SrcVT = VT;
4478  }
4479  // And if it is bigger, shrink it first.
4480  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4481    Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1, DAG.getIntPtrConstant(1));
4482    SrcVT = VT;
4483  }
4484
4485  // At this point the operands and the result should have the same
4486  // type, and that won't be f80 since that is not custom lowered.
4487
4488  // First get the sign bit of second operand.
4489  std::vector<Constant*> CV;
4490  if (SrcVT == MVT::f64) {
4491    CV.push_back(ConstantFP::get(APFloat(APInt(64, 1ULL << 63))));
4492    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4493  } else {
4494    CV.push_back(ConstantFP::get(APFloat(APInt(32, 1U << 31))));
4495    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4496    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4497    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4498  }
4499  Constant *C = ConstantVector::get(CV);
4500  SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4501  SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx,
4502                                PseudoSourceValue::getConstantPool(), 0,
4503                                false, 16);
4504  SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4505
4506  // Shift sign bit right or left if the two operands have different types.
4507  if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4508    // Op0 is MVT::f32, Op1 is MVT::f64.
4509    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4510    SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4511                          DAG.getConstant(32, MVT::i32));
4512    SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4513    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4514                          DAG.getIntPtrConstant(0));
4515  }
4516
4517  // Clear first operand sign bit.
4518  CV.clear();
4519  if (VT == MVT::f64) {
4520    CV.push_back(ConstantFP::get(APFloat(APInt(64, ~(1ULL << 63)))));
4521    CV.push_back(ConstantFP::get(APFloat(APInt(64, 0))));
4522  } else {
4523    CV.push_back(ConstantFP::get(APFloat(APInt(32, ~(1U << 31)))));
4524    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4525    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4526    CV.push_back(ConstantFP::get(APFloat(APInt(32, 0))));
4527  }
4528  C = ConstantVector::get(CV);
4529  CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4530  SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx,
4531                                PseudoSourceValue::getConstantPool(), 0,
4532                                false, 16);
4533  SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4534
4535  // Or the value with the sign bit.
4536  return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4537}
4538
4539SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
4540  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
4541  SDOperand Cond;
4542  SDOperand Op0 = Op.getOperand(0);
4543  SDOperand Op1 = Op.getOperand(1);
4544  SDOperand CC = Op.getOperand(2);
4545  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4546  bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4547  unsigned X86CC;
4548
4549  if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
4550                     Op0, Op1, DAG)) {
4551    Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4552    return DAG.getNode(X86ISD::SETCC, MVT::i8,
4553                       DAG.getConstant(X86CC, MVT::i8), Cond);
4554  }
4555
4556  assert(isFP && "Illegal integer SetCC!");
4557
4558  Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4559  switch (SetCCOpcode) {
4560  default: assert(false && "Illegal floating point SetCC!");
4561  case ISD::SETOEQ: {  // !PF & ZF
4562    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4563                                 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
4564    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4565                                 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4566    return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4567  }
4568  case ISD::SETUNE: {  // PF | !ZF
4569    SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4570                                 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
4571    SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
4572                                 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4573    return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4574  }
4575  }
4576}
4577
4578
4579SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4580  bool addTest = true;
4581  SDOperand Cond  = Op.getOperand(0);
4582  SDOperand CC;
4583
4584  if (Cond.getOpcode() == ISD::SETCC)
4585    Cond = LowerSETCC(Cond, DAG);
4586
4587  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4588  // setting operand in place of the X86ISD::SETCC.
4589  if (Cond.getOpcode() == X86ISD::SETCC) {
4590    CC = Cond.getOperand(0);
4591
4592    SDOperand Cmp = Cond.getOperand(1);
4593    unsigned Opc = Cmp.getOpcode();
4594    MVT::ValueType VT = Op.getValueType();
4595
4596    bool IllegalFPCMov = false;
4597    if (MVT::isFloatingPoint(VT) && !MVT::isVector(VT) &&
4598        !isScalarFPTypeInSSEReg(VT))  // FPStack?
4599      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4600
4601    if ((Opc == X86ISD::CMP ||
4602         Opc == X86ISD::COMI ||
4603         Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
4604      Cond = Cmp;
4605      addTest = false;
4606    }
4607  }
4608
4609  if (addTest) {
4610    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4611    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4612  }
4613
4614  const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4615                                                    MVT::Flag);
4616  SmallVector<SDOperand, 4> Ops;
4617  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4618  // condition is true.
4619  Ops.push_back(Op.getOperand(2));
4620  Ops.push_back(Op.getOperand(1));
4621  Ops.push_back(CC);
4622  Ops.push_back(Cond);
4623  return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
4624}
4625
4626SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4627  bool addTest = true;
4628  SDOperand Chain = Op.getOperand(0);
4629  SDOperand Cond  = Op.getOperand(1);
4630  SDOperand Dest  = Op.getOperand(2);
4631  SDOperand CC;
4632
4633  if (Cond.getOpcode() == ISD::SETCC)
4634    Cond = LowerSETCC(Cond, DAG);
4635
4636  // If condition flag is set by a X86ISD::CMP, then use it as the condition
4637  // setting operand in place of the X86ISD::SETCC.
4638  if (Cond.getOpcode() == X86ISD::SETCC) {
4639    CC = Cond.getOperand(0);
4640
4641    SDOperand Cmp = Cond.getOperand(1);
4642    unsigned Opc = Cmp.getOpcode();
4643    if (Opc == X86ISD::CMP ||
4644        Opc == X86ISD::COMI ||
4645        Opc == X86ISD::UCOMI) {
4646      Cond = Cmp;
4647      addTest = false;
4648    }
4649  }
4650
4651  if (addTest) {
4652    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
4653    Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
4654  }
4655  return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
4656                     Chain, Op.getOperand(2), CC, Cond);
4657}
4658
4659
4660// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4661// Calls to _alloca is needed to probe the stack when allocating more than 4k
4662// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4663// that the guard pages used by the OS virtual memory manager are allocated in
4664// correct sequence.
4665SDOperand
4666X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4667                                           SelectionDAG &DAG) {
4668  assert(Subtarget->isTargetCygMing() &&
4669         "This should be used only on Cygwin/Mingw targets");
4670
4671  // Get the inputs.
4672  SDOperand Chain = Op.getOperand(0);
4673  SDOperand Size  = Op.getOperand(1);
4674  // FIXME: Ensure alignment here
4675
4676  SDOperand Flag;
4677
4678  MVT::ValueType IntPtr = getPointerTy();
4679  MVT::ValueType SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
4680
4681  Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4682  Flag = Chain.getValue(1);
4683
4684  SDVTList  NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4685  SDOperand Ops[] = { Chain,
4686                      DAG.getTargetExternalSymbol("_alloca", IntPtr),
4687                      DAG.getRegister(X86::EAX, IntPtr),
4688                      Flag };
4689  Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4690  Flag = Chain.getValue(1);
4691
4692  Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4693
4694  std::vector<MVT::ValueType> Tys;
4695  Tys.push_back(SPTy);
4696  Tys.push_back(MVT::Other);
4697  SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4698  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4699}
4700
4701SDOperand
4702X86TargetLowering::EmitTargetCodeForMemset(SelectionDAG &DAG,
4703                                           SDOperand Chain,
4704                                           SDOperand Dst, SDOperand Src,
4705                                           SDOperand Size, unsigned Align,
4706                                        const Value *DstSV, uint64_t DstSVOff) {
4707  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4708
4709  /// If not DWORD aligned or size is more than the threshold, call the library.
4710  /// The libc version is likely to be faster for these cases. It can use the
4711  /// address value and run time information about the CPU.
4712  if ((Align & 3) == 0 ||
4713      !ConstantSize ||
4714      ConstantSize->getValue() > getSubtarget()->getMaxInlineSizeThreshold()) {
4715    SDOperand InFlag(0, 0);
4716
4717    // Check to see if there is a specialized entry-point for memory zeroing.
4718    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
4719    if (const char *bzeroEntry =
4720          V && V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
4721      MVT::ValueType IntPtr = getPointerTy();
4722      const Type *IntPtrTy = getTargetData()->getIntPtrType();
4723      TargetLowering::ArgListTy Args;
4724      TargetLowering::ArgListEntry Entry;
4725      Entry.Node = Dst;
4726      Entry.Ty = IntPtrTy;
4727      Args.push_back(Entry);
4728      Entry.Node = Size;
4729      Args.push_back(Entry);
4730      std::pair<SDOperand,SDOperand> CallResult =
4731        LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
4732                    false, DAG.getExternalSymbol(bzeroEntry, IntPtr),
4733                    Args, DAG);
4734      return CallResult.second;
4735    }
4736
4737    // Otherwise have the target-independent code call memset.
4738    return SDOperand();
4739  }
4740
4741  uint64_t SizeVal = ConstantSize->getValue();
4742  SDOperand InFlag(0, 0);
4743  MVT::ValueType AVT;
4744  SDOperand Count;
4745  ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
4746  unsigned BytesLeft = 0;
4747  bool TwoRepStos = false;
4748  if (ValC) {
4749    unsigned ValReg;
4750    uint64_t Val = ValC->getValue() & 255;
4751
4752    // If the value is a constant, then we can potentially use larger sets.
4753    switch (Align & 3) {
4754      case 2:   // WORD aligned
4755        AVT = MVT::i16;
4756        ValReg = X86::AX;
4757        Val = (Val << 8) | Val;
4758        break;
4759      case 0:  // DWORD aligned
4760        AVT = MVT::i32;
4761        ValReg = X86::EAX;
4762        Val = (Val << 8)  | Val;
4763        Val = (Val << 16) | Val;
4764        if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) {  // QWORD aligned
4765          AVT = MVT::i64;
4766          ValReg = X86::RAX;
4767          Val = (Val << 32) | Val;
4768        }
4769        break;
4770      default:  // Byte aligned
4771        AVT = MVT::i8;
4772        ValReg = X86::AL;
4773        Count = DAG.getIntPtrConstant(SizeVal);
4774        break;
4775    }
4776
4777    if (AVT > MVT::i8) {
4778      unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4779      Count = DAG.getIntPtrConstant(SizeVal / UBytes);
4780      BytesLeft = SizeVal % UBytes;
4781    }
4782
4783    Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4784                              InFlag);
4785    InFlag = Chain.getValue(1);
4786  } else {
4787    AVT = MVT::i8;
4788    Count  = DAG.getIntPtrConstant(SizeVal);
4789    Chain  = DAG.getCopyToReg(Chain, X86::AL, Src, InFlag);
4790    InFlag = Chain.getValue(1);
4791  }
4792
4793  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4794                            Count, InFlag);
4795  InFlag = Chain.getValue(1);
4796  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4797                            Dst, InFlag);
4798  InFlag = Chain.getValue(1);
4799
4800  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4801  SmallVector<SDOperand, 8> Ops;
4802  Ops.push_back(Chain);
4803  Ops.push_back(DAG.getValueType(AVT));
4804  Ops.push_back(InFlag);
4805  Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4806
4807  if (TwoRepStos) {
4808    InFlag = Chain.getValue(1);
4809    Count  = Size;
4810    MVT::ValueType CVT = Count.getValueType();
4811    SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4812                               DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4813    Chain  = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4814                              Left, InFlag);
4815    InFlag = Chain.getValue(1);
4816    Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4817    Ops.clear();
4818    Ops.push_back(Chain);
4819    Ops.push_back(DAG.getValueType(MVT::i8));
4820    Ops.push_back(InFlag);
4821    Chain  = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4822  } else if (BytesLeft) {
4823    // Handle the last 1 - 7 bytes.
