X86ISelLowering.cpp revision e0ef509aeb47b396cf1bdc170ca4f468f799719f
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86ISelLowering.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/PseudoSourceValue.h"
39#include "llvm/MC/MCAsmInfo.h"
40#include "llvm/MC/MCContext.h"
41#include "llvm/MC/MCExpr.h"
42#include "llvm/MC/MCSymbol.h"
43#include "llvm/ADT/BitVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/ADT/StringExtras.h"
47#include "llvm/ADT/VectorExtras.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/Dwarf.h"
50#include "llvm/Support/ErrorHandling.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/raw_ostream.h"
53using namespace llvm;
54using namespace dwarf;
55
56STATISTIC(NumTailCalls, "Number of tail calls");
57
58// Forward declarations.
59static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
60                       SDValue V2);
61
62static SDValue Insert128BitVector(SDValue Result,
63                                  SDValue Vec,
64                                  SDValue Idx,
65                                  SelectionDAG &DAG,
66                                  DebugLoc dl);
67
68static SDValue Extract128BitVector(SDValue Vec,
69                                   SDValue Idx,
70                                   SelectionDAG &DAG,
71                                   DebugLoc dl);
72
73static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG);
74
75
76/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
77/// sets things up to match to an AVX VEXTRACTF128 instruction or a
78/// simple subregister reference.  Idx is an index in the 128 bits we
79/// want.  It need not be aligned to a 128-bit bounday.  That makes
80/// lowering EXTRACT_VECTOR_ELT operations easier.
81static SDValue Extract128BitVector(SDValue Vec,
82                                   SDValue Idx,
83                                   SelectionDAG &DAG,
84                                   DebugLoc dl) {
85  EVT VT = Vec.getValueType();
86  assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
87
88  EVT ElVT = VT.getVectorElementType();
89
90  int Factor = VT.getSizeInBits() / 128;
91
92  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(),
93                                  ElVT,
94                                  VT.getVectorNumElements() / Factor);
95
96  // Extract from UNDEF is UNDEF.
97  if (Vec.getOpcode() == ISD::UNDEF)
98    return DAG.getNode(ISD::UNDEF, dl, ResultVT);
99
100  if (isa<ConstantSDNode>(Idx)) {
101    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
102
103    // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
104    // we can match to VEXTRACTF128.
105    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
106
107    // This is the index of the first element of the 128-bit chunk
108    // we want.
109    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
110                                 * ElemsPerChunk);
111
112    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
113
114    SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
115                                 VecIdx);
116
117    return Result;
118  }
119
120  return SDValue();
121}
122
123/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
124/// sets things up to match to an AVX VINSERTF128 instruction or a
125/// simple superregister reference.  Idx is an index in the 128 bits
126/// we want.  It need not be aligned to a 128-bit bounday.  That makes
127/// lowering INSERT_VECTOR_ELT operations easier.
128static SDValue Insert128BitVector(SDValue Result,
129                                  SDValue Vec,
130                                  SDValue Idx,
131                                  SelectionDAG &DAG,
132                                  DebugLoc dl) {
133  if (isa<ConstantSDNode>(Idx)) {
134    EVT VT = Vec.getValueType();
135    assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
136
137    EVT ElVT = VT.getVectorElementType();
138
139    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
140
141    EVT ResultVT = Result.getValueType();
142
143    // Insert the relevant 128 bits.
144    unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
145
146    // This is the index of the first element of the 128-bit chunk
147    // we want.
148    unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
149                                 * ElemsPerChunk);
150
151    SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
152
153    Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
154                         VecIdx);
155    return Result;
156  }
157
158  return SDValue();
159}
160
161/// Given two vectors, concat them.
162static SDValue ConcatVectors(SDValue Lower, SDValue Upper, SelectionDAG &DAG) {
163  DebugLoc dl = Lower.getDebugLoc();
164
165  assert(Lower.getValueType() == Upper.getValueType() && "Mismatched vectors!");
166
167  EVT VT = EVT::getVectorVT(*DAG.getContext(),
168                            Lower.getValueType().getVectorElementType(),
169                            Lower.getValueType().getVectorNumElements() * 2);
170
171  // TODO: Generalize to arbitrary vector length (this assumes 256-bit vectors).
172  assert(VT.getSizeInBits() == 256 && "Unsupported vector concat!");
173
174  // Insert the upper subvector.
175  SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Upper,
176                                   DAG.getConstant(
177                                     // This is half the length of the result
178                                     // vector.  Start inserting the upper 128
179                                     // bits here.
180                                     Lower.getValueType().getVectorNumElements(),
181                                     MVT::i32),
182                                   DAG, dl);
183
184  // Insert the lower subvector.
185  Vec = Insert128BitVector(Vec, Lower, DAG.getConstant(0, MVT::i32), DAG, dl);
186  return Vec;
187}
188
189static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
190  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
191  bool is64Bit = Subtarget->is64Bit();
192
193  if (Subtarget->isTargetEnvMacho()) {
194    if (is64Bit)
195      return new X8664_MachoTargetObjectFile();
196    return new TargetLoweringObjectFileMachO();
197  }
198
199  if (Subtarget->isTargetELF()) {
200    if (is64Bit)
201      return new X8664_ELFTargetObjectFile(TM);
202    return new X8632_ELFTargetObjectFile(TM);
203  }
204  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
205    return new TargetLoweringObjectFileCOFF();
206  llvm_unreachable("unknown subtarget type");
207}
208
209X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
210  : TargetLowering(TM, createTLOF(TM)) {
211  Subtarget = &TM.getSubtarget<X86Subtarget>();
212  X86ScalarSSEf64 = Subtarget->hasXMMInt();
213  X86ScalarSSEf32 = Subtarget->hasXMM();
214  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
215
216  RegInfo = TM.getRegisterInfo();
217  TD = getTargetData();
218
219  // Set up the TargetLowering object.
220  static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
221
222  // X86 is weird, it always uses i8 for shift amounts and setcc results.
223  setBooleanContents(ZeroOrOneBooleanContent);
224  setSchedulingPreference(Sched::RegPressure);
225  setStackPointerRegisterToSaveRestore(X86StackPtr);
226
227  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
228    // Setup Windows compiler runtime calls.
229    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
230    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
231    setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
232    setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
233    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
234    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
235    setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
236    setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
237  }
238
239  if (Subtarget->isTargetDarwin()) {
240    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
241    setUseUnderscoreSetJmp(false);
242    setUseUnderscoreLongJmp(false);
243  } else if (Subtarget->isTargetMingw()) {
244    // MS runtime is weird: it exports _setjmp, but longjmp!
245    setUseUnderscoreSetJmp(true);
246    setUseUnderscoreLongJmp(false);
247  } else {
248    setUseUnderscoreSetJmp(true);
249    setUseUnderscoreLongJmp(true);
250  }
251
252  // Set up the register classes.
253  addRegisterClass(MVT::i8, X86::GR8RegisterClass);
254  addRegisterClass(MVT::i16, X86::GR16RegisterClass);
255  addRegisterClass(MVT::i32, X86::GR32RegisterClass);
256  if (Subtarget->is64Bit())
257    addRegisterClass(MVT::i64, X86::GR64RegisterClass);
258
259  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
260
261  // We don't accept any truncstore of integer registers.
262  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
263  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
264  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
265  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
266  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
267  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
268
269  // SETOEQ and SETUNE require checking two conditions.
270  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
271  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
272  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
273  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
274  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
275  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
276
277  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
278  // operation.
279  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
280  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
281  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
282
283  if (Subtarget->is64Bit()) {
284    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
285    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
286  } else if (!UseSoftFloat) {
287    // We have an algorithm for SSE2->double, and we turn this into a
288    // 64-bit FILD followed by conditional FADD for other targets.
289    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
290    // We have an algorithm for SSE2, and we turn this into a 64-bit
291    // FILD for other targets.
292    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
293  }
294
295  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
296  // this operation.
297  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
298  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
299
300  if (!UseSoftFloat) {
301    // SSE has no i16 to fp conversion, only i32
302    if (X86ScalarSSEf32) {
303      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
304      // f32 and f64 cases are Legal, f80 case is not
305      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
306    } else {
307      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
308      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
309    }
310  } else {
311    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
312    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
313  }
314
315  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
316  // are Legal, f80 is custom lowered.
317  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
318  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
319
320  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
321  // this operation.
322  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
323  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
324
325  if (X86ScalarSSEf32) {
326    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
327    // f32 and f64 cases are Legal, f80 case is not
328    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
329  } else {
330    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
331    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
332  }
333
334  // Handle FP_TO_UINT by promoting the destination to a larger signed
335  // conversion.
336  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
337  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
338  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
339
340  if (Subtarget->is64Bit()) {
341    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
342    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
343  } else if (!UseSoftFloat) {
344    if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
345      // Expand FP_TO_UINT into a select.
346      // FIXME: We would like to use a Custom expander here eventually to do
347      // the optimal thing for SSE vs. the default expansion in the legalizer.
348      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
349    else
350      // With SSE3 we can use fisttpll to convert to a signed i64; without
351      // SSE, we're stuck with a fistpll.
352      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
353  }
354
355  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
356  if (!X86ScalarSSEf64) {
357    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
358    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
359    if (Subtarget->is64Bit()) {
360      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
361      // Without SSE, i64->f64 goes through memory.
362      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
363    }
364  }
365
366  // Scalar integer divide and remainder are lowered to use operations that
367  // produce two results, to match the available instructions. This exposes
368  // the two-result form to trivial CSE, which is able to combine x/y and x%y
369  // into a single instruction.
370  //
371  // Scalar integer multiply-high is also lowered to use two-result
372  // operations, to match the available instructions. However, plain multiply
373  // (low) operations are left as Legal, as there are single-result
374  // instructions for this in x86. Using the two-result multiply instructions
375  // when both high and low results are needed must be arranged by dagcombine.
376  for (unsigned i = 0, e = 4; i != e; ++i) {
377    MVT VT = IntVTs[i];
378    setOperationAction(ISD::MULHS, VT, Expand);
379    setOperationAction(ISD::MULHU, VT, Expand);
380    setOperationAction(ISD::SDIV, VT, Expand);
381    setOperationAction(ISD::UDIV, VT, Expand);
382    setOperationAction(ISD::SREM, VT, Expand);
383    setOperationAction(ISD::UREM, VT, Expand);
384
385    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
386    setOperationAction(ISD::ADDC, VT, Custom);
387    setOperationAction(ISD::ADDE, VT, Custom);
388    setOperationAction(ISD::SUBC, VT, Custom);
389    setOperationAction(ISD::SUBE, VT, Custom);
390  }
391
392  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
393  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
394  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
395  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
396  if (Subtarget->is64Bit())
397    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
398  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
399  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
400  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
401  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
402  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
403  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
404  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
405  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
406
407  setOperationAction(ISD::CTTZ             , MVT::i8   , Custom);
408  setOperationAction(ISD::CTLZ             , MVT::i8   , Custom);
409  setOperationAction(ISD::CTTZ             , MVT::i16  , Custom);
410  setOperationAction(ISD::CTLZ             , MVT::i16  , Custom);
411  setOperationAction(ISD::CTTZ             , MVT::i32  , Custom);
412  setOperationAction(ISD::CTLZ             , MVT::i32  , Custom);
413  if (Subtarget->is64Bit()) {
414    setOperationAction(ISD::CTTZ           , MVT::i64  , Custom);
415    setOperationAction(ISD::CTLZ           , MVT::i64  , Custom);
416  }
417
418  if (Subtarget->hasPOPCNT()) {
419    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
420  } else {
421    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
422    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
423    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
424    if (Subtarget->is64Bit())
425      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
426  }
427
428  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
429  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
430
431  // These should be promoted to a larger select which is supported.
432  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
433  // X86 wants to expand cmov itself.
434  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
435  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
436  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
437  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
438  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
439  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
440  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
441  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
442  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
443  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
444  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
446  if (Subtarget->is64Bit()) {
447    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
448    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
449  }
450  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
451
452  // Darwin ABI issue.
453  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
454  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
455  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
456  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
457  if (Subtarget->is64Bit())
458    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
459  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
460  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
461  if (Subtarget->is64Bit()) {
462    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
463    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
464    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
465    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
466    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
467  }
468  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
469  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
470  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
471  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
472  if (Subtarget->is64Bit()) {
473    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
474    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
475    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
476  }
477
478  if (Subtarget->hasXMM())
479    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
480
481  // We may not have a libcall for MEMBARRIER so we should lower this.
482  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
483
484  // On X86 and X86-64, atomic operations are lowered to locked instructions.
485  // Locked instructions, in turn, have implicit fence semantics (all memory
486  // operations are flushed before issuing the locked instruction, and they
487  // are not buffered), so we can fold away the common pattern of
488  // fence-atomic-fence.
489  setShouldFoldAtomicFences(true);
490
491  // Expand certain atomics
492  for (unsigned i = 0, e = 4; i != e; ++i) {
493    MVT VT = IntVTs[i];
494    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
495    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
496  }
497
498  if (!Subtarget->is64Bit()) {
499    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
501    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
502    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
503    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
504    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
505    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
506  }
507
508  // FIXME - use subtarget debug flags
509  if (!Subtarget->isTargetDarwin() &&
510      !Subtarget->isTargetELF() &&
511      !Subtarget->isTargetCygMing()) {
512    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
513  }
514
515  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
516  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
517  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
518  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
519  if (Subtarget->is64Bit()) {
520    setExceptionPointerRegister(X86::RAX);
521    setExceptionSelectorRegister(X86::RDX);
522  } else {
523    setExceptionPointerRegister(X86::EAX);
524    setExceptionSelectorRegister(X86::EDX);
525  }
526  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
527  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
528
529  setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
530
531  setOperationAction(ISD::TRAP, MVT::Other, Legal);
532
533  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
534  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
535  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
536  if (Subtarget->is64Bit()) {
537    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
538    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
539  } else {
540    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
541    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
542  }
543
544  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
545  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
546  if (Subtarget->is64Bit())
547    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
548  if (Subtarget->isTargetCygMing() || Subtarget->isTargetWindows())
549    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
550  else
551    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
552
553  if (!UseSoftFloat && X86ScalarSSEf64) {
554    // f32 and f64 use SSE.
555    // Set up the FP register classes.
556    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
557    addRegisterClass(MVT::f64, X86::FR64RegisterClass);
558
559    // Use ANDPD to simulate FABS.
560    setOperationAction(ISD::FABS , MVT::f64, Custom);
561    setOperationAction(ISD::FABS , MVT::f32, Custom);
562
563    // Use XORP to simulate FNEG.
564    setOperationAction(ISD::FNEG , MVT::f64, Custom);
565    setOperationAction(ISD::FNEG , MVT::f32, Custom);
566
567    // Use ANDPD and ORPD to simulate FCOPYSIGN.
568    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
569    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
570
571    // We don't support sin/cos/fmod
572    setOperationAction(ISD::FSIN , MVT::f64, Expand);
573    setOperationAction(ISD::FCOS , MVT::f64, Expand);
574    setOperationAction(ISD::FSIN , MVT::f32, Expand);
575    setOperationAction(ISD::FCOS , MVT::f32, Expand);
576
577    // Expand FP immediates into loads from the stack, except for the special
578    // cases we handle.
579    addLegalFPImmediate(APFloat(+0.0)); // xorpd
580    addLegalFPImmediate(APFloat(+0.0f)); // xorps
581  } else if (!UseSoftFloat && X86ScalarSSEf32) {
582    // Use SSE for f32, x87 for f64.
583    // Set up the FP register classes.
584    addRegisterClass(MVT::f32, X86::FR32RegisterClass);
585    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
586
587    // Use ANDPS to simulate FABS.
588    setOperationAction(ISD::FABS , MVT::f32, Custom);
589
590    // Use XORP to simulate FNEG.
591    setOperationAction(ISD::FNEG , MVT::f32, Custom);
592
593    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
594
595    // Use ANDPS and ORPS to simulate FCOPYSIGN.
596    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
597    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
598
599    // We don't support sin/cos/fmod
600    setOperationAction(ISD::FSIN , MVT::f32, Expand);
601    setOperationAction(ISD::FCOS , MVT::f32, Expand);
602
603    // Special cases we handle for FP constants.
604    addLegalFPImmediate(APFloat(+0.0f)); // xorps
605    addLegalFPImmediate(APFloat(+0.0)); // FLD0
606    addLegalFPImmediate(APFloat(+1.0)); // FLD1
607    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
608    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
609
610    if (!UnsafeFPMath) {
611      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
612      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
613    }
614  } else if (!UseSoftFloat) {
615    // f32 and f64 in x87.
616    // Set up the FP register classes.
617    addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
618    addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
619
620    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
621    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
622    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
623    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
624
625    if (!UnsafeFPMath) {
626      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
627      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
628    }
629    addLegalFPImmediate(APFloat(+0.0)); // FLD0
630    addLegalFPImmediate(APFloat(+1.0)); // FLD1
631    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
632    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
633    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
634    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
635    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
636    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
637  }
638
639  // Long double always uses X87.
640  if (!UseSoftFloat) {
641    addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
642    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
643    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
644    {
645      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
646      addLegalFPImmediate(TmpFlt);  // FLD0
647      TmpFlt.changeSign();
648      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
649
650      bool ignored;
651      APFloat TmpFlt2(+1.0);
652      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
653                      &ignored);
654      addLegalFPImmediate(TmpFlt2);  // FLD1
655      TmpFlt2.changeSign();
656      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
657    }
658
659    if (!UnsafeFPMath) {
660      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
661      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
662    }
663  }
664
665  // Always use a library call for pow.
666  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
667  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
668  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
669
670  setOperationAction(ISD::FLOG, MVT::f80, Expand);
671  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
672  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
673  setOperationAction(ISD::FEXP, MVT::f80, Expand);
674  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
675
676  // First set operation action for all vector types to either promote
677  // (for widening) or expand (for scalarization). Then we will selectively
678  // turn on ones that can be effectively codegen'd.
679  for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
680       VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
681    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
682    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
683    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
684    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
685    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
686    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
687    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
688    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
689    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
690    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
691    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
692    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
693    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
694    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
695    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
696    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
697    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
698    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
699    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
700    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
701    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
702    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
703    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
704    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
705    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
706    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
707    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
708    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
709    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
710    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
711    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
712    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
727    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
729    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
730    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
731    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
735    for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
736         InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
737      setTruncStoreAction((MVT::SimpleValueType)VT,
738                          (MVT::SimpleValueType)InnerVT, Expand);
739    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
740    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
741    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
742  }
743
744  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
745  // with -msoft-float, disable use of MMX as well.
746  if (!UseSoftFloat && Subtarget->hasMMX()) {
747    addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
748    // No operations on x86mmx supported, everything uses intrinsics.
749  }
750
751  // MMX-sized vectors (other than x86mmx) are expected to be expanded
752  // into smaller operations.
753  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
754  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
755  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
756  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
757  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
758  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
759  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
760  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
761  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
762  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
763  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
764  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
765  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
766  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
767  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
768  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
769  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
770  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
771  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
772  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
773  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
774  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
775  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
776  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
777  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
778  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
779  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
780  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
781  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
782
783  if (!UseSoftFloat && Subtarget->hasXMM()) {
784    addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
785
786    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
787    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
788    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
789    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
790    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
791    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
792    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
793    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
794    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
795    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
796    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
797    setOperationAction(ISD::VSETCC,             MVT::v4f32, Custom);
798  }
799
800  if (!UseSoftFloat && Subtarget->hasXMMInt()) {
801    addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
802
803    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
804    // registers cannot be used even for integer operations.
805    addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
806    addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
807    addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
808    addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
809
810    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
811    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
812    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
813    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
814    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
815    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
816    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
817    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
818    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
819    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
820    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
821    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
822    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
823    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
824    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
825    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
826
827    setOperationAction(ISD::VSETCC,             MVT::v2f64, Custom);
828    setOperationAction(ISD::VSETCC,             MVT::v16i8, Custom);
829    setOperationAction(ISD::VSETCC,             MVT::v8i16, Custom);
830    setOperationAction(ISD::VSETCC,             MVT::v4i32, Custom);
831
832    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
833    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
834    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
835    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
836    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
837
838    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
839    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
840    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
841    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
842    setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
843
844    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
845    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
846      EVT VT = (MVT::SimpleValueType)i;
847      // Do not attempt to custom lower non-power-of-2 vectors
848      if (!isPowerOf2_32(VT.getVectorNumElements()))
849        continue;
850      // Do not attempt to custom lower non-128-bit vectors
851      if (!VT.is128BitVector())
852        continue;
853      setOperationAction(ISD::BUILD_VECTOR,
854                         VT.getSimpleVT().SimpleTy, Custom);
855      setOperationAction(ISD::VECTOR_SHUFFLE,
856                         VT.getSimpleVT().SimpleTy, Custom);
857      setOperationAction(ISD::EXTRACT_VECTOR_ELT,
858                         VT.getSimpleVT().SimpleTy, Custom);
859    }
860
861    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
862    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
863    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
864    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
865    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
866    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
867
868    if (Subtarget->is64Bit()) {
869      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
870      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
871    }
872
873    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
874    for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
875      MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
876      EVT VT = SVT;
877
878      // Do not attempt to promote non-128-bit vectors
879      if (!VT.is128BitVector())
880        continue;
881
882      setOperationAction(ISD::AND,    SVT, Promote);
883      AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
884      setOperationAction(ISD::OR,     SVT, Promote);
885      AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
886      setOperationAction(ISD::XOR,    SVT, Promote);
887      AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
888      setOperationAction(ISD::LOAD,   SVT, Promote);
889      AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
890      setOperationAction(ISD::SELECT, SVT, Promote);
891      AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
892    }
893
894    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
895
896    // Custom lower v2i64 and v2f64 selects.
897    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
898    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
899    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
900    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
901
902    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
903    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
904  }
905
906  if (Subtarget->hasSSE41()) {
907    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
908    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
909    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
910    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
911    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
912    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
913    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
914    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
915    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
916    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
917
918    // FIXME: Do we need to handle scalar-to-vector here?
919    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
920
921    // Can turn SHL into an integer multiply.
922    setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
923    setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
924
925    // i8 and i16 vectors are custom , because the source register and source
926    // source memory operand types are not the same width.  f32 vectors are
927    // custom since the immediate controlling the insert encodes additional
928    // information.
929    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
930    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
931    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
932    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
933
934    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
935    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
936    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
937    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
938
939    if (Subtarget->is64Bit()) {
940      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
941      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
942    }
943  }
944
945  if (Subtarget->hasSSE42())
946    setOperationAction(ISD::VSETCC,             MVT::v2i64, Custom);
947
948  if (!UseSoftFloat && Subtarget->hasAVX()) {
949    addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
950    addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
951    addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
952    addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
953    addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
954
955    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
956    setOperationAction(ISD::LOAD,               MVT::v8i32, Legal);
957    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
958    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
959
960    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
961    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
962    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
963    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
964    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
965    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
966
967    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
968    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
969    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
970    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
971    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
972    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
973
974    // Custom lower build_vector, vector_shuffle, scalar_to_vector,
975    // insert_vector_elt extract_subvector and extract_vector_elt for
976    // 256-bit types.
977    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
978         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
979         ++i) {
980      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
981      // Do not attempt to custom lower non-256-bit vectors
982      if (!isPowerOf2_32(MVT(VT).getVectorNumElements())
983          || (MVT(VT).getSizeInBits() < 256))
984        continue;
985      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
986      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
987      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
988      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
989      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
990    }
991    // Custom-lower insert_subvector and extract_subvector based on
992    // the result type.
993    for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
994         i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE;
995         ++i) {
996      MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
997      // Do not attempt to custom lower non-256-bit vectors
998      if (!isPowerOf2_32(MVT(VT).getVectorNumElements()))
999        continue;
1000
1001      if (MVT(VT).getSizeInBits() == 128) {
1002        setOperationAction(ISD::EXTRACT_SUBVECTOR,  VT, Custom);
1003      }
1004      else if (MVT(VT).getSizeInBits() == 256) {
1005        setOperationAction(ISD::INSERT_SUBVECTOR,  VT, Custom);
1006      }
1007    }
1008
1009    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1010    // Don't promote loads because we need them for VPERM vector index versions.
1011
1012    for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1013         VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE;
1014         VT++) {
1015      if (!isPowerOf2_32(MVT((MVT::SimpleValueType)VT).getVectorNumElements())
1016          || (MVT((MVT::SimpleValueType)VT).getSizeInBits() < 256))
1017        continue;
1018      setOperationAction(ISD::AND,    (MVT::SimpleValueType)VT, Promote);
1019      AddPromotedToType (ISD::AND,    (MVT::SimpleValueType)VT, MVT::v4i64);
1020      setOperationAction(ISD::OR,     (MVT::SimpleValueType)VT, Promote);
1021      AddPromotedToType (ISD::OR,     (MVT::SimpleValueType)VT, MVT::v4i64);
1022      setOperationAction(ISD::XOR,    (MVT::SimpleValueType)VT, Promote);
1023      AddPromotedToType (ISD::XOR,    (MVT::SimpleValueType)VT, MVT::v4i64);
1024      //setOperationAction(ISD::LOAD,   (MVT::SimpleValueType)VT, Promote);
1025      //AddPromotedToType (ISD::LOAD,   (MVT::SimpleValueType)VT, MVT::v4i64);
1026      setOperationAction(ISD::SELECT, (MVT::SimpleValueType)VT, Promote);
1027      AddPromotedToType (ISD::SELECT, (MVT::SimpleValueType)VT, MVT::v4i64);
1028    }
1029  }
1030
1031  // We want to custom lower some of our intrinsics.
1032  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1033
1034
1035  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1036  // handle type legalization for these operations here.
1037  //
1038  // FIXME: We really should do custom legalization for addition and
1039  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1040  // than generic legalization for 64-bit multiplication-with-overflow, though.
1041  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1042    // Add/Sub/Mul with overflow operations are custom lowered.
1043    MVT VT = IntVTs[i];
1044    setOperationAction(ISD::SADDO, VT, Custom);
1045    setOperationAction(ISD::UADDO, VT, Custom);
1046    setOperationAction(ISD::SSUBO, VT, Custom);
1047    setOperationAction(ISD::USUBO, VT, Custom);
1048    setOperationAction(ISD::SMULO, VT, Custom);
1049    setOperationAction(ISD::UMULO, VT, Custom);
1050  }
1051
1052  // There are no 8-bit 3-address imul/mul instructions
1053  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1054  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1055
1056  if (!Subtarget->is64Bit()) {
1057    // These libcalls are not available in 32-bit.
1058    setLibcallName(RTLIB::SHL_I128, 0);
1059    setLibcallName(RTLIB::SRL_I128, 0);
1060    setLibcallName(RTLIB::SRA_I128, 0);
1061  }
1062
1063  // We have target-specific dag combine patterns for the following nodes:
1064  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1065  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1066  setTargetDAGCombine(ISD::BUILD_VECTOR);
1067  setTargetDAGCombine(ISD::SELECT);
1068  setTargetDAGCombine(ISD::SHL);
1069  setTargetDAGCombine(ISD::SRA);
1070  setTargetDAGCombine(ISD::SRL);
1071  setTargetDAGCombine(ISD::OR);
1072  setTargetDAGCombine(ISD::AND);
1073  setTargetDAGCombine(ISD::ADD);
1074  setTargetDAGCombine(ISD::SUB);
1075  setTargetDAGCombine(ISD::STORE);
1076  setTargetDAGCombine(ISD::ZERO_EXTEND);
1077  if (Subtarget->is64Bit())
1078    setTargetDAGCombine(ISD::MUL);
1079
1080  computeRegisterProperties();
1081
1082  // On Darwin, -Os means optimize for size without hurting performance,
1083  // do not reduce the limit.
1084  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1085  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1086  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1087  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1088  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1089  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1090  setPrefLoopAlignment(16);
1091  benefitFromCodePlacementOpt = true;
1092}
1093
1094
1095MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
1096  return MVT::i8;
1097}
1098
1099
1100/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1101/// the desired ByVal argument alignment.
1102static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
1103  if (MaxAlign == 16)
1104    return;
1105  if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1106    if (VTy->getBitWidth() == 128)
1107      MaxAlign = 16;
1108  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1109    unsigned EltAlign = 0;
1110    getMaxByValAlign(ATy->getElementType(), EltAlign);
1111    if (EltAlign > MaxAlign)
1112      MaxAlign = EltAlign;
1113  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1114    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1115      unsigned EltAlign = 0;
1116      getMaxByValAlign(STy->getElementType(i), EltAlign);
1117      if (EltAlign > MaxAlign)
1118        MaxAlign = EltAlign;
1119      if (MaxAlign == 16)
1120        break;
1121    }
1122  }
1123  return;
1124}
1125
1126/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1127/// function arguments in the caller parameter area. For X86, aggregates
1128/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1129/// are at 4-byte boundaries.
1130unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1131  if (Subtarget->is64Bit()) {
1132    // Max of 8 and alignment of type.
1133    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1134    if (TyAlign > 8)
1135      return TyAlign;
1136    return 8;
1137  }
1138
1139  unsigned Align = 4;
1140  if (Subtarget->hasXMM())
1141    getMaxByValAlign(Ty, Align);
1142  return Align;
1143}
1144
1145/// getOptimalMemOpType - Returns the target specific optimal type for load
1146/// and store operations as a result of memset, memcpy, and memmove
1147/// lowering. If DstAlign is zero that means it's safe to destination
1148/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1149/// means there isn't a need to check it against alignment requirement,
1150/// probably because the source does not need to be loaded. If
1151/// 'NonScalarIntSafe' is true, that means it's safe to return a
1152/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1153/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1154/// constant so it does not need to be loaded.
1155/// It returns EVT::Other if the type should be determined using generic
1156/// target-independent logic.
1157EVT
1158X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1159                                       unsigned DstAlign, unsigned SrcAlign,
1160                                       bool NonScalarIntSafe,
1161                                       bool MemcpyStrSrc,
1162                                       MachineFunction &MF) const {
1163  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1164  // linux.  This is because the stack realignment code can't handle certain
1165  // cases like PR2962.  This should be removed when PR2962 is fixed.
1166  const Function *F = MF.getFunction();
1167  if (NonScalarIntSafe &&
1168      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1169    if (Size >= 16 &&
1170        (Subtarget->isUnalignedMemAccessFast() ||
1171         ((DstAlign == 0 || DstAlign >= 16) &&
1172          (SrcAlign == 0 || SrcAlign >= 16))) &&
1173        Subtarget->getStackAlignment() >= 16) {
1174      if (Subtarget->hasSSE2())
1175        return MVT::v4i32;
1176      if (Subtarget->hasSSE1())
1177        return MVT::v4f32;
1178    } else if (!MemcpyStrSrc && Size >= 8 &&
1179               !Subtarget->is64Bit() &&
1180               Subtarget->getStackAlignment() >= 8 &&
1181               Subtarget->hasXMMInt()) {
1182      // Do not use f64 to lower memcpy if source is string constant. It's
1183      // better to use i32 to avoid the loads.
