X86ISelLowering.cpp revision d0c38176690e9602a93a20a43f1bd084564a8116
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86ShuffleDecode.h"
20#include "X86TargetMachine.h"
21#include "X86TargetObjectFile.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineJumpTableInfo.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValue.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/BitVector.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/StringExtras.h"
46#include "llvm/ADT/VectorExtras.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53using namespace llvm;
54using namespace dwarf;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58static cl::opt<bool>
59DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
60
61// Forward declarations.
62static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
63                       SDValue V2);
64
65static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
66
67  bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
68
69  if (TM.getSubtarget<X86Subtarget>().isTargetDarwin()) {
70    if (is64Bit) return new X8664_MachoTargetObjectFile();
71    return new TargetLoweringObjectFileMachO();
72  } else if (TM.getSubtarget<X86Subtarget>().isTargetELF() ){
73    if (is64Bit) return new X8664_ELFTargetObjectFile(TM);
74    return new X8632_ELFTargetObjectFile(TM);
75  } else if (TM.getSubtarget<X86Subtarget>().isTargetCOFF()) {
76    return new TargetLoweringObjectFileCOFF();
77  }
78  llvm_unreachable("unknown subtarget type");
79}
80
81X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
82  : TargetLowering(TM, createTLOF(TM)) {
83  Subtarget = &TM.getSubtarget<X86Subtarget>();
84  X86ScalarSSEf64 = Subtarget->hasSSE2();
85  X86ScalarSSEf32 = Subtarget->hasSSE1();
86  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
87
88  RegInfo = TM.getRegisterInfo();
89  TD = getTargetData();
90
91  // Set up the TargetLowering object.
92
93  // X86 is weird, it always uses i8 for shift amounts and setcc results.
94  setShiftAmountType(MVT::i8);
95  setBooleanContents(ZeroOrOneBooleanContent);
96  setSchedulingPreference(Sched::RegPressure);
97  setStackPointerRegisterToSaveRestore(X86StackPtr);
98
99  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
100    // Setup Windows compiler runtime calls.
101    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
102    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
103    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
104    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
105    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
106    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
107    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
108    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
109  }
110
111  if (Subtarget->isTargetDarwin()) {
112    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
113    setUseUnderscoreSetJmp(false);
114    setUseUnderscoreLongJmp(false);
115  } else if (Subtarget->isTargetMingw()) {
116    // MS runtime is weird: it exports _setjmp, but longjmp!
117    setUseUnderscoreSetJmp(true);
118    setUseUnderscoreLongJmp(false);
119  } else {
120    setUseUnderscoreSetJmp(true);
121    setUseUnderscoreLongJmp(true);
122  }
123
124  // Set up the register classes.
125  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
126  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
127  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
128  if (Subtarget->is64Bit())
129    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
130
131  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
132
133  // We don't accept any truncstore of integer registers.
134  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
135  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
136  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
137  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
138  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
139  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
140
141  // SETOEQ and SETUNE require checking two conditions.
142  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
143  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
144  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
145  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
146  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
147  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
148
149  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
150  // operation.
151  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
152  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
153  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
154
155  if (Subtarget->is64Bit()) {
156    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
157    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
158  } else if (!UseSoftFloat) {
159    // We have an algorithm for SSE2->double, and we turn this into a
160    // 64-bit FILD followed by conditional FADD for other targets.
161    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
162    // We have an algorithm for SSE2, and we turn this into a 64-bit
163    // FILD for other targets.
164    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
165  }
166
167  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
168  // this operation.
169  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
170  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
171
172  if (!UseSoftFloat) {
173    // SSE has no i16 to fp conversion, only i32
174    if (X86ScalarSSEf32) {
175      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
176      // f32 and f64 cases are Legal, f80 case is not
177      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
178    } else {
179      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
180      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
181    }
182  } else {
183    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
184    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
185  }
186
187  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
188  // are Legal, f80 is custom lowered.
189  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
190  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
191
192  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
193  // this operation.
194  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
195  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
196
197  if (X86ScalarSSEf32) {
198    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
199    // f32 and f64 cases are Legal, f80 case is not
200    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
201  } else {
202    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
203    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
204  }
205
206  // Handle FP_TO_UINT by promoting the destination to a larger signed
207  // conversion.
208  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
209  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
210  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
211
212  if (Subtarget->is64Bit()) {
213    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
214    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
215  } else if (!UseSoftFloat) {
216    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
217      // Expand FP_TO_UINT into a select.
218      // FIXME: We would like to use a Custom expander here eventually to do
219      // the optimal thing for SSE vs. the default expansion in the legalizer.
220      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
221    else
222      // With SSE3 we can use fisttpll to convert to a signed i64; without
223      // SSE, we're stuck with a fistpll.
224      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
225  }
226
227  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
228  if (!X86ScalarSSEf64) {
229    setOperationAction(ISD::BIT_CONVERT      , MVT::f32  , Expand);
230    setOperationAction(ISD::BIT_CONVERT      , MVT::i32  , Expand);
231    if (Subtarget->is64Bit()) {
232      setOperationAction(ISD::BIT_CONVERT    , MVT::f64  , Expand);
233      // Without SSE, i64->f64 goes through memory.
234      setOperationAction(ISD::BIT_CONVERT    , MVT::i64  , Expand);
235    }
236  }
237
238  // Scalar integer divide and remainder are lowered to use operations that
239  // produce two results, to match the available instructions. This exposes
240  // the two-result form to trivial CSE, which is able to combine x/y and x%y
241  // into a single instruction.
242  //
243  // Scalar integer multiply-high is also lowered to use two-result
244  // operations, to match the available instructions. However, plain multiply
245  // (low) operations are left as Legal, as there are single-result
246  // instructions for this in x86. Using the two-result multiply instructions
247  // when both high and low results are needed must be arranged by dagcombine.
248  setOperationAction(ISD::MULHS           , MVT::i8    , Expand);
249  setOperationAction(ISD::MULHU           , MVT::i8    , Expand);
250  setOperationAction(ISD::SDIV            , MVT::i8    , Expand);
251  setOperationAction(ISD::UDIV            , MVT::i8    , Expand);
252  setOperationAction(ISD::SREM            , MVT::i8    , Expand);
253  setOperationAction(ISD::UREM            , MVT::i8    , Expand);
254  setOperationAction(ISD::MULHS           , MVT::i16   , Expand);
255  setOperationAction(ISD::MULHU           , MVT::i16   , Expand);
256  setOperationAction(ISD::SDIV            , MVT::i16   , Expand);
257  setOperationAction(ISD::UDIV            , MVT::i16   , Expand);
258  setOperationAction(ISD::SREM            , MVT::i16   , Expand);
259  setOperationAction(ISD::UREM            , MVT::i16   , Expand);
260  setOperationAction(ISD::MULHS           , MVT::i32   , Expand);
261  setOperationAction(ISD::MULHU           , MVT::i32   , Expand);
262  setOperationAction(ISD::SDIV            , MVT::i32   , Expand);
263  setOperationAction(ISD::UDIV            , MVT::i32   , Expand);
264  setOperationAction(ISD::SREM            , MVT::i32   , Expand);
265  setOperationAction(ISD::UREM            , MVT::i32   , Expand);
266  setOperationAction(ISD::MULHS           , MVT::i64   , Expand);
267  setOperationAction(ISD::MULHU           , MVT::i64   , Expand);
268  setOperationAction(ISD::SDIV            , MVT::i64   , Expand);
269  setOperationAction(ISD::UDIV            , MVT::i64   , Expand);
270  setOperationAction(ISD::SREM            , MVT::i64   , Expand);
271  setOperationAction(ISD::UREM            , MVT::i64   , Expand);
272
273  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
274  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
275  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
276  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
277  if (Subtarget->is64Bit())
278    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
279  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
280  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
281  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
282  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
283  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
284  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
285  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
286  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
287
288  setOperationAction(ISD::CTPOP            , MVT::i8   , Expand);
289  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
290  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
291  setOperationAction(ISD::CTPOP            , MVT::i16  , Expand);
292  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
293  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
294  setOperationAction(ISD::CTPOP            , MVT::i32  , Expand);
295  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
296  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
297  if (Subtarget->is64Bit()) {
298    setOperationAction(ISD::CTPOP          , MVT::i64  , Expand);
299    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
300    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
301  }
302
303  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
304  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
305
306  // These should be promoted to a larger select which is supported.
307  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
308  // X86 wants to expand cmov itself.
309  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
310  setOperationAction(ISD::SELECT        , MVT::i16  , Custom);
311  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
312  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
313  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
314  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
315  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
316  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
317  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
318  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
319  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
320  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
321  if (Subtarget->is64Bit()) {
322    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
323    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
324  }
325  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
326
327  // Darwin ABI issue.
328  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
329  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
330  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
331  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
332  if (Subtarget->is64Bit())
333    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
334  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
335  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
336  if (Subtarget->is64Bit()) {
337    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
338    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
339    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
340    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
341    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
342  }
343  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
344  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
345  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
346  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
347  if (Subtarget->is64Bit()) {
348    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
349    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
350    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
351  }
352
353  if (Subtarget->hasSSE1())
354    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
355
356  // We may not have a libcall for MEMBARRIER so we should lower this.
357  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
358
359  // On X86 and X86-64, atomic operations are lowered to locked instructions.
360  // Locked instructions, in turn, have implicit fence semantics (all memory
361  // operations are flushed before issuing the locked instruction, and they
362  // are not buffered), so we can fold away the common pattern of
363  // fence-atomic-fence.
364  setShouldFoldAtomicFences(true);
365
366  // Expand certain atomics
367  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
368  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
369  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
370  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
371
372  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
373  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
374  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
375  setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
376
377  if (!Subtarget->is64Bit()) {
378    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
379    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
380    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
381    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
382    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
383    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
384    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
385  }
386
387  // FIXME - use subtarget debug flags
388  if (!Subtarget->isTargetDarwin() &&
389      !Subtarget->isTargetELF() &&
390      !Subtarget->isTargetCygMing()) {
391    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
392  }
393
394  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
395  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
396  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
397  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
398  if (Subtarget->is64Bit()) {
399    setExceptionPointerRegister(X86::RAX);
400    setExceptionSelectorRegister(X86::RDX);
401  } else {
402    setExceptionPointerRegister(X86::EAX);
403    setExceptionSelectorRegister(X86::EDX);
404  }
405  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
406  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
407
408  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
409
410  setOperationAction(ISD::TRAP, MVT::Other, Legal);
411
412  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
413  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
414  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
415  if (Subtarget->is64Bit()) {
416    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
417    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
418  } else {
419    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
420    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
421  }
422
423  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
424  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
425  if (Subtarget->is64Bit())
426    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
427  if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
428    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
429  else
430    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
431
432  if (!UseSoftFloat && X86ScalarSSEf64) {
433    // f32 and f64 use SSE.
434    // Set up the FP register classes.
435    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
436    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
437
438    // Use ANDPD to simulate FABS.
439    setOperationAction(ISD::FABS , MVT::f64, Custom);
440    setOperationAction(ISD::FABS , MVT::f32, Custom);
441
442    // Use XORP to simulate FNEG.
443    setOperationAction(ISD::FNEG , MVT::f64, Custom);
444    setOperationAction(ISD::FNEG , MVT::f32, Custom);
445
446    // Use ANDPD and ORPD to simulate FCOPYSIGN.
447    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
448    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
449
450    // We don't support sin/cos/fmod
451    setOperationAction(ISD::FSIN , MVT::f64, Expand);
452    setOperationAction(ISD::FCOS , MVT::f64, Expand);
453    setOperationAction(ISD::FSIN , MVT::f32, Expand);
454    setOperationAction(ISD::FCOS , MVT::f32, Expand);
455
456    // Expand FP immediates into loads from the stack, except for the special
457    // cases we handle.
458    addLegalFPImmediate(APFloat(+0.0)); // xorpd
459    addLegalFPImmediate(APFloat(+0.0f)); // xorps
460  } else if (!UseSoftFloat && X86ScalarSSEf32) {
461    // Use SSE for f32, x87 for f64.
462    // Set up the FP register classes.
463    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
464    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
465
466    // Use ANDPS to simulate FABS.
467    setOperationAction(ISD::FABS , MVT::f32, Custom);
468
469    // Use XORP to simulate FNEG.
470    setOperationAction(ISD::FNEG , MVT::f32, Custom);
471
472    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
473
474    // Use ANDPS and ORPS to simulate FCOPYSIGN.
475    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
476    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
477
478    // We don't support sin/cos/fmod
479    setOperationAction(ISD::FSIN , MVT::f32, Expand);
480    setOperationAction(ISD::FCOS , MVT::f32, Expand);
481
482    // Special cases we handle for FP constants.
483    addLegalFPImmediate(APFloat(+0.0f)); // xorps
484    addLegalFPImmediate(APFloat(+0.0)); // FLD0
485    addLegalFPImmediate(APFloat(+1.0)); // FLD1
486    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
487    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
488
489    if (!UnsafeFPMath) {
490      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
491      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
492    }
493  } else if (!UseSoftFloat) {
494    // f32 and f64 in x87.
495    // Set up the FP register classes.
496    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
497    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
498
499    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
500    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
501    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
502    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
503
504    if (!UnsafeFPMath) {
505      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
506      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
507    }
508    addLegalFPImmediate(APFloat(+0.0)); // FLD0
509    addLegalFPImmediate(APFloat(+1.0)); // FLD1
510    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
511    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
512    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
513    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
514    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
515    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
516  }
517
518  // Long double always uses X87.
519  if (!UseSoftFloat) {
520    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
521    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
522    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
523    {
524      bool ignored;
525      APFloat TmpFlt(+0.0);
526      TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
527                     &ignored);
528      addLegalFPImmediate(TmpFlt);  // FLD0
529      TmpFlt.changeSign();
530      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
531      APFloat TmpFlt2(+1.0);
532      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
533                      &ignored);
534      addLegalFPImmediate(TmpFlt2);  // FLD1
535      TmpFlt2.changeSign();
536      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
537    }
538
539    if (!UnsafeFPMath) {
540      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
541      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
542    }
543  }
544
545  // Always use a library call for pow.
546  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
547  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
548  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
549
550  setOperationAction(ISD::FLOG, MVT::f80, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
552  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
553  setOperationAction(ISD::FEXP, MVT::f80, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
555
556  // First set operation action for all vector types to either promote
557  // (for widening) or expand (for scalarization). Then we will selectively
558  // turn on ones that can be effectively codegen'd.
559  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
560       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
561    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
562    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
563    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
564    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
565    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
566    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
567    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
568    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
569    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
570    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
571    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
572    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
573    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
574    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
575    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
576    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
577    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
578    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
579    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
580    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
581    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
582    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
583    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
584    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
585    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
586    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
587    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
588    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
589    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
590    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
591    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
592    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
593    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
594    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
595    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
596    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
597    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
598    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
599    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
600    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
601    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
602    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
603    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
604    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
605    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
606    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
607    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
608    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
609    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
610    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
611    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
612    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
613    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
614    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
615         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
616      setTruncStoreAction((MVT::SimpleValueType)VT,
617                          (MVT::SimpleValueType)InnerVT, Expand);
618    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
619    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
620    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
621  }
622
623  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
624  // with -msoft-float, disable use of MMX as well.
625  if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
626    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
627    // No operations on x86mmx supported, everything uses intrinsics.
628  }
629
630  // MMX-sized vectors (other than x86mmx) are expected to be expanded
631  // into smaller operations.
632  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
633  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
634  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
635  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
636  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
637  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
638  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
639  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
640  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
641  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
642  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
643  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
644  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
645  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
646  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
647  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
648  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
649  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
650  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
651  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
652  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
653  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
654  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
655  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
656  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
657  setOperationAction(ISD::BIT_CONVERT,        MVT::v8i8,  Expand);
658  setOperationAction(ISD::BIT_CONVERT,        MVT::v4i16, Expand);
659  setOperationAction(ISD::BIT_CONVERT,        MVT::v2i32, Expand);
660  setOperationAction(ISD::BIT_CONVERT,        MVT::v1i64, Expand);
661
662  if (!UseSoftFloat && Subtarget->hasSSE1()) {
663    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
664
665    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
666    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
667    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
668    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
669    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
670    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
671    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
672    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
673    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
674    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
675    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
676    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
677  }
678
679  if (!UseSoftFloat && Subtarget->hasSSE2()) {
680    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
681
682    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
683    // registers cannot be used even for integer operations.
684    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
685    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
686    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
687    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
688
689    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
690    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
691    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
692    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
693    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
694    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
695    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
696    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
697    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
698    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
699    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
700    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
701    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
702    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
703    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
704    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
705
706    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
707    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
708    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
709    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
710
711    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
712    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
713    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
714    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
715    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
716
717    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
718    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
719    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
720    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
721    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
722
723    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
724    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
725      EVT VT = (MVT::SimpleValueType)i;
726      // Do not attempt to custom lower non-power-of-2 vectors
727      if (!isPowerOf2_32(VT.getVectorNumElements()))
728        continue;
729      // Do not attempt to custom lower non-128-bit vectors
730      if (!VT.is128BitVector())
731        continue;
732      setOperationAction(ISD::BUILD_VECTOR,
733                         VT.getSimpleVT().SimpleTy, Custom);
734      setOperationAction(ISD::VECTOR_SHUFFLE,
735                         VT.getSimpleVT().SimpleTy, Custom);
736      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
737                         VT.getSimpleVT().SimpleTy, Custom);
738    }
739
740    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
741    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
742    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
743    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
744    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
745    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
746
747    if (Subtarget->is64Bit()) {
748      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
749      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
750    }
751
752    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
753    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
754      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
755      EVT VT = SVT;
756
757      // Do not attempt to promote non-128-bit vectors
758      if (!VT.is128BitVector())
759        continue;
760
761      setOperationAction(ISD::AND,    SVT, Promote);
762      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
763      setOperationAction(ISD::OR,     SVT, Promote);
764      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
765      setOperationAction(ISD::XOR,    SVT, Promote);
766      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
767      setOperationAction(ISD::LOAD,   SVT, Promote);
768      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
769      setOperationAction(ISD::SELECT, SVT, Promote);
770      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
771    }
772
773    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
774
775    // Custom lower v2i64 and v2f64 selects.
776    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
777    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
778    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
779    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
780
781    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
782    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
783  }
784
785  if (Subtarget->hasSSE41()) {
786    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
787    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
788    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
789    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
790    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
791    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
792    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
793    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
794    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
795    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
796
797    // FIXME: Do we need to handle scalar-to-vector here?
798    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
799
800    // Can turn SHL into an integer multiply.
801    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
802    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
803
804    // i8 and i16 vectors are custom , because the source register and source
805    // source memory operand types are not the same width.  f32 vectors are
806    // custom since the immediate controlling the insert encodes additional
807    // information.
808    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
809    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
810    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
811    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
812
813    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
814    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
815    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
816    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
817
818    if (Subtarget->is64Bit()) {
819      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
820      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
821    }
822  }
823
824  if (Subtarget->hasSSE42()) {
825    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
826  }
827
828  if (!UseSoftFloat && Subtarget->hasAVX()) {
829    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
830    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
831    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
832    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
833    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
834
835    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
836    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
837    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
838    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
839    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
840    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
841    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
842    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
843    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
844    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
845    setOperationAction(ISD::BUILD_VECTOR,       MVT::v8f32, Custom);
846    //setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v8f32, Custom);
847    //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
848    //setOperationAction(ISD::SELECT,             MVT::v8f32, Custom);
849    //setOperationAction(ISD::VSETCC,             MVT::v8f32, Custom);
850
851    // Operations to consider commented out -v16i16 v32i8
852    //setOperationAction(ISD::ADD,                MVT::v16i16, Legal);
853    setOperationAction(ISD::ADD,                MVT::v8i32, Custom);
854    setOperationAction(ISD::ADD,                MVT::v4i64, Custom);
855    //setOperationAction(ISD::SUB,                MVT::v32i8, Legal);
856    //setOperationAction(ISD::SUB,                MVT::v16i16, Legal);
857    setOperationAction(ISD::SUB,                MVT::v8i32, Custom);
858    setOperationAction(ISD::SUB,                MVT::v4i64, Custom);
859    //setOperationAction(ISD::MUL,                MVT::v16i16, Legal);
860    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
861    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
862    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
863    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
864    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
865    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
866
867    setOperationAction(ISD::VSETCC,             MVT::v4f64, Custom);
868    // setOperationAction(ISD::VSETCC,             MVT::v32i8, Custom);
869    // setOperationAction(ISD::VSETCC,             MVT::v16i16, Custom);
870    setOperationAction(ISD::VSETCC,             MVT::v8i32, Custom);
871
872    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v32i8, Custom);
873    // setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i16, Custom);
874    // setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i16, Custom);
875    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i32, Custom);
876    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8f32, Custom);
877
878    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f64, Custom);
879    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4i64, Custom);
880    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f64, Custom);
881    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4i64, Custom);
882    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f64, Custom);
883    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
884
885#if 0
886    // Not sure we want to do this since there are no 256-bit integer
887    // operations in AVX
888
889    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
890    // This includes 256-bit vectors
891    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
892      EVT VT = (MVT::SimpleValueType)i;
893
894      // Do not attempt to custom lower non-power-of-2 vectors
895      if (!isPowerOf2_32(VT.getVectorNumElements()))
896        continue;
897
898      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
899      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
900      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
901    }
902
903    if (Subtarget->is64Bit()) {
904      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i64, Custom);
905      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
906    }
907#endif
908
909#if 0
910    // Not sure we want to do this since there are no 256-bit integer
911    // operations in AVX
912
913    // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
914    // Including 256-bit vectors
915    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
916      EVT VT = (MVT::SimpleValueType)i;
917
918      if (!VT.is256BitVector()) {
919        continue;
920      }
921      setOperationAction(ISD::AND,    VT, Promote);
922      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
923      setOperationAction(ISD::OR,     VT, Promote);
924      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
925      setOperationAction(ISD::XOR,    VT, Promote);
926      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
927      setOperationAction(ISD::LOAD,   VT, Promote);
928      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
929      setOperationAction(ISD::SELECT, VT, Promote);
930      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
931    }
932
933    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
934#endif
935  }
936
937  // We want to custom lower some of our intrinsics.
938  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
939
940  // Add/Sub/Mul with overflow operations are custom lowered.
941  setOperationAction(ISD::SADDO, MVT::i32, Custom);
942  setOperationAction(ISD::UADDO, MVT::i32, Custom);
943  setOperationAction(ISD::SSUBO, MVT::i32, Custom);
944  setOperationAction(ISD::USUBO, MVT::i32, Custom);
945  setOperationAction(ISD::SMULO, MVT::i32, Custom);
946
947  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
948  // handle type legalization for these operations here.
949  //
950  // FIXME: We really should do custom legalization for addition and
951  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
952  // than generic legalization for 64-bit multiplication-with-overflow, though.
953  if (Subtarget->is64Bit()) {
954    setOperationAction(ISD::SADDO, MVT::i64, Custom);
955    setOperationAction(ISD::UADDO, MVT::i64, Custom);
956    setOperationAction(ISD::SSUBO, MVT::i64, Custom);
957    setOperationAction(ISD::USUBO, MVT::i64, Custom);
958    setOperationAction(ISD::SMULO, MVT::i64, Custom);
959  }
960
961  if (!Subtarget->is64Bit()) {
962    // These libcalls are not available in 32-bit.
963    setLibcallName(RTLIB::SHL_I128, 0);
964    setLibcallName(RTLIB::SRL_I128, 0);
965    setLibcallName(RTLIB::SRA_I128, 0);
966  }
967
968  // We have target-specific dag combine patterns for the following nodes:
969  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
970  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
971  setTargetDAGCombine(ISD::BUILD_VECTOR);
972  setTargetDAGCombine(ISD::SELECT);
973  setTargetDAGCombine(ISD::SHL);
974  setTargetDAGCombine(ISD::SRA);
975  setTargetDAGCombine(ISD::SRL);
976  setTargetDAGCombine(ISD::OR);
977  setTargetDAGCombine(ISD::STORE);
978  setTargetDAGCombine(ISD::ZERO_EXTEND);
979  if (Subtarget->is64Bit())
980    setTargetDAGCombine(ISD::MUL);
981
982  computeRegisterProperties();
983
984  // FIXME: These should be based on subtarget info. Plus, the values should
985  // be smaller when we are in optimizing for size mode.
986  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
987  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
988  maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
989  setPrefLoopAlignment(16);
990  benefitFromCodePlacementOpt = true;
991}
992
993
994MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
995  return MVT::i8;
996}
997
998
999/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1000/// the desired ByVal argument alignment.
1001static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1002  if (MaxAlign == 16)
1003    return;
1004  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1005    if (VTy->getBitWidth() == 128)
1006      MaxAlign = 16;
1007  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1008    unsigned EltAlign = 0;
1009    getMaxByValAlign(ATy->getElementType(), EltAlign);
1010    if (EltAlign > MaxAlign)
1011      MaxAlign = EltAlign;
1012  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1013    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1014      unsigned EltAlign = 0;
1015      getMaxByValAlign(STy->getElementType(i), EltAlign);
1016      if (EltAlign > MaxAlign)
1017        MaxAlign = EltAlign;
1018      if (MaxAlign == 16)
1019        break;
1020    }
1021  }
1022  return;
1023}
1024
1025/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1026/// function arguments in the caller parameter area. For X86, aggregates
1027/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1028/// are at 4-byte boundaries.
1029unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1030  if (Subtarget->is64Bit()) {
1031    // Max of 8 and alignment of type.
1032    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1033    if (TyAlign > 8)
1034      return TyAlign;
1035    return 8;
1036  }
1037
1038  unsigned Align = 4;
1039  if (Subtarget->hasSSE1())
1040    getMaxByValAlign(Ty, Align);
1041  return Align;
1042}
1043
1044/// getOptimalMemOpType - Returns the target specific optimal type for load
1045/// and store operations as a result of memset, memcpy, and memmove
1046/// lowering. If DstAlign is zero that means it's safe to destination
1047/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1048/// means there isn't a need to check it against alignment requirement,
1049/// probably because the source does not need to be loaded. If
1050/// 'NonScalarIntSafe' is true, that means it's safe to return a
1051/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1052/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1053/// constant so it does not need to be loaded.
1054/// It returns EVT::Other if the type should be determined using generic
1055/// target-independent logic.
1056EVT
1057X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1058                                       unsigned DstAlign, unsigned SrcAlign,
1059                                       bool NonScalarIntSafe,
1060                                       bool MemcpyStrSrc,
1061                                       MachineFunction &MF) const {
1062  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1063  // linux.  This is because the stack realignment code can't handle certain
1064  // cases like PR2962.  This should be removed when PR2962 is fixed.
1065  const Function *F = MF.getFunction();
1066  if (NonScalarIntSafe &&
1067      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1068    if (Size >= 16 &&
1069        (Subtarget->isUnalignedMemAccessFast() ||
1070         ((DstAlign == 0 || DstAlign >= 16) &&
1071          (SrcAlign == 0 || SrcAlign >= 16))) &&
1072        Subtarget->getStackAlignment() >= 16) {
1073      if (Subtarget->hasSSE2())
1074        return MVT::v4i32;
1075      if (Subtarget->hasSSE1())
1076        return MVT::v4f32;
1077    } else if (!MemcpyStrSrc && Size >= 8 &&
1078               !Subtarget->is64Bit() &&
1079               Subtarget->getStackAlignment() >= 8 &&
1080               Subtarget->hasSSE2()) {
1081      // Do not use f64 to lower memcpy if source is string constant. It's
1082      // better to use i32 to avoid the loads.
1083      return MVT::f64;
1084    }
1085  }
1086  if (Subtarget->is64Bit() && Size >= 8)
1087    return MVT::i64;
1088  return MVT::i32;
1089}
1090
1091/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1092/// current function.  The returned value is a member of the
1093/// MachineJumpTableInfo::JTEntryKind enum.
1094unsigned X86TargetLowering::getJumpTableEncoding() const {
1095  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1096  // symbol.
1097  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1098      Subtarget->isPICStyleGOT())
1099    return MachineJumpTableInfo::EK_Custom32;
1100
1101  // Otherwise, use the normal jump table encoding heuristics.
1102  return TargetLowering::getJumpTableEncoding();
1103}
1104
1105const MCExpr *
1106X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1107                                             const MachineBasicBlock *MBB,
1108                                             unsigned uid,MCContext &Ctx) const{
1109  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1110         Subtarget->isPICStyleGOT());
1111  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1112  // entries.
1113  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1114                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1115}
1116
1117/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1118/// jumptable.
1119SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1120                                                    SelectionDAG &DAG) const {
1121  if (!Subtarget->is64Bit())
1122    // This doesn't have DebugLoc associated with it, but is not really the
1123    // same as a Register.
1124    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1125  return Table;
1126}
1127
1128/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1129/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1130/// MCExpr.
1131const MCExpr *X86TargetLowering::
1132getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1133                             MCContext &Ctx) const {
1134  // X86-64 uses RIP relative addressing based on the jump table label.
1135  if (Subtarget->isPICStyleRIPRel())
1136    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1137
1138  // Otherwise, the reference is relative to the PIC base.
1139  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1140}
1141
1142/// getFunctionAlignment - Return the Log2 alignment of this function.
1143unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1144  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1145}
1146
1147std::pair<const TargetRegisterClass*, uint8_t>
1148X86TargetLowering::findRepresentativeClass(EVT VT) const{
1149  const TargetRegisterClass *RRC = 0;
1150  uint8_t Cost = 1;
1151  switch (VT.getSimpleVT().SimpleTy) {
1152  default:
1153    return TargetLowering::findRepresentativeClass(VT);
1154  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1155    RRC = (Subtarget->is64Bit()
1156           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1157    break;
1158  case MVT::x86mmx:
1159    RRC = X86::VR64RegisterClass;
1160    break;
1161  case MVT::f32: case MVT::f64:
1162  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1163  case MVT::v4f32: case MVT::v2f64:
1164  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1165  case MVT::v4f64:
1166    RRC = X86::VR128RegisterClass;
1167    break;
1168  }
1169  return std::make_pair(RRC, Cost);
1170}
1171
1172unsigned
1173X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1174                                       MachineFunction &MF) const {
1175  const TargetFrameInfo *TFI = MF.getTarget().getFrameInfo();
1176
1177  unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
1178  switch (RC->getID()) {
1179  default:
1180    return 0;
1181  case X86::GR32RegClassID:
1182    return 4 - FPDiff;
1183  case X86::GR64RegClassID:
1184    return 8 - FPDiff;
1185  case X86::VR128RegClassID:
1186    return Subtarget->is64Bit() ? 10 : 4;
1187  case X86::VR64RegClassID:
1188    return 4;
1189  }
1190}
1191
1192bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1193                                               unsigned &Offset) const {
1194  if (!Subtarget->isTargetLinux())
1195    return false;
1196
1197  if (Subtarget->is64Bit()) {
1198    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1199    Offset = 0x28;
1200    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1201      AddressSpace = 256;
1202    else
1203      AddressSpace = 257;
1204  } else {
1205    // %gs:0x14 on i386
1206    Offset = 0x14;
1207    AddressSpace = 256;
1208  }
1209  return true;
1210}
1211
1212
1213//===----------------------------------------------------------------------===//
1214//               Return Value Calling Convention Implementation
1215//===----------------------------------------------------------------------===//
1216
1217#include "X86GenCallingConv.inc"
1218
1219bool
1220X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1221                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1222                        LLVMContext &Context) const {
1223  SmallVector<CCValAssign, 16> RVLocs;
1224  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1225                 RVLocs, Context);
1226  return CCInfo.CheckReturn(Outs, RetCC_X86);
1227}
1228
1229SDValue
1230X86TargetLowering::LowerReturn(SDValue Chain,
1231                               CallingConv::ID CallConv, bool isVarArg,
1232                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1233                               const SmallVectorImpl<SDValue> &OutVals,
1234                               DebugLoc dl, SelectionDAG &DAG) const {
1235  MachineFunction &MF = DAG.getMachineFunction();
1236  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1237
1238  SmallVector<CCValAssign, 16> RVLocs;
1239  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1240                 RVLocs, *DAG.getContext());
1241  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1242
1243  // Add the regs to the liveout set for the function.
1244  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1245  for (unsigned i = 0; i != RVLocs.size(); ++i)
1246    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1247      MRI.addLiveOut(RVLocs[i].getLocReg());
1248
1249  SDValue Flag;
1250
1251  SmallVector<SDValue, 6> RetOps;
1252  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1253  // Operand #1 = Bytes To Pop
1254  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1255                   MVT::i16));
1256
1257  // Copy the result values into the output registers.
1258  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1259    CCValAssign &VA = RVLocs[i];
1260    assert(VA.isRegLoc() && "Can only return in registers!");
1261    SDValue ValToCopy = OutVals[i];
1262    EVT ValVT = ValToCopy.getValueType();
1263
1264    // If this is x86-64, and we disabled SSE, we can't return FP values,
1265    // or SSE or MMX vectors.
1266    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1267         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1268          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1269      report_fatal_error("SSE register return with SSE disabled");
1270    }
1271    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1272    // llvm-gcc has never done it right and no one has noticed, so this
1273    // should be OK for now.
1274    if (ValVT == MVT::f64 &&
1275        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1276      report_fatal_error("SSE2 register return with SSE2 disabled");
1277
1278    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1279    // the RET instruction and handled by the FP Stackifier.
1280    if (VA.getLocReg() == X86::ST0 ||
1281        VA.getLocReg() == X86::ST1) {
1282      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1283      // change the value to the FP stack register class.
1284      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1285        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1286      RetOps.push_back(ValToCopy);
1287      // Don't emit a copytoreg.
1288      continue;
1289    }
1290
1291    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1292    // which is returned in RAX / RDX.
1293    if (Subtarget->is64Bit()) {
1294      if (ValVT == MVT::x86mmx) {
1295        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1296          ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
1297          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1298                                  ValToCopy);
1299          // If we don't have SSE2 available, convert to v4f32 so the generated
1300          // register is legal.
1301          if (!Subtarget->hasSSE2())
1302            ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32,ValToCopy);
1303        }
1304      }
1305    }
1306
1307    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1308    Flag = Chain.getValue(1);
1309  }
1310
1311  // The x86-64 ABI for returning structs by value requires that we copy
1312  // the sret argument into %rax for the return. We saved the argument into
1313  // a virtual register in the entry block, so now we copy the value out
1314  // and into %rax.
1315  if (Subtarget->is64Bit() &&
1316      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1317    MachineFunction &MF = DAG.getMachineFunction();
1318    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1319    unsigned Reg = FuncInfo->getSRetReturnReg();
1320    assert(Reg &&
1321           "SRetReturnReg should have been set in LowerFormalArguments().");
1322    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1323
1324    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1325    Flag = Chain.getValue(1);
1326
1327    // RAX now acts like a return value.
1328    MRI.addLiveOut(X86::RAX);
1329  }
1330
1331  RetOps[0] = Chain;  // Update chain.
1332
1333  // Add the flag if we have it.
1334  if (Flag.getNode())
1335    RetOps.push_back(Flag);
1336
1337  return DAG.getNode(X86ISD::RET_FLAG, dl,
1338                     MVT::Other, &RetOps[0], RetOps.size());
1339}
1340
1341/// LowerCallResult - Lower the result values of a call into the
1342/// appropriate copies out of appropriate physical registers.
1343///
1344SDValue
1345X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1346                                   CallingConv::ID CallConv, bool isVarArg,
1347                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1348                                   DebugLoc dl, SelectionDAG &DAG,
1349                                   SmallVectorImpl<SDValue> &InVals) const {
1350
1351  // Assign locations to each value returned by this call.
1352  SmallVector<CCValAssign, 16> RVLocs;
1353  bool Is64Bit = Subtarget->is64Bit();
1354  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1355                 RVLocs, *DAG.getContext());
1356  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1357
1358  // Copy all of the result registers out of their specified physreg.
1359  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1360    CCValAssign &VA = RVLocs[i];
1361    EVT CopyVT = VA.getValVT();
1362
1363    // If this is x86-64, and we disabled SSE, we can't return FP values
1364    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1365        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1366      report_fatal_error("SSE register return with SSE disabled");
1367    }
1368
1369    SDValue Val;
1370
1371    // If this is a call to a function that returns an fp value on the floating
1372    // point stack, we must guarantee the the value is popped from the stack, so
1373    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1374    // if the return value is not used. We use the FpGET_ST0 instructions
1375    // instead.
1376    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1377      // If we prefer to use the value in xmm registers, copy it out as f80 and
1378      // use a truncate to move it from fp stack reg to xmm reg.
1379      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1380      bool isST0 = VA.getLocReg() == X86::ST0;
1381      unsigned Opc = 0;
1382      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1383      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1384      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1385      SDValue Ops[] = { Chain, InFlag };
1386      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Flag,
1387                                         Ops, 2), 1);
1388      Val = Chain.getValue(0);
1389
1390      // Round the f80 to the right size, which also moves it to the appropriate
1391      // xmm register.
1392      if (CopyVT != VA.getValVT())
1393        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1394                          // This truncation won't change the value.
1395                          DAG.getIntPtrConstant(1));
1396    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1397      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1398      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1399        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1400                                   MVT::v2i64, InFlag).getValue(1);
1401        Val = Chain.getValue(0);
1402        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1403                          Val, DAG.getConstant(0, MVT::i64));
1404      } else {
1405        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1406                                   MVT::i64, InFlag).getValue(1);
1407        Val = Chain.getValue(0);
1408      }
1409      Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
1410    } else {
1411      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1412                                 CopyVT, InFlag).getValue(1);
1413      Val = Chain.getValue(0);
1414    }
1415    InFlag = Chain.getValue(2);
1416    InVals.push_back(Val);
1417  }
1418
1419  return Chain;
1420}
1421
1422
1423//===----------------------------------------------------------------------===//
1424//                C & StdCall & Fast Calling Convention implementation
1425//===----------------------------------------------------------------------===//
1426//  StdCall calling convention seems to be standard for many Windows' API
1427//  routines and around. It differs from C calling convention just a little:
1428//  callee should clean up the stack, not caller. Symbols should be also
1429//  decorated in some fancy way :) It doesn't support any vector arguments.
1430//  For info on fast calling convention see Fast Calling Convention (tail call)
1431//  implementation LowerX86_32FastCCCallTo.
1432
1433/// CallIsStructReturn - Determines whether a call uses struct return
1434/// semantics.
1435static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1436  if (Outs.empty())
1437    return false;
1438
1439  return Outs[0].Flags.isSRet();
1440}
1441
1442/// ArgsAreStructReturn - Determines whether a function uses struct
1443/// return semantics.
1444static bool
1445ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1446  if (Ins.empty())
1447    return false;
1448
1449  return Ins[0].Flags.isSRet();
1450}
1451
1452/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1453/// by "Src" to address "Dst" with size and alignment information specified by
1454/// the specific parameter attribute. The copy will be passed as a byval
1455/// function parameter.
1456static SDValue
1457CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1458                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1459                          DebugLoc dl) {
1460  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1461
1462  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1463                       /*isVolatile*/false, /*AlwaysInline=*/true,
1464                       MachinePointerInfo(), MachinePointerInfo());
1465}
1466
1467/// IsTailCallConvention - Return true if the calling convention is one that
1468/// supports tail call optimization.
1469static bool IsTailCallConvention(CallingConv::ID CC) {
1470  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1471}
1472
1473/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1474/// a tailcall target by changing its ABI.
1475static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1476  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1477}
1478
1479SDValue
1480X86TargetLowering::LowerMemArgument(SDValue Chain,
1481                                    CallingConv::ID CallConv,
1482                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1483                                    DebugLoc dl, SelectionDAG &DAG,
1484                                    const CCValAssign &VA,
1485                                    MachineFrameInfo *MFI,
1486                                    unsigned i) const {
1487  // Create the nodes corresponding to a load from this parameter slot.
1488  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1489  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1490  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1491  EVT ValVT;
1492
1493  // If value is passed by pointer we have address passed instead of the value
1494  // itself.
1495  if (VA.getLocInfo() == CCValAssign::Indirect)
1496    ValVT = VA.getLocVT();
1497  else
1498    ValVT = VA.getValVT();
1499
1500  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1501  // changed with more analysis.
1502  // In case of tail call optimization mark all arguments mutable. Since they
1503  // could be overwritten by lowering of arguments in case of a tail call.
1504  if (Flags.isByVal()) {
1505    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1506                                    VA.getLocMemOffset(), isImmutable);
1507    return DAG.getFrameIndex(FI, getPointerTy());
1508  } else {
1509    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1510                                    VA.getLocMemOffset(), isImmutable);
1511    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1512    return DAG.getLoad(ValVT, dl, Chain, FIN,
1513                       MachinePointerInfo::getFixedStack(FI),
1514                       false, false, 0);
1515  }
1516}
1517
1518SDValue
1519X86TargetLowering::LowerFormalArguments(SDValue Chain,
1520                                        CallingConv::ID CallConv,
1521                                        bool isVarArg,
1522                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1523                                        DebugLoc dl,
1524                                        SelectionDAG &DAG,
1525                                        SmallVectorImpl<SDValue> &InVals)
1526                                          const {
1527  MachineFunction &MF = DAG.getMachineFunction();
1528  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1529
1530  const Function* Fn = MF.getFunction();
1531  if (Fn->hasExternalLinkage() &&
1532      Subtarget->isTargetCygMing() &&
1533      Fn->getName() == "main")
1534    FuncInfo->setForceFramePointer(true);
1535
1536  MachineFrameInfo *MFI = MF.getFrameInfo();
1537  bool Is64Bit = Subtarget->is64Bit();
1538  bool IsWin64 = Subtarget->isTargetWin64();
1539
1540  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1541         "Var args not supported with calling convention fastcc or ghc");
1542
1543  // Assign locations to all of the incoming arguments.
1544  SmallVector<CCValAssign, 16> ArgLocs;
1545  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1546                 ArgLocs, *DAG.getContext());
1547  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1548
1549  unsigned LastVal = ~0U;
1550  SDValue ArgValue;
1551  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1552    CCValAssign &VA = ArgLocs[i];
1553    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1554    // places.
1555    assert(VA.getValNo() != LastVal &&
1556           "Don't support value assigned to multiple locs yet");
1557    LastVal = VA.getValNo();
1558
1559    if (VA.isRegLoc()) {
1560      EVT RegVT = VA.getLocVT();
1561      TargetRegisterClass *RC = NULL;
1562      if (RegVT == MVT::i32)
1563        RC = X86::GR32RegisterClass;
1564      else if (Is64Bit && RegVT == MVT::i64)
1565        RC = X86::GR64RegisterClass;
1566      else if (RegVT == MVT::f32)
1567        RC = X86::FR32RegisterClass;
1568      else if (RegVT == MVT::f64)
1569        RC = X86::FR64RegisterClass;
1570      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1571        RC = X86::VR256RegisterClass;
1572      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1573        RC = X86::VR128RegisterClass;
1574      else if (RegVT == MVT::x86mmx)
1575        RC = X86::VR64RegisterClass;
1576      else
1577        llvm_unreachable("Unknown argument type!");
1578
1579      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1580      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1581
1582      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1583      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1584      // right size.
1585      if (VA.getLocInfo() == CCValAssign::SExt)
1586        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1587                               DAG.getValueType(VA.getValVT()));
1588      else if (VA.getLocInfo() == CCValAssign::ZExt)
1589        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1590                               DAG.getValueType(VA.getValVT()));
1591      else if (VA.getLocInfo() == CCValAssign::BCvt)
1592        ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
1593
1594      if (VA.isExtInLoc()) {
1595        // Handle MMX values passed in XMM regs.
1596        if (RegVT.isVector()) {
1597          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1598                                 ArgValue);
1599        } else
1600          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1601      }
1602    } else {
1603      assert(VA.isMemLoc());
1604      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1605    }
1606
1607    // If value is passed via pointer - do a load.
1608    if (VA.getLocInfo() == CCValAssign::Indirect)
1609      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1610                             MachinePointerInfo(), false, false, 0);
1611
1612    InVals.push_back(ArgValue);
1613  }
1614
1615  // The x86-64 ABI for returning structs by value requires that we copy
1616  // the sret argument into %rax for the return. Save the argument into
1617  // a virtual register so that we can access it from the return points.
1618  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1619    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1620    unsigned Reg = FuncInfo->getSRetReturnReg();
1621    if (!Reg) {
1622      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1623      FuncInfo->setSRetReturnReg(Reg);
1624    }
1625    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1626    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1627  }
1628
1629  unsigned StackSize = CCInfo.getNextStackOffset();
1630  // Align stack specially for tail calls.
1631  if (FuncIsMadeTailCallSafe(CallConv))
1632    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1633
1634  // If the function takes variable number of arguments, make a frame index for
1635  // the start of the first vararg value... for expansion of llvm.va_start.
1636  if (isVarArg) {
1637    if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1638                    CallConv != CallingConv::X86_ThisCall))) {
1639      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1640    }
1641    if (Is64Bit) {
1642      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1643
1644      // FIXME: We should really autogenerate these arrays
1645      static const unsigned GPR64ArgRegsWin64[] = {
1646        X86::RCX, X86::RDX, X86::R8,  X86::R9
1647      };
1648      static const unsigned GPR64ArgRegs64Bit[] = {
1649        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1650      };
1651      static const unsigned XMMArgRegs64Bit[] = {
1652        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1653        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1654      };
1655      const unsigned *GPR64ArgRegs;
1656      unsigned NumXMMRegs = 0;
1657
1658      if (IsWin64) {
1659        // The XMM registers which might contain var arg parameters are shadowed
1660        // in their paired GPR.  So we only need to save the GPR to their home
1661        // slots.
1662        TotalNumIntRegs = 4;
1663        GPR64ArgRegs = GPR64ArgRegsWin64;
1664      } else {
1665        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1666        GPR64ArgRegs = GPR64ArgRegs64Bit;
1667
1668        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1669      }
1670      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1671                                                       TotalNumIntRegs);
1672
1673      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1674      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1675             "SSE register cannot be used when SSE is disabled!");
1676      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1677             "SSE register cannot be used when SSE is disabled!");
1678      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
1679        // Kernel mode asks for SSE to be disabled, so don't push them
1680        // on the stack.