4824    unsigned Offset = SizeVal - BytesLeft;
4825    MVT::ValueType AddrVT = Dst.getValueType();
4826    MVT::ValueType SizeVT = Size.getValueType();
4827
4828    Chain = DAG.getMemset(Chain,
4829                          DAG.getNode(ISD::ADD, AddrVT, Dst,
4830                                      DAG.getConstant(Offset, AddrVT)),
4831                          Src,
4832                          DAG.getConstant(BytesLeft, SizeVT),
4833                          Align, DstSV, DstSVOff + Offset);
4834  }
4835
4836  // TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
4837  return Chain;
4838}
4839
4840SDOperand
4841X86TargetLowering::EmitTargetCodeForMemcpy(SelectionDAG &DAG,
4842                                           SDOperand Chain,
4843                                           SDOperand Dst, SDOperand Src,
4844                                           SDOperand Size, unsigned Align,
4845                                           bool AlwaysInline,
4846                                           const Value *DstSV, uint64_t DstSVOff,
4847                                           const Value *SrcSV, uint64_t SrcSVOff){
4848
4849  // This requires the copy size to be a constant, preferrably
4850  // within a subtarget-specific limit.
4851  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
4852  if (!ConstantSize)
4853    return SDOperand();
4854  uint64_t SizeVal = ConstantSize->getValue();
4855  if (!AlwaysInline && SizeVal > getSubtarget()->getMaxInlineSizeThreshold())
4856    return SDOperand();
4857
4858  MVT::ValueType AVT;
4859  unsigned BytesLeft = 0;
4860  if (Align >= 8 && Subtarget->is64Bit())
4861    AVT = MVT::i64;
4862  else if (Align >= 4)
4863    AVT = MVT::i32;
4864  else if (Align >= 2)
4865    AVT = MVT::i16;
4866  else
4867    AVT = MVT::i8;
4868
4869  unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4870  unsigned CountVal = SizeVal / UBytes;
4871  SDOperand Count = DAG.getIntPtrConstant(CountVal);
4872  BytesLeft = SizeVal % UBytes;
4873
4874  SDOperand InFlag(0, 0);
4875  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4876                            Count, InFlag);
4877  InFlag = Chain.getValue(1);
4878  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4879                            Dst, InFlag);
4880  InFlag = Chain.getValue(1);
4881  Chain  = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
4882                            Src, InFlag);
4883  InFlag = Chain.getValue(1);
4884
4885  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4886  SmallVector<SDOperand, 8> Ops;
4887  Ops.push_back(Chain);
4888  Ops.push_back(DAG.getValueType(AVT));
4889  Ops.push_back(InFlag);
4890  SDOperand RepMovs = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4891
4892  SmallVector<SDOperand, 4> Results;
4893  Results.push_back(RepMovs);
4894  if (BytesLeft) {
4895    // Handle the last 1 - 7 bytes.
4896    unsigned Offset = SizeVal - BytesLeft;
4897    MVT::ValueType DstVT = Dst.getValueType();
4898    MVT::ValueType SrcVT = Src.getValueType();
4899    MVT::ValueType SizeVT = Size.getValueType();
4900    Results.push_back(DAG.getMemcpy(Chain,
4901                                    DAG.getNode(ISD::ADD, DstVT, Dst,
4902                                                DAG.getConstant(Offset, DstVT)),
4903                                    DAG.getNode(ISD::ADD, SrcVT, Src,
4904                                                DAG.getConstant(Offset, SrcVT)),
4905                                    DAG.getConstant(BytesLeft, SizeVT),
4906                                    Align, AlwaysInline,
4907                                    DstSV, DstSVOff + Offset,
4908                                    SrcSV, SrcSVOff + Offset));
4909  }
4910
4911  return DAG.getNode(ISD::TokenFactor, MVT::Other, &Results[0], Results.size());
4912}
4913
4914/// Expand the result of: i64,outchain = READCYCLECOUNTER inchain
4915SDNode *X86TargetLowering::ExpandREADCYCLECOUNTER(SDNode *N, SelectionDAG &DAG){
4916  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4917  SDOperand TheChain = N->getOperand(0);
4918  SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheChain, 1);
4919  if (Subtarget->is64Bit()) {
4920    SDOperand rax = DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
4921    SDOperand rdx = DAG.getCopyFromReg(rax.getValue(1), X86::RDX,
4922                                       MVT::i64, rax.getValue(2));
4923    SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, rdx,
4924                                DAG.getConstant(32, MVT::i8));
4925    SDOperand Ops[] = {
4926      DAG.getNode(ISD::OR, MVT::i64, rax, Tmp), rdx.getValue(1)
4927    };
4928
4929    Tys = DAG.getVTList(MVT::i64, MVT::Other);
4930    return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4931  }
4932
4933  SDOperand eax = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4934  SDOperand edx = DAG.getCopyFromReg(eax.getValue(1), X86::EDX,
4935                                       MVT::i32, eax.getValue(2));
4936  // Use a buildpair to merge the two 32-bit values into a 64-bit one.
4937  SDOperand Ops[] = { eax, edx };
4938  Ops[0] = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Ops, 2);
4939
4940  // Use a MERGE_VALUES to return the value and chain.
4941  Ops[1] = edx.getValue(1);
4942  Tys = DAG.getVTList(MVT::i64, MVT::Other);
4943  return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2).Val;
4944}
4945
4946SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4947  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4948
4949  if (!Subtarget->is64Bit()) {
4950    // vastart just stores the address of the VarArgsFrameIndex slot into the
4951    // memory location argument.
4952    SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4953    return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV, 0);
4954  }
4955
4956  // __va_list_tag:
4957  //   gp_offset         (0 - 6 * 8)
4958  //   fp_offset         (48 - 48 + 8 * 16)
4959  //   overflow_arg_area (point to parameters coming in memory).
4960  //   reg_save_area
4961  SmallVector<SDOperand, 8> MemOps;
4962  SDOperand FIN = Op.getOperand(1);
4963  // Store gp_offset
4964  SDOperand Store = DAG.getStore(Op.getOperand(0),
4965                                 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4966                                 FIN, SV, 0);
4967  MemOps.push_back(Store);
4968
4969  // Store fp_offset
4970  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4971  Store = DAG.getStore(Op.getOperand(0),
4972                       DAG.getConstant(VarArgsFPOffset, MVT::i32),
4973                       FIN, SV, 0);
4974  MemOps.push_back(Store);
4975
4976  // Store ptr to overflow_arg_area
4977  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(4));
4978  SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4979  Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV, 0);
4980  MemOps.push_back(Store);
4981
4982  // Store ptr to reg_save_area.
4983  FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, DAG.getIntPtrConstant(8));
4984  SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4985  Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV, 0);
4986  MemOps.push_back(Store);
4987  return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4988}
4989
4990SDOperand X86TargetLowering::LowerVAARG(SDOperand Op, SelectionDAG &DAG) {
4991  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4992  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
4993  SDOperand Chain = Op.getOperand(0);
4994  SDOperand SrcPtr = Op.getOperand(1);
4995  SDOperand SrcSV = Op.getOperand(2);
4996
4997  assert(0 && "VAArgInst is not yet implemented for x86-64!");
4998  abort();
4999  return SDOperand();
5000}
5001
5002SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
5003  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
5004  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
5005  SDOperand Chain = Op.getOperand(0);
5006  SDOperand DstPtr = Op.getOperand(1);
5007  SDOperand SrcPtr = Op.getOperand(2);
5008  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
5009  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5010
5011  return DAG.getMemcpy(Chain, DstPtr, SrcPtr,
5012                       DAG.getIntPtrConstant(24), 8, false,
5013                       DstSV, 0, SrcSV, 0);
5014}
5015
5016SDOperand
5017X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
5018  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
5019  switch (IntNo) {
5020  default: return SDOperand();    // Don't custom lower most intrinsics.
5021  // Comparison intrinsics.
5022  case Intrinsic::x86_sse_comieq_ss:
5023  case Intrinsic::x86_sse_comilt_ss:
5024  case Intrinsic::x86_sse_comile_ss:
5025  case Intrinsic::x86_sse_comigt_ss:
5026  case Intrinsic::x86_sse_comige_ss:
5027  case Intrinsic::x86_sse_comineq_ss:
5028  case Intrinsic::x86_sse_ucomieq_ss:
5029  case Intrinsic::x86_sse_ucomilt_ss:
5030  case Intrinsic::x86_sse_ucomile_ss:
5031  case Intrinsic::x86_sse_ucomigt_ss:
5032  case Intrinsic::x86_sse_ucomige_ss:
5033  case Intrinsic::x86_sse_ucomineq_ss:
5034  case Intrinsic::x86_sse2_comieq_sd:
5035  case Intrinsic::x86_sse2_comilt_sd:
5036  case Intrinsic::x86_sse2_comile_sd:
5037  case Intrinsic::x86_sse2_comigt_sd:
5038  case Intrinsic::x86_sse2_comige_sd:
5039  case Intrinsic::x86_sse2_comineq_sd:
5040  case Intrinsic::x86_sse2_ucomieq_sd:
5041  case Intrinsic::x86_sse2_ucomilt_sd:
5042  case Intrinsic::x86_sse2_ucomile_sd:
5043  case Intrinsic::x86_sse2_ucomigt_sd:
5044  case Intrinsic::x86_sse2_ucomige_sd:
5045  case Intrinsic::x86_sse2_ucomineq_sd: {
5046    unsigned Opc = 0;
5047    ISD::CondCode CC = ISD::SETCC_INVALID;
5048    switch (IntNo) {
5049    default: break;
5050    case Intrinsic::x86_sse_comieq_ss:
5051    case Intrinsic::x86_sse2_comieq_sd:
5052      Opc = X86ISD::COMI;
5053      CC = ISD::SETEQ;
5054      break;
5055    case Intrinsic::x86_sse_comilt_ss:
5056    case Intrinsic::x86_sse2_comilt_sd:
5057      Opc = X86ISD::COMI;
5058      CC = ISD::SETLT;
5059      break;
5060    case Intrinsic::x86_sse_comile_ss:
5061    case Intrinsic::x86_sse2_comile_sd:
5062      Opc = X86ISD::COMI;
5063      CC = ISD::SETLE;
5064      break;
5065    case Intrinsic::x86_sse_comigt_ss:
5066    case Intrinsic::x86_sse2_comigt_sd:
5067      Opc = X86ISD::COMI;
5068      CC = ISD::SETGT;
5069      break;
5070    case Intrinsic::x86_sse_comige_ss:
5071    case Intrinsic::x86_sse2_comige_sd:
5072      Opc = X86ISD::COMI;
5073      CC = ISD::SETGE;
5074      break;
5075    case Intrinsic::x86_sse_comineq_ss:
5076    case Intrinsic::x86_sse2_comineq_sd:
5077      Opc = X86ISD::COMI;
5078      CC = ISD::SETNE;
5079      break;
5080    case Intrinsic::x86_sse_ucomieq_ss:
5081    case Intrinsic::x86_sse2_ucomieq_sd:
5082      Opc = X86ISD::UCOMI;
5083      CC = ISD::SETEQ;
5084      break;
5085    case Intrinsic::x86_sse_ucomilt_ss:
5086    case Intrinsic::x86_sse2_ucomilt_sd:
5087      Opc = X86ISD::UCOMI;
5088      CC = ISD::SETLT;
5089      break;
5090    case Intrinsic::x86_sse_ucomile_ss:
5091    case Intrinsic::x86_sse2_ucomile_sd:
5092      Opc = X86ISD::UCOMI;
5093      CC = ISD::SETLE;
5094      break;
5095    case Intrinsic::x86_sse_ucomigt_ss:
5096    case Intrinsic::x86_sse2_ucomigt_sd:
5097      Opc = X86ISD::UCOMI;
5098      CC = ISD::SETGT;
5099      break;
5100    case Intrinsic::x86_sse_ucomige_ss:
5101    case Intrinsic::x86_sse2_ucomige_sd:
5102      Opc = X86ISD::UCOMI;
5103      CC = ISD::SETGE;
5104      break;
5105    case Intrinsic::x86_sse_ucomineq_ss:
5106    case Intrinsic::x86_sse2_ucomineq_sd:
5107      Opc = X86ISD::UCOMI;
5108      CC = ISD::SETNE;
5109      break;
5110    }
5111
5112    unsigned X86CC;
5113    SDOperand LHS = Op.getOperand(1);
5114    SDOperand RHS = Op.getOperand(2);
5115    translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
5116
5117    SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
5118    SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
5119                                  DAG.getConstant(X86CC, MVT::i8), Cond);
5120    return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
5121  }
5122
5123  // Fix vector shift instructions where the last operand is a non-immediate
5124  // i32 value.