1184      return MVT::f64;
1185    }
1186  }
1187  if (Subtarget->is64Bit() && Size >= 8)
1188    return MVT::i64;
1189  return MVT::i32;
1190}
1191
1192/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1193/// current function.  The returned value is a member of the
1194/// MachineJumpTableInfo::JTEntryKind enum.
1195unsigned X86TargetLowering::getJumpTableEncoding() const {
1196  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1197  // symbol.
1198  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1199      Subtarget->isPICStyleGOT())
1200    return MachineJumpTableInfo::EK_Custom32;
1201
1202  // Otherwise, use the normal jump table encoding heuristics.
1203  return TargetLowering::getJumpTableEncoding();
1204}
1205
1206const MCExpr *
1207X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1208                                             const MachineBasicBlock *MBB,
1209                                             unsigned uid,MCContext &Ctx) const{
1210  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1211         Subtarget->isPICStyleGOT());
1212  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1213  // entries.
1214  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1215                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1216}
1217
1218/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1219/// jumptable.
1220SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1221                                                    SelectionDAG &DAG) const {
1222  if (!Subtarget->is64Bit())
1223    // This doesn't have DebugLoc associated with it, but is not really the
1224    // same as a Register.
1225    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1226  return Table;
1227}
1228
1229/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1230/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1231/// MCExpr.
1232const MCExpr *X86TargetLowering::
1233getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1234                             MCContext &Ctx) const {
1235  // X86-64 uses RIP relative addressing based on the jump table label.
1236  if (Subtarget->isPICStyleRIPRel())
1237    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1238
1239  // Otherwise, the reference is relative to the PIC base.
1240  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1241}
1242
1243/// getFunctionAlignment - Return the Log2 alignment of this function.
1244unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
1245  return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
1246}
1247
1248// FIXME: Why this routine is here? Move to RegInfo!
1249std::pair<const TargetRegisterClass*, uint8_t>
1250X86TargetLowering::findRepresentativeClass(EVT VT) const{
1251  const TargetRegisterClass *RRC = 0;
1252  uint8_t Cost = 1;
1253  switch (VT.getSimpleVT().SimpleTy) {
1254  default:
1255    return TargetLowering::findRepresentativeClass(VT);
1256  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1257    RRC = (Subtarget->is64Bit()
1258           ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1259    break;
1260  case MVT::x86mmx:
1261    RRC = X86::VR64RegisterClass;
1262    break;
1263  case MVT::f32: case MVT::f64:
1264  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1265  case MVT::v4f32: case MVT::v2f64:
1266  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1267  case MVT::v4f64:
1268    RRC = X86::VR128RegisterClass;
1269    break;
1270  }
1271  return std::make_pair(RRC, Cost);
1272}
1273
1274// FIXME: Why this routine is here? Move to RegInfo!
1275unsigned
1276X86TargetLowering::getRegPressureLimit(const TargetRegisterClass *RC,
1277                                       MachineFunction &MF) const {
1278  const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
1279
1280  unsigned FPDiff = TFI->hasFP(MF) ? 1 : 0;
1281  switch (RC->getID()) {
1282  default:
1283    return 0;
1284  case X86::GR32RegClassID:
1285    return 4 - FPDiff;
1286  case X86::GR64RegClassID:
1287    return 12 - FPDiff;
1288  case X86::VR128RegClassID:
1289    return Subtarget->is64Bit() ? 10 : 4;
1290  case X86::VR64RegClassID:
1291    return 4;
1292  }
1293}
1294
1295bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1296                                               unsigned &Offset) const {
1297  if (!Subtarget->isTargetLinux())
1298    return false;
1299
1300  if (Subtarget->is64Bit()) {
1301    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1302    Offset = 0x28;
1303    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1304      AddressSpace = 256;
1305    else
1306      AddressSpace = 257;
1307  } else {
1308    // %gs:0x14 on i386
1309    Offset = 0x14;
1310    AddressSpace = 256;
1311  }
1312  return true;
1313}
1314
1315
1316//===----------------------------------------------------------------------===//
1317//               Return Value Calling Convention Implementation
1318//===----------------------------------------------------------------------===//
1319
1320#include "X86GenCallingConv.inc"
1321
1322bool
1323X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
1324                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1325                        LLVMContext &Context) const {
1326  SmallVector<CCValAssign, 16> RVLocs;
1327  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1328                 RVLocs, Context);
1329  return CCInfo.CheckReturn(Outs, RetCC_X86);
1330}
1331
1332SDValue
1333X86TargetLowering::LowerReturn(SDValue Chain,
1334                               CallingConv::ID CallConv, bool isVarArg,
1335                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1336                               const SmallVectorImpl<SDValue> &OutVals,
1337                               DebugLoc dl, SelectionDAG &DAG) const {
1338  MachineFunction &MF = DAG.getMachineFunction();
1339  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1340
1341  SmallVector<CCValAssign, 16> RVLocs;
1342  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1343                 RVLocs, *DAG.getContext());
1344  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1345
1346  // Add the regs to the liveout set for the function.
1347  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1348  for (unsigned i = 0; i != RVLocs.size(); ++i)
1349    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1350      MRI.addLiveOut(RVLocs[i].getLocReg());
1351
1352  SDValue Flag;
1353
1354  SmallVector<SDValue, 6> RetOps;
1355  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1356  // Operand #1 = Bytes To Pop
1357  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1358                   MVT::i16));
1359
1360  // Copy the result values into the output registers.
1361  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1362    CCValAssign &VA = RVLocs[i];
1363    assert(VA.isRegLoc() && "Can only return in registers!");
1364    SDValue ValToCopy = OutVals[i];
1365    EVT ValVT = ValToCopy.getValueType();
1366
1367    // If this is x86-64, and we disabled SSE, we can't return FP values,
1368    // or SSE or MMX vectors.
1369    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1370         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1371          (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1372      report_fatal_error("SSE register return with SSE disabled");
1373    }
1374    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1375    // llvm-gcc has never done it right and no one has noticed, so this
1376    // should be OK for now.
1377    if (ValVT == MVT::f64 &&
1378        (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1379      report_fatal_error("SSE2 register return with SSE2 disabled");
1380
1381    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1382    // the RET instruction and handled by the FP Stackifier.
1383    if (VA.getLocReg() == X86::ST0 ||
1384        VA.getLocReg() == X86::ST1) {
1385      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1386      // change the value to the FP stack register class.
1387      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1388        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1389      RetOps.push_back(ValToCopy);
1390      // Don't emit a copytoreg.
1391      continue;
1392    }
1393
1394    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1395    // which is returned in RAX / RDX.
1396    if (Subtarget->is64Bit()) {
1397      if (ValVT == MVT::x86mmx) {
1398        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1399          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1400          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1401                                  ValToCopy);
1402          // If we don't have SSE2 available, convert to v4f32 so the generated
1403          // register is legal.
1404          if (!Subtarget->hasSSE2())
1405            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1406        }
1407      }
1408    }
1409
1410    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1411    Flag = Chain.getValue(1);
1412  }
1413
1414  // The x86-64 ABI for returning structs by value requires that we copy
1415  // the sret argument into %rax for the return. We saved the argument into
1416  // a virtual register in the entry block, so now we copy the value out
1417  // and into %rax.
1418  if (Subtarget->is64Bit() &&
1419      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1420    MachineFunction &MF = DAG.getMachineFunction();
1421    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1422    unsigned Reg = FuncInfo->getSRetReturnReg();
1423    assert(Reg &&
1424           "SRetReturnReg should have been set in LowerFormalArguments().");
1425    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1426
1427    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1428    Flag = Chain.getValue(1);
1429
1430    // RAX now acts like a return value.
1431    MRI.addLiveOut(X86::RAX);
1432  }
1433
1434  RetOps[0] = Chain;  // Update chain.
1435
1436  // Add the flag if we have it.
1437  if (Flag.getNode())
1438    RetOps.push_back(Flag);
1439
1440  return DAG.getNode(X86ISD::RET_FLAG, dl,
1441                     MVT::Other, &RetOps[0], RetOps.size());
1442}
1443
1444bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1445  if (N->getNumValues() != 1)
1446    return false;
1447  if (!N->hasNUsesOfValue(1, 0))
1448    return false;
1449
1450  SDNode *Copy = *N->use_begin();
1451  if (Copy->getOpcode() != ISD::CopyToReg &&
1452      Copy->getOpcode() != ISD::FP_EXTEND)
1453    return false;
1454
1455  bool HasRet = false;
1456  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1457       UI != UE; ++UI) {
1458    if (UI->getOpcode() != X86ISD::RET_FLAG)
1459      return false;
1460    HasRet = true;
1461  }
1462
1463  return HasRet;
1464}
1465
1466/// LowerCallResult - Lower the result values of a call into the
1467/// appropriate copies out of appropriate physical registers.
1468///
1469SDValue
1470X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1471                                   CallingConv::ID CallConv, bool isVarArg,
1472                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1473                                   DebugLoc dl, SelectionDAG &DAG,
1474                                   SmallVectorImpl<SDValue> &InVals) const {
1475
1476  // Assign locations to each value returned by this call.
1477  SmallVector<CCValAssign, 16> RVLocs;
1478  bool Is64Bit = Subtarget->is64Bit();
1479  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1480                 RVLocs, *DAG.getContext());
1481  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1482
1483  // Copy all of the result registers out of their specified physreg.
1484  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1485    CCValAssign &VA = RVLocs[i];
1486    EVT CopyVT = VA.getValVT();
1487
1488    // If this is x86-64, and we disabled SSE, we can't return FP values
1489    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1490        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1491      report_fatal_error("SSE register return with SSE disabled");
1492    }
1493
1494    SDValue Val;
1495
1496    // If this is a call to a function that returns an fp value on the floating
1497    // point stack, we must guarantee the the value is popped from the stack, so
1498    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1499    // if the return value is not used. We use the FpGET_ST0 instructions
1500    // instead.
1501    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1502      // If we prefer to use the value in xmm registers, copy it out as f80 and
1503      // use a truncate to move it from fp stack reg to xmm reg.
1504      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1505      bool isST0 = VA.getLocReg() == X86::ST0;
1506      unsigned Opc = 0;
1507      if (CopyVT == MVT::f32) Opc = isST0 ? X86::FpGET_ST0_32:X86::FpGET_ST1_32;
1508      if (CopyVT == MVT::f64) Opc = isST0 ? X86::FpGET_ST0_64:X86::FpGET_ST1_64;
1509      if (CopyVT == MVT::f80) Opc = isST0 ? X86::FpGET_ST0_80:X86::FpGET_ST1_80;
1510      SDValue Ops[] = { Chain, InFlag };
1511      Chain = SDValue(DAG.getMachineNode(Opc, dl, CopyVT, MVT::Other, MVT::Glue,
1512                                         Ops, 2), 1);
1513      Val = Chain.getValue(0);
1514
1515      // Round the f80 to the right size, which also moves it to the appropriate
1516      // xmm register.
1517      if (CopyVT != VA.getValVT())
1518        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1519                          // This truncation won't change the value.
1520                          DAG.getIntPtrConstant(1));
1521    } else if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
1522      // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
1523      if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1524        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1525                                   MVT::v2i64, InFlag).getValue(1);
1526        Val = Chain.getValue(0);
1527        Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
1528                          Val, DAG.getConstant(0, MVT::i64));
1529      } else {
1530        Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1531                                   MVT::i64, InFlag).getValue(1);
1532        Val = Chain.getValue(0);
1533      }
1534      Val = DAG.getNode(ISD::BITCAST, dl, CopyVT, Val);
1535    } else {
1536      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1537                                 CopyVT, InFlag).getValue(1);
1538      Val = Chain.getValue(0);
1539    }
1540    InFlag = Chain.getValue(2);
1541    InVals.push_back(Val);
1542  }
1543
1544  return Chain;
1545}
1546
1547
1548//===----------------------------------------------------------------------===//
1549//                C & StdCall & Fast Calling Convention implementation
1550//===----------------------------------------------------------------------===//
1551//  StdCall calling convention seems to be standard for many Windows' API
1552//  routines and around. It differs from C calling convention just a little:
1553//  callee should clean up the stack, not caller. Symbols should be also
1554//  decorated in some fancy way :) It doesn't support any vector arguments.
1555//  For info on fast calling convention see Fast Calling Convention (tail call)
1556//  implementation LowerX86_32FastCCCallTo.
1557
1558/// CallIsStructReturn - Determines whether a call uses struct return
1559/// semantics.
1560static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1561  if (Outs.empty())
1562    return false;
1563
1564  return Outs[0].Flags.isSRet();
1565}
1566
1567/// ArgsAreStructReturn - Determines whether a function uses struct
1568/// return semantics.
1569static bool
1570ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1571  if (Ins.empty())
1572    return false;
1573
1574  return Ins[0].Flags.isSRet();
1575}
1576
1577/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1578/// by "Src" to address "Dst" with size and alignment information specified by
1579/// the specific parameter attribute. The copy will be passed as a byval
1580/// function parameter.
1581static SDValue
1582CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1583                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1584                          DebugLoc dl) {
1585  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1586
1587  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1588                       /*isVolatile*/false, /*AlwaysInline=*/true,
1589                       MachinePointerInfo(), MachinePointerInfo());
1590}
1591
1592/// IsTailCallConvention - Return true if the calling convention is one that
1593/// supports tail call optimization.
1594static bool IsTailCallConvention(CallingConv::ID CC) {
1595  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1596}
1597
1598/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1599/// a tailcall target by changing its ABI.
1600static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1601  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1602}
1603
1604SDValue
1605X86TargetLowering::LowerMemArgument(SDValue Chain,
1606                                    CallingConv::ID CallConv,
1607                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1608                                    DebugLoc dl, SelectionDAG &DAG,
1609                                    const CCValAssign &VA,
1610                                    MachineFrameInfo *MFI,
1611                                    unsigned i) const {
1612  // Create the nodes corresponding to a load from this parameter slot.
1613  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1614  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1615  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1616  EVT ValVT;
1617
1618  // If value is passed by pointer we have address passed instead of the value
1619  // itself.
1620  if (VA.getLocInfo() == CCValAssign::Indirect)
1621    ValVT = VA.getLocVT();
1622  else
1623    ValVT = VA.getValVT();
1624
1625  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1626  // changed with more analysis.
1627  // In case of tail call optimization mark all arguments mutable. Since they
1628  // could be overwritten by lowering of arguments in case of a tail call.
1629  if (Flags.isByVal()) {
1630    int FI = MFI->CreateFixedObject(Flags.getByValSize(),
1631                                    VA.getLocMemOffset(), isImmutable);
1632    return DAG.getFrameIndex(FI, getPointerTy());
1633  } else {
1634    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1635                                    VA.getLocMemOffset(), isImmutable);
1636    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1637    return DAG.getLoad(ValVT, dl, Chain, FIN,
1638                       MachinePointerInfo::getFixedStack(FI),
1639                       false, false, 0);
1640  }
1641}
1642
1643SDValue
1644X86TargetLowering::LowerFormalArguments(SDValue Chain,
1645                                        CallingConv::ID CallConv,
1646                                        bool isVarArg,
1647                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1648                                        DebugLoc dl,
1649                                        SelectionDAG &DAG,
1650                                        SmallVectorImpl<SDValue> &InVals)
1651                                          const {
1652  MachineFunction &MF = DAG.getMachineFunction();
1653  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1654
1655  const Function* Fn = MF.getFunction();
1656  if (Fn->hasExternalLinkage() &&
1657      Subtarget->isTargetCygMing() &&
1658      Fn->getName() == "main")
1659    FuncInfo->setForceFramePointer(true);
1660
1661  MachineFrameInfo *MFI = MF.getFrameInfo();
1662  bool Is64Bit = Subtarget->is64Bit();
1663  bool IsWin64 = Subtarget->isTargetWin64();
1664
1665  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1666         "Var args not supported with calling convention fastcc or ghc");
1667
1668  // Assign locations to all of the incoming arguments.
1669  SmallVector<CCValAssign, 16> ArgLocs;
1670  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1671                 ArgLocs, *DAG.getContext());
1672
1673  // Allocate shadow area for Win64
1674  if (IsWin64) {
1675    CCInfo.AllocateStack(32, 8);
1676  }
1677
1678  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1679
1680  unsigned LastVal = ~0U;
1681  SDValue ArgValue;
1682  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1683    CCValAssign &VA = ArgLocs[i];
1684    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1685    // places.
1686    assert(VA.getValNo() != LastVal &&
1687           "Don't support value assigned to multiple locs yet");
1688    LastVal = VA.getValNo();
1689
1690    if (VA.isRegLoc()) {
1691      EVT RegVT = VA.getLocVT();
1692      TargetRegisterClass *RC = NULL;
1693      if (RegVT == MVT::i32)
1694        RC = X86::GR32RegisterClass;
1695      else if (Is64Bit && RegVT == MVT::i64)
1696        RC = X86::GR64RegisterClass;
1697      else if (RegVT == MVT::f32)
1698        RC = X86::FR32RegisterClass;
1699      else if (RegVT == MVT::f64)
1700        RC = X86::FR64RegisterClass;
1701      else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1702        RC = X86::VR256RegisterClass;
1703      else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1704        RC = X86::VR128RegisterClass;
1705      else if (RegVT == MVT::x86mmx)
1706        RC = X86::VR64RegisterClass;
1707      else
1708        llvm_unreachable("Unknown argument type!");
1709
1710      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1711      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1712
1713      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1714      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1715      // right size.
1716      if (VA.getLocInfo() == CCValAssign::SExt)
1717        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1718                               DAG.getValueType(VA.getValVT()));
1719      else if (VA.getLocInfo() == CCValAssign::ZExt)
1720        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1721                               DAG.getValueType(VA.getValVT()));
1722      else if (VA.getLocInfo() == CCValAssign::BCvt)
1723        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1724
1725      if (VA.isExtInLoc()) {
1726        // Handle MMX values passed in XMM regs.
1727        if (RegVT.isVector()) {
1728          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1729                                 ArgValue);
1730        } else
1731          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1732      }
1733    } else {
1734      assert(VA.isMemLoc());
1735      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1736    }
1737
1738    // If value is passed via pointer - do a load.
1739    if (VA.getLocInfo() == CCValAssign::Indirect)
1740      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1741                             MachinePointerInfo(), false, false, 0);
1742
1743    InVals.push_back(ArgValue);
1744  }
1745
1746  // The x86-64 ABI for returning structs by value requires that we copy
1747  // the sret argument into %rax for the return. Save the argument into
1748  // a virtual register so that we can access it from the return points.
1749  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1750    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1751    unsigned Reg = FuncInfo->getSRetReturnReg();
1752    if (!Reg) {
1753      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1754      FuncInfo->setSRetReturnReg(Reg);
1755    }
1756    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1757    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1758  }
1759
1760  unsigned StackSize = CCInfo.getNextStackOffset();
1761  // Align stack specially for tail calls.
1762  if (FuncIsMadeTailCallSafe(CallConv))
1763    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1764
1765  // If the function takes variable number of arguments, make a frame index for
1766  // the start of the first vararg value... for expansion of llvm.va_start.
1767  if (isVarArg) {
1768    if (!IsWin64 && (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1769                    CallConv != CallingConv::X86_ThisCall))) {
1770      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1771    }
1772    if (Is64Bit) {
1773      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1774
1775      // FIXME: We should really autogenerate these arrays
1776      static const unsigned GPR64ArgRegsWin64[] = {
1777        X86::RCX, X86::RDX, X86::R8,  X86::R9
1778      };
1779      static const unsigned GPR64ArgRegs64Bit[] = {
1780        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1781      };
1782      static const unsigned XMMArgRegs64Bit[] = {
1783        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1784        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1785      };
1786      const unsigned *GPR64ArgRegs;
1787      unsigned NumXMMRegs = 0;
1788
1789      if (IsWin64) {
1790        // The XMM registers which might contain var arg parameters are shadowed
1791        // in their paired GPR.  So we only need to save the GPR to their home
1792        // slots.
1793        TotalNumIntRegs = 4;
1794        GPR64ArgRegs = GPR64ArgRegsWin64;
1795      } else {
1796        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1797        GPR64ArgRegs = GPR64ArgRegs64Bit;
1798
1799        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1800      }
1801      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1802                                                       TotalNumIntRegs);
1803
1804      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1805      assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1806             "SSE register cannot be used when SSE is disabled!");
1807      assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1808             "SSE register cannot be used when SSE is disabled!");
1809      if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1810        // Kernel mode asks for SSE to be disabled, so don't push them
1811        // on the stack.
1812        TotalNumXMMRegs = 0;
1813
1814      if (IsWin64) {
1815        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1816        // Get to the caller-allocated home save location.  Add 8 to account
1817        // for the return address.
1818        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1819        FuncInfo->setRegSaveFrameIndex(
1820          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1821        FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1822      } else {
1823        // For X86-64, if there are vararg parameters that are passed via
1824        // registers, then we must store them to their spots on the stack so they
1825        // may be loaded by deferencing the result of va_next.
1826        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1827        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1828        FuncInfo->setRegSaveFrameIndex(
1829          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1830                               false));
1831      }
1832
1833      // Store the integer parameter registers.
1834      SmallVector<SDValue, 8> MemOps;
1835      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1836                                        getPointerTy());
1837      unsigned Offset = FuncInfo->getVarArgsGPOffset();
1838      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1839        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1840                                  DAG.getIntPtrConstant(Offset));
1841        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1842                                     X86::GR64RegisterClass);
1843        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1844        SDValue Store =
1845          DAG.getStore(Val.getValue(1), dl, Val, FIN,
1846                       MachinePointerInfo::getFixedStack(
1847                         FuncInfo->getRegSaveFrameIndex(), Offset),
1848                       false, false, 0);
1849        MemOps.push_back(Store);
1850        Offset += 8;
1851      }
1852
1853      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1854        // Now store the XMM (fp + vector) parameter registers.
1855        SmallVector<SDValue, 11> SaveXMMOps;
1856        SaveXMMOps.push_back(Chain);
1857
1858        unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1859        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1860        SaveXMMOps.push_back(ALVal);
1861
1862        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1863                               FuncInfo->getRegSaveFrameIndex()));
1864        SaveXMMOps.push_back(DAG.getIntPtrConstant(
1865                               FuncInfo->getVarArgsFPOffset()));
1866
1867        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1868          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1869                                       X86::VR128RegisterClass);
1870          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1871          SaveXMMOps.push_back(Val);
1872        }
1873        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1874                                     MVT::Other,
1875                                     &SaveXMMOps[0], SaveXMMOps.size()));
1876      }
1877
1878      if (!MemOps.empty())
1879        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1880                            &MemOps[0], MemOps.size());
1881    }
1882  }
1883
1884  // Some CCs need callee pop.
1885  if (Subtarget->IsCalleePop(isVarArg, CallConv)) {
1886    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1887  } else {
1888    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1889    // If this is an sret function, the return should pop the hidden pointer.
1890    if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1891      FuncInfo->setBytesToPopOnReturn(4);
1892  }
1893
1894  if (!Is64Bit) {
1895    // RegSaveFrameIndex is X86-64 only.
1896    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1897    if (CallConv == CallingConv::X86_FastCall ||
1898        CallConv == CallingConv::X86_ThisCall)
1899      // fastcc functions can't have varargs.
1900      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1901  }
1902
1903  return Chain;
1904}
1905
1906SDValue
1907X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1908                                    SDValue StackPtr, SDValue Arg,
1909                                    DebugLoc dl, SelectionDAG &DAG,
1910                                    const CCValAssign &VA,
1911                                    ISD::ArgFlagsTy Flags) const {
1912  unsigned LocMemOffset = VA.getLocMemOffset();
1913  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1914  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1915  if (Flags.isByVal())
1916    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1917
1918  return DAG.getStore(Chain, dl, Arg, PtrOff,
1919                      MachinePointerInfo::getStack(LocMemOffset),
1920                      false, false, 0);
1921}
1922
1923/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1924/// optimization is performed and it is required.
1925SDValue
1926X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
1927                                           SDValue &OutRetAddr, SDValue Chain,
1928                                           bool IsTailCall, bool Is64Bit,
1929                                           int FPDiff, DebugLoc dl) const {
1930  // Adjust the Return address stack slot.
1931  EVT VT = getPointerTy();
1932  OutRetAddr = getReturnAddressFrameIndex(DAG);
1933
1934  // Load the "old" Return address.
1935  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
1936                           false, false, 0);
1937  return SDValue(OutRetAddr.getNode(), 1);
1938}
1939
1940/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
1941/// optimization is performed and it is required (FPDiff!=0).
1942static SDValue
1943EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
1944                         SDValue Chain, SDValue RetAddrFrIdx,
1945                         bool Is64Bit, int FPDiff, DebugLoc dl) {
1946  // Store the return address to the appropriate stack slot.
1947  if (!FPDiff) return Chain;
1948  // Calculate the new stack slot for the return address.
1949  int SlotSize = Is64Bit ? 8 : 4;
1950  int NewReturnAddrFI =
1951    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
1952  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
1953  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1954  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
1955                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
1956                       false, false, 0);
1957  return Chain;
1958}
1959
1960SDValue
1961X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
1962                             CallingConv::ID CallConv, bool isVarArg,
1963                             bool &isTailCall,
1964                             const SmallVectorImpl<ISD::OutputArg> &Outs,
1965                             const SmallVectorImpl<SDValue> &OutVals,
1966                             const SmallVectorImpl<ISD::InputArg> &Ins,
1967                             DebugLoc dl, SelectionDAG &DAG,
1968                             SmallVectorImpl<SDValue> &InVals) const {
1969  MachineFunction &MF = DAG.getMachineFunction();
1970  bool Is64Bit        = Subtarget->is64Bit();
1971  bool IsWin64        = Subtarget->isTargetWin64();
1972  bool IsStructRet    = CallIsStructReturn(Outs);
1973  bool IsSibcall      = false;
1974
1975  if (isTailCall) {
1976    // Check if it's really possible to do a tail call.
1977    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1978                    isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
1979                                                   Outs, OutVals, Ins, DAG);
1980
1981    // Sibcalls are automatically detected tailcalls which do not require
1982    // ABI changes.
1983    if (!GuaranteedTailCallOpt && isTailCall)
1984      IsSibcall = true;
1985
1986    if (isTailCall)
1987      ++NumTailCalls;
1988  }
1989
1990  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1991         "Var args not supported with calling convention fastcc or ghc");
1992
1993  // Analyze operands of the call, assigning locations to each operand.
1994  SmallVector<CCValAssign, 16> ArgLocs;
1995  CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
1996                 ArgLocs, *DAG.getContext());
1997
1998  // Allocate shadow area for Win64
1999  if (IsWin64) {
2000    CCInfo.AllocateStack(32, 8);
2001  }
2002
2003  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2004
2005  // Get a count of how many bytes are to be pushed on the stack.
2006  unsigned NumBytes = CCInfo.getNextStackOffset();
2007  if (IsSibcall)
2008    // This is a sibcall. The memory operands are available in caller's
2009    // own caller's stack.
2010    NumBytes = 0;
2011  else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2012    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2013
2014  int FPDiff = 0;
2015  if (isTailCall && !IsSibcall) {
2016    // Lower arguments at fp - stackoffset + fpdiff.
2017    unsigned NumBytesCallerPushed =
2018      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2019    FPDiff = NumBytesCallerPushed - NumBytes;
2020
2021    // Set the delta of movement of the returnaddr stackslot.
2022    // But only set if delta is greater than previous delta.
2023    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2024      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2025  }
2026
2027  if (!IsSibcall)
2028    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2029
2030  SDValue RetAddrFrIdx;
2031  // Load return adress for tail calls.
2032  if (isTailCall && FPDiff)
2033    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2034                                    Is64Bit, FPDiff, dl);
2035
2036  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2037  SmallVector<SDValue, 8> MemOpChains;
2038  SDValue StackPtr;
2039
2040  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2041  // of tail call optimization arguments are handle later.
2042  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2043    CCValAssign &VA = ArgLocs[i];
2044    EVT RegVT = VA.getLocVT();
2045    SDValue Arg = OutVals[i];
2046    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2047    bool isByVal = Flags.isByVal();
2048
2049    // Promote the value if needed.
2050    switch (VA.getLocInfo()) {
2051    default: llvm_unreachable("Unknown loc info!");
2052    case CCValAssign::Full: break;
2053    case CCValAssign::SExt:
2054      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2055      break;
2056    case CCValAssign::ZExt:
2057      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2058      break;
2059    case CCValAssign::AExt:
2060      if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2061        // Special case: passing MMX values in XMM registers.
2062        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2063        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2064        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2065      } else
2066        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2067      break;
2068    case CCValAssign::BCvt:
2069      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2070      break;
2071    case CCValAssign::Indirect: {
2072      // Store the argument.
2073      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2074      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2075      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2076                           MachinePointerInfo::getFixedStack(FI),
2077                           false, false, 0);
2078      Arg = SpillSlot;
2079      break;
2080    }
2081    }
2082
2083    if (VA.isRegLoc()) {
2084      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2085      if (isVarArg && IsWin64) {
2086        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2087        // shadow reg if callee is a varargs function.
2088        unsigned ShadowReg = 0;
2089        switch (VA.getLocReg()) {
2090        case X86::XMM0: ShadowReg = X86::RCX; break;
2091        case X86::XMM1: ShadowReg = X86::RDX; break;
2092        case X86::XMM2: ShadowReg = X86::R8; break;
2093        case X86::XMM3: ShadowReg = X86::R9; break;
2094        }
2095        if (ShadowReg)
2096          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2097      }
2098    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2099      assert(VA.isMemLoc());
2100      if (StackPtr.getNode() == 0)
2101        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2102      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2103                                             dl, DAG, VA, Flags));
2104    }
2105  }
2106
2107  if (!MemOpChains.empty())
2108    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2109                        &MemOpChains[0], MemOpChains.size());
2110
2111  // Build a sequence of copy-to-reg nodes chained together with token chain
2112  // and flag operands which copy the outgoing args into registers.
2113  SDValue InFlag;
2114  // Tail call byval lowering might overwrite argument registers so in case of
2115  // tail call optimization the copies to registers are lowered later.
2116  if (!isTailCall)
2117    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2118      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2119                               RegsToPass[i].second, InFlag);
2120      InFlag = Chain.getValue(1);
2121    }
2122
2123  if (Subtarget->isPICStyleGOT()) {
2124    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2125    // GOT pointer.
2126    if (!isTailCall) {
2127      Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2128                               DAG.getNode(X86ISD::GlobalBaseReg,
2129                                           DebugLoc(), getPointerTy()),
2130                               InFlag);
2131      InFlag = Chain.getValue(1);
2132    } else {
2133      // If we are tail calling and generating PIC/GOT style code load the
2134      // address of the callee into ECX. The value in ecx is used as target of
2135      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2136      // for tail calls on PIC/GOT architectures. Normally we would just put the
2137      // address of GOT into ebx and then call target@PLT. But for tail calls
2138      // ebx would be restored (since ebx is callee saved) before jumping to the
2139      // target@PLT.