1681        TotalNumXMMRegs = 0;
1682
1683      if (IsWin64) {
1684        const TargetFrameInfo &TFI = *getTargetMachine().getFrameInfo();
1685        // Get to the caller-allocated home save location.  Add 8 to account
1686        // for the return address.
1687        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1688        FuncInfo->setRegSaveFrameIndex(
1689          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1690        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1691      } else {
1692        // For X86-64, if there are vararg parameters that are passed via
1693        // registers, then we must store them to their spots on the stack so they
1694        // may be loaded by deferencing the result of va_next.
1695        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1696        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1697        FuncInfo->setRegSaveFrameIndex(
1698          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1699                               false));
1700      }
1701
1702      // Store the integer parameter registers.
1703      SmallVector<SDValue, 8> MemOps;
1704      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1705                                        getPointerTy());
1706      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1707      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1708        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1709                                  DAG.getIntPtrConstant(Offset));
1710        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1711                                     X86::GR64RegisterClass);
1712        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1713        SDValue Store =
1714          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1715                       MachinePointerInfo::getFixedStack(
1716                         FuncInfo->getRegSaveFrameIndex(), Offset),
1717                       false, false, 0);
1718        MemOps.push_back(Store);
1719        Offset += 8;
1720      }
1721
1722      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1723        // Now store the XMM (fp + vector) parameter registers.
1724        SmallVector<SDValue, 11> SaveXMMOps;
1725        SaveXMMOps.push_back(Chain);
1726
1727        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1728        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1729        SaveXMMOps.push_back(ALVal);
1730
1731        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1732                               FuncInfo->getRegSaveFrameIndex()));
1733        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1734                               FuncInfo->getVarArgsFPOffset()));
1735
1736        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1737          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1738                                       X86::VR128RegisterClass);
1739          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1740          SaveXMMOps.push_back(Val);
1741        }
1742        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1743                                     MVT::Other,
1744                                     &SaveXMMOps[0], SaveXMMOps.size()));
1745      }
1746
1747      if (!MemOps.empty())
1748        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1749                            &MemOps[0], MemOps.size());
1750    }
1751  }
1752
1753  // Some CCs need callee pop.
1754  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1755    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1756  } else {
1757    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1758    // If this is an sret function, the return should pop the hidden pointer.
1759    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1760      FuncInfo->setBytesToPopOnReturn(4);
1761  }
1762
1763  if (!Is64Bit) {
1764    // RegSaveFrameIndex is X86-64 only.
1765    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1766    if (CallConv == CallingConv::X86_FastCall ||
1767        CallConv == CallingConv::X86_ThisCall)
1768      // fastcc functions can't have varargs.
1769      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1770  }
1771
1772  return Chain;
1773}
1774
1775SDValue
1776X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1777                                    SDValue StackPtr, SDValue Arg,
1778                                    DebugLoc dl, SelectionDAG &DAG,
1779                                    const CCValAssign &VA,
1780                                    ISD::ArgFlagsTy Flags) const {
1781  const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
1782  unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
1783  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1784  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1785  if (Flags.isByVal())
1786    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1787
1788  return DAG.getStore(Chain, dl, Arg, PtrOff,
1789                      MachinePointerInfo::getStack(LocMemOffset),
1790                      false, false, 0);
1791}
1792
1793/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1794/// optimization is performed and it is required.
1795SDValue
1796X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1797                                           SDValue &OutRetAddr, SDValue Chain,
1798                                           bool IsTailCall, bool Is64Bit,
1799                                           int FPDiff, DebugLoc dl) const {
1800  // Adjust the Return address stack slot.
1801  EVT VT = getPointerTy();
1802  OutRetAddr = getReturnAddressFrameIndex(DAG);
1803
1804  // Load the "old" Return address.
1805  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1806                           false, false, 0);
1807  return SDValue(OutRetAddr.getNode(), 1);
1808}
1809
1810/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1811/// optimization is performed and it is required (FPDiff!=0).
1812static SDValue
1813EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1814                         SDValue Chain, SDValue RetAddrFrIdx,
1815                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1816  // Store the return address to the appropriate stack slot.
1817  if (!FPDiff) return Chain;
1818  // Calculate the new stack slot for the return address.
1819  int SlotSize = Is64Bit ? 8 : 4;
1820  int NewReturnAddrFI =
1821    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1822  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1823  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1824  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1825                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1826                       false, false, 0);
1827  return Chain;
1828}
1829
1830SDValue
1831X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1832                             CallingConv::ID CallConv, bool isVarArg,
1833                             bool &isTailCall,
1834                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1835                             const SmallVectorImpl<SDValue> &OutVals,
1836                             const SmallVectorImpl<ISD::InputArg> &Ins,
1837                             DebugLoc dl, SelectionDAG &DAG,
1838                             SmallVectorImpl<SDValue> &InVals) const {
1839  MachineFunction &MF = DAG.getMachineFunction();
1840  bool Is64Bit        = Subtarget->is64Bit();
1841  bool IsStructRet    = CallIsStructReturn(Outs);
1842  bool IsSibcall      = false;
1843
1844  if (isTailCall) {
1845    // Check if it's really possible to do a tail call.
1846    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1847                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1848                                                   Outs, OutVals, Ins, DAG);
1849
1850    // Sibcalls are automatically detected tailcalls which do not require
1851    // ABI changes.
1852    if (!GuaranteedTailCallOpt && isTailCall)
1853      IsSibcall = true;
1854
1855    if (isTailCall)
1856      ++NumTailCalls;
1857  }
1858
1859  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1860         "Var args not supported with calling convention fastcc or ghc");
1861
1862  // Analyze operands of the call, assigning locations to each operand.
1863  SmallVector<CCValAssign, 16> ArgLocs;
1864  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1865                 ArgLocs, *DAG.getContext());
1866  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
1867
1868  // Get a count of how many bytes are to be pushed on the stack.
1869  unsigned NumBytes = CCInfo.getNextStackOffset();
1870  if (IsSibcall)
1871    // This is a sibcall. The memory operands are available in caller's
1872    // own caller's stack.
1873    NumBytes = 0;
1874  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
1875    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
1876
1877  int FPDiff = 0;
1878  if (isTailCall && !IsSibcall) {
1879    // Lower arguments at fp - stackoffset + fpdiff.
1880    unsigned NumBytesCallerPushed =
1881      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1882    FPDiff = NumBytesCallerPushed - NumBytes;
1883
1884    // Set the delta of movement of the returnaddr stackslot.
1885    // But only set if delta is greater than previous delta.
1886    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1887      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1888  }
1889
1890  if (!IsSibcall)
1891    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
1892
1893  SDValue RetAddrFrIdx;
1894  // Load return adress for tail calls.
1895  if (isTailCall && FPDiff)
1896    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
1897                                    Is64Bit, FPDiff, dl);
1898
1899  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1900  SmallVector<SDValue, 8> MemOpChains;
1901  SDValue StackPtr;
1902
1903  // Walk the register/memloc assignments, inserting copies/loads.  In the case
1904  // of tail call optimization arguments are handle later.
1905  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1906    CCValAssign &VA = ArgLocs[i];
1907    EVT RegVT = VA.getLocVT();
1908    SDValue Arg = OutVals[i];
1909    ISD::ArgFlagsTy Flags = Outs[i].Flags;
1910    bool isByVal = Flags.isByVal();
1911
1912    // Promote the value if needed.
1913    switch (VA.getLocInfo()) {
1914    default: llvm_unreachable("Unknown loc info!");
1915    case CCValAssign::Full: break;
1916    case CCValAssign::SExt:
1917      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
1918      break;
1919    case CCValAssign::ZExt:
1920      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
1921      break;
1922    case CCValAssign::AExt:
1923      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
1924        // Special case: passing MMX values in XMM registers.
1925        Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
1926        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
1927        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
1928      } else
1929        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
1930      break;
1931    case CCValAssign::BCvt:
1932      Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
1933      break;
1934    case CCValAssign::Indirect: {
1935      // Store the argument.
1936      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
1937      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1938      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
1939                           MachinePointerInfo::getFixedStack(FI),
1940                           false, false, 0);
1941      Arg = SpillSlot;
1942      break;
1943    }
1944    }
1945
1946    if (VA.isRegLoc()) {
1947      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1948      if (isVarArg && Subtarget->isTargetWin64()) {
1949        // Win64 ABI requires argument XMM reg to be copied to the corresponding
1950        // shadow reg if callee is a varargs function.
1951        unsigned ShadowReg = 0;
1952        switch (VA.getLocReg()) {
1953        case X86::XMM0: ShadowReg = X86::RCX; break;
1954        case X86::XMM1: ShadowReg = X86::RDX; break;
1955        case X86::XMM2: ShadowReg = X86::R8; break;
1956        case X86::XMM3: ShadowReg = X86::R9; break;
1957        }
1958        if (ShadowReg)
1959          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
1960      }
1961    } else if (!IsSibcall && (!isTailCall || isByVal)) {
1962      assert(VA.isMemLoc());
1963      if (StackPtr.getNode() == 0)
1964        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
1965      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1966                                             dl, DAG, VA, Flags));
1967    }
1968  }
1969
1970  if (!MemOpChains.empty())
1971    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1972                        &MemOpChains[0], MemOpChains.size());
1973
1974  // Build a sequence of copy-to-reg nodes chained together with token chain
1975  // and flag operands which copy the outgoing args into registers.
1976  SDValue InFlag;
1977  // Tail call byval lowering might overwrite argument registers so in case of
1978  // tail call optimization the copies to registers are lowered later.
1979  if (!isTailCall)
1980    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1981      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1982                               RegsToPass[i].second, InFlag);
1983      InFlag = Chain.getValue(1);
1984    }
1985
1986  if (Subtarget->isPICStyleGOT()) {
1987    // ELF / PIC requires GOT in the EBX register before function calls via PLT
1988    // GOT pointer.
1989    if (!isTailCall) {
1990      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
1991                               DAG.getNode(X86ISD::GlobalBaseReg,
1992                                           DebugLoc(), getPointerTy()),
1993                               InFlag);
1994      InFlag = Chain.getValue(1);
1995    } else {
1996      // If we are tail calling and generating PIC/GOT style code load the
1997      // address of the callee into ECX. The value in ecx is used as target of
1998      // the tail jump. This is done to circumvent the ebx/callee-saved problem
1999      // for tail calls on PIC/GOT architectures. Normally we would just put the
2000      // address of GOT into ebx and then call target@PLT. But for tail calls
2001      // ebx would be restored (since ebx is callee saved) before jumping to the
2002      // target@PLT.
2003
2004      // Note: The actual moving to ECX is done further down.
2005      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2006      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2007          !G->getGlobal()->hasProtectedVisibility())
2008        Callee = LowerGlobalAddress(Callee, DAG);
2009      else if (isa<ExternalSymbolSDNode>(Callee))
2010        Callee = LowerExternalSymbol(Callee, DAG);
2011    }
2012  }
2013
2014  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64()) {
2015    // From AMD64 ABI document:
2016    // For calls that may call functions that use varargs or stdargs
2017    // (prototype-less calls or calls to functions containing ellipsis (...) in
2018    // the declaration) %al is used as hidden argument to specify the number
2019    // of SSE registers used. The contents of %al do not need to match exactly
2020    // the number of registers, but must be an ubound on the number of SSE
2021    // registers used and is in the range 0 - 8 inclusive.
2022
2023    // Count the number of XMM registers allocated.
2024    static const unsigned XMMArgRegs[] = {
2025      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2026      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2027    };
2028    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2029    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2030           && "SSE registers cannot be used when SSE is disabled");
2031
2032    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2033                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2034    InFlag = Chain.getValue(1);
2035  }
2036
2037
2038  // For tail calls lower the arguments to the 'real' stack slot.
2039  if (isTailCall) {
2040    // Force all the incoming stack arguments to be loaded from the stack
2041    // before any new outgoing arguments are stored to the stack, because the
2042    // outgoing stack slots may alias the incoming argument stack slots, and
2043    // the alias isn't otherwise explicit. This is slightly more conservative
2044    // than necessary, because it means that each store effectively depends
2045    // on every argument instead of just those arguments it would clobber.
2046    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2047
2048    SmallVector<SDValue, 8> MemOpChains2;
2049    SDValue FIN;
2050    int FI = 0;
2051    // Do not flag preceeding copytoreg stuff together with the following stuff.
2052    InFlag = SDValue();
2053    if (GuaranteedTailCallOpt) {
2054      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2055        CCValAssign &VA = ArgLocs[i];
2056        if (VA.isRegLoc())
2057          continue;
2058        assert(VA.isMemLoc());
2059        SDValue Arg = OutVals[i];
2060        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2061        // Create frame index.
2062        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2063        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2064        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2065        FIN = DAG.getFrameIndex(FI, getPointerTy());
2066
2067        if (Flags.isByVal()) {
2068          // Copy relative to framepointer.
2069          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2070          if (StackPtr.getNode() == 0)
2071            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2072                                          getPointerTy());
2073          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2074
2075          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2076                                                           ArgChain,
2077                                                           Flags, DAG, dl));
2078        } else {
2079          // Store relative to framepointer.
2080          MemOpChains2.push_back(
2081            DAG.getStore(ArgChain, dl, Arg, FIN,
2082                         MachinePointerInfo::getFixedStack(FI),
2083                         false, false, 0));
2084        }
2085      }
2086    }
2087
2088    if (!MemOpChains2.empty())
2089      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2090                          &MemOpChains2[0], MemOpChains2.size());
2091
2092    // Copy arguments to their registers.
2093    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2094      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2095                               RegsToPass[i].second, InFlag);
2096      InFlag = Chain.getValue(1);
2097    }
2098    InFlag =SDValue();
2099
2100    // Store the return address to the appropriate stack slot.
2101    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2102                                     FPDiff, dl);
2103  }
2104
2105  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2106    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2107    // In the 64-bit large code model, we have to make all calls
2108    // through a register, since the call instruction's 32-bit
2109    // pc-relative offset may not be large enough to hold the whole
2110    // address.
2111  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2112    // If the callee is a GlobalAddress node (quite common, every direct call
2113    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2114    // it.
2115
2116    // We should use extra load for direct calls to dllimported functions in
2117    // non-JIT mode.
2118    const GlobalValue *GV = G->getGlobal();
2119    if (!GV->hasDLLImportLinkage()) {
2120      unsigned char OpFlags = 0;
2121
2122      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2123      // external symbols most go through the PLT in PIC mode.  If the symbol
2124      // has hidden or protected visibility, or if it is static or local, then
2125      // we don't need to use the PLT - we can directly call it.
2126      if (Subtarget->isTargetELF() &&
2127          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2128          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2129        OpFlags = X86II::MO_PLT;
2130      } else if (Subtarget->isPICStyleStubAny() &&
2131                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2132                 Subtarget->getDarwinVers() < 9) {
2133        // PC-relative references to external symbols should go through $stub,
2134        // unless we're building with the leopard linker or later, which
2135        // automatically synthesizes these stubs.
2136        OpFlags = X86II::MO_DARWIN_STUB;
2137      }
2138
2139      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2140                                          G->getOffset(), OpFlags);
2141    }
2142  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2143    unsigned char OpFlags = 0;
2144
2145    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
2146    // symbols should go through the PLT.
2147    if (Subtarget->isTargetELF() &&
2148        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2149      OpFlags = X86II::MO_PLT;
2150    } else if (Subtarget->isPICStyleStubAny() &&
2151               Subtarget->getDarwinVers() < 9) {
2152      // PC-relative references to external symbols should go through $stub,
2153      // unless we're building with the leopard linker or later, which
2154      // automatically synthesizes these stubs.
2155      OpFlags = X86II::MO_DARWIN_STUB;
2156    }
2157
2158    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2159                                         OpFlags);
2160  }
2161
2162  // Returns a chain & a flag for retval copy to use.
2163  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2164  SmallVector<SDValue, 8> Ops;
2165
2166  if (!IsSibcall && isTailCall) {
2167    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2168                           DAG.getIntPtrConstant(0, true), InFlag);
2169    InFlag = Chain.getValue(1);
2170  }
2171
2172  Ops.push_back(Chain);
2173  Ops.push_back(Callee);
2174
2175  if (isTailCall)
2176    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2177
2178  // Add argument registers to the end of the list so that they are known live
2179  // into the call.
2180  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2181    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2182                                  RegsToPass[i].second.getValueType()));
2183
2184  // Add an implicit use GOT pointer in EBX.
2185  if (!isTailCall && Subtarget->isPICStyleGOT())
2186    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2187
2188  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2189  if (Is64Bit && isVarArg && !Subtarget->isTargetWin64())
2190    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2191
2192  if (InFlag.getNode())
2193    Ops.push_back(InFlag);
2194
2195  if (isTailCall) {
2196    // We used to do:
2197    //// If this is the first return lowered for this function, add the regs
2198    //// to the liveout set for the function.
2199    // This isn't right, although it's probably harmless on x86; liveouts
2200    // should be computed from returns not tail calls.  Consider a void
2201    // function making a tail call to a function returning int.
2202    return DAG.getNode(X86ISD::TC_RETURN, dl,
2203                       NodeTys, &Ops[0], Ops.size());
2204  }
2205
2206  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2207  InFlag = Chain.getValue(1);
2208
2209  // Create the CALLSEQ_END node.
2210  unsigned NumBytesForCalleeToPush;
2211  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2212    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2213  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2214    // If this is a call to a struct-return function, the callee
2215    // pops the hidden struct pointer, so we have to push it back.
2216    // This is common for Darwin/X86, Linux & Mingw32 targets.
2217    NumBytesForCalleeToPush = 4;
2218  else
2219    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2220
2221  // Returns a flag for retval copy to use.
2222  if (!IsSibcall) {
2223    Chain = DAG.getCALLSEQ_END(Chain,
2224                               DAG.getIntPtrConstant(NumBytes, true),
2225                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2226                                                     true),
2227                               InFlag);
2228    InFlag = Chain.getValue(1);
2229  }
2230
2231  // Handle result values, copying them out of physregs into vregs that we
2232  // return.
2233  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2234                         Ins, dl, DAG, InVals);
2235}
2236
2237
2238//===----------------------------------------------------------------------===//
2239//                Fast Calling Convention (tail call) implementation
2240//===----------------------------------------------------------------------===//
2241
2242//  Like std call, callee cleans arguments, convention except that ECX is
2243//  reserved for storing the tail called function address. Only 2 registers are
2244//  free for argument passing (inreg). Tail call optimization is performed
2245//  provided:
2246//                * tailcallopt is enabled
2247//                * caller/callee are fastcc
2248//  On X86_64 architecture with GOT-style position independent code only local
2249//  (within module) calls are supported at the moment.
2250//  To keep the stack aligned according to platform abi the function
2251//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2252//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2253//  If a tail called function callee has more arguments than the caller the
2254//  caller needs to make sure that there is room to move the RETADDR to. This is
2255//  achieved by reserving an area the size of the argument delta right after the
2256//  original REtADDR, but before the saved framepointer or the spilled registers
2257//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2258//  stack layout:
2259//    arg1
2260//    arg2
2261//    RETADDR
2262//    [ new RETADDR
2263//      move area ]
2264//    (possible EBP)
2265//    ESI
2266//    EDI
2267//    local1 ..
2268
2269/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2270/// for a 16 byte align requirement.
2271unsigned
2272X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2273                                               SelectionDAG& DAG) const {
2274  MachineFunction &MF = DAG.getMachineFunction();
2275  const TargetMachine &TM = MF.getTarget();
2276  const TargetFrameInfo &TFI = *TM.getFrameInfo();
2277  unsigned StackAlignment = TFI.getStackAlignment();
2278  uint64_t AlignMask = StackAlignment - 1;
2279  int64_t Offset = StackSize;
2280  uint64_t SlotSize = TD->getPointerSize();
2281  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2282    // Number smaller than 12 so just add the difference.
2283    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2284  } else {
2285    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2286    Offset = ((~AlignMask) & Offset) + StackAlignment +
2287      (StackAlignment-SlotSize);
2288  }
2289  return Offset;
2290}
2291
2292/// MatchingStackOffset - Return true if the given stack call argument is
2293/// already available in the same position (relatively) of the caller's
2294/// incoming argument stack.
2295static
2296bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2297                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2298                         const X86InstrInfo *TII) {
2299  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2300  int FI = INT_MAX;
2301  if (Arg.getOpcode() == ISD::CopyFromReg) {
2302    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2303    if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
2304      return false;
2305    MachineInstr *Def = MRI->getVRegDef(VR);
2306    if (!Def)
2307      return false;
2308    if (!Flags.isByVal()) {
2309      if (!TII->isLoadFromStackSlot(Def, FI))
2310        return false;
2311    } else {
2312      unsigned Opcode = Def->getOpcode();
2313      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2314          Def->getOperand(1).isFI()) {
2315        FI = Def->getOperand(1).getIndex();
2316        Bytes = Flags.getByValSize();
2317      } else
2318        return false;
2319    }
2320  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2321    if (Flags.isByVal())
2322      // ByVal argument is passed in as a pointer but it's now being
2323      // dereferenced. e.g.
2324      // define @foo(%struct.X* %A) {
2325      //   tail call @bar(%struct.X* byval %A)
2326      // }
2327      return false;
2328    SDValue Ptr = Ld->getBasePtr();
2329    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2330    if (!FINode)
2331      return false;
2332    FI = FINode->getIndex();
2333  } else
2334    return false;
2335
2336  assert(FI != INT_MAX);
2337  if (!MFI->isFixedObjectIndex(FI))
2338    return false;
2339  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2340}
2341
2342/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2343/// for tail call optimization. Targets which want to do tail call
2344/// optimization should implement this function.
2345bool
2346X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2347                                                     CallingConv::ID CalleeCC,
2348                                                     bool isVarArg,
2349                                                     bool isCalleeStructRet,
2350                                                     bool isCallerStructRet,
2351                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2352                                    const SmallVectorImpl<SDValue> &OutVals,
2353                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2354                                                     SelectionDAG& DAG) const {
2355  if (!IsTailCallConvention(CalleeCC) &&
2356      CalleeCC != CallingConv::C)
2357    return false;
2358
2359  // If -tailcallopt is specified, make fastcc functions tail-callable.
2360  const MachineFunction &MF = DAG.getMachineFunction();
2361  const Function *CallerF = DAG.getMachineFunction().getFunction();
2362  CallingConv::ID CallerCC = CallerF->getCallingConv();
2363  bool CCMatch = CallerCC == CalleeCC;
2364
2365  if (GuaranteedTailCallOpt) {
2366    if (IsTailCallConvention(CalleeCC) && CCMatch)
2367      return true;
2368    return false;
2369  }
2370
2371  // Look for obvious safe cases to perform tail call optimization that do not
2372  // require ABI changes. This is what gcc calls sibcall.
2373
2374  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2375  // emit a special epilogue.
2376  if (RegInfo->needsStackRealignment(MF))
2377    return false;
2378
2379  // Do not sibcall optimize vararg calls unless the call site is not passing
2380  // any arguments.
2381  if (isVarArg && !Outs.empty())
2382    return false;
2383
2384  // Also avoid sibcall optimization if either caller or callee uses struct
2385  // return semantics.
2386  if (isCalleeStructRet || isCallerStructRet)
2387    return false;
2388
2389  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2390  // Therefore if it's not used by the call it is not safe to optimize this into
2391  // a sibcall.
2392  bool Unused = false;
2393  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2394    if (!Ins[i].Used) {
2395      Unused = true;
2396      break;
2397    }
2398  }
2399  if (Unused) {
2400    SmallVector<CCValAssign, 16> RVLocs;
2401    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2402                   RVLocs, *DAG.getContext());
2403    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2404    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2405      CCValAssign &VA = RVLocs[i];
2406      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2407        return false;
2408    }
2409  }
2410
2411  // If the calling conventions do not match, then we'd better make sure the
2412  // results are returned in the same way as what the caller expects.
2413  if (!CCMatch) {
2414    SmallVector<CCValAssign, 16> RVLocs1;
2415    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2416                    RVLocs1, *DAG.getContext());
2417    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2418
2419    SmallVector<CCValAssign, 16> RVLocs2;
2420    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2421                    RVLocs2, *DAG.getContext());
2422    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2423
2424    if (RVLocs1.size() != RVLocs2.size())
2425      return false;
2426    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2427      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2428        return false;
2429      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2430        return false;
2431      if (RVLocs1[i].isRegLoc()) {
2432        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2433          return false;
2434      } else {
2435        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2436          return false;
2437      }
2438    }
2439  }
2440
2441  // If the callee takes no arguments then go on to check the results of the
2442  // call.
2443  if (!Outs.empty()) {
2444    // Check if stack adjustment is needed. For now, do not do this if any
2445    // argument is passed on the stack.
2446    SmallVector<CCValAssign, 16> ArgLocs;
2447    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2448                   ArgLocs, *DAG.getContext());
2449    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2450    if (CCInfo.getNextStackOffset()) {
2451      MachineFunction &MF = DAG.getMachineFunction();
2452      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2453        return false;
2454      if (Subtarget->isTargetWin64())
2455        // Win64 ABI has additional complications.
2456        return false;
2457
2458      // Check if the arguments are already laid out in the right way as
2459      // the caller's fixed stack objects.
2460      MachineFrameInfo *MFI = MF.getFrameInfo();
2461      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2462      const X86InstrInfo *TII =
2463        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2464      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2465        CCValAssign &VA = ArgLocs[i];
2466        SDValue Arg = OutVals[i];
2467        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2468        if (VA.getLocInfo() == CCValAssign::Indirect)
2469          return false;
2470        if (!VA.isRegLoc()) {
2471          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2472                                   MFI, MRI, TII))
2473            return false;
2474        }
2475      }
2476    }
2477
2478    // If the tailcall address may be in a register, then make sure it's
2479    // possible to register allocate for it. In 32-bit, the call address can
2480    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2481    // callee-saved registers are restored. These happen to be the same
2482    // registers used to pass 'inreg' arguments so watch out for those.
2483    if (!Subtarget->is64Bit() &&
2484        !isa<GlobalAddressSDNode>(Callee) &&
2485        !isa<ExternalSymbolSDNode>(Callee)) {
2486      unsigned NumInRegs = 0;
2487      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2488        CCValAssign &VA = ArgLocs[i];
2489        if (!VA.isRegLoc())
2490          continue;
2491        unsigned Reg = VA.getLocReg();
2492        switch (Reg) {
2493        default: break;
2494        case X86::EAX: case X86::EDX: case X86::ECX:
2495          if (++NumInRegs == 3)
2496            return false;
2497          break;
2498        }
2499      }
2500    }
2501  }
2502
2503  // An stdcall caller is expected to clean up its arguments; the callee
2504  // isn't going to do that.
2505  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2506    return false;
2507
2508  return true;
2509}
2510
2511FastISel *
2512X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2513  return X86::createFastISel(funcInfo);
2514}
2515
2516
2517//===----------------------------------------------------------------------===//
2518//                           Other Lowering Hooks
2519//===----------------------------------------------------------------------===//
2520
2521static bool MayFoldLoad(SDValue Op) {
2522  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2523}
2524
2525static bool MayFoldIntoStore(SDValue Op) {
2526  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2527}
2528
2529static bool isTargetShuffle(unsigned Opcode) {
2530  switch(Opcode) {
2531  default: return false;
2532  case X86ISD::PSHUFD:
2533  case X86ISD::PSHUFHW:
2534  case X86ISD::PSHUFLW:
2535  case X86ISD::SHUFPD:
2536  case X86ISD::PALIGN:
2537  case X86ISD::SHUFPS:
2538  case X86ISD::MOVLHPS:
2539  case X86ISD::MOVLHPD:
2540  case X86ISD::MOVHLPS:
2541  case X86ISD::MOVLPS:
2542  case X86ISD::MOVLPD:
2543  case X86ISD::MOVSHDUP:
2544  case X86ISD::MOVSLDUP:
2545  case X86ISD::MOVDDUP:
2546  case X86ISD::MOVSS:
2547  case X86ISD::MOVSD:
2548  case X86ISD::UNPCKLPS:
2549  case X86ISD::UNPCKLPD:
2550  case X86ISD::PUNPCKLWD:
2551  case X86ISD::PUNPCKLBW:
2552  case X86ISD::PUNPCKLDQ:
2553  case X86ISD::PUNPCKLQDQ:
2554  case X86ISD::UNPCKHPS:
2555  case X86ISD::UNPCKHPD:
2556  case X86ISD::PUNPCKHWD:
2557  case X86ISD::PUNPCKHBW:
2558  case X86ISD::PUNPCKHDQ:
2559  case X86ISD::PUNPCKHQDQ:
2560    return true;
2561  }
2562  return false;
2563}
2564
2565static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2566                                               SDValue V1, SelectionDAG &DAG) {
2567  switch(Opc) {
2568  default: llvm_unreachable("Unknown x86 shuffle node");
2569  case X86ISD::MOVSHDUP:
2570  case X86ISD::MOVSLDUP:
2571  case X86ISD::MOVDDUP:
2572    return DAG.getNode(Opc, dl, VT, V1);
2573  }
2574
2575  return SDValue();
2576}
2577
2578static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2579                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2580  switch(Opc) {
2581  default: llvm_unreachable("Unknown x86 shuffle node");
2582  case X86ISD::PSHUFD:
2583  case X86ISD::PSHUFHW:
2584  case X86ISD::PSHUFLW:
2585    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2586  }
2587
2588  return SDValue();
2589}
2590
2591static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2592               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2593  switch(Opc) {
2594  default: llvm_unreachable("Unknown x86 shuffle node");
2595  case X86ISD::PALIGN:
2596  case X86ISD::SHUFPD:
2597  case X86ISD::SHUFPS:
2598    return DAG.getNode(Opc, dl, VT, V1, V2,
2599                       DAG.getConstant(TargetMask, MVT::i8));
2600  }
2601  return SDValue();
2602}
2603
2604static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2605                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2606  switch(Opc) {
2607  default: llvm_unreachable("Unknown x86 shuffle node");
2608  case X86ISD::MOVLHPS:
2609  case X86ISD::MOVLHPD:
2610  case X86ISD::MOVHLPS:
2611  case X86ISD::MOVLPS:
2612  case X86ISD::MOVLPD:
2613  case X86ISD::MOVSS:
2614  case X86ISD::MOVSD:
2615  case X86ISD::UNPCKLPS:
2616  case X86ISD::UNPCKLPD:
2617  case X86ISD::PUNPCKLWD:
2618  case X86ISD::PUNPCKLBW:
2619  case X86ISD::PUNPCKLDQ:
2620  case X86ISD::PUNPCKLQDQ:
2621  case X86ISD::UNPCKHPS:
2622  case X86ISD::UNPCKHPD:
2623  case X86ISD::PUNPCKHWD:
2624  case X86ISD::PUNPCKHBW:
2625  case X86ISD::PUNPCKHDQ:
2626  case X86ISD::PUNPCKHQDQ:
2627    return DAG.getNode(Opc, dl, VT, V1, V2);
2628  }
2629  return SDValue();
2630}
2631
2632SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2633  MachineFunction &MF = DAG.getMachineFunction();
2634  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2635  int ReturnAddrIndex = FuncInfo->getRAIndex();
2636
2637  if (ReturnAddrIndex == 0) {
2638    // Set up a frame object for the return address.
2639    uint64_t SlotSize = TD->getPointerSize();
2640    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2641                                                           false);
2642    FuncInfo->setRAIndex(ReturnAddrIndex);
2643  }
2644
2645  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2646}
2647
2648
2649bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2650                                       bool hasSymbolicDisplacement) {
2651  // Offset should fit into 32 bit immediate field.
2652  if (!isInt<32>(Offset))
2653    return false;
2654
2655  // If we don't have a symbolic displacement - we don't have any extra
2656  // restrictions.
2657  if (!hasSymbolicDisplacement)
2658    return true;
2659
2660  // FIXME: Some tweaks might be needed for medium code model.
2661  if (M != CodeModel::Small && M != CodeModel::Kernel)
2662    return false;
2663
2664  // For small code model we assume that latest object is 16MB before end of 31
2665  // bits boundary. We may also accept pretty large negative constants knowing
2666  // that all objects are in the positive half of address space.
2667  if (M == CodeModel::Small && Offset < 16*1024*1024)
2668    return true;
2669
2670  // For kernel code model we know that all object resist in the negative half
2671  // of 32bits address space. We may not accept negative offsets, since they may
2672  // be just off and we may accept pretty large positive ones.
2673  if (M == CodeModel::Kernel && Offset > 0)
2674    return true;
2675
2676  return false;
2677}
2678
2679/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2680/// specific condition code, returning the condition code and the LHS/RHS of the
2681/// comparison to make.
2682static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2683                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2684  if (!isFP) {
2685    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2686      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2687        // X > -1   -> X == 0, jump !sign.
2688        RHS = DAG.getConstant(0, RHS.getValueType());
2689        return X86::COND_NS;
2690      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2691        // X < 0   -> X == 0, jump on sign.
2692        return X86::COND_S;
2693      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2694        // X < 1   -> X <= 0
2695        RHS = DAG.getConstant(0, RHS.getValueType());
2696        return X86::COND_LE;
2697      }
2698    }
2699
2700    switch (SetCCOpcode) {
2701    default: llvm_unreachable("Invalid integer condition!");
2702    case ISD::SETEQ:  return X86::COND_E;
2703    case ISD::SETGT:  return X86::COND_G;
2704    case ISD::SETGE:  return X86::COND_GE;
2705    case ISD::SETLT:  return X86::COND_L;
2706    case ISD::SETLE:  return X86::COND_LE;
2707    case ISD::SETNE:  return X86::COND_NE;
2708    case ISD::SETULT: return X86::COND_B;
2709    case ISD::SETUGT: return X86::COND_A;
2710    case ISD::SETULE: return X86::COND_BE;
2711    case ISD::SETUGE: return X86::COND_AE;
2712    }
2713  }
2714
2715  // First determine if it is required or is profitable to flip the operands.
2716
2717  // If LHS is a foldable load, but RHS is not, flip the condition.
2718  if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
2719      !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
2720    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2721    std::swap(LHS, RHS);
2722  }
2723
2724  switch (SetCCOpcode) {
2725  default: break;
2726  case ISD::SETOLT:
2727  case ISD::SETOLE:
2728  case ISD::SETUGT:
2729  case ISD::SETUGE:
2730    std::swap(LHS, RHS);
2731    break;
2732  }
2733
2734  // On a floating point condition, the flags are set as follows:
2735  // ZF  PF  CF   op
2736  //  0 | 0 | 0 | X > Y
2737  //  0 | 0 | 1 | X < Y
2738  //  1 | 0 | 0 | X == Y
2739  //  1 | 1 | 1 | unordered
2740  switch (SetCCOpcode) {
2741  default: llvm_unreachable("Condcode should be pre-legalized away");
2742  case ISD::SETUEQ:
2743  case ISD::SETEQ:   return X86::COND_E;
2744  case ISD::SETOLT:              // flipped
2745  case ISD::SETOGT:
2746  case ISD::SETGT:   return X86::COND_A;
2747  case ISD::SETOLE:              // flipped
2748  case ISD::SETOGE:
2749  case ISD::SETGE:   return X86::COND_AE;
2750  case ISD::SETUGT:              // flipped
2751  case ISD::SETULT:
2752  case ISD::SETLT:   return X86::COND_B;
2753  case ISD::SETUGE:              // flipped
2754  case ISD::SETULE:
2755  case ISD::SETLE:   return X86::COND_BE;
2756  case ISD::SETONE:
2757  case ISD::SETNE:   return X86::COND_NE;
2758  case ISD::SETUO:   return X86::COND_P;
2759  case ISD::SETO:    return X86::COND_NP;
2760  case ISD::SETOEQ:
2761  case ISD::SETUNE:  return X86::COND_INVALID;
2762  }
2763}
2764
2765/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2766/// code. Current x86 isa includes the following FP cmov instructions:
2767/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2768static bool hasFPCMov(unsigned X86CC) {
2769  switch (X86CC) {
2770  default:
2771    return false;
2772  case X86::COND_B:
2773  case X86::COND_BE:
2774  case X86::COND_E:
2775  case X86::COND_P:
2776  case X86::COND_A:
2777  case X86::COND_AE:
2778  case X86::COND_NE:
2779  case X86::COND_NP:
2780    return true;
2781  }
2782}
2783
2784/// isFPImmLegal - Returns true if the target can instruction select the
2785/// specified FP immediate natively. If false, the legalizer will
2786/// materialize the FP immediate as a load from a constant pool.
2787bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2788  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2789    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2790      return true;
2791  }
2792  return false;
2793}
2794
2795/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2796/// the specified range (L, H].
2797static bool isUndefOrInRange(int Val, int Low, int Hi) {
2798  return (Val < 0) || (Val >= Low && Val < Hi);
2799}
2800
2801/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2802/// specified value.
2803static bool isUndefOrEqual(int Val, int CmpVal) {
2804  if (Val < 0 || Val == CmpVal)
2805    return true;
2806  return false;
2807}
2808
2809/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2810/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2811/// the second operand.
2812static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2813  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2814    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2815  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2816    return (Mask[0] < 2 && Mask[1] < 2);
2817  return false;
2818}
2819
2820bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2821  SmallVector<int, 8> M;
2822  N->getMask(M);
2823  return ::isPSHUFDMask(M, N->getValueType(0));
2824}
2825
2826/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2827/// is suitable for input to PSHUFHW.
2828static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2829  if (VT != MVT::v8i16)
2830    return false;
2831
2832  // Lower quadword copied in order or undef.
2833  for (int i = 0; i != 4; ++i)
2834    if (Mask[i] >= 0 && Mask[i] != i)
2835      return false;
2836
2837  // Upper quadword shuffled.
2838  for (int i = 4; i != 8; ++i)
2839    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2840      return false;
2841
2842  return true;
2843}
2844
2845bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2846  SmallVector<int, 8> M;
2847  N->getMask(M);
2848  return ::isPSHUFHWMask(M, N->getValueType(0));
2849}
2850
2851/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
2852/// is suitable for input to PSHUFLW.
2853static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2854  if (VT != MVT::v8i16)
2855    return false;
2856
2857  // Upper quadword copied in order.
2858  for (int i = 4; i != 8; ++i)
2859    if (Mask[i] >= 0 && Mask[i] != i)
2860      return false;
2861
2862  // Lower quadword shuffled.
2863  for (int i = 0; i != 4; ++i)
2864    if (Mask[i] >= 4)
2865      return false;
2866
2867  return true;
2868}
2869
2870bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
2871  SmallVector<int, 8> M;
2872  N->getMask(M);
2873  return ::isPSHUFLWMask(M, N->getValueType(0));
2874}
2875
2876/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
2877/// is suitable for input to PALIGNR.
2878static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
2879                          bool hasSSSE3) {
2880  int i, e = VT.getVectorNumElements();
2881
2882  // Do not handle v2i64 / v2f64 shuffles with palignr.
2883  if (e < 4 || !hasSSSE3)
2884    return false;
2885
2886  for (i = 0; i != e; ++i)
2887    if (Mask[i] >= 0)
2888      break;
2889
2890  // All undef, not a palignr.
2891  if (i == e)
2892    return false;
2893
2894  // Determine if it's ok to perform a palignr with only the LHS, since we
2895  // don't have access to the actual shuffle elements to see if RHS is undef.
2896  bool Unary = Mask[i] < (int)e;
2897  bool NeedsUnary = false;
2898
2899  int s = Mask[i] - i;
2900
2901  // Check the rest of the elements to see if they are consecutive.
2902  for (++i; i != e; ++i) {
2903    int m = Mask[i];
2904    if (m < 0)
2905      continue;
2906
2907    Unary = Unary && (m < (int)e);
2908    NeedsUnary = NeedsUnary || (m < s);
2909
2910    if (NeedsUnary && !Unary)
2911      return false;
2912    if (Unary && m != ((s+i) & (e-1)))
2913      return false;
2914    if (!Unary && m != (s+i))
2915      return false;
2916  }
2917  return true;
2918}
2919
2920bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
2921  SmallVector<int, 8> M;
2922  N->getMask(M);
2923  return ::isPALIGNRMask(M, N->getValueType(0), true);
2924}
2925
2926/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2927/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2928static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2929  int NumElems = VT.getVectorNumElements();
2930  if (NumElems != 2 && NumElems != 4)
2931    return false;
2932
2933  int Half = NumElems / 2;
2934  for (int i = 0; i < Half; ++i)
2935    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2936      return false;
2937  for (int i = Half; i < NumElems; ++i)
2938    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2939      return false;
2940
2941  return true;
2942}
2943
2944bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
2945  SmallVector<int, 8> M;
2946  N->getMask(M);
2947  return ::isSHUFPMask(M, N->getValueType(0));
2948}
2949
2950/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2951/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2952/// half elements to come from vector 1 (which would equal the dest.) and
2953/// the upper half to come from vector 2.
2954static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2955  int NumElems = VT.getVectorNumElements();
2956
2957  if (NumElems != 2 && NumElems != 4)
2958    return false;
2959
2960  int Half = NumElems / 2;
2961  for (int i = 0; i < Half; ++i)
2962    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
2963      return false;
2964  for (int i = Half; i < NumElems; ++i)
2965    if (!isUndefOrInRange(Mask[i], 0, NumElems))
2966      return false;
2967  return true;
2968}
2969
2970static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
2971  SmallVector<int, 8> M;
2972  N->getMask(M);
2973  return isCommutedSHUFPMask(M, N->getValueType(0));
2974}
2975
2976/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2977/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2978bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
2979  if (N->getValueType(0).getVectorNumElements() != 4)
2980    return false;
2981
2982  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2983  return isUndefOrEqual(N->getMaskElt(0), 6) &&
2984         isUndefOrEqual(N->getMaskElt(1), 7) &&
2985         isUndefOrEqual(N->getMaskElt(2), 2) &&
2986         isUndefOrEqual(N->getMaskElt(3), 3);
2987}
2988
2989/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2990/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2991/// <2, 3, 2, 3>
2992bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
2993  unsigned NumElems = N->getValueType(0).getVectorNumElements();
2994
2995  if (NumElems != 4)
2996    return false;
2997
2998  return isUndefOrEqual(N->getMaskElt(0), 2) &&
2999  isUndefOrEqual(N->getMaskElt(1), 3) &&
3000  isUndefOrEqual(N->getMaskElt(2), 2) &&
3001  isUndefOrEqual(N->getMaskElt(3), 3);
3002}
3003
3004/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3005/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3006bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3007  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3008
3009  if (NumElems != 2 && NumElems != 4)
3010    return false;
3011
3012  for (unsigned i = 0; i < NumElems/2; ++i)
3013    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3014      return false;
3015
3016  for (unsigned i = NumElems/2; i < NumElems; ++i)
3017    if (!isUndefOrEqual(N->getMaskElt(i), i))
3018      return false;
3019
3020  return true;
3021}
3022
3023/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3024/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3025bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3026  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3027
3028  if (NumElems != 2 && NumElems != 4)
3029    return false;
3030
3031  for (unsigned i = 0; i < NumElems/2; ++i)
3032    if (!isUndefOrEqual(N->getMaskElt(i), i))
3033      return false;
3034
3035  for (unsigned i = 0; i < NumElems/2; ++i)
3036    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3037      return false;
3038
3039  return true;
3040}
3041
3042/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3043/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3044static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3045                         bool V2IsSplat = false) {
3046  int NumElts = VT.getVectorNumElements();
3047  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3048    return false;
3049
3050  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3051    int BitI  = Mask[i];
3052    int BitI1 = Mask[i+1];
3053    if (!isUndefOrEqual(BitI, j))
3054      return false;
3055    if (V2IsSplat) {
3056      if (!isUndefOrEqual(BitI1, NumElts))
3057        return false;
3058    } else {
3059      if (!isUndefOrEqual(BitI1, j + NumElts))
3060        return false;
3061    }
3062  }
3063  return true;
3064}
3065
3066bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3067  SmallVector<int, 8> M;
3068  N->getMask(M);
3069  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3070}
3071
3072/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3073/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3074static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3075                         bool V2IsSplat = false) {
3076  int NumElts = VT.getVectorNumElements();
3077  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3078    return false;
3079
3080  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3081    int BitI  = Mask[i];
3082    int BitI1 = Mask[i+1];
3083    if (!isUndefOrEqual(BitI, j + NumElts/2))
3084      return false;
3085    if (V2IsSplat) {
3086      if (isUndefOrEqual(BitI1, NumElts))
3087        return false;
3088    } else {
3089      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3090        return false;
3091    }
3092  }
3093  return true;
3094}
3095
3096bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3097  SmallVector<int, 8> M;
3098  N->getMask(M);
3099  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3100}
3101
3102/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3103/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3104/// <0, 0, 1, 1>
3105static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3106  int NumElems = VT.getVectorNumElements();
3107  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3108    return false;
3109
3110  for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
3111    int BitI  = Mask[i];
3112    int BitI1 = Mask[i+1];
3113    if (!isUndefOrEqual(BitI, j))
3114      return false;
3115    if (!isUndefOrEqual(BitI1, j))
3116      return false;
3117  }
3118  return true;
3119}
3120
3121bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3122  SmallVector<int, 8> M;
3123  N->getMask(M);
3124  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3125}
3126
3127/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3128/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3129/// <2, 2, 3, 3>
3130static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3131  int NumElems = VT.getVectorNumElements();
3132  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3133    return false;
3134
3135  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3136    int BitI  = Mask[i];
3137    int BitI1 = Mask[i+1];
3138    if (!isUndefOrEqual(BitI, j))
3139      return false;
3140    if (!isUndefOrEqual(BitI1, j))
3141      return false;
3142  }
3143  return true;
3144}
3145
3146bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3147  SmallVector<int, 8> M;
3148  N->getMask(M);
3149  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3150}
3151
3152/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3153/// specifies a shuffle of elements that is suitable for input to MOVSS,
3154/// MOVSD, and MOVD, i.e. setting the lowest element.
3155static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3156  if (VT.getVectorElementType().getSizeInBits() < 32)
3157    return false;
3158
3159  int NumElts = VT.getVectorNumElements();
3160
3161  if (!isUndefOrEqual(Mask[0], NumElts))
3162    return false;
3163
3164  for (int i = 1; i < NumElts; ++i)
3165    if (!isUndefOrEqual(Mask[i], i))
3166      return false;
3167
3168  return true;
3169}
3170
3171bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3172  SmallVector<int, 8> M;
3173  N->getMask(M);
3174  return ::isMOVLMask(M, N->getValueType(0));
3175}
3176
3177/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3178/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3179/// element of vector 2 and the other elements to come from vector 1 in order.