5125  case Intrinsic::x86_sse2_pslli_w:
5126  case Intrinsic::x86_sse2_pslli_d:
5127  case Intrinsic::x86_sse2_pslli_q:
5128  case Intrinsic::x86_sse2_psrli_w:
5129  case Intrinsic::x86_sse2_psrli_d:
5130  case Intrinsic::x86_sse2_psrli_q:
5131  case Intrinsic::x86_sse2_psrai_w:
5132  case Intrinsic::x86_sse2_psrai_d:
5133  case Intrinsic::x86_mmx_pslli_w:
5134  case Intrinsic::x86_mmx_pslli_d:
5135  case Intrinsic::x86_mmx_pslli_q:
5136  case Intrinsic::x86_mmx_psrli_w:
5137  case Intrinsic::x86_mmx_psrli_d:
5138  case Intrinsic::x86_mmx_psrli_q:
5139  case Intrinsic::x86_mmx_psrai_w:
5140  case Intrinsic::x86_mmx_psrai_d: {
5141    SDOperand ShAmt = Op.getOperand(2);
5142    if (isa<ConstantSDNode>(ShAmt))
5143      return SDOperand();
5144
5145    unsigned NewIntNo = 0;
5146    MVT::ValueType ShAmtVT = MVT::v4i32;
5147    switch (IntNo) {
5148    case Intrinsic::x86_sse2_pslli_w:
5149      NewIntNo = Intrinsic::x86_sse2_psll_w;
5150      break;
5151    case Intrinsic::x86_sse2_pslli_d:
5152      NewIntNo = Intrinsic::x86_sse2_psll_d;
5153      break;
5154    case Intrinsic::x86_sse2_pslli_q:
5155      NewIntNo = Intrinsic::x86_sse2_psll_q;
5156      break;
5157    case Intrinsic::x86_sse2_psrli_w:
5158      NewIntNo = Intrinsic::x86_sse2_psrl_w;
5159      break;
5160    case Intrinsic::x86_sse2_psrli_d:
5161      NewIntNo = Intrinsic::x86_sse2_psrl_d;
5162      break;
5163    case Intrinsic::x86_sse2_psrli_q:
5164      NewIntNo = Intrinsic::x86_sse2_psrl_q;
5165      break;
5166    case Intrinsic::x86_sse2_psrai_w:
5167      NewIntNo = Intrinsic::x86_sse2_psra_w;
5168      break;
5169    case Intrinsic::x86_sse2_psrai_d:
5170      NewIntNo = Intrinsic::x86_sse2_psra_d;
5171      break;
5172    default: {
5173      ShAmtVT = MVT::v2i32;
5174      switch (IntNo) {
5175      case Intrinsic::x86_mmx_pslli_w:
5176        NewIntNo = Intrinsic::x86_mmx_psll_w;
5177        break;
5178      case Intrinsic::x86_mmx_pslli_d:
5179        NewIntNo = Intrinsic::x86_mmx_psll_d;
5180        break;
5181      case Intrinsic::x86_mmx_pslli_q:
5182        NewIntNo = Intrinsic::x86_mmx_psll_q;
5183        break;
5184      case Intrinsic::x86_mmx_psrli_w:
5185        NewIntNo = Intrinsic::x86_mmx_psrl_w;
5186        break;
5187      case Intrinsic::x86_mmx_psrli_d:
5188        NewIntNo = Intrinsic::x86_mmx_psrl_d;
5189        break;
5190      case Intrinsic::x86_mmx_psrli_q:
5191        NewIntNo = Intrinsic::x86_mmx_psrl_q;
5192        break;
5193      case Intrinsic::x86_mmx_psrai_w:
5194        NewIntNo = Intrinsic::x86_mmx_psra_w;
5195        break;
5196      case Intrinsic::x86_mmx_psrai_d:
5197        NewIntNo = Intrinsic::x86_mmx_psra_d;
5198        break;
5199      default: abort();  // Can't reach here.
5200      }
5201      break;
5202    }
5203    }
5204    MVT::ValueType VT = Op.getValueType();
5205    ShAmt = DAG.getNode(ISD::BIT_CONVERT, VT,
5206                        DAG.getNode(ISD::SCALAR_TO_VECTOR, ShAmtVT, ShAmt));
5207    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VT,
5208                       DAG.getConstant(NewIntNo, MVT::i32),
5209                       Op.getOperand(1), ShAmt);
5210  }
5211  }
5212}
5213
5214SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
5215  // Depths > 0 not supported yet!
5216  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5217    return SDOperand();
5218
5219  // Just load the return address
5220  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5221  return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
5222}
5223
5224SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
5225  // Depths > 0 not supported yet!
5226  if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
5227    return SDOperand();
5228
5229  SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
5230  return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
5231                     DAG.getIntPtrConstant(4));
5232}
5233
5234SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
5235                                                       SelectionDAG &DAG) {
5236  // Is not yet supported on x86-64
5237  if (Subtarget->is64Bit())
5238    return SDOperand();
5239
5240  return DAG.getIntPtrConstant(8);
5241}
5242
5243SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
5244{
5245  assert(!Subtarget->is64Bit() &&
5246         "Lowering of eh_return builtin is not supported yet on x86-64");
5247
5248  MachineFunction &MF = DAG.getMachineFunction();
5249  SDOperand Chain     = Op.getOperand(0);
5250  SDOperand Offset    = Op.getOperand(1);
5251  SDOperand Handler   = Op.getOperand(2);
5252
5253  SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
5254                                    getPointerTy());
5255
5256  SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
5257                                    DAG.getIntPtrConstant(-4UL));
5258  StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
5259  Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
5260  Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
5261  MF.getRegInfo().addLiveOut(X86::ECX);
5262
5263  return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
5264                     Chain, DAG.getRegister(X86::ECX, getPointerTy()));
5265}
5266
5267SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
5268                                             SelectionDAG &DAG) {
5269  SDOperand Root = Op.getOperand(0);
5270  SDOperand Trmp = Op.getOperand(1); // trampoline
5271  SDOperand FPtr = Op.getOperand(2); // nested function
5272  SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
5273
5274  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
5275
5276  const X86InstrInfo *TII =
5277    ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
5278
5279  if (Subtarget->is64Bit()) {
5280    SDOperand OutChains[6];
5281
5282    // Large code-model.
5283
5284    const unsigned char JMP64r  = TII->getBaseOpcodeFor(X86::JMP64r);
5285    const unsigned char MOV64ri = TII->getBaseOpcodeFor(X86::MOV64ri);
5286
5287    const unsigned char N86R10 =
5288      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R10);
5289    const unsigned char N86R11 =
5290      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(X86::R11);
5291
5292    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
5293
5294    // Load the pointer to the nested function into R11.
5295    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
5296    SDOperand Addr = Trmp;
5297    OutChains[0] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5298                                TrmpAddr, 0);
5299
5300    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(2, MVT::i64));
5301    OutChains[1] = DAG.getStore(Root, FPtr, Addr, TrmpAddr, 2, false, 2);
5302
5303    // Load the 'nest' parameter value into R10.
5304    // R10 is specified in X86CallingConv.td
5305    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
5306    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(10, MVT::i64));
5307    OutChains[2] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5308                                TrmpAddr, 10);
5309
5310    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(12, MVT::i64));
5311    OutChains[3] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 12, false, 2);
5312
5313    // Jump to the nested function.
5314    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
5315    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(20, MVT::i64));
5316    OutChains[4] = DAG.getStore(Root, DAG.getConstant(OpCode, MVT::i16), Addr,
5317                                TrmpAddr, 20);
5318
5319    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
5320    Addr = DAG.getNode(ISD::ADD, MVT::i64, Trmp, DAG.getConstant(22, MVT::i64));
5321    OutChains[5] = DAG.getStore(Root, DAG.getConstant(ModRM, MVT::i8), Addr,
5322                                TrmpAddr, 22);
5323
5324    SDOperand Ops[] =
5325      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 6) };
5326    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5327  } else {
5328    const Function *Func =
5329      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
5330    unsigned CC = Func->getCallingConv();
5331    unsigned NestReg;
5332
5333    switch (CC) {
5334    default:
5335      assert(0 && "Unsupported calling convention");
5336    case CallingConv::C:
5337    case CallingConv::X86_StdCall: {
5338      // Pass 'nest' parameter in ECX.
5339      // Must be kept in sync with X86CallingConv.td
5340      NestReg = X86::ECX;
5341
5342      // Check that ECX wasn't needed by an 'inreg' parameter.
5343      const FunctionType *FTy = Func->getFunctionType();
5344      const PAListPtr &Attrs = Func->getParamAttrs();
5345
5346      if (!Attrs.isEmpty() && !Func->isVarArg()) {
5347        unsigned InRegCount = 0;
5348        unsigned Idx = 1;
5349
5350        for (FunctionType::param_iterator I = FTy->param_begin(),
5351             E = FTy->param_end(); I != E; ++I, ++Idx)
5352          if (Attrs.paramHasAttr(Idx, ParamAttr::InReg))
5353            // FIXME: should only count parameters that are lowered to integers.
5354            InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
5355
5356        if (InRegCount > 2) {
5357          cerr << "Nest register in use - reduce number of inreg parameters!\n";
5358          abort();
5359        }
5360      }
5361      break;
5362    }
5363    case CallingConv::X86_FastCall:
5364      // Pass 'nest' parameter in EAX.