2140
2141      // Note: The actual moving to ECX is done further down.
2142      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2143      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2144          !G->getGlobal()->hasProtectedVisibility())
2145        Callee = LowerGlobalAddress(Callee, DAG);
2146      else if (isa<ExternalSymbolSDNode>(Callee))
2147        Callee = LowerExternalSymbol(Callee, DAG);
2148    }
2149  }
2150
2151  if (Is64Bit && isVarArg && !IsWin64) {
2152    // From AMD64 ABI document:
2153    // For calls that may call functions that use varargs or stdargs
2154    // (prototype-less calls or calls to functions containing ellipsis (...) in
2155    // the declaration) %al is used as hidden argument to specify the number
2156    // of SSE registers used. The contents of %al do not need to match exactly
2157    // the number of registers, but must be an ubound on the number of SSE
2158    // registers used and is in the range 0 - 8 inclusive.
2159
2160    // Count the number of XMM registers allocated.
2161    static const unsigned XMMArgRegs[] = {
2162      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2163      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2164    };
2165    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2166    assert((Subtarget->hasXMM() || !NumXMMRegs)
2167           && "SSE registers cannot be used when SSE is disabled");
2168
2169    Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2170                             DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2171    InFlag = Chain.getValue(1);
2172  }
2173
2174
2175  // For tail calls lower the arguments to the 'real' stack slot.
2176  if (isTailCall) {
2177    // Force all the incoming stack arguments to be loaded from the stack
2178    // before any new outgoing arguments are stored to the stack, because the
2179    // outgoing stack slots may alias the incoming argument stack slots, and
2180    // the alias isn't otherwise explicit. This is slightly more conservative
2181    // than necessary, because it means that each store effectively depends
2182    // on every argument instead of just those arguments it would clobber.
2183    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2184
2185    SmallVector<SDValue, 8> MemOpChains2;
2186    SDValue FIN;
2187    int FI = 0;
2188    // Do not flag preceeding copytoreg stuff together with the following stuff.
2189    InFlag = SDValue();
2190    if (GuaranteedTailCallOpt) {
2191      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2192        CCValAssign &VA = ArgLocs[i];
2193        if (VA.isRegLoc())
2194          continue;
2195        assert(VA.isMemLoc());
2196        SDValue Arg = OutVals[i];
2197        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2198        // Create frame index.
2199        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2200        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2201        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2202        FIN = DAG.getFrameIndex(FI, getPointerTy());
2203
2204        if (Flags.isByVal()) {
2205          // Copy relative to framepointer.
2206          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2207          if (StackPtr.getNode() == 0)
2208            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2209                                          getPointerTy());
2210          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2211
2212          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2213                                                           ArgChain,
2214                                                           Flags, DAG, dl));
2215        } else {
2216          // Store relative to framepointer.
2217          MemOpChains2.push_back(
2218            DAG.getStore(ArgChain, dl, Arg, FIN,
2219                         MachinePointerInfo::getFixedStack(FI),
2220                         false, false, 0));
2221        }
2222      }
2223    }
2224
2225    if (!MemOpChains2.empty())
2226      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2227                          &MemOpChains2[0], MemOpChains2.size());
2228
2229    // Copy arguments to their registers.
2230    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2231      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2232                               RegsToPass[i].second, InFlag);
2233      InFlag = Chain.getValue(1);
2234    }
2235    InFlag =SDValue();
2236
2237    // Store the return address to the appropriate stack slot.
2238    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2239                                     FPDiff, dl);
2240  }
2241
2242  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2243    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2244    // In the 64-bit large code model, we have to make all calls
2245    // through a register, since the call instruction's 32-bit
2246    // pc-relative offset may not be large enough to hold the whole
2247    // address.
2248  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2249    // If the callee is a GlobalAddress node (quite common, every direct call
2250    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2251    // it.
2252
2253    // We should use extra load for direct calls to dllimported functions in
2254    // non-JIT mode.
2255    const GlobalValue *GV = G->getGlobal();
2256    if (!GV->hasDLLImportLinkage()) {
2257      unsigned char OpFlags = 0;
2258
2259      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2260      // external symbols most go through the PLT in PIC mode.  If the symbol
2261      // has hidden or protected visibility, or if it is static or local, then
2262      // we don't need to use the PLT - we can directly call it.
2263      if (Subtarget->isTargetELF() &&
2264          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2265          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2266        OpFlags = X86II::MO_PLT;
2267      } else if (Subtarget->isPICStyleStubAny() &&
2268                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2269                 Subtarget->getDarwinVers() < 9) {
2270        // PC-relative references to external symbols should go through $stub,
2271        // unless we're building with the leopard linker or later, which
2272        // automatically synthesizes these stubs.
2273        OpFlags = X86II::MO_DARWIN_STUB;
2274      }
2275
2276      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2277                                          G->getOffset(), OpFlags);
2278    }
2279  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2280    unsigned char OpFlags = 0;
2281
2282    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2283    // external symbols should go through the PLT.
2284    if (Subtarget->isTargetELF() &&
2285        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2286      OpFlags = X86II::MO_PLT;
2287    } else if (Subtarget->isPICStyleStubAny() &&
2288               Subtarget->getDarwinVers() < 9) {
2289      // PC-relative references to external symbols should go through $stub,
2290      // unless we're building with the leopard linker or later, which
2291      // automatically synthesizes these stubs.
2292      OpFlags = X86II::MO_DARWIN_STUB;
2293    }
2294
2295    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2296                                         OpFlags);
2297  }
2298
2299  // Returns a chain & a flag for retval copy to use.
2300  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2301  SmallVector<SDValue, 8> Ops;
2302
2303  if (!IsSibcall && isTailCall) {
2304    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2305                           DAG.getIntPtrConstant(0, true), InFlag);
2306    InFlag = Chain.getValue(1);
2307  }
2308
2309  Ops.push_back(Chain);
2310  Ops.push_back(Callee);
2311
2312  if (isTailCall)
2313    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2314
2315  // Add argument registers to the end of the list so that they are known live
2316  // into the call.
2317  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2318    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2319                                  RegsToPass[i].second.getValueType()));
2320
2321  // Add an implicit use GOT pointer in EBX.
2322  if (!isTailCall && Subtarget->isPICStyleGOT())
2323    Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2324
2325  // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2326  if (Is64Bit && isVarArg && !IsWin64)
2327    Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2328
2329  if (InFlag.getNode())
2330    Ops.push_back(InFlag);
2331
2332  if (isTailCall) {
2333    // We used to do:
2334    //// If this is the first return lowered for this function, add the regs
2335    //// to the liveout set for the function.
2336    // This isn't right, although it's probably harmless on x86; liveouts
2337    // should be computed from returns not tail calls.  Consider a void
2338    // function making a tail call to a function returning int.
2339    return DAG.getNode(X86ISD::TC_RETURN, dl,
2340                       NodeTys, &Ops[0], Ops.size());
2341  }
2342
2343  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2344  InFlag = Chain.getValue(1);
2345
2346  // Create the CALLSEQ_END node.
2347  unsigned NumBytesForCalleeToPush;
2348  if (Subtarget->IsCalleePop(isVarArg, CallConv))
2349    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2350  else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2351    // If this is a call to a struct-return function, the callee
2352    // pops the hidden struct pointer, so we have to push it back.
2353    // This is common for Darwin/X86, Linux & Mingw32 targets.
2354    NumBytesForCalleeToPush = 4;
2355  else
2356    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2357
2358  // Returns a flag for retval copy to use.
2359  if (!IsSibcall) {
2360    Chain = DAG.getCALLSEQ_END(Chain,
2361                               DAG.getIntPtrConstant(NumBytes, true),
2362                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2363                                                     true),
2364                               InFlag);
2365    InFlag = Chain.getValue(1);
2366  }
2367
2368  // Handle result values, copying them out of physregs into vregs that we
2369  // return.
2370  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2371                         Ins, dl, DAG, InVals);
2372}
2373
2374
2375//===----------------------------------------------------------------------===//
2376//                Fast Calling Convention (tail call) implementation
2377//===----------------------------------------------------------------------===//
2378
2379//  Like std call, callee cleans arguments, convention except that ECX is
2380//  reserved for storing the tail called function address. Only 2 registers are
2381//  free for argument passing (inreg). Tail call optimization is performed
2382//  provided:
2383//                * tailcallopt is enabled
2384//                * caller/callee are fastcc
2385//  On X86_64 architecture with GOT-style position independent code only local
2386//  (within module) calls are supported at the moment.
2387//  To keep the stack aligned according to platform abi the function
2388//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2389//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2390//  If a tail called function callee has more arguments than the caller the
2391//  caller needs to make sure that there is room to move the RETADDR to. This is
2392//  achieved by reserving an area the size of the argument delta right after the
2393//  original REtADDR, but before the saved framepointer or the spilled registers
2394//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2395//  stack layout:
2396//    arg1
2397//    arg2
2398//    RETADDR
2399//    [ new RETADDR
2400//      move area ]
2401//    (possible EBP)
2402//    ESI
2403//    EDI
2404//    local1 ..
2405
2406/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2407/// for a 16 byte align requirement.
2408unsigned
2409X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2410                                               SelectionDAG& DAG) const {
2411  MachineFunction &MF = DAG.getMachineFunction();
2412  const TargetMachine &TM = MF.getTarget();
2413  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2414  unsigned StackAlignment = TFI.getStackAlignment();
2415  uint64_t AlignMask = StackAlignment - 1;
2416  int64_t Offset = StackSize;
2417  uint64_t SlotSize = TD->getPointerSize();
2418  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2419    // Number smaller than 12 so just add the difference.
2420    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2421  } else {
2422    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2423    Offset = ((~AlignMask) & Offset) + StackAlignment +
2424      (StackAlignment-SlotSize);
2425  }
2426  return Offset;
2427}
2428
2429/// MatchingStackOffset - Return true if the given stack call argument is
2430/// already available in the same position (relatively) of the caller's
2431/// incoming argument stack.
2432static
2433bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2434                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2435                         const X86InstrInfo *TII) {
2436  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2437  int FI = INT_MAX;
2438  if (Arg.getOpcode() == ISD::CopyFromReg) {
2439    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2440    if (!TargetRegisterInfo::isVirtualRegister(VR))
2441      return false;
2442    MachineInstr *Def = MRI->getVRegDef(VR);
2443    if (!Def)
2444      return false;
2445    if (!Flags.isByVal()) {
2446      if (!TII->isLoadFromStackSlot(Def, FI))
2447        return false;
2448    } else {
2449      unsigned Opcode = Def->getOpcode();
2450      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2451          Def->getOperand(1).isFI()) {
2452        FI = Def->getOperand(1).getIndex();
2453        Bytes = Flags.getByValSize();
2454      } else
2455        return false;
2456    }
2457  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2458    if (Flags.isByVal())
2459      // ByVal argument is passed in as a pointer but it's now being
2460      // dereferenced. e.g.
2461      // define @foo(%struct.X* %A) {
2462      //   tail call @bar(%struct.X* byval %A)
2463      // }
2464      return false;
2465    SDValue Ptr = Ld->getBasePtr();
2466    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2467    if (!FINode)
2468      return false;
2469    FI = FINode->getIndex();
2470  } else
2471    return false;
2472
2473  assert(FI != INT_MAX);
2474  if (!MFI->isFixedObjectIndex(FI))
2475    return false;
2476  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2477}
2478
2479/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2480/// for tail call optimization. Targets which want to do tail call
2481/// optimization should implement this function.
2482bool
2483X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2484                                                     CallingConv::ID CalleeCC,
2485                                                     bool isVarArg,
2486                                                     bool isCalleeStructRet,
2487                                                     bool isCallerStructRet,
2488                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2489                                    const SmallVectorImpl<SDValue> &OutVals,
2490                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2491                                                     SelectionDAG& DAG) const {
2492  if (!IsTailCallConvention(CalleeCC) &&
2493      CalleeCC != CallingConv::C)
2494    return false;
2495
2496  // If -tailcallopt is specified, make fastcc functions tail-callable.
2497  const MachineFunction &MF = DAG.getMachineFunction();
2498  const Function *CallerF = DAG.getMachineFunction().getFunction();
2499  CallingConv::ID CallerCC = CallerF->getCallingConv();
2500  bool CCMatch = CallerCC == CalleeCC;
2501
2502  if (GuaranteedTailCallOpt) {
2503    if (IsTailCallConvention(CalleeCC) && CCMatch)
2504      return true;
2505    return false;
2506  }
2507
2508  // Look for obvious safe cases to perform tail call optimization that do not
2509  // require ABI changes. This is what gcc calls sibcall.
2510
2511  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2512  // emit a special epilogue.
2513  if (RegInfo->needsStackRealignment(MF))
2514    return false;
2515
2516  // Do not sibcall optimize vararg calls unless the call site is not passing
2517  // any arguments.
2518  if (isVarArg && !Outs.empty())
2519    return false;
2520
2521  // Also avoid sibcall optimization if either caller or callee uses struct
2522  // return semantics.
2523  if (isCalleeStructRet || isCallerStructRet)
2524    return false;
2525
2526  // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2527  // Therefore if it's not used by the call it is not safe to optimize this into
2528  // a sibcall.
2529  bool Unused = false;
2530  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2531    if (!Ins[i].Used) {
2532      Unused = true;
2533      break;
2534    }
2535  }
2536  if (Unused) {
2537    SmallVector<CCValAssign, 16> RVLocs;
2538    CCState CCInfo(CalleeCC, false, getTargetMachine(),
2539                   RVLocs, *DAG.getContext());
2540    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2541    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2542      CCValAssign &VA = RVLocs[i];
2543      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2544        return false;
2545    }
2546  }
2547
2548  // If the calling conventions do not match, then we'd better make sure the
2549  // results are returned in the same way as what the caller expects.
2550  if (!CCMatch) {
2551    SmallVector<CCValAssign, 16> RVLocs1;
2552    CCState CCInfo1(CalleeCC, false, getTargetMachine(),
2553                    RVLocs1, *DAG.getContext());
2554    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2555
2556    SmallVector<CCValAssign, 16> RVLocs2;
2557    CCState CCInfo2(CallerCC, false, getTargetMachine(),
2558                    RVLocs2, *DAG.getContext());
2559    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2560
2561    if (RVLocs1.size() != RVLocs2.size())
2562      return false;
2563    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2564      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2565        return false;
2566      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2567        return false;
2568      if (RVLocs1[i].isRegLoc()) {
2569        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2570          return false;
2571      } else {
2572        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2573          return false;
2574      }
2575    }
2576  }
2577
2578  // If the callee takes no arguments then go on to check the results of the
2579  // call.
2580  if (!Outs.empty()) {
2581    // Check if stack adjustment is needed. For now, do not do this if any
2582    // argument is passed on the stack.
2583    SmallVector<CCValAssign, 16> ArgLocs;
2584    CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
2585                   ArgLocs, *DAG.getContext());
2586
2587    // Allocate shadow area for Win64
2588    if (Subtarget->isTargetWin64()) {
2589      CCInfo.AllocateStack(32, 8);
2590    }
2591
2592    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2593    if (CCInfo.getNextStackOffset()) {
2594      MachineFunction &MF = DAG.getMachineFunction();
2595      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2596        return false;
2597
2598      // Check if the arguments are already laid out in the right way as
2599      // the caller's fixed stack objects.
2600      MachineFrameInfo *MFI = MF.getFrameInfo();
2601      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2602      const X86InstrInfo *TII =
2603        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2604      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2605        CCValAssign &VA = ArgLocs[i];
2606        SDValue Arg = OutVals[i];
2607        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2608        if (VA.getLocInfo() == CCValAssign::Indirect)
2609          return false;
2610        if (!VA.isRegLoc()) {
2611          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2612                                   MFI, MRI, TII))
2613            return false;
2614        }
2615      }
2616    }
2617
2618    // If the tailcall address may be in a register, then make sure it's
2619    // possible to register allocate for it. In 32-bit, the call address can
2620    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2621    // callee-saved registers are restored. These happen to be the same
2622    // registers used to pass 'inreg' arguments so watch out for those.
2623    if (!Subtarget->is64Bit() &&
2624        !isa<GlobalAddressSDNode>(Callee) &&
2625        !isa<ExternalSymbolSDNode>(Callee)) {
2626      unsigned NumInRegs = 0;
2627      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2628        CCValAssign &VA = ArgLocs[i];
2629        if (!VA.isRegLoc())
2630          continue;
2631        unsigned Reg = VA.getLocReg();
2632        switch (Reg) {
2633        default: break;
2634        case X86::EAX: case X86::EDX: case X86::ECX:
2635          if (++NumInRegs == 3)
2636            return false;
2637          break;
2638        }
2639      }
2640    }
2641  }
2642
2643  // An stdcall caller is expected to clean up its arguments; the callee
2644  // isn't going to do that.
2645  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2646    return false;
2647
2648  return true;
2649}
2650
2651FastISel *
2652X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2653  return X86::createFastISel(funcInfo);
2654}
2655
2656
2657//===----------------------------------------------------------------------===//
2658//                           Other Lowering Hooks
2659//===----------------------------------------------------------------------===//
2660
2661static bool MayFoldLoad(SDValue Op) {
2662  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2663}
2664
2665static bool MayFoldIntoStore(SDValue Op) {
2666  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2667}
2668
2669static bool isTargetShuffle(unsigned Opcode) {
2670  switch(Opcode) {
2671  default: return false;
2672  case X86ISD::PSHUFD:
2673  case X86ISD::PSHUFHW:
2674  case X86ISD::PSHUFLW:
2675  case X86ISD::SHUFPD:
2676  case X86ISD::PALIGN:
2677  case X86ISD::SHUFPS:
2678  case X86ISD::MOVLHPS:
2679  case X86ISD::MOVLHPD:
2680  case X86ISD::MOVHLPS:
2681  case X86ISD::MOVLPS:
2682  case X86ISD::MOVLPD:
2683  case X86ISD::MOVSHDUP:
2684  case X86ISD::MOVSLDUP:
2685  case X86ISD::MOVDDUP:
2686  case X86ISD::MOVSS:
2687  case X86ISD::MOVSD:
2688  case X86ISD::UNPCKLPS:
2689  case X86ISD::UNPCKLPD:
2690  case X86ISD::VUNPCKLPS:
2691  case X86ISD::VUNPCKLPD:
2692  case X86ISD::VUNPCKLPSY:
2693  case X86ISD::VUNPCKLPDY:
2694  case X86ISD::PUNPCKLWD:
2695  case X86ISD::PUNPCKLBW:
2696  case X86ISD::PUNPCKLDQ:
2697  case X86ISD::PUNPCKLQDQ:
2698  case X86ISD::UNPCKHPS:
2699  case X86ISD::UNPCKHPD:
2700  case X86ISD::PUNPCKHWD:
2701  case X86ISD::PUNPCKHBW:
2702  case X86ISD::PUNPCKHDQ:
2703  case X86ISD::PUNPCKHQDQ:
2704    return true;
2705  }
2706  return false;
2707}
2708
2709static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2710                                               SDValue V1, SelectionDAG &DAG) {
2711  switch(Opc) {
2712  default: llvm_unreachable("Unknown x86 shuffle node");
2713  case X86ISD::MOVSHDUP:
2714  case X86ISD::MOVSLDUP:
2715  case X86ISD::MOVDDUP:
2716    return DAG.getNode(Opc, dl, VT, V1);
2717  }
2718
2719  return SDValue();
2720}
2721
2722static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2723                          SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2724  switch(Opc) {
2725  default: llvm_unreachable("Unknown x86 shuffle node");
2726  case X86ISD::PSHUFD:
2727  case X86ISD::PSHUFHW:
2728  case X86ISD::PSHUFLW:
2729    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2730  }
2731
2732  return SDValue();
2733}
2734
2735static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2736               SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2737  switch(Opc) {
2738  default: llvm_unreachable("Unknown x86 shuffle node");
2739  case X86ISD::PALIGN:
2740  case X86ISD::SHUFPD:
2741  case X86ISD::SHUFPS:
2742    return DAG.getNode(Opc, dl, VT, V1, V2,
2743                       DAG.getConstant(TargetMask, MVT::i8));
2744  }
2745  return SDValue();
2746}
2747
2748static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2749                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2750  switch(Opc) {
2751  default: llvm_unreachable("Unknown x86 shuffle node");
2752  case X86ISD::MOVLHPS:
2753  case X86ISD::MOVLHPD:
2754  case X86ISD::MOVHLPS:
2755  case X86ISD::MOVLPS:
2756  case X86ISD::MOVLPD:
2757  case X86ISD::MOVSS:
2758  case X86ISD::MOVSD:
2759  case X86ISD::UNPCKLPS:
2760  case X86ISD::UNPCKLPD:
2761  case X86ISD::VUNPCKLPS:
2762  case X86ISD::VUNPCKLPD:
2763  case X86ISD::VUNPCKLPSY:
2764  case X86ISD::VUNPCKLPDY:
2765  case X86ISD::PUNPCKLWD:
2766  case X86ISD::PUNPCKLBW:
2767  case X86ISD::PUNPCKLDQ:
2768  case X86ISD::PUNPCKLQDQ:
2769  case X86ISD::UNPCKHPS:
2770  case X86ISD::UNPCKHPD:
2771  case X86ISD::PUNPCKHWD:
2772  case X86ISD::PUNPCKHBW:
2773  case X86ISD::PUNPCKHDQ:
2774  case X86ISD::PUNPCKHQDQ:
2775    return DAG.getNode(Opc, dl, VT, V1, V2);
2776  }
2777  return SDValue();
2778}
2779
2780SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2781  MachineFunction &MF = DAG.getMachineFunction();
2782  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2783  int ReturnAddrIndex = FuncInfo->getRAIndex();
2784
2785  if (ReturnAddrIndex == 0) {
2786    // Set up a frame object for the return address.
2787    uint64_t SlotSize = TD->getPointerSize();
2788    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2789                                                           false);
2790    FuncInfo->setRAIndex(ReturnAddrIndex);
2791  }
2792
2793  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2794}
2795
2796
2797bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2798                                       bool hasSymbolicDisplacement) {
2799  // Offset should fit into 32 bit immediate field.
2800  if (!isInt<32>(Offset))
2801    return false;
2802
2803  // If we don't have a symbolic displacement - we don't have any extra
2804  // restrictions.
2805  if (!hasSymbolicDisplacement)
2806    return true;
2807
2808  // FIXME: Some tweaks might be needed for medium code model.
2809  if (M != CodeModel::Small && M != CodeModel::Kernel)
2810    return false;
2811
2812  // For small code model we assume that latest object is 16MB before end of 31
2813  // bits boundary. We may also accept pretty large negative constants knowing
2814  // that all objects are in the positive half of address space.
2815  if (M == CodeModel::Small && Offset < 16*1024*1024)
2816    return true;
2817
2818  // For kernel code model we know that all object resist in the negative half
2819  // of 32bits address space. We may not accept negative offsets, since they may
2820  // be just off and we may accept pretty large positive ones.
2821  if (M == CodeModel::Kernel && Offset > 0)
2822    return true;
2823
2824  return false;
2825}
2826
2827/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2828/// specific condition code, returning the condition code and the LHS/RHS of the
2829/// comparison to make.
2830static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2831                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2832  if (!isFP) {
2833    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2834      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2835        // X > -1   -> X == 0, jump !sign.
2836        RHS = DAG.getConstant(0, RHS.getValueType());
2837        return X86::COND_NS;
2838      } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2839        // X < 0   -> X == 0, jump on sign.
2840        return X86::COND_S;
2841      } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2842        // X < 1   -> X <= 0
2843        RHS = DAG.getConstant(0, RHS.getValueType());
2844        return X86::COND_LE;
2845      }
2846    }
2847
2848    switch (SetCCOpcode) {
2849    default: llvm_unreachable("Invalid integer condition!");
2850    case ISD::SETEQ:  return X86::COND_E;
2851    case ISD::SETGT:  return X86::COND_G;
2852    case ISD::SETGE:  return X86::COND_GE;
2853    case ISD::SETLT:  return X86::COND_L;
2854    case ISD::SETLE:  return X86::COND_LE;
2855    case ISD::SETNE:  return X86::COND_NE;
2856    case ISD::SETULT: return X86::COND_B;
2857    case ISD::SETUGT: return X86::COND_A;
2858    case ISD::SETULE: return X86::COND_BE;
2859    case ISD::SETUGE: return X86::COND_AE;
2860    }
2861  }
2862
2863  // First determine if it is required or is profitable to flip the operands.
2864
2865  // If LHS is a foldable load, but RHS is not, flip the condition.
2866  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
2867      !ISD::isNON_EXTLoad(RHS.getNode())) {
2868    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
2869    std::swap(LHS, RHS);
2870  }
2871
2872  switch (SetCCOpcode) {
2873  default: break;
2874  case ISD::SETOLT:
2875  case ISD::SETOLE:
2876  case ISD::SETUGT:
2877  case ISD::SETUGE:
2878    std::swap(LHS, RHS);
2879    break;
2880  }
2881
2882  // On a floating point condition, the flags are set as follows:
2883  // ZF  PF  CF   op
2884  //  0 | 0 | 0 | X > Y
2885  //  0 | 0 | 1 | X < Y
2886  //  1 | 0 | 0 | X == Y
2887  //  1 | 1 | 1 | unordered
2888  switch (SetCCOpcode) {
2889  default: llvm_unreachable("Condcode should be pre-legalized away");
2890  case ISD::SETUEQ:
2891  case ISD::SETEQ:   return X86::COND_E;
2892  case ISD::SETOLT:              // flipped
2893  case ISD::SETOGT:
2894  case ISD::SETGT:   return X86::COND_A;
2895  case ISD::SETOLE:              // flipped
2896  case ISD::SETOGE:
2897  case ISD::SETGE:   return X86::COND_AE;
2898  case ISD::SETUGT:              // flipped
2899  case ISD::SETULT:
2900  case ISD::SETLT:   return X86::COND_B;
2901  case ISD::SETUGE:              // flipped
2902  case ISD::SETULE:
2903  case ISD::SETLE:   return X86::COND_BE;
2904  case ISD::SETONE:
2905  case ISD::SETNE:   return X86::COND_NE;
2906  case ISD::SETUO:   return X86::COND_P;
2907  case ISD::SETO:    return X86::COND_NP;
2908  case ISD::SETOEQ:
2909  case ISD::SETUNE:  return X86::COND_INVALID;
2910  }
2911}
2912
2913/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2914/// code. Current x86 isa includes the following FP cmov instructions:
2915/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2916static bool hasFPCMov(unsigned X86CC) {
2917  switch (X86CC) {
2918  default:
2919    return false;
2920  case X86::COND_B:
2921  case X86::COND_BE:
2922  case X86::COND_E:
2923  case X86::COND_P:
2924  case X86::COND_A:
2925  case X86::COND_AE:
2926  case X86::COND_NE:
2927  case X86::COND_NP:
2928    return true;
2929  }
2930}
2931
2932/// isFPImmLegal - Returns true if the target can instruction select the
2933/// specified FP immediate natively. If false, the legalizer will
2934/// materialize the FP immediate as a load from a constant pool.
2935bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
2936  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
2937    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
2938      return true;
2939  }
2940  return false;
2941}
2942
2943/// isUndefOrInRange - Return true if Val is undef or if its value falls within
2944/// the specified range (L, H].
2945static bool isUndefOrInRange(int Val, int Low, int Hi) {
2946  return (Val < 0) || (Val >= Low && Val < Hi);
2947}
2948
2949/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
2950/// specified value.
2951static bool isUndefOrEqual(int Val, int CmpVal) {
2952  if (Val < 0 || Val == CmpVal)
2953    return true;
2954  return false;
2955}
2956
2957/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
2958/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
2959/// the second operand.
2960static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2961  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
2962    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
2963  if (VT == MVT::v2f64 || VT == MVT::v2i64)
2964    return (Mask[0] < 2 && Mask[1] < 2);
2965  return false;
2966}
2967
2968bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
2969  SmallVector<int, 8> M;
2970  N->getMask(M);
2971  return ::isPSHUFDMask(M, N->getValueType(0));
2972}
2973
2974/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
2975/// is suitable for input to PSHUFHW.
2976static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
2977  if (VT != MVT::v8i16)
2978    return false;
2979
2980  // Lower quadword copied in order or undef.
2981  for (int i = 0; i != 4; ++i)
2982    if (Mask[i] >= 0 && Mask[i] != i)
2983      return false;
2984
2985  // Upper quadword shuffled.
2986  for (int i = 4; i != 8; ++i)
2987    if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
2988      return false;
2989
2990  return true;
2991}
2992
2993bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
2994  SmallVector<int, 8> M;
2995  N->getMask(M);
2996  return ::isPSHUFHWMask(M, N->getValueType(0));
2997}
2998
2999/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3000/// is suitable for input to PSHUFLW.
3001static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3002  if (VT != MVT::v8i16)
3003    return false;
3004
3005  // Upper quadword copied in order.
3006  for (int i = 4; i != 8; ++i)
3007    if (Mask[i] >= 0 && Mask[i] != i)
3008      return false;
3009
3010  // Lower quadword shuffled.
3011  for (int i = 0; i != 4; ++i)
3012    if (Mask[i] >= 4)
3013      return false;
3014
3015  return true;
3016}
3017
3018bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3019  SmallVector<int, 8> M;
3020  N->getMask(M);
3021  return ::isPSHUFLWMask(M, N->getValueType(0));
3022}
3023
3024/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3025/// is suitable for input to PALIGNR.
3026static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3027                          bool hasSSSE3) {
3028  int i, e = VT.getVectorNumElements();
3029
3030  // Do not handle v2i64 / v2f64 shuffles with palignr.
3031  if (e < 4 || !hasSSSE3)
3032    return false;
3033
3034  for (i = 0; i != e; ++i)
3035    if (Mask[i] >= 0)
3036      break;
3037
3038  // All undef, not a palignr.
3039  if (i == e)
3040    return false;
3041
3042  // Determine if it's ok to perform a palignr with only the LHS, since we
3043  // don't have access to the actual shuffle elements to see if RHS is undef.
3044  bool Unary = Mask[i] < (int)e;
3045  bool NeedsUnary = false;
3046
3047  int s = Mask[i] - i;
3048
3049  // Check the rest of the elements to see if they are consecutive.
3050  for (++i; i != e; ++i) {
3051    int m = Mask[i];
3052    if (m < 0)
3053      continue;
3054
3055    Unary = Unary && (m < (int)e);
3056    NeedsUnary = NeedsUnary || (m < s);
3057
3058    if (NeedsUnary && !Unary)
3059      return false;
3060    if (Unary && m != ((s+i) & (e-1)))
3061      return false;
3062    if (!Unary && m != (s+i))
3063      return false;
3064  }
3065  return true;
3066}
3067
3068bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
3069  SmallVector<int, 8> M;
3070  N->getMask(M);
3071  return ::isPALIGNRMask(M, N->getValueType(0), true);
3072}
3073
3074/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3075/// specifies a shuffle of elements that is suitable for input to SHUFP*.