3180static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3181                               bool V2IsSplat = false, bool V2IsUndef = false) {
3182  int NumOps = VT.getVectorNumElements();
3183  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3184    return false;
3185
3186  if (!isUndefOrEqual(Mask[0], 0))
3187    return false;
3188
3189  for (int i = 1; i < NumOps; ++i)
3190    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3191          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3192          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3193      return false;
3194
3195  return true;
3196}
3197
3198static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3199                           bool V2IsUndef = false) {
3200  SmallVector<int, 8> M;
3201  N->getMask(M);
3202  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3203}
3204
3205/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3206/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3207bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3208  if (N->getValueType(0).getVectorNumElements() != 4)
3209    return false;
3210
3211  // Expect 1, 1, 3, 3
3212  for (unsigned i = 0; i < 2; ++i) {
3213    int Elt = N->getMaskElt(i);
3214    if (Elt >= 0 && Elt != 1)
3215      return false;
3216  }
3217
3218  bool HasHi = false;
3219  for (unsigned i = 2; i < 4; ++i) {
3220    int Elt = N->getMaskElt(i);
3221    if (Elt >= 0 && Elt != 3)
3222      return false;
3223    if (Elt == 3)
3224      HasHi = true;
3225  }
3226  // Don't use movshdup if it can be done with a shufps.
3227  // FIXME: verify that matching u, u, 3, 3 is what we want.
3228  return HasHi;
3229}
3230
3231/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3232/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3233bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3234  if (N->getValueType(0).getVectorNumElements() != 4)
3235    return false;
3236
3237  // Expect 0, 0, 2, 2
3238  for (unsigned i = 0; i < 2; ++i)
3239    if (N->getMaskElt(i) > 0)
3240      return false;
3241
3242  bool HasHi = false;
3243  for (unsigned i = 2; i < 4; ++i) {
3244    int Elt = N->getMaskElt(i);
3245    if (Elt >= 0 && Elt != 2)
3246      return false;
3247    if (Elt == 2)
3248      HasHi = true;
3249  }
3250  // Don't use movsldup if it can be done with a shufps.
3251  return HasHi;
3252}
3253
3254/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3255/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3256bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3257  int e = N->getValueType(0).getVectorNumElements() / 2;
3258
3259  for (int i = 0; i < e; ++i)
3260    if (!isUndefOrEqual(N->getMaskElt(i), i))
3261      return false;
3262  for (int i = 0; i < e; ++i)
3263    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3264      return false;
3265  return true;
3266}
3267
3268/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3269/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3270unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3271  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3272  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3273
3274  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3275  unsigned Mask = 0;
3276  for (int i = 0; i < NumOperands; ++i) {
3277    int Val = SVOp->getMaskElt(NumOperands-i-1);
3278    if (Val < 0) Val = 0;
3279    if (Val >= NumOperands) Val -= NumOperands;
3280    Mask |= Val;
3281    if (i != NumOperands - 1)
3282      Mask <<= Shift;
3283  }
3284  return Mask;
3285}
3286
3287/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3288/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3289unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3290  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3291  unsigned Mask = 0;
3292  // 8 nodes, but we only care about the last 4.
3293  for (unsigned i = 7; i >= 4; --i) {
3294    int Val = SVOp->getMaskElt(i);
3295    if (Val >= 0)
3296      Mask |= (Val - 4);
3297    if (i != 4)
3298      Mask <<= 2;
3299  }
3300  return Mask;
3301}
3302
3303/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3304/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3305unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3306  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3307  unsigned Mask = 0;
3308  // 8 nodes, but we only care about the first 4.
3309  for (int i = 3; i >= 0; --i) {
3310    int Val = SVOp->getMaskElt(i);
3311    if (Val >= 0)
3312      Mask |= Val;
3313    if (i != 0)
3314      Mask <<= 2;
3315  }
3316  return Mask;
3317}
3318
3319/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3320/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3321unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3322  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3323  EVT VVT = N->getValueType(0);
3324  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3325  int Val = 0;
3326
3327  unsigned i, e;
3328  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3329    Val = SVOp->getMaskElt(i);
3330    if (Val >= 0)
3331      break;
3332  }
3333  return (Val - i) * EltSize;
3334}
3335
3336/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3337/// constant +0.0.
3338bool X86::isZeroNode(SDValue Elt) {
3339  return ((isa<ConstantSDNode>(Elt) &&
3340           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3341          (isa<ConstantFPSDNode>(Elt) &&
3342           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3343}
3344
3345/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3346/// their permute mask.
3347static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3348                                    SelectionDAG &DAG) {
3349  EVT VT = SVOp->getValueType(0);
3350  unsigned NumElems = VT.getVectorNumElements();
3351  SmallVector<int, 8> MaskVec;
3352
3353  for (unsigned i = 0; i != NumElems; ++i) {
3354    int idx = SVOp->getMaskElt(i);
3355    if (idx < 0)
3356      MaskVec.push_back(idx);
3357    else if (idx < (int)NumElems)
3358      MaskVec.push_back(idx + NumElems);
3359    else
3360      MaskVec.push_back(idx - NumElems);
3361  }
3362  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3363                              SVOp->getOperand(0), &MaskVec[0]);
3364}
3365
3366/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3367/// the two vector operands have swapped position.
3368static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3369  unsigned NumElems = VT.getVectorNumElements();
3370  for (unsigned i = 0; i != NumElems; ++i) {
3371    int idx = Mask[i];
3372    if (idx < 0)
3373      continue;
3374    else if (idx < (int)NumElems)
3375      Mask[i] = idx + NumElems;
3376    else
3377      Mask[i] = idx - NumElems;
3378  }
3379}
3380
3381/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3382/// match movhlps. The lower half elements should come from upper half of
3383/// V1 (and in order), and the upper half elements should come from the upper
3384/// half of V2 (and in order).
3385static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3386  if (Op->getValueType(0).getVectorNumElements() != 4)
3387    return false;
3388  for (unsigned i = 0, e = 2; i != e; ++i)
3389    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3390      return false;
3391  for (unsigned i = 2; i != 4; ++i)
3392    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3393      return false;
3394  return true;
3395}
3396
3397/// isScalarLoadToVector - Returns true if the node is a scalar load that
3398/// is promoted to a vector. It also returns the LoadSDNode by reference if
3399/// required.
3400static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3401  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3402    return false;
3403  N = N->getOperand(0).getNode();
3404  if (!ISD::isNON_EXTLoad(N))
3405    return false;
3406  if (LD)
3407    *LD = cast<LoadSDNode>(N);
3408  return true;
3409}
3410
3411/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3412/// match movlp{s|d}. The lower half elements should come from lower half of
3413/// V1 (and in order), and the upper half elements should come from the upper
3414/// half of V2 (and in order). And since V1 will become the source of the
3415/// MOVLP, it must be either a vector load or a scalar load to vector.
3416static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3417                               ShuffleVectorSDNode *Op) {
3418  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3419    return false;
3420  // Is V2 is a vector load, don't do this transformation. We will try to use
3421  // load folding shufps op.
3422  if (ISD::isNON_EXTLoad(V2))
3423    return false;
3424
3425  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3426
3427  if (NumElems != 2 && NumElems != 4)
3428    return false;
3429  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3430    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3431      return false;
3432  for (unsigned i = NumElems/2; i != NumElems; ++i)
3433    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3434      return false;
3435  return true;
3436}
3437
3438/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3439/// all the same.
3440static bool isSplatVector(SDNode *N) {
3441  if (N->getOpcode() != ISD::BUILD_VECTOR)
3442    return false;
3443
3444  SDValue SplatValue = N->getOperand(0);
3445  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3446    if (N->getOperand(i) != SplatValue)
3447      return false;
3448  return true;
3449}
3450
3451/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3452/// to an zero vector.
3453/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3454static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3455  SDValue V1 = N->getOperand(0);
3456  SDValue V2 = N->getOperand(1);
3457  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3458  for (unsigned i = 0; i != NumElems; ++i) {
3459    int Idx = N->getMaskElt(i);
3460    if (Idx >= (int)NumElems) {
3461      unsigned Opc = V2.getOpcode();
3462      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3463        continue;
3464      if (Opc != ISD::BUILD_VECTOR ||
3465          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3466        return false;
3467    } else if (Idx >= 0) {
3468      unsigned Opc = V1.getOpcode();
3469      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3470        continue;
3471      if (Opc != ISD::BUILD_VECTOR ||
3472          !X86::isZeroNode(V1.getOperand(Idx)))
3473        return false;
3474    }
3475  }
3476  return true;
3477}
3478
3479/// getZeroVector - Returns a vector of specified type with all zero elements.
3480///
3481static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3482                             DebugLoc dl) {
3483  assert(VT.isVector() && "Expected a vector type");
3484
3485  // Always build SSE zero vectors as <4 x i32> bitcasted
3486  // to their dest type. This ensures they get CSE'd.
3487  SDValue Vec;
3488  if (VT.getSizeInBits() == 128) {  // SSE
3489    if (HasSSE2) {  // SSE2
3490      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3491      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3492    } else { // SSE1
3493      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3494      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3495    }
3496  } else if (VT.getSizeInBits() == 256) { // AVX
3497    // 256-bit logic and arithmetic instructions in AVX are
3498    // all floating-point, no support for integer ops. Default
3499    // to emitting fp zeroed vectors then.
3500    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3501    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3502    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3503  }
3504  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3505}
3506
3507/// getOnesVector - Returns a vector of specified type with all bits set.
3508///
3509static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3510  assert(VT.isVector() && "Expected a vector type");
3511
3512  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3513  // type.  This ensures they get CSE'd.
3514  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3515  SDValue Vec;
3516  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3517  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
3518}
3519
3520
3521/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3522/// that point to V2 points to its first element.
3523static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3524  EVT VT = SVOp->getValueType(0);
3525  unsigned NumElems = VT.getVectorNumElements();
3526
3527  bool Changed = false;
3528  SmallVector<int, 8> MaskVec;
3529  SVOp->getMask(MaskVec);
3530
3531  for (unsigned i = 0; i != NumElems; ++i) {
3532    if (MaskVec[i] > (int)NumElems) {
3533      MaskVec[i] = NumElems;
3534      Changed = true;
3535    }
3536  }
3537  if (Changed)
3538    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3539                                SVOp->getOperand(1), &MaskVec[0]);
3540  return SDValue(SVOp, 0);
3541}
3542
3543/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3544/// operation of specified width.
3545static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3546                       SDValue V2) {
3547  unsigned NumElems = VT.getVectorNumElements();
3548  SmallVector<int, 8> Mask;
3549  Mask.push_back(NumElems);
3550  for (unsigned i = 1; i != NumElems; ++i)
3551    Mask.push_back(i);
3552  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3553}
3554
3555/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3556static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3557                          SDValue V2) {
3558  unsigned NumElems = VT.getVectorNumElements();
3559  SmallVector<int, 8> Mask;
3560  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3561    Mask.push_back(i);
3562    Mask.push_back(i + NumElems);
3563  }
3564  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3565}
3566
3567/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3568static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3569                          SDValue V2) {
3570  unsigned NumElems = VT.getVectorNumElements();
3571  unsigned Half = NumElems/2;
3572  SmallVector<int, 8> Mask;
3573  for (unsigned i = 0; i != Half; ++i) {
3574    Mask.push_back(i + Half);
3575    Mask.push_back(i + NumElems + Half);
3576  }
3577  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3578}
3579
3580/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3581static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3582  EVT PVT = MVT::v4f32;
3583  EVT VT = SV->getValueType(0);
3584  DebugLoc dl = SV->getDebugLoc();
3585  SDValue V1 = SV->getOperand(0);
3586  int NumElems = VT.getVectorNumElements();
3587  int EltNo = SV->getSplatIndex();
3588
3589  // unpack elements to the correct location
3590  while (NumElems > 4) {
3591    if (EltNo < NumElems/2) {
3592      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3593    } else {
3594      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3595      EltNo -= NumElems/2;
3596    }
3597    NumElems >>= 1;
3598  }
3599
3600  // Perform the splat.
3601  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3602  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
3603  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3604  return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
3605}
3606
3607/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3608/// vector of zero or undef vector.  This produces a shuffle where the low
3609/// element of V2 is swizzled into the zero/undef vector, landing at element
3610/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3611static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3612                                             bool isZero, bool HasSSE2,
3613                                             SelectionDAG &DAG) {
3614  EVT VT = V2.getValueType();
3615  SDValue V1 = isZero
3616    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3617  unsigned NumElems = VT.getVectorNumElements();
3618  SmallVector<int, 16> MaskVec;
3619  for (unsigned i = 0; i != NumElems; ++i)
3620    // If this is the insertion idx, put the low elt of V2 here.
3621    MaskVec.push_back(i == Idx ? NumElems : i);
3622  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3623}
3624
3625/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3626/// element of the result of the vector shuffle.
3627SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3628                            unsigned Depth) {
3629  if (Depth == 6)
3630    return SDValue();  // Limit search depth.
3631
3632  SDValue V = SDValue(N, 0);
3633  EVT VT = V.getValueType();
3634  unsigned Opcode = V.getOpcode();
3635
3636  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3637  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3638    Index = SV->getMaskElt(Index);
3639
3640    if (Index < 0)
3641      return DAG.getUNDEF(VT.getVectorElementType());
3642
3643    int NumElems = VT.getVectorNumElements();
3644    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3645    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3646  }
3647
3648  // Recurse into target specific vector shuffles to find scalars.
3649  if (isTargetShuffle(Opcode)) {
3650    int NumElems = VT.getVectorNumElements();
3651    SmallVector<unsigned, 16> ShuffleMask;
3652    SDValue ImmN;
3653
3654    switch(Opcode) {
3655    case X86ISD::SHUFPS:
3656    case X86ISD::SHUFPD:
3657      ImmN = N->getOperand(N->getNumOperands()-1);
3658      DecodeSHUFPSMask(NumElems,
3659                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3660                       ShuffleMask);
3661      break;
3662    case X86ISD::PUNPCKHBW:
3663    case X86ISD::PUNPCKHWD:
3664    case X86ISD::PUNPCKHDQ:
3665    case X86ISD::PUNPCKHQDQ:
3666      DecodePUNPCKHMask(NumElems, ShuffleMask);
3667      break;
3668    case X86ISD::UNPCKHPS:
3669    case X86ISD::UNPCKHPD:
3670      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3671      break;
3672    case X86ISD::PUNPCKLBW:
3673    case X86ISD::PUNPCKLWD:
3674    case X86ISD::PUNPCKLDQ:
3675    case X86ISD::PUNPCKLQDQ:
3676      DecodePUNPCKLMask(NumElems, ShuffleMask);
3677      break;
3678    case X86ISD::UNPCKLPS:
3679    case X86ISD::UNPCKLPD:
3680      DecodeUNPCKLPMask(NumElems, ShuffleMask);
3681      break;
3682    case X86ISD::MOVHLPS:
3683      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3684      break;
3685    case X86ISD::MOVLHPS:
3686      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3687      break;
3688    case X86ISD::PSHUFD:
3689      ImmN = N->getOperand(N->getNumOperands()-1);
3690      DecodePSHUFMask(NumElems,
3691                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3692                      ShuffleMask);
3693      break;
3694    case X86ISD::PSHUFHW:
3695      ImmN = N->getOperand(N->getNumOperands()-1);
3696      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3697                        ShuffleMask);
3698      break;
3699    case X86ISD::PSHUFLW:
3700      ImmN = N->getOperand(N->getNumOperands()-1);
3701      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3702                        ShuffleMask);
3703      break;
3704    case X86ISD::MOVSS:
3705    case X86ISD::MOVSD: {
3706      // The index 0 always comes from the first element of the second source,
3707      // this is why MOVSS and MOVSD are used in the first place. The other
3708      // elements come from the other positions of the first source vector.
3709      unsigned OpNum = (Index == 0) ? 1 : 0;
3710      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3711                                 Depth+1);
3712    }
3713    default:
3714      assert("not implemented for target shuffle node");
3715      return SDValue();
3716    }
3717
3718    Index = ShuffleMask[Index];
3719    if (Index < 0)
3720      return DAG.getUNDEF(VT.getVectorElementType());
3721
3722    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3723    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3724                               Depth+1);
3725  }
3726
3727  // Actual nodes that may contain scalar elements
3728  if (Opcode == ISD::BIT_CONVERT) {
3729    V = V.getOperand(0);
3730    EVT SrcVT = V.getValueType();
3731    unsigned NumElems = VT.getVectorNumElements();
3732
3733    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3734      return SDValue();
3735  }
3736
3737  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3738    return (Index == 0) ? V.getOperand(0)
3739                          : DAG.getUNDEF(VT.getVectorElementType());
3740
3741  if (V.getOpcode() == ISD::BUILD_VECTOR)
3742    return V.getOperand(Index);
3743
3744  return SDValue();
3745}
3746
3747/// getNumOfConsecutiveZeros - Return the number of elements of a vector
3748/// shuffle operation which come from a consecutively from a zero. The
3749/// search can start in two diferent directions, from left or right.
3750static
3751unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
3752                                  bool ZerosFromLeft, SelectionDAG &DAG) {
3753  int i = 0;
3754
3755  while (i < NumElems) {
3756    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
3757    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
3758    if (!(Elt.getNode() &&
3759         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
3760      break;
3761    ++i;
3762  }
3763
3764  return i;
3765}
3766
3767/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
3768/// MaskE correspond consecutively to elements from one of the vector operands,
3769/// starting from its index OpIdx. Also tell OpNum which source vector operand.
3770static
3771bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
3772                              int OpIdx, int NumElems, unsigned &OpNum) {
3773  bool SeenV1 = false;
3774  bool SeenV2 = false;
3775
3776  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
3777    int Idx = SVOp->getMaskElt(i);
3778    // Ignore undef indicies
3779    if (Idx < 0)
3780      continue;
3781
3782    if (Idx < NumElems)
3783      SeenV1 = true;
3784    else
3785      SeenV2 = true;
3786
3787    // Only accept consecutive elements from the same vector
3788    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
3789      return false;
3790  }
3791
3792  OpNum = SeenV1 ? 0 : 1;
3793  return true;
3794}
3795
3796/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
3797/// logical left shift of a vector.
3798static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3799                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3800  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3801  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3802              false /* check zeros from right */, DAG);
3803  unsigned OpSrc;
3804
3805  if (!NumZeros)
3806    return false;
3807
3808  // Considering the elements in the mask that are not consecutive zeros,
3809  // check if they consecutively come from only one of the source vectors.
3810  //
3811  //               V1 = {X, A, B, C}     0
3812  //                         \  \  \    /
3813  //   vector_shuffle V1, V2 <1, 2, 3, X>
3814  //
3815  if (!isShuffleMaskConsecutive(SVOp,
3816            0,                   // Mask Start Index
3817            NumElems-NumZeros-1, // Mask End Index
3818            NumZeros,            // Where to start looking in the src vector
3819            NumElems,            // Number of elements in vector
3820            OpSrc))              // Which source operand ?
3821    return false;
3822
3823  isLeft = false;
3824  ShAmt = NumZeros;
3825  ShVal = SVOp->getOperand(OpSrc);
3826  return true;
3827}
3828
3829/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
3830/// logical left shift of a vector.
3831static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3832                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3833  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
3834  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
3835              true /* check zeros from left */, DAG);
3836  unsigned OpSrc;
3837
3838  if (!NumZeros)
3839    return false;
3840
3841  // Considering the elements in the mask that are not consecutive zeros,
3842  // check if they consecutively come from only one of the source vectors.
3843  //
3844  //                           0    { A, B, X, X } = V2
3845  //                          / \    /  /
3846  //   vector_shuffle V1, V2 <X, X, 4, 5>
3847  //
3848  if (!isShuffleMaskConsecutive(SVOp,
3849            NumZeros,     // Mask Start Index
3850            NumElems-1,   // Mask End Index
3851            0,            // Where to start looking in the src vector
3852            NumElems,     // Number of elements in vector
3853            OpSrc))       // Which source operand ?
3854    return false;
3855
3856  isLeft = true;
3857  ShAmt = NumZeros;
3858  ShVal = SVOp->getOperand(OpSrc);
3859  return true;
3860}
3861
3862/// isVectorShift - Returns true if the shuffle can be implemented as a
3863/// logical left or right shift of a vector.
3864static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
3865                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
3866  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
3867      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
3868    return true;
3869
3870  return false;
3871}
3872
3873/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
3874///
3875static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
3876                                       unsigned NumNonZero, unsigned NumZero,
3877                                       SelectionDAG &DAG,
3878                                       const TargetLowering &TLI) {
3879  if (NumNonZero > 8)
3880    return SDValue();
3881
3882  DebugLoc dl = Op.getDebugLoc();
3883  SDValue V(0, 0);
3884  bool First = true;
3885  for (unsigned i = 0; i < 16; ++i) {
3886    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3887    if (ThisIsNonZero && First) {
3888      if (NumZero)
3889        V = getZeroVector(MVT::v8i16, true, DAG, dl);
3890      else
3891        V = DAG.getUNDEF(MVT::v8i16);
3892      First = false;
3893    }
3894
3895    if ((i & 1) != 0) {
3896      SDValue ThisElt(0, 0), LastElt(0, 0);
3897      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3898      if (LastIsNonZero) {
3899        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
3900                              MVT::i16, Op.getOperand(i-1));
3901      }
3902      if (ThisIsNonZero) {
3903        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
3904        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
3905                              ThisElt, DAG.getConstant(8, MVT::i8));
3906        if (LastIsNonZero)
3907          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
3908      } else
3909        ThisElt = LastElt;
3910
3911      if (ThisElt.getNode())
3912        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
3913                        DAG.getIntPtrConstant(i/2));
3914    }
3915  }
3916
3917  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
3918}
3919
3920/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3921///
3922static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
3923                                     unsigned NumNonZero, unsigned NumZero,
3924                                     SelectionDAG &DAG,
3925                                     const TargetLowering &TLI) {
3926  if (NumNonZero > 4)
3927    return SDValue();
3928
3929  DebugLoc dl = Op.getDebugLoc();
3930  SDValue V(0, 0);
3931  bool First = true;
3932  for (unsigned i = 0; i < 8; ++i) {
3933    bool isNonZero = (NonZeros & (1 << i)) != 0;
3934    if (isNonZero) {
3935      if (First) {
3936        if (NumZero)
3937          V = getZeroVector(MVT::v8i16, true, DAG, dl);
3938        else
3939          V = DAG.getUNDEF(MVT::v8i16);
3940        First = false;
3941      }
3942      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
3943                      MVT::v8i16, V, Op.getOperand(i),
3944                      DAG.getIntPtrConstant(i));
3945    }
3946  }
3947
3948  return V;
3949}
3950
3951/// getVShift - Return a vector logical shift node.
3952///
3953static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
3954                         unsigned NumBits, SelectionDAG &DAG,
3955                         const TargetLowering &TLI, DebugLoc dl) {
3956  EVT ShVT = MVT::v2i64;
3957  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
3958  SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
3959  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3960                     DAG.getNode(Opc, dl, ShVT, SrcOp,
3961                             DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
3962}
3963
3964SDValue
3965X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
3966                                          SelectionDAG &DAG) const {
3967
3968  // Check if the scalar load can be widened into a vector load. And if
3969  // the address is "base + cst" see if the cst can be "absorbed" into
3970  // the shuffle mask.
3971  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
3972    SDValue Ptr = LD->getBasePtr();
3973    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
3974      return SDValue();
3975    EVT PVT = LD->getValueType(0);
3976    if (PVT != MVT::i32 && PVT != MVT::f32)
3977      return SDValue();
3978
3979    int FI = -1;
3980    int64_t Offset = 0;
3981    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
3982      FI = FINode->getIndex();
3983      Offset = 0;
3984    } else if (Ptr.getOpcode() == ISD::ADD &&
3985               isa<ConstantSDNode>(Ptr.getOperand(1)) &&
3986               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
3987      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3988      Offset = Ptr.getConstantOperandVal(1);
3989      Ptr = Ptr.getOperand(0);
3990    } else {
3991      return SDValue();
3992    }
3993
3994    SDValue Chain = LD->getChain();
3995    // Make sure the stack object alignment is at least 16.
3996    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3997    if (DAG.InferPtrAlignment(Ptr) < 16) {
3998      if (MFI->isFixedObjectIndex(FI)) {
3999        // Can't change the alignment. FIXME: It's possible to compute
4000        // the exact stack offset and reference FI + adjust offset instead.
4001        // If someone *really* cares about this. That's the way to implement it.
4002        return SDValue();
4003      } else {
4004        MFI->setObjectAlignment(FI, 16);
4005      }
4006    }
4007
4008    // (Offset % 16) must be multiple of 4. Then address is then
4009    // Ptr + (Offset & ~15).
4010    if (Offset < 0)
4011      return SDValue();
4012    if ((Offset % 16) & 3)
4013      return SDValue();
4014    int64_t StartOffset = Offset & ~15;
4015    if (StartOffset)
4016      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4017                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4018
4019    int EltNo = (Offset - StartOffset) >> 2;
4020    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4021    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4022    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4023                             LD->getPointerInfo().getWithOffset(StartOffset),
4024                             false, false, 0);
4025    // Canonicalize it to a v4i32 shuffle.
4026    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
4027    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4028                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4029                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4030  }
4031
4032  return SDValue();
4033}
4034
4035/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4036/// vector of type 'VT', see if the elements can be replaced by a single large
4037/// load which has the same value as a build_vector whose operands are 'elts'.
4038///
4039/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4040///
4041/// FIXME: we'd also like to handle the case where the last elements are zero
4042/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4043/// There's even a handy isZeroNode for that purpose.
4044static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4045                                        DebugLoc &DL, SelectionDAG &DAG) {
4046  EVT EltVT = VT.getVectorElementType();
4047  unsigned NumElems = Elts.size();
4048
4049  LoadSDNode *LDBase = NULL;
4050  unsigned LastLoadedElt = -1U;
4051
4052  // For each element in the initializer, see if we've found a load or an undef.
4053  // If we don't find an initial load element, or later load elements are
4054  // non-consecutive, bail out.
4055  for (unsigned i = 0; i < NumElems; ++i) {
4056    SDValue Elt = Elts[i];
4057
4058    if (!Elt.getNode() ||
4059        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4060      return SDValue();
4061    if (!LDBase) {
4062      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4063        return SDValue();
4064      LDBase = cast<LoadSDNode>(Elt.getNode());
4065      LastLoadedElt = i;
4066      continue;
4067    }
4068    if (Elt.getOpcode() == ISD::UNDEF)
4069      continue;
4070
4071    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4072    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4073      return SDValue();
4074    LastLoadedElt = i;
4075  }
4076
4077  // If we have found an entire vector of loads and undefs, then return a large
4078  // load of the entire vector width starting at the base pointer.  If we found
4079  // consecutive loads for the low half, generate a vzext_load node.
4080  if (LastLoadedElt == NumElems - 1) {
4081    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4082      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4083                         LDBase->getPointerInfo(),
4084                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4085    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4086                       LDBase->getPointerInfo(),
4087                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4088                       LDBase->getAlignment());
4089  } else if (NumElems == 4 && LastLoadedElt == 1) {
4090    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4091    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4092    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4093                                              Ops, 2, MVT::i32,
4094                                              LDBase->getMemOperand());
4095    return DAG.getNode(ISD::BIT_CONVERT, DL, VT, ResNode);
4096  }
4097  return SDValue();
4098}
4099
4100SDValue
4101X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4102  DebugLoc dl = Op.getDebugLoc();
4103  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4104  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4105  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4106  // is present, so AllOnes is ignored.
4107  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4108      (Op.getValueType().getSizeInBits() != 256 &&
4109       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4110    // Canonicalize this to <4 x i32> (SSE) to
4111    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4112    // eliminated on x86-32 hosts.
4113    if (Op.getValueType() == MVT::v4i32)
4114      return Op;
4115
4116    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4117      return getOnesVector(Op.getValueType(), DAG, dl);
4118    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4119  }
4120
4121  EVT VT = Op.getValueType();
4122  EVT ExtVT = VT.getVectorElementType();
4123  unsigned EVTBits = ExtVT.getSizeInBits();
4124
4125  unsigned NumElems = Op.getNumOperands();
4126  unsigned NumZero  = 0;
4127  unsigned NumNonZero = 0;
4128  unsigned NonZeros = 0;
4129  bool IsAllConstants = true;
4130  SmallSet<SDValue, 8> Values;
4131  for (unsigned i = 0; i < NumElems; ++i) {
4132    SDValue Elt = Op.getOperand(i);
4133    if (Elt.getOpcode() == ISD::UNDEF)
4134      continue;
4135    Values.insert(Elt);
4136    if (Elt.getOpcode() != ISD::Constant &&
4137        Elt.getOpcode() != ISD::ConstantFP)
4138      IsAllConstants = false;
4139    if (X86::isZeroNode(Elt))
4140      NumZero++;
4141    else {
4142      NonZeros |= (1 << i);
4143      NumNonZero++;
4144    }
4145  }
4146
4147  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4148  if (NumNonZero == 0)
4149    return DAG.getUNDEF(VT);
4150
4151  // Special case for single non-zero, non-undef, element.
4152  if (NumNonZero == 1) {
4153    unsigned Idx = CountTrailingZeros_32(NonZeros);
4154    SDValue Item = Op.getOperand(Idx);
4155
4156    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4157    // the value are obviously zero, truncate the value to i32 and do the
4158    // insertion that way.  Only do this if the value is non-constant or if the
4159    // value is a constant being inserted into element 0.  It is cheaper to do
4160    // a constant pool load than it is to do a movd + shuffle.
4161    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4162        (!IsAllConstants || Idx == 0)) {
4163      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4164        // Handle SSE only.
4165        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4166        EVT VecVT = MVT::v4i32;
4167        unsigned VecElts = 4;
4168
4169        // Truncate the value (which may itself be a constant) to i32, and
4170        // convert it to a vector with movd (S2V+shuffle to zero extend).
4171        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4172        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4173        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4174                                           Subtarget->hasSSE2(), DAG);
4175
4176        // Now we have our 32-bit value zero extended in the low element of
4177        // a vector.  If Idx != 0, swizzle it into place.
4178        if (Idx != 0) {
4179          SmallVector<int, 4> Mask;
4180          Mask.push_back(Idx);
4181          for (unsigned i = 1; i != VecElts; ++i)
4182            Mask.push_back(i);
4183          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4184                                      DAG.getUNDEF(Item.getValueType()),
4185                                      &Mask[0]);
4186        }
4187        return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
4188      }
4189    }
4190
4191    // If we have a constant or non-constant insertion into the low element of
4192    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4193    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4194    // depending on what the source datatype is.
4195    if (Idx == 0) {
4196      if (NumZero == 0) {
4197        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4198      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4199          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4200        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4201        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4202        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4203                                           DAG);
4204      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4205        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4206        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4207        EVT MiddleVT = MVT::v4i32;
4208        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4209        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4210                                           Subtarget->hasSSE2(), DAG);
4211        return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
4212      }
4213    }
4214
4215    // Is it a vector logical left shift?
4216    if (NumElems == 2 && Idx == 1 &&
4217        X86::isZeroNode(Op.getOperand(0)) &&
4218        !X86::isZeroNode(Op.getOperand(1))) {
4219      unsigned NumBits = VT.getSizeInBits();
4220      return getVShift(true, VT,
4221                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4222                                   VT, Op.getOperand(1)),
4223                       NumBits/2, DAG, *this, dl);
4224    }
4225
4226    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4227      return SDValue();
4228
4229    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4230    // is a non-constant being inserted into an element other than the low one,
4231    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4232    // movd/movss) to move this into the low element, then shuffle it into
4233    // place.
4234    if (EVTBits == 32) {
4235      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4236
4237      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4238      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4239                                         Subtarget->hasSSE2(), DAG);
4240      SmallVector<int, 8> MaskVec;
4241      for (unsigned i = 0; i < NumElems; i++)
4242        MaskVec.push_back(i == Idx ? 0 : 1);
4243      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4244    }
4245  }
4246
4247  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4248  if (Values.size() == 1) {
4249    if (EVTBits == 32) {
4250      // Instead of a shuffle like this:
4251      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4252      // Check if it's possible to issue this instead.
4253      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4254      unsigned Idx = CountTrailingZeros_32(NonZeros);
4255      SDValue Item = Op.getOperand(Idx);
4256      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4257        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4258    }
4259    return SDValue();
4260  }
4261
4262  // A vector full of immediates; various special cases are already
4263  // handled, so this is best done with a single constant-pool load.
4264  if (IsAllConstants)
4265    return SDValue();
4266
4267  // Let legalizer expand 2-wide build_vectors.
4268  if (EVTBits == 64) {
4269    if (NumNonZero == 1) {
4270      // One half is zero or undef.
4271      unsigned Idx = CountTrailingZeros_32(NonZeros);
4272      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4273                                 Op.getOperand(Idx));
4274      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4275                                         Subtarget->hasSSE2(), DAG);
4276    }
4277    return SDValue();
4278  }
4279
4280  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4281  if (EVTBits == 8 && NumElems == 16) {
4282    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4283                                        *this);
4284    if (V.getNode()) return V;
4285  }
4286
4287  if (EVTBits == 16 && NumElems == 8) {
4288    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4289                                      *this);
4290    if (V.getNode()) return V;
4291  }
4292
4293  // If element VT is == 32 bits, turn it into a number of shuffles.
4294  SmallVector<SDValue, 8> V;
4295  V.resize(NumElems);
4296  if (NumElems == 4 && NumZero > 0) {
4297    for (unsigned i = 0; i < 4; ++i) {
4298      bool isZero = !(NonZeros & (1 << i));
4299      if (isZero)
4300        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4301      else
4302        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4303    }
4304
4305    for (unsigned i = 0; i < 2; ++i) {
4306      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4307        default: break;
4308        case 0:
4309          V[i] = V[i*2];  // Must be a zero vector.
4310          break;
4311        case 1:
4312          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4313          break;
4314        case 2:
4315          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4316          break;
4317        case 3:
4318          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4319          break;
4320      }
4321    }
4322
4323    SmallVector<int, 8> MaskVec;
4324    bool Reverse = (NonZeros & 0x3) == 2;
4325    for (unsigned i = 0; i < 2; ++i)
4326      MaskVec.push_back(Reverse ? 1-i : i);
4327    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4328    for (unsigned i = 0; i < 2; ++i)
4329      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4330    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4331  }
4332
4333  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4334    // Check for a build vector of consecutive loads.
4335    for (unsigned i = 0; i < NumElems; ++i)
4336      V[i] = Op.getOperand(i);
4337
4338    // Check for elements which are consecutive loads.
4339    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4340    if (LD.getNode())
4341      return LD;
4342
4343    // For SSE 4.1, use insertps to put the high elements into the low element.
4344    if (getSubtarget()->hasSSE41()) {
4345      SDValue Result;
4346      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4347        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4348      else
4349        Result = DAG.getUNDEF(VT);
4350
4351      for (unsigned i = 1; i < NumElems; ++i) {
4352        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4353        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4354                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4355      }
4356      return Result;
4357    }
4358
4359    // Otherwise, expand into a number of unpckl*, start by extending each of
4360    // our (non-undef) elements to the full vector width with the element in the
4361    // bottom slot of the vector (which generates no code for SSE).
4362    for (unsigned i = 0; i < NumElems; ++i) {
4363      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4364        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4365      else
4366        V[i] = DAG.getUNDEF(VT);
4367    }
4368
4369    // Next, we iteratively mix elements, e.g. for v4f32:
4370    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4371    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4372    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4373    unsigned EltStride = NumElems >> 1;
4374    while (EltStride != 0) {
4375      for (unsigned i = 0; i < EltStride; ++i) {
4376        // If V[i+EltStride] is undef and this is the first round of mixing,
4377        // then it is safe to just drop this shuffle: V[i] is already in the
4378        // right place, the one element (since it's the first round) being
4379        // inserted as undef can be dropped.  This isn't safe for successive
4380        // rounds because they will permute elements within both vectors.
4381        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4382            EltStride == NumElems/2)
4383          continue;
4384
4385        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4386      }
4387      EltStride >>= 1;
4388    }
4389    return V[0];
4390  }
4391  return SDValue();
4392}
4393
4394SDValue
4395X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4396  // We support concatenate two MMX registers and place them in a MMX
4397  // register.  This is better than doing a stack convert.
4398  DebugLoc dl = Op.getDebugLoc();
4399  EVT ResVT = Op.getValueType();
4400  assert(Op.getNumOperands() == 2);
4401  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4402         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4403  int Mask[2];
4404  SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
4405  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4406  InVec = Op.getOperand(1);
4407  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4408    unsigned NumElts = ResVT.getVectorNumElements();
4409    VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4410    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4411                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4412  } else {
4413    InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
4414    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4415    Mask[0] = 0; Mask[1] = 2;
4416    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4417  }
4418  return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
4419}
4420
4421// v8i16 shuffles - Prefer shuffles in the following order:
4422// 1. [all]   pshuflw, pshufhw, optional move
4423// 2. [ssse3] 1 x pshufb
4424// 3. [ssse3] 2 x pshufb + 1 x por
4425// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4426SDValue
4427X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4428                                            SelectionDAG &DAG) const {
4429  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4430  SDValue V1 = SVOp->getOperand(0);
4431  SDValue V2 = SVOp->getOperand(1);
4432  DebugLoc dl = SVOp->getDebugLoc();
4433  SmallVector<int, 8> MaskVals;
4434
4435  // Determine if more than 1 of the words in each of the low and high quadwords
4436  // of the result come from the same quadword of one of the two inputs.  Undef
4437  // mask values count as coming from any quadword, for better codegen.
4438  SmallVector<unsigned, 4> LoQuad(4);
4439  SmallVector<unsigned, 4> HiQuad(4);
4440  BitVector InputQuads(4);
4441  for (unsigned i = 0; i < 8; ++i) {
4442    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4443    int EltIdx = SVOp->getMaskElt(i);
4444    MaskVals.push_back(EltIdx);
4445    if (EltIdx < 0) {
4446      ++Quad[0];
4447      ++Quad[1];
4448      ++Quad[2];
4449      ++Quad[3];
4450      continue;
4451    }
4452    ++Quad[EltIdx / 4];
4453    InputQuads.set(EltIdx / 4);
4454  }
4455
4456  int BestLoQuad = -1;
4457  unsigned MaxQuad = 1;
4458  for (unsigned i = 0; i < 4; ++i) {
4459    if (LoQuad[i] > MaxQuad) {
4460      BestLoQuad = i;
4461      MaxQuad = LoQuad[i];
4462    }
4463  }
4464
4465  int BestHiQuad = -1;
4466  MaxQuad = 1;
4467  for (unsigned i = 0; i < 4; ++i) {
4468    if (HiQuad[i] > MaxQuad) {
4469      BestHiQuad = i;
4470      MaxQuad = HiQuad[i];
4471    }
4472  }
4473
4474  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4475  // of the two input vectors, shuffle them into one input vector so only a
4476  // single pshufb instruction is necessary. If There are more than 2 input
4477  // quads, disable the next transformation since it does not help SSSE3.
4478  bool V1Used = InputQuads[0] || InputQuads[1];
4479  bool V2Used = InputQuads[2] || InputQuads[3];
4480  if (Subtarget->hasSSSE3()) {
4481    if (InputQuads.count() == 2 && V1Used && V2Used) {
4482      BestLoQuad = InputQuads.find_first();
4483      BestHiQuad = InputQuads.find_next(BestLoQuad);
4484    }
4485    if (InputQuads.count() > 2) {
4486      BestLoQuad = -1;
4487      BestHiQuad = -1;
4488    }
4489  }
4490
4491  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4492  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4493  // words from all 4 input quadwords.
4494  SDValue NewV;
4495  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4496    SmallVector<int, 8> MaskV;
4497    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4498    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4499    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4500                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
4501                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
4502    NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
4503
4504    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4505    // source words for the shuffle, to aid later transformations.
4506    bool AllWordsInNewV = true;
4507    bool InOrder[2] = { true, true };
4508    for (unsigned i = 0; i != 8; ++i) {
4509      int idx = MaskVals[i];
4510      if (idx != (int)i)
4511        InOrder[i/4] = false;
4512      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4513        continue;
4514      AllWordsInNewV = false;
4515      break;
4516    }
4517
4518    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4519    if (AllWordsInNewV) {
4520      for (int i = 0; i != 8; ++i) {
4521        int idx = MaskVals[i];
4522        if (idx < 0)
4523          continue;
4524        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4525        if ((idx != i) && idx < 4)
4526          pshufhw = false;
4527        if ((idx != i) && idx > 3)
4528          pshuflw = false;
4529      }
4530      V1 = NewV;
4531      V2Used = false;
4532      BestLoQuad = 0;
4533      BestHiQuad = 1;
4534    }
4535
4536    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4537    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4538    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4539      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4540      unsigned TargetMask = 0;
4541      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4542                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4543      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4544                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4545      V1 = NewV.getOperand(0);
4546      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4547    }
4548  }
4549
4550  // If we have SSSE3, and all words of the result are from 1 input vector,
4551  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4552  // is present, fall back to case 4.
4553  if (Subtarget->hasSSSE3()) {
4554    SmallVector<SDValue,16> pshufbMask;
4555
4556    // If we have elements from both input vectors, set the high bit of the
4557    // shuffle mask element to zero out elements that come from V2 in the V1
4558    // mask, and elements that come from V1 in the V2 mask, so that the two
4559    // results can be OR'd together.
4560    bool TwoInputs = V1Used && V2Used;
4561    for (unsigned i = 0; i != 8; ++i) {
4562      int EltIdx = MaskVals[i] * 2;
4563      if (TwoInputs && (EltIdx >= 16)) {
4564        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4565        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4566        continue;
4567      }
4568      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4569      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4570    }
4571    V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
4572    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4573                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4574                                 MVT::v16i8, &pshufbMask[0], 16));
4575    if (!TwoInputs)
4576      return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4577
4578    // Calculate the shuffle mask for the second input, shuffle it, and
4579    // OR it with the first shuffled input.
4580    pshufbMask.clear();
4581    for (unsigned i = 0; i != 8; ++i) {
4582      int EltIdx = MaskVals[i] * 2;
4583      if (EltIdx < 16) {
4584        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4585        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4586        continue;
4587      }
4588      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4589      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4590    }
4591    V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
4592    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4593                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4594                                 MVT::v16i8, &pshufbMask[0], 16));
4595    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4596    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4597  }
4598
4599  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4600  // and update MaskVals with new element order.
4601  BitVector InOrder(8);
4602  if (BestLoQuad >= 0) {
4603    SmallVector<int, 8> MaskV;
4604    for (int i = 0; i != 4; ++i) {
4605      int idx = MaskVals[i];
4606      if (idx < 0) {
4607        MaskV.push_back(-1);
4608        InOrder.set(i);
4609      } else if ((idx / 4) == BestLoQuad) {
4610        MaskV.push_back(idx & 3);
4611        InOrder.set(i);
4612      } else {
4613        MaskV.push_back(-1);
4614      }
4615    }
4616    for (unsigned i = 4; i != 8; ++i)
4617      MaskV.push_back(i);
4618    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4619                                &MaskV[0]);
4620
4621    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4622      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4623                               NewV.getOperand(0),
4624                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4625                               DAG);
4626  }
4627
4628  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4629  // and update MaskVals with the new element order.
4630  if (BestHiQuad >= 0) {
4631    SmallVector<int, 8> MaskV;
4632    for (unsigned i = 0; i != 4; ++i)
4633      MaskV.push_back(i);
4634    for (unsigned i = 4; i != 8; ++i) {
4635      int idx = MaskVals[i];
4636      if (idx < 0) {
4637        MaskV.push_back(-1);
4638        InOrder.set(i);
4639      } else if ((idx / 4) == BestHiQuad) {
4640        MaskV.push_back((idx & 3) + 4);
4641        InOrder.set(i);
4642      } else {
4643        MaskV.push_back(-1);
4644      }
4645    }
4646    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4647                                &MaskV[0]);
4648
4649    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4650      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4651                              NewV.getOperand(0),
4652                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4653                              DAG);
4654  }
4655
4656  // In case BestHi & BestLo were both -1, which means each quadword has a word
4657  // from each of the four input quadwords, calculate the InOrder bitvector now
4658  // before falling through to the insert/extract cleanup.
4659  if (BestLoQuad == -1 && BestHiQuad == -1) {
4660    NewV = V1;
4661    for (int i = 0; i != 8; ++i)
4662      if (MaskVals[i] < 0 || MaskVals[i] == i)
4663        InOrder.set(i);
4664  }
4665
4666  // The other elements are put in the right place using pextrw and pinsrw.
4667  for (unsigned i = 0; i != 8; ++i) {
4668    if (InOrder[i])
4669      continue;
4670    int EltIdx = MaskVals[i];
4671    if (EltIdx < 0)
4672      continue;
4673    SDValue ExtOp = (EltIdx < 8)
4674    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4675                  DAG.getIntPtrConstant(EltIdx))
4676    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4677                  DAG.getIntPtrConstant(EltIdx - 8));
4678    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4679                       DAG.getIntPtrConstant(i));
4680  }
4681  return NewV;
4682}
4683
4684// v16i8 shuffles - Prefer shuffles in the following order:
4685// 1. [ssse3] 1 x pshufb
4686// 2. [ssse3] 2 x pshufb + 1 x por
4687// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4688static
4689SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4690                                 SelectionDAG &DAG,
4691                                 const X86TargetLowering &TLI) {
4692  SDValue V1 = SVOp->getOperand(0);
4693  SDValue V2 = SVOp->getOperand(1);
4694  DebugLoc dl = SVOp->getDebugLoc();
4695  SmallVector<int, 16> MaskVals;
4696  SVOp->getMask(MaskVals);
4697
4698  // If we have SSSE3, case 1 is generated when all result bytes come from
4699  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4700  // present, fall back to case 3.