5365      // Must be kept in sync with X86CallingConv.td
5366      NestReg = X86::EAX;
5367      break;
5368    }
5369
5370    SDOperand OutChains[4];
5371    SDOperand Addr, Disp;
5372
5373    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
5374    Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
5375
5376    const unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
5377    const unsigned char N86Reg =
5378      ((const X86RegisterInfo*)RegInfo)->getX86RegNum(NestReg);
5379    OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
5380                                Trmp, TrmpAddr, 0);
5381
5382    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
5383    OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpAddr, 1, false, 1);
5384
5385    const unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
5386    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
5387    OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
5388                                TrmpAddr, 5, false, 1);
5389
5390    Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
5391    OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpAddr, 6, false, 1);
5392
5393    SDOperand Ops[] =
5394      { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
5395    return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
5396  }
5397}
5398
5399SDOperand X86TargetLowering::LowerFLT_ROUNDS_(SDOperand Op, SelectionDAG &DAG) {
5400  /*
5401   The rounding mode is in bits 11:10 of FPSR, and has the following
5402   settings:
5403     00 Round to nearest
5404     01 Round to -inf
5405     10 Round to +inf
5406     11 Round to 0
5407
5408  FLT_ROUNDS, on the other hand, expects the following:
5409    -1 Undefined
5410     0 Round to 0
5411     1 Round to nearest
5412     2 Round to +inf
5413     3 Round to -inf
5414
5415  To perform the conversion, we do:
5416    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
5417  */
5418
5419  MachineFunction &MF = DAG.getMachineFunction();
5420  const TargetMachine &TM = MF.getTarget();
5421  const TargetFrameInfo &TFI = *TM.getFrameInfo();
5422  unsigned StackAlignment = TFI.getStackAlignment();
5423  MVT::ValueType VT = Op.getValueType();
5424
5425  // Save FP Control Word to stack slot
5426  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment);
5427  SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
5428
5429  SDOperand Chain = DAG.getNode(X86ISD::FNSTCW16m, MVT::Other,
5430                                DAG.getEntryNode(), StackSlot);
5431
5432  // Load FP Control Word from stack slot
5433  SDOperand CWD = DAG.getLoad(MVT::i16, Chain, StackSlot, NULL, 0);
5434
5435  // Transform as necessary
5436  SDOperand CWD1 =
5437    DAG.getNode(ISD::SRL, MVT::i16,
5438                DAG.getNode(ISD::AND, MVT::i16,
5439                            CWD, DAG.getConstant(0x800, MVT::i16)),
5440                DAG.getConstant(11, MVT::i8));
5441  SDOperand CWD2 =
5442    DAG.getNode(ISD::SRL, MVT::i16,
5443                DAG.getNode(ISD::AND, MVT::i16,
5444                            CWD, DAG.getConstant(0x400, MVT::i16)),
5445                DAG.getConstant(9, MVT::i8));
5446
5447  SDOperand RetVal =
5448    DAG.getNode(ISD::AND, MVT::i16,
5449                DAG.getNode(ISD::ADD, MVT::i16,
5450                            DAG.getNode(ISD::OR, MVT::i16, CWD1, CWD2),
5451                            DAG.getConstant(1, MVT::i16)),
5452                DAG.getConstant(3, MVT::i16));
5453
5454
5455  return DAG.getNode((MVT::getSizeInBits(VT) < 16 ?
5456                      ISD::TRUNCATE : ISD::ZERO_EXTEND), VT, RetVal);
5457}
5458
5459SDOperand X86TargetLowering::LowerCTLZ(SDOperand Op, SelectionDAG &DAG) {
5460  MVT::ValueType VT = Op.getValueType();
5461  MVT::ValueType OpVT = VT;
5462  unsigned NumBits = MVT::getSizeInBits(VT);
5463
5464  Op = Op.getOperand(0);
5465  if (VT == MVT::i8) {
5466    // Zero extend to i32 since there is not an i8 bsr.
5467    OpVT = MVT::i32;
5468    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5469  }
5470
5471  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
5472  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5473  Op = DAG.getNode(X86ISD::BSR, VTs, Op);
5474
5475  // If src is zero (i.e. bsr sets ZF), returns NumBits.
5476  SmallVector<SDOperand, 4> Ops;
5477  Ops.push_back(Op);
5478  Ops.push_back(DAG.getConstant(NumBits+NumBits-1, OpVT));
5479  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5480  Ops.push_back(Op.getValue(1));
5481  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5482
5483  // Finally xor with NumBits-1.
5484  Op = DAG.getNode(ISD::XOR, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
5485
5486  if (VT == MVT::i8)
5487    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5488  return Op;
5489}
5490
5491SDOperand X86TargetLowering::LowerCTTZ(SDOperand Op, SelectionDAG &DAG) {
5492  MVT::ValueType VT = Op.getValueType();
5493  MVT::ValueType OpVT = VT;
5494  unsigned NumBits = MVT::getSizeInBits(VT);
5495
5496  Op = Op.getOperand(0);
5497  if (VT == MVT::i8) {
5498    OpVT = MVT::i32;
5499    Op = DAG.getNode(ISD::ZERO_EXTEND, OpVT, Op);
5500  }
5501
5502  // Issue a bsf (scan bits forward) which also sets EFLAGS.
5503  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
5504  Op = DAG.getNode(X86ISD::BSF, VTs, Op);
5505
5506  // If src is zero (i.e. bsf sets ZF), returns NumBits.
5507  SmallVector<SDOperand, 4> Ops;
5508  Ops.push_back(Op);
5509  Ops.push_back(DAG.getConstant(NumBits, OpVT));
5510  Ops.push_back(DAG.getConstant(X86::COND_E, MVT::i8));
5511  Ops.push_back(Op.getValue(1));
5512  Op = DAG.getNode(X86ISD::CMOV, OpVT, &Ops[0], 4);
5513
5514  if (VT == MVT::i8)
5515    Op = DAG.getNode(ISD::TRUNCATE, MVT::i8, Op);
5516  return Op;
5517}
5518
5519SDOperand X86TargetLowering::LowerLCS(SDOperand Op, SelectionDAG &DAG) {
5520  MVT::ValueType T = cast<AtomicSDNode>(Op.Val)->getVT();
5521  unsigned Reg = 0;
5522  unsigned size = 0;
5523  switch(T) {
5524  case MVT::i8:  Reg = X86::AL;  size = 1; break;
5525  case MVT::i16: Reg = X86::AX;  size = 2; break;
5526  case MVT::i32: Reg = X86::EAX; size = 4; break;
5527  case MVT::i64:
5528    if (Subtarget->is64Bit()) {
5529      Reg = X86::RAX; size = 8;
5530    } else //Should go away when LowerType stuff lands
5531      return SDOperand(ExpandATOMIC_LCS(Op.Val, DAG), 0);
5532    break;
5533  };
5534  SDOperand cpIn = DAG.getCopyToReg(Op.getOperand(0), Reg,
5535                                    Op.getOperand(3), SDOperand());
5536  SDOperand Ops[] = { cpIn.getValue(0),
5537                      Op.getOperand(1),
5538                      Op.getOperand(2),
5539                      DAG.getTargetConstant(size, MVT::i8),
5540                      cpIn.getValue(1) };
5541  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5542  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, Tys, Ops, 5);
5543  SDOperand cpOut =
5544    DAG.getCopyFromReg(Result.getValue(0), Reg, T, Result.getValue(1));
5545  return cpOut;
5546}
5547
5548SDNode* X86TargetLowering::ExpandATOMIC_LCS(SDNode* Op, SelectionDAG &DAG) {
5549  MVT::ValueType T = cast<AtomicSDNode>(Op)->getVT();
5550  assert (T == MVT::i64 && "Only know how to expand i64 CAS");
5551  SDOperand cpInL, cpInH;
5552  cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5553                      DAG.getConstant(0, MVT::i32));
5554  cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(3),
5555                      DAG.getConstant(1, MVT::i32));
5556  cpInL = DAG.getCopyToReg(Op->getOperand(0), X86::EAX,
5557                           cpInL, SDOperand());
5558  cpInH = DAG.getCopyToReg(cpInL.getValue(0), X86::EDX,
5559                           cpInH, cpInL.getValue(1));
5560  SDOperand swapInL, swapInH;
5561  swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5562                        DAG.getConstant(0, MVT::i32));
5563  swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op->getOperand(2),
5564                        DAG.getConstant(1, MVT::i32));
5565  swapInL = DAG.getCopyToReg(cpInH.getValue(0), X86::EBX,
5566                             swapInL, cpInH.getValue(1));
5567  swapInH = DAG.getCopyToReg(swapInL.getValue(0), X86::ECX,
5568                             swapInH, swapInL.getValue(1));
5569  SDOperand Ops[] = { swapInH.getValue(0),
5570                      Op->getOperand(1),
5571                      swapInH.getValue(1)};
5572  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
5573  SDOperand Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, Tys, Ops, 3);
5574  SDOperand cpOutL = DAG.getCopyFromReg(Result.getValue(0), X86::EAX, MVT::i32,
5575                                        Result.getValue(1));
5576  SDOperand cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), X86::EDX, MVT::i32,
5577                                        cpOutL.getValue(2));
5578  SDOperand OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
5579  SDOperand ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OpsF, 2);
5580  Tys = DAG.getVTList(MVT::i64, MVT::Other);
5581  return DAG.getNode(ISD::MERGE_VALUES, Tys, ResultVal, cpOutH.getValue(1)).Val;
5582}
5583
5584SDNode* X86TargetLowering::ExpandATOMIC_LSS(SDNode* Op, SelectionDAG &DAG) {
5585  MVT::ValueType T = cast<AtomicSDNode>(Op)->getVT();
5586  assert (T == MVT::i32 && "Only know how to expand i32 LSS");
5587  SDOperand negOp = DAG.getNode(ISD::SUB, T,
5588                                DAG.getConstant(0, T), Op->getOperand(2));
5589  return DAG.getAtomic(ISD::ATOMIC_LAS, Op->getOperand(0),
5590                       Op->getOperand(1), negOp, T).Val;
5591}
5592
5593/// LowerOperation - Provide custom lowering hooks for some operations.
5594///
5595SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
5596  switch (Op.getOpcode()) {
5597  default: assert(0 && "Should not custom lower this!");
5598  case ISD::ATOMIC_LCS:         return LowerLCS(Op,DAG);
5599  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
5600  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
5601  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
5602  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
5603  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
5604  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
5605  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
5606  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
5607  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
5608  case ISD::SHL_PARTS:
5609  case ISD::SRA_PARTS:
5610  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
5611  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
5612  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
5613  case ISD::FABS:               return LowerFABS(Op, DAG);
5614  case ISD::FNEG:               return LowerFNEG(Op, DAG);
5615  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
5616  case ISD::SETCC:              return LowerSETCC(Op, DAG);
5617  case ISD::SELECT:             return LowerSELECT(Op, DAG);
5618  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
5619  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
5620  case ISD::CALL:               return LowerCALL(Op, DAG);
5621  case ISD::RET:                return LowerRET(Op, DAG);
5622  case ISD::FORMAL_ARGUMENTS:   return LowerFORMAL_ARGUMENTS(Op, DAG);
5623  case ISD::VASTART:            return LowerVASTART(Op, DAG);
5624  case ISD::VAARG:              return LowerVAARG(Op, DAG);
5625  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
5626  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5627  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
5628  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
5629  case ISD::FRAME_TO_ARGS_OFFSET:
5630                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5631  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5632  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
5633  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
5634  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
5635  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
5636  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
5637
5638  // FIXME: REMOVE THIS WHEN LegalizeDAGTypes lands.