3076static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3077  int NumElems = VT.getVectorNumElements();
3078  if (NumElems != 2 && NumElems != 4)
3079    return false;
3080
3081  int Half = NumElems / 2;
3082  for (int i = 0; i < Half; ++i)
3083    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3084      return false;
3085  for (int i = Half; i < NumElems; ++i)
3086    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3087      return false;
3088
3089  return true;
3090}
3091
3092bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3093  SmallVector<int, 8> M;
3094  N->getMask(M);
3095  return ::isSHUFPMask(M, N->getValueType(0));
3096}
3097
3098/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3099/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3100/// half elements to come from vector 1 (which would equal the dest.) and
3101/// the upper half to come from vector 2.
3102static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3103  int NumElems = VT.getVectorNumElements();
3104
3105  if (NumElems != 2 && NumElems != 4)
3106    return false;
3107
3108  int Half = NumElems / 2;
3109  for (int i = 0; i < Half; ++i)
3110    if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3111      return false;
3112  for (int i = Half; i < NumElems; ++i)
3113    if (!isUndefOrInRange(Mask[i], 0, NumElems))
3114      return false;
3115  return true;
3116}
3117
3118static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3119  SmallVector<int, 8> M;
3120  N->getMask(M);
3121  return isCommutedSHUFPMask(M, N->getValueType(0));
3122}
3123
3124/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3125/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3126bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3127  if (N->getValueType(0).getVectorNumElements() != 4)
3128    return false;
3129
3130  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3131  return isUndefOrEqual(N->getMaskElt(0), 6) &&
3132         isUndefOrEqual(N->getMaskElt(1), 7) &&
3133         isUndefOrEqual(N->getMaskElt(2), 2) &&
3134         isUndefOrEqual(N->getMaskElt(3), 3);
3135}
3136
3137/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3138/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3139/// <2, 3, 2, 3>
3140bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3141  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3142
3143  if (NumElems != 4)
3144    return false;
3145
3146  return isUndefOrEqual(N->getMaskElt(0), 2) &&
3147  isUndefOrEqual(N->getMaskElt(1), 3) &&
3148  isUndefOrEqual(N->getMaskElt(2), 2) &&
3149  isUndefOrEqual(N->getMaskElt(3), 3);
3150}
3151
3152/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3153/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3154bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3155  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3156
3157  if (NumElems != 2 && NumElems != 4)
3158    return false;
3159
3160  for (unsigned i = 0; i < NumElems/2; ++i)
3161    if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3162      return false;
3163
3164  for (unsigned i = NumElems/2; i < NumElems; ++i)
3165    if (!isUndefOrEqual(N->getMaskElt(i), i))
3166      return false;
3167
3168  return true;
3169}
3170
3171/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3172/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3173bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3174  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3175
3176  if ((NumElems != 2 && NumElems != 4)
3177      || N->getValueType(0).getSizeInBits() > 128)
3178    return false;
3179
3180  for (unsigned i = 0; i < NumElems/2; ++i)
3181    if (!isUndefOrEqual(N->getMaskElt(i), i))
3182      return false;
3183
3184  for (unsigned i = 0; i < NumElems/2; ++i)
3185    if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3186      return false;
3187
3188  return true;
3189}
3190
3191/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3192/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3193static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3194                         bool V2IsSplat = false) {
3195  int NumElts = VT.getVectorNumElements();
3196  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3197    return false;
3198
3199  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3200  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3201  // sections.
3202  unsigned NumSections = VT.getSizeInBits() / 128;
3203  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3204  unsigned NumSectionElts = NumElts / NumSections;
3205
3206  unsigned Start = 0;
3207  unsigned End = NumSectionElts;
3208  for (unsigned s = 0; s < NumSections; ++s) {
3209    for (unsigned i = Start, j = s * NumSectionElts;
3210         i != End;
3211         i += 2, ++j) {
3212      int BitI  = Mask[i];
3213      int BitI1 = Mask[i+1];
3214      if (!isUndefOrEqual(BitI, j))
3215        return false;
3216      if (V2IsSplat) {
3217        if (!isUndefOrEqual(BitI1, NumElts))
3218          return false;
3219      } else {
3220        if (!isUndefOrEqual(BitI1, j + NumElts))
3221          return false;
3222      }
3223    }
3224    // Process the next 128 bits.
3225    Start += NumSectionElts;
3226    End += NumSectionElts;
3227  }
3228
3229  return true;
3230}
3231
3232bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3233  SmallVector<int, 8> M;
3234  N->getMask(M);
3235  return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3236}
3237
3238/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3239/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3240static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3241                         bool V2IsSplat = false) {
3242  int NumElts = VT.getVectorNumElements();
3243  if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
3244    return false;
3245
3246  for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
3247    int BitI  = Mask[i];
3248    int BitI1 = Mask[i+1];
3249    if (!isUndefOrEqual(BitI, j + NumElts/2))
3250      return false;
3251    if (V2IsSplat) {
3252      if (isUndefOrEqual(BitI1, NumElts))
3253        return false;
3254    } else {
3255      if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
3256        return false;
3257    }
3258  }
3259  return true;
3260}
3261
3262bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3263  SmallVector<int, 8> M;
3264  N->getMask(M);
3265  return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3266}
3267
3268/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3269/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3270/// <0, 0, 1, 1>
3271static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3272  int NumElems = VT.getVectorNumElements();
3273  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3274    return false;
3275
3276  // Handle vector lengths > 128 bits.  Define a "section" as a set of
3277  // 128 bits.  AVX defines UNPCK* to operate independently on 128-bit
3278  // sections.
3279  unsigned NumSections = VT.getSizeInBits() / 128;
3280  if (NumSections == 0 ) NumSections = 1;  // Handle MMX
3281  unsigned NumSectionElts = NumElems / NumSections;
3282
3283  for (unsigned s = 0; s < NumSections; ++s) {
3284    for (unsigned i = s * NumSectionElts, j = s * NumSectionElts;
3285         i != NumSectionElts * (s + 1);
3286         i += 2, ++j) {
3287      int BitI  = Mask[i];
3288      int BitI1 = Mask[i+1];
3289
3290      if (!isUndefOrEqual(BitI, j))
3291        return false;
3292      if (!isUndefOrEqual(BitI1, j))
3293        return false;
3294    }
3295  }
3296
3297  return true;
3298}
3299
3300bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3301  SmallVector<int, 8> M;
3302  N->getMask(M);
3303  return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3304}
3305
3306/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3307/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3308/// <2, 2, 3, 3>
3309static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3310  int NumElems = VT.getVectorNumElements();
3311  if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3312    return false;
3313
3314  for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3315    int BitI  = Mask[i];
3316    int BitI1 = Mask[i+1];
3317    if (!isUndefOrEqual(BitI, j))
3318      return false;
3319    if (!isUndefOrEqual(BitI1, j))
3320      return false;
3321  }
3322  return true;
3323}
3324
3325bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3326  SmallVector<int, 8> M;
3327  N->getMask(M);
3328  return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3329}
3330
3331/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3332/// specifies a shuffle of elements that is suitable for input to MOVSS,
3333/// MOVSD, and MOVD, i.e. setting the lowest element.
3334static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3335  if (VT.getVectorElementType().getSizeInBits() < 32)
3336    return false;
3337
3338  int NumElts = VT.getVectorNumElements();
3339
3340  if (!isUndefOrEqual(Mask[0], NumElts))
3341    return false;
3342
3343  for (int i = 1; i < NumElts; ++i)
3344    if (!isUndefOrEqual(Mask[i], i))
3345      return false;
3346
3347  return true;
3348}
3349
3350bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3351  SmallVector<int, 8> M;
3352  N->getMask(M);
3353  return ::isMOVLMask(M, N->getValueType(0));
3354}
3355
3356/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3357/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3358/// element of vector 2 and the other elements to come from vector 1 in order.
3359static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3360                               bool V2IsSplat = false, bool V2IsUndef = false) {
3361  int NumOps = VT.getVectorNumElements();
3362  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3363    return false;
3364
3365  if (!isUndefOrEqual(Mask[0], 0))
3366    return false;
3367
3368  for (int i = 1; i < NumOps; ++i)
3369    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3370          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3371          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3372      return false;
3373
3374  return true;
3375}
3376
3377static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3378                           bool V2IsUndef = false) {
3379  SmallVector<int, 8> M;
3380  N->getMask(M);
3381  return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3382}
3383
3384/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3385/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3386bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
3387  if (N->getValueType(0).getVectorNumElements() != 4)
3388    return false;
3389
3390  // Expect 1, 1, 3, 3
3391  for (unsigned i = 0; i < 2; ++i) {
3392    int Elt = N->getMaskElt(i);
3393    if (Elt >= 0 && Elt != 1)
3394      return false;
3395  }
3396
3397  bool HasHi = false;
3398  for (unsigned i = 2; i < 4; ++i) {
3399    int Elt = N->getMaskElt(i);
3400    if (Elt >= 0 && Elt != 3)
3401      return false;
3402    if (Elt == 3)
3403      HasHi = true;
3404  }
3405  // Don't use movshdup if it can be done with a shufps.
3406  // FIXME: verify that matching u, u, 3, 3 is what we want.
3407  return HasHi;
3408}
3409
3410/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3411/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3412bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
3413  if (N->getValueType(0).getVectorNumElements() != 4)
3414    return false;
3415
3416  // Expect 0, 0, 2, 2
3417  for (unsigned i = 0; i < 2; ++i)
3418    if (N->getMaskElt(i) > 0)
3419      return false;
3420
3421  bool HasHi = false;
3422  for (unsigned i = 2; i < 4; ++i) {
3423    int Elt = N->getMaskElt(i);
3424    if (Elt >= 0 && Elt != 2)
3425      return false;
3426    if (Elt == 2)
3427      HasHi = true;
3428  }
3429  // Don't use movsldup if it can be done with a shufps.
3430  return HasHi;
3431}
3432
3433/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3434/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
3435bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3436  int e = N->getValueType(0).getVectorNumElements() / 2;
3437
3438  for (int i = 0; i < e; ++i)
3439    if (!isUndefOrEqual(N->getMaskElt(i), i))
3440      return false;
3441  for (int i = 0; i < e; ++i)
3442    if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3443      return false;
3444  return true;
3445}
3446
3447/// isVEXTRACTF128Index - Return true if the specified
3448/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3449/// suitable for input to VEXTRACTF128.
3450bool X86::isVEXTRACTF128Index(SDNode *N) {
3451  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3452    return false;
3453
3454  // The index should be aligned on a 128-bit boundary.
3455  uint64_t Index =
3456    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3457
3458  unsigned VL = N->getValueType(0).getVectorNumElements();
3459  unsigned VBits = N->getValueType(0).getSizeInBits();
3460  unsigned ElSize = VBits / VL;
3461  bool Result = (Index * ElSize) % 128 == 0;
3462
3463  return Result;
3464}
3465
3466/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3467/// operand specifies a subvector insert that is suitable for input to
3468/// VINSERTF128.
3469bool X86::isVINSERTF128Index(SDNode *N) {
3470  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3471    return false;
3472
3473  // The index should be aligned on a 128-bit boundary.
3474  uint64_t Index =
3475    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3476
3477  unsigned VL = N->getValueType(0).getVectorNumElements();
3478  unsigned VBits = N->getValueType(0).getSizeInBits();
3479  unsigned ElSize = VBits / VL;
3480  bool Result = (Index * ElSize) % 128 == 0;
3481
3482  return Result;
3483}
3484
3485/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3486/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3487unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
3488  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3489  int NumOperands = SVOp->getValueType(0).getVectorNumElements();
3490
3491  unsigned Shift = (NumOperands == 4) ? 2 : 1;
3492  unsigned Mask = 0;
3493  for (int i = 0; i < NumOperands; ++i) {
3494    int Val = SVOp->getMaskElt(NumOperands-i-1);
3495    if (Val < 0) Val = 0;
3496    if (Val >= NumOperands) Val -= NumOperands;
3497    Mask |= Val;
3498    if (i != NumOperands - 1)
3499      Mask <<= Shift;
3500  }
3501  return Mask;
3502}
3503
3504/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3505/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3506unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
3507  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3508  unsigned Mask = 0;
3509  // 8 nodes, but we only care about the last 4.
3510  for (unsigned i = 7; i >= 4; --i) {
3511    int Val = SVOp->getMaskElt(i);
3512    if (Val >= 0)
3513      Mask |= (Val - 4);
3514    if (i != 4)
3515      Mask <<= 2;
3516  }
3517  return Mask;
3518}
3519
3520/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3521/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3522unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
3523  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3524  unsigned Mask = 0;
3525  // 8 nodes, but we only care about the first 4.
3526  for (int i = 3; i >= 0; --i) {
3527    int Val = SVOp->getMaskElt(i);
3528    if (Val >= 0)
3529      Mask |= Val;
3530    if (i != 0)
3531      Mask <<= 2;
3532  }
3533  return Mask;
3534}
3535
3536/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
3537/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
3538unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
3539  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3540  EVT VVT = N->getValueType(0);
3541  unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
3542  int Val = 0;
3543
3544  unsigned i, e;
3545  for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
3546    Val = SVOp->getMaskElt(i);
3547    if (Val >= 0)
3548      break;
3549  }
3550  return (Val - i) * EltSize;
3551}
3552
3553/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
3554/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
3555/// instructions.
3556unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
3557  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3558    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
3559
3560  uint64_t Index =
3561    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3562
3563  EVT VecVT = N->getOperand(0).getValueType();
3564  EVT ElVT = VecVT.getVectorElementType();
3565
3566  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3567
3568  return Index / NumElemsPerChunk;
3569}
3570
3571/// getInsertVINSERTF128Immediate - Return the appropriate immediate
3572/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
3573/// instructions.
3574unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
3575  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3576    llvm_unreachable("Illegal insert subvector for VINSERTF128");
3577
3578  uint64_t Index =
3579    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3580
3581  EVT VecVT = N->getValueType(0);
3582  EVT ElVT = VecVT.getVectorElementType();
3583
3584  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
3585
3586  return Index / NumElemsPerChunk;
3587}
3588
3589/// isZeroNode - Returns true if Elt is a constant zero or a floating point
3590/// constant +0.0.
3591bool X86::isZeroNode(SDValue Elt) {
3592  return ((isa<ConstantSDNode>(Elt) &&
3593           cast<ConstantSDNode>(Elt)->isNullValue()) ||
3594          (isa<ConstantFPSDNode>(Elt) &&
3595           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
3596}
3597
3598/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
3599/// their permute mask.
3600static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
3601                                    SelectionDAG &DAG) {
3602  EVT VT = SVOp->getValueType(0);
3603  unsigned NumElems = VT.getVectorNumElements();
3604  SmallVector<int, 8> MaskVec;
3605
3606  for (unsigned i = 0; i != NumElems; ++i) {
3607    int idx = SVOp->getMaskElt(i);
3608    if (idx < 0)
3609      MaskVec.push_back(idx);
3610    else if (idx < (int)NumElems)
3611      MaskVec.push_back(idx + NumElems);
3612    else
3613      MaskVec.push_back(idx - NumElems);
3614  }
3615  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
3616                              SVOp->getOperand(0), &MaskVec[0]);
3617}
3618
3619/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3620/// the two vector operands have swapped position.
3621static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
3622  unsigned NumElems = VT.getVectorNumElements();
3623  for (unsigned i = 0; i != NumElems; ++i) {
3624    int idx = Mask[i];
3625    if (idx < 0)
3626      continue;
3627    else if (idx < (int)NumElems)
3628      Mask[i] = idx + NumElems;
3629    else
3630      Mask[i] = idx - NumElems;
3631  }
3632}
3633
3634/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
3635/// match movhlps. The lower half elements should come from upper half of
3636/// V1 (and in order), and the upper half elements should come from the upper
3637/// half of V2 (and in order).
3638static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
3639  if (Op->getValueType(0).getVectorNumElements() != 4)
3640    return false;
3641  for (unsigned i = 0, e = 2; i != e; ++i)
3642    if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
3643      return false;
3644  for (unsigned i = 2; i != 4; ++i)
3645    if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
3646      return false;
3647  return true;
3648}
3649
3650/// isScalarLoadToVector - Returns true if the node is a scalar load that
3651/// is promoted to a vector. It also returns the LoadSDNode by reference if
3652/// required.
3653static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
3654  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
3655    return false;
3656  N = N->getOperand(0).getNode();
3657  if (!ISD::isNON_EXTLoad(N))
3658    return false;
3659  if (LD)
3660    *LD = cast<LoadSDNode>(N);
3661  return true;
3662}
3663
3664/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
3665/// match movlp{s|d}. The lower half elements should come from lower half of
3666/// V1 (and in order), and the upper half elements should come from the upper
3667/// half of V2 (and in order). And since V1 will become the source of the
3668/// MOVLP, it must be either a vector load or a scalar load to vector.
3669static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
3670                               ShuffleVectorSDNode *Op) {
3671  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
3672    return false;
3673  // Is V2 is a vector load, don't do this transformation. We will try to use
3674  // load folding shufps op.
3675  if (ISD::isNON_EXTLoad(V2))
3676    return false;
3677
3678  unsigned NumElems = Op->getValueType(0).getVectorNumElements();
3679
3680  if (NumElems != 2 && NumElems != 4)
3681    return false;
3682  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3683    if (!isUndefOrEqual(Op->getMaskElt(i), i))
3684      return false;
3685  for (unsigned i = NumElems/2; i != NumElems; ++i)
3686    if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
3687      return false;
3688  return true;
3689}
3690
3691/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
3692/// all the same.
3693static bool isSplatVector(SDNode *N) {
3694  if (N->getOpcode() != ISD::BUILD_VECTOR)
3695    return false;
3696
3697  SDValue SplatValue = N->getOperand(0);
3698  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
3699    if (N->getOperand(i) != SplatValue)
3700      return false;
3701  return true;
3702}
3703
3704/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
3705/// to an zero vector.
3706/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
3707static bool isZeroShuffle(ShuffleVectorSDNode *N) {
3708  SDValue V1 = N->getOperand(0);
3709  SDValue V2 = N->getOperand(1);
3710  unsigned NumElems = N->getValueType(0).getVectorNumElements();
3711  for (unsigned i = 0; i != NumElems; ++i) {
3712    int Idx = N->getMaskElt(i);
3713    if (Idx >= (int)NumElems) {
3714      unsigned Opc = V2.getOpcode();
3715      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
3716        continue;
3717      if (Opc != ISD::BUILD_VECTOR ||
3718          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
3719        return false;
3720    } else if (Idx >= 0) {
3721      unsigned Opc = V1.getOpcode();
3722      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
3723        continue;
3724      if (Opc != ISD::BUILD_VECTOR ||
3725          !X86::isZeroNode(V1.getOperand(Idx)))
3726        return false;
3727    }
3728  }
3729  return true;
3730}
3731
3732/// getZeroVector - Returns a vector of specified type with all zero elements.
3733///
3734static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
3735                             DebugLoc dl) {
3736  assert(VT.isVector() && "Expected a vector type");
3737
3738  // Always build SSE zero vectors as <4 x i32> bitcasted
3739  // to their dest type. This ensures they get CSE'd.
3740  SDValue Vec;
3741  if (VT.getSizeInBits() == 128) {  // SSE
3742    if (HasSSE2) {  // SSE2
3743      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
3744      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3745    } else { // SSE1
3746      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3747      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
3748    }
3749  } else if (VT.getSizeInBits() == 256) { // AVX
3750    // 256-bit logic and arithmetic instructions in AVX are
3751    // all floating-point, no support for integer ops. Default
3752    // to emitting fp zeroed vectors then.
3753    SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
3754    SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
3755    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
3756  }
3757  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3758}
3759
3760/// getOnesVector - Returns a vector of specified type with all bits set.
3761///
3762static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3763  assert(VT.isVector() && "Expected a vector type");
3764
3765  // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
3766  // type.  This ensures they get CSE'd.
3767  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
3768  SDValue Vec;
3769  Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
3770  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
3771}
3772
3773
3774/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
3775/// that point to V2 points to its first element.
3776static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
3777  EVT VT = SVOp->getValueType(0);
3778  unsigned NumElems = VT.getVectorNumElements();
3779
3780  bool Changed = false;
3781  SmallVector<int, 8> MaskVec;
3782  SVOp->getMask(MaskVec);
3783
3784  for (unsigned i = 0; i != NumElems; ++i) {
3785    if (MaskVec[i] > (int)NumElems) {
3786      MaskVec[i] = NumElems;
3787      Changed = true;
3788    }
3789  }
3790  if (Changed)
3791    return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
3792                                SVOp->getOperand(1), &MaskVec[0]);
3793  return SDValue(SVOp, 0);
3794}
3795
3796/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
3797/// operation of specified width.
3798static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3799                       SDValue V2) {
3800  unsigned NumElems = VT.getVectorNumElements();
3801  SmallVector<int, 8> Mask;
3802  Mask.push_back(NumElems);
3803  for (unsigned i = 1; i != NumElems; ++i)
3804    Mask.push_back(i);
3805  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3806}
3807
3808/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
3809static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3810                          SDValue V2) {
3811  unsigned NumElems = VT.getVectorNumElements();
3812  SmallVector<int, 8> Mask;
3813  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
3814    Mask.push_back(i);
3815    Mask.push_back(i + NumElems);
3816  }
3817  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3818}
3819
3820/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
3821static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
3822                          SDValue V2) {
3823  unsigned NumElems = VT.getVectorNumElements();
3824  unsigned Half = NumElems/2;
3825  SmallVector<int, 8> Mask;
3826  for (unsigned i = 0; i != Half; ++i) {
3827    Mask.push_back(i + Half);
3828    Mask.push_back(i + NumElems + Half);
3829  }
3830  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
3831}
3832
3833/// PromoteSplat - Promote a splat of v4i32, v8i16 or v16i8 to v4f32.
3834static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
3835  EVT PVT = MVT::v4f32;
3836  EVT VT = SV->getValueType(0);
3837  DebugLoc dl = SV->getDebugLoc();
3838  SDValue V1 = SV->getOperand(0);
3839  int NumElems = VT.getVectorNumElements();
3840  int EltNo = SV->getSplatIndex();
3841
3842  // unpack elements to the correct location
3843  while (NumElems > 4) {
3844    if (EltNo < NumElems/2) {
3845      V1 = getUnpackl(DAG, dl, VT, V1, V1);
3846    } else {
3847      V1 = getUnpackh(DAG, dl, VT, V1, V1);
3848      EltNo -= NumElems/2;
3849    }
3850    NumElems >>= 1;
3851  }
3852
3853  // Perform the splat.
3854  int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
3855  V1 = DAG.getNode(ISD::BITCAST, dl, PVT, V1);
3856  V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
3857  return DAG.getNode(ISD::BITCAST, dl, VT, V1);
3858}
3859
3860/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
3861/// vector of zero or undef vector.  This produces a shuffle where the low
3862/// element of V2 is swizzled into the zero/undef vector, landing at element
3863/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
3864static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
3865                                             bool isZero, bool HasSSE2,
3866                                             SelectionDAG &DAG) {
3867  EVT VT = V2.getValueType();
3868  SDValue V1 = isZero
3869    ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
3870  unsigned NumElems = VT.getVectorNumElements();
3871  SmallVector<int, 16> MaskVec;
3872  for (unsigned i = 0; i != NumElems; ++i)
3873    // If this is the insertion idx, put the low elt of V2 here.
3874    MaskVec.push_back(i == Idx ? NumElems : i);
3875  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
3876}
3877
3878/// getShuffleScalarElt - Returns the scalar element that will make up the ith
3879/// element of the result of the vector shuffle.
3880SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
3881                            unsigned Depth) {
3882  if (Depth == 6)
3883    return SDValue();  // Limit search depth.
3884
3885  SDValue V = SDValue(N, 0);
3886  EVT VT = V.getValueType();
3887  unsigned Opcode = V.getOpcode();
3888
3889  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
3890  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
3891    Index = SV->getMaskElt(Index);
3892
3893    if (Index < 0)
3894      return DAG.getUNDEF(VT.getVectorElementType());
3895
3896    int NumElems = VT.getVectorNumElements();
3897    SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
3898    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
3899  }
3900
3901  // Recurse into target specific vector shuffles to find scalars.
3902  if (isTargetShuffle(Opcode)) {
3903    int NumElems = VT.getVectorNumElements();
3904    SmallVector<unsigned, 16> ShuffleMask;
3905    SDValue ImmN;
3906
3907    switch(Opcode) {
3908    case X86ISD::SHUFPS:
3909    case X86ISD::SHUFPD:
3910      ImmN = N->getOperand(N->getNumOperands()-1);
3911      DecodeSHUFPSMask(NumElems,
3912                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
3913                       ShuffleMask);
3914      break;
3915    case X86ISD::PUNPCKHBW:
3916    case X86ISD::PUNPCKHWD:
3917    case X86ISD::PUNPCKHDQ:
3918    case X86ISD::PUNPCKHQDQ:
3919      DecodePUNPCKHMask(NumElems, ShuffleMask);
3920      break;
3921    case X86ISD::UNPCKHPS:
3922    case X86ISD::UNPCKHPD:
3923      DecodeUNPCKHPMask(NumElems, ShuffleMask);
3924      break;
3925    case X86ISD::PUNPCKLBW:
3926    case X86ISD::PUNPCKLWD:
3927    case X86ISD::PUNPCKLDQ:
3928    case X86ISD::PUNPCKLQDQ:
3929      DecodePUNPCKLMask(VT, ShuffleMask);
3930      break;
3931    case X86ISD::UNPCKLPS:
3932    case X86ISD::UNPCKLPD:
3933    case X86ISD::VUNPCKLPS:
3934    case X86ISD::VUNPCKLPD:
3935    case X86ISD::VUNPCKLPSY:
3936    case X86ISD::VUNPCKLPDY:
3937      DecodeUNPCKLPMask(VT, ShuffleMask);
3938      break;
3939    case X86ISD::MOVHLPS:
3940      DecodeMOVHLPSMask(NumElems, ShuffleMask);
3941      break;
3942    case X86ISD::MOVLHPS:
3943      DecodeMOVLHPSMask(NumElems, ShuffleMask);
3944      break;
3945    case X86ISD::PSHUFD:
3946      ImmN = N->getOperand(N->getNumOperands()-1);
3947      DecodePSHUFMask(NumElems,
3948                      cast<ConstantSDNode>(ImmN)->getZExtValue(),
3949                      ShuffleMask);
3950      break;
3951    case X86ISD::PSHUFHW:
3952      ImmN = N->getOperand(N->getNumOperands()-1);
3953      DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3954                        ShuffleMask);
3955      break;
3956    case X86ISD::PSHUFLW:
3957      ImmN = N->getOperand(N->getNumOperands()-1);
3958      DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
3959                        ShuffleMask);
3960      break;
3961    case X86ISD::MOVSS:
3962    case X86ISD::MOVSD: {
3963      // The index 0 always comes from the first element of the second source,
3964      // this is why MOVSS and MOVSD are used in the first place. The other
3965      // elements come from the other positions of the first source vector.
3966      unsigned OpNum = (Index == 0) ? 1 : 0;
3967      return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
3968                                 Depth+1);
3969    }
3970    default:
3971      assert("not implemented for target shuffle node");
3972      return SDValue();
3973    }
3974
3975    Index = ShuffleMask[Index];
3976    if (Index < 0)
3977      return DAG.getUNDEF(VT.getVectorElementType());
3978
3979    SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
3980    return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
3981                               Depth+1);
3982  }
3983
3984  // Actual nodes that may contain scalar elements
3985  if (Opcode == ISD::BITCAST) {
3986    V = V.getOperand(0);
3987    EVT SrcVT = V.getValueType();
3988    unsigned NumElems = VT.getVectorNumElements();
3989
3990    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
3991      return SDValue();
3992  }
3993
3994  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
3995    return (Index == 0) ? V.getOperand(0)
3996                          : DAG.getUNDEF(VT.getVectorElementType());
3997
3998  if (V.getOpcode() == ISD::BUILD_VECTOR)
3999    return V.getOperand(Index);
4000
4001  return SDValue();
4002}
4003
4004/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4005/// shuffle operation which come from a consecutively from a zero. The
4006/// search can start in two diferent directions, from left or right.
4007static
4008unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4009                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4010  int i = 0;
4011
4012  while (i < NumElems) {
4013    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4014    SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4015    if (!(Elt.getNode() &&
4016         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4017      break;
4018    ++i;
4019  }
4020
4021  return i;
4022}
4023
4024/// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4025/// MaskE correspond consecutively to elements from one of the vector operands,
4026/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4027static
4028bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4029                              int OpIdx, int NumElems, unsigned &OpNum) {
4030  bool SeenV1 = false;
4031  bool SeenV2 = false;
4032
4033  for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4034    int Idx = SVOp->getMaskElt(i);
4035    // Ignore undef indicies
4036    if (Idx < 0)
4037      continue;
4038
4039    if (Idx < NumElems)
4040      SeenV1 = true;
4041    else
4042      SeenV2 = true;
4043
4044    // Only accept consecutive elements from the same vector
4045    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4046      return false;
4047  }
4048
4049  OpNum = SeenV1 ? 0 : 1;
4050  return true;
4051}
4052
4053/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4054/// logical left shift of a vector.
4055static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4056                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4057  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4058  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4059              false /* check zeros from right */, DAG);
4060  unsigned OpSrc;
4061
4062  if (!NumZeros)
4063    return false;
4064
4065  // Considering the elements in the mask that are not consecutive zeros,
4066  // check if they consecutively come from only one of the source vectors.
4067  //
4068  //               V1 = {X, A, B, C}     0
4069  //                         \  \  \    /
4070  //   vector_shuffle V1, V2 <1, 2, 3, X>
4071  //
4072  if (!isShuffleMaskConsecutive(SVOp,
4073            0,                   // Mask Start Index
4074            NumElems-NumZeros-1, // Mask End Index
4075            NumZeros,            // Where to start looking in the src vector
4076            NumElems,            // Number of elements in vector
4077            OpSrc))              // Which source operand ?
4078    return false;
4079
4080  isLeft = false;
4081  ShAmt = NumZeros;
4082  ShVal = SVOp->getOperand(OpSrc);
4083  return true;
4084}
4085
4086/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4087/// logical left shift of a vector.
4088static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4089                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4090  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4091  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4092              true /* check zeros from left */, DAG);
4093  unsigned OpSrc;
4094
4095  if (!NumZeros)
4096    return false;
4097
4098  // Considering the elements in the mask that are not consecutive zeros,
4099  // check if they consecutively come from only one of the source vectors.