4701  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4702  bool V1Only = true;
4703  bool V2Only = true;
4704  for (unsigned i = 0; i < 16; ++i) {
4705    int EltIdx = MaskVals[i];
4706    if (EltIdx < 0)
4707      continue;
4708    if (EltIdx < 16)
4709      V2Only = false;
4710    else
4711      V1Only = false;
4712  }
4713
4714  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4715  if (TLI.getSubtarget()->hasSSSE3()) {
4716    SmallVector<SDValue,16> pshufbMask;
4717
4718    // If all result elements are from one input vector, then only translate
4719    // undef mask values to 0x80 (zero out result) in the pshufb mask.
4720    //
4721    // Otherwise, we have elements from both input vectors, and must zero out
4722    // elements that come from V2 in the first mask, and V1 in the second mask
4723    // so that we can OR them together.
4724    bool TwoInputs = !(V1Only || V2Only);
4725    for (unsigned i = 0; i != 16; ++i) {
4726      int EltIdx = MaskVals[i];
4727      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
4728        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4729        continue;
4730      }
4731      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
4732    }
4733    // If all the elements are from V2, assign it to V1 and return after
4734    // building the first pshufb.
4735    if (V2Only)
4736      V1 = V2;
4737    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4738                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4739                                 MVT::v16i8, &pshufbMask[0], 16));
4740    if (!TwoInputs)
4741      return V1;
4742
4743    // Calculate the shuffle mask for the second input, shuffle it, and
4744    // OR it with the first shuffled input.
4745    pshufbMask.clear();
4746    for (unsigned i = 0; i != 16; ++i) {
4747      int EltIdx = MaskVals[i];
4748      if (EltIdx < 16) {
4749        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4750        continue;
4751      }
4752      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4753    }
4754    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4755                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4756                                 MVT::v16i8, &pshufbMask[0], 16));
4757    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4758  }
4759
4760  // No SSSE3 - Calculate in place words and then fix all out of place words
4761  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
4762  // the 16 different words that comprise the two doublequadword input vectors.
4763  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
4764  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
4765  SDValue NewV = V2Only ? V2 : V1;
4766  for (int i = 0; i != 8; ++i) {
4767    int Elt0 = MaskVals[i*2];
4768    int Elt1 = MaskVals[i*2+1];
4769
4770    // This word of the result is all undef, skip it.
4771    if (Elt0 < 0 && Elt1 < 0)
4772      continue;
4773
4774    // This word of the result is already in the correct place, skip it.
4775    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
4776      continue;
4777    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
4778      continue;
4779
4780    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
4781    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
4782    SDValue InsElt;
4783
4784    // If Elt0 and Elt1 are defined, are consecutive, and can be load
4785    // using a single extract together, load it and store it.
4786    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
4787      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4788                           DAG.getIntPtrConstant(Elt1 / 2));
4789      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4790                        DAG.getIntPtrConstant(i));
4791      continue;
4792    }
4793
4794    // If Elt1 is defined, extract it from the appropriate source.  If the
4795    // source byte is not also odd, shift the extracted word left 8 bits
4796    // otherwise clear the bottom 8 bits if we need to do an or.
4797    if (Elt1 >= 0) {
4798      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
4799                           DAG.getIntPtrConstant(Elt1 / 2));
4800      if ((Elt1 & 1) == 0)
4801        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
4802                             DAG.getConstant(8, TLI.getShiftAmountTy()));
4803      else if (Elt0 >= 0)
4804        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
4805                             DAG.getConstant(0xFF00, MVT::i16));
4806    }
4807    // If Elt0 is defined, extract it from the appropriate source.  If the
4808    // source byte is not also even, shift the extracted word right 8 bits. If
4809    // Elt1 was also defined, OR the extracted values together before
4810    // inserting them in the result.
4811    if (Elt0 >= 0) {
4812      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
4813                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
4814      if ((Elt0 & 1) != 0)
4815        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
4816                              DAG.getConstant(8, TLI.getShiftAmountTy()));
4817      else if (Elt1 >= 0)
4818        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
4819                             DAG.getConstant(0x00FF, MVT::i16));
4820      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
4821                         : InsElt0;
4822    }
4823    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
4824                       DAG.getIntPtrConstant(i));
4825  }
4826  return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
4827}
4828
4829/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
4830/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
4831/// done when every pair / quad of shuffle mask elements point to elements in
4832/// the right sequence. e.g.
4833/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
4834static
4835SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
4836                                 SelectionDAG &DAG, DebugLoc dl) {
4837  EVT VT = SVOp->getValueType(0);
4838  SDValue V1 = SVOp->getOperand(0);
4839  SDValue V2 = SVOp->getOperand(1);
4840  unsigned NumElems = VT.getVectorNumElements();
4841  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
4842  EVT NewVT;
4843  switch (VT.getSimpleVT().SimpleTy) {
4844  default: assert(false && "Unexpected!");
4845  case MVT::v4f32: NewVT = MVT::v2f64; break;
4846  case MVT::v4i32: NewVT = MVT::v2i64; break;
4847  case MVT::v8i16: NewVT = MVT::v4i32; break;
4848  case MVT::v16i8: NewVT = MVT::v4i32; break;
4849  }
4850
4851  int Scale = NumElems / NewWidth;
4852  SmallVector<int, 8> MaskVec;
4853  for (unsigned i = 0; i < NumElems; i += Scale) {
4854    int StartIdx = -1;
4855    for (int j = 0; j < Scale; ++j) {
4856      int EltIdx = SVOp->getMaskElt(i+j);
4857      if (EltIdx < 0)
4858        continue;
4859      if (StartIdx == -1)
4860        StartIdx = EltIdx - (EltIdx % Scale);
4861      if (EltIdx != StartIdx + j)
4862        return SDValue();
4863    }
4864    if (StartIdx == -1)
4865      MaskVec.push_back(-1);
4866    else
4867      MaskVec.push_back(StartIdx / Scale);
4868  }
4869
4870  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
4871  V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
4872  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
4873}
4874
4875/// getVZextMovL - Return a zero-extending vector move low node.
4876///
4877static SDValue getVZextMovL(EVT VT, EVT OpVT,
4878                            SDValue SrcOp, SelectionDAG &DAG,
4879                            const X86Subtarget *Subtarget, DebugLoc dl) {
4880  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
4881    LoadSDNode *LD = NULL;
4882    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
4883      LD = dyn_cast<LoadSDNode>(SrcOp);
4884    if (!LD) {
4885      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
4886      // instead.
4887      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
4888      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
4889          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
4890          SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
4891          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
4892        // PR2108
4893        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
4894        return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4895                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4896                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4897                                                   OpVT,
4898                                                   SrcOp.getOperand(0)
4899                                                          .getOperand(0))));
4900      }
4901    }
4902  }
4903
4904  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
4905                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
4906                                 DAG.getNode(ISD::BIT_CONVERT, dl,
4907                                             OpVT, SrcOp)));
4908}
4909
4910/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
4911/// shuffles.
4912static SDValue
4913LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4914  SDValue V1 = SVOp->getOperand(0);
4915  SDValue V2 = SVOp->getOperand(1);
4916  DebugLoc dl = SVOp->getDebugLoc();
4917  EVT VT = SVOp->getValueType(0);
4918
4919  SmallVector<std::pair<int, int>, 8> Locs;
4920  Locs.resize(4);
4921  SmallVector<int, 8> Mask1(4U, -1);
4922  SmallVector<int, 8> PermMask;
4923  SVOp->getMask(PermMask);
4924
4925  unsigned NumHi = 0;
4926  unsigned NumLo = 0;
4927  for (unsigned i = 0; i != 4; ++i) {
4928    int Idx = PermMask[i];
4929    if (Idx < 0) {
4930      Locs[i] = std::make_pair(-1, -1);
4931    } else {
4932      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
4933      if (Idx < 4) {
4934        Locs[i] = std::make_pair(0, NumLo);
4935        Mask1[NumLo] = Idx;
4936        NumLo++;
4937      } else {
4938        Locs[i] = std::make_pair(1, NumHi);
4939        if (2+NumHi < 4)
4940          Mask1[2+NumHi] = Idx;
4941        NumHi++;
4942      }
4943    }
4944  }
4945
4946  if (NumLo <= 2 && NumHi <= 2) {
4947    // If no more than two elements come from either vector. This can be
4948    // implemented with two shuffles. First shuffle gather the elements.
4949    // The second shuffle, which takes the first shuffle as both of its
4950    // vector operands, put the elements into the right order.
4951    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4952
4953    SmallVector<int, 8> Mask2(4U, -1);
4954
4955    for (unsigned i = 0; i != 4; ++i) {
4956      if (Locs[i].first == -1)
4957        continue;
4958      else {
4959        unsigned Idx = (i < 2) ? 0 : 4;
4960        Idx += Locs[i].first * 2 + Locs[i].second;
4961        Mask2[i] = Idx;
4962      }
4963    }
4964
4965    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
4966  } else if (NumLo == 3 || NumHi == 3) {
4967    // Otherwise, we must have three elements from one vector, call it X, and
4968    // one element from the other, call it Y.  First, use a shufps to build an
4969    // intermediate vector with the one element from Y and the element from X
4970    // that will be in the same half in the final destination (the indexes don't
4971    // matter). Then, use a shufps to build the final vector, taking the half
4972    // containing the element from Y from the intermediate, and the other half
4973    // from X.
4974    if (NumHi == 3) {
4975      // Normalize it so the 3 elements come from V1.
4976      CommuteVectorShuffleMask(PermMask, VT);
4977      std::swap(V1, V2);
4978    }
4979
4980    // Find the element from V2.
4981    unsigned HiIndex;
4982    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
4983      int Val = PermMask[HiIndex];
4984      if (Val < 0)
4985        continue;
4986      if (Val >= 4)
4987        break;
4988    }
4989
4990    Mask1[0] = PermMask[HiIndex];
4991    Mask1[1] = -1;
4992    Mask1[2] = PermMask[HiIndex^1];
4993    Mask1[3] = -1;
4994    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
4995
4996    if (HiIndex >= 2) {
4997      Mask1[0] = PermMask[0];
4998      Mask1[1] = PermMask[1];
4999      Mask1[2] = HiIndex & 1 ? 6 : 4;
5000      Mask1[3] = HiIndex & 1 ? 4 : 6;
5001      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5002    } else {
5003      Mask1[0] = HiIndex & 1 ? 2 : 0;
5004      Mask1[1] = HiIndex & 1 ? 0 : 2;
5005      Mask1[2] = PermMask[2];
5006      Mask1[3] = PermMask[3];
5007      if (Mask1[2] >= 0)
5008        Mask1[2] += 4;
5009      if (Mask1[3] >= 0)
5010        Mask1[3] += 4;
5011      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5012    }
5013  }
5014
5015  // Break it into (shuffle shuffle_hi, shuffle_lo).
5016  Locs.clear();
5017  SmallVector<int,8> LoMask(4U, -1);
5018  SmallVector<int,8> HiMask(4U, -1);
5019
5020  SmallVector<int,8> *MaskPtr = &LoMask;
5021  unsigned MaskIdx = 0;
5022  unsigned LoIdx = 0;
5023  unsigned HiIdx = 2;
5024  for (unsigned i = 0; i != 4; ++i) {
5025    if (i == 2) {
5026      MaskPtr = &HiMask;
5027      MaskIdx = 1;
5028      LoIdx = 0;
5029      HiIdx = 2;
5030    }
5031    int Idx = PermMask[i];
5032    if (Idx < 0) {
5033      Locs[i] = std::make_pair(-1, -1);
5034    } else if (Idx < 4) {
5035      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5036      (*MaskPtr)[LoIdx] = Idx;
5037      LoIdx++;
5038    } else {
5039      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5040      (*MaskPtr)[HiIdx] = Idx;
5041      HiIdx++;
5042    }
5043  }
5044
5045  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5046  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5047  SmallVector<int, 8> MaskOps;
5048  for (unsigned i = 0; i != 4; ++i) {
5049    if (Locs[i].first == -1) {
5050      MaskOps.push_back(-1);
5051    } else {
5052      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5053      MaskOps.push_back(Idx);
5054    }
5055  }
5056  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5057}
5058
5059static bool MayFoldVectorLoad(SDValue V) {
5060  if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
5061    V = V.getOperand(0);
5062  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5063    V = V.getOperand(0);
5064  if (MayFoldLoad(V))
5065    return true;
5066  return false;
5067}
5068
5069// FIXME: the version above should always be used. Since there's
5070// a bug where several vector shuffles can't be folded because the
5071// DAG is not updated during lowering and a node claims to have two
5072// uses while it only has one, use this version, and let isel match
5073// another instruction if the load really happens to have more than
5074// one use. Remove this version after this bug get fixed.
5075// rdar://8434668, PR8156
5076static bool RelaxedMayFoldVectorLoad(SDValue V) {
5077  if (V.hasOneUse() && V.getOpcode() == ISD::BIT_CONVERT)
5078    V = V.getOperand(0);
5079  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5080    V = V.getOperand(0);
5081  if (ISD::isNormalLoad(V.getNode()))
5082    return true;
5083  return false;
5084}
5085
5086/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5087/// a vector extract, and if both can be later optimized into a single load.
5088/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5089/// here because otherwise a target specific shuffle node is going to be
5090/// emitted for this shuffle, and the optimization not done.
5091/// FIXME: This is probably not the best approach, but fix the problem
5092/// until the right path is decided.
5093static
5094bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5095                                         const TargetLowering &TLI) {
5096  EVT VT = V.getValueType();
5097  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5098
5099  // Be sure that the vector shuffle is present in a pattern like this:
5100  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5101  if (!V.hasOneUse())
5102    return false;
5103
5104  SDNode *N = *V.getNode()->use_begin();
5105  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5106    return false;
5107
5108  SDValue EltNo = N->getOperand(1);
5109  if (!isa<ConstantSDNode>(EltNo))
5110    return false;
5111
5112  // If the bit convert changed the number of elements, it is unsafe
5113  // to examine the mask.
5114  bool HasShuffleIntoBitcast = false;
5115  if (V.getOpcode() == ISD::BIT_CONVERT) {
5116    EVT SrcVT = V.getOperand(0).getValueType();
5117    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5118      return false;
5119    V = V.getOperand(0);
5120    HasShuffleIntoBitcast = true;
5121  }
5122
5123  // Select the input vector, guarding against out of range extract vector.
5124  unsigned NumElems = VT.getVectorNumElements();
5125  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5126  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5127  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5128
5129  // Skip one more bit_convert if necessary
5130  if (V.getOpcode() == ISD::BIT_CONVERT)
5131    V = V.getOperand(0);
5132
5133  if (ISD::isNormalLoad(V.getNode())) {
5134    // Is the original load suitable?
5135    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5136
5137    // FIXME: avoid the multi-use bug that is preventing lots of
5138    // of foldings to be detected, this is still wrong of course, but
5139    // give the temporary desired behavior, and if it happens that
5140    // the load has real more uses, during isel it will not fold, and
5141    // will generate poor code.
5142    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5143      return false;
5144
5145    if (!HasShuffleIntoBitcast)
5146      return true;
5147
5148    // If there's a bitcast before the shuffle, check if the load type and
5149    // alignment is valid.
5150    unsigned Align = LN0->getAlignment();
5151    unsigned NewAlign =
5152      TLI.getTargetData()->getABITypeAlignment(
5153                                    VT.getTypeForEVT(*DAG.getContext()));
5154
5155    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5156      return false;
5157  }
5158
5159  return true;
5160}
5161
5162static
5163SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5164  EVT VT = Op.getValueType();
5165
5166  // Canonizalize to v2f64.
5167  V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, V1);
5168  return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
5169                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5170                                          V1, DAG));
5171}
5172
5173static
5174SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5175                        bool HasSSE2) {
5176  SDValue V1 = Op.getOperand(0);
5177  SDValue V2 = Op.getOperand(1);
5178  EVT VT = Op.getValueType();
5179
5180  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5181
5182  if (HasSSE2 && VT == MVT::v2f64)
5183    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5184
5185  // v4f32 or v4i32
5186  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5187}
5188
5189static
5190SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5191  SDValue V1 = Op.getOperand(0);
5192  SDValue V2 = Op.getOperand(1);
5193  EVT VT = Op.getValueType();
5194
5195  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5196         "unsupported shuffle type");
5197
5198  if (V2.getOpcode() == ISD::UNDEF)
5199    V2 = V1;
5200
5201  // v4i32 or v4f32
5202  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5203}
5204
5205static
5206SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5207  SDValue V1 = Op.getOperand(0);
5208  SDValue V2 = Op.getOperand(1);
5209  EVT VT = Op.getValueType();
5210  unsigned NumElems = VT.getVectorNumElements();
5211
5212  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5213  // operand of these instructions is only memory, so check if there's a
5214  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5215  // same masks.
5216  bool CanFoldLoad = false;
5217
5218  // Trivial case, when V2 comes from a load.
5219  if (MayFoldVectorLoad(V2))
5220    CanFoldLoad = true;
5221
5222  // When V1 is a load, it can be folded later into a store in isel, example:
5223  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5224  //    turns into:
5225  //  (MOVLPSmr addr:$src1, VR128:$src2)
5226  // So, recognize this potential and also use MOVLPS or MOVLPD
5227  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5228    CanFoldLoad = true;
5229
5230  if (CanFoldLoad) {
5231    if (HasSSE2 && NumElems == 2)
5232      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5233
5234    if (NumElems == 4)
5235      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5236  }
5237
5238  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5239  // movl and movlp will both match v2i64, but v2i64 is never matched by
5240  // movl earlier because we make it strict to avoid messing with the movlp load
5241  // folding logic (see the code above getMOVLP call). Match it here then,
5242  // this is horrible, but will stay like this until we move all shuffle
5243  // matching to x86 specific nodes. Note that for the 1st condition all
5244  // types are matched with movsd.
5245  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5246    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5247  else if (HasSSE2)
5248    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5249
5250
5251  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5252
5253  // Invert the operand order and use SHUFPS to match it.
5254  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5255                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5256}
5257
5258static inline unsigned getUNPCKLOpcode(EVT VT) {
5259  switch(VT.getSimpleVT().SimpleTy) {
5260  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5261  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5262  case MVT::v4f32: return X86ISD::UNPCKLPS;
5263  case MVT::v2f64: return X86ISD::UNPCKLPD;
5264  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5265  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5266  default:
5267    llvm_unreachable("Unknow type for unpckl");
5268  }
5269  return 0;
5270}
5271
5272static inline unsigned getUNPCKHOpcode(EVT VT) {
5273  switch(VT.getSimpleVT().SimpleTy) {
5274  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5275  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5276  case MVT::v4f32: return X86ISD::UNPCKHPS;
5277  case MVT::v2f64: return X86ISD::UNPCKHPD;
5278  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5279  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5280  default:
5281    llvm_unreachable("Unknow type for unpckh");
5282  }
5283  return 0;
5284}
5285
5286static
5287SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5288                               const TargetLowering &TLI,
5289                               const X86Subtarget *Subtarget) {
5290  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5291  EVT VT = Op.getValueType();
5292  DebugLoc dl = Op.getDebugLoc();
5293  SDValue V1 = Op.getOperand(0);
5294  SDValue V2 = Op.getOperand(1);
5295
5296  if (isZeroShuffle(SVOp))
5297    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5298
5299  // Handle splat operations
5300  if (SVOp->isSplat()) {
5301    // Special case, this is the only place now where it's
5302    // allowed to return a vector_shuffle operation without
5303    // using a target specific node, because *hopefully* it
5304    // will be optimized away by the dag combiner.
5305    if (VT.getVectorNumElements() <= 4 &&
5306        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5307      return Op;
5308
5309    // Handle splats by matching through known masks
5310    if (VT.getVectorNumElements() <= 4)
5311      return SDValue();
5312
5313    // Canonicalize all of the remaining to v4f32.
5314    return PromoteSplat(SVOp, DAG);
5315  }
5316
5317  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5318  // do it!
5319  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5320    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5321    if (NewOp.getNode())
5322      return DAG.getNode(ISD::BIT_CONVERT, dl, VT, NewOp);
5323  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5324    // FIXME: Figure out a cleaner way to do this.
5325    // Try to make use of movq to zero out the top part.
5326    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5327      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5328      if (NewOp.getNode()) {
5329        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5330          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5331                              DAG, Subtarget, dl);
5332      }
5333    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5334      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5335      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5336        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5337                            DAG, Subtarget, dl);
5338    }
5339  }
5340  return SDValue();
5341}
5342
5343SDValue
5344X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5345  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5346  SDValue V1 = Op.getOperand(0);
5347  SDValue V2 = Op.getOperand(1);
5348  EVT VT = Op.getValueType();
5349  DebugLoc dl = Op.getDebugLoc();
5350  unsigned NumElems = VT.getVectorNumElements();
5351  bool isMMX = VT.getSizeInBits() == 64;
5352  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5353  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5354  bool V1IsSplat = false;
5355  bool V2IsSplat = false;
5356  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5357  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5358  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5359  MachineFunction &MF = DAG.getMachineFunction();
5360  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5361
5362  // Shuffle operations on MMX not supported.
5363  if (isMMX)
5364    return Op;
5365
5366  // Vector shuffle lowering takes 3 steps:
5367  //
5368  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5369  //    narrowing and commutation of operands should be handled.
5370  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5371  //    shuffle nodes.
5372  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5373  //    so the shuffle can be broken into other shuffles and the legalizer can
5374  //    try the lowering again.
5375  //
5376  // The general ideia is that no vector_shuffle operation should be left to
5377  // be matched during isel, all of them must be converted to a target specific
5378  // node here.
5379
5380  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5381  // narrowing and commutation of operands should be handled. The actual code
5382  // doesn't include all of those, work in progress...
5383  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5384  if (NewOp.getNode())
5385    return NewOp;
5386
5387  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5388  // unpckh_undef). Only use pshufd if speed is more important than size.
5389  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5390    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5391      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5392  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5393    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5394      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5395
5396  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5397      RelaxedMayFoldVectorLoad(V1))
5398    return getMOVDDup(Op, dl, V1, DAG);
5399
5400  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5401    return getMOVHighToLow(Op, dl, DAG);
5402
5403  // Use to match splats
5404  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5405      (VT == MVT::v2f64 || VT == MVT::v2i64))
5406    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5407
5408  if (X86::isPSHUFDMask(SVOp)) {
5409    // The actual implementation will match the mask in the if above and then
5410    // during isel it can match several different instructions, not only pshufd
5411    // as its name says, sad but true, emulate the behavior for now...
5412    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5413        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5414
5415    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5416
5417    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5418      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5419
5420    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5421      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5422                                  TargetMask, DAG);
5423
5424    if (VT == MVT::v4f32)
5425      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5426                                  TargetMask, DAG);
5427  }
5428
5429  // Check if this can be converted into a logical shift.
5430  bool isLeft = false;
5431  unsigned ShAmt = 0;
5432  SDValue ShVal;
5433  bool isShift = getSubtarget()->hasSSE2() &&
5434    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5435  if (isShift && ShVal.hasOneUse()) {
5436    // If the shifted value has multiple uses, it may be cheaper to use
5437    // v_set0 + movlhps or movhlps, etc.
5438    EVT EltVT = VT.getVectorElementType();
5439    ShAmt *= EltVT.getSizeInBits();
5440    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5441  }
5442
5443  if (X86::isMOVLMask(SVOp)) {
5444    if (V1IsUndef)
5445      return V2;
5446    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5447      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5448    if (!X86::isMOVLPMask(SVOp)) {
5449      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5450        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5451
5452      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5453        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5454    }
5455  }
5456
5457  // FIXME: fold these into legal mask.
5458  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5459    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5460
5461  if (X86::isMOVHLPSMask(SVOp))
5462    return getMOVHighToLow(Op, dl, DAG);
5463
5464  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5465    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5466
5467  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5468    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5469
5470  if (X86::isMOVLPMask(SVOp))
5471    return getMOVLP(Op, dl, DAG, HasSSE2);
5472
5473  if (ShouldXformToMOVHLPS(SVOp) ||
5474      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5475    return CommuteVectorShuffle(SVOp, DAG);
5476
5477  if (isShift) {
5478    // No better options. Use a vshl / vsrl.
5479    EVT EltVT = VT.getVectorElementType();
5480    ShAmt *= EltVT.getSizeInBits();
5481    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5482  }
5483
5484  bool Commuted = false;
5485  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5486  // 1,1,1,1 -> v8i16 though.
5487  V1IsSplat = isSplatVector(V1.getNode());
5488  V2IsSplat = isSplatVector(V2.getNode());
5489
5490  // Canonicalize the splat or undef, if present, to be on the RHS.
5491  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5492    Op = CommuteVectorShuffle(SVOp, DAG);
5493    SVOp = cast<ShuffleVectorSDNode>(Op);
5494    V1 = SVOp->getOperand(0);
5495    V2 = SVOp->getOperand(1);
5496    std::swap(V1IsSplat, V2IsSplat);
5497    std::swap(V1IsUndef, V2IsUndef);
5498    Commuted = true;
5499  }
5500
5501  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5502    // Shuffling low element of v1 into undef, just return v1.
5503    if (V2IsUndef)
5504      return V1;
5505    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5506    // the instruction selector will not match, so get a canonical MOVL with
5507    // swapped operands to undo the commute.
5508    return getMOVL(DAG, dl, VT, V2, V1);
5509  }
5510
5511  if (X86::isUNPCKLMask(SVOp))
5512    return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
5513
5514  if (X86::isUNPCKHMask(SVOp))
5515    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5516
5517  if (V2IsSplat) {
5518    // Normalize mask so all entries that point to V2 points to its first
5519    // element then try to match unpck{h|l} again. If match, return a
5520    // new vector_shuffle with the corrected mask.
5521    SDValue NewMask = NormalizeMask(SVOp, DAG);
5522    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5523    if (NSVOp != SVOp) {
5524      if (X86::isUNPCKLMask(NSVOp, true)) {
5525        return NewMask;
5526      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5527        return NewMask;
5528      }
5529    }
5530  }
5531
5532  if (Commuted) {
5533    // Commute is back and try unpck* again.
5534    // FIXME: this seems wrong.
5535    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5536    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5537
5538    if (X86::isUNPCKLMask(NewSVOp))
5539      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
5540
5541    if (X86::isUNPCKHMask(NewSVOp))
5542      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5543  }
5544
5545  // Normalize the node to match x86 shuffle ops if needed
5546  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5547    return CommuteVectorShuffle(SVOp, DAG);
5548
5549  // The checks below are all present in isShuffleMaskLegal, but they are
5550  // inlined here right now to enable us to directly emit target specific
5551  // nodes, and remove one by one until they don't return Op anymore.
5552  SmallVector<int, 16> M;
5553  SVOp->getMask(M);
5554
5555  if (isPALIGNRMask(M, VT, HasSSSE3))
5556    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5557                                X86::getShufflePALIGNRImmediate(SVOp),
5558                                DAG);
5559
5560  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5561      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5562    if (VT == MVT::v2f64)
5563      return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
5564    if (VT == MVT::v2i64)
5565      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5566  }
5567
5568  if (isPSHUFHWMask(M, VT))
5569    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5570                                X86::getShufflePSHUFHWImmediate(SVOp),
5571                                DAG);
5572
5573  if (isPSHUFLWMask(M, VT))
5574    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5575                                X86::getShufflePSHUFLWImmediate(SVOp),
5576                                DAG);
5577
5578  if (isSHUFPMask(M, VT)) {
5579    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5580    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5581      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5582                                  TargetMask, DAG);
5583    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5584      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5585                                  TargetMask, DAG);
5586  }
5587
5588  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5589    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5590      return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
5591  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5592    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5593      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5594
5595  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5596  if (VT == MVT::v8i16) {
5597    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5598    if (NewOp.getNode())
5599      return NewOp;
5600  }
5601
5602  if (VT == MVT::v16i8) {
5603    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5604    if (NewOp.getNode())
5605      return NewOp;
5606  }
5607
5608  // Handle all 4 wide cases with a number of shuffles.
5609  if (NumElems == 4)
5610    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5611
5612  return SDValue();
5613}
5614
5615SDValue
5616X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5617                                                SelectionDAG &DAG) const {
5618  EVT VT = Op.getValueType();
5619  DebugLoc dl = Op.getDebugLoc();
5620  if (VT.getSizeInBits() == 8) {
5621    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5622                                    Op.getOperand(0), Op.getOperand(1));
5623    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5624                                    DAG.getValueType(VT));
5625    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5626  } else if (VT.getSizeInBits() == 16) {
5627    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5628    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5629    if (Idx == 0)
5630      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5631                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5632                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5633                                                 MVT::v4i32,
5634                                                 Op.getOperand(0)),
5635                                     Op.getOperand(1)));
5636    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5637                                    Op.getOperand(0), Op.getOperand(1));
5638    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5639                                    DAG.getValueType(VT));
5640    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5641  } else if (VT == MVT::f32) {
5642    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5643    // the result back to FR32 register. It's only worth matching if the
5644    // result has a single use which is a store or a bitcast to i32.  And in
5645    // the case of a store, it's not worth it if the index is a constant 0,
5646    // because a MOVSSmr can be used instead, which is smaller and faster.
5647    if (!Op.hasOneUse())
5648      return SDValue();
5649    SDNode *User = *Op.getNode()->use_begin();
5650    if ((User->getOpcode() != ISD::STORE ||
5651         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5652          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5653        (User->getOpcode() != ISD::BIT_CONVERT ||
5654         User->getValueType(0) != MVT::i32))
5655      return SDValue();
5656    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5657                                  DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
5658                                              Op.getOperand(0)),
5659                                              Op.getOperand(1));
5660    return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
5661  } else if (VT == MVT::i32) {
5662    // ExtractPS works with constant index.
5663    if (isa<ConstantSDNode>(Op.getOperand(1)))
5664      return Op;
5665  }
5666  return SDValue();
5667}
5668
5669
5670SDValue
5671X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5672                                           SelectionDAG &DAG) const {
5673  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5674    return SDValue();
5675
5676  if (Subtarget->hasSSE41()) {
5677    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
5678    if (Res.getNode())
5679      return Res;
5680  }
5681
5682  EVT VT = Op.getValueType();
5683  DebugLoc dl = Op.getDebugLoc();
5684  // TODO: handle v16i8.
5685  if (VT.getSizeInBits() == 16) {
5686    SDValue Vec = Op.getOperand(0);
5687    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5688    if (Idx == 0)
5689      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5690                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5691                                     DAG.getNode(ISD::BIT_CONVERT, dl,
5692                                                 MVT::v4i32, Vec),
5693                                     Op.getOperand(1)));
5694    // Transform it so it match pextrw which produces a 32-bit result.
5695    EVT EltVT = MVT::i32;
5696    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
5697                                    Op.getOperand(0), Op.getOperand(1));
5698    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
5699                                    DAG.getValueType(VT));
5700    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5701  } else if (VT.getSizeInBits() == 32) {
5702    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5703    if (Idx == 0)
5704      return Op;
5705
5706    // SHUFPS the element to the lowest double word, then movss.
5707    int Mask[4] = { Idx, -1, -1, -1 };
5708    EVT VVT = Op.getOperand(0).getValueType();
5709    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5710                                       DAG.getUNDEF(VVT), Mask);
5711    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5712                       DAG.getIntPtrConstant(0));
5713  } else if (VT.getSizeInBits() == 64) {
5714    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
5715    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
5716    //        to match extract_elt for f64.
5717    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5718    if (Idx == 0)
5719      return Op;
5720
5721    // UNPCKHPD the element to the lowest double word, then movsd.
5722    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
5723    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
5724    int Mask[2] = { 1, -1 };
5725    EVT VVT = Op.getOperand(0).getValueType();
5726    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
5727                                       DAG.getUNDEF(VVT), Mask);
5728    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
5729                       DAG.getIntPtrConstant(0));
5730  }
5731
5732  return SDValue();
5733}
5734
5735SDValue
5736X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
5737                                               SelectionDAG &DAG) const {
5738  EVT VT = Op.getValueType();
5739  EVT EltVT = VT.getVectorElementType();
5740  DebugLoc dl = Op.getDebugLoc();
5741
5742  SDValue N0 = Op.getOperand(0);
5743  SDValue N1 = Op.getOperand(1);
5744  SDValue N2 = Op.getOperand(2);
5745
5746  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
5747      isa<ConstantSDNode>(N2)) {
5748    unsigned Opc;
5749    if (VT == MVT::v8i16)
5750      Opc = X86ISD::PINSRW;
5751    else if (VT == MVT::v16i8)
5752      Opc = X86ISD::PINSRB;
5753    else
5754      Opc = X86ISD::PINSRB;
5755
5756    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
5757    // argument.
5758    if (N1.getValueType() != MVT::i32)
5759      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5760    if (N2.getValueType() != MVT::i32)
5761      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5762    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
5763  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
5764    // Bits [7:6] of the constant are the source select.  This will always be
5765    //  zero here.  The DAG Combiner may combine an extract_elt index into these
5766    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
5767    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
5768    // Bits [5:4] of the constant are the destination select.  This is the
5769    //  value of the incoming immediate.
5770    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
5771    //   combine either bitwise AND or insert of float 0.0 to set these bits.
5772    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
5773    // Create this as a scalar to vector..
5774    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
5775    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
5776  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
5777    // PINSR* works with constant index.
5778    return Op;
5779  }
5780  return SDValue();
5781}
5782
5783SDValue
5784X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
5785  EVT VT = Op.getValueType();
5786  EVT EltVT = VT.getVectorElementType();
5787
5788  if (Subtarget->hasSSE41())
5789    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
5790
5791  if (EltVT == MVT::i8)
5792    return SDValue();
5793
5794  DebugLoc dl = Op.getDebugLoc();
5795  SDValue N0 = Op.getOperand(0);
5796  SDValue N1 = Op.getOperand(1);
5797  SDValue N2 = Op.getOperand(2);
5798
5799  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
5800    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
5801    // as its second argument.
5802    if (N1.getValueType() != MVT::i32)
5803      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
5804    if (N2.getValueType() != MVT::i32)
5805      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
5806    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
5807  }
5808  return SDValue();
5809}
5810
5811SDValue
5812X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5813  DebugLoc dl = Op.getDebugLoc();
5814
5815  if (Op.getValueType() == MVT::v1i64 &&
5816      Op.getOperand(0).getValueType() == MVT::i64)
5817    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
5818
5819  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
5820  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
5821         "Expected an SSE type!");
5822  return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
5823                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
5824}
5825
5826// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
5827// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
5828// one of the above mentioned nodes. It has to be wrapped because otherwise
5829// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
5830// be used to form addressing mode. These wrapped nodes will be selected
5831// into MOV32ri.
5832SDValue
5833X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
5834  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
5835
5836  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5837  // global base reg.
5838  unsigned char OpFlag = 0;
5839  unsigned WrapperKind = X86ISD::Wrapper;
5840  CodeModel::Model M = getTargetMachine().getCodeModel();
5841
5842  if (Subtarget->isPICStyleRIPRel() &&
5843      (M == CodeModel::Small || M == CodeModel::Kernel))
5844    WrapperKind = X86ISD::WrapperRIP;
5845  else if (Subtarget->isPICStyleGOT())
5846    OpFlag = X86II::MO_GOTOFF;
5847  else if (Subtarget->isPICStyleStubPIC())
5848    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5849
5850  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
5851                                             CP->getAlignment(),
5852                                             CP->getOffset(), OpFlag);
5853  DebugLoc DL = CP->getDebugLoc();
5854  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5855  // With PIC, the address is actually $g + Offset.
5856  if (OpFlag) {
5857    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5858                         DAG.getNode(X86ISD::GlobalBaseReg,
5859                                     DebugLoc(), getPointerTy()),
5860                         Result);
5861  }
5862
5863  return Result;
5864}
5865
5866SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
5867  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
5868
5869  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5870  // global base reg.
5871  unsigned char OpFlag = 0;
5872  unsigned WrapperKind = X86ISD::Wrapper;
5873  CodeModel::Model M = getTargetMachine().getCodeModel();
5874
5875  if (Subtarget->isPICStyleRIPRel() &&
5876      (M == CodeModel::Small || M == CodeModel::Kernel))
5877    WrapperKind = X86ISD::WrapperRIP;
5878  else if (Subtarget->isPICStyleGOT())
5879    OpFlag = X86II::MO_GOTOFF;
5880  else if (Subtarget->isPICStyleStubPIC())
5881    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5882
5883  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
5884                                          OpFlag);
5885  DebugLoc DL = JT->getDebugLoc();
5886  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5887
5888  // With PIC, the address is actually $g + Offset.
5889  if (OpFlag)
5890    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5891                         DAG.getNode(X86ISD::GlobalBaseReg,
5892                                     DebugLoc(), getPointerTy()),
5893                         Result);
5894
5895  return Result;
5896}
5897
5898SDValue
5899X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
5900  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
5901
5902  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
5903  // global base reg.
5904  unsigned char OpFlag = 0;
5905  unsigned WrapperKind = X86ISD::Wrapper;
5906  CodeModel::Model M = getTargetMachine().getCodeModel();
5907
5908  if (Subtarget->isPICStyleRIPRel() &&
5909      (M == CodeModel::Small || M == CodeModel::Kernel))
5910    WrapperKind = X86ISD::WrapperRIP;
5911  else if (Subtarget->isPICStyleGOT())
5912    OpFlag = X86II::MO_GOTOFF;
5913  else if (Subtarget->isPICStyleStubPIC())
5914    OpFlag = X86II::MO_PIC_BASE_OFFSET;
5915
5916  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
5917
5918  DebugLoc DL = Op.getDebugLoc();
5919  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
5920
5921
5922  // With PIC, the address is actually $g + Offset.
5923  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
5924      !Subtarget->is64Bit()) {
5925    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
5926                         DAG.getNode(X86ISD::GlobalBaseReg,
5927                                     DebugLoc(), getPointerTy()),
5928                         Result);
5929  }
5930
5931  return Result;
5932}
5933
5934SDValue
5935X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
5936  // Create the TargetBlockAddressAddress node.
5937  unsigned char OpFlags =
5938    Subtarget->ClassifyBlockAddressReference();
5939  CodeModel::Model M = getTargetMachine().getCodeModel();
5940  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
5941  DebugLoc dl = Op.getDebugLoc();
5942  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
5943                                       /*isTarget=*/true, OpFlags);
5944
5945  if (Subtarget->isPICStyleRIPRel() &&
5946      (M == CodeModel::Small || M == CodeModel::Kernel))
5947    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5948  else
5949    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5950
5951  // With PIC, the address is actually $g + Offset.
5952  if (isGlobalRelativeToPICBase(OpFlags)) {
5953    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5954                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5955                         Result);
5956  }
5957
5958  return Result;
5959}
5960
5961SDValue
5962X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
5963                                      int64_t Offset,
5964                                      SelectionDAG &DAG) const {
5965  // Create the TargetGlobalAddress node, folding in the constant
5966  // offset if it is legal.
5967  unsigned char OpFlags =
5968    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
5969  CodeModel::Model M = getTargetMachine().getCodeModel();
5970  SDValue Result;
5971  if (OpFlags == X86II::MO_NO_FLAG &&
5972      X86::isOffsetSuitableForCodeModel(Offset, M)) {
5973    // A direct static reference to a global.
5974    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
5975    Offset = 0;
5976  } else {
5977    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
5978  }
5979
5980  if (Subtarget->isPICStyleRIPRel() &&
5981      (M == CodeModel::Small || M == CodeModel::Kernel))
5982    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
5983  else
5984    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
5985
5986  // With PIC, the address is actually $g + Offset.
5987  if (isGlobalRelativeToPICBase(OpFlags)) {
5988    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
5989                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
5990                         Result);
5991  }
5992
5993  // For globals that require a load from a stub to get the address, emit the
5994  // load.
5995  if (isGlobalStubReference(OpFlags))
5996    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
5997                         MachinePointerInfo::getGOT(), false, false, 0);
5998
5999  // If there was a non-zero offset that we didn't fold, create an explicit
6000  // addition for it.
6001  if (Offset != 0)
6002    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6003                         DAG.getConstant(Offset, getPointerTy()));
6004
6005  return Result;
6006}
6007
6008SDValue
6009X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6010  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6011  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6012  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6013}
6014
6015static SDValue
6016GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6017           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6018           unsigned char OperandFlags) {
6019  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6020  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
6021  DebugLoc dl = GA->getDebugLoc();
6022  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6023                                           GA->getValueType(0),
6024                                           GA->getOffset(),
6025                                           OperandFlags);
6026  if (InFlag) {
6027    SDValue Ops[] = { Chain,  TGA, *InFlag };
6028    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6029  } else {
6030    SDValue Ops[]  = { Chain, TGA };
6031    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6032  }
6033
6034  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6035  MFI->setAdjustsStack(true);
6036
6037  SDValue Flag = Chain.getValue(1);
6038  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6039}
6040
6041// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6042static SDValue
6043LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6044                                const EVT PtrVT) {
6045  SDValue InFlag;
6046  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6047  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6048                                     DAG.getNode(X86ISD::GlobalBaseReg,
6049                                                 DebugLoc(), PtrVT), InFlag);
6050  InFlag = Chain.getValue(1);
6051
6052  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6053}
6054
6055// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6056static SDValue
6057LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6058                                const EVT PtrVT) {
6059  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6060                    X86::RAX, X86II::MO_TLSGD);
6061}
6062
6063// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6064// "local exec" model.
6065static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6066                                   const EVT PtrVT, TLSModel::Model model,
6067                                   bool is64Bit) {
6068  DebugLoc dl = GA->getDebugLoc();
6069
6070  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6071  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6072                                                         is64Bit ? 257 : 256));
6073
6074  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6075                                      DAG.getIntPtrConstant(0),
6076                                      MachinePointerInfo(Ptr), false, false, 0);
6077
6078  unsigned char OperandFlags = 0;
6079  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6080  // initialexec.
6081  unsigned WrapperKind = X86ISD::Wrapper;
6082  if (model == TLSModel::LocalExec) {
6083    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6084  } else if (is64Bit) {
6085    assert(model == TLSModel::InitialExec);
6086    OperandFlags = X86II::MO_GOTTPOFF;
6087    WrapperKind = X86ISD::WrapperRIP;
6088  } else {
6089    assert(model == TLSModel::InitialExec);
6090    OperandFlags = X86II::MO_INDNTPOFF;
6091  }
6092
6093  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6094  // exec)
6095  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6096                                           GA->getValueType(0),
6097                                           GA->getOffset(), OperandFlags);
6098  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6099
6100  if (model == TLSModel::InitialExec)
6101    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6102                         MachinePointerInfo::getGOT(), false, false, 0);
6103
6104  // The address of the thread local variable is the add of the thread
6105  // pointer with the offset of the variable.
6106  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6107}
6108
6109SDValue
6110X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6111
6112  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6113  const GlobalValue *GV = GA->getGlobal();
6114
6115  if (Subtarget->isTargetELF()) {
6116    // TODO: implement the "local dynamic" model
6117    // TODO: implement the "initial exec"model for pic executables
6118
6119    // If GV is an alias then use the aliasee for determining
6120    // thread-localness.
6121    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6122      GV = GA->resolveAliasedGlobal(false);
6123
6124    TLSModel::Model model
6125      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6126
6127    switch (model) {
6128      case TLSModel::GeneralDynamic:
6129      case TLSModel::LocalDynamic: // not implemented
6130        if (Subtarget->is64Bit())
6131          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6132        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6133
6134      case TLSModel::InitialExec:
6135      case TLSModel::LocalExec:
6136        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6137                                   Subtarget->is64Bit());
6138    }
6139  } else if (Subtarget->isTargetDarwin()) {
6140    // Darwin only has one model of TLS.  Lower to that.
6141    unsigned char OpFlag = 0;
6142    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6143                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6144
6145    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6146    // global base reg.
6147    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6148                  !Subtarget->is64Bit();
6149    if (PIC32)
6150      OpFlag = X86II::MO_TLVP_PIC_BASE;
6151    else
6152      OpFlag = X86II::MO_TLVP;
6153    DebugLoc DL = Op.getDebugLoc();
6154    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6155                                                getPointerTy(),
6156                                                GA->getOffset(), OpFlag);
6157    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6158
6159    // With PIC32, the address is actually $g + Offset.
6160    if (PIC32)
6161      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6162                           DAG.getNode(X86ISD::GlobalBaseReg,
6163                                       DebugLoc(), getPointerTy()),
6164                           Offset);
6165
6166    // Lowering the machine isd will make sure everything is in the right
6167    // location.
6168    SDValue Args[] = { Offset };
6169    SDValue Chain = DAG.getNode(X86ISD::TLSCALL, DL, MVT::Other, Args, 1);
6170
6171    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6172    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6173    MFI->setAdjustsStack(true);
6174
6175    // And our return value (tls address) is in the standard call return value
6176    // location.
6177    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6178    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6179  }
6180
6181  assert(false &&
6182         "TLS not implemented for this target.");
6183
6184  llvm_unreachable("Unreachable");
6185  return SDValue();
6186}
6187
6188
6189/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6190/// take a 2 x i32 value to shift plus a shift amount.
6191SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6192  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6193  EVT VT = Op.getValueType();
6194  unsigned VTBits = VT.getSizeInBits();
6195  DebugLoc dl = Op.getDebugLoc();
6196  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6197  SDValue ShOpLo = Op.getOperand(0);
6198  SDValue ShOpHi = Op.getOperand(1);
6199  SDValue ShAmt  = Op.getOperand(2);
6200  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6201                                     DAG.getConstant(VTBits - 1, MVT::i8))
6202                       : DAG.getConstant(0, VT);
6203
6204  SDValue Tmp2, Tmp3;
6205  if (Op.getOpcode() == ISD::SHL_PARTS) {
6206    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6207    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6208  } else {
6209    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6210    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6211  }
6212
6213  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6214                                DAG.getConstant(VTBits, MVT::i8));
6215  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6216                             AndNode, DAG.getConstant(0, MVT::i8));
6217
6218  SDValue Hi, Lo;
6219  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6220  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6221  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6222
6223  if (Op.getOpcode() == ISD::SHL_PARTS) {
6224    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6225    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6226  } else {
6227    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6228    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6229  }
6230
6231  SDValue Ops[2] = { Lo, Hi };
6232  return DAG.getMergeValues(Ops, 2, dl);
6233}
6234
6235SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6236                                           SelectionDAG &DAG) const {
6237  EVT SrcVT = Op.getOperand(0).getValueType();
6238
6239  if (SrcVT.isVector())
6240    return SDValue();
6241
6242  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6243         "Unknown SINT_TO_FP to lower!");
6244
6245  // These are really Legal; return the operand so the caller accepts it as
6246  // Legal.