5639  case ISD::READCYCLECOUNTER:
5640    return SDOperand(ExpandREADCYCLECOUNTER(Op.Val, DAG), 0);
5641  }
5642}
5643
5644/// ExpandOperation - Provide custom lowering hooks for expanding operations.
5645SDNode *X86TargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
5646  switch (N->getOpcode()) {
5647  default: assert(0 && "Should not custom lower this!");
5648  case ISD::FP_TO_SINT:         return ExpandFP_TO_SINT(N, DAG);
5649  case ISD::READCYCLECOUNTER:   return ExpandREADCYCLECOUNTER(N, DAG);
5650  case ISD::ATOMIC_LCS:         return ExpandATOMIC_LCS(N, DAG);
5651  case ISD::ATOMIC_LSS:         return ExpandATOMIC_LSS(N,DAG);
5652  }
5653}
5654
5655const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5656  switch (Opcode) {
5657  default: return NULL;
5658  case X86ISD::BSF:                return "X86ISD::BSF";
5659  case X86ISD::BSR:                return "X86ISD::BSR";
5660  case X86ISD::SHLD:               return "X86ISD::SHLD";
5661  case X86ISD::SHRD:               return "X86ISD::SHRD";
5662  case X86ISD::FAND:               return "X86ISD::FAND";
5663  case X86ISD::FOR:                return "X86ISD::FOR";
5664  case X86ISD::FXOR:               return "X86ISD::FXOR";
5665  case X86ISD::FSRL:               return "X86ISD::FSRL";
5666  case X86ISD::FILD:               return "X86ISD::FILD";
5667  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
5668  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5669  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5670  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5671  case X86ISD::FLD:                return "X86ISD::FLD";
5672  case X86ISD::FST:                return "X86ISD::FST";
5673  case X86ISD::CALL:               return "X86ISD::CALL";
5674  case X86ISD::TAILCALL:           return "X86ISD::TAILCALL";
5675  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
5676  case X86ISD::CMP:                return "X86ISD::CMP";
5677  case X86ISD::COMI:               return "X86ISD::COMI";
5678  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
5679  case X86ISD::SETCC:              return "X86ISD::SETCC";
5680  case X86ISD::CMOV:               return "X86ISD::CMOV";
5681  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
5682  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
5683  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
5684  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
5685  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
5686  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
5687  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
5688  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
5689  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
5690  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
5691  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
5692  case X86ISD::FMAX:               return "X86ISD::FMAX";
5693  case X86ISD::FMIN:               return "X86ISD::FMIN";
5694  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
5695  case X86ISD::FRCP:               return "X86ISD::FRCP";
5696  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
5697  case X86ISD::THREAD_POINTER:     return "X86ISD::THREAD_POINTER";
5698  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
5699  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
5700  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
5701  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
5702  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
5703  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
5704  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
5705  }
5706}
5707
5708// isLegalAddressingMode - Return true if the addressing mode represented
5709// by AM is legal for this target, for a load/store of the specified type.
5710bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5711                                              const Type *Ty) const {
5712  // X86 supports extremely general addressing modes.
5713
5714  // X86 allows a sign-extended 32-bit immediate field as a displacement.
5715  if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5716    return false;
5717
5718  if (AM.BaseGV) {
5719    // We can only fold this if we don't need an extra load.
5720    if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5721      return false;
5722
5723    // X86-64 only supports addr of globals in small code model.
5724    if (Subtarget->is64Bit()) {
5725      if (getTargetMachine().getCodeModel() != CodeModel::Small)
5726        return false;
5727      // If lower 4G is not available, then we must use rip-relative addressing.
5728      if (AM.BaseOffs || AM.Scale > 1)
5729        return false;
5730    }
5731  }
5732
5733  switch (AM.Scale) {
5734  case 0:
5735  case 1:
5736  case 2:
5737  case 4:
5738  case 8:
5739    // These scales always work.
5740    break;
5741  case 3:
5742  case 5:
5743  case 9:
5744    // These scales are formed with basereg+scalereg.  Only accept if there is
5745    // no basereg yet.
5746    if (AM.HasBaseReg)
5747      return false;
5748    break;
5749  default:  // Other stuff never works.
5750    return false;
5751  }
5752
5753  return true;
5754}
5755
5756
5757bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5758  if (!Ty1->isInteger() || !Ty2->isInteger())
5759    return false;
5760  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5761  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5762  if (NumBits1 <= NumBits2)
5763    return false;
5764  return Subtarget->is64Bit() || NumBits1 < 64;
5765}
5766
5767bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5768                                       MVT::ValueType VT2) const {
5769  if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5770    return false;
5771  unsigned NumBits1 = MVT::getSizeInBits(VT1);
5772  unsigned NumBits2 = MVT::getSizeInBits(VT2);
5773  if (NumBits1 <= NumBits2)
5774    return false;
5775  return Subtarget->is64Bit() || NumBits1 < 64;
5776}
5777
5778/// isShuffleMaskLegal - Targets can use this to indicate that they only
5779/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5780/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5781/// are assumed to be legal.
5782bool
5783X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5784  // Only do shuffles on 128-bit vector types for now.
5785  if (MVT::getSizeInBits(VT) == 64) return false;
5786  return (Mask.Val->getNumOperands() <= 4 ||
5787          isIdentityMask(Mask.Val) ||
5788          isIdentityMask(Mask.Val, true) ||
5789          isSplatMask(Mask.Val)  ||
5790          isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5791          X86::isUNPCKLMask(Mask.Val) ||
5792          X86::isUNPCKHMask(Mask.Val) ||
5793          X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5794          X86::isUNPCKH_v_undef_Mask(Mask.Val));
5795}
5796
5797bool
5798X86TargetLowering::isVectorClearMaskLegal(const std::vector<SDOperand> &BVOps,
5799                                          MVT::ValueType EVT,
5800                                          SelectionDAG &DAG) const {
5801  unsigned NumElts = BVOps.size();
5802  // Only do shuffles on 128-bit vector types for now.
5803  if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5804  if (NumElts == 2) return true;
5805  if (NumElts == 4) {
5806    return (isMOVLMask(&BVOps[0], 4)  ||
5807            isCommutedMOVL(&BVOps[0], 4, true) ||
5808            isSHUFPMask(&BVOps[0], 4) ||
5809            isCommutedSHUFP(&BVOps[0], 4));
5810  }
5811  return false;
5812}
5813
5814//===----------------------------------------------------------------------===//
5815//                           X86 Scheduler Hooks
5816//===----------------------------------------------------------------------===//
5817
5818// private utility function
5819MachineBasicBlock *
5820X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
5821                                                       MachineBasicBlock *MBB,
5822                                                       unsigned regOpc,
5823                                                       unsigned immOpc) {
5824  // For the atomic bitwise operator, we generate
5825  //   thisMBB:
5826  //   newMBB:
5827  //     ld  t1 = [bitinstr.addr]
5828  //     op  t2 = t1, [bitinstr.val]
5829  //     mov EAX = t1
5830  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
5831  //     bz  newMBB
5832  //     fallthrough -->nextMBB
5833  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5834  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
5835  ilist<MachineBasicBlock>::iterator MBBIter = MBB;
5836  ++MBBIter;
5837
5838  /// First build the CFG
5839  MachineFunction *F = MBB->getParent();
5840  MachineBasicBlock *thisMBB = MBB;
5841  MachineBasicBlock *newMBB = new MachineBasicBlock(LLVM_BB);
5842  MachineBasicBlock *nextMBB = new MachineBasicBlock(LLVM_BB);
5843  F->getBasicBlockList().insert(MBBIter, newMBB);
5844  F->getBasicBlockList().insert(MBBIter, nextMBB);
5845
5846  // Move all successors to thisMBB to nextMBB
5847  nextMBB->transferSuccessors(thisMBB);
5848
5849  // Update thisMBB to fall through to newMBB
5850  thisMBB->addSuccessor(newMBB);
5851
5852  // newMBB jumps to itself and fall through to nextMBB
5853  newMBB->addSuccessor(nextMBB);
5854  newMBB->addSuccessor(newMBB);
5855
5856  // Insert instructions into newMBB based on incoming instruction
5857  assert(bInstr->getNumOperands() < 8 && "unexpected number of operands");
5858  MachineOperand& destOper = bInstr->getOperand(0);
5859  MachineOperand* argOpers[6];
5860  int numArgs = bInstr->getNumOperands() - 1;
5861  for (int i=0; i < numArgs; ++i)
5862    argOpers[i] = &bInstr->getOperand(i+1);
5863
5864  // x86 address has 4 operands: base, index, scale, and displacement
5865  int lastAddrIndx = 3; // [0,3]
5866  int valArgIndx = 4;
5867
5868  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5869  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
5870  for (int i=0; i <= lastAddrIndx; ++i)
5871    (*MIB).addOperand(*argOpers[i]);
5872
5873  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5874  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
5875         && "invalid operand");
5876  if (argOpers[valArgIndx]->isReg())
5877    MIB = BuildMI(newMBB, TII->get(regOpc), t2);
5878  else
5879    MIB = BuildMI(newMBB, TII->get(immOpc), t2);
5880  MIB.addReg(t1);
5881  (*MIB).addOperand(*argOpers[valArgIndx]);
5882
5883  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
5884  MIB.addReg(t1);
5885
5886  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
5887  for (int i=0; i <= lastAddrIndx; ++i)
5888    (*MIB).addOperand(*argOpers[i]);
5889  MIB.addReg(t2);
5890
5891  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
5892  MIB.addReg(X86::EAX);
5893
5894  // insert branch
5895  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
5896
5897  delete bInstr;   // The pseudo instruction is gone now.