4100  //
4101  //                           0    { A, B, X, X } = V2
4102  //                          / \    /  /
4103  //   vector_shuffle V1, V2 <X, X, 4, 5>
4104  //
4105  if (!isShuffleMaskConsecutive(SVOp,
4106            NumZeros,     // Mask Start Index
4107            NumElems-1,   // Mask End Index
4108            0,            // Where to start looking in the src vector
4109            NumElems,     // Number of elements in vector
4110            OpSrc))       // Which source operand ?
4111    return false;
4112
4113  isLeft = true;
4114  ShAmt = NumZeros;
4115  ShVal = SVOp->getOperand(OpSrc);
4116  return true;
4117}
4118
4119/// isVectorShift - Returns true if the shuffle can be implemented as a
4120/// logical left or right shift of a vector.
4121static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4122                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4123  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4124      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4125    return true;
4126
4127  return false;
4128}
4129
4130/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4131///
4132static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4133                                       unsigned NumNonZero, unsigned NumZero,
4134                                       SelectionDAG &DAG,
4135                                       const TargetLowering &TLI) {
4136  if (NumNonZero > 8)
4137    return SDValue();
4138
4139  DebugLoc dl = Op.getDebugLoc();
4140  SDValue V(0, 0);
4141  bool First = true;
4142  for (unsigned i = 0; i < 16; ++i) {
4143    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4144    if (ThisIsNonZero && First) {
4145      if (NumZero)
4146        V = getZeroVector(MVT::v8i16, true, DAG, dl);
4147      else
4148        V = DAG.getUNDEF(MVT::v8i16);
4149      First = false;
4150    }
4151
4152    if ((i & 1) != 0) {
4153      SDValue ThisElt(0, 0), LastElt(0, 0);
4154      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4155      if (LastIsNonZero) {
4156        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4157                              MVT::i16, Op.getOperand(i-1));
4158      }
4159      if (ThisIsNonZero) {
4160        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4161        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4162                              ThisElt, DAG.getConstant(8, MVT::i8));
4163        if (LastIsNonZero)
4164          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4165      } else
4166        ThisElt = LastElt;
4167
4168      if (ThisElt.getNode())
4169        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4170                        DAG.getIntPtrConstant(i/2));
4171    }
4172  }
4173
4174  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4175}
4176
4177/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4178///
4179static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4180                                     unsigned NumNonZero, unsigned NumZero,
4181                                     SelectionDAG &DAG,
4182                                     const TargetLowering &TLI) {
4183  if (NumNonZero > 4)
4184    return SDValue();
4185
4186  DebugLoc dl = Op.getDebugLoc();
4187  SDValue V(0, 0);
4188  bool First = true;
4189  for (unsigned i = 0; i < 8; ++i) {
4190    bool isNonZero = (NonZeros & (1 << i)) != 0;
4191    if (isNonZero) {
4192      if (First) {
4193        if (NumZero)
4194          V = getZeroVector(MVT::v8i16, true, DAG, dl);
4195        else
4196          V = DAG.getUNDEF(MVT::v8i16);
4197        First = false;
4198      }
4199      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4200                      MVT::v8i16, V, Op.getOperand(i),
4201                      DAG.getIntPtrConstant(i));
4202    }
4203  }
4204
4205  return V;
4206}
4207
4208/// getVShift - Return a vector logical shift node.
4209///
4210static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4211                         unsigned NumBits, SelectionDAG &DAG,
4212                         const TargetLowering &TLI, DebugLoc dl) {
4213  EVT ShVT = MVT::v2i64;
4214  unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4215  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4216  return DAG.getNode(ISD::BITCAST, dl, VT,
4217                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4218                             DAG.getConstant(NumBits,
4219                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4220}
4221
4222SDValue
4223X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4224                                          SelectionDAG &DAG) const {
4225
4226  // Check if the scalar load can be widened into a vector load. And if
4227  // the address is "base + cst" see if the cst can be "absorbed" into
4228  // the shuffle mask.
4229  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4230    SDValue Ptr = LD->getBasePtr();
4231    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4232      return SDValue();
4233    EVT PVT = LD->getValueType(0);
4234    if (PVT != MVT::i32 && PVT != MVT::f32)
4235      return SDValue();
4236
4237    int FI = -1;
4238    int64_t Offset = 0;
4239    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4240      FI = FINode->getIndex();
4241      Offset = 0;
4242    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4243               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4244      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4245      Offset = Ptr.getConstantOperandVal(1);
4246      Ptr = Ptr.getOperand(0);
4247    } else {
4248      return SDValue();
4249    }
4250
4251    SDValue Chain = LD->getChain();
4252    // Make sure the stack object alignment is at least 16.
4253    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4254    if (DAG.InferPtrAlignment(Ptr) < 16) {
4255      if (MFI->isFixedObjectIndex(FI)) {
4256        // Can't change the alignment. FIXME: It's possible to compute
4257        // the exact stack offset and reference FI + adjust offset instead.
4258        // If someone *really* cares about this. That's the way to implement it.
4259        return SDValue();
4260      } else {
4261        MFI->setObjectAlignment(FI, 16);
4262      }
4263    }
4264
4265    // (Offset % 16) must be multiple of 4. Then address is then
4266    // Ptr + (Offset & ~15).
4267    if (Offset < 0)
4268      return SDValue();
4269    if ((Offset % 16) & 3)
4270      return SDValue();
4271    int64_t StartOffset = Offset & ~15;
4272    if (StartOffset)
4273      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4274                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4275
4276    int EltNo = (Offset - StartOffset) >> 2;
4277    int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
4278    EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
4279    SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,
4280                             LD->getPointerInfo().getWithOffset(StartOffset),
4281                             false, false, 0);
4282    // Canonicalize it to a v4i32 shuffle.
4283    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
4284    return DAG.getNode(ISD::BITCAST, dl, VT,
4285                       DAG.getVectorShuffle(MVT::v4i32, dl, V1,
4286                                            DAG.getUNDEF(MVT::v4i32),&Mask[0]));
4287  }
4288
4289  return SDValue();
4290}
4291
4292/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4293/// vector of type 'VT', see if the elements can be replaced by a single large
4294/// load which has the same value as a build_vector whose operands are 'elts'.
4295///
4296/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4297///
4298/// FIXME: we'd also like to handle the case where the last elements are zero
4299/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4300/// There's even a handy isZeroNode for that purpose.
4301static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4302                                        DebugLoc &DL, SelectionDAG &DAG) {
4303  EVT EltVT = VT.getVectorElementType();
4304  unsigned NumElems = Elts.size();
4305
4306  LoadSDNode *LDBase = NULL;
4307  unsigned LastLoadedElt = -1U;
4308
4309  // For each element in the initializer, see if we've found a load or an undef.
4310  // If we don't find an initial load element, or later load elements are
4311  // non-consecutive, bail out.
4312  for (unsigned i = 0; i < NumElems; ++i) {
4313    SDValue Elt = Elts[i];
4314
4315    if (!Elt.getNode() ||
4316        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4317      return SDValue();
4318    if (!LDBase) {
4319      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4320        return SDValue();
4321      LDBase = cast<LoadSDNode>(Elt.getNode());
4322      LastLoadedElt = i;
4323      continue;
4324    }
4325    if (Elt.getOpcode() == ISD::UNDEF)
4326      continue;
4327
4328    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4329    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4330      return SDValue();
4331    LastLoadedElt = i;
4332  }
4333
4334  // If we have found an entire vector of loads and undefs, then return a large
4335  // load of the entire vector width starting at the base pointer.  If we found
4336  // consecutive loads for the low half, generate a vzext_load node.
4337  if (LastLoadedElt == NumElems - 1) {
4338    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4339      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4340                         LDBase->getPointerInfo(),
4341                         LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
4342    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4343                       LDBase->getPointerInfo(),
4344                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4345                       LDBase->getAlignment());
4346  } else if (NumElems == 4 && LastLoadedElt == 1) {
4347    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4348    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4349    SDValue ResNode = DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys,
4350                                              Ops, 2, MVT::i32,
4351                                              LDBase->getMemOperand());
4352    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4353  }
4354  return SDValue();
4355}
4356
4357SDValue
4358X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
4359  DebugLoc dl = Op.getDebugLoc();
4360
4361  EVT VT = Op.getValueType();
4362  EVT ExtVT = VT.getVectorElementType();
4363
4364  unsigned NumElems = Op.getNumOperands();
4365
4366  // For AVX-length vectors, build the individual 128-bit pieces and
4367  // use shuffles to put them in place.
4368  if (VT.getSizeInBits() > 256 &&
4369      Subtarget->hasAVX() &&
4370      !ISD::isBuildVectorAllZeros(Op.getNode())) {
4371    SmallVector<SDValue, 8> V;
4372    V.resize(NumElems);
4373    for (unsigned i = 0; i < NumElems; ++i) {
4374      V[i] = Op.getOperand(i);
4375    }
4376
4377    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
4378
4379    // Build the lower subvector.
4380    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
4381    // Build the upper subvector.
4382    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
4383                                NumElems/2);
4384
4385    return ConcatVectors(Lower, Upper, DAG);
4386  }
4387
4388  // All zero's are handled with pxor in SSE2 and above, xorps in SSE1.
4389  // All one's are handled with pcmpeqd. In AVX, zero's are handled with
4390  // vpxor in 128-bit and xor{pd,ps} in 256-bit, but no 256 version of pcmpeqd
4391  // is present, so AllOnes is ignored.
4392  if (ISD::isBuildVectorAllZeros(Op.getNode()) ||
4393      (Op.getValueType().getSizeInBits() != 256 &&
4394       ISD::isBuildVectorAllOnes(Op.getNode()))) {
4395    // Canonicalize this to <4 x i32> (SSE) to
4396    // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
4397    // eliminated on x86-32 hosts.
4398    if (Op.getValueType() == MVT::v4i32)
4399      return Op;
4400
4401    if (ISD::isBuildVectorAllOnes(Op.getNode()))
4402      return getOnesVector(Op.getValueType(), DAG, dl);
4403    return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
4404  }
4405
4406  unsigned EVTBits = ExtVT.getSizeInBits();
4407
4408  unsigned NumZero  = 0;
4409  unsigned NumNonZero = 0;
4410  unsigned NonZeros = 0;
4411  bool IsAllConstants = true;
4412  SmallSet<SDValue, 8> Values;
4413  for (unsigned i = 0; i < NumElems; ++i) {
4414    SDValue Elt = Op.getOperand(i);
4415    if (Elt.getOpcode() == ISD::UNDEF)
4416      continue;
4417    Values.insert(Elt);
4418    if (Elt.getOpcode() != ISD::Constant &&
4419        Elt.getOpcode() != ISD::ConstantFP)
4420      IsAllConstants = false;
4421    if (X86::isZeroNode(Elt))
4422      NumZero++;
4423    else {
4424      NonZeros |= (1 << i);
4425      NumNonZero++;
4426    }
4427  }
4428
4429  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
4430  if (NumNonZero == 0)
4431    return DAG.getUNDEF(VT);
4432
4433  // Special case for single non-zero, non-undef, element.
4434  if (NumNonZero == 1) {
4435    unsigned Idx = CountTrailingZeros_32(NonZeros);
4436    SDValue Item = Op.getOperand(Idx);
4437
4438    // If this is an insertion of an i64 value on x86-32, and if the top bits of
4439    // the value are obviously zero, truncate the value to i32 and do the
4440    // insertion that way.  Only do this if the value is non-constant or if the
4441    // value is a constant being inserted into element 0.  It is cheaper to do
4442    // a constant pool load than it is to do a movd + shuffle.
4443    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
4444        (!IsAllConstants || Idx == 0)) {
4445      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
4446        // Handle SSE only.
4447        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
4448        EVT VecVT = MVT::v4i32;
4449        unsigned VecElts = 4;
4450
4451        // Truncate the value (which may itself be a constant) to i32, and
4452        // convert it to a vector with movd (S2V+shuffle to zero extend).
4453        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
4454        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
4455        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4456                                           Subtarget->hasSSE2(), DAG);
4457
4458        // Now we have our 32-bit value zero extended in the low element of
4459        // a vector.  If Idx != 0, swizzle it into place.
4460        if (Idx != 0) {
4461          SmallVector<int, 4> Mask;
4462          Mask.push_back(Idx);
4463          for (unsigned i = 1; i != VecElts; ++i)
4464            Mask.push_back(i);
4465          Item = DAG.getVectorShuffle(VecVT, dl, Item,
4466                                      DAG.getUNDEF(Item.getValueType()),
4467                                      &Mask[0]);
4468        }
4469        return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
4470      }
4471    }
4472
4473    // If we have a constant or non-constant insertion into the low element of
4474    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
4475    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
4476    // depending on what the source datatype is.
4477    if (Idx == 0) {
4478      if (NumZero == 0) {
4479        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4480      } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
4481          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
4482        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4483        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
4484        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
4485                                           DAG);
4486      } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
4487        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
4488        assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
4489        EVT MiddleVT = MVT::v4i32;
4490        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
4491        Item = getShuffleVectorZeroOrUndef(Item, 0, true,
4492                                           Subtarget->hasSSE2(), DAG);
4493        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
4494      }
4495    }
4496
4497    // Is it a vector logical left shift?
4498    if (NumElems == 2 && Idx == 1 &&
4499        X86::isZeroNode(Op.getOperand(0)) &&
4500        !X86::isZeroNode(Op.getOperand(1))) {
4501      unsigned NumBits = VT.getSizeInBits();
4502      return getVShift(true, VT,
4503                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
4504                                   VT, Op.getOperand(1)),
4505                       NumBits/2, DAG, *this, dl);
4506    }
4507
4508    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
4509      return SDValue();
4510
4511    // Otherwise, if this is a vector with i32 or f32 elements, and the element
4512    // is a non-constant being inserted into an element other than the low one,
4513    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
4514    // movd/movss) to move this into the low element, then shuffle it into
4515    // place.
4516    if (EVTBits == 32) {
4517      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
4518
4519      // Turn it into a shuffle of zero and zero-extended scalar to vector.
4520      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
4521                                         Subtarget->hasSSE2(), DAG);
4522      SmallVector<int, 8> MaskVec;
4523      for (unsigned i = 0; i < NumElems; i++)
4524        MaskVec.push_back(i == Idx ? 0 : 1);
4525      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
4526    }
4527  }
4528
4529  // Splat is obviously ok. Let legalizer expand it to a shuffle.
4530  if (Values.size() == 1) {
4531    if (EVTBits == 32) {
4532      // Instead of a shuffle like this:
4533      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
4534      // Check if it's possible to issue this instead.
4535      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
4536      unsigned Idx = CountTrailingZeros_32(NonZeros);
4537      SDValue Item = Op.getOperand(Idx);
4538      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
4539        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
4540    }
4541    return SDValue();
4542  }
4543
4544  // A vector full of immediates; various special cases are already
4545  // handled, so this is best done with a single constant-pool load.
4546  if (IsAllConstants)
4547    return SDValue();
4548
4549  // Let legalizer expand 2-wide build_vectors.
4550  if (EVTBits == 64) {
4551    if (NumNonZero == 1) {
4552      // One half is zero or undef.
4553      unsigned Idx = CountTrailingZeros_32(NonZeros);
4554      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
4555                                 Op.getOperand(Idx));
4556      return getShuffleVectorZeroOrUndef(V2, Idx, true,
4557                                         Subtarget->hasSSE2(), DAG);
4558    }
4559    return SDValue();
4560  }
4561
4562  // If element VT is < 32 bits, convert it to inserts into a zero vector.
4563  if (EVTBits == 8 && NumElems == 16) {
4564    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
4565                                        *this);
4566    if (V.getNode()) return V;
4567  }
4568
4569  if (EVTBits == 16 && NumElems == 8) {
4570    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
4571                                      *this);
4572    if (V.getNode()) return V;
4573  }
4574
4575  // If element VT is == 32 bits, turn it into a number of shuffles.
4576  SmallVector<SDValue, 8> V;
4577  V.resize(NumElems);
4578  if (NumElems == 4 && NumZero > 0) {
4579    for (unsigned i = 0; i < 4; ++i) {
4580      bool isZero = !(NonZeros & (1 << i));
4581      if (isZero)
4582        V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
4583      else
4584        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4585    }
4586
4587    for (unsigned i = 0; i < 2; ++i) {
4588      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
4589        default: break;
4590        case 0:
4591          V[i] = V[i*2];  // Must be a zero vector.
4592          break;
4593        case 1:
4594          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
4595          break;
4596        case 2:
4597          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
4598          break;
4599        case 3:
4600          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
4601          break;
4602      }
4603    }
4604
4605    SmallVector<int, 8> MaskVec;
4606    bool Reverse = (NonZeros & 0x3) == 2;
4607    for (unsigned i = 0; i < 2; ++i)
4608      MaskVec.push_back(Reverse ? 1-i : i);
4609    Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
4610    for (unsigned i = 0; i < 2; ++i)
4611      MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
4612    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
4613  }
4614
4615  if (Values.size() > 1 && VT.getSizeInBits() == 128) {
4616    // Check for a build vector of consecutive loads.
4617    for (unsigned i = 0; i < NumElems; ++i)
4618      V[i] = Op.getOperand(i);
4619
4620    // Check for elements which are consecutive loads.
4621    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
4622    if (LD.getNode())
4623      return LD;
4624
4625    // For SSE 4.1, use insertps to put the high elements into the low element.
4626    if (getSubtarget()->hasSSE41()) {
4627      SDValue Result;
4628      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
4629        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
4630      else
4631        Result = DAG.getUNDEF(VT);
4632
4633      for (unsigned i = 1; i < NumElems; ++i) {
4634        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
4635        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
4636                             Op.getOperand(i), DAG.getIntPtrConstant(i));
4637      }
4638      return Result;
4639    }
4640
4641    // Otherwise, expand into a number of unpckl*, start by extending each of
4642    // our (non-undef) elements to the full vector width with the element in the
4643    // bottom slot of the vector (which generates no code for SSE).
4644    for (unsigned i = 0; i < NumElems; ++i) {
4645      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
4646        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
4647      else
4648        V[i] = DAG.getUNDEF(VT);
4649    }
4650
4651    // Next, we iteratively mix elements, e.g. for v4f32:
4652    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
4653    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
4654    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
4655    unsigned EltStride = NumElems >> 1;
4656    while (EltStride != 0) {
4657      for (unsigned i = 0; i < EltStride; ++i) {
4658        // If V[i+EltStride] is undef and this is the first round of mixing,
4659        // then it is safe to just drop this shuffle: V[i] is already in the
4660        // right place, the one element (since it's the first round) being
4661        // inserted as undef can be dropped.  This isn't safe for successive
4662        // rounds because they will permute elements within both vectors.
4663        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
4664            EltStride == NumElems/2)
4665          continue;
4666
4667        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
4668      }
4669      EltStride >>= 1;
4670    }
4671    return V[0];
4672  }
4673  return SDValue();
4674}
4675
4676SDValue
4677X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
4678  // We support concatenate two MMX registers and place them in a MMX
4679  // register.  This is better than doing a stack convert.
4680  DebugLoc dl = Op.getDebugLoc();
4681  EVT ResVT = Op.getValueType();
4682  assert(Op.getNumOperands() == 2);
4683  assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
4684         ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
4685  int Mask[2];
4686  SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
4687  SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4688  InVec = Op.getOperand(1);
4689  if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
4690    unsigned NumElts = ResVT.getVectorNumElements();
4691    VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4692    VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
4693                       InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
4694  } else {
4695    InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
4696    SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
4697    Mask[0] = 0; Mask[1] = 2;
4698    VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
4699  }
4700  return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
4701}
4702
4703// v8i16 shuffles - Prefer shuffles in the following order:
4704// 1. [all]   pshuflw, pshufhw, optional move
4705// 2. [ssse3] 1 x pshufb
4706// 3. [ssse3] 2 x pshufb + 1 x por
4707// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
4708SDValue
4709X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
4710                                            SelectionDAG &DAG) const {
4711  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4712  SDValue V1 = SVOp->getOperand(0);
4713  SDValue V2 = SVOp->getOperand(1);
4714  DebugLoc dl = SVOp->getDebugLoc();
4715  SmallVector<int, 8> MaskVals;
4716
4717  // Determine if more than 1 of the words in each of the low and high quadwords
4718  // of the result come from the same quadword of one of the two inputs.  Undef
4719  // mask values count as coming from any quadword, for better codegen.
4720  SmallVector<unsigned, 4> LoQuad(4);
4721  SmallVector<unsigned, 4> HiQuad(4);
4722  BitVector InputQuads(4);
4723  for (unsigned i = 0; i < 8; ++i) {
4724    SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
4725    int EltIdx = SVOp->getMaskElt(i);
4726    MaskVals.push_back(EltIdx);
4727    if (EltIdx < 0) {
4728      ++Quad[0];
4729      ++Quad[1];
4730      ++Quad[2];
4731      ++Quad[3];
4732      continue;
4733    }
4734    ++Quad[EltIdx / 4];
4735    InputQuads.set(EltIdx / 4);
4736  }
4737
4738  int BestLoQuad = -1;
4739  unsigned MaxQuad = 1;
4740  for (unsigned i = 0; i < 4; ++i) {
4741    if (LoQuad[i] > MaxQuad) {
4742      BestLoQuad = i;
4743      MaxQuad = LoQuad[i];
4744    }
4745  }
4746
4747  int BestHiQuad = -1;
4748  MaxQuad = 1;
4749  for (unsigned i = 0; i < 4; ++i) {
4750    if (HiQuad[i] > MaxQuad) {
4751      BestHiQuad = i;
4752      MaxQuad = HiQuad[i];
4753    }
4754  }
4755
4756  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
4757  // of the two input vectors, shuffle them into one input vector so only a
4758  // single pshufb instruction is necessary. If There are more than 2 input
4759  // quads, disable the next transformation since it does not help SSSE3.
4760  bool V1Used = InputQuads[0] || InputQuads[1];
4761  bool V2Used = InputQuads[2] || InputQuads[3];
4762  if (Subtarget->hasSSSE3()) {
4763    if (InputQuads.count() == 2 && V1Used && V2Used) {
4764      BestLoQuad = InputQuads.find_first();
4765      BestHiQuad = InputQuads.find_next(BestLoQuad);
4766    }
4767    if (InputQuads.count() > 2) {
4768      BestLoQuad = -1;
4769      BestHiQuad = -1;
4770    }
4771  }
4772
4773  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
4774  // the shuffle mask.  If a quad is scored as -1, that means that it contains
4775  // words from all 4 input quadwords.
4776  SDValue NewV;
4777  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
4778    SmallVector<int, 8> MaskV;
4779    MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
4780    MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
4781    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
4782                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
4783                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
4784    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
4785
4786    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
4787    // source words for the shuffle, to aid later transformations.
4788    bool AllWordsInNewV = true;
4789    bool InOrder[2] = { true, true };
4790    for (unsigned i = 0; i != 8; ++i) {
4791      int idx = MaskVals[i];
4792      if (idx != (int)i)
4793        InOrder[i/4] = false;
4794      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
4795        continue;
4796      AllWordsInNewV = false;
4797      break;
4798    }
4799
4800    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
4801    if (AllWordsInNewV) {
4802      for (int i = 0; i != 8; ++i) {
4803        int idx = MaskVals[i];
4804        if (idx < 0)
4805          continue;
4806        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
4807        if ((idx != i) && idx < 4)
4808          pshufhw = false;
4809        if ((idx != i) && idx > 3)
4810          pshuflw = false;
4811      }
4812      V1 = NewV;
4813      V2Used = false;
4814      BestLoQuad = 0;
4815      BestHiQuad = 1;
4816    }
4817
4818    // If we've eliminated the use of V2, and the new mask is a pshuflw or
4819    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
4820    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
4821      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
4822      unsigned TargetMask = 0;
4823      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
4824                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
4825      TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
4826                             X86::getShufflePSHUFLWImmediate(NewV.getNode());
4827      V1 = NewV.getOperand(0);
4828      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
4829    }
4830  }
4831
4832  // If we have SSSE3, and all words of the result are from 1 input vector,
4833  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
4834  // is present, fall back to case 4.
4835  if (Subtarget->hasSSSE3()) {
4836    SmallVector<SDValue,16> pshufbMask;
4837
4838    // If we have elements from both input vectors, set the high bit of the
4839    // shuffle mask element to zero out elements that come from V2 in the V1
4840    // mask, and elements that come from V1 in the V2 mask, so that the two
4841    // results can be OR'd together.
4842    bool TwoInputs = V1Used && V2Used;
4843    for (unsigned i = 0; i != 8; ++i) {
4844      int EltIdx = MaskVals[i] * 2;
4845      if (TwoInputs && (EltIdx >= 16)) {
4846        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4847        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4848        continue;
4849      }
4850      pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
4851      pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
4852    }
4853    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
4854    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
4855                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4856                                 MVT::v16i8, &pshufbMask[0], 16));
4857    if (!TwoInputs)
4858      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4859
4860    // Calculate the shuffle mask for the second input, shuffle it, and
4861    // OR it with the first shuffled input.
4862    pshufbMask.clear();
4863    for (unsigned i = 0; i != 8; ++i) {
4864      int EltIdx = MaskVals[i] * 2;
4865      if (EltIdx < 16) {
4866        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4867        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
4868        continue;
4869      }
4870      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
4871      pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
4872    }
4873    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
4874    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
4875                     DAG.getNode(ISD::BUILD_VECTOR, dl,
4876                                 MVT::v16i8, &pshufbMask[0], 16));
4877    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
4878    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
4879  }
4880
4881  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
4882  // and update MaskVals with new element order.
4883  BitVector InOrder(8);
4884  if (BestLoQuad >= 0) {
4885    SmallVector<int, 8> MaskV;
4886    for (int i = 0; i != 4; ++i) {
4887      int idx = MaskVals[i];
4888      if (idx < 0) {
4889        MaskV.push_back(-1);
4890        InOrder.set(i);
4891      } else if ((idx / 4) == BestLoQuad) {
4892        MaskV.push_back(idx & 3);
4893        InOrder.set(i);
4894      } else {
4895        MaskV.push_back(-1);
4896      }
4897    }
4898    for (unsigned i = 4; i != 8; ++i)
4899      MaskV.push_back(i);
4900    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4901                                &MaskV[0]);
4902
4903    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4904      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
4905                               NewV.getOperand(0),
4906                               X86::getShufflePSHUFLWImmediate(NewV.getNode()),
4907                               DAG);
4908  }
4909
4910  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
4911  // and update MaskVals with the new element order.
4912  if (BestHiQuad >= 0) {
4913    SmallVector<int, 8> MaskV;
4914    for (unsigned i = 0; i != 4; ++i)
4915      MaskV.push_back(i);
4916    for (unsigned i = 4; i != 8; ++i) {
4917      int idx = MaskVals[i];
4918      if (idx < 0) {
4919        MaskV.push_back(-1);
4920        InOrder.set(i);
4921      } else if ((idx / 4) == BestHiQuad) {
4922        MaskV.push_back((idx & 3) + 4);
4923        InOrder.set(i);
4924      } else {
4925        MaskV.push_back(-1);
4926      }
4927    }
4928    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
4929                                &MaskV[0]);
4930
4931    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3())
4932      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
4933                              NewV.getOperand(0),
4934                              X86::getShufflePSHUFHWImmediate(NewV.getNode()),
4935                              DAG);
4936  }
4937
4938  // In case BestHi & BestLo were both -1, which means each quadword has a word
4939  // from each of the four input quadwords, calculate the InOrder bitvector now
4940  // before falling through to the insert/extract cleanup.
4941  if (BestLoQuad == -1 && BestHiQuad == -1) {
4942    NewV = V1;
4943    for (int i = 0; i != 8; ++i)
4944      if (MaskVals[i] < 0 || MaskVals[i] == i)
4945        InOrder.set(i);
4946  }
4947
4948  // The other elements are put in the right place using pextrw and pinsrw.
4949  for (unsigned i = 0; i != 8; ++i) {
4950    if (InOrder[i])
4951      continue;
4952    int EltIdx = MaskVals[i];
4953    if (EltIdx < 0)
4954      continue;
4955    SDValue ExtOp = (EltIdx < 8)
4956    ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
4957                  DAG.getIntPtrConstant(EltIdx))
4958    : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
4959                  DAG.getIntPtrConstant(EltIdx - 8));
4960    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
4961                       DAG.getIntPtrConstant(i));
4962  }
4963  return NewV;
4964}
4965
4966// v16i8 shuffles - Prefer shuffles in the following order:
4967// 1. [ssse3] 1 x pshufb
4968// 2. [ssse3] 2 x pshufb + 1 x por
4969// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
4970static
4971SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
4972                                 SelectionDAG &DAG,
4973                                 const X86TargetLowering &TLI) {
4974  SDValue V1 = SVOp->getOperand(0);
4975  SDValue V2 = SVOp->getOperand(1);
4976  DebugLoc dl = SVOp->getDebugLoc();
4977  SmallVector<int, 16> MaskVals;
4978  SVOp->getMask(MaskVals);
4979
4980  // If we have SSSE3, case 1 is generated when all result bytes come from
4981  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
4982  // present, fall back to case 3.
4983  // FIXME: kill V2Only once shuffles are canonizalized by getNode.
4984  bool V1Only = true;
4985  bool V2Only = true;
4986  for (unsigned i = 0; i < 16; ++i) {
4987    int EltIdx = MaskVals[i];
4988    if (EltIdx < 0)
4989      continue;
4990    if (EltIdx < 16)
4991      V2Only = false;
4992    else
4993      V1Only = false;
4994  }
4995
4996  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
4997  if (TLI.getSubtarget()->hasSSSE3()) {
4998    SmallVector<SDValue,16> pshufbMask;
4999
5000    // If all result elements are from one input vector, then only translate
5001    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5002    //
5003    // Otherwise, we have elements from both input vectors, and must zero out
5004    // elements that come from V2 in the first mask, and V1 in the second mask
5005    // so that we can OR them together.
5006    bool TwoInputs = !(V1Only || V2Only);
5007    for (unsigned i = 0; i != 16; ++i) {
5008      int EltIdx = MaskVals[i];
5009      if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5010        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5011        continue;
5012      }
5013      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5014    }
5015    // If all the elements are from V2, assign it to V1 and return after
5016    // building the first pshufb.
5017    if (V2Only)
5018      V1 = V2;
5019    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5020                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5021                                 MVT::v16i8, &pshufbMask[0], 16));
5022    if (!TwoInputs)
5023      return V1;
5024
5025    // Calculate the shuffle mask for the second input, shuffle it, and
5026    // OR it with the first shuffled input.
5027    pshufbMask.clear();
5028    for (unsigned i = 0; i != 16; ++i) {
5029      int EltIdx = MaskVals[i];
5030      if (EltIdx < 16) {
5031        pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5032        continue;
5033      }
5034      pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5035    }
5036    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5037                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5038                                 MVT::v16i8, &pshufbMask[0], 16));
5039    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5040  }
5041
5042  // No SSSE3 - Calculate in place words and then fix all out of place words
5043  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5044  // the 16 different words that comprise the two doublequadword input vectors.