6247  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6248    return Op;
6249  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6250      Subtarget->is64Bit()) {
6251    return Op;
6252  }
6253
6254  DebugLoc dl = Op.getDebugLoc();
6255  unsigned Size = SrcVT.getSizeInBits()/8;
6256  MachineFunction &MF = DAG.getMachineFunction();
6257  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6258  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6259  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6260                               StackSlot,
6261                               MachinePointerInfo::getFixedStack(SSFI),
6262                               false, false, 0);
6263  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6264}
6265
6266SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6267                                     SDValue StackSlot,
6268                                     SelectionDAG &DAG) const {
6269  // Build the FILD
6270  DebugLoc DL = Op.getDebugLoc();
6271  SDVTList Tys;
6272  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6273  if (useSSE)
6274    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
6275  else
6276    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6277
6278  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6279
6280  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6281  MachineMemOperand *MMO =
6282    DAG.getMachineFunction()
6283    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6284                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6285
6286  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6287  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6288                                           X86ISD::FILD, DL,
6289                                           Tys, Ops, array_lengthof(Ops),
6290                                           SrcVT, MMO);
6291
6292  if (useSSE) {
6293    Chain = Result.getValue(1);
6294    SDValue InFlag = Result.getValue(2);
6295
6296    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6297    // shouldn't be necessary except that RFP cannot be live across
6298    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6299    MachineFunction &MF = DAG.getMachineFunction();
6300    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6301    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6302    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6303    Tys = DAG.getVTList(MVT::Other);
6304    SDValue Ops[] = {
6305      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6306    };
6307    MachineMemOperand *MMO =
6308      DAG.getMachineFunction()
6309      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6310                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6311
6312    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6313                                    Ops, array_lengthof(Ops),
6314                                    Op.getValueType(), MMO);
6315    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6316                         MachinePointerInfo::getFixedStack(SSFI),
6317                         false, false, 0);
6318  }
6319
6320  return Result;
6321}
6322
6323// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6324SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6325                                               SelectionDAG &DAG) const {
6326  // This algorithm is not obvious. Here it is in C code, more or less:
6327  /*
6328    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6329      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6330      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6331
6332      // Copy ints to xmm registers.
6333      __m128i xh = _mm_cvtsi32_si128( hi );
6334      __m128i xl = _mm_cvtsi32_si128( lo );
6335
6336      // Combine into low half of a single xmm register.
6337      __m128i x = _mm_unpacklo_epi32( xh, xl );
6338      __m128d d;
6339      double sd;
6340
6341      // Merge in appropriate exponents to give the integer bits the right
6342      // magnitude.
6343      x = _mm_unpacklo_epi32( x, exp );
6344
6345      // Subtract away the biases to deal with the IEEE-754 double precision
6346      // implicit 1.
6347      d = _mm_sub_pd( (__m128d) x, bias );
6348
6349      // All conversions up to here are exact. The correctly rounded result is
6350      // calculated using the current rounding mode using the following
6351      // horizontal add.
6352      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6353      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6354                                // store doesn't really need to be here (except
6355                                // maybe to zero the other double)
6356      return sd;
6357    }
6358  */
6359
6360  DebugLoc dl = Op.getDebugLoc();
6361  LLVMContext *Context = DAG.getContext();
6362
6363  // Build some magic constants.
6364  std::vector<Constant*> CV0;
6365  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6366  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6367  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6368  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6369  Constant *C0 = ConstantVector::get(CV0);
6370  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6371
6372  std::vector<Constant*> CV1;
6373  CV1.push_back(
6374    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6375  CV1.push_back(
6376    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6377  Constant *C1 = ConstantVector::get(CV1);
6378  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6379
6380  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6381                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6382                                        Op.getOperand(0),
6383                                        DAG.getIntPtrConstant(1)));
6384  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6385                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6386                                        Op.getOperand(0),
6387                                        DAG.getIntPtrConstant(0)));
6388  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6389  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6390                              MachinePointerInfo::getConstantPool(),
6391                              false, false, 16);
6392  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6393  SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
6394  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6395                              MachinePointerInfo::getConstantPool(),
6396                              false, false, 16);
6397  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6398
6399  // Add the halves; easiest way is to swap them into another reg first.
6400  int ShufMask[2] = { 1, -1 };
6401  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6402                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6403  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6404  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6405                     DAG.getIntPtrConstant(0));
6406}
6407
6408// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6409SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6410                                               SelectionDAG &DAG) const {
6411  DebugLoc dl = Op.getDebugLoc();
6412  // FP constant to bias correct the final result.
6413  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6414                                   MVT::f64);
6415
6416  // Load the 32-bit value into an XMM register.
6417  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6418                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6419                                         Op.getOperand(0),
6420                                         DAG.getIntPtrConstant(0)));
6421
6422  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6423                     DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
6424                     DAG.getIntPtrConstant(0));
6425
6426  // Or the load with the bias.
6427  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6428                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6429                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6430                                                   MVT::v2f64, Load)),
6431                           DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6432                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6433                                                   MVT::v2f64, Bias)));
6434  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6435                   DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
6436                   DAG.getIntPtrConstant(0));
6437
6438  // Subtract the bias.
6439  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6440
6441  // Handle final rounding.
6442  EVT DestVT = Op.getValueType();
6443
6444  if (DestVT.bitsLT(MVT::f64)) {
6445    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6446                       DAG.getIntPtrConstant(0));
6447  } else if (DestVT.bitsGT(MVT::f64)) {
6448    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6449  }
6450
6451  // Handle final rounding.
6452  return Sub;
6453}
6454
6455SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6456                                           SelectionDAG &DAG) const {
6457  SDValue N0 = Op.getOperand(0);
6458  DebugLoc dl = Op.getDebugLoc();
6459
6460  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6461  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6462  // the optimization here.
6463  if (DAG.SignBitIsZero(N0))
6464    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6465
6466  EVT SrcVT = N0.getValueType();
6467  EVT DstVT = Op.getValueType();
6468  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6469    return LowerUINT_TO_FP_i64(Op, DAG);
6470  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6471    return LowerUINT_TO_FP_i32(Op, DAG);
6472
6473  // Make a 64-bit buffer, and use it to build an FILD.
6474  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6475  if (SrcVT == MVT::i32) {
6476    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6477    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6478                                     getPointerTy(), StackSlot, WordOff);
6479    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6480                                  StackSlot, MachinePointerInfo(),
6481                                  false, false, 0);
6482    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6483                                  OffsetSlot, MachinePointerInfo(),
6484                                  false, false, 0);
6485    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6486    return Fild;
6487  }
6488
6489  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6490  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6491                                StackSlot, MachinePointerInfo(),
6492                               false, false, 0);
6493  // For i64 source, we need to add the appropriate power of 2 if the input
6494  // was negative.  This is the same as the optimization in
6495  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6496  // we must be careful to do the computation in x87 extended precision, not
6497  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6498  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6499  MachineMemOperand *MMO =
6500    DAG.getMachineFunction()
6501    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6502                          MachineMemOperand::MOLoad, 8, 8);
6503
6504  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6505  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6506  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6507                                         MVT::i64, MMO);
6508
6509  APInt FF(32, 0x5F800000ULL);
6510
6511  // Check whether the sign bit is set.
6512  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6513                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6514                                 ISD::SETLT);
6515
6516  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6517  SDValue FudgePtr = DAG.getConstantPool(
6518                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6519                                         getPointerTy());
6520
6521  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6522  SDValue Zero = DAG.getIntPtrConstant(0);
6523  SDValue Four = DAG.getIntPtrConstant(4);
6524  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6525                               Zero, Four);
6526  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6527
6528  // Load the value out, extending it from f32 to f80.
6529  // FIXME: Avoid the extend by constructing the right constant pool?
6530  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, MVT::f80, dl, DAG.getEntryNode(),
6531                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6532                                 MVT::f32, false, false, 4);
6533  // Extend everything to 80 bits to force it to be done on x87.
6534  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6535  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6536}
6537
6538std::pair<SDValue,SDValue> X86TargetLowering::
6539FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6540  DebugLoc DL = Op.getDebugLoc();
6541
6542  EVT DstTy = Op.getValueType();
6543
6544  if (!IsSigned) {
6545    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6546    DstTy = MVT::i64;
6547  }
6548
6549  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6550         DstTy.getSimpleVT() >= MVT::i16 &&
6551         "Unknown FP_TO_SINT to lower!");
6552
6553  // These are really Legal.
6554  if (DstTy == MVT::i32 &&
6555      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6556    return std::make_pair(SDValue(), SDValue());
6557  if (Subtarget->is64Bit() &&
6558      DstTy == MVT::i64 &&
6559      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6560    return std::make_pair(SDValue(), SDValue());
6561
6562  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6563  // stack slot.
6564  MachineFunction &MF = DAG.getMachineFunction();
6565  unsigned MemSize = DstTy.getSizeInBits()/8;
6566  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6567  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6568
6569
6570
6571  unsigned Opc;
6572  switch (DstTy.getSimpleVT().SimpleTy) {
6573  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6574  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6575  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6576  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6577  }
6578
6579  SDValue Chain = DAG.getEntryNode();
6580  SDValue Value = Op.getOperand(0);
6581  EVT TheVT = Op.getOperand(0).getValueType();
6582  if (isScalarFPTypeInSSEReg(TheVT)) {
6583    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
6584    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
6585                         MachinePointerInfo::getFixedStack(SSFI),
6586                         false, false, 0);
6587    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
6588    SDValue Ops[] = {
6589      Chain, StackSlot, DAG.getValueType(TheVT)
6590    };
6591
6592    MachineMemOperand *MMO =
6593      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6594                              MachineMemOperand::MOLoad, MemSize, MemSize);
6595    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
6596                                    DstTy, MMO);
6597    Chain = Value.getValue(1);
6598    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6599    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6600  }
6601
6602  MachineMemOperand *MMO =
6603    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6604                            MachineMemOperand::MOStore, MemSize, MemSize);
6605
6606  // Build the FP_TO_INT*_IN_MEM
6607  SDValue Ops[] = { Chain, Value, StackSlot };
6608  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
6609                                         Ops, 3, DstTy, MMO);
6610
6611  return std::make_pair(FIST, StackSlot);
6612}
6613
6614SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
6615                                           SelectionDAG &DAG) const {
6616  if (Op.getValueType().isVector())
6617    return SDValue();
6618
6619  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
6620  SDValue FIST = Vals.first, StackSlot = Vals.second;
6621  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
6622  if (FIST.getNode() == 0) return Op;
6623
6624  // Load the result.
6625  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6626                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6627}
6628
6629SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
6630                                           SelectionDAG &DAG) const {
6631  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
6632  SDValue FIST = Vals.first, StackSlot = Vals.second;
6633  assert(FIST.getNode() && "Unexpected failure");
6634
6635  // Load the result.
6636  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
6637                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
6638}
6639
6640SDValue X86TargetLowering::LowerFABS(SDValue Op,
6641                                     SelectionDAG &DAG) const {
6642  LLVMContext *Context = DAG.getContext();
6643  DebugLoc dl = Op.getDebugLoc();
6644  EVT VT = Op.getValueType();
6645  EVT EltVT = VT;
6646  if (VT.isVector())
6647    EltVT = VT.getVectorElementType();
6648  std::vector<Constant*> CV;
6649  if (EltVT == MVT::f64) {
6650    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
6651    CV.push_back(C);
6652    CV.push_back(C);
6653  } else {
6654    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
6655    CV.push_back(C);
6656    CV.push_back(C);
6657    CV.push_back(C);
6658    CV.push_back(C);
6659  }
6660  Constant *C = ConstantVector::get(CV);
6661  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6662  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6663                             MachinePointerInfo::getConstantPool(),
6664                             false, false, 16);
6665  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
6666}
6667
6668SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
6669  LLVMContext *Context = DAG.getContext();
6670  DebugLoc dl = Op.getDebugLoc();
6671  EVT VT = Op.getValueType();
6672  EVT EltVT = VT;
6673  if (VT.isVector())
6674    EltVT = VT.getVectorElementType();
6675  std::vector<Constant*> CV;
6676  if (EltVT == MVT::f64) {
6677    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
6678    CV.push_back(C);
6679    CV.push_back(C);
6680  } else {
6681    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
6682    CV.push_back(C);
6683    CV.push_back(C);
6684    CV.push_back(C);
6685    CV.push_back(C);
6686  }
6687  Constant *C = ConstantVector::get(CV);
6688  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6689  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6690                             MachinePointerInfo::getConstantPool(),
6691                             false, false, 16);
6692  if (VT.isVector()) {
6693    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
6694                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
6695                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
6696                                Op.getOperand(0)),
6697                    DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
6698  } else {
6699    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
6700  }
6701}
6702
6703SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6704  LLVMContext *Context = DAG.getContext();
6705  SDValue Op0 = Op.getOperand(0);
6706  SDValue Op1 = Op.getOperand(1);
6707  DebugLoc dl = Op.getDebugLoc();
6708  EVT VT = Op.getValueType();
6709  EVT SrcVT = Op1.getValueType();
6710
6711  // If second operand is smaller, extend it first.
6712  if (SrcVT.bitsLT(VT)) {
6713    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
6714    SrcVT = VT;
6715  }
6716  // And if it is bigger, shrink it first.
6717  if (SrcVT.bitsGT(VT)) {
6718    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
6719    SrcVT = VT;
6720  }
6721
6722  // At this point the operands and the result should have the same
6723  // type, and that won't be f80 since that is not custom lowered.
6724
6725  // First get the sign bit of second operand.
6726  std::vector<Constant*> CV;
6727  if (SrcVT == MVT::f64) {
6728    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
6729    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6730  } else {
6731    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
6732    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6733    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6734    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6735  }
6736  Constant *C = ConstantVector::get(CV);
6737  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6738  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
6739                              MachinePointerInfo::getConstantPool(),
6740                              false, false, 16);
6741  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
6742
6743  // Shift sign bit right or left if the two operands have different types.
6744  if (SrcVT.bitsGT(VT)) {
6745    // Op0 is MVT::f32, Op1 is MVT::f64.
6746    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
6747    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
6748                          DAG.getConstant(32, MVT::i32));
6749    SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
6750    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
6751                          DAG.getIntPtrConstant(0));
6752  }
6753
6754  // Clear first operand sign bit.
6755  CV.clear();
6756  if (VT == MVT::f64) {
6757    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
6758    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
6759  } else {
6760    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
6761    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6762    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6763    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
6764  }
6765  C = ConstantVector::get(CV);
6766  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
6767  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
6768                              MachinePointerInfo::getConstantPool(),
6769                              false, false, 16);
6770  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
6771
6772  // Or the value with the sign bit.
6773  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
6774}
6775
6776/// Emit nodes that will be selected as "test Op0,Op0", or something
6777/// equivalent.
6778SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
6779                                    SelectionDAG &DAG) const {
6780  DebugLoc dl = Op.getDebugLoc();
6781
6782  // CF and OF aren't always set the way we want. Determine which
6783  // of these we need.
6784  bool NeedCF = false;
6785  bool NeedOF = false;
6786  switch (X86CC) {
6787  default: break;
6788  case X86::COND_A: case X86::COND_AE:
6789  case X86::COND_B: case X86::COND_BE:
6790    NeedCF = true;
6791    break;
6792  case X86::COND_G: case X86::COND_GE:
6793  case X86::COND_L: case X86::COND_LE:
6794  case X86::COND_O: case X86::COND_NO:
6795    NeedOF = true;
6796    break;
6797  }
6798
6799  // See if we can use the EFLAGS value from the operand instead of
6800  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
6801  // we prove that the arithmetic won't overflow, we can't use OF or CF.
6802  if (Op.getResNo() != 0 || NeedOF || NeedCF)
6803    // Emit a CMP with 0, which is the TEST pattern.
6804    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6805                       DAG.getConstant(0, Op.getValueType()));
6806
6807  unsigned Opcode = 0;
6808  unsigned NumOperands = 0;
6809  switch (Op.getNode()->getOpcode()) {
6810  case ISD::ADD:
6811    // Due to an isel shortcoming, be conservative if this add is likely to be
6812    // selected as part of a load-modify-store instruction. When the root node
6813    // in a match is a store, isel doesn't know how to remap non-chain non-flag
6814    // uses of other nodes in the match, such as the ADD in this case. This
6815    // leads to the ADD being left around and reselected, with the result being
6816    // two adds in the output.  Alas, even if none our users are stores, that
6817    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
6818    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
6819    // climbing the DAG back to the root, and it doesn't seem to be worth the
6820    // effort.
6821    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6822           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6823      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
6824        goto default_case;
6825
6826    if (ConstantSDNode *C =
6827        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
6828      // An add of one will be selected as an INC.
6829      if (C->getAPIntValue() == 1) {
6830        Opcode = X86ISD::INC;
6831        NumOperands = 1;
6832        break;
6833      }
6834
6835      // An add of negative one (subtract of one) will be selected as a DEC.
6836      if (C->getAPIntValue().isAllOnesValue()) {
6837        Opcode = X86ISD::DEC;
6838        NumOperands = 1;
6839        break;
6840      }
6841    }
6842
6843    // Otherwise use a regular EFLAGS-setting add.
6844    Opcode = X86ISD::ADD;
6845    NumOperands = 2;
6846    break;
6847  case ISD::AND: {
6848    // If the primary and result isn't used, don't bother using X86ISD::AND,
6849    // because a TEST instruction will be better.
6850    bool NonFlagUse = false;
6851    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6852           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
6853      SDNode *User = *UI;
6854      unsigned UOpNo = UI.getOperandNo();
6855      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
6856        // Look pass truncate.
6857        UOpNo = User->use_begin().getOperandNo();
6858        User = *User->use_begin();
6859      }
6860
6861      if (User->getOpcode() != ISD::BRCOND &&
6862          User->getOpcode() != ISD::SETCC &&
6863          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
6864        NonFlagUse = true;
6865        break;
6866      }
6867    }
6868
6869    if (!NonFlagUse)
6870      break;
6871  }
6872    // FALL THROUGH
6873  case ISD::SUB:
6874  case ISD::OR:
6875  case ISD::XOR:
6876    // Due to the ISEL shortcoming noted above, be conservative if this op is
6877    // likely to be selected as part of a load-modify-store instruction.
6878    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
6879           UE = Op.getNode()->use_end(); UI != UE; ++UI)
6880      if (UI->getOpcode() == ISD::STORE)
6881        goto default_case;
6882
6883    // Otherwise use a regular EFLAGS-setting instruction.
6884    switch (Op.getNode()->getOpcode()) {
6885    default: llvm_unreachable("unexpected operator!");
6886    case ISD::SUB: Opcode = X86ISD::SUB; break;
6887    case ISD::OR:  Opcode = X86ISD::OR;  break;
6888    case ISD::XOR: Opcode = X86ISD::XOR; break;
6889    case ISD::AND: Opcode = X86ISD::AND; break;
6890    }
6891
6892    NumOperands = 2;
6893    break;
6894  case X86ISD::ADD:
6895  case X86ISD::SUB:
6896  case X86ISD::INC:
6897  case X86ISD::DEC:
6898  case X86ISD::OR:
6899  case X86ISD::XOR:
6900  case X86ISD::AND:
6901    return SDValue(Op.getNode(), 1);
6902  default:
6903  default_case:
6904    break;
6905  }
6906
6907  if (Opcode == 0)
6908    // Emit a CMP with 0, which is the TEST pattern.
6909    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
6910                       DAG.getConstant(0, Op.getValueType()));
6911
6912  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
6913  SmallVector<SDValue, 4> Ops;
6914  for (unsigned i = 0; i != NumOperands; ++i)
6915    Ops.push_back(Op.getOperand(i));
6916
6917  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
6918  DAG.ReplaceAllUsesWith(Op, New);
6919  return SDValue(New.getNode(), 1);
6920}
6921
6922/// Emit nodes that will be selected as "cmp Op0,Op1", or something
6923/// equivalent.
6924SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
6925                                   SelectionDAG &DAG) const {
6926  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
6927    if (C->getAPIntValue() == 0)
6928      return EmitTest(Op0, X86CC, DAG);
6929
6930  DebugLoc dl = Op0.getDebugLoc();
6931  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
6932}
6933
6934/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
6935/// if it's possible.
6936SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
6937                                     DebugLoc dl, SelectionDAG &DAG) const {
6938  SDValue Op0 = And.getOperand(0);
6939  SDValue Op1 = And.getOperand(1);
6940  if (Op0.getOpcode() == ISD::TRUNCATE)
6941    Op0 = Op0.getOperand(0);
6942  if (Op1.getOpcode() == ISD::TRUNCATE)
6943    Op1 = Op1.getOperand(0);
6944
6945  SDValue LHS, RHS;
6946  if (Op1.getOpcode() == ISD::SHL)
6947    std::swap(Op0, Op1);
6948  if (Op0.getOpcode() == ISD::SHL) {
6949    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
6950      if (And00C->getZExtValue() == 1) {
6951        // If we looked past a truncate, check that it's only truncating away
6952        // known zeros.
6953        unsigned BitWidth = Op0.getValueSizeInBits();
6954        unsigned AndBitWidth = And.getValueSizeInBits();
6955        if (BitWidth > AndBitWidth) {
6956          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
6957          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
6958          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
6959            return SDValue();
6960        }
6961        LHS = Op1;
6962        RHS = Op0.getOperand(1);
6963      }
6964  } else if (Op1.getOpcode() == ISD::Constant) {
6965    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
6966    SDValue AndLHS = Op0;
6967    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
6968      LHS = AndLHS.getOperand(0);
6969      RHS = AndLHS.getOperand(1);
6970    }
6971  }
6972
6973  if (LHS.getNode()) {
6974    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
6975    // instruction.  Since the shift amount is in-range-or-undefined, we know
6976    // that doing a bittest on the i32 value is ok.  We extend to i32 because
6977    // the encoding for the i16 version is larger than the i32 version.
6978    // Also promote i16 to i32 for performance / code size reason.
6979    if (LHS.getValueType() == MVT::i8 ||
6980        LHS.getValueType() == MVT::i16)
6981      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
6982
6983    // If the operand types disagree, extend the shift amount to match.  Since
6984    // BT ignores high bits (like shifts) we can use anyextend.
6985    if (LHS.getValueType() != RHS.getValueType())
6986      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
6987
6988    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
6989    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
6990    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
6991                       DAG.getConstant(Cond, MVT::i8), BT);
6992  }
6993
6994  return SDValue();
6995}
6996
6997SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
6998  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
6999  SDValue Op0 = Op.getOperand(0);
7000  SDValue Op1 = Op.getOperand(1);
7001  DebugLoc dl = Op.getDebugLoc();
7002  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7003
7004  // Optimize to BT if possible.
7005  // Lower (X & (1 << N)) == 0 to BT(X, N).
7006  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7007  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7008  if (Op0.getOpcode() == ISD::AND &&
7009      Op0.hasOneUse() &&
7010      Op1.getOpcode() == ISD::Constant &&
7011      cast<ConstantSDNode>(Op1)->isNullValue() &&
7012      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7013    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7014    if (NewSetCC.getNode())
7015      return NewSetCC;
7016  }
7017
7018  // Look for "(setcc) == / != 1" to avoid unncessary setcc.
7019  if (Op0.getOpcode() == X86ISD::SETCC &&
7020      Op1.getOpcode() == ISD::Constant &&
7021      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7022       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7023      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7024    X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7025    bool Invert = (CC == ISD::SETNE) ^
7026      cast<ConstantSDNode>(Op1)->isNullValue();
7027    if (Invert)
7028      CCode = X86::GetOppositeBranchCondition(CCode);
7029    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7030                       DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7031  }
7032
7033  bool isFP = Op1.getValueType().isFloatingPoint();
7034  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7035  if (X86CC == X86::COND_INVALID)
7036    return SDValue();
7037
7038  SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
7039
7040  // Use sbb x, x to materialize carry bit into a GPR.
7041  if (X86CC == X86::COND_B)
7042    return DAG.getNode(ISD::AND, dl, MVT::i8,
7043                       DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
7044                                   DAG.getConstant(X86CC, MVT::i8), Cond),
7045                       DAG.getConstant(1, MVT::i8));
7046
7047  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7048                     DAG.getConstant(X86CC, MVT::i8), Cond);
7049}
7050
7051SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7052  SDValue Cond;
7053  SDValue Op0 = Op.getOperand(0);
7054  SDValue Op1 = Op.getOperand(1);
7055  SDValue CC = Op.getOperand(2);
7056  EVT VT = Op.getValueType();
7057  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7058  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7059  DebugLoc dl = Op.getDebugLoc();
7060
7061  if (isFP) {
7062    unsigned SSECC = 8;
7063    EVT VT0 = Op0.getValueType();
7064    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7065    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7066    bool Swap = false;
7067
7068    switch (SetCCOpcode) {
7069    default: break;
7070    case ISD::SETOEQ:
7071    case ISD::SETEQ:  SSECC = 0; break;
7072    case ISD::SETOGT:
7073    case ISD::SETGT: Swap = true; // Fallthrough
7074    case ISD::SETLT:
7075    case ISD::SETOLT: SSECC = 1; break;
7076    case ISD::SETOGE:
7077    case ISD::SETGE: Swap = true; // Fallthrough
7078    case ISD::SETLE:
7079    case ISD::SETOLE: SSECC = 2; break;
7080    case ISD::SETUO:  SSECC = 3; break;
7081    case ISD::SETUNE:
7082    case ISD::SETNE:  SSECC = 4; break;
7083    case ISD::SETULE: Swap = true;
7084    case ISD::SETUGE: SSECC = 5; break;
7085    case ISD::SETULT: Swap = true;
7086    case ISD::SETUGT: SSECC = 6; break;
7087    case ISD::SETO:   SSECC = 7; break;
7088    }
7089    if (Swap)
7090      std::swap(Op0, Op1);
7091
7092    // In the two special cases we can't handle, emit two comparisons.
7093    if (SSECC == 8) {
7094      if (SetCCOpcode == ISD::SETUEQ) {
7095        SDValue UNORD, EQ;
7096        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7097        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7098        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7099      }
7100      else if (SetCCOpcode == ISD::SETONE) {
7101        SDValue ORD, NEQ;
7102        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7103        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7104        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7105      }
7106      llvm_unreachable("Illegal FP comparison");
7107    }
7108    // Handle all other FP comparisons here.
7109    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7110  }
7111
7112  // We are handling one of the integer comparisons here.  Since SSE only has
7113  // GT and EQ comparisons for integer, swapping operands and multiple
7114  // operations may be required for some comparisons.
7115  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7116  bool Swap = false, Invert = false, FlipSigns = false;
7117
7118  switch (VT.getSimpleVT().SimpleTy) {
7119  default: break;
7120  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7121  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7122  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7123  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7124  }
7125
7126  switch (SetCCOpcode) {
7127  default: break;
7128  case ISD::SETNE:  Invert = true;
7129  case ISD::SETEQ:  Opc = EQOpc; break;
7130  case ISD::SETLT:  Swap = true;
7131  case ISD::SETGT:  Opc = GTOpc; break;
7132  case ISD::SETGE:  Swap = true;
7133  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7134  case ISD::SETULT: Swap = true;
7135  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7136  case ISD::SETUGE: Swap = true;
7137  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7138  }
7139  if (Swap)
7140    std::swap(Op0, Op1);
7141
7142  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7143  // bits of the inputs before performing those operations.
7144  if (FlipSigns) {
7145    EVT EltVT = VT.getVectorElementType();
7146    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7147                                      EltVT);
7148    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7149    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7150                                    SignBits.size());
7151    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7152    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7153  }
7154
7155  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7156
7157  // If the logical-not of the result is required, perform that now.
7158  if (Invert)
7159    Result = DAG.getNOT(dl, Result, VT);
7160
7161  return Result;
7162}
7163
7164// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7165static bool isX86LogicalCmp(SDValue Op) {
7166  unsigned Opc = Op.getNode()->getOpcode();
7167  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7168    return true;
7169  if (Op.getResNo() == 1 &&
7170      (Opc == X86ISD::ADD ||
7171       Opc == X86ISD::SUB ||
7172       Opc == X86ISD::SMUL ||
7173       Opc == X86ISD::UMUL ||
7174       Opc == X86ISD::INC ||
7175       Opc == X86ISD::DEC ||
7176       Opc == X86ISD::OR ||
7177       Opc == X86ISD::XOR ||
7178       Opc == X86ISD::AND))
7179    return true;
7180
7181  return false;
7182}
7183
7184SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7185  bool addTest = true;
7186  SDValue Cond  = Op.getOperand(0);
7187  DebugLoc dl = Op.getDebugLoc();
7188  SDValue CC;
7189
7190  if (Cond.getOpcode() == ISD::SETCC) {
7191    SDValue NewCond = LowerSETCC(Cond, DAG);
7192    if (NewCond.getNode())
7193      Cond = NewCond;
7194  }
7195
7196  // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
7197  SDValue Op1 = Op.getOperand(1);
7198  SDValue Op2 = Op.getOperand(2);
7199  if (Cond.getOpcode() == X86ISD::SETCC &&
7200      cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
7201    SDValue Cmp = Cond.getOperand(1);
7202    if (Cmp.getOpcode() == X86ISD::CMP) {
7203      ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
7204      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7205      ConstantSDNode *RHSC =
7206        dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
7207      if (N1C && N1C->isAllOnesValue() &&
7208          N2C && N2C->isNullValue() &&
7209          RHSC && RHSC->isNullValue()) {
7210        SDValue CmpOp0 = Cmp.getOperand(0);
7211        Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7212                          CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7213        return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
7214                           DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7215      }
7216    }
7217  }
7218
7219  // Look pass (and (setcc_carry (cmp ...)), 1).
7220  if (Cond.getOpcode() == ISD::AND &&
7221      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7222    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7223    if (C && C->getAPIntValue() == 1)
7224      Cond = Cond.getOperand(0);
7225  }
7226
7227  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7228  // setting operand in place of the X86ISD::SETCC.
7229  if (Cond.getOpcode() == X86ISD::SETCC ||
7230      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7231    CC = Cond.getOperand(0);
7232
7233    SDValue Cmp = Cond.getOperand(1);
7234    unsigned Opc = Cmp.getOpcode();
7235    EVT VT = Op.getValueType();
7236
7237    bool IllegalFPCMov = false;
7238    if (VT.isFloatingPoint() && !VT.isVector() &&
7239        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7240      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7241
7242    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7243        Opc == X86ISD::BT) { // FIXME
7244      Cond = Cmp;
7245      addTest = false;
7246    }
7247  }
7248
7249  if (addTest) {
7250    // Look pass the truncate.
7251    if (Cond.getOpcode() == ISD::TRUNCATE)
7252      Cond = Cond.getOperand(0);
7253
7254    // We know the result of AND is compared against zero. Try to match
7255    // it to BT.
7256    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7257      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7258      if (NewSetCC.getNode()) {
7259        CC = NewSetCC.getOperand(0);
7260        Cond = NewSetCC.getOperand(1);
7261        addTest = false;
7262      }
7263    }
7264  }
7265
7266  if (addTest) {
7267    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7268    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7269  }
7270
7271  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7272  // condition is true.
7273  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
7274  SDValue Ops[] = { Op2, Op1, CC, Cond };
7275  return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
7276}
7277
7278// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7279// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7280// from the AND / OR.
7281static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7282  Opc = Op.getOpcode();
7283  if (Opc != ISD::OR && Opc != ISD::AND)
7284    return false;
7285  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7286          Op.getOperand(0).hasOneUse() &&
7287          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7288          Op.getOperand(1).hasOneUse());
7289}
7290
7291// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7292// 1 and that the SETCC node has a single use.
7293static bool isXor1OfSetCC(SDValue Op) {
7294  if (Op.getOpcode() != ISD::XOR)
7295    return false;
7296  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7297  if (N1C && N1C->getAPIntValue() == 1) {
7298    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7299      Op.getOperand(0).hasOneUse();
7300  }
7301  return false;
7302}
7303
7304SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7305  bool addTest = true;
7306  SDValue Chain = Op.getOperand(0);
7307  SDValue Cond  = Op.getOperand(1);
7308  SDValue Dest  = Op.getOperand(2);
7309  DebugLoc dl = Op.getDebugLoc();
7310  SDValue CC;
7311
7312  if (Cond.getOpcode() == ISD::SETCC) {
7313    SDValue NewCond = LowerSETCC(Cond, DAG);
7314    if (NewCond.getNode())
7315      Cond = NewCond;
7316  }
7317#if 0
7318  // FIXME: LowerXALUO doesn't handle these!!
7319  else if (Cond.getOpcode() == X86ISD::ADD  ||
7320           Cond.getOpcode() == X86ISD::SUB  ||
7321           Cond.getOpcode() == X86ISD::SMUL ||
7322           Cond.getOpcode() == X86ISD::UMUL)
7323    Cond = LowerXALUO(Cond, DAG);
7324#endif
7325
7326  // Look pass (and (setcc_carry (cmp ...)), 1).
7327  if (Cond.getOpcode() == ISD::AND &&
7328      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7329    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7330    if (C && C->getAPIntValue() == 1)
7331      Cond = Cond.getOperand(0);
7332  }
7333
7334  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7335  // setting operand in place of the X86ISD::SETCC.
7336  if (Cond.getOpcode() == X86ISD::SETCC ||
7337      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7338    CC = Cond.getOperand(0);
7339
7340    SDValue Cmp = Cond.getOperand(1);
7341    unsigned Opc = Cmp.getOpcode();
7342    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7343    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7344      Cond = Cmp;
7345      addTest = false;
7346    } else {
7347      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7348      default: break;
7349      case X86::COND_O:
7350      case X86::COND_B:
7351        // These can only come from an arithmetic instruction with overflow,
7352        // e.g. SADDO, UADDO.
7353        Cond = Cond.getNode()->getOperand(1);
7354        addTest = false;
7355        break;
7356      }
7357    }
7358  } else {
7359    unsigned CondOpc;
7360    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7361      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7362      if (CondOpc == ISD::OR) {
7363        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7364        // two branches instead of an explicit OR instruction with a
7365        // separate test.
7366        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7367            isX86LogicalCmp(Cmp)) {
7368          CC = Cond.getOperand(0).getOperand(0);
7369          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7370                              Chain, Dest, CC, Cmp);
7371          CC = Cond.getOperand(1).getOperand(0);
7372          Cond = Cmp;
7373          addTest = false;
7374        }
7375      } else { // ISD::AND
7376        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7377        // two branches instead of an explicit AND instruction with a
7378        // separate test. However, we only do this if this block doesn't
7379        // have a fall-through edge, because this requires an explicit
7380        // jmp when the condition is false.
7381        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7382            isX86LogicalCmp(Cmp) &&
7383            Op.getNode()->hasOneUse()) {
7384          X86::CondCode CCode =
7385            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7386          CCode = X86::GetOppositeBranchCondition(CCode);
7387          CC = DAG.getConstant(CCode, MVT::i8);
7388          SDNode *User = *Op.getNode()->use_begin();
7389          // Look for an unconditional branch following this conditional branch.
7390          // We need this because we need to reverse the successors in order
7391          // to implement FCMP_OEQ.
7392          if (User->getOpcode() == ISD::BR) {
7393            SDValue FalseBB = User->getOperand(1);
7394            SDNode *NewBR =
7395              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7396            assert(NewBR == User);
7397            (void)NewBR;
7398            Dest = FalseBB;
7399
7400            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7401                                Chain, Dest, CC, Cmp);
7402            X86::CondCode CCode =
7403              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7404            CCode = X86::GetOppositeBranchCondition(CCode);
7405            CC = DAG.getConstant(CCode, MVT::i8);
7406            Cond = Cmp;
7407            addTest = false;
7408          }
7409        }
7410      }
7411    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7412      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7413      // It should be transformed during dag combiner except when the condition
7414      // is set by a arithmetics with overflow node.
7415      X86::CondCode CCode =
7416        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7417      CCode = X86::GetOppositeBranchCondition(CCode);
7418      CC = DAG.getConstant(CCode, MVT::i8);
7419      Cond = Cond.getOperand(0).getOperand(1);
7420      addTest = false;
7421    }
7422  }
7423
7424  if (addTest) {
7425    // Look pass the truncate.
7426    if (Cond.getOpcode() == ISD::TRUNCATE)
7427      Cond = Cond.getOperand(0);
7428
7429    // We know the result of AND is compared against zero. Try to match
7430    // it to BT.
7431    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7432      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7433      if (NewSetCC.getNode()) {
7434        CC = NewSetCC.getOperand(0);
7435        Cond = NewSetCC.getOperand(1);
7436        addTest = false;
7437      }
7438    }
7439  }
7440
7441  if (addTest) {
7442    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7443    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7444  }
7445  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7446                     Chain, Dest, CC, Cond);
7447}
7448
7449
7450// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7451// Calls to _alloca is needed to probe the stack when allocating more than 4k
7452// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7453// that the guard pages used by the OS virtual memory manager are allocated in
7454// correct sequence.
7455SDValue
7456X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7457                                           SelectionDAG &DAG) const {
7458  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7459         "This should be used only on Windows targets");
7460  DebugLoc dl = Op.getDebugLoc();
7461
7462  // Get the inputs.
7463  SDValue Chain = Op.getOperand(0);
7464  SDValue Size  = Op.getOperand(1);
7465  // FIXME: Ensure alignment here
7466
7467  SDValue Flag;
7468
7469  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7470
7471  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7472  Flag = Chain.getValue(1);
7473
7474  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
7475
7476  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7477  Flag = Chain.getValue(1);
7478
7479  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7480
7481  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7482  return DAG.getMergeValues(Ops1, 2, dl);
7483}
7484
7485SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7486  MachineFunction &MF = DAG.getMachineFunction();
7487  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7488
7489  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7490  DebugLoc DL = Op.getDebugLoc();
7491
7492  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7493    // vastart just stores the address of the VarArgsFrameIndex slot into the
7494    // memory location argument.
7495    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7496                                   getPointerTy());
7497    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7498                        MachinePointerInfo(SV), false, false, 0);
7499  }
7500
7501  // __va_list_tag:
7502  //   gp_offset         (0 - 6 * 8)
7503  //   fp_offset         (48 - 48 + 8 * 16)
7504  //   overflow_arg_area (point to parameters coming in memory).
7505  //   reg_save_area
7506  SmallVector<SDValue, 8> MemOps;
7507  SDValue FIN = Op.getOperand(1);
7508  // Store gp_offset
7509  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7510                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7511                                               MVT::i32),
7512                               FIN, MachinePointerInfo(SV), false, false, 0);
7513  MemOps.push_back(Store);
7514
7515  // Store fp_offset
7516  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7517                    FIN, DAG.getIntPtrConstant(4));
7518  Store = DAG.getStore(Op.getOperand(0), DL,
7519                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7520                                       MVT::i32),
7521                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7522  MemOps.push_back(Store);
7523
7524  // Store ptr to overflow_arg_area
7525  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7526                    FIN, DAG.getIntPtrConstant(4));
7527  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7528                                    getPointerTy());
7529  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7530                       MachinePointerInfo(SV, 8),
7531                       false, false, 0);
7532  MemOps.push_back(Store);
7533
7534  // Store ptr to reg_save_area.
7535  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7536                    FIN, DAG.getIntPtrConstant(8));
7537  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7538                                    getPointerTy());
7539  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7540                       MachinePointerInfo(SV, 16), false, false, 0);
7541  MemOps.push_back(Store);
7542  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
7543                     &MemOps[0], MemOps.size());
7544}
7545
7546SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
7547  assert(Subtarget->is64Bit() &&
7548         "LowerVAARG only handles 64-bit va_arg!");
7549  assert((Subtarget->isTargetLinux() ||
7550          Subtarget->isTargetDarwin()) &&
7551          "Unhandled target in LowerVAARG");
7552  assert(Op.getNode()->getNumOperands() == 4);
7553  SDValue Chain = Op.getOperand(0);
7554  SDValue SrcPtr = Op.getOperand(1);
7555  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7556  unsigned Align = Op.getConstantOperandVal(3);
7557  DebugLoc dl = Op.getDebugLoc();
7558
7559  EVT ArgVT = Op.getNode()->getValueType(0);
7560  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
7561  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
7562  uint8_t ArgMode;
7563
7564  // Decide which area this value should be read from.
7565  // TODO: Implement the AMD64 ABI in its entirety. This simple
7566  // selection mechanism works only for the basic types.
7567  if (ArgVT == MVT::f80) {
7568    llvm_unreachable("va_arg for f80 not yet implemented");
7569  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
7570    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
7571  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
7572    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
7573  } else {
7574    llvm_unreachable("Unhandled argument type in LowerVAARG");
7575  }
7576
7577  if (ArgMode == 2) {
7578    // Sanity Check: Make sure using fp_offset makes sense.
7579    assert(!UseSoftFloat &&
7580           !(DAG.getMachineFunction()
7581                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
7582           Subtarget->hasSSE1());
7583  }
7584
7585  // Insert VAARG_64 node into the DAG
7586  // VAARG_64 returns two values: Variable Argument Address, Chain
7587  SmallVector<SDValue, 11> InstOps;
7588  InstOps.push_back(Chain);
7589  InstOps.push_back(SrcPtr);
7590  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
7591  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
7592  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
7593  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
7594  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
7595                                          VTs, &InstOps[0], InstOps.size(),
7596                                          MVT::i64,
7597                                          MachinePointerInfo(SV),
7598                                          /*Align=*/0,
7599                                          /*Volatile=*/false,
7600                                          /*ReadMem=*/true,
7601                                          /*WriteMem=*/true);
7602  Chain = VAARG.getValue(1);
7603
7604  // Load the next argument and return it
7605  return DAG.getLoad(ArgVT, dl,
7606                     Chain,
7607                     VAARG,
7608                     MachinePointerInfo(),
7609                     false, false, 0);
7610}
7611
7612SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
7613  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
7614  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
7615  SDValue Chain = Op.getOperand(0);
7616  SDValue DstPtr = Op.getOperand(1);
7617  SDValue SrcPtr = Op.getOperand(2);
7618  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
7619  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7620  DebugLoc DL = Op.getDebugLoc();
7621
7622  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
7623                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
7624                       false,
7625                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
7626}
7627
7628SDValue
7629X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
7630  DebugLoc dl = Op.getDebugLoc();
7631  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7632  switch (IntNo) {
7633  default: return SDValue();    // Don't custom lower most intrinsics.
7634  // Comparison intrinsics.
7635  case Intrinsic::x86_sse_comieq_ss:
7636  case Intrinsic::x86_sse_comilt_ss:
7637  case Intrinsic::x86_sse_comile_ss:
7638  case Intrinsic::x86_sse_comigt_ss:
7639  case Intrinsic::x86_sse_comige_ss:
7640  case Intrinsic::x86_sse_comineq_ss:
7641  case Intrinsic::x86_sse_ucomieq_ss:
7642  case Intrinsic::x86_sse_ucomilt_ss:
7643  case Intrinsic::x86_sse_ucomile_ss:
7644  case Intrinsic::x86_sse_ucomigt_ss:
7645  case Intrinsic::x86_sse_ucomige_ss:
7646  case Intrinsic::x86_sse_ucomineq_ss:
7647  case Intrinsic::x86_sse2_comieq_sd:
7648  case Intrinsic::x86_sse2_comilt_sd:
7649  case Intrinsic::x86_sse2_comile_sd:
7650  case Intrinsic::x86_sse2_comigt_sd:
7651  case Intrinsic::x86_sse2_comige_sd:
7652  case Intrinsic::x86_sse2_comineq_sd:
7653  case Intrinsic::x86_sse2_ucomieq_sd:
7654  case Intrinsic::x86_sse2_ucomilt_sd:
7655  case Intrinsic::x86_sse2_ucomile_sd:
7656  case Intrinsic::x86_sse2_ucomigt_sd:
7657  case Intrinsic::x86_sse2_ucomige_sd:
7658  case Intrinsic::x86_sse2_ucomineq_sd: {
7659    unsigned Opc = 0;
7660    ISD::CondCode CC = ISD::SETCC_INVALID;
7661    switch (IntNo) {
7662    default: break;
7663    case Intrinsic::x86_sse_comieq_ss:
7664    case Intrinsic::x86_sse2_comieq_sd:
7665      Opc = X86ISD::COMI;
7666      CC = ISD::SETEQ;
7667      break;
7668    case Intrinsic::x86_sse_comilt_ss:
7669    case Intrinsic::x86_sse2_comilt_sd:
7670      Opc = X86ISD::COMI;
7671      CC = ISD::SETLT;
7672      break;
7673    case Intrinsic::x86_sse_comile_ss:
7674    case Intrinsic::x86_sse2_comile_sd:
7675      Opc = X86ISD::COMI;
7676      CC = ISD::SETLE;
7677      break;
7678    case Intrinsic::x86_sse_comigt_ss:
7679    case Intrinsic::x86_sse2_comigt_sd:
7680      Opc = X86ISD::COMI;
7681      CC = ISD::SETGT;
7682      break;
7683    case Intrinsic::x86_sse_comige_ss:
7684    case Intrinsic::x86_sse2_comige_sd:
7685      Opc = X86ISD::COMI;
7686      CC = ISD::SETGE;
7687      break;
7688    case Intrinsic::x86_sse_comineq_ss:
7689    case Intrinsic::x86_sse2_comineq_sd:
7690      Opc = X86ISD::COMI;
7691      CC = ISD::SETNE;
7692      break;
7693    case Intrinsic::x86_sse_ucomieq_ss:
7694    case Intrinsic::x86_sse2_ucomieq_sd:
7695      Opc = X86ISD::UCOMI;
7696      CC = ISD::SETEQ;
7697      break;
7698    case Intrinsic::x86_sse_ucomilt_ss:
7699    case Intrinsic::x86_sse2_ucomilt_sd:
7700      Opc = X86ISD::UCOMI;
7701      CC = ISD::SETLT;
7702      break;
7703    case Intrinsic::x86_sse_ucomile_ss:
7704    case Intrinsic::x86_sse2_ucomile_sd:
7705      Opc = X86ISD::UCOMI;
7706      CC = ISD::SETLE;
7707      break;
7708    case Intrinsic::x86_sse_ucomigt_ss:
7709    case Intrinsic::x86_sse2_ucomigt_sd:
7710      Opc = X86ISD::UCOMI;
7711      CC = ISD::SETGT;
7712      break;
7713    case Intrinsic::x86_sse_ucomige_ss:
7714    case Intrinsic::x86_sse2_ucomige_sd:
7715      Opc = X86ISD::UCOMI;
7716      CC = ISD::SETGE;
7717      break;
7718    case Intrinsic::x86_sse_ucomineq_ss:
7719    case Intrinsic::x86_sse2_ucomineq_sd:
7720      Opc = X86ISD::UCOMI;
7721      CC = ISD::SETNE;
7722      break;
7723    }
7724
7725    SDValue LHS = Op.getOperand(1);
7726    SDValue RHS = Op.getOperand(2);
7727    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
7728    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
7729    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
7730    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7731                                DAG.getConstant(X86CC, MVT::i8), Cond);
7732    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7733  }
7734  // ptest and testp intrinsics. The intrinsic these come from are designed to
7735  // return an integer value, not just an instruction so lower it to the ptest
7736  // or testp pattern and a setcc for the result.