5898  return nextMBB;
5899}
5900
5901// private utility function
5902MachineBasicBlock *
5903X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
5904                                                      MachineBasicBlock *MBB,
5905                                                      unsigned cmovOpc) {
5906  // For the atomic min/max operator, we generate
5907  //   thisMBB:
5908  //   newMBB:
5909  //     ld t1 = [min/max.addr]
5910  //     mov t2 = [min/max.val]
5911  //     cmp  t1, t2
5912  //     cmov[cond] t2 = t1
5913  //     mov EAX = t1
5914  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
5915  //     bz   newMBB
5916  //     fallthrough -->nextMBB
5917  //
5918  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5919  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
5920  ilist<MachineBasicBlock>::iterator MBBIter = MBB;
5921  ++MBBIter;
5922
5923  /// First build the CFG
5924  MachineFunction *F = MBB->getParent();
5925  MachineBasicBlock *thisMBB = MBB;
5926  MachineBasicBlock *newMBB = new MachineBasicBlock(LLVM_BB);
5927  MachineBasicBlock *nextMBB = new MachineBasicBlock(LLVM_BB);
5928  F->getBasicBlockList().insert(MBBIter, newMBB);
5929  F->getBasicBlockList().insert(MBBIter, nextMBB);
5930
5931  // Move all successors to thisMBB to nextMBB
5932  nextMBB->transferSuccessors(thisMBB);
5933
5934  // Update thisMBB to fall through to newMBB
5935  thisMBB->addSuccessor(newMBB);
5936
5937  // newMBB jumps to newMBB and fall through to nextMBB
5938  newMBB->addSuccessor(nextMBB);
5939  newMBB->addSuccessor(newMBB);
5940
5941  // Insert instructions into newMBB based on incoming instruction
5942  assert(mInstr->getNumOperands() < 8 && "unexpected number of operands");
5943  MachineOperand& destOper = mInstr->getOperand(0);
5944  MachineOperand* argOpers[6];
5945  int numArgs = mInstr->getNumOperands() - 1;
5946  for (int i=0; i < numArgs; ++i)
5947    argOpers[i] = &mInstr->getOperand(i+1);
5948
5949  // x86 address has 4 operands: base, index, scale, and displacement
5950  int lastAddrIndx = 3; // [0,3]
5951  int valArgIndx = 4;
5952
5953  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5954  MachineInstrBuilder MIB = BuildMI(newMBB, TII->get(X86::MOV32rm), t1);
5955  for (int i=0; i <= lastAddrIndx; ++i)
5956    (*MIB).addOperand(*argOpers[i]);
5957
5958  // We only support register and immediate values
5959  assert(   (argOpers[valArgIndx]->isReg() || argOpers[valArgIndx]->isImm())
5960         && "invalid operand");
5961
5962  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5963  if (argOpers[valArgIndx]->isReg())
5964    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
5965  else
5966    MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), t2);
5967  (*MIB).addOperand(*argOpers[valArgIndx]);
5968
5969  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), X86::EAX);
5970  MIB.addReg(t1);
5971
5972  MIB = BuildMI(newMBB, TII->get(X86::CMP32rr));
5973  MIB.addReg(t1);
5974  MIB.addReg(t2);
5975
5976  // Generate movc
5977  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
5978  MIB = BuildMI(newMBB, TII->get(cmovOpc),t3);
5979  MIB.addReg(t2);
5980  MIB.addReg(t1);
5981
5982  // Cmp and exchange if none has modified the memory location
5983  MIB = BuildMI(newMBB, TII->get(X86::LCMPXCHG32));
5984  for (int i=0; i <= lastAddrIndx; ++i)
5985    (*MIB).addOperand(*argOpers[i]);
5986  MIB.addReg(t3);
5987
5988  MIB = BuildMI(newMBB, TII->get(X86::MOV32rr), destOper.getReg());
5989  MIB.addReg(X86::EAX);
5990
5991  // insert branch
5992  BuildMI(newMBB, TII->get(X86::JNE)).addMBB(newMBB);
5993
5994  delete mInstr;   // The pseudo instruction is gone now.
5995  return nextMBB;
5996}
5997
5998
5999MachineBasicBlock *
6000X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6001                                               MachineBasicBlock *BB) {
6002  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6003  switch (MI->getOpcode()) {
6004  default: assert(false && "Unexpected instr type to insert");
6005  case X86::CMOV_FR32:
6006  case X86::CMOV_FR64:
6007  case X86::CMOV_V4F32:
6008  case X86::CMOV_V2F64:
6009  case X86::CMOV_V2I64: {
6010    // To "insert" a SELECT_CC instruction, we actually have to insert the
6011    // diamond control-flow pattern.  The incoming instruction knows the
6012    // destination vreg to set, the condition code register to branch on, the
6013    // true/false values to select between, and a branch opcode to use.
6014    const BasicBlock *LLVM_BB = BB->getBasicBlock();
6015    ilist<MachineBasicBlock>::iterator It = BB;
6016    ++It;
6017
6018    //  thisMBB:
6019    //  ...
6020    //   TrueVal = ...
6021    //   cmpTY ccX, r1, r2
6022    //   bCC copy1MBB
6023    //   fallthrough --> copy0MBB
6024    MachineBasicBlock *thisMBB = BB;
6025    MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
6026    MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
6027    unsigned Opc =
6028      X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
6029    BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
6030    MachineFunction *F = BB->getParent();
6031    F->getBasicBlockList().insert(It, copy0MBB);
6032    F->getBasicBlockList().insert(It, sinkMBB);
6033    // Update machine-CFG edges by transferring all successors of the current
6034    // block to the new block which will contain the Phi node for the select.
6035    sinkMBB->transferSuccessors(BB);
6036
6037    // Add the true and fallthrough blocks as its successors.
6038    BB->addSuccessor(copy0MBB);
6039    BB->addSuccessor(sinkMBB);
6040
6041    //  copy0MBB:
6042    //   %FalseValue = ...
6043    //   # fallthrough to sinkMBB
6044    BB = copy0MBB;
6045
6046    // Update machine-CFG edges
6047    BB->addSuccessor(sinkMBB);
6048
6049    //  sinkMBB:
6050    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6051    //  ...
6052    BB = sinkMBB;
6053    BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
6054      .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
6055      .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6056
6057    delete MI;   // The pseudo instruction is gone now.
6058    return BB;
6059  }
6060
6061  case X86::FP32_TO_INT16_IN_MEM:
6062  case X86::FP32_TO_INT32_IN_MEM:
6063  case X86::FP32_TO_INT64_IN_MEM:
6064  case X86::FP64_TO_INT16_IN_MEM:
6065  case X86::FP64_TO_INT32_IN_MEM:
6066  case X86::FP64_TO_INT64_IN_MEM:
6067  case X86::FP80_TO_INT16_IN_MEM:
6068  case X86::FP80_TO_INT32_IN_MEM:
6069  case X86::FP80_TO_INT64_IN_MEM: {
6070    // Change the floating point control register to use "round towards zero"
6071    // mode when truncating to an integer value.
6072    MachineFunction *F = BB->getParent();
6073    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
6074    addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
6075
6076    // Load the old value of the high byte of the control word...
6077    unsigned OldCW =
6078      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
6079    addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
6080
6081    // Set the high part to be round to zero...
6082    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
6083      .addImm(0xC7F);
6084
6085    // Reload the modified control word now...
6086    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6087
6088    // Restore the memory image of control word to original value
6089    addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
6090      .addReg(OldCW);
6091
6092    // Get the X86 opcode to use.
6093    unsigned Opc;
6094    switch (MI->getOpcode()) {
6095    default: assert(0 && "illegal opcode!");
6096    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
6097    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
6098    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
6099    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
6100    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
6101    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
6102    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
6103    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
6104    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
6105    }
6106
6107    X86AddressMode AM;
6108    MachineOperand &Op = MI->getOperand(0);
6109    if (Op.isRegister()) {
6110      AM.BaseType = X86AddressMode::RegBase;
6111      AM.Base.Reg = Op.getReg();
6112    } else {
6113      AM.BaseType = X86AddressMode::FrameIndexBase;
6114      AM.Base.FrameIndex = Op.getIndex();
6115    }
6116    Op = MI->getOperand(1);
6117    if (Op.isImmediate())
6118      AM.Scale = Op.getImm();
6119    Op = MI->getOperand(2);
6120    if (Op.isImmediate())
6121      AM.IndexReg = Op.getImm();
6122    Op = MI->getOperand(3);
6123    if (Op.isGlobalAddress()) {
6124      AM.GV = Op.getGlobal();
6125    } else {
6126      AM.Disp = Op.getImm();
6127    }
6128    addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
6129                      .addReg(MI->getOperand(4).getReg());
6130
6131    // Reload the original control word now.
6132    addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
6133
6134    delete MI;   // The pseudo instruction is gone now.
6135    return BB;
6136  }
6137  case X86::ATOMAND32:
6138    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
6139                                                       X86::AND32ri);
6140  case X86::ATOMOR32:
6141    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
6142                                                       X86::OR32ri);
6143  case X86::ATOMXOR32:
6144    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
6145                                                       X86::XOR32ri);
6146  case X86::ATOMMIN32:
6147    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
6148  case X86::ATOMMAX32:
6149    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
6150  case X86::ATOMUMIN32:
6151    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
6152  case X86::ATOMUMAX32:
6153    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
6154  }
6155}
6156
6157//===----------------------------------------------------------------------===//
6158//                           X86 Optimization Hooks
6159//===----------------------------------------------------------------------===//
6160
6161void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
6162                                                       const APInt &Mask,
6163                                                       APInt &KnownZero,
6164                                                       APInt &KnownOne,
6165                                                       const SelectionDAG &DAG,
6166                                                       unsigned Depth) const {
6167  unsigned Opc = Op.getOpcode();
6168  assert((Opc >= ISD::BUILTIN_OP_END ||
6169          Opc == ISD::INTRINSIC_WO_CHAIN ||
6170          Opc == ISD::INTRINSIC_W_CHAIN ||
6171          Opc == ISD::INTRINSIC_VOID) &&
6172         "Should use MaskedValueIsZero if you don't know whether Op"
6173         " is a target node!");
6174
6175  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
6176  switch (Opc) {
6177  default: break;
6178  case X86ISD::SETCC:
6179    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
6180                                       Mask.getBitWidth() - 1);
6181    break;
6182  }
6183}
6184
6185/// getShuffleScalarElt - Returns the scalar element that will make up the ith
6186/// element of the result of the vector shuffle.
6187static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
6188  MVT::ValueType VT = N->getValueType(0);
6189  SDOperand PermMask = N->getOperand(2);
6190  unsigned NumElems = PermMask.getNumOperands();
6191  SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
6192  i %= NumElems;
6193  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6194    return (i == 0)
6195     ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
6196  } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
6197    SDOperand Idx = PermMask.getOperand(i);
6198    if (Idx.getOpcode() == ISD::UNDEF)
6199      return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
6200    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
6201  }
6202  return SDOperand();
6203}
6204
6205/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
6206/// node is a GlobalAddress + offset.
6207bool X86TargetLowering::isGAPlusOffset(SDNode *N,
6208                                       GlobalValue* &GA, int64_t &Offset) const{
6209  if (N->getOpcode() == X86ISD::Wrapper) {
6210    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
6211      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
6212      return true;
6213    }
6214  }
6215  return TargetLowering::isGAPlusOffset(N, GA, Offset);
6216}
6217
6218static bool isBaseAlignmentOfN(unsigned N, SDNode *Base,
6219                               const TargetLowering &TLI) {
6220  GlobalValue *GV;
6221  int64_t Offset = 0;
6222  if (TLI.isGAPlusOffset(Base, GV, Offset))
6223    return (GV->getAlignment() >= N && (Offset % N) == 0);
6224  // DAG combine handles the stack object case.