5045  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5046  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5047  SDValue NewV = V2Only ? V2 : V1;
5048  for (int i = 0; i != 8; ++i) {
5049    int Elt0 = MaskVals[i*2];
5050    int Elt1 = MaskVals[i*2+1];
5051
5052    // This word of the result is all undef, skip it.
5053    if (Elt0 < 0 && Elt1 < 0)
5054      continue;
5055
5056    // This word of the result is already in the correct place, skip it.
5057    if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5058      continue;
5059    if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5060      continue;
5061
5062    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5063    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5064    SDValue InsElt;
5065
5066    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5067    // using a single extract together, load it and store it.
5068    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5069      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5070                           DAG.getIntPtrConstant(Elt1 / 2));
5071      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5072                        DAG.getIntPtrConstant(i));
5073      continue;
5074    }
5075
5076    // If Elt1 is defined, extract it from the appropriate source.  If the
5077    // source byte is not also odd, shift the extracted word left 8 bits
5078    // otherwise clear the bottom 8 bits if we need to do an or.
5079    if (Elt1 >= 0) {
5080      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5081                           DAG.getIntPtrConstant(Elt1 / 2));
5082      if ((Elt1 & 1) == 0)
5083        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5084                             DAG.getConstant(8,
5085                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5086      else if (Elt0 >= 0)
5087        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5088                             DAG.getConstant(0xFF00, MVT::i16));
5089    }
5090    // If Elt0 is defined, extract it from the appropriate source.  If the
5091    // source byte is not also even, shift the extracted word right 8 bits. If
5092    // Elt1 was also defined, OR the extracted values together before
5093    // inserting them in the result.
5094    if (Elt0 >= 0) {
5095      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5096                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5097      if ((Elt0 & 1) != 0)
5098        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5099                              DAG.getConstant(8,
5100                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5101      else if (Elt1 >= 0)
5102        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5103                             DAG.getConstant(0x00FF, MVT::i16));
5104      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5105                         : InsElt0;
5106    }
5107    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5108                       DAG.getIntPtrConstant(i));
5109  }
5110  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5111}
5112
5113/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5114/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5115/// done when every pair / quad of shuffle mask elements point to elements in
5116/// the right sequence. e.g.
5117/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5118static
5119SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5120                                 SelectionDAG &DAG, DebugLoc dl) {
5121  EVT VT = SVOp->getValueType(0);
5122  SDValue V1 = SVOp->getOperand(0);
5123  SDValue V2 = SVOp->getOperand(1);
5124  unsigned NumElems = VT.getVectorNumElements();
5125  unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5126  EVT NewVT;
5127  switch (VT.getSimpleVT().SimpleTy) {
5128  default: assert(false && "Unexpected!");
5129  case MVT::v4f32: NewVT = MVT::v2f64; break;
5130  case MVT::v4i32: NewVT = MVT::v2i64; break;
5131  case MVT::v8i16: NewVT = MVT::v4i32; break;
5132  case MVT::v16i8: NewVT = MVT::v4i32; break;
5133  }
5134
5135  int Scale = NumElems / NewWidth;
5136  SmallVector<int, 8> MaskVec;
5137  for (unsigned i = 0; i < NumElems; i += Scale) {
5138    int StartIdx = -1;
5139    for (int j = 0; j < Scale; ++j) {
5140      int EltIdx = SVOp->getMaskElt(i+j);
5141      if (EltIdx < 0)
5142        continue;
5143      if (StartIdx == -1)
5144        StartIdx = EltIdx - (EltIdx % Scale);
5145      if (EltIdx != StartIdx + j)
5146        return SDValue();
5147    }
5148    if (StartIdx == -1)
5149      MaskVec.push_back(-1);
5150    else
5151      MaskVec.push_back(StartIdx / Scale);
5152  }
5153
5154  V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5155  V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5156  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5157}
5158
5159/// getVZextMovL - Return a zero-extending vector move low node.
5160///
5161static SDValue getVZextMovL(EVT VT, EVT OpVT,
5162                            SDValue SrcOp, SelectionDAG &DAG,
5163                            const X86Subtarget *Subtarget, DebugLoc dl) {
5164  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5165    LoadSDNode *LD = NULL;
5166    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5167      LD = dyn_cast<LoadSDNode>(SrcOp);
5168    if (!LD) {
5169      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5170      // instead.
5171      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5172      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5173          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5174          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5175          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5176        // PR2108
5177        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5178        return DAG.getNode(ISD::BITCAST, dl, VT,
5179                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5180                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5181                                                   OpVT,
5182                                                   SrcOp.getOperand(0)
5183                                                          .getOperand(0))));
5184      }
5185    }
5186  }
5187
5188  return DAG.getNode(ISD::BITCAST, dl, VT,
5189                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5190                                 DAG.getNode(ISD::BITCAST, dl,
5191                                             OpVT, SrcOp)));
5192}
5193
5194/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
5195/// shuffles.
5196static SDValue
5197LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5198  SDValue V1 = SVOp->getOperand(0);
5199  SDValue V2 = SVOp->getOperand(1);
5200  DebugLoc dl = SVOp->getDebugLoc();
5201  EVT VT = SVOp->getValueType(0);
5202
5203  SmallVector<std::pair<int, int>, 8> Locs;
5204  Locs.resize(4);
5205  SmallVector<int, 8> Mask1(4U, -1);
5206  SmallVector<int, 8> PermMask;
5207  SVOp->getMask(PermMask);
5208
5209  unsigned NumHi = 0;
5210  unsigned NumLo = 0;
5211  for (unsigned i = 0; i != 4; ++i) {
5212    int Idx = PermMask[i];
5213    if (Idx < 0) {
5214      Locs[i] = std::make_pair(-1, -1);
5215    } else {
5216      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
5217      if (Idx < 4) {
5218        Locs[i] = std::make_pair(0, NumLo);
5219        Mask1[NumLo] = Idx;
5220        NumLo++;
5221      } else {
5222        Locs[i] = std::make_pair(1, NumHi);
5223        if (2+NumHi < 4)
5224          Mask1[2+NumHi] = Idx;
5225        NumHi++;
5226      }
5227    }
5228  }
5229
5230  if (NumLo <= 2 && NumHi <= 2) {
5231    // If no more than two elements come from either vector. This can be
5232    // implemented with two shuffles. First shuffle gather the elements.
5233    // The second shuffle, which takes the first shuffle as both of its
5234    // vector operands, put the elements into the right order.
5235    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5236
5237    SmallVector<int, 8> Mask2(4U, -1);
5238
5239    for (unsigned i = 0; i != 4; ++i) {
5240      if (Locs[i].first == -1)
5241        continue;
5242      else {
5243        unsigned Idx = (i < 2) ? 0 : 4;
5244        Idx += Locs[i].first * 2 + Locs[i].second;
5245        Mask2[i] = Idx;
5246      }
5247    }
5248
5249    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
5250  } else if (NumLo == 3 || NumHi == 3) {
5251    // Otherwise, we must have three elements from one vector, call it X, and
5252    // one element from the other, call it Y.  First, use a shufps to build an
5253    // intermediate vector with the one element from Y and the element from X
5254    // that will be in the same half in the final destination (the indexes don't
5255    // matter). Then, use a shufps to build the final vector, taking the half
5256    // containing the element from Y from the intermediate, and the other half
5257    // from X.
5258    if (NumHi == 3) {
5259      // Normalize it so the 3 elements come from V1.
5260      CommuteVectorShuffleMask(PermMask, VT);
5261      std::swap(V1, V2);
5262    }
5263
5264    // Find the element from V2.
5265    unsigned HiIndex;
5266    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
5267      int Val = PermMask[HiIndex];
5268      if (Val < 0)
5269        continue;
5270      if (Val >= 4)
5271        break;
5272    }
5273
5274    Mask1[0] = PermMask[HiIndex];
5275    Mask1[1] = -1;
5276    Mask1[2] = PermMask[HiIndex^1];
5277    Mask1[3] = -1;
5278    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5279
5280    if (HiIndex >= 2) {
5281      Mask1[0] = PermMask[0];
5282      Mask1[1] = PermMask[1];
5283      Mask1[2] = HiIndex & 1 ? 6 : 4;
5284      Mask1[3] = HiIndex & 1 ? 4 : 6;
5285      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
5286    } else {
5287      Mask1[0] = HiIndex & 1 ? 2 : 0;
5288      Mask1[1] = HiIndex & 1 ? 0 : 2;
5289      Mask1[2] = PermMask[2];
5290      Mask1[3] = PermMask[3];
5291      if (Mask1[2] >= 0)
5292        Mask1[2] += 4;
5293      if (Mask1[3] >= 0)
5294        Mask1[3] += 4;
5295      return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
5296    }
5297  }
5298
5299  // Break it into (shuffle shuffle_hi, shuffle_lo).
5300  Locs.clear();
5301  Locs.resize(4);
5302  SmallVector<int,8> LoMask(4U, -1);
5303  SmallVector<int,8> HiMask(4U, -1);
5304
5305  SmallVector<int,8> *MaskPtr = &LoMask;
5306  unsigned MaskIdx = 0;
5307  unsigned LoIdx = 0;
5308  unsigned HiIdx = 2;
5309  for (unsigned i = 0; i != 4; ++i) {
5310    if (i == 2) {
5311      MaskPtr = &HiMask;
5312      MaskIdx = 1;
5313      LoIdx = 0;
5314      HiIdx = 2;
5315    }
5316    int Idx = PermMask[i];
5317    if (Idx < 0) {
5318      Locs[i] = std::make_pair(-1, -1);
5319    } else if (Idx < 4) {
5320      Locs[i] = std::make_pair(MaskIdx, LoIdx);
5321      (*MaskPtr)[LoIdx] = Idx;
5322      LoIdx++;
5323    } else {
5324      Locs[i] = std::make_pair(MaskIdx, HiIdx);
5325      (*MaskPtr)[HiIdx] = Idx;
5326      HiIdx++;
5327    }
5328  }
5329
5330  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
5331  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
5332  SmallVector<int, 8> MaskOps;
5333  for (unsigned i = 0; i != 4; ++i) {
5334    if (Locs[i].first == -1) {
5335      MaskOps.push_back(-1);
5336    } else {
5337      unsigned Idx = Locs[i].first * 4 + Locs[i].second;
5338      MaskOps.push_back(Idx);
5339    }
5340  }
5341  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
5342}
5343
5344static bool MayFoldVectorLoad(SDValue V) {
5345  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5346    V = V.getOperand(0);
5347  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5348    V = V.getOperand(0);
5349  if (MayFoldLoad(V))
5350    return true;
5351  return false;
5352}
5353
5354// FIXME: the version above should always be used. Since there's
5355// a bug where several vector shuffles can't be folded because the
5356// DAG is not updated during lowering and a node claims to have two
5357// uses while it only has one, use this version, and let isel match
5358// another instruction if the load really happens to have more than
5359// one use. Remove this version after this bug get fixed.
5360// rdar://8434668, PR8156
5361static bool RelaxedMayFoldVectorLoad(SDValue V) {
5362  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
5363    V = V.getOperand(0);
5364  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
5365    V = V.getOperand(0);
5366  if (ISD::isNormalLoad(V.getNode()))
5367    return true;
5368  return false;
5369}
5370
5371/// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
5372/// a vector extract, and if both can be later optimized into a single load.
5373/// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
5374/// here because otherwise a target specific shuffle node is going to be
5375/// emitted for this shuffle, and the optimization not done.
5376/// FIXME: This is probably not the best approach, but fix the problem
5377/// until the right path is decided.
5378static
5379bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
5380                                         const TargetLowering &TLI) {
5381  EVT VT = V.getValueType();
5382  ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
5383
5384  // Be sure that the vector shuffle is present in a pattern like this:
5385  // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
5386  if (!V.hasOneUse())
5387    return false;
5388
5389  SDNode *N = *V.getNode()->use_begin();
5390  if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
5391    return false;
5392
5393  SDValue EltNo = N->getOperand(1);
5394  if (!isa<ConstantSDNode>(EltNo))
5395    return false;
5396
5397  // If the bit convert changed the number of elements, it is unsafe
5398  // to examine the mask.
5399  bool HasShuffleIntoBitcast = false;
5400  if (V.getOpcode() == ISD::BITCAST) {
5401    EVT SrcVT = V.getOperand(0).getValueType();
5402    if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
5403      return false;
5404    V = V.getOperand(0);
5405    HasShuffleIntoBitcast = true;
5406  }
5407
5408  // Select the input vector, guarding against out of range extract vector.
5409  unsigned NumElems = VT.getVectorNumElements();
5410  unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
5411  int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
5412  V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
5413
5414  // Skip one more bit_convert if necessary
5415  if (V.getOpcode() == ISD::BITCAST)
5416    V = V.getOperand(0);
5417
5418  if (ISD::isNormalLoad(V.getNode())) {
5419    // Is the original load suitable?
5420    LoadSDNode *LN0 = cast<LoadSDNode>(V);
5421
5422    // FIXME: avoid the multi-use bug that is preventing lots of
5423    // of foldings to be detected, this is still wrong of course, but
5424    // give the temporary desired behavior, and if it happens that
5425    // the load has real more uses, during isel it will not fold, and
5426    // will generate poor code.
5427    if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
5428      return false;
5429
5430    if (!HasShuffleIntoBitcast)
5431      return true;
5432
5433    // If there's a bitcast before the shuffle, check if the load type and
5434    // alignment is valid.
5435    unsigned Align = LN0->getAlignment();
5436    unsigned NewAlign =
5437      TLI.getTargetData()->getABITypeAlignment(
5438                                    VT.getTypeForEVT(*DAG.getContext()));
5439
5440    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
5441      return false;
5442  }
5443
5444  return true;
5445}
5446
5447static
5448SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
5449  EVT VT = Op.getValueType();
5450
5451  // Canonizalize to v2f64.
5452  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
5453  return DAG.getNode(ISD::BITCAST, dl, VT,
5454                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
5455                                          V1, DAG));
5456}
5457
5458static
5459SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
5460                        bool HasSSE2) {
5461  SDValue V1 = Op.getOperand(0);
5462  SDValue V2 = Op.getOperand(1);
5463  EVT VT = Op.getValueType();
5464
5465  assert(VT != MVT::v2i64 && "unsupported shuffle type");
5466
5467  if (HasSSE2 && VT == MVT::v2f64)
5468    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
5469
5470  // v4f32 or v4i32
5471  return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V2, DAG);
5472}
5473
5474static
5475SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
5476  SDValue V1 = Op.getOperand(0);
5477  SDValue V2 = Op.getOperand(1);
5478  EVT VT = Op.getValueType();
5479
5480  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
5481         "unsupported shuffle type");
5482
5483  if (V2.getOpcode() == ISD::UNDEF)
5484    V2 = V1;
5485
5486  // v4i32 or v4f32
5487  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
5488}
5489
5490static
5491SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
5492  SDValue V1 = Op.getOperand(0);
5493  SDValue V2 = Op.getOperand(1);
5494  EVT VT = Op.getValueType();
5495  unsigned NumElems = VT.getVectorNumElements();
5496
5497  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
5498  // operand of these instructions is only memory, so check if there's a
5499  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
5500  // same masks.
5501  bool CanFoldLoad = false;
5502
5503  // Trivial case, when V2 comes from a load.
5504  if (MayFoldVectorLoad(V2))
5505    CanFoldLoad = true;
5506
5507  // When V1 is a load, it can be folded later into a store in isel, example:
5508  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
5509  //    turns into:
5510  //  (MOVLPSmr addr:$src1, VR128:$src2)
5511  // So, recognize this potential and also use MOVLPS or MOVLPD
5512  if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
5513    CanFoldLoad = true;
5514
5515  // Both of them can't be memory operations though.
5516  if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
5517    CanFoldLoad = false;
5518
5519  if (CanFoldLoad) {
5520    if (HasSSE2 && NumElems == 2)
5521      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
5522
5523    if (NumElems == 4)
5524      return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
5525  }
5526
5527  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5528  // movl and movlp will both match v2i64, but v2i64 is never matched by
5529  // movl earlier because we make it strict to avoid messing with the movlp load
5530  // folding logic (see the code above getMOVLP call). Match it here then,
5531  // this is horrible, but will stay like this until we move all shuffle
5532  // matching to x86 specific nodes. Note that for the 1st condition all
5533  // types are matched with movsd.
5534  if ((HasSSE2 && NumElems == 2) || !X86::isMOVLMask(SVOp))
5535    return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5536  else if (HasSSE2)
5537    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5538
5539
5540  assert(VT != MVT::v4i32 && "unsupported shuffle type");
5541
5542  // Invert the operand order and use SHUFPS to match it.
5543  return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V2, V1,
5544                              X86::getShuffleSHUFImmediate(SVOp), DAG);
5545}
5546
5547static inline unsigned getUNPCKLOpcode(EVT VT, const X86Subtarget *Subtarget) {
5548  switch(VT.getSimpleVT().SimpleTy) {
5549  case MVT::v4i32: return X86ISD::PUNPCKLDQ;
5550  case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
5551  case MVT::v4f32:
5552    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPS : X86ISD::UNPCKLPS;
5553  case MVT::v2f64:
5554    return Subtarget->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5555  case MVT::v8f32: return X86ISD::VUNPCKLPSY;
5556  case MVT::v4f64: return X86ISD::VUNPCKLPDY;
5557  case MVT::v16i8: return X86ISD::PUNPCKLBW;
5558  case MVT::v8i16: return X86ISD::PUNPCKLWD;
5559  default:
5560    llvm_unreachable("Unknown type for unpckl");
5561  }
5562  return 0;
5563}
5564
5565static inline unsigned getUNPCKHOpcode(EVT VT) {
5566  switch(VT.getSimpleVT().SimpleTy) {
5567  case MVT::v4i32: return X86ISD::PUNPCKHDQ;
5568  case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
5569  case MVT::v4f32: return X86ISD::UNPCKHPS;
5570  case MVT::v2f64: return X86ISD::UNPCKHPD;
5571  case MVT::v16i8: return X86ISD::PUNPCKHBW;
5572  case MVT::v8i16: return X86ISD::PUNPCKHWD;
5573  default:
5574    llvm_unreachable("Unknown type for unpckh");
5575  }
5576  return 0;
5577}
5578
5579static
5580SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
5581                               const TargetLowering &TLI,
5582                               const X86Subtarget *Subtarget) {
5583  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5584  EVT VT = Op.getValueType();
5585  DebugLoc dl = Op.getDebugLoc();
5586  SDValue V1 = Op.getOperand(0);
5587  SDValue V2 = Op.getOperand(1);
5588
5589  if (isZeroShuffle(SVOp))
5590    return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
5591
5592  // Handle splat operations
5593  if (SVOp->isSplat()) {
5594    // Special case, this is the only place now where it's
5595    // allowed to return a vector_shuffle operation without
5596    // using a target specific node, because *hopefully* it
5597    // will be optimized away by the dag combiner.
5598    if (VT.getVectorNumElements() <= 4 &&
5599        CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
5600      return Op;
5601
5602    // Handle splats by matching through known masks
5603    if (VT.getVectorNumElements() <= 4)
5604      return SDValue();
5605
5606    // Canonicalize all of the remaining to v4f32.
5607    return PromoteSplat(SVOp, DAG);
5608  }
5609
5610  // If the shuffle can be profitably rewritten as a narrower shuffle, then
5611  // do it!
5612  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
5613    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5614    if (NewOp.getNode())
5615      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
5616  } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
5617    // FIXME: Figure out a cleaner way to do this.
5618    // Try to make use of movq to zero out the top part.
5619    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
5620      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5621      if (NewOp.getNode()) {
5622        if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
5623          return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
5624                              DAG, Subtarget, dl);
5625      }
5626    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
5627      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
5628      if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
5629        return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
5630                            DAG, Subtarget, dl);
5631    }
5632  }
5633  return SDValue();
5634}
5635
5636SDValue
5637X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
5638  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5639  SDValue V1 = Op.getOperand(0);
5640  SDValue V2 = Op.getOperand(1);
5641  EVT VT = Op.getValueType();
5642  DebugLoc dl = Op.getDebugLoc();
5643  unsigned NumElems = VT.getVectorNumElements();
5644  bool isMMX = VT.getSizeInBits() == 64;
5645  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
5646  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5647  bool V1IsSplat = false;
5648  bool V2IsSplat = false;
5649  bool HasSSE2 = Subtarget->hasSSE2() || Subtarget->hasAVX();
5650  bool HasSSE3 = Subtarget->hasSSE3() || Subtarget->hasAVX();
5651  bool HasSSSE3 = Subtarget->hasSSSE3() || Subtarget->hasAVX();
5652  MachineFunction &MF = DAG.getMachineFunction();
5653  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
5654
5655  // Shuffle operations on MMX not supported.
5656  if (isMMX)
5657    return Op;
5658
5659  // Vector shuffle lowering takes 3 steps:
5660  //
5661  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
5662  //    narrowing and commutation of operands should be handled.
5663  // 2) Matching of shuffles with known shuffle masks to x86 target specific
5664  //    shuffle nodes.
5665  // 3) Rewriting of unmatched masks into new generic shuffle operations,
5666  //    so the shuffle can be broken into other shuffles and the legalizer can
5667  //    try the lowering again.
5668  //
5669  // The general ideia is that no vector_shuffle operation should be left to
5670  // be matched during isel, all of them must be converted to a target specific
5671  // node here.
5672
5673  // Normalize the input vectors. Here splats, zeroed vectors, profitable
5674  // narrowing and commutation of operands should be handled. The actual code
5675  // doesn't include all of those, work in progress...
5676  SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
5677  if (NewOp.getNode())
5678    return NewOp;
5679
5680  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
5681  // unpckh_undef). Only use pshufd if speed is more important than size.
5682  if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
5683    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5684      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()), dl, VT, V1, V1, DAG);
5685  if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
5686    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5687      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5688
5689  if (X86::isMOVDDUPMask(SVOp) && HasSSE3 && V2IsUndef &&
5690      RelaxedMayFoldVectorLoad(V1))
5691    return getMOVDDup(Op, dl, V1, DAG);
5692
5693  if (X86::isMOVHLPS_v_undef_Mask(SVOp))
5694    return getMOVHighToLow(Op, dl, DAG);
5695
5696  // Use to match splats
5697  if (HasSSE2 && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
5698      (VT == MVT::v2f64 || VT == MVT::v2i64))
5699    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5700
5701  if (X86::isPSHUFDMask(SVOp)) {
5702    // The actual implementation will match the mask in the if above and then
5703    // during isel it can match several different instructions, not only pshufd
5704    // as its name says, sad but true, emulate the behavior for now...
5705    if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
5706        return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
5707
5708    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5709
5710    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
5711      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
5712
5713    if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5714      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V1,
5715                                  TargetMask, DAG);
5716
5717    if (VT == MVT::v4f32)
5718      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V1,
5719                                  TargetMask, DAG);
5720  }
5721
5722  // Check if this can be converted into a logical shift.
5723  bool isLeft = false;
5724  unsigned ShAmt = 0;
5725  SDValue ShVal;
5726  bool isShift = getSubtarget()->hasSSE2() &&
5727    isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
5728  if (isShift && ShVal.hasOneUse()) {
5729    // If the shifted value has multiple uses, it may be cheaper to use
5730    // v_set0 + movlhps or movhlps, etc.
5731    EVT EltVT = VT.getVectorElementType();
5732    ShAmt *= EltVT.getSizeInBits();
5733    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5734  }
5735
5736  if (X86::isMOVLMask(SVOp)) {
5737    if (V1IsUndef)
5738      return V2;
5739    if (ISD::isBuildVectorAllZeros(V1.getNode()))
5740      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
5741    if (!X86::isMOVLPMask(SVOp)) {
5742      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
5743        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
5744
5745      if (VT == MVT::v4i32 || VT == MVT::v4f32)
5746        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
5747    }
5748  }
5749
5750  // FIXME: fold these into legal mask.
5751  if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
5752    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
5753
5754  if (X86::isMOVHLPSMask(SVOp))
5755    return getMOVHighToLow(Op, dl, DAG);
5756
5757  if (X86::isMOVSHDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5758    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
5759
5760  if (X86::isMOVSLDUPMask(SVOp) && HasSSE3 && V2IsUndef && NumElems == 4)
5761    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
5762
5763  if (X86::isMOVLPMask(SVOp))
5764    return getMOVLP(Op, dl, DAG, HasSSE2);
5765
5766  if (ShouldXformToMOVHLPS(SVOp) ||
5767      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
5768    return CommuteVectorShuffle(SVOp, DAG);
5769
5770  if (isShift) {
5771    // No better options. Use a vshl / vsrl.
5772    EVT EltVT = VT.getVectorElementType();
5773    ShAmt *= EltVT.getSizeInBits();
5774    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
5775  }
5776
5777  bool Commuted = false;
5778  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
5779  // 1,1,1,1 -> v8i16 though.
5780  V1IsSplat = isSplatVector(V1.getNode());
5781  V2IsSplat = isSplatVector(V2.getNode());
5782
5783  // Canonicalize the splat or undef, if present, to be on the RHS.
5784  if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
5785    Op = CommuteVectorShuffle(SVOp, DAG);
5786    SVOp = cast<ShuffleVectorSDNode>(Op);
5787    V1 = SVOp->getOperand(0);
5788    V2 = SVOp->getOperand(1);
5789    std::swap(V1IsSplat, V2IsSplat);
5790    std::swap(V1IsUndef, V2IsUndef);
5791    Commuted = true;
5792  }
5793
5794  if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
5795    // Shuffling low element of v1 into undef, just return v1.
5796    if (V2IsUndef)
5797      return V1;
5798    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
5799    // the instruction selector will not match, so get a canonical MOVL with
5800    // swapped operands to undo the commute.
5801    return getMOVL(DAG, dl, VT, V2, V1);
5802  }
5803
5804  if (X86::isUNPCKLMask(SVOp))
5805    return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5806                                dl, VT, V1, V2, DAG);
5807
5808  if (X86::isUNPCKHMask(SVOp))
5809    return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
5810
5811  if (V2IsSplat) {
5812    // Normalize mask so all entries that point to V2 points to its first
5813    // element then try to match unpck{h|l} again. If match, return a
5814    // new vector_shuffle with the corrected mask.
5815    SDValue NewMask = NormalizeMask(SVOp, DAG);
5816    ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
5817    if (NSVOp != SVOp) {
5818      if (X86::isUNPCKLMask(NSVOp, true)) {
5819        return NewMask;
5820      } else if (X86::isUNPCKHMask(NSVOp, true)) {
5821        return NewMask;
5822      }
5823    }
5824  }
5825
5826  if (Commuted) {
5827    // Commute is back and try unpck* again.
5828    // FIXME: this seems wrong.
5829    SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
5830    ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
5831
5832    if (X86::isUNPCKLMask(NewSVOp))
5833      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5834                                  dl, VT, V2, V1, DAG);
5835
5836    if (X86::isUNPCKHMask(NewSVOp))
5837      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
5838  }
5839
5840  // Normalize the node to match x86 shuffle ops if needed
5841  if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
5842    return CommuteVectorShuffle(SVOp, DAG);
5843
5844  // The checks below are all present in isShuffleMaskLegal, but they are
5845  // inlined here right now to enable us to directly emit target specific
5846  // nodes, and remove one by one until they don't return Op anymore.
5847  SmallVector<int, 16> M;
5848  SVOp->getMask(M);
5849
5850  if (isPALIGNRMask(M, VT, HasSSSE3))
5851    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
5852                                X86::getShufflePALIGNRImmediate(SVOp),
5853                                DAG);
5854
5855  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
5856      SVOp->getSplatIndex() == 0 && V2IsUndef) {
5857    if (VT == MVT::v2f64) {
5858      X86ISD::NodeType Opcode =
5859        getSubtarget()->hasAVX() ? X86ISD::VUNPCKLPD : X86ISD::UNPCKLPD;
5860      return getTargetShuffleNode(Opcode, dl, VT, V1, V1, DAG);
5861    }
5862    if (VT == MVT::v2i64)
5863      return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
5864  }
5865
5866  if (isPSHUFHWMask(M, VT))
5867    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
5868                                X86::getShufflePSHUFHWImmediate(SVOp),
5869                                DAG);
5870
5871  if (isPSHUFLWMask(M, VT))
5872    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
5873                                X86::getShufflePSHUFLWImmediate(SVOp),
5874                                DAG);
5875
5876  if (isSHUFPMask(M, VT)) {
5877    unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
5878    if (VT == MVT::v4f32 || VT == MVT::v4i32)
5879      return getTargetShuffleNode(X86ISD::SHUFPS, dl, VT, V1, V2,
5880                                  TargetMask, DAG);
5881    if (VT == MVT::v2f64 || VT == MVT::v2i64)
5882      return getTargetShuffleNode(X86ISD::SHUFPD, dl, VT, V1, V2,
5883                                  TargetMask, DAG);
5884  }
5885
5886  if (X86::isUNPCKL_v_undef_Mask(SVOp))
5887    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5888      return getTargetShuffleNode(getUNPCKLOpcode(VT, getSubtarget()),
5889                                  dl, VT, V1, V1, DAG);
5890  if (X86::isUNPCKH_v_undef_Mask(SVOp))
5891    if (VT != MVT::v2i64 && VT != MVT::v2f64)
5892      return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
5893
5894  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
5895  if (VT == MVT::v8i16) {
5896    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
5897    if (NewOp.getNode())
5898      return NewOp;
5899  }
5900
5901  if (VT == MVT::v16i8) {
5902    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
5903    if (NewOp.getNode())
5904      return NewOp;
5905  }
5906
5907  // Handle all 4 wide cases with a number of shuffles.
5908  if (NumElems == 4)
5909    return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
5910
5911  return SDValue();
5912}
5913
5914SDValue
5915X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
5916                                                SelectionDAG &DAG) const {
5917  EVT VT = Op.getValueType();
5918  DebugLoc dl = Op.getDebugLoc();
5919  if (VT.getSizeInBits() == 8) {
5920    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
5921                                    Op.getOperand(0), Op.getOperand(1));
5922    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5923                                    DAG.getValueType(VT));
5924    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5925  } else if (VT.getSizeInBits() == 16) {
5926    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5927    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
5928    if (Idx == 0)
5929      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
5930                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5931                                     DAG.getNode(ISD::BITCAST, dl,
5932                                                 MVT::v4i32,
5933                                                 Op.getOperand(0)),
5934                                     Op.getOperand(1)));
5935    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
5936                                    Op.getOperand(0), Op.getOperand(1));
5937    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
5938                                    DAG.getValueType(VT));
5939    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
5940  } else if (VT == MVT::f32) {
5941    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
5942    // the result back to FR32 register. It's only worth matching if the
5943    // result has a single use which is a store or a bitcast to i32.  And in
5944    // the case of a store, it's not worth it if the index is a constant 0,
5945    // because a MOVSSmr can be used instead, which is smaller and faster.