7737  case Intrinsic::x86_sse41_ptestz:
7738  case Intrinsic::x86_sse41_ptestc:
7739  case Intrinsic::x86_sse41_ptestnzc:
7740  case Intrinsic::x86_avx_ptestz_256:
7741  case Intrinsic::x86_avx_ptestc_256:
7742  case Intrinsic::x86_avx_ptestnzc_256:
7743  case Intrinsic::x86_avx_vtestz_ps:
7744  case Intrinsic::x86_avx_vtestc_ps:
7745  case Intrinsic::x86_avx_vtestnzc_ps:
7746  case Intrinsic::x86_avx_vtestz_pd:
7747  case Intrinsic::x86_avx_vtestc_pd:
7748  case Intrinsic::x86_avx_vtestnzc_pd:
7749  case Intrinsic::x86_avx_vtestz_ps_256:
7750  case Intrinsic::x86_avx_vtestc_ps_256:
7751  case Intrinsic::x86_avx_vtestnzc_ps_256:
7752  case Intrinsic::x86_avx_vtestz_pd_256:
7753  case Intrinsic::x86_avx_vtestc_pd_256:
7754  case Intrinsic::x86_avx_vtestnzc_pd_256: {
7755    bool IsTestPacked = false;
7756    unsigned X86CC = 0;
7757    switch (IntNo) {
7758    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
7759    case Intrinsic::x86_avx_vtestz_ps:
7760    case Intrinsic::x86_avx_vtestz_pd:
7761    case Intrinsic::x86_avx_vtestz_ps_256:
7762    case Intrinsic::x86_avx_vtestz_pd_256:
7763      IsTestPacked = true; // Fallthrough
7764    case Intrinsic::x86_sse41_ptestz:
7765    case Intrinsic::x86_avx_ptestz_256:
7766      // ZF = 1
7767      X86CC = X86::COND_E;
7768      break;
7769    case Intrinsic::x86_avx_vtestc_ps:
7770    case Intrinsic::x86_avx_vtestc_pd:
7771    case Intrinsic::x86_avx_vtestc_ps_256:
7772    case Intrinsic::x86_avx_vtestc_pd_256:
7773      IsTestPacked = true; // Fallthrough
7774    case Intrinsic::x86_sse41_ptestc:
7775    case Intrinsic::x86_avx_ptestc_256:
7776      // CF = 1
7777      X86CC = X86::COND_B;
7778      break;
7779    case Intrinsic::x86_avx_vtestnzc_ps:
7780    case Intrinsic::x86_avx_vtestnzc_pd:
7781    case Intrinsic::x86_avx_vtestnzc_ps_256:
7782    case Intrinsic::x86_avx_vtestnzc_pd_256:
7783      IsTestPacked = true; // Fallthrough
7784    case Intrinsic::x86_sse41_ptestnzc:
7785    case Intrinsic::x86_avx_ptestnzc_256:
7786      // ZF and CF = 0
7787      X86CC = X86::COND_A;
7788      break;
7789    }
7790
7791    SDValue LHS = Op.getOperand(1);
7792    SDValue RHS = Op.getOperand(2);
7793    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
7794    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
7795    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
7796    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
7797    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
7798  }
7799
7800  // Fix vector shift instructions where the last operand is a non-immediate
7801  // i32 value.
7802  case Intrinsic::x86_sse2_pslli_w:
7803  case Intrinsic::x86_sse2_pslli_d:
7804  case Intrinsic::x86_sse2_pslli_q:
7805  case Intrinsic::x86_sse2_psrli_w:
7806  case Intrinsic::x86_sse2_psrli_d:
7807  case Intrinsic::x86_sse2_psrli_q:
7808  case Intrinsic::x86_sse2_psrai_w:
7809  case Intrinsic::x86_sse2_psrai_d:
7810  case Intrinsic::x86_mmx_pslli_w:
7811  case Intrinsic::x86_mmx_pslli_d:
7812  case Intrinsic::x86_mmx_pslli_q:
7813  case Intrinsic::x86_mmx_psrli_w:
7814  case Intrinsic::x86_mmx_psrli_d:
7815  case Intrinsic::x86_mmx_psrli_q:
7816  case Intrinsic::x86_mmx_psrai_w:
7817  case Intrinsic::x86_mmx_psrai_d: {
7818    SDValue ShAmt = Op.getOperand(2);
7819    if (isa<ConstantSDNode>(ShAmt))
7820      return SDValue();
7821
7822    unsigned NewIntNo = 0;
7823    EVT ShAmtVT = MVT::v4i32;
7824    switch (IntNo) {
7825    case Intrinsic::x86_sse2_pslli_w:
7826      NewIntNo = Intrinsic::x86_sse2_psll_w;
7827      break;
7828    case Intrinsic::x86_sse2_pslli_d:
7829      NewIntNo = Intrinsic::x86_sse2_psll_d;
7830      break;
7831    case Intrinsic::x86_sse2_pslli_q:
7832      NewIntNo = Intrinsic::x86_sse2_psll_q;
7833      break;
7834    case Intrinsic::x86_sse2_psrli_w:
7835      NewIntNo = Intrinsic::x86_sse2_psrl_w;
7836      break;
7837    case Intrinsic::x86_sse2_psrli_d:
7838      NewIntNo = Intrinsic::x86_sse2_psrl_d;
7839      break;
7840    case Intrinsic::x86_sse2_psrli_q:
7841      NewIntNo = Intrinsic::x86_sse2_psrl_q;
7842      break;
7843    case Intrinsic::x86_sse2_psrai_w:
7844      NewIntNo = Intrinsic::x86_sse2_psra_w;
7845      break;
7846    case Intrinsic::x86_sse2_psrai_d:
7847      NewIntNo = Intrinsic::x86_sse2_psra_d;
7848      break;
7849    default: {
7850      ShAmtVT = MVT::v2i32;
7851      switch (IntNo) {
7852      case Intrinsic::x86_mmx_pslli_w:
7853        NewIntNo = Intrinsic::x86_mmx_psll_w;
7854        break;
7855      case Intrinsic::x86_mmx_pslli_d:
7856        NewIntNo = Intrinsic::x86_mmx_psll_d;
7857        break;
7858      case Intrinsic::x86_mmx_pslli_q:
7859        NewIntNo = Intrinsic::x86_mmx_psll_q;
7860        break;
7861      case Intrinsic::x86_mmx_psrli_w:
7862        NewIntNo = Intrinsic::x86_mmx_psrl_w;
7863        break;
7864      case Intrinsic::x86_mmx_psrli_d:
7865        NewIntNo = Intrinsic::x86_mmx_psrl_d;
7866        break;
7867      case Intrinsic::x86_mmx_psrli_q:
7868        NewIntNo = Intrinsic::x86_mmx_psrl_q;
7869        break;
7870      case Intrinsic::x86_mmx_psrai_w:
7871        NewIntNo = Intrinsic::x86_mmx_psra_w;
7872        break;
7873      case Intrinsic::x86_mmx_psrai_d:
7874        NewIntNo = Intrinsic::x86_mmx_psra_d;
7875        break;
7876      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7877      }
7878      break;
7879    }
7880    }
7881
7882    // The vector shift intrinsics with scalars uses 32b shift amounts but
7883    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
7884    // to be zero.
7885    SDValue ShOps[4];
7886    ShOps[0] = ShAmt;
7887    ShOps[1] = DAG.getConstant(0, MVT::i32);
7888    if (ShAmtVT == MVT::v4i32) {
7889      ShOps[2] = DAG.getUNDEF(MVT::i32);
7890      ShOps[3] = DAG.getUNDEF(MVT::i32);
7891      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
7892    } else {
7893      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
7894// FIXME this must be lowered to get rid of the invalid type.
7895    }
7896
7897    EVT VT = Op.getValueType();
7898    ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
7899    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
7900                       DAG.getConstant(NewIntNo, MVT::i32),
7901                       Op.getOperand(1), ShAmt);
7902  }
7903  }
7904}
7905
7906SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
7907                                           SelectionDAG &DAG) const {
7908  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7909  MFI->setReturnAddressIsTaken(true);
7910
7911  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7912  DebugLoc dl = Op.getDebugLoc();
7913
7914  if (Depth > 0) {
7915    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7916    SDValue Offset =
7917      DAG.getConstant(TD->getPointerSize(),
7918                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
7919    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7920                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
7921                                   FrameAddr, Offset),
7922                       MachinePointerInfo(), false, false, 0);
7923  }
7924
7925  // Just load the return address.
7926  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
7927  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7928                     RetAddrFI, MachinePointerInfo(), false, false, 0);
7929}
7930
7931SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
7932  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7933  MFI->setFrameAddressIsTaken(true);
7934
7935  EVT VT = Op.getValueType();
7936  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
7937  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7938  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
7939  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
7940  while (Depth--)
7941    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
7942                            MachinePointerInfo(),
7943                            false, false, 0);
7944  return FrameAddr;
7945}
7946
7947SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
7948                                                     SelectionDAG &DAG) const {
7949  return DAG.getIntPtrConstant(2*TD->getPointerSize());
7950}
7951
7952SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
7953  MachineFunction &MF = DAG.getMachineFunction();
7954  SDValue Chain     = Op.getOperand(0);
7955  SDValue Offset    = Op.getOperand(1);
7956  SDValue Handler   = Op.getOperand(2);
7957  DebugLoc dl       = Op.getDebugLoc();
7958
7959  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
7960                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
7961                                     getPointerTy());
7962  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
7963
7964  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
7965                                  DAG.getIntPtrConstant(TD->getPointerSize()));
7966  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
7967  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
7968                       false, false, 0);
7969  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
7970  MF.getRegInfo().addLiveOut(StoreAddrReg);
7971
7972  return DAG.getNode(X86ISD::EH_RETURN, dl,
7973                     MVT::Other,
7974                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
7975}
7976
7977SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
7978                                             SelectionDAG &DAG) const {
7979  SDValue Root = Op.getOperand(0);
7980  SDValue Trmp = Op.getOperand(1); // trampoline
7981  SDValue FPtr = Op.getOperand(2); // nested function
7982  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
7983  DebugLoc dl  = Op.getDebugLoc();
7984
7985  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
7986
7987  if (Subtarget->is64Bit()) {
7988    SDValue OutChains[6];
7989
7990    // Large code-model.
7991    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
7992    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
7993
7994    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
7995    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
7996
7997    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
7998
7999    // Load the pointer to the nested function into R11.
8000    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8001    SDValue Addr = Trmp;
8002    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8003                                Addr, MachinePointerInfo(TrmpAddr),
8004                                false, false, 0);
8005
8006    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8007                       DAG.getConstant(2, MVT::i64));
8008    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8009                                MachinePointerInfo(TrmpAddr, 2),
8010                                false, false, 2);
8011
8012    // Load the 'nest' parameter value into R10.
8013    // R10 is specified in X86CallingConv.td
8014    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8015    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8016                       DAG.getConstant(10, MVT::i64));
8017    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8018                                Addr, MachinePointerInfo(TrmpAddr, 10),
8019                                false, false, 0);
8020
8021    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8022                       DAG.getConstant(12, MVT::i64));
8023    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8024                                MachinePointerInfo(TrmpAddr, 12),
8025                                false, false, 2);
8026
8027    // Jump to the nested function.
8028    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8029    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8030                       DAG.getConstant(20, MVT::i64));
8031    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8032                                Addr, MachinePointerInfo(TrmpAddr, 20),
8033                                false, false, 0);
8034
8035    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8036    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8037                       DAG.getConstant(22, MVT::i64));
8038    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8039                                MachinePointerInfo(TrmpAddr, 22),
8040                                false, false, 0);
8041
8042    SDValue Ops[] =
8043      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8044    return DAG.getMergeValues(Ops, 2, dl);
8045  } else {
8046    const Function *Func =
8047      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8048    CallingConv::ID CC = Func->getCallingConv();
8049    unsigned NestReg;
8050
8051    switch (CC) {
8052    default:
8053      llvm_unreachable("Unsupported calling convention");
8054    case CallingConv::C:
8055    case CallingConv::X86_StdCall: {
8056      // Pass 'nest' parameter in ECX.
8057      // Must be kept in sync with X86CallingConv.td
8058      NestReg = X86::ECX;
8059
8060      // Check that ECX wasn't needed by an 'inreg' parameter.
8061      const FunctionType *FTy = Func->getFunctionType();
8062      const AttrListPtr &Attrs = Func->getAttributes();
8063
8064      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8065        unsigned InRegCount = 0;
8066        unsigned Idx = 1;
8067
8068        for (FunctionType::param_iterator I = FTy->param_begin(),
8069             E = FTy->param_end(); I != E; ++I, ++Idx)
8070          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8071            // FIXME: should only count parameters that are lowered to integers.
8072            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8073
8074        if (InRegCount > 2) {
8075          report_fatal_error("Nest register in use - reduce number of inreg"
8076                             " parameters!");
8077        }
8078      }
8079      break;
8080    }
8081    case CallingConv::X86_FastCall:
8082    case CallingConv::X86_ThisCall:
8083    case CallingConv::Fast:
8084      // Pass 'nest' parameter in EAX.
8085      // Must be kept in sync with X86CallingConv.td
8086      NestReg = X86::EAX;
8087      break;
8088    }
8089
8090    SDValue OutChains[4];
8091    SDValue Addr, Disp;
8092
8093    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8094                       DAG.getConstant(10, MVT::i32));
8095    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8096
8097    // This is storing the opcode for MOV32ri.
8098    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8099    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8100    OutChains[0] = DAG.getStore(Root, dl,
8101                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8102                                Trmp, MachinePointerInfo(TrmpAddr),
8103                                false, false, 0);
8104
8105    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8106                       DAG.getConstant(1, MVT::i32));
8107    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8108                                MachinePointerInfo(TrmpAddr, 1),
8109                                false, false, 1);
8110
8111    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8112    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8113                       DAG.getConstant(5, MVT::i32));
8114    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8115                                MachinePointerInfo(TrmpAddr, 5),
8116                                false, false, 1);
8117
8118    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8119                       DAG.getConstant(6, MVT::i32));
8120    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8121                                MachinePointerInfo(TrmpAddr, 6),
8122                                false, false, 1);
8123
8124    SDValue Ops[] =
8125      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8126    return DAG.getMergeValues(Ops, 2, dl);
8127  }
8128}
8129
8130SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8131                                            SelectionDAG &DAG) const {
8132  /*
8133   The rounding mode is in bits 11:10 of FPSR, and has the following
8134   settings:
8135     00 Round to nearest
8136     01 Round to -inf
8137     10 Round to +inf
8138     11 Round to 0
8139
8140  FLT_ROUNDS, on the other hand, expects the following:
8141    -1 Undefined
8142     0 Round to 0
8143     1 Round to nearest
8144     2 Round to +inf
8145     3 Round to -inf
8146
8147  To perform the conversion, we do:
8148    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8149  */
8150
8151  MachineFunction &MF = DAG.getMachineFunction();
8152  const TargetMachine &TM = MF.getTarget();
8153  const TargetFrameInfo &TFI = *TM.getFrameInfo();
8154  unsigned StackAlignment = TFI.getStackAlignment();
8155  EVT VT = Op.getValueType();
8156  DebugLoc DL = Op.getDebugLoc();
8157
8158  // Save FP Control Word to stack slot
8159  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8160  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8161
8162
8163  MachineMemOperand *MMO =
8164   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8165                           MachineMemOperand::MOStore, 2, 2);
8166
8167  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8168  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8169                                          DAG.getVTList(MVT::Other),
8170                                          Ops, 2, MVT::i16, MMO);
8171
8172  // Load FP Control Word from stack slot
8173  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8174                            MachinePointerInfo(), false, false, 0);
8175
8176  // Transform as necessary
8177  SDValue CWD1 =
8178    DAG.getNode(ISD::SRL, DL, MVT::i16,
8179                DAG.getNode(ISD::AND, DL, MVT::i16,
8180                            CWD, DAG.getConstant(0x800, MVT::i16)),
8181                DAG.getConstant(11, MVT::i8));
8182  SDValue CWD2 =
8183    DAG.getNode(ISD::SRL, DL, MVT::i16,
8184                DAG.getNode(ISD::AND, DL, MVT::i16,
8185                            CWD, DAG.getConstant(0x400, MVT::i16)),
8186                DAG.getConstant(9, MVT::i8));
8187
8188  SDValue RetVal =
8189    DAG.getNode(ISD::AND, DL, MVT::i16,
8190                DAG.getNode(ISD::ADD, DL, MVT::i16,
8191                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8192                            DAG.getConstant(1, MVT::i16)),
8193                DAG.getConstant(3, MVT::i16));
8194
8195
8196  return DAG.getNode((VT.getSizeInBits() < 16 ?
8197                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8198}
8199
8200SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8201  EVT VT = Op.getValueType();
8202  EVT OpVT = VT;
8203  unsigned NumBits = VT.getSizeInBits();
8204  DebugLoc dl = Op.getDebugLoc();
8205
8206  Op = Op.getOperand(0);
8207  if (VT == MVT::i8) {
8208    // Zero extend to i32 since there is not an i8 bsr.
8209    OpVT = MVT::i32;
8210    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8211  }
8212
8213  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8214  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8215  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8216
8217  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8218  SDValue Ops[] = {
8219    Op,
8220    DAG.getConstant(NumBits+NumBits-1, OpVT),
8221    DAG.getConstant(X86::COND_E, MVT::i8),
8222    Op.getValue(1)
8223  };
8224  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8225
8226  // Finally xor with NumBits-1.
8227  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8228
8229  if (VT == MVT::i8)
8230    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8231  return Op;
8232}
8233
8234SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8235  EVT VT = Op.getValueType();
8236  EVT OpVT = VT;
8237  unsigned NumBits = VT.getSizeInBits();
8238  DebugLoc dl = Op.getDebugLoc();
8239
8240  Op = Op.getOperand(0);
8241  if (VT == MVT::i8) {
8242    OpVT = MVT::i32;
8243    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8244  }
8245
8246  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8247  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8248  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8249
8250  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8251  SDValue Ops[] = {
8252    Op,
8253    DAG.getConstant(NumBits, OpVT),
8254    DAG.getConstant(X86::COND_E, MVT::i8),
8255    Op.getValue(1)
8256  };
8257  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8258
8259  if (VT == MVT::i8)
8260    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8261  return Op;
8262}
8263
8264SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8265  EVT VT = Op.getValueType();
8266  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8267  DebugLoc dl = Op.getDebugLoc();
8268
8269  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8270  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8271  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8272  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8273  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8274  //
8275  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8276  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8277  //  return AloBlo + AloBhi + AhiBlo;
8278
8279  SDValue A = Op.getOperand(0);
8280  SDValue B = Op.getOperand(1);
8281
8282  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8283                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8284                       A, DAG.getConstant(32, MVT::i32));
8285  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8286                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8287                       B, DAG.getConstant(32, MVT::i32));
8288  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8289                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8290                       A, B);
8291  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8292                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8293                       A, Bhi);
8294  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8295                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8296                       Ahi, B);
8297  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8298                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8299                       AloBhi, DAG.getConstant(32, MVT::i32));
8300  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8301                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8302                       AhiBlo, DAG.getConstant(32, MVT::i32));
8303  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8304  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8305  return Res;
8306}
8307
8308SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8309  EVT VT = Op.getValueType();
8310  DebugLoc dl = Op.getDebugLoc();
8311  SDValue R = Op.getOperand(0);
8312
8313  LLVMContext *Context = DAG.getContext();
8314
8315  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8316
8317  if (VT == MVT::v4i32) {
8318    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8319                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8320                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8321
8322    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8323
8324    std::vector<Constant*> CV(4, CI);
8325    Constant *C = ConstantVector::get(CV);
8326    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8327    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8328                                 MachinePointerInfo::getConstantPool(),
8329                                 false, false, 16);
8330
8331    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8332    Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, Op);
8333    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8334    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8335  }
8336  if (VT == MVT::v16i8) {
8337    // a = a << 5;
8338    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8339                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8340                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8341
8342    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8343    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8344
8345    std::vector<Constant*> CVM1(16, CM1);
8346    std::vector<Constant*> CVM2(16, CM2);
8347    Constant *C = ConstantVector::get(CVM1);
8348    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8349    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8350                            MachinePointerInfo::getConstantPool(),
8351                            false, false, 16);
8352
8353    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8354    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8355    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8356                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8357                    DAG.getConstant(4, MVT::i32));
8358    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8359                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8360                    R, M, Op);
8361    // a += a
8362    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8363
8364    C = ConstantVector::get(CVM2);
8365    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8366    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8367                    MachinePointerInfo::getConstantPool(),
8368                    false, false, 16);
8369
8370    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8371    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8372    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8373                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8374                    DAG.getConstant(2, MVT::i32));
8375    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8376                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8377                    R, M, Op);
8378    // a += a
8379    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8380
8381    // return pblendv(r, r+r, a);
8382    R = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8383                    DAG.getConstant(Intrinsic::x86_sse41_pblendvb, MVT::i32),
8384                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8385    return R;
8386  }
8387  return SDValue();
8388}
8389
8390SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8391  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8392  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8393  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8394  // has only one use.
8395  SDNode *N = Op.getNode();
8396  SDValue LHS = N->getOperand(0);
8397  SDValue RHS = N->getOperand(1);
8398  unsigned BaseOp = 0;
8399  unsigned Cond = 0;
8400  DebugLoc dl = Op.getDebugLoc();
8401
8402  switch (Op.getOpcode()) {
8403  default: llvm_unreachable("Unknown ovf instruction!");
8404  case ISD::SADDO:
8405    // A subtract of one will be selected as a INC. Note that INC doesn't
8406    // set CF, so we can't do this for UADDO.
8407    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8408      if (C->getAPIntValue() == 1) {
8409        BaseOp = X86ISD::INC;
8410        Cond = X86::COND_O;
8411        break;
8412      }
8413    BaseOp = X86ISD::ADD;
8414    Cond = X86::COND_O;
8415    break;
8416  case ISD::UADDO:
8417    BaseOp = X86ISD::ADD;
8418    Cond = X86::COND_B;
8419    break;
8420  case ISD::SSUBO:
8421    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8422    // set CF, so we can't do this for USUBO.
8423    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8424      if (C->getAPIntValue() == 1) {
8425        BaseOp = X86ISD::DEC;
8426        Cond = X86::COND_O;
8427        break;
8428      }
8429    BaseOp = X86ISD::SUB;
8430    Cond = X86::COND_O;
8431    break;
8432  case ISD::USUBO:
8433    BaseOp = X86ISD::SUB;
8434    Cond = X86::COND_B;
8435    break;
8436  case ISD::SMULO:
8437    BaseOp = X86ISD::SMUL;
8438    Cond = X86::COND_O;
8439    break;
8440  case ISD::UMULO:
8441    BaseOp = X86ISD::UMUL;
8442    Cond = X86::COND_B;
8443    break;
8444  }
8445
8446  // Also sets EFLAGS.
8447  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8448  SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
8449
8450  SDValue SetCC =
8451    DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
8452                DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
8453
8454  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8455  return Sum;
8456}
8457
8458SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8459  DebugLoc dl = Op.getDebugLoc();
8460
8461  if (!Subtarget->hasSSE2()) {
8462    SDValue Chain = Op.getOperand(0);
8463    SDValue Zero = DAG.getConstant(0,
8464                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8465    SDValue Ops[] = {
8466      DAG.getRegister(X86::ESP, MVT::i32), // Base
8467      DAG.getTargetConstant(1, MVT::i8),   // Scale
8468      DAG.getRegister(0, MVT::i32),        // Index
8469      DAG.getTargetConstant(0, MVT::i32),  // Disp
8470      DAG.getRegister(0, MVT::i32),        // Segment.
8471      Zero,
8472      Chain
8473    };
8474    SDNode *Res =
8475      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8476                          array_lengthof(Ops));
8477    return SDValue(Res, 0);
8478  }
8479
8480  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8481  if (!isDev)
8482    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8483
8484  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8485  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8486  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8487  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8488
8489  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8490  if (!Op1 && !Op2 && !Op3 && Op4)
8491    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8492
8493  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8494  if (Op1 && !Op2 && !Op3 && !Op4)
8495    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8496
8497  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8498  //           (MFENCE)>;
8499  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8500}
8501
8502SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8503  EVT T = Op.getValueType();
8504  DebugLoc DL = Op.getDebugLoc();
8505  unsigned Reg = 0;
8506  unsigned size = 0;
8507  switch(T.getSimpleVT().SimpleTy) {
8508  default:
8509    assert(false && "Invalid value type!");
8510  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8511  case MVT::i16: Reg = X86::AX;  size = 2; break;
8512  case MVT::i32: Reg = X86::EAX; size = 4; break;
8513  case MVT::i64:
8514    assert(Subtarget->is64Bit() && "Node not type legal!");
8515    Reg = X86::RAX; size = 8;
8516    break;
8517  }
8518  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8519                                    Op.getOperand(2), SDValue());
8520  SDValue Ops[] = { cpIn.getValue(0),
8521                    Op.getOperand(1),
8522                    Op.getOperand(3),
8523                    DAG.getTargetConstant(size, MVT::i8),
8524                    cpIn.getValue(1) };
8525  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8526  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8527  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8528                                           Ops, 5, T, MMO);
8529  SDValue cpOut =
8530    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8531  return cpOut;
8532}
8533
8534SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8535                                                 SelectionDAG &DAG) const {
8536  assert(Subtarget->is64Bit() && "Result not type legalized?");
8537  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8538  SDValue TheChain = Op.getOperand(0);
8539  DebugLoc dl = Op.getDebugLoc();
8540  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8541  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
8542  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
8543                                   rax.getValue(2));
8544  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
8545                            DAG.getConstant(32, MVT::i8));
8546  SDValue Ops[] = {
8547    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
8548    rdx.getValue(1)
8549  };
8550  return DAG.getMergeValues(Ops, 2, dl);
8551}
8552
8553SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
8554                                            SelectionDAG &DAG) const {
8555  EVT SrcVT = Op.getOperand(0).getValueType();
8556  EVT DstVT = Op.getValueType();
8557  assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
8558          Subtarget->hasMMX() && !DisableMMX) &&
8559         "Unexpected custom BIT_CONVERT");
8560  assert((DstVT == MVT::i64 ||
8561          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
8562         "Unexpected custom BIT_CONVERT");
8563  // i64 <=> MMX conversions are Legal.
8564  if (SrcVT==MVT::i64 && DstVT.isVector())
8565    return Op;
8566  if (DstVT==MVT::i64 && SrcVT.isVector())
8567    return Op;
8568  // MMX <=> MMX conversions are Legal.
8569  if (SrcVT.isVector() && DstVT.isVector())
8570    return Op;
8571  // All other conversions need to be expanded.
8572  return SDValue();
8573}
8574SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
8575  SDNode *Node = Op.getNode();
8576  DebugLoc dl = Node->getDebugLoc();
8577  EVT T = Node->getValueType(0);
8578  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
8579                              DAG.getConstant(0, T), Node->getOperand(2));
8580  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
8581                       cast<AtomicSDNode>(Node)->getMemoryVT(),
8582                       Node->getOperand(0),
8583                       Node->getOperand(1), negOp,
8584                       cast<AtomicSDNode>(Node)->getSrcValue(),
8585                       cast<AtomicSDNode>(Node)->getAlignment());
8586}
8587
8588/// LowerOperation - Provide custom lowering hooks for some operations.
8589///
8590SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
8591  switch (Op.getOpcode()) {
8592  default: llvm_unreachable("Should not custom lower this!");
8593  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
8594  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
8595  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
8596  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
8597  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
8598  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
8599  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
8600  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
8601  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
8602  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
8603  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
8604  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
8605  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
8606  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
8607  case ISD::SHL_PARTS:
8608  case ISD::SRA_PARTS:
8609  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
8610  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
8611  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
8612  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
8613  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
8614  case ISD::FABS:               return LowerFABS(Op, DAG);
8615  case ISD::FNEG:               return LowerFNEG(Op, DAG);
8616  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
8617  case ISD::SETCC:              return LowerSETCC(Op, DAG);
8618  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
8619  case ISD::SELECT:             return LowerSELECT(Op, DAG);
8620  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
8621  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
8622  case ISD::VASTART:            return LowerVASTART(Op, DAG);
8623  case ISD::VAARG:              return LowerVAARG(Op, DAG);
8624  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
8625  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
8626  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
8627  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
8628  case ISD::FRAME_TO_ARGS_OFFSET:
8629                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
8630  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
8631  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
8632  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
8633  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
8634  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
8635  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
8636  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
8637  case ISD::SHL:                return LowerSHL(Op, DAG);
8638  case ISD::SADDO:
8639  case ISD::UADDO:
8640  case ISD::SSUBO:
8641  case ISD::USUBO:
8642  case ISD::SMULO:
8643  case ISD::UMULO:              return LowerXALUO(Op, DAG);
8644  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
8645  case ISD::BIT_CONVERT:        return LowerBIT_CONVERT(Op, DAG);
8646  }
8647}
8648
8649void X86TargetLowering::
8650ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
8651                        SelectionDAG &DAG, unsigned NewOp) const {
8652  EVT T = Node->getValueType(0);
8653  DebugLoc dl = Node->getDebugLoc();
8654  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
8655
8656  SDValue Chain = Node->getOperand(0);
8657  SDValue In1 = Node->getOperand(1);
8658  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8659                             Node->getOperand(2), DAG.getIntPtrConstant(0));
8660  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
8661                             Node->getOperand(2), DAG.getIntPtrConstant(1));
8662  SDValue Ops[] = { Chain, In1, In2L, In2H };
8663  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
8664  SDValue Result =
8665    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
8666                            cast<MemSDNode>(Node)->getMemOperand());
8667  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
8668  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8669  Results.push_back(Result.getValue(2));
8670}
8671
8672/// ReplaceNodeResults - Replace a node with an illegal result type
8673/// with a new node built out of custom code.
8674void X86TargetLowering::ReplaceNodeResults(SDNode *N,
8675                                           SmallVectorImpl<SDValue>&Results,
8676                                           SelectionDAG &DAG) const {
8677  DebugLoc dl = N->getDebugLoc();
8678  switch (N->getOpcode()) {
8679  default:
8680    assert(false && "Do not know how to custom type legalize this operation!");
8681    return;
8682  case ISD::FP_TO_SINT: {
8683    std::pair<SDValue,SDValue> Vals =
8684        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
8685    SDValue FIST = Vals.first, StackSlot = Vals.second;
8686    if (FIST.getNode() != 0) {
8687      EVT VT = N->getValueType(0);
8688      // Return a load from the stack slot.
8689      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
8690                                    MachinePointerInfo(), false, false, 0));
8691    }
8692    return;
8693  }
8694  case ISD::READCYCLECOUNTER: {
8695    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8696    SDValue TheChain = N->getOperand(0);
8697    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
8698    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
8699                                     rd.getValue(1));
8700    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
8701                                     eax.getValue(2));
8702    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
8703    SDValue Ops[] = { eax, edx };
8704    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
8705    Results.push_back(edx.getValue(1));
8706    return;
8707  }
8708  case ISD::ATOMIC_CMP_SWAP: {
8709    EVT T = N->getValueType(0);
8710    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
8711    SDValue cpInL, cpInH;
8712    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8713                        DAG.getConstant(0, MVT::i32));
8714    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
8715                        DAG.getConstant(1, MVT::i32));
8716    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
8717    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
8718                             cpInL.getValue(1));
8719    SDValue swapInL, swapInH;
8720    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8721                          DAG.getConstant(0, MVT::i32));
8722    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
8723                          DAG.getConstant(1, MVT::i32));
8724    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
8725                               cpInH.getValue(1));
8726    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
8727                               swapInL.getValue(1));
8728    SDValue Ops[] = { swapInH.getValue(0),
8729                      N->getOperand(1),
8730                      swapInH.getValue(1) };
8731    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
8732    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
8733    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
8734                                             Ops, 3, T, MMO);
8735    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
8736                                        MVT::i32, Result.getValue(1));
8737    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
8738                                        MVT::i32, cpOutL.getValue(2));
8739    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
8740    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
8741    Results.push_back(cpOutH.getValue(1));
8742    return;
8743  }
8744  case ISD::ATOMIC_LOAD_ADD:
8745    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
8746    return;
8747  case ISD::ATOMIC_LOAD_AND:
8748    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
8749    return;
8750  case ISD::ATOMIC_LOAD_NAND:
8751    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
8752    return;
8753  case ISD::ATOMIC_LOAD_OR:
8754    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
8755    return;
8756  case ISD::ATOMIC_LOAD_SUB:
8757    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
8758    return;
8759  case ISD::ATOMIC_LOAD_XOR:
8760    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
8761    return;
8762  case ISD::ATOMIC_SWAP:
8763    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
8764    return;
8765  }
8766}
8767
8768const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
8769  switch (Opcode) {
8770  default: return NULL;
8771  case X86ISD::BSF:                return "X86ISD::BSF";
8772  case X86ISD::BSR:                return "X86ISD::BSR";
8773  case X86ISD::SHLD:               return "X86ISD::SHLD";
8774  case X86ISD::SHRD:               return "X86ISD::SHRD";
8775  case X86ISD::FAND:               return "X86ISD::FAND";
8776  case X86ISD::FOR:                return "X86ISD::FOR";
8777  case X86ISD::FXOR:               return "X86ISD::FXOR";
8778  case X86ISD::FSRL:               return "X86ISD::FSRL";
8779  case X86ISD::FILD:               return "X86ISD::FILD";
8780  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
8781  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
8782  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
8783  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
8784  case X86ISD::FLD:                return "X86ISD::FLD";
8785  case X86ISD::FST:                return "X86ISD::FST";
8786  case X86ISD::CALL:               return "X86ISD::CALL";
8787  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
8788  case X86ISD::BT:                 return "X86ISD::BT";
8789  case X86ISD::CMP:                return "X86ISD::CMP";
8790  case X86ISD::COMI:               return "X86ISD::COMI";
8791  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
8792  case X86ISD::SETCC:              return "X86ISD::SETCC";
8793  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
8794  case X86ISD::CMOV:               return "X86ISD::CMOV";
8795  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
8796  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
8797  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
8798  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
8799  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
8800  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
8801  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
8802  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
8803  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
8804  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
8805  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
8806  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
8807  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
8808  case X86ISD::FMAX:               return "X86ISD::FMAX";
8809  case X86ISD::FMIN:               return "X86ISD::FMIN";
8810  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
8811  case X86ISD::FRCP:               return "X86ISD::FRCP";
8812  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
8813  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
8814  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
8815  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
8816  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
8817  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
8818  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
8819  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
8820  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
8821  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
8822  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
8823  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
8824  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
8825  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
8826  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
8827  case X86ISD::VSHL:               return "X86ISD::VSHL";
8828  case X86ISD::VSRL:               return "X86ISD::VSRL";
8829  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
8830  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
8831  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
8832  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
8833  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
8834  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
8835  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
8836  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
8837  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
8838  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
8839  case X86ISD::ADD:                return "X86ISD::ADD";
8840  case X86ISD::SUB:                return "X86ISD::SUB";
8841  case X86ISD::SMUL:               return "X86ISD::SMUL";
8842  case X86ISD::UMUL:               return "X86ISD::UMUL";
8843  case X86ISD::INC:                return "X86ISD::INC";
8844  case X86ISD::DEC:                return "X86ISD::DEC";
8845  case X86ISD::OR:                 return "X86ISD::OR";
8846  case X86ISD::XOR:                return "X86ISD::XOR";
8847  case X86ISD::AND:                return "X86ISD::AND";
8848  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
8849  case X86ISD::PTEST:              return "X86ISD::PTEST";
8850  case X86ISD::TESTP:              return "X86ISD::TESTP";
8851  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
8852  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
8853  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
8854  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
8855  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
8856  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
8857  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
8858  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
8859  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
8860  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
8861  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
8862  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
8863  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
8864  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
8865  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
8866  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
8867  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
8868  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
8869  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
8870  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
8871  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
8872  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
8873  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
8874  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
8875  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
8876  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
8877  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
8878  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
8879  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
8880  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
8881  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
8882  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
8883  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
8884  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
8885  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
8886  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
8887  }
8888}
8889
8890// isLegalAddressingMode - Return true if the addressing mode represented
8891// by AM is legal for this target, for a load/store of the specified type.
8892bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
8893                                              const Type *Ty) const {
8894  // X86 supports extremely general addressing modes.
8895  CodeModel::Model M = getTargetMachine().getCodeModel();
8896  Reloc::Model R = getTargetMachine().getRelocationModel();
8897
8898  // X86 allows a sign-extended 32-bit immediate field as a displacement.
8899  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
8900    return false;
8901
8902  if (AM.BaseGV) {
8903    unsigned GVFlags =
8904      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
8905
8906    // If a reference to this global requires an extra load, we can't fold it.
8907    if (isGlobalStubReference(GVFlags))
8908      return false;
8909
8910    // If BaseGV requires a register for the PIC base, we cannot also have a
8911    // BaseReg specified.
8912    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
8913      return false;
8914
8915    // If lower 4G is not available, then we must use rip-relative addressing.
8916    if ((M != CodeModel::Small || R != Reloc::Static) &&
8917        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
8918      return false;
8919  }
8920
8921  switch (AM.Scale) {
8922  case 0:
8923  case 1:
8924  case 2:
8925  case 4:
8926  case 8:
8927    // These scales always work.
8928    break;
8929  case 3:
8930  case 5:
8931  case 9:
8932    // These scales are formed with basereg+scalereg.  Only accept if there is
8933    // no basereg yet.
8934    if (AM.HasBaseReg)
8935      return false;
8936    break;
8937  default:  // Other stuff never works.
8938    return false;
8939  }
8940
8941  return true;
8942}
8943
8944
8945bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
8946  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
8947    return false;
8948  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
8949  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
8950  if (NumBits1 <= NumBits2)
8951    return false;
8952  return true;
8953}
8954
8955bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
8956  if (!VT1.isInteger() || !VT2.isInteger())
8957    return false;
8958  unsigned NumBits1 = VT1.getSizeInBits();
8959  unsigned NumBits2 = VT2.getSizeInBits();
8960  if (NumBits1 <= NumBits2)
8961    return false;
8962  return true;
8963}
8964
8965bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
8966  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8967  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
8968}
8969
8970bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
8971  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
8972  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
8973}
8974
8975bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
8976  // i16 instructions are longer (0x66 prefix) and potentially slower.
8977  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
8978}
8979
8980/// isShuffleMaskLegal - Targets can use this to indicate that they only
8981/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8982/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8983/// are assumed to be legal.
8984bool
8985X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
8986                                      EVT VT) const {
8987  // Very little shuffling can be done for 64-bit vectors right now.
8988  if (VT.getSizeInBits() == 64)
8989    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
8990
8991  // FIXME: pshufb, blends, shifts.
8992  return (VT.getVectorNumElements() == 2 ||
8993          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8994          isMOVLMask(M, VT) ||
8995          isSHUFPMask(M, VT) ||
8996          isPSHUFDMask(M, VT) ||
8997          isPSHUFHWMask(M, VT) ||
8998          isPSHUFLWMask(M, VT) ||
8999          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9000          isUNPCKLMask(M, VT) ||
9001          isUNPCKHMask(M, VT) ||
9002          isUNPCKL_v_undef_Mask(M, VT) ||
9003          isUNPCKH_v_undef_Mask(M, VT));
9004}
9005
9006bool
9007X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9008                                          EVT VT) const {
9009  unsigned NumElts = VT.getVectorNumElements();
9010  // FIXME: This collection of masks seems suspect.
9011  if (NumElts == 2)
9012    return true;
9013  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9014    return (isMOVLMask(Mask, VT)  ||
9015            isCommutedMOVLMask(Mask, VT, true) ||
9016            isSHUFPMask(Mask, VT) ||
9017            isCommutedSHUFPMask(Mask, VT));
9018  }
9019  return false;
9020}
9021
9022//===----------------------------------------------------------------------===//
9023//                           X86 Scheduler Hooks
9024//===----------------------------------------------------------------------===//
9025
9026// private utility function
9027MachineBasicBlock *
9028X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9029                                                       MachineBasicBlock *MBB,
9030                                                       unsigned regOpc,
9031                                                       unsigned immOpc,
9032                                                       unsigned LoadOpc,
9033                                                       unsigned CXchgOpc,
9034                                                       unsigned notOpc,
9035                                                       unsigned EAXreg,
9036                                                       TargetRegisterClass *RC,
9037                                                       bool invSrc) const {
9038  // For the atomic bitwise operator, we generate
9039  //   thisMBB:
9040  //   newMBB:
9041  //     ld  t1 = [bitinstr.addr]
9042  //     op  t2 = t1, [bitinstr.val]
9043  //     mov EAX = t1
9044  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9045  //     bz  newMBB
9046  //     fallthrough -->nextMBB
9047  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9048  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9049  MachineFunction::iterator MBBIter = MBB;
9050  ++MBBIter;
9051
9052  /// First build the CFG
9053  MachineFunction *F = MBB->getParent();
9054  MachineBasicBlock *thisMBB = MBB;
9055  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9056  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9057  F->insert(MBBIter, newMBB);
9058  F->insert(MBBIter, nextMBB);
9059
9060  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9061  nextMBB->splice(nextMBB->begin(), thisMBB,
9062                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9063                  thisMBB->end());
9064  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9065
9066  // Update thisMBB to fall through to newMBB
9067  thisMBB->addSuccessor(newMBB);
9068
9069  // newMBB jumps to itself and fall through to nextMBB
9070  newMBB->addSuccessor(nextMBB);
9071  newMBB->addSuccessor(newMBB);
9072
9073  // Insert instructions into newMBB based on incoming instruction
9074  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9075         "unexpected number of operands");
9076  DebugLoc dl = bInstr->getDebugLoc();
9077  MachineOperand& destOper = bInstr->getOperand(0);
9078  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9079  int numArgs = bInstr->getNumOperands() - 1;
9080  for (int i=0; i < numArgs; ++i)
9081    argOpers[i] = &bInstr->getOperand(i+1);
9082
9083  // x86 address has 4 operands: base, index, scale, and displacement
9084  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9085  int valArgIndx = lastAddrIndx + 1;
9086
9087  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9088  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9089  for (int i=0; i <= lastAddrIndx; ++i)
9090    (*MIB).addOperand(*argOpers[i]);
9091
9092  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9093  if (invSrc) {
9094    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9095  }
9096  else
9097    tt = t1;
9098
9099  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9100  assert((argOpers[valArgIndx]->isReg() ||
9101          argOpers[valArgIndx]->isImm()) &&
9102         "invalid operand");
9103  if (argOpers[valArgIndx]->isReg())
9104    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9105  else
9106    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9107  MIB.addReg(tt);
9108  (*MIB).addOperand(*argOpers[valArgIndx]);
9109
9110  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9111  MIB.addReg(t1);
9112
9113  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9114  for (int i=0; i <= lastAddrIndx; ++i)
9115    (*MIB).addOperand(*argOpers[i]);
9116  MIB.addReg(t2);
9117  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9118  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9119                    bInstr->memoperands_end());
9120
9121  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9122  MIB.addReg(EAXreg);
9123
9124  // insert branch
9125  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9126
9127  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9128  return nextMBB;
9129}
9130
9131// private utility function:  64 bit atomics on 32 bit host.
9132MachineBasicBlock *
9133X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9134                                                       MachineBasicBlock *MBB,
9135                                                       unsigned regOpcL,
9136                                                       unsigned regOpcH,
9137                                                       unsigned immOpcL,
9138                                                       unsigned immOpcH,
9139                                                       bool invSrc) const {
9140  // For the atomic bitwise operator, we generate
9141  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9142  //     ld t1,t2 = [bitinstr.addr]
9143  //   newMBB:
9144  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9145  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9146  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9147  //     mov ECX, EBX <- t5, t6
9148  //     mov EAX, EDX <- t1, t2
9149  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9150  //     mov t3, t4 <- EAX, EDX
9151  //     bz  newMBB
9152  //     result in out1, out2
9153  //     fallthrough -->nextMBB
9154
9155  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9156  const unsigned LoadOpc = X86::MOV32rm;
9157  const unsigned NotOpc = X86::NOT32r;
9158  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9159  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9160  MachineFunction::iterator MBBIter = MBB;
9161  ++MBBIter;
9162
9163  /// First build the CFG
9164  MachineFunction *F = MBB->getParent();
9165  MachineBasicBlock *thisMBB = MBB;
9166  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9167  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9168  F->insert(MBBIter, newMBB);
9169  F->insert(MBBIter, nextMBB);
9170
9171  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9172  nextMBB->splice(nextMBB->begin(), thisMBB,
9173                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9174                  thisMBB->end());
9175  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9176
9177  // Update thisMBB to fall through to newMBB
9178  thisMBB->addSuccessor(newMBB);
9179
9180  // newMBB jumps to itself and fall through to nextMBB
9181  newMBB->addSuccessor(nextMBB);
9182  newMBB->addSuccessor(newMBB);
9183
9184  DebugLoc dl = bInstr->getDebugLoc();
9185  // Insert instructions into newMBB based on incoming instruction
9186  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9187  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9188         "unexpected number of operands");
9189  MachineOperand& dest1Oper = bInstr->getOperand(0);
9190  MachineOperand& dest2Oper = bInstr->getOperand(1);
9191  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9192  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9193    argOpers[i] = &bInstr->getOperand(i+2);
9194
9195    // We use some of the operands multiple times, so conservatively just
9196    // clear any kill flags that might be present.