6225  return false;
6226}
6227
6228static bool EltsFromConsecutiveLoads(SDNode *N, SDOperand PermMask,
6229                                     unsigned NumElems, MVT::ValueType EVT,
6230                                     SDNode *&Base,
6231                                     SelectionDAG &DAG, MachineFrameInfo *MFI,
6232                                     const TargetLowering &TLI) {
6233  Base = NULL;
6234  for (unsigned i = 0; i < NumElems; ++i) {
6235    SDOperand Idx = PermMask.getOperand(i);
6236    if (Idx.getOpcode() == ISD::UNDEF) {
6237      if (!Base)
6238        return false;
6239      continue;
6240    }
6241
6242    unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
6243    SDOperand Elt = getShuffleScalarElt(N, Index, DAG);
6244    if (!Elt.Val ||
6245        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.Val)))
6246      return false;
6247    if (!Base) {
6248      Base = Elt.Val;
6249      if (Base->getOpcode() == ISD::UNDEF)
6250        return false;
6251      continue;
6252    }
6253    if (Elt.getOpcode() == ISD::UNDEF)
6254      continue;
6255
6256    if (!TLI.isConsecutiveLoad(Elt.Val, Base,
6257                               MVT::getSizeInBits(EVT)/8, i, MFI))
6258      return false;
6259  }
6260  return true;
6261}
6262
6263/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
6264/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
6265/// if the load addresses are consecutive, non-overlapping, and in the right
6266/// order.
6267static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
6268                                       const TargetLowering &TLI) {
6269  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6270  MVT::ValueType VT = N->getValueType(0);
6271  MVT::ValueType EVT = MVT::getVectorElementType(VT);
6272  SDOperand PermMask = N->getOperand(2);
6273  unsigned NumElems = PermMask.getNumOperands();
6274  SDNode *Base = NULL;
6275  if (!EltsFromConsecutiveLoads(N, PermMask, NumElems, EVT, Base,
6276                                DAG, MFI, TLI))
6277    return SDOperand();
6278
6279  LoadSDNode *LD = cast<LoadSDNode>(Base);
6280  if (isBaseAlignmentOfN(16, Base->getOperand(1).Val, TLI))
6281    return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6282                       LD->getSrcValueOffset(), LD->isVolatile());
6283  return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
6284                     LD->getSrcValueOffset(), LD->isVolatile(),
6285                     LD->getAlignment());
6286}
6287
6288static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
6289  SDOperand Elt = N->getOperand(i);
6290  if (Elt.getOpcode() != ISD::MERGE_VALUES)
6291    return Elt.Val;
6292  return Elt.getOperand(Elt.ResNo).Val;
6293}
6294
6295static SDOperand PerformBuildVectorCombine(SDNode *N, SelectionDAG &DAG,
6296                                           const X86Subtarget *Subtarget,
6297                                           const TargetLowering &TLI) {
6298  // Ignore single operand BUILD_VECTOR.
6299  if (N->getNumOperands() == 1)
6300    return SDOperand();
6301
6302  MVT::ValueType VT = N->getValueType(0);
6303  MVT::ValueType EVT = MVT::getVectorElementType(VT);
6304  if ((EVT != MVT::i64 && EVT != MVT::f64) || Subtarget->is64Bit())
6305    // We are looking for load i64 and zero extend. We want to transform
6306    // it before legalizer has a chance to expand it. Also look for i64
6307    // BUILD_PAIR bit casted to f64.
6308    return SDOperand();
6309  // This must be an insertion into a zero vector.
6310  SDOperand HighElt = N->getOperand(1);
6311  if (!isZeroNode(HighElt))
6312    return SDOperand();
6313
6314  // Value must be a load.
6315  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6316  SDNode *Base = N->getOperand(0).Val;
6317  if (!isa<LoadSDNode>(Base)) {
6318    if (Base->getOpcode() == ISD::BIT_CONVERT)
6319      Base = Base->getOperand(0).Val;
6320    if (Base->getOpcode() != ISD::BUILD_PAIR)
6321      return SDOperand();
6322    SDNode *Pair = Base;
6323    Base = getBuildPairElt(Pair, 0);
6324    if (!ISD::isNON_EXTLoad(Base))
6325      return SDOperand();
6326    SDNode *NextLD = getBuildPairElt(Pair, 1);
6327    if (!ISD::isNON_EXTLoad(NextLD) ||
6328        !TLI.isConsecutiveLoad(NextLD, Base, 4/*32 bits*/, 1, MFI))
6329      return SDOperand();
6330  }
6331  LoadSDNode *LD = cast<LoadSDNode>(Base);
6332
6333  // Transform it into VZEXT_LOAD addr.
6334  return DAG.getNode(X86ISD::VZEXT_LOAD, VT, LD->getChain(), LD->getBasePtr());
6335}
6336
6337/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
6338static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
6339                                      const X86Subtarget *Subtarget) {
6340  SDOperand Cond = N->getOperand(0);
6341
6342  // If we have SSE[12] support, try to form min/max nodes.
6343  if (Subtarget->hasSSE2() &&
6344      (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
6345    if (Cond.getOpcode() == ISD::SETCC) {
6346      // Get the LHS/RHS of the select.
6347      SDOperand LHS = N->getOperand(1);
6348      SDOperand RHS = N->getOperand(2);
6349      ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
6350
6351      unsigned Opcode = 0;
6352      if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
6353        switch (CC) {
6354        default: break;
6355        case ISD::SETOLE: // (X <= Y) ? X : Y -> min
6356        case ISD::SETULE:
6357        case ISD::SETLE:
6358          if (!UnsafeFPMath) break;
6359          // FALL THROUGH.
6360        case ISD::SETOLT:  // (X olt/lt Y) ? X : Y -> min
6361        case ISD::SETLT:
6362          Opcode = X86ISD::FMIN;
6363          break;
6364
6365        case ISD::SETOGT: // (X > Y) ? X : Y -> max
6366        case ISD::SETUGT:
6367        case ISD::SETGT:
6368          if (!UnsafeFPMath) break;
6369          // FALL THROUGH.
6370        case ISD::SETUGE:  // (X uge/ge Y) ? X : Y -> max
6371        case ISD::SETGE:
6372          Opcode = X86ISD::FMAX;
6373          break;
6374        }
6375      } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
6376        switch (CC) {
6377        default: break;
6378        case ISD::SETOGT: // (X > Y) ? Y : X -> min
6379        case ISD::SETUGT:
6380        case ISD::SETGT:
6381          if (!UnsafeFPMath) break;
6382          // FALL THROUGH.
6383        case ISD::SETUGE:  // (X uge/ge Y) ? Y : X -> min
6384        case ISD::SETGE:
6385          Opcode = X86ISD::FMIN;
6386          break;
6387
6388        case ISD::SETOLE:   // (X <= Y) ? Y : X -> max
6389        case ISD::SETULE:
6390        case ISD::SETLE:
6391          if (!UnsafeFPMath) break;
6392          // FALL THROUGH.
6393        case ISD::SETOLT:   // (X olt/lt Y) ? Y : X -> max
6394        case ISD::SETLT:
6395          Opcode = X86ISD::FMAX;
6396          break;
6397        }
6398      }
6399
6400      if (Opcode)
6401        return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
6402    }
6403
6404  }
6405
6406  return SDOperand();
6407}
6408
6409/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
6410static SDOperand PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
6411                                     const X86Subtarget *Subtarget) {
6412  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
6413  // the FP state in cases where an emms may be missing.
6414  // A preferable solution to the general problem is to figure out the right
6415  // places to insert EMMS.  This qualifies as a quick hack.
6416  StoreSDNode *St = cast<StoreSDNode>(N);
6417  if (MVT::isVector(St->getValue().getValueType()) &&
6418      MVT::getSizeInBits(St->getValue().getValueType()) == 64 &&
6419      isa<LoadSDNode>(St->getValue()) &&
6420      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
6421      St->getChain().hasOneUse() && !St->isVolatile()) {
6422    SDNode* LdVal = St->getValue().Val;
6423    LoadSDNode *Ld = 0;
6424    int TokenFactorIndex = -1;
6425    SmallVector<SDOperand, 8> Ops;
6426    SDNode* ChainVal = St->getChain().Val;
6427    // Must be a store of a load.  We currently handle two cases:  the load
6428    // is a direct child, and it's under an intervening TokenFactor.  It is
6429    // possible to dig deeper under nested TokenFactors.
6430    if (ChainVal == LdVal)
6431      Ld = cast<LoadSDNode>(St->getChain());
6432    else if (St->getValue().hasOneUse() &&
6433             ChainVal->getOpcode() == ISD::TokenFactor) {
6434      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
6435        if (ChainVal->getOperand(i).Val == LdVal) {
6436          TokenFactorIndex = i;
6437          Ld = cast<LoadSDNode>(St->getValue());
6438        } else
6439          Ops.push_back(ChainVal->getOperand(i));
6440      }
6441    }
6442    if (Ld) {
6443      // If we are a 64-bit capable x86, lower to a single movq load/store pair.
6444      if (Subtarget->is64Bit()) {
6445        SDOperand NewLd = DAG.getLoad(MVT::i64, Ld->getChain(),
6446                                      Ld->getBasePtr(), Ld->getSrcValue(),
6447                                      Ld->getSrcValueOffset(), Ld->isVolatile(),
6448                                      Ld->getAlignment());
6449        SDOperand NewChain = NewLd.getValue(1);
6450        if (TokenFactorIndex != -1) {
6451          Ops.push_back(NewChain);
6452          NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6453                                 Ops.size());
6454        }
6455        return DAG.getStore(NewChain, NewLd, St->getBasePtr(),
6456                            St->getSrcValue(), St->getSrcValueOffset(),
6457                            St->isVolatile(), St->getAlignment());
6458      }
6459
6460      // Otherwise, lower to two 32-bit copies.
6461      SDOperand LoAddr = Ld->getBasePtr();
6462      SDOperand HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6463                                     DAG.getConstant(MVT::i32, 4));
6464
6465      SDOperand LoLd = DAG.getLoad(MVT::i32, Ld->getChain(), LoAddr,
6466                                   Ld->getSrcValue(), Ld->getSrcValueOffset(),
6467                                   Ld->isVolatile(), Ld->getAlignment());
6468      SDOperand HiLd = DAG.getLoad(MVT::i32, Ld->getChain(), HiAddr,
6469                                   Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
6470                                   Ld->isVolatile(),
6471                                   MinAlign(Ld->getAlignment(), 4));
6472
6473      SDOperand NewChain = LoLd.getValue(1);
6474      if (TokenFactorIndex != -1) {
6475        Ops.push_back(LoLd);
6476        Ops.push_back(HiLd);
6477        NewChain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Ops[0],
6478                               Ops.size());
6479      }
6480
6481      LoAddr = St->getBasePtr();
6482      HiAddr = DAG.getNode(ISD::ADD, MVT::i32, LoAddr,
6483                           DAG.getConstant(MVT::i32, 4));
6484
6485      SDOperand LoSt = DAG.getStore(NewChain, LoLd, LoAddr,
6486                          St->getSrcValue(), St->getSrcValueOffset(),
6487                          St->isVolatile(), St->getAlignment());
6488      SDOperand HiSt = DAG.getStore(NewChain, HiLd, HiAddr,
6489                                    St->getSrcValue(), St->getSrcValueOffset()+4,
6490                                    St->isVolatile(),
6491                                    MinAlign(St->getAlignment(), 4));
6492      return DAG.getNode(ISD::TokenFactor, MVT::Other, LoSt, HiSt);
6493    }
6494  }
6495  return SDOperand();
6496}
6497
6498/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
6499/// X86ISD::FXOR nodes.