5946    if (!Op.hasOneUse())
5947      return SDValue();
5948    SDNode *User = *Op.getNode()->use_begin();
5949    if ((User->getOpcode() != ISD::STORE ||
5950         (isa<ConstantSDNode>(Op.getOperand(1)) &&
5951          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
5952        (User->getOpcode() != ISD::BITCAST ||
5953         User->getValueType(0) != MVT::i32))
5954      return SDValue();
5955    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
5956                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
5957                                              Op.getOperand(0)),
5958                                              Op.getOperand(1));
5959    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
5960  } else if (VT == MVT::i32) {
5961    // ExtractPS works with constant index.
5962    if (isa<ConstantSDNode>(Op.getOperand(1)))
5963      return Op;
5964  }
5965  return SDValue();
5966}
5967
5968
5969SDValue
5970X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
5971                                           SelectionDAG &DAG) const {
5972  if (!isa<ConstantSDNode>(Op.getOperand(1)))
5973    return SDValue();
5974
5975  SDValue Vec = Op.getOperand(0);
5976  EVT VecVT = Vec.getValueType();
5977
5978  // If this is a 256-bit vector result, first extract the 128-bit
5979  // vector and then extract from the 128-bit vector.
5980  if (VecVT.getSizeInBits() > 128) {
5981    DebugLoc dl = Op.getNode()->getDebugLoc();
5982    unsigned NumElems = VecVT.getVectorNumElements();
5983    SDValue Idx = Op.getOperand(1);
5984
5985    if (!isa<ConstantSDNode>(Idx))
5986      return SDValue();
5987
5988    unsigned ExtractNumElems = NumElems / (VecVT.getSizeInBits() / 128);
5989    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
5990
5991    // Get the 128-bit vector.
5992    bool Upper = IdxVal >= ExtractNumElems;
5993    Vec = Extract128BitVector(Vec, Idx, DAG, dl);
5994
5995    // Extract from it.
5996    SDValue ScaledIdx = Idx;
5997    if (Upper)
5998      ScaledIdx = DAG.getNode(ISD::SUB, dl, Idx.getValueType(), Idx,
5999                              DAG.getConstant(ExtractNumElems,
6000                                              Idx.getValueType()));
6001    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6002                       ScaledIdx);
6003  }
6004
6005  assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6006
6007  if (Subtarget->hasSSE41()) {
6008    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6009    if (Res.getNode())
6010      return Res;
6011  }
6012
6013  EVT VT = Op.getValueType();
6014  DebugLoc dl = Op.getDebugLoc();
6015  // TODO: handle v16i8.
6016  if (VT.getSizeInBits() == 16) {
6017    SDValue Vec = Op.getOperand(0);
6018    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6019    if (Idx == 0)
6020      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6021                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6022                                     DAG.getNode(ISD::BITCAST, dl,
6023                                                 MVT::v4i32, Vec),
6024                                     Op.getOperand(1)));
6025    // Transform it so it match pextrw which produces a 32-bit result.
6026    EVT EltVT = MVT::i32;
6027    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6028                                    Op.getOperand(0), Op.getOperand(1));
6029    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6030                                    DAG.getValueType(VT));
6031    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6032  } else if (VT.getSizeInBits() == 32) {
6033    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6034    if (Idx == 0)
6035      return Op;
6036
6037    // SHUFPS the element to the lowest double word, then movss.
6038    int Mask[4] = { Idx, -1, -1, -1 };
6039    EVT VVT = Op.getOperand(0).getValueType();
6040    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6041                                       DAG.getUNDEF(VVT), Mask);
6042    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6043                       DAG.getIntPtrConstant(0));
6044  } else if (VT.getSizeInBits() == 64) {
6045    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6046    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6047    //        to match extract_elt for f64.
6048    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6049    if (Idx == 0)
6050      return Op;
6051
6052    // UNPCKHPD the element to the lowest double word, then movsd.
6053    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6054    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6055    int Mask[2] = { 1, -1 };
6056    EVT VVT = Op.getOperand(0).getValueType();
6057    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6058                                       DAG.getUNDEF(VVT), Mask);
6059    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6060                       DAG.getIntPtrConstant(0));
6061  }
6062
6063  return SDValue();
6064}
6065
6066SDValue
6067X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6068                                               SelectionDAG &DAG) const {
6069  EVT VT = Op.getValueType();
6070  EVT EltVT = VT.getVectorElementType();
6071  DebugLoc dl = Op.getDebugLoc();
6072
6073  SDValue N0 = Op.getOperand(0);
6074  SDValue N1 = Op.getOperand(1);
6075  SDValue N2 = Op.getOperand(2);
6076
6077  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
6078      isa<ConstantSDNode>(N2)) {
6079    unsigned Opc;
6080    if (VT == MVT::v8i16)
6081      Opc = X86ISD::PINSRW;
6082    else if (VT == MVT::v16i8)
6083      Opc = X86ISD::PINSRB;
6084    else
6085      Opc = X86ISD::PINSRB;
6086
6087    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
6088    // argument.
6089    if (N1.getValueType() != MVT::i32)
6090      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6091    if (N2.getValueType() != MVT::i32)
6092      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6093    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
6094  } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
6095    // Bits [7:6] of the constant are the source select.  This will always be
6096    //  zero here.  The DAG Combiner may combine an extract_elt index into these
6097    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
6098    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
6099    // Bits [5:4] of the constant are the destination select.  This is the
6100    //  value of the incoming immediate.
6101    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
6102    //   combine either bitwise AND or insert of float 0.0 to set these bits.
6103    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
6104    // Create this as a scalar to vector..
6105    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
6106    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
6107  } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
6108    // PINSR* works with constant index.
6109    return Op;
6110  }
6111  return SDValue();
6112}
6113
6114SDValue
6115X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
6116  EVT VT = Op.getValueType();
6117  EVT EltVT = VT.getVectorElementType();
6118
6119  DebugLoc dl = Op.getDebugLoc();
6120  SDValue N0 = Op.getOperand(0);
6121  SDValue N1 = Op.getOperand(1);
6122  SDValue N2 = Op.getOperand(2);
6123
6124  // If this is a 256-bit vector result, first insert into a 128-bit
6125  // vector and then insert into the 256-bit vector.
6126  if (VT.getSizeInBits() > 128) {
6127    if (!isa<ConstantSDNode>(N2))
6128      return SDValue();
6129
6130    // Get the 128-bit vector.
6131    unsigned NumElems = VT.getVectorNumElements();
6132    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
6133    bool Upper = IdxVal >= NumElems / 2;
6134
6135    SDValue SubN0 = Extract128BitVector(N0, N2, DAG, dl);
6136
6137    // Insert into it.
6138    SDValue ScaledN2 = N2;
6139    if (Upper)
6140      ScaledN2 = DAG.getNode(ISD::SUB, dl, N2.getValueType(), N2,
6141                             DAG.getConstant(NumElems /
6142                                             (VT.getSizeInBits() / 128),
6143                                             N2.getValueType()));
6144    Op = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubN0.getValueType(), SubN0,
6145                     N1, ScaledN2);
6146
6147    // Insert the 128-bit vector
6148    // FIXME: Why UNDEF?
6149    return Insert128BitVector(N0, Op, N2, DAG, dl);
6150  }
6151
6152  if (Subtarget->hasSSE41())
6153    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
6154
6155  if (EltVT == MVT::i8)
6156    return SDValue();
6157
6158  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
6159    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
6160    // as its second argument.
6161    if (N1.getValueType() != MVT::i32)
6162      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
6163    if (N2.getValueType() != MVT::i32)
6164      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
6165    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
6166  }
6167  return SDValue();
6168}
6169
6170SDValue
6171X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
6172  LLVMContext *Context = DAG.getContext();
6173  DebugLoc dl = Op.getDebugLoc();
6174  EVT OpVT = Op.getValueType();
6175
6176  // If this is a 256-bit vector result, first insert into a 128-bit
6177  // vector and then insert into the 256-bit vector.
6178  if (OpVT.getSizeInBits() > 128) {
6179    // Insert into a 128-bit vector.
6180    EVT VT128 = EVT::getVectorVT(*Context,
6181                                 OpVT.getVectorElementType(),
6182                                 OpVT.getVectorNumElements() / 2);
6183
6184    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
6185
6186    // Insert the 128-bit vector.
6187    return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
6188                              DAG.getConstant(0, MVT::i32),
6189                              DAG, dl);
6190  }
6191
6192  if (Op.getValueType() == MVT::v1i64 &&
6193      Op.getOperand(0).getValueType() == MVT::i64)
6194    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
6195
6196  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
6197  assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
6198         "Expected an SSE type!");
6199  return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
6200                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
6201}
6202
6203// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
6204// a simple subregister reference or explicit instructions to grab
6205// upper bits of a vector.
6206SDValue
6207X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6208  if (Subtarget->hasAVX()) {
6209    DebugLoc dl = Op.getNode()->getDebugLoc();
6210    SDValue Vec = Op.getNode()->getOperand(0);
6211    SDValue Idx = Op.getNode()->getOperand(1);
6212
6213    if (Op.getNode()->getValueType(0).getSizeInBits() == 128
6214        && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
6215        return Extract128BitVector(Vec, Idx, DAG, dl);
6216    }
6217  }
6218  return SDValue();
6219}
6220
6221// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
6222// simple superregister reference or explicit instructions to insert
6223// the upper bits of a vector.
6224SDValue
6225X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
6226  if (Subtarget->hasAVX()) {
6227    DebugLoc dl = Op.getNode()->getDebugLoc();
6228    SDValue Vec = Op.getNode()->getOperand(0);
6229    SDValue SubVec = Op.getNode()->getOperand(1);
6230    SDValue Idx = Op.getNode()->getOperand(2);
6231
6232    if (Op.getNode()->getValueType(0).getSizeInBits() == 256
6233        && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
6234      return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
6235    }
6236  }
6237  return SDValue();
6238}
6239
6240// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
6241// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
6242// one of the above mentioned nodes. It has to be wrapped because otherwise
6243// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
6244// be used to form addressing mode. These wrapped nodes will be selected
6245// into MOV32ri.
6246SDValue
6247X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
6248  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
6249
6250  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6251  // global base reg.
6252  unsigned char OpFlag = 0;
6253  unsigned WrapperKind = X86ISD::Wrapper;
6254  CodeModel::Model M = getTargetMachine().getCodeModel();
6255
6256  if (Subtarget->isPICStyleRIPRel() &&
6257      (M == CodeModel::Small || M == CodeModel::Kernel))
6258    WrapperKind = X86ISD::WrapperRIP;
6259  else if (Subtarget->isPICStyleGOT())
6260    OpFlag = X86II::MO_GOTOFF;
6261  else if (Subtarget->isPICStyleStubPIC())
6262    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6263
6264  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
6265                                             CP->getAlignment(),
6266                                             CP->getOffset(), OpFlag);
6267  DebugLoc DL = CP->getDebugLoc();
6268  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6269  // With PIC, the address is actually $g + Offset.
6270  if (OpFlag) {
6271    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6272                         DAG.getNode(X86ISD::GlobalBaseReg,
6273                                     DebugLoc(), getPointerTy()),
6274                         Result);
6275  }
6276
6277  return Result;
6278}
6279
6280SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
6281  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
6282
6283  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6284  // global base reg.
6285  unsigned char OpFlag = 0;
6286  unsigned WrapperKind = X86ISD::Wrapper;
6287  CodeModel::Model M = getTargetMachine().getCodeModel();
6288
6289  if (Subtarget->isPICStyleRIPRel() &&
6290      (M == CodeModel::Small || M == CodeModel::Kernel))
6291    WrapperKind = X86ISD::WrapperRIP;
6292  else if (Subtarget->isPICStyleGOT())
6293    OpFlag = X86II::MO_GOTOFF;
6294  else if (Subtarget->isPICStyleStubPIC())
6295    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6296
6297  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
6298                                          OpFlag);
6299  DebugLoc DL = JT->getDebugLoc();
6300  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6301
6302  // With PIC, the address is actually $g + Offset.
6303  if (OpFlag)
6304    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6305                         DAG.getNode(X86ISD::GlobalBaseReg,
6306                                     DebugLoc(), getPointerTy()),
6307                         Result);
6308
6309  return Result;
6310}
6311
6312SDValue
6313X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
6314  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
6315
6316  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6317  // global base reg.
6318  unsigned char OpFlag = 0;
6319  unsigned WrapperKind = X86ISD::Wrapper;
6320  CodeModel::Model M = getTargetMachine().getCodeModel();
6321
6322  if (Subtarget->isPICStyleRIPRel() &&
6323      (M == CodeModel::Small || M == CodeModel::Kernel))
6324    WrapperKind = X86ISD::WrapperRIP;
6325  else if (Subtarget->isPICStyleGOT())
6326    OpFlag = X86II::MO_GOTOFF;
6327  else if (Subtarget->isPICStyleStubPIC())
6328    OpFlag = X86II::MO_PIC_BASE_OFFSET;
6329
6330  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
6331
6332  DebugLoc DL = Op.getDebugLoc();
6333  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6334
6335
6336  // With PIC, the address is actually $g + Offset.
6337  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
6338      !Subtarget->is64Bit()) {
6339    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6340                         DAG.getNode(X86ISD::GlobalBaseReg,
6341                                     DebugLoc(), getPointerTy()),
6342                         Result);
6343  }
6344
6345  return Result;
6346}
6347
6348SDValue
6349X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
6350  // Create the TargetBlockAddressAddress node.
6351  unsigned char OpFlags =
6352    Subtarget->ClassifyBlockAddressReference();
6353  CodeModel::Model M = getTargetMachine().getCodeModel();
6354  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
6355  DebugLoc dl = Op.getDebugLoc();
6356  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
6357                                       /*isTarget=*/true, OpFlags);
6358
6359  if (Subtarget->isPICStyleRIPRel() &&
6360      (M == CodeModel::Small || M == CodeModel::Kernel))
6361    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6362  else
6363    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6364
6365  // With PIC, the address is actually $g + Offset.
6366  if (isGlobalRelativeToPICBase(OpFlags)) {
6367    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6368                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6369                         Result);
6370  }
6371
6372  return Result;
6373}
6374
6375SDValue
6376X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
6377                                      int64_t Offset,
6378                                      SelectionDAG &DAG) const {
6379  // Create the TargetGlobalAddress node, folding in the constant
6380  // offset if it is legal.
6381  unsigned char OpFlags =
6382    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
6383  CodeModel::Model M = getTargetMachine().getCodeModel();
6384  SDValue Result;
6385  if (OpFlags == X86II::MO_NO_FLAG &&
6386      X86::isOffsetSuitableForCodeModel(Offset, M)) {
6387    // A direct static reference to a global.
6388    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
6389    Offset = 0;
6390  } else {
6391    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
6392  }
6393
6394  if (Subtarget->isPICStyleRIPRel() &&
6395      (M == CodeModel::Small || M == CodeModel::Kernel))
6396    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
6397  else
6398    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
6399
6400  // With PIC, the address is actually $g + Offset.
6401  if (isGlobalRelativeToPICBase(OpFlags)) {
6402    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
6403                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
6404                         Result);
6405  }
6406
6407  // For globals that require a load from a stub to get the address, emit the
6408  // load.
6409  if (isGlobalStubReference(OpFlags))
6410    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
6411                         MachinePointerInfo::getGOT(), false, false, 0);
6412
6413  // If there was a non-zero offset that we didn't fold, create an explicit
6414  // addition for it.
6415  if (Offset != 0)
6416    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
6417                         DAG.getConstant(Offset, getPointerTy()));
6418
6419  return Result;
6420}
6421
6422SDValue
6423X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
6424  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
6425  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
6426  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
6427}
6428
6429static SDValue
6430GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
6431           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
6432           unsigned char OperandFlags) {
6433  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6434  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6435  DebugLoc dl = GA->getDebugLoc();
6436  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6437                                           GA->getValueType(0),
6438                                           GA->getOffset(),
6439                                           OperandFlags);
6440  if (InFlag) {
6441    SDValue Ops[] = { Chain,  TGA, *InFlag };
6442    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
6443  } else {
6444    SDValue Ops[]  = { Chain, TGA };
6445    Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
6446  }
6447
6448  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6449  MFI->setAdjustsStack(true);
6450
6451  SDValue Flag = Chain.getValue(1);
6452  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
6453}
6454
6455// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
6456static SDValue
6457LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6458                                const EVT PtrVT) {
6459  SDValue InFlag;
6460  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
6461  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
6462                                     DAG.getNode(X86ISD::GlobalBaseReg,
6463                                                 DebugLoc(), PtrVT), InFlag);
6464  InFlag = Chain.getValue(1);
6465
6466  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
6467}
6468
6469// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
6470static SDValue
6471LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6472                                const EVT PtrVT) {
6473  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
6474                    X86::RAX, X86II::MO_TLSGD);
6475}
6476
6477// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
6478// "local exec" model.
6479static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
6480                                   const EVT PtrVT, TLSModel::Model model,
6481                                   bool is64Bit) {
6482  DebugLoc dl = GA->getDebugLoc();
6483
6484  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
6485  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
6486                                                         is64Bit ? 257 : 256));
6487
6488  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
6489                                      DAG.getIntPtrConstant(0),
6490                                      MachinePointerInfo(Ptr), false, false, 0);
6491
6492  unsigned char OperandFlags = 0;
6493  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
6494  // initialexec.
6495  unsigned WrapperKind = X86ISD::Wrapper;
6496  if (model == TLSModel::LocalExec) {
6497    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
6498  } else if (is64Bit) {
6499    assert(model == TLSModel::InitialExec);
6500    OperandFlags = X86II::MO_GOTTPOFF;
6501    WrapperKind = X86ISD::WrapperRIP;
6502  } else {
6503    assert(model == TLSModel::InitialExec);
6504    OperandFlags = X86II::MO_INDNTPOFF;
6505  }
6506
6507  // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
6508  // exec)
6509  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
6510                                           GA->getValueType(0),
6511                                           GA->getOffset(), OperandFlags);
6512  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
6513
6514  if (model == TLSModel::InitialExec)
6515    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
6516                         MachinePointerInfo::getGOT(), false, false, 0);
6517
6518  // The address of the thread local variable is the add of the thread
6519  // pointer with the offset of the variable.
6520  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
6521}
6522
6523SDValue
6524X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
6525
6526  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
6527  const GlobalValue *GV = GA->getGlobal();
6528
6529  if (Subtarget->isTargetELF()) {
6530    // TODO: implement the "local dynamic" model
6531    // TODO: implement the "initial exec"model for pic executables
6532
6533    // If GV is an alias then use the aliasee for determining
6534    // thread-localness.
6535    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
6536      GV = GA->resolveAliasedGlobal(false);
6537
6538    TLSModel::Model model
6539      = getTLSModel(GV, getTargetMachine().getRelocationModel());
6540
6541    switch (model) {
6542      case TLSModel::GeneralDynamic:
6543      case TLSModel::LocalDynamic: // not implemented
6544        if (Subtarget->is64Bit())
6545          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
6546        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
6547
6548      case TLSModel::InitialExec:
6549      case TLSModel::LocalExec:
6550        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
6551                                   Subtarget->is64Bit());
6552    }
6553  } else if (Subtarget->isTargetDarwin()) {
6554    // Darwin only has one model of TLS.  Lower to that.
6555    unsigned char OpFlag = 0;
6556    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
6557                           X86ISD::WrapperRIP : X86ISD::Wrapper;
6558
6559    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
6560    // global base reg.
6561    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
6562                  !Subtarget->is64Bit();
6563    if (PIC32)
6564      OpFlag = X86II::MO_TLVP_PIC_BASE;
6565    else
6566      OpFlag = X86II::MO_TLVP;
6567    DebugLoc DL = Op.getDebugLoc();
6568    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
6569                                                GA->getValueType(0),
6570                                                GA->getOffset(), OpFlag);
6571    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
6572
6573    // With PIC32, the address is actually $g + Offset.
6574    if (PIC32)
6575      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
6576                           DAG.getNode(X86ISD::GlobalBaseReg,
6577                                       DebugLoc(), getPointerTy()),
6578                           Offset);
6579
6580    // Lowering the machine isd will make sure everything is in the right
6581    // location.
6582    SDValue Chain = DAG.getEntryNode();
6583    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6584    SDValue Args[] = { Chain, Offset };
6585    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
6586
6587    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
6588    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
6589    MFI->setAdjustsStack(true);
6590
6591    // And our return value (tls address) is in the standard call return value
6592    // location.
6593    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
6594    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy());
6595  }
6596
6597  assert(false &&
6598         "TLS not implemented for this target.");
6599
6600  llvm_unreachable("Unreachable");
6601  return SDValue();
6602}
6603
6604
6605/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
6606/// take a 2 x i32 value to shift plus a shift amount.
6607SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
6608  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6609  EVT VT = Op.getValueType();
6610  unsigned VTBits = VT.getSizeInBits();
6611  DebugLoc dl = Op.getDebugLoc();
6612  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
6613  SDValue ShOpLo = Op.getOperand(0);
6614  SDValue ShOpHi = Op.getOperand(1);
6615  SDValue ShAmt  = Op.getOperand(2);
6616  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6617                                     DAG.getConstant(VTBits - 1, MVT::i8))
6618                       : DAG.getConstant(0, VT);
6619
6620  SDValue Tmp2, Tmp3;
6621  if (Op.getOpcode() == ISD::SHL_PARTS) {
6622    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
6623    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6624  } else {
6625    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
6626    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
6627  }
6628
6629  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
6630                                DAG.getConstant(VTBits, MVT::i8));
6631  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
6632                             AndNode, DAG.getConstant(0, MVT::i8));
6633
6634  SDValue Hi, Lo;
6635  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
6636  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
6637  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
6638
6639  if (Op.getOpcode() == ISD::SHL_PARTS) {
6640    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6641    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6642  } else {
6643    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
6644    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
6645  }
6646
6647  SDValue Ops[2] = { Lo, Hi };
6648  return DAG.getMergeValues(Ops, 2, dl);
6649}
6650
6651SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
6652                                           SelectionDAG &DAG) const {
6653  EVT SrcVT = Op.getOperand(0).getValueType();
6654
6655  if (SrcVT.isVector())
6656    return SDValue();
6657
6658  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
6659         "Unknown SINT_TO_FP to lower!");
6660
6661  // These are really Legal; return the operand so the caller accepts it as
6662  // Legal.
6663  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
6664    return Op;
6665  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
6666      Subtarget->is64Bit()) {
6667    return Op;
6668  }
6669
6670  DebugLoc dl = Op.getDebugLoc();
6671  unsigned Size = SrcVT.getSizeInBits()/8;
6672  MachineFunction &MF = DAG.getMachineFunction();
6673  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
6674  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6675  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6676                               StackSlot,
6677                               MachinePointerInfo::getFixedStack(SSFI),
6678                               false, false, 0);
6679  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
6680}
6681
6682SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
6683                                     SDValue StackSlot,
6684                                     SelectionDAG &DAG) const {
6685  // Build the FILD
6686  DebugLoc DL = Op.getDebugLoc();
6687  SDVTList Tys;
6688  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
6689  if (useSSE)
6690    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
6691  else
6692    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
6693
6694  unsigned ByteSize = SrcVT.getSizeInBits()/8;
6695
6696  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6697  MachineMemOperand *MMO =
6698    DAG.getMachineFunction()
6699    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6700                          MachineMemOperand::MOLoad, ByteSize, ByteSize);
6701
6702  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
6703  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
6704                                           X86ISD::FILD, DL,
6705                                           Tys, Ops, array_lengthof(Ops),
6706                                           SrcVT, MMO);
6707
6708  if (useSSE) {
6709    Chain = Result.getValue(1);
6710    SDValue InFlag = Result.getValue(2);
6711
6712    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
6713    // shouldn't be necessary except that RFP cannot be live across
6714    // multiple blocks. When stackifier is fixed, they can be uncoupled.
6715    MachineFunction &MF = DAG.getMachineFunction();
6716    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
6717    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
6718    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6719    Tys = DAG.getVTList(MVT::Other);
6720    SDValue Ops[] = {
6721      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
6722    };
6723    MachineMemOperand *MMO =
6724      DAG.getMachineFunction()
6725      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6726                            MachineMemOperand::MOStore, SSFISize, SSFISize);
6727
6728    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
6729                                    Ops, array_lengthof(Ops),
6730                                    Op.getValueType(), MMO);
6731    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
6732                         MachinePointerInfo::getFixedStack(SSFI),
6733                         false, false, 0);
6734  }
6735
6736  return Result;
6737}
6738
6739// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
6740SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
6741                                               SelectionDAG &DAG) const {
6742  // This algorithm is not obvious. Here it is in C code, more or less:
6743  /*
6744    double uint64_to_double( uint32_t hi, uint32_t lo ) {
6745      static const __m128i exp = { 0x4330000045300000ULL, 0 };
6746      static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
6747
6748      // Copy ints to xmm registers.
6749      __m128i xh = _mm_cvtsi32_si128( hi );
6750      __m128i xl = _mm_cvtsi32_si128( lo );
6751
6752      // Combine into low half of a single xmm register.
6753      __m128i x = _mm_unpacklo_epi32( xh, xl );
6754      __m128d d;
6755      double sd;
6756
6757      // Merge in appropriate exponents to give the integer bits the right
6758      // magnitude.
6759      x = _mm_unpacklo_epi32( x, exp );
6760
6761      // Subtract away the biases to deal with the IEEE-754 double precision
6762      // implicit 1.
6763      d = _mm_sub_pd( (__m128d) x, bias );
6764
6765      // All conversions up to here are exact. The correctly rounded result is
6766      // calculated using the current rounding mode using the following
6767      // horizontal add.
6768      d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
6769      _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
6770                                // store doesn't really need to be here (except
6771                                // maybe to zero the other double)
6772      return sd;
6773    }
6774  */
6775
6776  DebugLoc dl = Op.getDebugLoc();
6777  LLVMContext *Context = DAG.getContext();
6778
6779  // Build some magic constants.
6780  std::vector<Constant*> CV0;
6781  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
6782  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
6783  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6784  CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
6785  Constant *C0 = ConstantVector::get(CV0);
6786  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
6787
6788  std::vector<Constant*> CV1;
6789  CV1.push_back(
6790    ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
6791  CV1.push_back(
6792    ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
6793  Constant *C1 = ConstantVector::get(CV1);
6794  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
6795
6796  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6797                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6798                                        Op.getOperand(0),
6799                                        DAG.getIntPtrConstant(1)));
6800  SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6801                            DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6802                                        Op.getOperand(0),
6803                                        DAG.getIntPtrConstant(0)));
6804  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
6805  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
6806                              MachinePointerInfo::getConstantPool(),
6807                              false, false, 16);
6808  SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
6809  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
6810  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
6811                              MachinePointerInfo::getConstantPool(),
6812                              false, false, 16);
6813  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
6814
6815  // Add the halves; easiest way is to swap them into another reg first.
6816  int ShufMask[2] = { 1, -1 };
6817  SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
6818                                      DAG.getUNDEF(MVT::v2f64), ShufMask);
6819  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
6820  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
6821                     DAG.getIntPtrConstant(0));
6822}
6823
6824// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
6825SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
6826                                               SelectionDAG &DAG) const {
6827  DebugLoc dl = Op.getDebugLoc();
6828  // FP constant to bias correct the final result.
6829  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
6830                                   MVT::f64);
6831
6832  // Load the 32-bit value into an XMM register.
6833  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
6834                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
6835                                         Op.getOperand(0),
6836                                         DAG.getIntPtrConstant(0)));
6837
6838  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6839                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
6840                     DAG.getIntPtrConstant(0));
6841
6842  // Or the load with the bias.
6843  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
6844                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6845                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6846                                                   MVT::v2f64, Load)),
6847                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
6848                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6849                                                   MVT::v2f64, Bias)));
6850  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
6851                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
6852                   DAG.getIntPtrConstant(0));
6853
6854  // Subtract the bias.
6855  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
6856
6857  // Handle final rounding.
6858  EVT DestVT = Op.getValueType();
6859
6860  if (DestVT.bitsLT(MVT::f64)) {
6861    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
6862                       DAG.getIntPtrConstant(0));
6863  } else if (DestVT.bitsGT(MVT::f64)) {
6864    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
6865  }
6866
6867  // Handle final rounding.
6868  return Sub;
6869}
6870
6871SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
6872                                           SelectionDAG &DAG) const {
6873  SDValue N0 = Op.getOperand(0);
6874  DebugLoc dl = Op.getDebugLoc();
6875
6876  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
6877  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
6878  // the optimization here.
6879  if (DAG.SignBitIsZero(N0))
6880    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
6881
6882  EVT SrcVT = N0.getValueType();
6883  EVT DstVT = Op.getValueType();
6884  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
6885    return LowerUINT_TO_FP_i64(Op, DAG);
6886  else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
6887    return LowerUINT_TO_FP_i32(Op, DAG);
6888
6889  // Make a 64-bit buffer, and use it to build an FILD.
6890  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
6891  if (SrcVT == MVT::i32) {
6892    SDValue WordOff = DAG.getConstant(4, getPointerTy());
6893    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
6894                                     getPointerTy(), StackSlot, WordOff);
6895    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6896                                  StackSlot, MachinePointerInfo(),
6897                                  false, false, 0);
6898    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
6899                                  OffsetSlot, MachinePointerInfo(),
6900                                  false, false, 0);
6901    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
6902    return Fild;
6903  }
6904
6905  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
6906  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
6907                                StackSlot, MachinePointerInfo(),
6908                               false, false, 0);
6909  // For i64 source, we need to add the appropriate power of 2 if the input
6910  // was negative.  This is the same as the optimization in
6911  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
6912  // we must be careful to do the computation in x87 extended precision, not
6913  // in SSE. (The generic code can't know it's OK to do this, or how to.)
6914  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
6915  MachineMemOperand *MMO =
6916    DAG.getMachineFunction()
6917    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
6918                          MachineMemOperand::MOLoad, 8, 8);
6919
6920  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
6921  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
6922  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
6923                                         MVT::i64, MMO);
6924
6925  APInt FF(32, 0x5F800000ULL);
6926
6927  // Check whether the sign bit is set.
6928  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
6929                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
6930                                 ISD::SETLT);
6931
6932  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
6933  SDValue FudgePtr = DAG.getConstantPool(
6934                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
6935                                         getPointerTy());
6936
6937  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
6938  SDValue Zero = DAG.getIntPtrConstant(0);
6939  SDValue Four = DAG.getIntPtrConstant(4);
6940  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
6941                               Zero, Four);
6942  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
6943
6944  // Load the value out, extending it from f32 to f80.
6945  // FIXME: Avoid the extend by constructing the right constant pool?
6946  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
6947                                 FudgePtr, MachinePointerInfo::getConstantPool(),
6948                                 MVT::f32, false, false, 4);
6949  // Extend everything to 80 bits to force it to be done on x87.