9197    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9198      argOpers[i]->setIsKill(false);
9199  }
9200
9201  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9202  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9203
9204  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9205  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9206  for (int i=0; i <= lastAddrIndx; ++i)
9207    (*MIB).addOperand(*argOpers[i]);
9208  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9209  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9210  // add 4 to displacement.
9211  for (int i=0; i <= lastAddrIndx-2; ++i)
9212    (*MIB).addOperand(*argOpers[i]);
9213  MachineOperand newOp3 = *(argOpers[3]);
9214  if (newOp3.isImm())
9215    newOp3.setImm(newOp3.getImm()+4);
9216  else
9217    newOp3.setOffset(newOp3.getOffset()+4);
9218  (*MIB).addOperand(newOp3);
9219  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9220
9221  // t3/4 are defined later, at the bottom of the loop
9222  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9223  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9224  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9225    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9226  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9227    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9228
9229  // The subsequent operations should be using the destination registers of
9230  //the PHI instructions.
9231  if (invSrc) {
9232    t1 = F->getRegInfo().createVirtualRegister(RC);
9233    t2 = F->getRegInfo().createVirtualRegister(RC);
9234    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9235    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9236  } else {
9237    t1 = dest1Oper.getReg();
9238    t2 = dest2Oper.getReg();
9239  }
9240
9241  int valArgIndx = lastAddrIndx + 1;
9242  assert((argOpers[valArgIndx]->isReg() ||
9243          argOpers[valArgIndx]->isImm()) &&
9244         "invalid operand");
9245  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9246  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9247  if (argOpers[valArgIndx]->isReg())
9248    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9249  else
9250    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9251  if (regOpcL != X86::MOV32rr)
9252    MIB.addReg(t1);
9253  (*MIB).addOperand(*argOpers[valArgIndx]);
9254  assert(argOpers[valArgIndx + 1]->isReg() ==
9255         argOpers[valArgIndx]->isReg());
9256  assert(argOpers[valArgIndx + 1]->isImm() ==
9257         argOpers[valArgIndx]->isImm());
9258  if (argOpers[valArgIndx + 1]->isReg())
9259    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9260  else
9261    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9262  if (regOpcH != X86::MOV32rr)
9263    MIB.addReg(t2);
9264  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9265
9266  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9267  MIB.addReg(t1);
9268  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9269  MIB.addReg(t2);
9270
9271  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9272  MIB.addReg(t5);
9273  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9274  MIB.addReg(t6);
9275
9276  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9277  for (int i=0; i <= lastAddrIndx; ++i)
9278    (*MIB).addOperand(*argOpers[i]);
9279
9280  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9281  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9282                    bInstr->memoperands_end());
9283
9284  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9285  MIB.addReg(X86::EAX);
9286  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9287  MIB.addReg(X86::EDX);
9288
9289  // insert branch
9290  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9291
9292  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9293  return nextMBB;
9294}
9295
9296// private utility function
9297MachineBasicBlock *
9298X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9299                                                      MachineBasicBlock *MBB,
9300                                                      unsigned cmovOpc) const {
9301  // For the atomic min/max operator, we generate
9302  //   thisMBB:
9303  //   newMBB:
9304  //     ld t1 = [min/max.addr]
9305  //     mov t2 = [min/max.val]
9306  //     cmp  t1, t2
9307  //     cmov[cond] t2 = t1
9308  //     mov EAX = t1
9309  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9310  //     bz   newMBB
9311  //     fallthrough -->nextMBB
9312  //
9313  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9314  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9315  MachineFunction::iterator MBBIter = MBB;
9316  ++MBBIter;
9317
9318  /// First build the CFG
9319  MachineFunction *F = MBB->getParent();
9320  MachineBasicBlock *thisMBB = MBB;
9321  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9322  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9323  F->insert(MBBIter, newMBB);
9324  F->insert(MBBIter, nextMBB);
9325
9326  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9327  nextMBB->splice(nextMBB->begin(), thisMBB,
9328                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9329                  thisMBB->end());
9330  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9331
9332  // Update thisMBB to fall through to newMBB
9333  thisMBB->addSuccessor(newMBB);
9334
9335  // newMBB jumps to newMBB and fall through to nextMBB
9336  newMBB->addSuccessor(nextMBB);
9337  newMBB->addSuccessor(newMBB);
9338
9339  DebugLoc dl = mInstr->getDebugLoc();
9340  // Insert instructions into newMBB based on incoming instruction
9341  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9342         "unexpected number of operands");
9343  MachineOperand& destOper = mInstr->getOperand(0);
9344  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9345  int numArgs = mInstr->getNumOperands() - 1;
9346  for (int i=0; i < numArgs; ++i)
9347    argOpers[i] = &mInstr->getOperand(i+1);
9348
9349  // x86 address has 4 operands: base, index, scale, and displacement
9350  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9351  int valArgIndx = lastAddrIndx + 1;
9352
9353  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9354  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9355  for (int i=0; i <= lastAddrIndx; ++i)
9356    (*MIB).addOperand(*argOpers[i]);
9357
9358  // We only support register and immediate values
9359  assert((argOpers[valArgIndx]->isReg() ||
9360          argOpers[valArgIndx]->isImm()) &&
9361         "invalid operand");
9362
9363  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9364  if (argOpers[valArgIndx]->isReg())
9365    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9366  else
9367    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9368  (*MIB).addOperand(*argOpers[valArgIndx]);
9369
9370  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9371  MIB.addReg(t1);
9372
9373  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9374  MIB.addReg(t1);
9375  MIB.addReg(t2);
9376
9377  // Generate movc
9378  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9379  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9380  MIB.addReg(t2);
9381  MIB.addReg(t1);
9382
9383  // Cmp and exchange if none has modified the memory location
9384  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9385  for (int i=0; i <= lastAddrIndx; ++i)
9386    (*MIB).addOperand(*argOpers[i]);
9387  MIB.addReg(t3);
9388  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9389  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9390                    mInstr->memoperands_end());
9391
9392  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9393  MIB.addReg(X86::EAX);
9394
9395  // insert branch
9396  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9397
9398  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9399  return nextMBB;
9400}
9401
9402// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9403// or XMM0_V32I8 in AVX all of this code can be replaced with that
9404// in the .td file.
9405MachineBasicBlock *
9406X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9407                            unsigned numArgs, bool memArg) const {
9408
9409  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9410         "Target must have SSE4.2 or AVX features enabled");
9411
9412  DebugLoc dl = MI->getDebugLoc();
9413  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9414
9415  unsigned Opc;
9416
9417  if (!Subtarget->hasAVX()) {
9418    if (memArg)
9419      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9420    else
9421      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9422  } else {
9423    if (memArg)
9424      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9425    else
9426      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9427  }
9428
9429  MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
9430
9431  for (unsigned i = 0; i < numArgs; ++i) {
9432    MachineOperand &Op = MI->getOperand(i+1);
9433
9434    if (!(Op.isReg() && Op.isImplicit()))
9435      MIB.addOperand(Op);
9436  }
9437
9438  BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9439    .addReg(X86::XMM0);
9440
9441  MI->eraseFromParent();
9442
9443  return BB;
9444}
9445
9446MachineBasicBlock *
9447X86TargetLowering::EmitVAARG64WithCustomInserter(
9448                   MachineInstr *MI,
9449                   MachineBasicBlock *MBB) const {
9450  // Emit va_arg instruction on X86-64.
9451
9452  // Operands to this pseudo-instruction:
9453  // 0  ) Output        : destination address (reg)
9454  // 1-5) Input         : va_list address (addr, i64mem)
9455  // 6  ) ArgSize       : Size (in bytes) of vararg type
9456  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
9457  // 8  ) Align         : Alignment of type
9458  // 9  ) EFLAGS (implicit-def)
9459
9460  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
9461  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
9462
9463  unsigned DestReg = MI->getOperand(0).getReg();
9464  MachineOperand &Base = MI->getOperand(1);
9465  MachineOperand &Scale = MI->getOperand(2);
9466  MachineOperand &Index = MI->getOperand(3);
9467  MachineOperand &Disp = MI->getOperand(4);
9468  MachineOperand &Segment = MI->getOperand(5);
9469  unsigned ArgSize = MI->getOperand(6).getImm();
9470  unsigned ArgMode = MI->getOperand(7).getImm();
9471  unsigned Align = MI->getOperand(8).getImm();
9472
9473  // Memory Reference
9474  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
9475  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
9476  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
9477
9478  // Machine Information
9479  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9480  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
9481  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
9482  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
9483  DebugLoc DL = MI->getDebugLoc();
9484
9485  // struct va_list {
9486  //   i32   gp_offset
9487  //   i32   fp_offset
9488  //   i64   overflow_area (address)
9489  //   i64   reg_save_area (address)
9490  // }
9491  // sizeof(va_list) = 24
9492  // alignment(va_list) = 8
9493
9494  unsigned TotalNumIntRegs = 6;
9495  unsigned TotalNumXMMRegs = 8;
9496  bool UseGPOffset = (ArgMode == 1);
9497  bool UseFPOffset = (ArgMode == 2);
9498  unsigned MaxOffset = TotalNumIntRegs * 8 +
9499                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
9500
9501  /* Align ArgSize to a multiple of 8 */
9502  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
9503  bool NeedsAlign = (Align > 8);
9504
9505  MachineBasicBlock *thisMBB = MBB;
9506  MachineBasicBlock *overflowMBB;
9507  MachineBasicBlock *offsetMBB;
9508  MachineBasicBlock *endMBB;
9509
9510  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
9511  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
9512  unsigned OffsetReg = 0;
9513
9514  if (!UseGPOffset && !UseFPOffset) {
9515    // If we only pull from the overflow region, we don't create a branch.
9516    // We don't need to alter control flow.
9517    OffsetDestReg = 0; // unused
9518    OverflowDestReg = DestReg;
9519
9520    offsetMBB = NULL;
9521    overflowMBB = thisMBB;
9522    endMBB = thisMBB;
9523  } else {
9524    // First emit code to check if gp_offset (or fp_offset) is below the bound.
9525    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
9526    // If not, pull from overflow_area. (branch to overflowMBB)
9527    //
9528    //       thisMBB
9529    //         |     .
9530    //         |        .
9531    //     offsetMBB   overflowMBB
9532    //         |        .
9533    //         |     .
9534    //        endMBB
9535
9536    // Registers for the PHI in endMBB
9537    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
9538    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
9539
9540    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9541    MachineFunction *MF = MBB->getParent();
9542    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9543    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9544    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
9545
9546    MachineFunction::iterator MBBIter = MBB;
9547    ++MBBIter;
9548
9549    // Insert the new basic blocks
9550    MF->insert(MBBIter, offsetMBB);
9551    MF->insert(MBBIter, overflowMBB);
9552    MF->insert(MBBIter, endMBB);
9553
9554    // Transfer the remainder of MBB and its successor edges to endMBB.
9555    endMBB->splice(endMBB->begin(), thisMBB,
9556                    llvm::next(MachineBasicBlock::iterator(MI)),
9557                    thisMBB->end());
9558    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9559
9560    // Make offsetMBB and overflowMBB successors of thisMBB
9561    thisMBB->addSuccessor(offsetMBB);
9562    thisMBB->addSuccessor(overflowMBB);
9563
9564    // endMBB is a successor of both offsetMBB and overflowMBB
9565    offsetMBB->addSuccessor(endMBB);
9566    overflowMBB->addSuccessor(endMBB);
9567
9568    // Load the offset value into a register
9569    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9570    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
9571      .addOperand(Base)
9572      .addOperand(Scale)
9573      .addOperand(Index)
9574      .addDisp(Disp, UseFPOffset ? 4 : 0)
9575      .addOperand(Segment)
9576      .setMemRefs(MMOBegin, MMOEnd);
9577
9578    // Check if there is enough room left to pull this argument.
9579    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
9580      .addReg(OffsetReg)
9581      .addImm(MaxOffset + 8 - ArgSizeA8);
9582
9583    // Branch to "overflowMBB" if offset >= max
9584    // Fall through to "offsetMBB" otherwise
9585    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
9586      .addMBB(overflowMBB);
9587  }
9588
9589  // In offsetMBB, emit code to use the reg_save_area.
9590  if (offsetMBB) {
9591    assert(OffsetReg != 0);
9592
9593    // Read the reg_save_area address.
9594    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
9595    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
9596      .addOperand(Base)
9597      .addOperand(Scale)
9598      .addOperand(Index)
9599      .addDisp(Disp, 16)
9600      .addOperand(Segment)
9601      .setMemRefs(MMOBegin, MMOEnd);
9602
9603    // Zero-extend the offset
9604    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
9605      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
9606        .addImm(0)
9607        .addReg(OffsetReg)
9608        .addImm(X86::sub_32bit);
9609
9610    // Add the offset to the reg_save_area to get the final address.
9611    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
9612      .addReg(OffsetReg64)
9613      .addReg(RegSaveReg);
9614
9615    // Compute the offset for the next argument
9616    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
9617    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
9618      .addReg(OffsetReg)
9619      .addImm(UseFPOffset ? 16 : 8);
9620
9621    // Store it back into the va_list.
9622    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
9623      .addOperand(Base)
9624      .addOperand(Scale)
9625      .addOperand(Index)
9626      .addDisp(Disp, UseFPOffset ? 4 : 0)
9627      .addOperand(Segment)
9628      .addReg(NextOffsetReg)
9629      .setMemRefs(MMOBegin, MMOEnd);
9630
9631    // Jump to endMBB
9632    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
9633      .addMBB(endMBB);
9634  }
9635
9636  //
9637  // Emit code to use overflow area
9638  //
9639
9640  // Load the overflow_area address into a register.
9641  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
9642  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
9643    .addOperand(Base)
9644    .addOperand(Scale)
9645    .addOperand(Index)
9646    .addDisp(Disp, 8)
9647    .addOperand(Segment)
9648    .setMemRefs(MMOBegin, MMOEnd);
9649
9650  // If we need to align it, do so. Otherwise, just copy the address
9651  // to OverflowDestReg.
9652  if (NeedsAlign) {
9653    // Align the overflow address
9654    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
9655    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
9656
9657    // aligned_addr = (addr + (align-1)) & ~(align-1)
9658    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
9659      .addReg(OverflowAddrReg)
9660      .addImm(Align-1);
9661
9662    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
9663      .addReg(TmpReg)
9664      .addImm(~(uint64_t)(Align-1));
9665  } else {
9666    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
9667      .addReg(OverflowAddrReg);
9668  }
9669
9670  // Compute the next overflow address after this argument.
9671  // (the overflow address should be kept 8-byte aligned)
9672  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
9673  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
9674    .addReg(OverflowDestReg)
9675    .addImm(ArgSizeA8);
9676
9677  // Store the new overflow address.
9678  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
9679    .addOperand(Base)
9680    .addOperand(Scale)
9681    .addOperand(Index)
9682    .addDisp(Disp, 8)
9683    .addOperand(Segment)
9684    .addReg(NextAddrReg)
9685    .setMemRefs(MMOBegin, MMOEnd);
9686
9687  // If we branched, emit the PHI to the front of endMBB.
9688  if (offsetMBB) {
9689    BuildMI(*endMBB, endMBB->begin(), DL,
9690            TII->get(X86::PHI), DestReg)
9691      .addReg(OffsetDestReg).addMBB(offsetMBB)
9692      .addReg(OverflowDestReg).addMBB(overflowMBB);
9693  }
9694
9695  // Erase the pseudo instruction
9696  MI->eraseFromParent();
9697
9698  return endMBB;
9699}
9700
9701MachineBasicBlock *
9702X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
9703                                                 MachineInstr *MI,
9704                                                 MachineBasicBlock *MBB) const {
9705  // Emit code to save XMM registers to the stack. The ABI says that the
9706  // number of registers to save is given in %al, so it's theoretically
9707  // possible to do an indirect jump trick to avoid saving all of them,
9708  // however this code takes a simpler approach and just executes all
9709  // of the stores if %al is non-zero. It's less code, and it's probably
9710  // easier on the hardware branch predictor, and stores aren't all that
9711  // expensive anyway.
9712
9713  // Create the new basic blocks. One block contains all the XMM stores,
9714  // and one block is the final destination regardless of whether any
9715  // stores were performed.
9716  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9717  MachineFunction *F = MBB->getParent();
9718  MachineFunction::iterator MBBIter = MBB;
9719  ++MBBIter;
9720  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
9721  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
9722  F->insert(MBBIter, XMMSaveMBB);
9723  F->insert(MBBIter, EndMBB);
9724
9725  // Transfer the remainder of MBB and its successor edges to EndMBB.
9726  EndMBB->splice(EndMBB->begin(), MBB,
9727                 llvm::next(MachineBasicBlock::iterator(MI)),
9728                 MBB->end());
9729  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
9730
9731  // The original block will now fall through to the XMM save block.
9732  MBB->addSuccessor(XMMSaveMBB);
9733  // The XMMSaveMBB will fall through to the end block.
9734  XMMSaveMBB->addSuccessor(EndMBB);
9735
9736  // Now add the instructions.
9737  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9738  DebugLoc DL = MI->getDebugLoc();
9739
9740  unsigned CountReg = MI->getOperand(0).getReg();
9741  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
9742  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
9743
9744  if (!Subtarget->isTargetWin64()) {
9745    // If %al is 0, branch around the XMM save block.
9746    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
9747    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
9748    MBB->addSuccessor(EndMBB);
9749  }
9750
9751  // In the XMM save block, save all the XMM argument registers.
9752  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
9753    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
9754    MachineMemOperand *MMO =
9755      F->getMachineMemOperand(
9756          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
9757        MachineMemOperand::MOStore,
9758        /*Size=*/16, /*Align=*/16);
9759    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
9760      .addFrameIndex(RegSaveFrameIndex)
9761      .addImm(/*Scale=*/1)
9762      .addReg(/*IndexReg=*/0)
9763      .addImm(/*Disp=*/Offset)
9764      .addReg(/*Segment=*/0)
9765      .addReg(MI->getOperand(i).getReg())
9766      .addMemOperand(MMO);
9767  }
9768
9769  MI->eraseFromParent();   // The pseudo instruction is gone now.
9770
9771  return EndMBB;
9772}
9773
9774MachineBasicBlock *
9775X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
9776                                     MachineBasicBlock *BB) const {
9777  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9778  DebugLoc DL = MI->getDebugLoc();
9779
9780  // To "insert" a SELECT_CC instruction, we actually have to insert the
9781  // diamond control-flow pattern.  The incoming instruction knows the
9782  // destination vreg to set, the condition code register to branch on, the
9783  // true/false values to select between, and a branch opcode to use.
9784  const BasicBlock *LLVM_BB = BB->getBasicBlock();
9785  MachineFunction::iterator It = BB;
9786  ++It;
9787
9788  //  thisMBB:
9789  //  ...
9790  //   TrueVal = ...
9791  //   cmpTY ccX, r1, r2
9792  //   bCC copy1MBB
9793  //   fallthrough --> copy0MBB
9794  MachineBasicBlock *thisMBB = BB;
9795  MachineFunction *F = BB->getParent();
9796  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
9797  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
9798  F->insert(It, copy0MBB);
9799  F->insert(It, sinkMBB);
9800
9801  // If the EFLAGS register isn't dead in the terminator, then claim that it's
9802  // live into the sink and copy blocks.
9803  const MachineFunction *MF = BB->getParent();
9804  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
9805  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
9806
9807  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
9808    const MachineOperand &MO = MI->getOperand(I);
9809    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
9810    unsigned Reg = MO.getReg();
9811    if (Reg != X86::EFLAGS) continue;
9812    copy0MBB->addLiveIn(Reg);
9813    sinkMBB->addLiveIn(Reg);
9814  }
9815
9816  // Transfer the remainder of BB and its successor edges to sinkMBB.
9817  sinkMBB->splice(sinkMBB->begin(), BB,
9818                  llvm::next(MachineBasicBlock::iterator(MI)),
9819                  BB->end());
9820  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
9821
9822  // Add the true and fallthrough blocks as its successors.
9823  BB->addSuccessor(copy0MBB);
9824  BB->addSuccessor(sinkMBB);
9825
9826  // Create the conditional branch instruction.
9827  unsigned Opc =
9828    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
9829  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
9830
9831  //  copy0MBB:
9832  //   %FalseValue = ...
9833  //   # fallthrough to sinkMBB
9834  copy0MBB->addSuccessor(sinkMBB);
9835
9836  //  sinkMBB:
9837  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
9838  //  ...
9839  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
9840          TII->get(X86::PHI), MI->getOperand(0).getReg())
9841    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
9842    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
9843
9844  MI->eraseFromParent();   // The pseudo instruction is gone now.
9845  return sinkMBB;
9846}
9847
9848MachineBasicBlock *
9849X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
9850                                          MachineBasicBlock *BB) const {
9851  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9852  DebugLoc DL = MI->getDebugLoc();
9853
9854  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
9855  // non-trivial part is impdef of ESP.
9856  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
9857  // mingw-w64.
9858
9859  const char *StackProbeSymbol =
9860      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
9861
9862  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
9863    .addExternalSymbol(StackProbeSymbol)
9864    .addReg(X86::EAX, RegState::Implicit)
9865    .addReg(X86::ESP, RegState::Implicit)
9866    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
9867    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
9868    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
9869
9870  MI->eraseFromParent();   // The pseudo instruction is gone now.
9871  return BB;
9872}
9873
9874MachineBasicBlock *
9875X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
9876                                      MachineBasicBlock *BB) const {
9877  // This is pretty easy.  We're taking the value that we received from
9878  // our load from the relocation, sticking it in either RDI (x86-64)
9879  // or EAX and doing an indirect call.  The return value will then
9880  // be in the normal return register.
9881  const X86InstrInfo *TII
9882    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
9883  DebugLoc DL = MI->getDebugLoc();
9884  MachineFunction *F = BB->getParent();
9885
9886  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
9887  assert(MI->getOperand(3).isGlobal() && "This should be a global");
9888
9889  if (Subtarget->is64Bit()) {
9890    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9891                                      TII->get(X86::MOV64rm), X86::RDI)
9892    .addReg(X86::RIP)
9893    .addImm(0).addReg(0)
9894    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9895                      MI->getOperand(3).getTargetFlags())
9896    .addReg(0);
9897    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
9898    addDirectMem(MIB, X86::RDI);
9899  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
9900    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9901                                      TII->get(X86::MOV32rm), X86::EAX)
9902    .addReg(0)
9903    .addImm(0).addReg(0)
9904    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9905                      MI->getOperand(3).getTargetFlags())
9906    .addReg(0);
9907    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9908    addDirectMem(MIB, X86::EAX);
9909  } else {
9910    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
9911                                      TII->get(X86::MOV32rm), X86::EAX)
9912    .addReg(TII->getGlobalBaseReg(F))
9913    .addImm(0).addReg(0)
9914    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
9915                      MI->getOperand(3).getTargetFlags())
9916    .addReg(0);
9917    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
9918    addDirectMem(MIB, X86::EAX);
9919  }
9920
9921  MI->eraseFromParent(); // The pseudo instruction is gone now.
9922  return BB;
9923}
9924
9925MachineBasicBlock *
9926X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
9927                                               MachineBasicBlock *BB) const {
9928  switch (MI->getOpcode()) {
9929  default: assert(false && "Unexpected instr type to insert");
9930  case X86::WIN_ALLOCA:
9931    return EmitLoweredWinAlloca(MI, BB);
9932  case X86::TLSCall_32:
9933  case X86::TLSCall_64:
9934    return EmitLoweredTLSCall(MI, BB);
9935  case X86::CMOV_GR8:
9936  case X86::CMOV_FR32:
9937  case X86::CMOV_FR64:
9938  case X86::CMOV_V4F32:
9939  case X86::CMOV_V2F64:
9940  case X86::CMOV_V2I64:
9941  case X86::CMOV_GR16:
9942  case X86::CMOV_GR32:
9943  case X86::CMOV_RFP32:
9944  case X86::CMOV_RFP64:
9945  case X86::CMOV_RFP80:
9946    return EmitLoweredSelect(MI, BB);
9947
9948  case X86::FP32_TO_INT16_IN_MEM:
9949  case X86::FP32_TO_INT32_IN_MEM:
9950  case X86::FP32_TO_INT64_IN_MEM:
9951  case X86::FP64_TO_INT16_IN_MEM:
9952  case X86::FP64_TO_INT32_IN_MEM:
9953  case X86::FP64_TO_INT64_IN_MEM:
9954  case X86::FP80_TO_INT16_IN_MEM:
9955  case X86::FP80_TO_INT32_IN_MEM:
9956  case X86::FP80_TO_INT64_IN_MEM: {
9957    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9958    DebugLoc DL = MI->getDebugLoc();
9959
9960    // Change the floating point control register to use "round towards zero"
9961    // mode when truncating to an integer value.
9962    MachineFunction *F = BB->getParent();
9963    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
9964    addFrameReference(BuildMI(*BB, MI, DL,
9965                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
9966
9967    // Load the old value of the high byte of the control word...
9968    unsigned OldCW =
9969      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
9970    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
9971                      CWFrameIdx);
9972
9973    // Set the high part to be round to zero...
9974    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
9975      .addImm(0xC7F);
9976
9977    // Reload the modified control word now...
9978    addFrameReference(BuildMI(*BB, MI, DL,
9979                              TII->get(X86::FLDCW16m)), CWFrameIdx);
9980
9981    // Restore the memory image of control word to original value
9982    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
9983      .addReg(OldCW);
9984
9985    // Get the X86 opcode to use.
9986    unsigned Opc;
9987    switch (MI->getOpcode()) {
9988    default: llvm_unreachable("illegal opcode!");
9989    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
9990    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
9991    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
9992    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
9993    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
9994    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
9995    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
9996    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
9997    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
9998    }
9999
10000    X86AddressMode AM;
10001    MachineOperand &Op = MI->getOperand(0);
10002    if (Op.isReg()) {
10003      AM.BaseType = X86AddressMode::RegBase;
10004      AM.Base.Reg = Op.getReg();
10005    } else {
10006      AM.BaseType = X86AddressMode::FrameIndexBase;
10007      AM.Base.FrameIndex = Op.getIndex();
10008    }
10009    Op = MI->getOperand(1);
10010    if (Op.isImm())
10011      AM.Scale = Op.getImm();
10012    Op = MI->getOperand(2);
10013    if (Op.isImm())
10014      AM.IndexReg = Op.getImm();
10015    Op = MI->getOperand(3);
10016    if (Op.isGlobal()) {
10017      AM.GV = Op.getGlobal();
10018    } else {
10019      AM.Disp = Op.getImm();
10020    }
10021    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10022                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10023
10024    // Reload the original control word now.
10025    addFrameReference(BuildMI(*BB, MI, DL,
10026                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10027
10028    MI->eraseFromParent();   // The pseudo instruction is gone now.
10029    return BB;
10030  }
10031    // String/text processing lowering.
10032  case X86::PCMPISTRM128REG:
10033  case X86::VPCMPISTRM128REG:
10034    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10035  case X86::PCMPISTRM128MEM:
10036  case X86::VPCMPISTRM128MEM:
10037    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10038  case X86::PCMPESTRM128REG:
10039  case X86::VPCMPESTRM128REG:
10040    return EmitPCMP(MI, BB, 5, false /* in mem */);
10041  case X86::PCMPESTRM128MEM:
10042  case X86::VPCMPESTRM128MEM:
10043    return EmitPCMP(MI, BB, 5, true /* in mem */);
10044
10045    // Atomic Lowering.
10046  case X86::ATOMAND32:
10047    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10048                                               X86::AND32ri, X86::MOV32rm,
10049                                               X86::LCMPXCHG32,
10050                                               X86::NOT32r, X86::EAX,
10051                                               X86::GR32RegisterClass);
10052  case X86::ATOMOR32:
10053    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10054                                               X86::OR32ri, X86::MOV32rm,
10055                                               X86::LCMPXCHG32,
10056                                               X86::NOT32r, X86::EAX,
10057                                               X86::GR32RegisterClass);
10058  case X86::ATOMXOR32:
10059    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10060                                               X86::XOR32ri, X86::MOV32rm,
10061                                               X86::LCMPXCHG32,
10062                                               X86::NOT32r, X86::EAX,
10063                                               X86::GR32RegisterClass);
10064  case X86::ATOMNAND32:
10065    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10066                                               X86::AND32ri, X86::MOV32rm,
10067                                               X86::LCMPXCHG32,
10068                                               X86::NOT32r, X86::EAX,
10069                                               X86::GR32RegisterClass, true);
10070  case X86::ATOMMIN32:
10071    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10072  case X86::ATOMMAX32:
10073    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10074  case X86::ATOMUMIN32:
10075    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10076  case X86::ATOMUMAX32:
10077    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10078
10079  case X86::ATOMAND16:
10080    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10081                                               X86::AND16ri, X86::MOV16rm,
10082                                               X86::LCMPXCHG16,
10083                                               X86::NOT16r, X86::AX,
10084                                               X86::GR16RegisterClass);
10085  case X86::ATOMOR16:
10086    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10087                                               X86::OR16ri, X86::MOV16rm,
10088                                               X86::LCMPXCHG16,
10089                                               X86::NOT16r, X86::AX,
10090                                               X86::GR16RegisterClass);
10091  case X86::ATOMXOR16:
10092    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10093                                               X86::XOR16ri, X86::MOV16rm,
10094                                               X86::LCMPXCHG16,
10095                                               X86::NOT16r, X86::AX,
10096                                               X86::GR16RegisterClass);
10097  case X86::ATOMNAND16:
10098    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10099                                               X86::AND16ri, X86::MOV16rm,
10100                                               X86::LCMPXCHG16,
10101                                               X86::NOT16r, X86::AX,
10102                                               X86::GR16RegisterClass, true);
10103  case X86::ATOMMIN16:
10104    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10105  case X86::ATOMMAX16:
10106    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10107  case X86::ATOMUMIN16:
10108    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10109  case X86::ATOMUMAX16:
10110    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10111
10112  case X86::ATOMAND8:
10113    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10114                                               X86::AND8ri, X86::MOV8rm,
10115                                               X86::LCMPXCHG8,
10116                                               X86::NOT8r, X86::AL,
10117                                               X86::GR8RegisterClass);
10118  case X86::ATOMOR8:
10119    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10120                                               X86::OR8ri, X86::MOV8rm,
10121                                               X86::LCMPXCHG8,
10122                                               X86::NOT8r, X86::AL,
10123                                               X86::GR8RegisterClass);
10124  case X86::ATOMXOR8:
10125    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10126                                               X86::XOR8ri, X86::MOV8rm,
10127                                               X86::LCMPXCHG8,
10128                                               X86::NOT8r, X86::AL,
10129                                               X86::GR8RegisterClass);
10130  case X86::ATOMNAND8:
10131    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10132                                               X86::AND8ri, X86::MOV8rm,
10133                                               X86::LCMPXCHG8,
10134                                               X86::NOT8r, X86::AL,
10135                                               X86::GR8RegisterClass, true);
10136  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10137  // This group is for 64-bit host.
10138  case X86::ATOMAND64:
10139    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10140                                               X86::AND64ri32, X86::MOV64rm,
10141                                               X86::LCMPXCHG64,
10142                                               X86::NOT64r, X86::RAX,
10143                                               X86::GR64RegisterClass);
10144  case X86::ATOMOR64:
10145    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10146                                               X86::OR64ri32, X86::MOV64rm,
10147                                               X86::LCMPXCHG64,
10148                                               X86::NOT64r, X86::RAX,
10149                                               X86::GR64RegisterClass);
10150  case X86::ATOMXOR64:
10151    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10152                                               X86::XOR64ri32, X86::MOV64rm,
10153                                               X86::LCMPXCHG64,
10154                                               X86::NOT64r, X86::RAX,
10155                                               X86::GR64RegisterClass);
10156  case X86::ATOMNAND64:
10157    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10158                                               X86::AND64ri32, X86::MOV64rm,
10159                                               X86::LCMPXCHG64,
10160                                               X86::NOT64r, X86::RAX,
10161                                               X86::GR64RegisterClass, true);
10162  case X86::ATOMMIN64:
10163    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10164  case X86::ATOMMAX64:
10165    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10166  case X86::ATOMUMIN64:
10167    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10168  case X86::ATOMUMAX64:
10169    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10170
10171  // This group does 64-bit operations on a 32-bit host.
10172  case X86::ATOMAND6432:
10173    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10174                                               X86::AND32rr, X86::AND32rr,
10175                                               X86::AND32ri, X86::AND32ri,
10176                                               false);
10177  case X86::ATOMOR6432:
10178    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10179                                               X86::OR32rr, X86::OR32rr,
10180                                               X86::OR32ri, X86::OR32ri,
10181                                               false);
10182  case X86::ATOMXOR6432:
10183    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10184                                               X86::XOR32rr, X86::XOR32rr,
10185                                               X86::XOR32ri, X86::XOR32ri,
10186                                               false);
10187  case X86::ATOMNAND6432:
10188    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10189                                               X86::AND32rr, X86::AND32rr,
10190                                               X86::AND32ri, X86::AND32ri,
10191                                               true);
10192  case X86::ATOMADD6432:
10193    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10194                                               X86::ADD32rr, X86::ADC32rr,
10195                                               X86::ADD32ri, X86::ADC32ri,
10196                                               false);
10197  case X86::ATOMSUB6432:
10198    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10199                                               X86::SUB32rr, X86::SBB32rr,
10200                                               X86::SUB32ri, X86::SBB32ri,
10201                                               false);
10202  case X86::ATOMSWAP6432:
10203    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10204                                               X86::MOV32rr, X86::MOV32rr,
10205                                               X86::MOV32ri, X86::MOV32ri,
10206                                               false);
10207  case X86::VASTART_SAVE_XMM_REGS:
10208    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10209
10210  case X86::VAARG_64:
10211    return EmitVAARG64WithCustomInserter(MI, BB);
10212  }
10213}
10214
10215//===----------------------------------------------------------------------===//
10216//                           X86 Optimization Hooks
10217//===----------------------------------------------------------------------===//
10218
10219void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10220                                                       const APInt &Mask,
10221                                                       APInt &KnownZero,
10222                                                       APInt &KnownOne,
10223                                                       const SelectionDAG &DAG,
10224                                                       unsigned Depth) const {
10225  unsigned Opc = Op.getOpcode();
10226  assert((Opc >= ISD::BUILTIN_OP_END ||
10227          Opc == ISD::INTRINSIC_WO_CHAIN ||
10228          Opc == ISD::INTRINSIC_W_CHAIN ||
10229          Opc == ISD::INTRINSIC_VOID) &&
10230         "Should use MaskedValueIsZero if you don't know whether Op"
10231         " is a target node!");
10232
10233  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10234  switch (Opc) {
10235  default: break;
10236  case X86ISD::ADD:
10237  case X86ISD::SUB:
10238  case X86ISD::SMUL:
10239  case X86ISD::UMUL:
10240  case X86ISD::INC:
10241  case X86ISD::DEC:
10242  case X86ISD::OR:
10243  case X86ISD::XOR:
10244  case X86ISD::AND:
10245    // These nodes' second result is a boolean.
10246    if (Op.getResNo() == 0)
10247      break;
10248    // Fallthrough
10249  case X86ISD::SETCC:
10250    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10251                                       Mask.getBitWidth() - 1);
10252    break;
10253  }
10254}
10255
10256unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10257                                                         unsigned Depth) const {
10258  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10259  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10260    return Op.getValueType().getScalarType().getSizeInBits();
10261
10262  // Fallback case.
10263  return 1;
10264}
10265
10266/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10267/// node is a GlobalAddress + offset.
10268bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10269                                       const GlobalValue* &GA,
10270                                       int64_t &Offset) const {
10271  if (N->getOpcode() == X86ISD::Wrapper) {
10272    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10273      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10274      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10275      return true;
10276    }
10277  }
10278  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10279}
10280
10281/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10282/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10283/// if the load addresses are consecutive, non-overlapping, and in the right
10284/// order.
10285static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10286                                     const TargetLowering &TLI) {
10287  DebugLoc dl = N->getDebugLoc();
10288  EVT VT = N->getValueType(0);
10289
10290  if (VT.getSizeInBits() != 128)
10291    return SDValue();
10292
10293  SmallVector<SDValue, 16> Elts;
10294  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10295    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10296
10297  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10298}
10299
10300/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10301/// generation and convert it from being a bunch of shuffles and extracts
10302/// to a simple store and scalar loads to extract the elements.
10303static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10304                                                const TargetLowering &TLI) {
10305  SDValue InputVector = N->getOperand(0);
10306
10307  // Only operate on vectors of 4 elements, where the alternative shuffling
10308  // gets to be more expensive.
10309  if (InputVector.getValueType() != MVT::v4i32)
10310    return SDValue();
10311
10312  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10313  // single use which is a sign-extend or zero-extend, and all elements are
10314  // used.
10315  SmallVector<SDNode *, 4> Uses;
10316  unsigned ExtractedElements = 0;
10317  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10318       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10319    if (UI.getUse().getResNo() != InputVector.getResNo())
10320      return SDValue();
10321
10322    SDNode *Extract = *UI;
10323    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10324      return SDValue();
10325
10326    if (Extract->getValueType(0) != MVT::i32)
10327      return SDValue();
10328    if (!Extract->hasOneUse())
10329      return SDValue();
10330    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10331        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10332      return SDValue();
10333    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10334      return SDValue();
10335
10336    // Record which element was extracted.
10337    ExtractedElements |=
10338      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10339
10340    Uses.push_back(Extract);
10341  }
10342
10343  // If not all the elements were used, this may not be worthwhile.
10344  if (ExtractedElements != 15)
10345    return SDValue();
10346
10347  // Ok, we've now decided to do the transformation.
10348  DebugLoc dl = InputVector.getDebugLoc();
10349
10350  // Store the value to a temporary stack slot.
10351  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10352  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10353                            MachinePointerInfo(), false, false, 0);
10354
10355  // Replace each use (extract) with a load of the appropriate element.
10356  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10357       UE = Uses.end(); UI != UE; ++UI) {
10358    SDNode *Extract = *UI;
10359
10360    // Compute the element's address.
10361    SDValue Idx = Extract->getOperand(1);
10362    unsigned EltSize =
10363        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10364    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10365    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10366
10367    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10368                                     StackPtr, OffsetVal);
10369
10370    // Load the scalar.
10371    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10372                                     ScalarAddr, MachinePointerInfo(),
10373                                     false, false, 0);
10374
10375    // Replace the exact with the load.
10376    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10377  }
10378
10379  // The replacement was made in place; don't return anything.
10380  return SDValue();
10381}
10382
10383/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10384static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10385                                    const X86Subtarget *Subtarget) {
10386  DebugLoc DL = N->getDebugLoc();
10387  SDValue Cond = N->getOperand(0);
10388  // Get the LHS/RHS of the select.
10389  SDValue LHS = N->getOperand(1);
10390  SDValue RHS = N->getOperand(2);
10391
10392  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10393  // instructions match the semantics of the common C idiom x<y?x:y but not
10394  // x<=y?x:y, because of how they handle negative zero (which can be
10395  // ignored in unsafe-math mode).
10396  if (Subtarget->hasSSE2() &&
10397      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10398      Cond.getOpcode() == ISD::SETCC) {
10399    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10400
10401    unsigned Opcode = 0;
10402    // Check for x CC y ? x : y.
10403    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10404        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10405      switch (CC) {
10406      default: break;
10407      case ISD::SETULT:
10408        // Converting this to a min would handle NaNs incorrectly, and swapping
10409        // the operands would cause it to handle comparisons between positive
10410        // and negative zero incorrectly.
10411        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10412          if (!UnsafeFPMath &&
10413              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10414            break;
10415          std::swap(LHS, RHS);
10416        }
10417        Opcode = X86ISD::FMIN;
10418        break;
10419      case ISD::SETOLE:
10420        // Converting this to a min would handle comparisons between positive
10421        // and negative zero incorrectly.
10422        if (!UnsafeFPMath &&
10423            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
10424          break;
10425        Opcode = X86ISD::FMIN;
10426        break;
10427      case ISD::SETULE:
10428        // Converting this to a min would handle both negative zeros and NaNs
10429        // incorrectly, but we can swap the operands to fix both.
10430        std::swap(LHS, RHS);
10431      case ISD::SETOLT:
10432      case ISD::SETLT:
10433      case ISD::SETLE:
10434        Opcode = X86ISD::FMIN;
10435        break;
10436
10437      case ISD::SETOGE:
10438        // Converting this to a max would handle comparisons between positive
10439        // and negative zero incorrectly.
10440        if (!UnsafeFPMath &&
10441            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
10442          break;
10443        Opcode = X86ISD::FMAX;
10444        break;
10445      case ISD::SETUGT:
10446        // Converting this to a max would handle NaNs incorrectly, and swapping
10447        // the operands would cause it to handle comparisons between positive
10448        // and negative zero incorrectly.
10449        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10450          if (!UnsafeFPMath &&
10451              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10452            break;
10453          std::swap(LHS, RHS);
10454        }
10455        Opcode = X86ISD::FMAX;
10456        break;
10457      case ISD::SETUGE:
10458        // Converting this to a max would handle both negative zeros and NaNs
10459        // incorrectly, but we can swap the operands to fix both.
10460        std::swap(LHS, RHS);
10461      case ISD::SETOGT:
10462      case ISD::SETGT:
10463      case ISD::SETGE:
10464        Opcode = X86ISD::FMAX;
10465        break;
10466      }
10467    // Check for x CC y ? y : x -- a min/max with reversed arms.
10468    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
10469               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
10470      switch (CC) {
10471      default: break;
10472      case ISD::SETOGE:
10473        // Converting this to a min would handle comparisons between positive
10474        // and negative zero incorrectly, and swapping the operands would
10475        // cause it to handle NaNs incorrectly.
10476        if (!UnsafeFPMath &&
10477            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
10478          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10479            break;
10480          std::swap(LHS, RHS);
10481        }
10482        Opcode = X86ISD::FMIN;
10483        break;
10484      case ISD::SETUGT:
10485        // Converting this to a min would handle NaNs incorrectly.
10486        if (!UnsafeFPMath &&
10487            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
10488          break;
10489        Opcode = X86ISD::FMIN;
10490        break;
10491      case ISD::SETUGE:
10492        // Converting this to a min would handle both negative zeros and NaNs
10493        // incorrectly, but we can swap the operands to fix both.
10494        std::swap(LHS, RHS);
10495      case ISD::SETOGT:
10496      case ISD::SETGT:
10497      case ISD::SETGE:
10498        Opcode = X86ISD::FMIN;
10499        break;
10500
10501      case ISD::SETULT:
10502        // Converting this to a max would handle NaNs incorrectly.
10503        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10504          break;
10505        Opcode = X86ISD::FMAX;
10506        break;
10507      case ISD::SETOLE:
10508        // Converting this to a max would handle comparisons between positive
10509        // and negative zero incorrectly, and swapping the operands would
10510        // cause it to handle NaNs incorrectly.
10511        if (!UnsafeFPMath &&
10512            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
10513          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
10514            break;
10515          std::swap(LHS, RHS);
10516        }
10517        Opcode = X86ISD::FMAX;
10518        break;
10519      case ISD::SETULE:
10520        // Converting this to a max would handle both negative zeros and NaNs
10521        // incorrectly, but we can swap the operands to fix both.
10522        std::swap(LHS, RHS);
10523      case ISD::SETOLT:
10524      case ISD::SETLT:
10525      case ISD::SETLE:
10526        Opcode = X86ISD::FMAX;
10527        break;
10528      }
10529    }
10530
10531    if (Opcode)
10532      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
10533  }
10534
10535  // If this is a select between two integer constants, try to do some
10536  // optimizations.
10537  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
10538    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
10539      // Don't do this for crazy integer types.
10540      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
10541        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
10542        // so that TrueC (the true value) is larger than FalseC.
10543        bool NeedsCondInvert = false;
10544
10545        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
10546            // Efficiently invertible.
10547            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
10548             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
10549              isa<ConstantSDNode>(Cond.getOperand(1))))) {
10550          NeedsCondInvert = true;
10551          std::swap(TrueC, FalseC);
10552        }
10553
10554        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
10555        if (FalseC->getAPIntValue() == 0 &&
10556            TrueC->getAPIntValue().isPowerOf2()) {
10557          if (NeedsCondInvert) // Invert the condition if needed.
10558            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10559                               DAG.getConstant(1, Cond.getValueType()));
10560
10561          // Zero extend the condition if needed.
10562          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
10563
10564          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10565          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
10566                             DAG.getConstant(ShAmt, MVT::i8));
10567        }
10568
10569        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
10570        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10571          if (NeedsCondInvert) // Invert the condition if needed.
10572            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10573                               DAG.getConstant(1, Cond.getValueType()));
10574
10575          // Zero extend the condition if needed.
10576          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10577                             FalseC->getValueType(0), Cond);
10578          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10579                             SDValue(FalseC, 0));
10580        }
10581
10582        // Optimize cases that will turn into an LEA instruction.  This requires
10583        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10584        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10585          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10586          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10587
10588          bool isFastMultiplier = false;
10589          if (Diff < 10) {
10590            switch ((unsigned char)Diff) {
10591              default: break;
10592              case 1:  // result = add base, cond
10593              case 2:  // result = lea base(    , cond*2)
10594              case 3:  // result = lea base(cond, cond*2)
10595              case 4:  // result = lea base(    , cond*4)
10596              case 5:  // result = lea base(cond, cond*4)
10597              case 8:  // result = lea base(    , cond*8)
10598              case 9:  // result = lea base(cond, cond*8)
10599                isFastMultiplier = true;
10600                break;
10601            }
10602          }
10603
10604          if (isFastMultiplier) {
10605            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10606            if (NeedsCondInvert) // Invert the condition if needed.