6500static SDOperand PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
6501  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
6502  // F[X]OR(0.0, x) -> x
6503  // F[X]OR(x, 0.0) -> x
6504  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6505    if (C->getValueAPF().isPosZero())
6506      return N->getOperand(1);
6507  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6508    if (C->getValueAPF().isPosZero())
6509      return N->getOperand(0);
6510  return SDOperand();
6511}
6512
6513/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
6514static SDOperand PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
6515  // FAND(0.0, x) -> 0.0
6516  // FAND(x, 0.0) -> 0.0
6517  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
6518    if (C->getValueAPF().isPosZero())
6519      return N->getOperand(0);
6520  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
6521    if (C->getValueAPF().isPosZero())
6522      return N->getOperand(1);
6523  return SDOperand();
6524}
6525
6526
6527SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
6528                                               DAGCombinerInfo &DCI) const {
6529  SelectionDAG &DAG = DCI.DAG;
6530  switch (N->getOpcode()) {
6531  default: break;
6532  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
6533  case ISD::BUILD_VECTOR:
6534    return PerformBuildVectorCombine(N, DAG, Subtarget, *this);
6535  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
6536  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
6537  case X86ISD::FXOR:
6538  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
6539  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
6540  }
6541
6542  return SDOperand();
6543}
6544
6545//===----------------------------------------------------------------------===//
6546//                           X86 Inline Assembly Support
6547//===----------------------------------------------------------------------===//
6548
6549/// getConstraintType - Given a constraint letter, return the type of
6550/// constraint it is for this target.
6551X86TargetLowering::ConstraintType
6552X86TargetLowering::getConstraintType(const std::string &Constraint) const {
6553  if (Constraint.size() == 1) {
6554    switch (Constraint[0]) {
6555    case 'A':
6556    case 'f':
6557    case 'r':
6558    case 'R':
6559    case 'l':
6560    case 'q':
6561    case 'Q':
6562    case 'x':
6563    case 'y':
6564    case 'Y':
6565      return C_RegisterClass;
6566    default:
6567      break;
6568    }
6569  }
6570  return TargetLowering::getConstraintType(Constraint);
6571}
6572
6573/// LowerXConstraint - try to replace an X constraint, which matches anything,
6574/// with another that has more specific requirements based on the type of the
6575/// corresponding operand.
6576const char *X86TargetLowering::
6577LowerXConstraint(MVT::ValueType ConstraintVT) const {
6578  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
6579  // 'f' like normal targets.
6580  if (MVT::isFloatingPoint(ConstraintVT)) {
6581    if (Subtarget->hasSSE2())
6582      return "Y";
6583    if (Subtarget->hasSSE1())
6584      return "x";
6585  }
6586
6587  return TargetLowering::LowerXConstraint(ConstraintVT);
6588}
6589
6590/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6591/// vector.  If it is invalid, don't add anything to Ops.
6592void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
6593                                                     char Constraint,
6594                                                     std::vector<SDOperand>&Ops,
6595                                                     SelectionDAG &DAG) const {
6596  SDOperand Result(0, 0);
6597
6598  switch (Constraint) {
6599  default: break;
6600  case 'I':
6601    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6602      if (C->getValue() <= 31) {
6603        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6604        break;
6605      }
6606    }
6607    return;
6608  case 'N':
6609    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
6610      if (C->getValue() <= 255) {
6611        Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
6612        break;
6613      }
6614    }
6615    return;
6616  case 'i': {
6617    // Literal immediates are always ok.
6618    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
6619      Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
6620      break;
6621    }
6622
6623    // If we are in non-pic codegen mode, we allow the address of a global (with
6624    // an optional displacement) to be used with 'i'.
6625    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
6626    int64_t Offset = 0;
6627
6628    // Match either (GA) or (GA+C)
6629    if (GA) {
6630      Offset = GA->getOffset();
6631    } else if (Op.getOpcode() == ISD::ADD) {
6632      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6633      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6634      if (C && GA) {
6635        Offset = GA->getOffset()+C->getValue();
6636      } else {
6637        C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6638        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
6639        if (C && GA)
6640          Offset = GA->getOffset()+C->getValue();
6641        else
6642          C = 0, GA = 0;
6643      }
6644    }
6645
6646    if (GA) {
6647      // If addressing this global requires a load (e.g. in PIC mode), we can't
6648      // match.
6649      if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
6650                                         false))
6651        return;
6652
6653      Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
6654                                      Offset);
6655      Result = Op;
6656      break;
6657    }
6658
6659    // Otherwise, not valid for this mode.
6660    return;
6661  }
6662  }
6663
6664  if (Result.Val) {
6665    Ops.push_back(Result);
6666    return;
6667  }
6668  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
6669}
6670
6671std::vector<unsigned> X86TargetLowering::
6672getRegClassForInlineAsmConstraint(const std::string &Constraint,
6673                                  MVT::ValueType VT) const {
6674  if (Constraint.size() == 1) {
6675    // FIXME: not handling fp-stack yet!
6676    switch (Constraint[0]) {      // GCC X86 Constraint Letters
6677    default: break;  // Unknown constraint letter
6678    case 'A':   // EAX/EDX
6679      if (VT == MVT::i32 || VT == MVT::i64)
6680        return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
6681      break;
6682    case 'q':   // Q_REGS (GENERAL_REGS in 64-bit mode)
6683    case 'Q':   // Q_REGS
6684      if (VT == MVT::i32)
6685        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
6686      else if (VT == MVT::i16)
6687        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
6688      else if (VT == MVT::i8)
6689        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
6690      else if (VT == MVT::i64)
6691        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
6692      break;
6693    }
6694  }
6695
6696  return std::vector<unsigned>();
6697}
6698
6699std::pair<unsigned, const TargetRegisterClass*>
6700X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6701                                                MVT::ValueType VT) const {
6702  // First, see if this is a constraint that directly corresponds to an LLVM
6703  // register class.
6704  if (Constraint.size() == 1) {
6705    // GCC Constraint Letters
6706    switch (Constraint[0]) {
6707    default: break;
6708    case 'r':   // GENERAL_REGS
6709    case 'R':   // LEGACY_REGS
6710    case 'l':   // INDEX_REGS
6711      if (VT == MVT::i64 && Subtarget->is64Bit())
6712        return std::make_pair(0U, X86::GR64RegisterClass);
6713      if (VT == MVT::i32)
6714        return std::make_pair(0U, X86::GR32RegisterClass);
6715      else if (VT == MVT::i16)
6716        return std::make_pair(0U, X86::GR16RegisterClass);
6717      else if (VT == MVT::i8)
6718        return std::make_pair(0U, X86::GR8RegisterClass);
6719      break;
6720    case 'f':  // FP Stack registers.
6721      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
6722      // value to the correct fpstack register class.
6723      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
6724        return std::make_pair(0U, X86::RFP32RegisterClass);
6725      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
6726        return std::make_pair(0U, X86::RFP64RegisterClass);
6727      return std::make_pair(0U, X86::RFP80RegisterClass);
6728    case 'y':   // MMX_REGS if MMX allowed.
6729      if (!Subtarget->hasMMX()) break;
6730      return std::make_pair(0U, X86::VR64RegisterClass);
6731      break;
6732    case 'Y':   // SSE_REGS if SSE2 allowed
6733      if (!Subtarget->hasSSE2()) break;
6734      // FALL THROUGH.
6735    case 'x':   // SSE_REGS if SSE1 allowed
6736      if (!Subtarget->hasSSE1()) break;
6737
6738      switch (VT) {
6739      default: break;
6740      // Scalar SSE types.
6741      case MVT::f32:
6742      case MVT::i32:
6743        return std::make_pair(0U, X86::FR32RegisterClass);
6744      case MVT::f64:
6745      case MVT::i64:
6746        return std::make_pair(0U, X86::FR64RegisterClass);
6747      // Vector types.
6748      case MVT::v16i8:
6749      case MVT::v8i16:
6750      case MVT::v4i32:
6751      case MVT::v2i64:
6752      case MVT::v4f32:
6753      case MVT::v2f64:
6754        return std::make_pair(0U, X86::VR128RegisterClass);
6755      }
6756      break;
6757    }
6758  }
6759
6760  // Use the default implementation in TargetLowering to convert the register
6761  // constraint into a member of a register class.
6762  std::pair<unsigned, const TargetRegisterClass*> Res;
6763  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6764
6765  // Not found as a standard register?
6766  if (Res.second == 0) {
6767    // GCC calls "st(0)" just plain "st".
6768    if (StringsEqualNoCase("{st}", Constraint)) {
6769      Res.first = X86::ST0;
6770      Res.second = X86::RFP80RegisterClass;
6771    }
6772
6773    return Res;
6774  }
6775
6776  // Otherwise, check to see if this is a register class of the wrong value
6777  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
6778  // turn into {ax},{dx}.
6779  if (Res.second->hasType(VT))
6780    return Res;   // Correct type already, nothing to do.
6781
6782  // All of the single-register GCC register classes map their values onto
6783  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
6784  // really want an 8-bit or 32-bit register, map to the appropriate register
6785  // class and return the appropriate register.
6786  if (Res.second != X86::GR16RegisterClass)
6787    return Res;
6788
6789  if (VT == MVT::i8) {
6790    unsigned DestReg = 0;
6791    switch (Res.first) {
6792    default: break;
6793    case X86::AX: DestReg = X86::AL; break;
6794    case X86::DX: DestReg = X86::DL; break;
6795    case X86::CX: DestReg = X86::CL; break;
6796    case X86::BX: DestReg = X86::BL; break;
6797    }
6798    if (DestReg) {
6799      Res.first = DestReg;
6800      Res.second = Res.second = X86::GR8RegisterClass;
6801    }
6802  } else if (VT == MVT::i32) {
6803    unsigned DestReg = 0;
6804    switch (Res.first) {
6805    default: break;
6806    case X86::AX: DestReg = X86::EAX; break;
6807    case X86::DX: DestReg = X86::EDX; break;
6808    case X86::CX: DestReg = X86::ECX; break;
6809    case X86::BX: DestReg = X86::EBX; break;
6810    case X86::SI: DestReg = X86::ESI; break;
6811    case X86::DI: DestReg = X86::EDI; break;
6812    case X86::BP: DestReg = X86::EBP; break;
6813    case X86::SP: DestReg = X86::ESP; break;
6814    }
6815    if (DestReg) {
6816      Res.first = DestReg;
6817      Res.second = Res.second = X86::GR32RegisterClass;
6818    }
6819  } else if (VT == MVT::i64) {
6820    unsigned DestReg = 0;
6821    switch (Res.first) {
6822    default: break;
6823    case X86::AX: DestReg = X86::RAX; break;
6824    case X86::DX: DestReg = X86::RDX; break;
6825    case X86::CX: DestReg = X86::RCX; break;
6826    case X86::BX: DestReg = X86::RBX; break;
6827    case X86::SI: DestReg = X86::RSI; break;
6828    case X86::DI: DestReg = X86::RDI; break;
6829    case X86::BP: DestReg = X86::RBP; break;
6830    case X86::SP: DestReg = X86::RSP; break;
6831    }
6832    if (DestReg) {
6833      Res.first = DestReg;
6834      Res.second = Res.second = X86::GR64RegisterClass;
6835    }
6836  }
6837
6838  return Res;
6839}
6840