10607              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
10608                                 DAG.getConstant(1, Cond.getValueType()));
10609
10610            // Zero extend the condition if needed.
10611            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10612                               Cond);
10613            // Scale the condition by the difference.
10614            if (Diff != 1)
10615              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10616                                 DAG.getConstant(Diff, Cond.getValueType()));
10617
10618            // Add the base if non-zero.
10619            if (FalseC->getAPIntValue() != 0)
10620              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10621                                 SDValue(FalseC, 0));
10622            return Cond;
10623          }
10624        }
10625      }
10626  }
10627
10628  return SDValue();
10629}
10630
10631/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
10632static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
10633                                  TargetLowering::DAGCombinerInfo &DCI) {
10634  DebugLoc DL = N->getDebugLoc();
10635
10636  // If the flag operand isn't dead, don't touch this CMOV.
10637  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
10638    return SDValue();
10639
10640  // If this is a select between two integer constants, try to do some
10641  // optimizations.  Note that the operands are ordered the opposite of SELECT
10642  // operands.
10643  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
10644    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
10645      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
10646      // larger than FalseC (the false value).
10647      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
10648
10649      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
10650        CC = X86::GetOppositeBranchCondition(CC);
10651        std::swap(TrueC, FalseC);
10652      }
10653
10654      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
10655      // This is efficient for any integer data type (including i8/i16) and
10656      // shift amount.
10657      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
10658        SDValue Cond = N->getOperand(3);
10659        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10660                           DAG.getConstant(CC, MVT::i8), Cond);
10661
10662        // Zero extend the condition if needed.
10663        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
10664
10665        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
10666        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
10667                           DAG.getConstant(ShAmt, MVT::i8));
10668        if (N->getNumValues() == 2)  // Dead flag value?
10669          return DCI.CombineTo(N, Cond, SDValue());
10670        return Cond;
10671      }
10672
10673      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
10674      // for any integer data type, including i8/i16.
10675      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
10676        SDValue Cond = N->getOperand(3);
10677        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10678                           DAG.getConstant(CC, MVT::i8), Cond);
10679
10680        // Zero extend the condition if needed.
10681        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
10682                           FalseC->getValueType(0), Cond);
10683        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10684                           SDValue(FalseC, 0));
10685
10686        if (N->getNumValues() == 2)  // Dead flag value?
10687          return DCI.CombineTo(N, Cond, SDValue());
10688        return Cond;
10689      }
10690
10691      // Optimize cases that will turn into an LEA instruction.  This requires
10692      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
10693      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
10694        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
10695        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
10696
10697        bool isFastMultiplier = false;
10698        if (Diff < 10) {
10699          switch ((unsigned char)Diff) {
10700          default: break;
10701          case 1:  // result = add base, cond
10702          case 2:  // result = lea base(    , cond*2)
10703          case 3:  // result = lea base(cond, cond*2)
10704          case 4:  // result = lea base(    , cond*4)
10705          case 5:  // result = lea base(cond, cond*4)
10706          case 8:  // result = lea base(    , cond*8)
10707          case 9:  // result = lea base(cond, cond*8)
10708            isFastMultiplier = true;
10709            break;
10710          }
10711        }
10712
10713        if (isFastMultiplier) {
10714          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
10715          SDValue Cond = N->getOperand(3);
10716          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10717                             DAG.getConstant(CC, MVT::i8), Cond);
10718          // Zero extend the condition if needed.
10719          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
10720                             Cond);
10721          // Scale the condition by the difference.
10722          if (Diff != 1)
10723            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
10724                               DAG.getConstant(Diff, Cond.getValueType()));
10725
10726          // Add the base if non-zero.
10727          if (FalseC->getAPIntValue() != 0)
10728            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
10729                               SDValue(FalseC, 0));
10730          if (N->getNumValues() == 2)  // Dead flag value?
10731            return DCI.CombineTo(N, Cond, SDValue());
10732          return Cond;
10733        }
10734      }
10735    }
10736  }
10737  return SDValue();
10738}
10739
10740
10741/// PerformMulCombine - Optimize a single multiply with constant into two
10742/// in order to implement it with two cheaper instructions, e.g.
10743/// LEA + SHL, LEA + LEA.
10744static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
10745                                 TargetLowering::DAGCombinerInfo &DCI) {
10746  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10747    return SDValue();
10748
10749  EVT VT = N->getValueType(0);
10750  if (VT != MVT::i64)
10751    return SDValue();
10752
10753  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
10754  if (!C)
10755    return SDValue();
10756  uint64_t MulAmt = C->getZExtValue();
10757  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
10758    return SDValue();
10759
10760  uint64_t MulAmt1 = 0;
10761  uint64_t MulAmt2 = 0;
10762  if ((MulAmt % 9) == 0) {
10763    MulAmt1 = 9;
10764    MulAmt2 = MulAmt / 9;
10765  } else if ((MulAmt % 5) == 0) {
10766    MulAmt1 = 5;
10767    MulAmt2 = MulAmt / 5;
10768  } else if ((MulAmt % 3) == 0) {
10769    MulAmt1 = 3;
10770    MulAmt2 = MulAmt / 3;
10771  }
10772  if (MulAmt2 &&
10773      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
10774    DebugLoc DL = N->getDebugLoc();
10775
10776    if (isPowerOf2_64(MulAmt2) &&
10777        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
10778      // If second multiplifer is pow2, issue it first. We want the multiply by
10779      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
10780      // is an add.
10781      std::swap(MulAmt1, MulAmt2);
10782
10783    SDValue NewMul;
10784    if (isPowerOf2_64(MulAmt1))
10785      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
10786                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
10787    else
10788      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
10789                           DAG.getConstant(MulAmt1, VT));
10790
10791    if (isPowerOf2_64(MulAmt2))
10792      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
10793                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
10794    else
10795      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
10796                           DAG.getConstant(MulAmt2, VT));
10797
10798    // Do not add new nodes to DAG combiner worklist.
10799    DCI.CombineTo(N, NewMul, false);
10800  }
10801  return SDValue();
10802}
10803
10804static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
10805  SDValue N0 = N->getOperand(0);
10806  SDValue N1 = N->getOperand(1);
10807  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
10808  EVT VT = N0.getValueType();
10809
10810  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
10811  // since the result of setcc_c is all zero's or all ones.
10812  if (N1C && N0.getOpcode() == ISD::AND &&
10813      N0.getOperand(1).getOpcode() == ISD::Constant) {
10814    SDValue N00 = N0.getOperand(0);
10815    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
10816        ((N00.getOpcode() == ISD::ANY_EXTEND ||
10817          N00.getOpcode() == ISD::ZERO_EXTEND) &&
10818         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
10819      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
10820      APInt ShAmt = N1C->getAPIntValue();
10821      Mask = Mask.shl(ShAmt);
10822      if (Mask != 0)
10823        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
10824                           N00, DAG.getConstant(Mask, VT));
10825    }
10826  }
10827
10828  return SDValue();
10829}
10830
10831/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
10832///                       when possible.
10833static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
10834                                   const X86Subtarget *Subtarget) {
10835  EVT VT = N->getValueType(0);
10836  if (!VT.isVector() && VT.isInteger() &&
10837      N->getOpcode() == ISD::SHL)
10838    return PerformSHLCombine(N, DAG);
10839
10840  // On X86 with SSE2 support, we can transform this to a vector shift if
10841  // all elements are shifted by the same amount.  We can't do this in legalize
10842  // because the a constant vector is typically transformed to a constant pool
10843  // so we have no knowledge of the shift amount.
10844  if (!Subtarget->hasSSE2())
10845    return SDValue();
10846
10847  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
10848    return SDValue();
10849
10850  SDValue ShAmtOp = N->getOperand(1);
10851  EVT EltVT = VT.getVectorElementType();
10852  DebugLoc DL = N->getDebugLoc();
10853  SDValue BaseShAmt = SDValue();
10854  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
10855    unsigned NumElts = VT.getVectorNumElements();
10856    unsigned i = 0;
10857    for (; i != NumElts; ++i) {
10858      SDValue Arg = ShAmtOp.getOperand(i);
10859      if (Arg.getOpcode() == ISD::UNDEF) continue;
10860      BaseShAmt = Arg;
10861      break;
10862    }
10863    for (; i != NumElts; ++i) {
10864      SDValue Arg = ShAmtOp.getOperand(i);
10865      if (Arg.getOpcode() == ISD::UNDEF) continue;
10866      if (Arg != BaseShAmt) {
10867        return SDValue();
10868      }
10869    }
10870  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
10871             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
10872    SDValue InVec = ShAmtOp.getOperand(0);
10873    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
10874      unsigned NumElts = InVec.getValueType().getVectorNumElements();
10875      unsigned i = 0;
10876      for (; i != NumElts; ++i) {
10877        SDValue Arg = InVec.getOperand(i);
10878        if (Arg.getOpcode() == ISD::UNDEF) continue;
10879        BaseShAmt = Arg;
10880        break;
10881      }
10882    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
10883       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
10884         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
10885         if (C->getZExtValue() == SplatIdx)
10886           BaseShAmt = InVec.getOperand(1);
10887       }
10888    }
10889    if (BaseShAmt.getNode() == 0)
10890      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
10891                              DAG.getIntPtrConstant(0));
10892  } else
10893    return SDValue();
10894
10895  // The shift amount is an i32.
10896  if (EltVT.bitsGT(MVT::i32))
10897    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
10898  else if (EltVT.bitsLT(MVT::i32))
10899    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
10900
10901  // The shift amount is identical so we can do a vector shift.
10902  SDValue  ValOp = N->getOperand(0);
10903  switch (N->getOpcode()) {
10904  default:
10905    llvm_unreachable("Unknown shift opcode!");
10906    break;
10907  case ISD::SHL:
10908    if (VT == MVT::v2i64)
10909      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10910                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
10911                         ValOp, BaseShAmt);
10912    if (VT == MVT::v4i32)
10913      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10914                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
10915                         ValOp, BaseShAmt);
10916    if (VT == MVT::v8i16)
10917      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10918                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
10919                         ValOp, BaseShAmt);
10920    break;
10921  case ISD::SRA:
10922    if (VT == MVT::v4i32)
10923      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10924                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
10925                         ValOp, BaseShAmt);
10926    if (VT == MVT::v8i16)
10927      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10928                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
10929                         ValOp, BaseShAmt);
10930    break;
10931  case ISD::SRL:
10932    if (VT == MVT::v2i64)
10933      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10934                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
10935                         ValOp, BaseShAmt);
10936    if (VT == MVT::v4i32)
10937      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10938                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
10939                         ValOp, BaseShAmt);
10940    if (VT ==  MVT::v8i16)
10941      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
10942                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
10943                         ValOp, BaseShAmt);
10944    break;
10945  }
10946  return SDValue();
10947}
10948
10949static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
10950                                TargetLowering::DAGCombinerInfo &DCI,
10951                                const X86Subtarget *Subtarget) {
10952  if (DCI.isBeforeLegalizeOps())
10953    return SDValue();
10954
10955  EVT VT = N->getValueType(0);
10956  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
10957    return SDValue();
10958
10959  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
10960  SDValue N0 = N->getOperand(0);
10961  SDValue N1 = N->getOperand(1);
10962  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
10963    std::swap(N0, N1);
10964  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
10965    return SDValue();
10966  if (!N0.hasOneUse() || !N1.hasOneUse())
10967    return SDValue();
10968
10969  SDValue ShAmt0 = N0.getOperand(1);
10970  if (ShAmt0.getValueType() != MVT::i8)
10971    return SDValue();
10972  SDValue ShAmt1 = N1.getOperand(1);
10973  if (ShAmt1.getValueType() != MVT::i8)
10974    return SDValue();
10975  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
10976    ShAmt0 = ShAmt0.getOperand(0);
10977  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
10978    ShAmt1 = ShAmt1.getOperand(0);
10979
10980  DebugLoc DL = N->getDebugLoc();
10981  unsigned Opc = X86ISD::SHLD;
10982  SDValue Op0 = N0.getOperand(0);
10983  SDValue Op1 = N1.getOperand(0);
10984  if (ShAmt0.getOpcode() == ISD::SUB) {
10985    Opc = X86ISD::SHRD;
10986    std::swap(Op0, Op1);
10987    std::swap(ShAmt0, ShAmt1);
10988  }
10989
10990  unsigned Bits = VT.getSizeInBits();
10991  if (ShAmt1.getOpcode() == ISD::SUB) {
10992    SDValue Sum = ShAmt1.getOperand(0);
10993    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
10994      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
10995      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
10996        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
10997      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
10998        return DAG.getNode(Opc, DL, VT,
10999                           Op0, Op1,
11000                           DAG.getNode(ISD::TRUNCATE, DL,
11001                                       MVT::i8, ShAmt0));
11002    }
11003  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11004    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11005    if (ShAmt0C &&
11006        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11007      return DAG.getNode(Opc, DL, VT,
11008                         N0.getOperand(0), N1.getOperand(0),
11009                         DAG.getNode(ISD::TRUNCATE, DL,
11010                                       MVT::i8, ShAmt0));
11011  }
11012
11013  return SDValue();
11014}
11015
11016/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11017static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11018                                   const X86Subtarget *Subtarget) {
11019  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11020  // the FP state in cases where an emms may be missing.
11021  // A preferable solution to the general problem is to figure out the right
11022  // places to insert EMMS.  This qualifies as a quick hack.
11023
11024  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11025  StoreSDNode *St = cast<StoreSDNode>(N);
11026  EVT VT = St->getValue().getValueType();
11027  if (VT.getSizeInBits() != 64)
11028    return SDValue();
11029
11030  const Function *F = DAG.getMachineFunction().getFunction();
11031  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11032  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11033    && Subtarget->hasSSE2();
11034  if ((VT.isVector() ||
11035       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11036      isa<LoadSDNode>(St->getValue()) &&
11037      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11038      St->getChain().hasOneUse() && !St->isVolatile()) {
11039    SDNode* LdVal = St->getValue().getNode();
11040    LoadSDNode *Ld = 0;
11041    int TokenFactorIndex = -1;
11042    SmallVector<SDValue, 8> Ops;
11043    SDNode* ChainVal = St->getChain().getNode();
11044    // Must be a store of a load.  We currently handle two cases:  the load
11045    // is a direct child, and it's under an intervening TokenFactor.  It is
11046    // possible to dig deeper under nested TokenFactors.
11047    if (ChainVal == LdVal)
11048      Ld = cast<LoadSDNode>(St->getChain());
11049    else if (St->getValue().hasOneUse() &&
11050             ChainVal->getOpcode() == ISD::TokenFactor) {
11051      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11052        if (ChainVal->getOperand(i).getNode() == LdVal) {
11053          TokenFactorIndex = i;
11054          Ld = cast<LoadSDNode>(St->getValue());
11055        } else
11056          Ops.push_back(ChainVal->getOperand(i));
11057      }
11058    }
11059
11060    if (!Ld || !ISD::isNormalLoad(Ld))
11061      return SDValue();
11062
11063    // If this is not the MMX case, i.e. we are just turning i64 load/store
11064    // into f64 load/store, avoid the transformation if there are multiple
11065    // uses of the loaded value.
11066    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11067      return SDValue();
11068
11069    DebugLoc LdDL = Ld->getDebugLoc();
11070    DebugLoc StDL = N->getDebugLoc();
11071    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11072    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11073    // pair instead.
11074    if (Subtarget->is64Bit() || F64IsLegal) {
11075      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11076      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11077                                  Ld->getPointerInfo(), Ld->isVolatile(),
11078                                  Ld->isNonTemporal(), Ld->getAlignment());
11079      SDValue NewChain = NewLd.getValue(1);
11080      if (TokenFactorIndex != -1) {
11081        Ops.push_back(NewChain);
11082        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11083                               Ops.size());
11084      }
11085      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11086                          St->getPointerInfo(),
11087                          St->isVolatile(), St->isNonTemporal(),
11088                          St->getAlignment());
11089    }
11090
11091    // Otherwise, lower to two pairs of 32-bit loads / stores.
11092    SDValue LoAddr = Ld->getBasePtr();
11093    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11094                                 DAG.getConstant(4, MVT::i32));
11095
11096    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11097                               Ld->getPointerInfo(),
11098                               Ld->isVolatile(), Ld->isNonTemporal(),
11099                               Ld->getAlignment());
11100    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11101                               Ld->getPointerInfo().getWithOffset(4),
11102                               Ld->isVolatile(), Ld->isNonTemporal(),
11103                               MinAlign(Ld->getAlignment(), 4));
11104
11105    SDValue NewChain = LoLd.getValue(1);
11106    if (TokenFactorIndex != -1) {
11107      Ops.push_back(LoLd);
11108      Ops.push_back(HiLd);
11109      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11110                             Ops.size());
11111    }
11112
11113    LoAddr = St->getBasePtr();
11114    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11115                         DAG.getConstant(4, MVT::i32));
11116
11117    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11118                                St->getPointerInfo(),
11119                                St->isVolatile(), St->isNonTemporal(),
11120                                St->getAlignment());
11121    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11122                                St->getPointerInfo().getWithOffset(4),
11123                                St->isVolatile(),
11124                                St->isNonTemporal(),
11125                                MinAlign(St->getAlignment(), 4));
11126    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11127  }
11128  return SDValue();
11129}
11130
11131/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11132/// X86ISD::FXOR nodes.
11133static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11134  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11135  // F[X]OR(0.0, x) -> x
11136  // F[X]OR(x, 0.0) -> x
11137  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11138    if (C->getValueAPF().isPosZero())
11139      return N->getOperand(1);
11140  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11141    if (C->getValueAPF().isPosZero())
11142      return N->getOperand(0);
11143  return SDValue();
11144}
11145
11146/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11147static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11148  // FAND(0.0, x) -> 0.0
11149  // FAND(x, 0.0) -> 0.0
11150  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11151    if (C->getValueAPF().isPosZero())
11152      return N->getOperand(0);
11153  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11154    if (C->getValueAPF().isPosZero())
11155      return N->getOperand(1);
11156  return SDValue();
11157}
11158
11159static SDValue PerformBTCombine(SDNode *N,
11160                                SelectionDAG &DAG,
11161                                TargetLowering::DAGCombinerInfo &DCI) {
11162  // BT ignores high bits in the bit index operand.
11163  SDValue Op1 = N->getOperand(1);
11164  if (Op1.hasOneUse()) {
11165    unsigned BitWidth = Op1.getValueSizeInBits();
11166    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11167    APInt KnownZero, KnownOne;
11168    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11169                                          !DCI.isBeforeLegalizeOps());
11170    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11171    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11172        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11173      DCI.CommitTargetLoweringOpt(TLO);
11174  }
11175  return SDValue();
11176}
11177
11178static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11179  SDValue Op = N->getOperand(0);
11180  if (Op.getOpcode() == ISD::BIT_CONVERT)
11181    Op = Op.getOperand(0);
11182  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11183  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11184      VT.getVectorElementType().getSizeInBits() ==
11185      OpVT.getVectorElementType().getSizeInBits()) {
11186    return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
11187  }
11188  return SDValue();
11189}
11190
11191static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11192  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
11193  //           (and (i32 x86isd::setcc_carry), 1)
11194  // This eliminates the zext. This transformation is necessary because
11195  // ISD::SETCC is always legalized to i8.
11196  DebugLoc dl = N->getDebugLoc();
11197  SDValue N0 = N->getOperand(0);
11198  EVT VT = N->getValueType(0);
11199  if (N0.getOpcode() == ISD::AND &&
11200      N0.hasOneUse() &&
11201      N0.getOperand(0).hasOneUse()) {
11202    SDValue N00 = N0.getOperand(0);
11203    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11204      return SDValue();
11205    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11206    if (!C || C->getZExtValue() != 1)
11207      return SDValue();
11208    return DAG.getNode(ISD::AND, dl, VT,
11209                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11210                                   N00.getOperand(0), N00.getOperand(1)),
11211                       DAG.getConstant(1, VT));
11212  }
11213
11214  return SDValue();
11215}
11216
11217SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
11218                                             DAGCombinerInfo &DCI) const {
11219  SelectionDAG &DAG = DCI.DAG;
11220  switch (N->getOpcode()) {
11221  default: break;
11222  case ISD::EXTRACT_VECTOR_ELT:
11223                        return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
11224  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
11225  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
11226  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
11227  case ISD::SHL:
11228  case ISD::SRA:
11229  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
11230  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
11231  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
11232  case X86ISD::FXOR:
11233  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
11234  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
11235  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
11236  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
11237  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
11238  case X86ISD::SHUFPS:      // Handle all target specific shuffles
11239  case X86ISD::SHUFPD:
11240  case X86ISD::PALIGN:
11241  case X86ISD::PUNPCKHBW:
11242  case X86ISD::PUNPCKHWD:
11243  case X86ISD::PUNPCKHDQ:
11244  case X86ISD::PUNPCKHQDQ:
11245  case X86ISD::UNPCKHPS:
11246  case X86ISD::UNPCKHPD:
11247  case X86ISD::PUNPCKLBW:
11248  case X86ISD::PUNPCKLWD:
11249  case X86ISD::PUNPCKLDQ:
11250  case X86ISD::PUNPCKLQDQ:
11251  case X86ISD::UNPCKLPS:
11252  case X86ISD::UNPCKLPD:
11253  case X86ISD::MOVHLPS:
11254  case X86ISD::MOVLHPS:
11255  case X86ISD::PSHUFD:
11256  case X86ISD::PSHUFHW:
11257  case X86ISD::PSHUFLW:
11258  case X86ISD::MOVSS:
11259  case X86ISD::MOVSD:
11260  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
11261  }
11262
11263  return SDValue();
11264}
11265
11266/// isTypeDesirableForOp - Return true if the target has native support for
11267/// the specified value type and it is 'desirable' to use the type for the
11268/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
11269/// instruction encodings are longer and some i16 instructions are slow.
11270bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
11271  if (!isTypeLegal(VT))
11272    return false;
11273  if (VT != MVT::i16)
11274    return true;
11275
11276  switch (Opc) {
11277  default:
11278    return true;
11279  case ISD::LOAD:
11280  case ISD::SIGN_EXTEND:
11281  case ISD::ZERO_EXTEND:
11282  case ISD::ANY_EXTEND:
11283  case ISD::SHL:
11284  case ISD::SRL:
11285  case ISD::SUB:
11286  case ISD::ADD:
11287  case ISD::MUL:
11288  case ISD::AND:
11289  case ISD::OR:
11290  case ISD::XOR:
11291    return false;
11292  }
11293}
11294
11295/// IsDesirableToPromoteOp - This method query the target whether it is
11296/// beneficial for dag combiner to promote the specified node. If true, it
11297/// should return the desired promotion type by reference.
11298bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
11299  EVT VT = Op.getValueType();
11300  if (VT != MVT::i16)
11301    return false;
11302
11303  bool Promote = false;
11304  bool Commute = false;
11305  switch (Op.getOpcode()) {
11306  default: break;
11307  case ISD::LOAD: {
11308    LoadSDNode *LD = cast<LoadSDNode>(Op);
11309    // If the non-extending load has a single use and it's not live out, then it
11310    // might be folded.
11311    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
11312                                                     Op.hasOneUse()*/) {
11313      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
11314             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
11315        // The only case where we'd want to promote LOAD (rather then it being
11316        // promoted as an operand is when it's only use is liveout.
11317        if (UI->getOpcode() != ISD::CopyToReg)
11318          return false;
11319      }
11320    }
11321    Promote = true;
11322    break;
11323  }
11324  case ISD::SIGN_EXTEND:
11325  case ISD::ZERO_EXTEND:
11326  case ISD::ANY_EXTEND:
11327    Promote = true;
11328    break;
11329  case ISD::SHL:
11330  case ISD::SRL: {
11331    SDValue N0 = Op.getOperand(0);
11332    // Look out for (store (shl (load), x)).
11333    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
11334      return false;
11335    Promote = true;
11336    break;
11337  }
11338  case ISD::ADD:
11339  case ISD::MUL:
11340  case ISD::AND:
11341  case ISD::OR:
11342  case ISD::XOR:
11343    Commute = true;
11344    // fallthrough
11345  case ISD::SUB: {
11346    SDValue N0 = Op.getOperand(0);
11347    SDValue N1 = Op.getOperand(1);
11348    if (!Commute && MayFoldLoad(N1))
11349      return false;
11350    // Avoid disabling potential load folding opportunities.
11351    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
11352      return false;
11353    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
11354      return false;
11355    Promote = true;
11356  }
11357  }
11358
11359  PVT = MVT::i32;
11360  return Promote;
11361}
11362
11363//===----------------------------------------------------------------------===//
11364//                           X86 Inline Assembly Support
11365//===----------------------------------------------------------------------===//
11366
11367static bool LowerToBSwap(CallInst *CI) {
11368  // FIXME: this should verify that we are targetting a 486 or better.  If not,
11369  // we will turn this bswap into something that will be lowered to logical ops
11370  // instead of emitting the bswap asm.  For now, we don't support 486 or lower
11371  // so don't worry about this.
11372
11373  // Verify this is a simple bswap.
11374  if (CI->getNumArgOperands() != 1 ||
11375      CI->getType() != CI->getArgOperand(0)->getType() ||
11376      !CI->getType()->isIntegerTy())
11377    return false;
11378
11379  const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11380  if (!Ty || Ty->getBitWidth() % 16 != 0)
11381    return false;
11382
11383  // Okay, we can do this xform, do so now.
11384  const Type *Tys[] = { Ty };
11385  Module *M = CI->getParent()->getParent()->getParent();
11386  Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
11387
11388  Value *Op = CI->getArgOperand(0);
11389  Op = CallInst::Create(Int, Op, CI->getName(), CI);
11390
11391  CI->replaceAllUsesWith(Op);
11392  CI->eraseFromParent();
11393  return true;
11394}
11395
11396bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
11397  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11398  InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
11399
11400  std::string AsmStr = IA->getAsmString();
11401
11402  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
11403  SmallVector<StringRef, 4> AsmPieces;
11404  SplitString(AsmStr, AsmPieces, ";\n");
11405
11406  switch (AsmPieces.size()) {
11407  default: return false;
11408  case 1:
11409    AsmStr = AsmPieces[0];
11410    AsmPieces.clear();
11411    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
11412
11413    // bswap $0
11414    if (AsmPieces.size() == 2 &&
11415        (AsmPieces[0] == "bswap" ||
11416         AsmPieces[0] == "bswapq" ||
11417         AsmPieces[0] == "bswapl") &&
11418        (AsmPieces[1] == "$0" ||
11419         AsmPieces[1] == "${0:q}")) {
11420      // No need to check constraints, nothing other than the equivalent of
11421      // "=r,0" would be valid here.
11422      return LowerToBSwap(CI);
11423    }
11424    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
11425    if (CI->getType()->isIntegerTy(16) &&
11426        AsmPieces.size() == 3 &&
11427        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
11428        AsmPieces[1] == "$$8," &&
11429        AsmPieces[2] == "${0:w}" &&
11430        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11431      AsmPieces.clear();
11432      const std::string &Constraints = IA->getConstraintString();
11433      SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11434      std::sort(AsmPieces.begin(), AsmPieces.end());
11435      if (AsmPieces.size() == 4 &&
11436          AsmPieces[0] == "~{cc}" &&
11437          AsmPieces[1] == "~{dirflag}" &&
11438          AsmPieces[2] == "~{flags}" &&
11439          AsmPieces[3] == "~{fpsr}") {
11440        return LowerToBSwap(CI);
11441      }
11442    }
11443    break;
11444  case 3:
11445    if (CI->getType()->isIntegerTy(32) &&
11446        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
11447      SmallVector<StringRef, 4> Words;
11448      SplitString(AsmPieces[0], Words, " \t,");
11449      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11450          Words[2] == "${0:w}") {
11451        Words.clear();
11452        SplitString(AsmPieces[1], Words, " \t,");
11453        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
11454            Words[2] == "$0") {
11455          Words.clear();
11456          SplitString(AsmPieces[2], Words, " \t,");
11457          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
11458              Words[2] == "${0:w}") {
11459            AsmPieces.clear();
11460            const std::string &Constraints = IA->getConstraintString();
11461            SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
11462            std::sort(AsmPieces.begin(), AsmPieces.end());
11463            if (AsmPieces.size() == 4 &&
11464                AsmPieces[0] == "~{cc}" &&
11465                AsmPieces[1] == "~{dirflag}" &&
11466                AsmPieces[2] == "~{flags}" &&
11467                AsmPieces[3] == "~{fpsr}") {
11468              return LowerToBSwap(CI);
11469            }
11470          }
11471        }
11472      }
11473    }
11474    if (CI->getType()->isIntegerTy(64) &&
11475        Constraints.size() >= 2 &&
11476        Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
11477        Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
11478      // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
11479      SmallVector<StringRef, 4> Words;
11480      SplitString(AsmPieces[0], Words, " \t");
11481      if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
11482        Words.clear();
11483        SplitString(AsmPieces[1], Words, " \t");
11484        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
11485          Words.clear();
11486          SplitString(AsmPieces[2], Words, " \t,");
11487          if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
11488              Words[2] == "%edx") {
11489            return LowerToBSwap(CI);
11490          }
11491        }
11492      }
11493    }
11494    break;
11495  }
11496  return false;
11497}
11498
11499
11500
11501/// getConstraintType - Given a constraint letter, return the type of
11502/// constraint it is for this target.
11503X86TargetLowering::ConstraintType
11504X86TargetLowering::getConstraintType(const std::string &Constraint) const {
11505  if (Constraint.size() == 1) {
11506    switch (Constraint[0]) {
11507    case 'R':
11508    case 'q':
11509    case 'Q':
11510    case 'f':
11511    case 't':
11512    case 'u':
11513    case 'y':
11514    case 'x':
11515    case 'Y':
11516      return C_RegisterClass;
11517    case 'a':
11518    case 'b':
11519    case 'c':
11520    case 'd':
11521    case 'S':
11522    case 'D':
11523    case 'A':
11524      return C_Register;
11525    case 'I':
11526    case 'J':
11527    case 'K':
11528    case 'L':
11529    case 'M':
11530    case 'N':
11531    case 'G':
11532    case 'C':
11533    case 'e':
11534    case 'Z':
11535      return C_Other;
11536    default:
11537      break;
11538    }
11539  }
11540  return TargetLowering::getConstraintType(Constraint);
11541}
11542
11543/// Examine constraint type and operand type and determine a weight value.
11544/// This object must already have been set up with the operand type
11545/// and the current alternative constraint selected.
11546TargetLowering::ConstraintWeight
11547  X86TargetLowering::getSingleConstraintMatchWeight(
11548    AsmOperandInfo &info, const char *constraint) const {
11549  ConstraintWeight weight = CW_Invalid;
11550  Value *CallOperandVal = info.CallOperandVal;
11551    // If we don't have a value, we can't do a match,
11552    // but allow it at the lowest weight.
11553  if (CallOperandVal == NULL)
11554    return CW_Default;
11555  const Type *type = CallOperandVal->getType();
11556  // Look at the constraint type.
11557  switch (*constraint) {
11558  default:
11559    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11560  case 'R':
11561  case 'q':
11562  case 'Q':
11563  case 'a':
11564  case 'b':
11565  case 'c':
11566  case 'd':
11567  case 'S':
11568  case 'D':
11569  case 'A':
11570    if (CallOperandVal->getType()->isIntegerTy())
11571      weight = CW_SpecificReg;
11572    break;
11573  case 'f':
11574  case 't':
11575  case 'u':
11576      if (type->isFloatingPointTy())
11577        weight = CW_SpecificReg;
11578      break;
11579  case 'y':
11580      if (type->isX86_MMXTy() && !DisableMMX && Subtarget->hasMMX())
11581        weight = CW_SpecificReg;
11582      break;
11583  case 'x':
11584  case 'Y':
11585    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1())
11586      weight = CW_Register;
11587    break;
11588  case 'I':
11589    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
11590      if (C->getZExtValue() <= 31)
11591        weight = CW_Constant;
11592    }
11593    break;
11594  case 'J':
11595    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11596      if (C->getZExtValue() <= 63)
11597        weight = CW_Constant;
11598    }
11599    break;
11600  case 'K':
11601    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11602      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
11603        weight = CW_Constant;
11604    }
11605    break;
11606  case 'L':
11607    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11608      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
11609        weight = CW_Constant;
11610    }
11611    break;
11612  case 'M':
11613    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11614      if (C->getZExtValue() <= 3)
11615        weight = CW_Constant;
11616    }
11617    break;
11618  case 'N':
11619    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11620      if (C->getZExtValue() <= 0xff)
11621        weight = CW_Constant;
11622    }
11623    break;
11624  case 'G':
11625  case 'C':
11626    if (dyn_cast<ConstantFP>(CallOperandVal)) {
11627      weight = CW_Constant;
11628    }
11629    break;
11630  case 'e':
11631    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11632      if ((C->getSExtValue() >= -0x80000000LL) &&
11633          (C->getSExtValue() <= 0x7fffffffLL))
11634        weight = CW_Constant;
11635    }
11636    break;
11637  case 'Z':
11638    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
11639      if (C->getZExtValue() <= 0xffffffff)
11640        weight = CW_Constant;
11641    }
11642    break;
11643  }
11644  return weight;
11645}
11646
11647/// LowerXConstraint - try to replace an X constraint, which matches anything,
11648/// with another that has more specific requirements based on the type of the
11649/// corresponding operand.
11650const char *X86TargetLowering::
11651LowerXConstraint(EVT ConstraintVT) const {
11652  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
11653  // 'f' like normal targets.
11654  if (ConstraintVT.isFloatingPoint()) {
11655    if (Subtarget->hasSSE2())
11656      return "Y";
11657    if (Subtarget->hasSSE1())
11658      return "x";
11659  }
11660
11661  return TargetLowering::LowerXConstraint(ConstraintVT);
11662}
11663
11664/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11665/// vector.  If it is invalid, don't add anything to Ops.
11666void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11667                                                     char Constraint,
11668                                                     std::vector<SDValue>&Ops,
11669                                                     SelectionDAG &DAG) const {
11670  SDValue Result(0, 0);
11671
11672  switch (Constraint) {
11673  default: break;
11674  case 'I':
11675    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11676      if (C->getZExtValue() <= 31) {
11677        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11678        break;
11679      }
11680    }
11681    return;
11682  case 'J':
11683    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11684      if (C->getZExtValue() <= 63) {
11685        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11686        break;
11687      }
11688    }
11689    return;
11690  case 'K':
11691    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11692      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
11693        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11694        break;
11695      }
11696    }
11697    return;
11698  case 'N':
11699    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11700      if (C->getZExtValue() <= 255) {
11701        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11702        break;
11703      }
11704    }
11705    return;
11706  case 'e': {
11707    // 32-bit signed value
11708    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11709      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11710                                           C->getSExtValue())) {
11711        // Widen to 64 bits here to get it sign extended.
11712        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
11713        break;
11714      }
11715    // FIXME gcc accepts some relocatable values here too, but only in certain
11716    // memory models; it's complicated.
11717    }
11718    return;
11719  }
11720  case 'Z': {
11721    // 32-bit unsigned value
11722    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
11723      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
11724                                           C->getZExtValue())) {
11725        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
11726        break;
11727      }
11728    }
11729    // FIXME gcc accepts some relocatable values here too, but only in certain
11730    // memory models; it's complicated.
11731    return;
11732  }
11733  case 'i': {
11734    // Literal immediates are always ok.
11735    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
11736      // Widen to 64 bits here to get it sign extended.
11737      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
11738      break;
11739    }
11740
11741    // In any sort of PIC mode addresses need to be computed at runtime by
11742    // adding in a register or some sort of table lookup.  These can't
11743    // be used as immediates.
11744    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
11745      return;
11746
11747    // If we are in non-pic codegen mode, we allow the address of a global (with
11748    // an optional displacement) to be used with 'i'.
11749    GlobalAddressSDNode *GA = 0;
11750    int64_t Offset = 0;
11751
11752    // Match either (GA), (GA+C), (GA+C1+C2), etc.
11753    while (1) {
11754      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
11755        Offset += GA->getOffset();
11756        break;
11757      } else if (Op.getOpcode() == ISD::ADD) {
11758        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11759          Offset += C->getZExtValue();
11760          Op = Op.getOperand(0);
11761          continue;
11762        }
11763      } else if (Op.getOpcode() == ISD::SUB) {
11764        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
11765          Offset += -C->getZExtValue();
11766          Op = Op.getOperand(0);
11767          continue;
11768        }
11769      }
11770
11771      // Otherwise, this isn't something we can handle, reject it.
11772      return;
11773    }
11774
11775    const GlobalValue *GV = GA->getGlobal();
11776    // If we require an extra load to get this address, as in PIC mode, we
11777    // can't accept it.
11778    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
11779                                                        getTargetMachine())))
11780      return;
11781
11782    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
11783                                        GA->getValueType(0), Offset);
11784    break;
11785  }
11786  }
11787
11788  if (Result.getNode()) {
11789    Ops.push_back(Result);
11790    return;
11791  }
11792  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
11793}
11794
11795std::vector<unsigned> X86TargetLowering::
11796getRegClassForInlineAsmConstraint(const std::string &Constraint,
11797                                  EVT VT) const {
11798  if (Constraint.size() == 1) {
11799    // FIXME: not handling fp-stack yet!
11800    switch (Constraint[0]) {      // GCC X86 Constraint Letters
11801    default: break;  // Unknown constraint letter
11802    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
11803      if (Subtarget->is64Bit()) {
11804        if (VT == MVT::i32)
11805          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
11806                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
11807                                       X86::R10D,X86::R11D,X86::R12D,
11808                                       X86::R13D,X86::R14D,X86::R15D,
11809                                       X86::EBP, X86::ESP, 0);
11810        else if (VT == MVT::i16)
11811          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
11812                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
11813                                       X86::R10W,X86::R11W,X86::R12W,
11814                                       X86::R13W,X86::R14W,X86::R15W,
11815                                       X86::BP,  X86::SP, 0);
11816        else if (VT == MVT::i8)
11817          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
11818                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
11819                                       X86::R10B,X86::R11B,X86::R12B,
11820                                       X86::R13B,X86::R14B,X86::R15B,
11821                                       X86::BPL, X86::SPL, 0);
11822
11823        else if (VT == MVT::i64)
11824          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
11825                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
11826                                       X86::R10, X86::R11, X86::R12,
11827                                       X86::R13, X86::R14, X86::R15,
11828                                       X86::RBP, X86::RSP, 0);
11829
11830        break;
11831      }
11832      // 32-bit fallthrough
11833    case 'Q':   // Q_REGS
11834      if (VT == MVT::i32)
11835        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
11836      else if (VT == MVT::i16)
11837        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
11838      else if (VT == MVT::i8)
11839        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
11840      else if (VT == MVT::i64)
11841        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
11842      break;
11843    }
11844  }
11845
11846  return std::vector<unsigned>();
11847}
11848
11849std::pair<unsigned, const TargetRegisterClass*>
11850X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
11851                                                EVT VT) const {
11852  // First, see if this is a constraint that directly corresponds to an LLVM
11853  // register class.
11854  if (Constraint.size() == 1) {
11855    // GCC Constraint Letters
11856    switch (Constraint[0]) {
11857    default: break;
11858    case 'r':   // GENERAL_REGS
11859    case 'l':   // INDEX_REGS
11860      if (VT == MVT::i8)
11861        return std::make_pair(0U, X86::GR8RegisterClass);
11862      if (VT == MVT::i16)
11863        return std::make_pair(0U, X86::GR16RegisterClass);
11864      if (VT == MVT::i32 || !Subtarget->is64Bit())
11865        return std::make_pair(0U, X86::GR32RegisterClass);
11866      return std::make_pair(0U, X86::GR64RegisterClass);
11867    case 'R':   // LEGACY_REGS
11868      if (VT == MVT::i8)
11869        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
11870      if (VT == MVT::i16)
11871        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
11872      if (VT == MVT::i32 || !Subtarget->is64Bit())
11873        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
11874      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
11875    case 'f':  // FP Stack registers.
11876      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
11877      // value to the correct fpstack register class.
11878      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
11879        return std::make_pair(0U, X86::RFP32RegisterClass);
11880      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
11881        return std::make_pair(0U, X86::RFP64RegisterClass);
11882      return std::make_pair(0U, X86::RFP80RegisterClass);
11883    case 'y':   // MMX_REGS if MMX allowed.
11884      if (!Subtarget->hasMMX()) break;
11885      return std::make_pair(0U, X86::VR64RegisterClass);
11886    case 'Y':   // SSE_REGS if SSE2 allowed
11887      if (!Subtarget->hasSSE2()) break;
11888      // FALL THROUGH.
11889    case 'x':   // SSE_REGS if SSE1 allowed
11890      if (!Subtarget->hasSSE1()) break;
11891
11892      switch (VT.getSimpleVT().SimpleTy) {
11893      default: break;
11894      // Scalar SSE types.
11895      case MVT::f32:
11896      case MVT::i32:
11897        return std::make_pair(0U, X86::FR32RegisterClass);
11898      case MVT::f64:
11899      case MVT::i64:
11900        return std::make_pair(0U, X86::FR64RegisterClass);
11901      // Vector types.
11902      case MVT::v16i8:
11903      case MVT::v8i16:
11904      case MVT::v4i32:
11905      case MVT::v2i64:
11906      case MVT::v4f32:
11907      case MVT::v2f64:
11908        return std::make_pair(0U, X86::VR128RegisterClass);
11909      }
11910      break;
11911    }
11912  }
11913
11914  // Use the default implementation in TargetLowering to convert the register
11915  // constraint into a member of a register class.
11916  std::pair<unsigned, const TargetRegisterClass*> Res;
11917  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
11918
11919  // Not found as a standard register?
11920  if (Res.second == 0) {
11921    // Map st(0) -> st(7) -> ST0
11922    if (Constraint.size() == 7 && Constraint[0] == '{' &&
11923        tolower(Constraint[1]) == 's' &&
11924        tolower(Constraint[2]) == 't' &&
11925        Constraint[3] == '(' &&
11926        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
11927        Constraint[5] == ')' &&
11928        Constraint[6] == '}') {
11929
11930      Res.first = X86::ST0+Constraint[4]-'0';
11931      Res.second = X86::RFP80RegisterClass;
11932      return Res;
11933    }
11934
11935    // GCC allows "st(0)" to be called just plain "st".
11936    if (StringRef("{st}").equals_lower(Constraint)) {
11937      Res.first = X86::ST0;
11938      Res.second = X86::RFP80RegisterClass;
11939      return Res;
11940    }
11941
11942    // flags -> EFLAGS
11943    if (StringRef("{flags}").equals_lower(Constraint)) {
11944      Res.first = X86::EFLAGS;
11945      Res.second = X86::CCRRegisterClass;
11946      return Res;
11947    }
11948
11949    // 'A' means EAX + EDX.
11950    if (Constraint == "A") {
11951      Res.first = X86::EAX;
11952      Res.second = X86::GR32_ADRegisterClass;
11953      return Res;
11954    }
11955    return Res;
11956  }
11957
11958  // Otherwise, check to see if this is a register class of the wrong value
11959  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
11960  // turn into {ax},{dx}.
11961  if (Res.second->hasType(VT))
11962    return Res;   // Correct type already, nothing to do.
11963
11964  // All of the single-register GCC register classes map their values onto
11965  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
11966  // really want an 8-bit or 32-bit register, map to the appropriate register
11967  // class and return the appropriate register.
11968  if (Res.second == X86::GR16RegisterClass) {
11969    if (VT == MVT::i8) {
11970      unsigned DestReg = 0;
11971      switch (Res.first) {
11972      default: break;
11973      case X86::AX: DestReg = X86::AL; break;
11974      case X86::DX: DestReg = X86::DL; break;
11975      case X86::CX: DestReg = X86::CL; break;
11976      case X86::BX: DestReg = X86::BL; break;
11977      }
11978      if (DestReg) {
11979        Res.first = DestReg;
11980        Res.second = X86::GR8RegisterClass;
11981      }
11982    } else if (VT == MVT::i32) {
11983      unsigned DestReg = 0;
11984      switch (Res.first) {
11985      default: break;
11986      case X86::AX: DestReg = X86::EAX; break;
11987      case X86::DX: DestReg = X86::EDX; break;
11988      case X86::CX: DestReg = X86::ECX; break;
11989      case X86::BX: DestReg = X86::EBX; break;
11990      case X86::SI: DestReg = X86::ESI; break;
11991      case X86::DI: DestReg = X86::EDI; break;
11992      case X86::BP: DestReg = X86::EBP; break;
11993      case X86::SP: DestReg = X86::ESP; break;
11994      }
11995      if (DestReg) {
11996        Res.first = DestReg;
11997        Res.second = X86::GR32RegisterClass;
11998      }
11999    } else if (VT == MVT::i64) {
12000      unsigned DestReg = 0;
12001      switch (Res.first) {
12002      default: break;
12003      case X86::AX: DestReg = X86::RAX; break;
12004      case X86::DX: DestReg = X86::RDX; break;
12005      case X86::CX: DestReg = X86::RCX; break;
12006      case X86::BX: DestReg = X86::RBX; break;
12007      case X86::SI: DestReg = X86::RSI; break;
12008      case X86::DI: DestReg = X86::RDI; break;
12009      case X86::BP: DestReg = X86::RBP; break;
12010      case X86::SP: DestReg = X86::RSP; break;
12011      }
12012      if (DestReg) {
12013        Res.first = DestReg;
12014        Res.second = X86::GR64RegisterClass;
12015      }
12016    }
12017  } else if (Res.second == X86::FR32RegisterClass ||
12018             Res.second == X86::FR64RegisterClass ||
12019             Res.second == X86::VR128RegisterClass) {
12020    // Handle references to XMM physical registers that got mapped into the
12021    // wrong class.  This can happen with constraints like {xmm0} where the
12022    // target independent register mapper will just pick the first match it can
12023    // find, ignoring the required type.
12024    if (VT == MVT::f32)
12025      Res.second = X86::FR32RegisterClass;
12026    else if (VT == MVT::f64)
12027      Res.second = X86::FR64RegisterClass;
12028    else if (X86::VR128RegisterClass->hasType(VT))
12029      Res.second = X86::VR128RegisterClass;
12030  }
12031
12032  return Res;
12033}
12034