6950  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
6951  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
6952}
6953
6954std::pair<SDValue,SDValue> X86TargetLowering::
6955FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
6956  DebugLoc DL = Op.getDebugLoc();
6957
6958  EVT DstTy = Op.getValueType();
6959
6960  if (!IsSigned) {
6961    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
6962    DstTy = MVT::i64;
6963  }
6964
6965  assert(DstTy.getSimpleVT() <= MVT::i64 &&
6966         DstTy.getSimpleVT() >= MVT::i16 &&
6967         "Unknown FP_TO_SINT to lower!");
6968
6969  // These are really Legal.
6970  if (DstTy == MVT::i32 &&
6971      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6972    return std::make_pair(SDValue(), SDValue());
6973  if (Subtarget->is64Bit() &&
6974      DstTy == MVT::i64 &&
6975      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
6976    return std::make_pair(SDValue(), SDValue());
6977
6978  // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
6979  // stack slot.
6980  MachineFunction &MF = DAG.getMachineFunction();
6981  unsigned MemSize = DstTy.getSizeInBits()/8;
6982  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
6983  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
6984
6985
6986
6987  unsigned Opc;
6988  switch (DstTy.getSimpleVT().SimpleTy) {
6989  default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
6990  case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
6991  case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
6992  case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
6993  }
6994
6995  SDValue Chain = DAG.getEntryNode();
6996  SDValue Value = Op.getOperand(0);
6997  EVT TheVT = Op.getOperand(0).getValueType();
6998  if (isScalarFPTypeInSSEReg(TheVT)) {
6999    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7000    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7001                         MachinePointerInfo::getFixedStack(SSFI),
7002                         false, false, 0);
7003    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7004    SDValue Ops[] = {
7005      Chain, StackSlot, DAG.getValueType(TheVT)
7006    };
7007
7008    MachineMemOperand *MMO =
7009      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7010                              MachineMemOperand::MOLoad, MemSize, MemSize);
7011    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7012                                    DstTy, MMO);
7013    Chain = Value.getValue(1);
7014    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7015    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7016  }
7017
7018  MachineMemOperand *MMO =
7019    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7020                            MachineMemOperand::MOStore, MemSize, MemSize);
7021
7022  // Build the FP_TO_INT*_IN_MEM
7023  SDValue Ops[] = { Chain, Value, StackSlot };
7024  SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7025                                         Ops, 3, DstTy, MMO);
7026
7027  return std::make_pair(FIST, StackSlot);
7028}
7029
7030SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7031                                           SelectionDAG &DAG) const {
7032  if (Op.getValueType().isVector())
7033    return SDValue();
7034
7035  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7036  SDValue FIST = Vals.first, StackSlot = Vals.second;
7037  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7038  if (FIST.getNode() == 0) return Op;
7039
7040  // Load the result.
7041  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7042                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7043}
7044
7045SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7046                                           SelectionDAG &DAG) const {
7047  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7048  SDValue FIST = Vals.first, StackSlot = Vals.second;
7049  assert(FIST.getNode() && "Unexpected failure");
7050
7051  // Load the result.
7052  return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7053                     FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7054}
7055
7056SDValue X86TargetLowering::LowerFABS(SDValue Op,
7057                                     SelectionDAG &DAG) const {
7058  LLVMContext *Context = DAG.getContext();
7059  DebugLoc dl = Op.getDebugLoc();
7060  EVT VT = Op.getValueType();
7061  EVT EltVT = VT;
7062  if (VT.isVector())
7063    EltVT = VT.getVectorElementType();
7064  std::vector<Constant*> CV;
7065  if (EltVT == MVT::f64) {
7066    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
7067    CV.push_back(C);
7068    CV.push_back(C);
7069  } else {
7070    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
7071    CV.push_back(C);
7072    CV.push_back(C);
7073    CV.push_back(C);
7074    CV.push_back(C);
7075  }
7076  Constant *C = ConstantVector::get(CV);
7077  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7078  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7079                             MachinePointerInfo::getConstantPool(),
7080                             false, false, 16);
7081  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
7082}
7083
7084SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
7085  LLVMContext *Context = DAG.getContext();
7086  DebugLoc dl = Op.getDebugLoc();
7087  EVT VT = Op.getValueType();
7088  EVT EltVT = VT;
7089  if (VT.isVector())
7090    EltVT = VT.getVectorElementType();
7091  std::vector<Constant*> CV;
7092  if (EltVT == MVT::f64) {
7093    Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
7094    CV.push_back(C);
7095    CV.push_back(C);
7096  } else {
7097    Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
7098    CV.push_back(C);
7099    CV.push_back(C);
7100    CV.push_back(C);
7101    CV.push_back(C);
7102  }
7103  Constant *C = ConstantVector::get(CV);
7104  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7105  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7106                             MachinePointerInfo::getConstantPool(),
7107                             false, false, 16);
7108  if (VT.isVector()) {
7109    return DAG.getNode(ISD::BITCAST, dl, VT,
7110                       DAG.getNode(ISD::XOR, dl, MVT::v2i64,
7111                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7112                                Op.getOperand(0)),
7113                    DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
7114  } else {
7115    return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
7116  }
7117}
7118
7119SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
7120  LLVMContext *Context = DAG.getContext();
7121  SDValue Op0 = Op.getOperand(0);
7122  SDValue Op1 = Op.getOperand(1);
7123  DebugLoc dl = Op.getDebugLoc();
7124  EVT VT = Op.getValueType();
7125  EVT SrcVT = Op1.getValueType();
7126
7127  // If second operand is smaller, extend it first.
7128  if (SrcVT.bitsLT(VT)) {
7129    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
7130    SrcVT = VT;
7131  }
7132  // And if it is bigger, shrink it first.
7133  if (SrcVT.bitsGT(VT)) {
7134    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
7135    SrcVT = VT;
7136  }
7137
7138  // At this point the operands and the result should have the same
7139  // type, and that won't be f80 since that is not custom lowered.
7140
7141  // First get the sign bit of second operand.
7142  std::vector<Constant*> CV;
7143  if (SrcVT == MVT::f64) {
7144    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
7145    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7146  } else {
7147    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
7148    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7149    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7150    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7151  }
7152  Constant *C = ConstantVector::get(CV);
7153  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7154  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
7155                              MachinePointerInfo::getConstantPool(),
7156                              false, false, 16);
7157  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
7158
7159  // Shift sign bit right or left if the two operands have different types.
7160  if (SrcVT.bitsGT(VT)) {
7161    // Op0 is MVT::f32, Op1 is MVT::f64.
7162    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
7163    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
7164                          DAG.getConstant(32, MVT::i32));
7165    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
7166    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
7167                          DAG.getIntPtrConstant(0));
7168  }
7169
7170  // Clear first operand sign bit.
7171  CV.clear();
7172  if (VT == MVT::f64) {
7173    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
7174    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
7175  } else {
7176    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
7177    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7178    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7179    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
7180  }
7181  C = ConstantVector::get(CV);
7182  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
7183  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
7184                              MachinePointerInfo::getConstantPool(),
7185                              false, false, 16);
7186  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
7187
7188  // Or the value with the sign bit.
7189  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
7190}
7191
7192/// Emit nodes that will be selected as "test Op0,Op0", or something
7193/// equivalent.
7194SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
7195                                    SelectionDAG &DAG) const {
7196  DebugLoc dl = Op.getDebugLoc();
7197
7198  // CF and OF aren't always set the way we want. Determine which
7199  // of these we need.
7200  bool NeedCF = false;
7201  bool NeedOF = false;
7202  switch (X86CC) {
7203  default: break;
7204  case X86::COND_A: case X86::COND_AE:
7205  case X86::COND_B: case X86::COND_BE:
7206    NeedCF = true;
7207    break;
7208  case X86::COND_G: case X86::COND_GE:
7209  case X86::COND_L: case X86::COND_LE:
7210  case X86::COND_O: case X86::COND_NO:
7211    NeedOF = true;
7212    break;
7213  }
7214
7215  // See if we can use the EFLAGS value from the operand instead of
7216  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
7217  // we prove that the arithmetic won't overflow, we can't use OF or CF.
7218  if (Op.getResNo() != 0 || NeedOF || NeedCF)
7219    // Emit a CMP with 0, which is the TEST pattern.
7220    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7221                       DAG.getConstant(0, Op.getValueType()));
7222
7223  unsigned Opcode = 0;
7224  unsigned NumOperands = 0;
7225  switch (Op.getNode()->getOpcode()) {
7226  case ISD::ADD:
7227    // Due to an isel shortcoming, be conservative if this add is likely to be
7228    // selected as part of a load-modify-store instruction. When the root node
7229    // in a match is a store, isel doesn't know how to remap non-chain non-flag
7230    // uses of other nodes in the match, such as the ADD in this case. This
7231    // leads to the ADD being left around and reselected, with the result being
7232    // two adds in the output.  Alas, even if none our users are stores, that
7233    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
7234    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
7235    // climbing the DAG back to the root, and it doesn't seem to be worth the
7236    // effort.
7237    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7238           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7239      if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
7240        goto default_case;
7241
7242    if (ConstantSDNode *C =
7243        dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
7244      // An add of one will be selected as an INC.
7245      if (C->getAPIntValue() == 1) {
7246        Opcode = X86ISD::INC;
7247        NumOperands = 1;
7248        break;
7249      }
7250
7251      // An add of negative one (subtract of one) will be selected as a DEC.
7252      if (C->getAPIntValue().isAllOnesValue()) {
7253        Opcode = X86ISD::DEC;
7254        NumOperands = 1;
7255        break;
7256      }
7257    }
7258
7259    // Otherwise use a regular EFLAGS-setting add.
7260    Opcode = X86ISD::ADD;
7261    NumOperands = 2;
7262    break;
7263  case ISD::AND: {
7264    // If the primary and result isn't used, don't bother using X86ISD::AND,
7265    // because a TEST instruction will be better.
7266    bool NonFlagUse = false;
7267    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7268           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
7269      SDNode *User = *UI;
7270      unsigned UOpNo = UI.getOperandNo();
7271      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
7272        // Look pass truncate.
7273        UOpNo = User->use_begin().getOperandNo();
7274        User = *User->use_begin();
7275      }
7276
7277      if (User->getOpcode() != ISD::BRCOND &&
7278          User->getOpcode() != ISD::SETCC &&
7279          (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
7280        NonFlagUse = true;
7281        break;
7282      }
7283    }
7284
7285    if (!NonFlagUse)
7286      break;
7287  }
7288    // FALL THROUGH
7289  case ISD::SUB:
7290  case ISD::OR:
7291  case ISD::XOR:
7292    // Due to the ISEL shortcoming noted above, be conservative if this op is
7293    // likely to be selected as part of a load-modify-store instruction.
7294    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
7295           UE = Op.getNode()->use_end(); UI != UE; ++UI)
7296      if (UI->getOpcode() == ISD::STORE)
7297        goto default_case;
7298
7299    // Otherwise use a regular EFLAGS-setting instruction.
7300    switch (Op.getNode()->getOpcode()) {
7301    default: llvm_unreachable("unexpected operator!");
7302    case ISD::SUB: Opcode = X86ISD::SUB; break;
7303    case ISD::OR:  Opcode = X86ISD::OR;  break;
7304    case ISD::XOR: Opcode = X86ISD::XOR; break;
7305    case ISD::AND: Opcode = X86ISD::AND; break;
7306    }
7307
7308    NumOperands = 2;
7309    break;
7310  case X86ISD::ADD:
7311  case X86ISD::SUB:
7312  case X86ISD::INC:
7313  case X86ISD::DEC:
7314  case X86ISD::OR:
7315  case X86ISD::XOR:
7316  case X86ISD::AND:
7317    return SDValue(Op.getNode(), 1);
7318  default:
7319  default_case:
7320    break;
7321  }
7322
7323  if (Opcode == 0)
7324    // Emit a CMP with 0, which is the TEST pattern.
7325    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
7326                       DAG.getConstant(0, Op.getValueType()));
7327
7328  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
7329  SmallVector<SDValue, 4> Ops;
7330  for (unsigned i = 0; i != NumOperands; ++i)
7331    Ops.push_back(Op.getOperand(i));
7332
7333  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
7334  DAG.ReplaceAllUsesWith(Op, New);
7335  return SDValue(New.getNode(), 1);
7336}
7337
7338/// Emit nodes that will be selected as "cmp Op0,Op1", or something
7339/// equivalent.
7340SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
7341                                   SelectionDAG &DAG) const {
7342  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
7343    if (C->getAPIntValue() == 0)
7344      return EmitTest(Op0, X86CC, DAG);
7345
7346  DebugLoc dl = Op0.getDebugLoc();
7347  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
7348}
7349
7350/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
7351/// if it's possible.
7352SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
7353                                     DebugLoc dl, SelectionDAG &DAG) const {
7354  SDValue Op0 = And.getOperand(0);
7355  SDValue Op1 = And.getOperand(1);
7356  if (Op0.getOpcode() == ISD::TRUNCATE)
7357    Op0 = Op0.getOperand(0);
7358  if (Op1.getOpcode() == ISD::TRUNCATE)
7359    Op1 = Op1.getOperand(0);
7360
7361  SDValue LHS, RHS;
7362  if (Op1.getOpcode() == ISD::SHL)
7363    std::swap(Op0, Op1);
7364  if (Op0.getOpcode() == ISD::SHL) {
7365    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
7366      if (And00C->getZExtValue() == 1) {
7367        // If we looked past a truncate, check that it's only truncating away
7368        // known zeros.
7369        unsigned BitWidth = Op0.getValueSizeInBits();
7370        unsigned AndBitWidth = And.getValueSizeInBits();
7371        if (BitWidth > AndBitWidth) {
7372          APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
7373          DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
7374          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
7375            return SDValue();
7376        }
7377        LHS = Op1;
7378        RHS = Op0.getOperand(1);
7379      }
7380  } else if (Op1.getOpcode() == ISD::Constant) {
7381    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
7382    SDValue AndLHS = Op0;
7383    if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
7384      LHS = AndLHS.getOperand(0);
7385      RHS = AndLHS.getOperand(1);
7386    }
7387  }
7388
7389  if (LHS.getNode()) {
7390    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
7391    // instruction.  Since the shift amount is in-range-or-undefined, we know
7392    // that doing a bittest on the i32 value is ok.  We extend to i32 because
7393    // the encoding for the i16 version is larger than the i32 version.
7394    // Also promote i16 to i32 for performance / code size reason.
7395    if (LHS.getValueType() == MVT::i8 ||
7396        LHS.getValueType() == MVT::i16)
7397      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
7398
7399    // If the operand types disagree, extend the shift amount to match.  Since
7400    // BT ignores high bits (like shifts) we can use anyextend.
7401    if (LHS.getValueType() != RHS.getValueType())
7402      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
7403
7404    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
7405    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
7406    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7407                       DAG.getConstant(Cond, MVT::i8), BT);
7408  }
7409
7410  return SDValue();
7411}
7412
7413SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
7414  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
7415  SDValue Op0 = Op.getOperand(0);
7416  SDValue Op1 = Op.getOperand(1);
7417  DebugLoc dl = Op.getDebugLoc();
7418  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7419
7420  // Optimize to BT if possible.
7421  // Lower (X & (1 << N)) == 0 to BT(X, N).
7422  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
7423  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
7424  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
7425      Op1.getOpcode() == ISD::Constant &&
7426      cast<ConstantSDNode>(Op1)->isNullValue() &&
7427      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7428    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
7429    if (NewSetCC.getNode())
7430      return NewSetCC;
7431  }
7432
7433  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
7434  // these.
7435  if (Op1.getOpcode() == ISD::Constant &&
7436      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
7437       cast<ConstantSDNode>(Op1)->isNullValue()) &&
7438      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
7439
7440    // If the input is a setcc, then reuse the input setcc or use a new one with
7441    // the inverted condition.
7442    if (Op0.getOpcode() == X86ISD::SETCC) {
7443      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
7444      bool Invert = (CC == ISD::SETNE) ^
7445        cast<ConstantSDNode>(Op1)->isNullValue();
7446      if (!Invert) return Op0;
7447
7448      CCode = X86::GetOppositeBranchCondition(CCode);
7449      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7450                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
7451    }
7452  }
7453
7454  bool isFP = Op1.getValueType().isFloatingPoint();
7455  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
7456  if (X86CC == X86::COND_INVALID)
7457    return SDValue();
7458
7459  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
7460  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
7461                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
7462}
7463
7464SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
7465  SDValue Cond;
7466  SDValue Op0 = Op.getOperand(0);
7467  SDValue Op1 = Op.getOperand(1);
7468  SDValue CC = Op.getOperand(2);
7469  EVT VT = Op.getValueType();
7470  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
7471  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
7472  DebugLoc dl = Op.getDebugLoc();
7473
7474  if (isFP) {
7475    unsigned SSECC = 8;
7476    EVT VT0 = Op0.getValueType();
7477    assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
7478    unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
7479    bool Swap = false;
7480
7481    switch (SetCCOpcode) {
7482    default: break;
7483    case ISD::SETOEQ:
7484    case ISD::SETEQ:  SSECC = 0; break;
7485    case ISD::SETOGT:
7486    case ISD::SETGT: Swap = true; // Fallthrough
7487    case ISD::SETLT:
7488    case ISD::SETOLT: SSECC = 1; break;
7489    case ISD::SETOGE:
7490    case ISD::SETGE: Swap = true; // Fallthrough
7491    case ISD::SETLE:
7492    case ISD::SETOLE: SSECC = 2; break;
7493    case ISD::SETUO:  SSECC = 3; break;
7494    case ISD::SETUNE:
7495    case ISD::SETNE:  SSECC = 4; break;
7496    case ISD::SETULE: Swap = true;
7497    case ISD::SETUGE: SSECC = 5; break;
7498    case ISD::SETULT: Swap = true;
7499    case ISD::SETUGT: SSECC = 6; break;
7500    case ISD::SETO:   SSECC = 7; break;
7501    }
7502    if (Swap)
7503      std::swap(Op0, Op1);
7504
7505    // In the two special cases we can't handle, emit two comparisons.
7506    if (SSECC == 8) {
7507      if (SetCCOpcode == ISD::SETUEQ) {
7508        SDValue UNORD, EQ;
7509        UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
7510        EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
7511        return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
7512      }
7513      else if (SetCCOpcode == ISD::SETONE) {
7514        SDValue ORD, NEQ;
7515        ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
7516        NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
7517        return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
7518      }
7519      llvm_unreachable("Illegal FP comparison");
7520    }
7521    // Handle all other FP comparisons here.
7522    return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
7523  }
7524
7525  // We are handling one of the integer comparisons here.  Since SSE only has
7526  // GT and EQ comparisons for integer, swapping operands and multiple
7527  // operations may be required for some comparisons.
7528  unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
7529  bool Swap = false, Invert = false, FlipSigns = false;
7530
7531  switch (VT.getSimpleVT().SimpleTy) {
7532  default: break;
7533  case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
7534  case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
7535  case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
7536  case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
7537  }
7538
7539  switch (SetCCOpcode) {
7540  default: break;
7541  case ISD::SETNE:  Invert = true;
7542  case ISD::SETEQ:  Opc = EQOpc; break;
7543  case ISD::SETLT:  Swap = true;
7544  case ISD::SETGT:  Opc = GTOpc; break;
7545  case ISD::SETGE:  Swap = true;
7546  case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
7547  case ISD::SETULT: Swap = true;
7548  case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
7549  case ISD::SETUGE: Swap = true;
7550  case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
7551  }
7552  if (Swap)
7553    std::swap(Op0, Op1);
7554
7555  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
7556  // bits of the inputs before performing those operations.
7557  if (FlipSigns) {
7558    EVT EltVT = VT.getVectorElementType();
7559    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
7560                                      EltVT);
7561    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
7562    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
7563                                    SignBits.size());
7564    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
7565    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
7566  }
7567
7568  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
7569
7570  // If the logical-not of the result is required, perform that now.
7571  if (Invert)
7572    Result = DAG.getNOT(dl, Result, VT);
7573
7574  return Result;
7575}
7576
7577// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
7578static bool isX86LogicalCmp(SDValue Op) {
7579  unsigned Opc = Op.getNode()->getOpcode();
7580  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
7581    return true;
7582  if (Op.getResNo() == 1 &&
7583      (Opc == X86ISD::ADD ||
7584       Opc == X86ISD::SUB ||
7585       Opc == X86ISD::ADC ||
7586       Opc == X86ISD::SBB ||
7587       Opc == X86ISD::SMUL ||
7588       Opc == X86ISD::UMUL ||
7589       Opc == X86ISD::INC ||
7590       Opc == X86ISD::DEC ||
7591       Opc == X86ISD::OR ||
7592       Opc == X86ISD::XOR ||
7593       Opc == X86ISD::AND))
7594    return true;
7595
7596  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
7597    return true;
7598
7599  return false;
7600}
7601
7602static bool isZero(SDValue V) {
7603  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7604  return C && C->isNullValue();
7605}
7606
7607static bool isAllOnes(SDValue V) {
7608  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
7609  return C && C->isAllOnesValue();
7610}
7611
7612SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
7613  bool addTest = true;
7614  SDValue Cond  = Op.getOperand(0);
7615  SDValue Op1 = Op.getOperand(1);
7616  SDValue Op2 = Op.getOperand(2);
7617  DebugLoc DL = Op.getDebugLoc();
7618  SDValue CC;
7619
7620  if (Cond.getOpcode() == ISD::SETCC) {
7621    SDValue NewCond = LowerSETCC(Cond, DAG);
7622    if (NewCond.getNode())
7623      Cond = NewCond;
7624  }
7625
7626  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
7627  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
7628  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
7629  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
7630  if (Cond.getOpcode() == X86ISD::SETCC &&
7631      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
7632      isZero(Cond.getOperand(1).getOperand(1))) {
7633    SDValue Cmp = Cond.getOperand(1);
7634
7635    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
7636
7637    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
7638        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
7639      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
7640
7641      SDValue CmpOp0 = Cmp.getOperand(0);
7642      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
7643                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
7644
7645      SDValue Res =   // Res = 0 or -1.
7646        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7647                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
7648
7649      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
7650        Res = DAG.getNOT(DL, Res, Res.getValueType());
7651
7652      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
7653      if (N2C == 0 || !N2C->isNullValue())
7654        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
7655      return Res;
7656    }
7657  }
7658
7659  // Look past (and (setcc_carry (cmp ...)), 1).
7660  if (Cond.getOpcode() == ISD::AND &&
7661      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7662    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7663    if (C && C->getAPIntValue() == 1)
7664      Cond = Cond.getOperand(0);
7665  }
7666
7667  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7668  // setting operand in place of the X86ISD::SETCC.
7669  if (Cond.getOpcode() == X86ISD::SETCC ||
7670      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7671    CC = Cond.getOperand(0);
7672
7673    SDValue Cmp = Cond.getOperand(1);
7674    unsigned Opc = Cmp.getOpcode();
7675    EVT VT = Op.getValueType();
7676
7677    bool IllegalFPCMov = false;
7678    if (VT.isFloatingPoint() && !VT.isVector() &&
7679        !isScalarFPTypeInSSEReg(VT))  // FPStack?
7680      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
7681
7682    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
7683        Opc == X86ISD::BT) { // FIXME
7684      Cond = Cmp;
7685      addTest = false;
7686    }
7687  }
7688
7689  if (addTest) {
7690    // Look pass the truncate.
7691    if (Cond.getOpcode() == ISD::TRUNCATE)
7692      Cond = Cond.getOperand(0);
7693
7694    // We know the result of AND is compared against zero. Try to match
7695    // it to BT.
7696    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7697      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
7698      if (NewSetCC.getNode()) {
7699        CC = NewSetCC.getOperand(0);
7700        Cond = NewSetCC.getOperand(1);
7701        addTest = false;
7702      }
7703    }
7704  }
7705
7706  if (addTest) {
7707    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7708    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7709  }
7710
7711  // a <  b ? -1 :  0 -> RES = ~setcc_carry
7712  // a <  b ?  0 : -1 -> RES = setcc_carry
7713  // a >= b ? -1 :  0 -> RES = setcc_carry
7714  // a >= b ?  0 : -1 -> RES = ~setcc_carry
7715  if (Cond.getOpcode() == X86ISD::CMP) {
7716    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
7717
7718    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
7719        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
7720      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
7721                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
7722      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
7723        return DAG.getNOT(DL, Res, Res.getValueType());
7724      return Res;
7725    }
7726  }
7727
7728  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
7729  // condition is true.
7730  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
7731  SDValue Ops[] = { Op2, Op1, CC, Cond };
7732  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
7733}
7734
7735// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
7736// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
7737// from the AND / OR.
7738static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
7739  Opc = Op.getOpcode();
7740  if (Opc != ISD::OR && Opc != ISD::AND)
7741    return false;
7742  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7743          Op.getOperand(0).hasOneUse() &&
7744          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
7745          Op.getOperand(1).hasOneUse());
7746}
7747
7748// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
7749// 1 and that the SETCC node has a single use.
7750static bool isXor1OfSetCC(SDValue Op) {
7751  if (Op.getOpcode() != ISD::XOR)
7752    return false;
7753  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
7754  if (N1C && N1C->getAPIntValue() == 1) {
7755    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
7756      Op.getOperand(0).hasOneUse();
7757  }
7758  return false;
7759}
7760
7761SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
7762  bool addTest = true;
7763  SDValue Chain = Op.getOperand(0);
7764  SDValue Cond  = Op.getOperand(1);
7765  SDValue Dest  = Op.getOperand(2);
7766  DebugLoc dl = Op.getDebugLoc();
7767  SDValue CC;
7768
7769  if (Cond.getOpcode() == ISD::SETCC) {
7770    SDValue NewCond = LowerSETCC(Cond, DAG);
7771    if (NewCond.getNode())
7772      Cond = NewCond;
7773  }
7774#if 0
7775  // FIXME: LowerXALUO doesn't handle these!!
7776  else if (Cond.getOpcode() == X86ISD::ADD  ||
7777           Cond.getOpcode() == X86ISD::SUB  ||
7778           Cond.getOpcode() == X86ISD::SMUL ||
7779           Cond.getOpcode() == X86ISD::UMUL)
7780    Cond = LowerXALUO(Cond, DAG);
7781#endif
7782
7783  // Look pass (and (setcc_carry (cmp ...)), 1).
7784  if (Cond.getOpcode() == ISD::AND &&
7785      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
7786    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
7787    if (C && C->getAPIntValue() == 1)
7788      Cond = Cond.getOperand(0);
7789  }
7790
7791  // If condition flag is set by a X86ISD::CMP, then use it as the condition
7792  // setting operand in place of the X86ISD::SETCC.
7793  if (Cond.getOpcode() == X86ISD::SETCC ||
7794      Cond.getOpcode() == X86ISD::SETCC_CARRY) {
7795    CC = Cond.getOperand(0);
7796
7797    SDValue Cmp = Cond.getOperand(1);
7798    unsigned Opc = Cmp.getOpcode();
7799    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
7800    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
7801      Cond = Cmp;
7802      addTest = false;
7803    } else {
7804      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
7805      default: break;
7806      case X86::COND_O:
7807      case X86::COND_B:
7808        // These can only come from an arithmetic instruction with overflow,
7809        // e.g. SADDO, UADDO.
7810        Cond = Cond.getNode()->getOperand(1);
7811        addTest = false;
7812        break;
7813      }
7814    }
7815  } else {
7816    unsigned CondOpc;
7817    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
7818      SDValue Cmp = Cond.getOperand(0).getOperand(1);
7819      if (CondOpc == ISD::OR) {
7820        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
7821        // two branches instead of an explicit OR instruction with a
7822        // separate test.
7823        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7824            isX86LogicalCmp(Cmp)) {
7825          CC = Cond.getOperand(0).getOperand(0);
7826          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7827                              Chain, Dest, CC, Cmp);
7828          CC = Cond.getOperand(1).getOperand(0);
7829          Cond = Cmp;
7830          addTest = false;
7831        }
7832      } else { // ISD::AND
7833        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
7834        // two branches instead of an explicit AND instruction with a
7835        // separate test. However, we only do this if this block doesn't
7836        // have a fall-through edge, because this requires an explicit
7837        // jmp when the condition is false.
7838        if (Cmp == Cond.getOperand(1).getOperand(1) &&
7839            isX86LogicalCmp(Cmp) &&
7840            Op.getNode()->hasOneUse()) {
7841          X86::CondCode CCode =
7842            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7843          CCode = X86::GetOppositeBranchCondition(CCode);
7844          CC = DAG.getConstant(CCode, MVT::i8);
7845          SDNode *User = *Op.getNode()->use_begin();
7846          // Look for an unconditional branch following this conditional branch.
7847          // We need this because we need to reverse the successors in order
7848          // to implement FCMP_OEQ.
7849          if (User->getOpcode() == ISD::BR) {
7850            SDValue FalseBB = User->getOperand(1);
7851            SDNode *NewBR =
7852              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
7853            assert(NewBR == User);
7854            (void)NewBR;
7855            Dest = FalseBB;
7856
7857            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7858                                Chain, Dest, CC, Cmp);
7859            X86::CondCode CCode =
7860              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
7861            CCode = X86::GetOppositeBranchCondition(CCode);
7862            CC = DAG.getConstant(CCode, MVT::i8);
7863            Cond = Cmp;
7864            addTest = false;
7865          }
7866        }
7867      }
7868    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
7869      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
7870      // It should be transformed during dag combiner except when the condition
7871      // is set by a arithmetics with overflow node.
7872      X86::CondCode CCode =
7873        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
7874      CCode = X86::GetOppositeBranchCondition(CCode);
7875      CC = DAG.getConstant(CCode, MVT::i8);
7876      Cond = Cond.getOperand(0).getOperand(1);
7877      addTest = false;
7878    }
7879  }
7880
7881  if (addTest) {
7882    // Look pass the truncate.
7883    if (Cond.getOpcode() == ISD::TRUNCATE)
7884      Cond = Cond.getOperand(0);
7885
7886    // We know the result of AND is compared against zero. Try to match
7887    // it to BT.
7888    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
7889      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
7890      if (NewSetCC.getNode()) {
7891        CC = NewSetCC.getOperand(0);
7892        Cond = NewSetCC.getOperand(1);
7893        addTest = false;
7894      }
7895    }
7896  }
7897
7898  if (addTest) {
7899    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7900    Cond = EmitTest(Cond, X86::COND_NE, DAG);
7901  }
7902  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
7903                     Chain, Dest, CC, Cond);
7904}
7905
7906
7907// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
7908// Calls to _alloca is needed to probe the stack when allocating more than 4k
7909// bytes in one go. Touching the stack at 4K increments is necessary to ensure
7910// that the guard pages used by the OS virtual memory manager are allocated in
7911// correct sequence.
7912SDValue
7913X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7914                                           SelectionDAG &DAG) const {
7915  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows()) &&
7916         "This should be used only on Windows targets");
7917  DebugLoc dl = Op.getDebugLoc();
7918
7919  // Get the inputs.
7920  SDValue Chain = Op.getOperand(0);
7921  SDValue Size  = Op.getOperand(1);
7922  // FIXME: Ensure alignment here
7923
7924  SDValue Flag;
7925
7926  EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
7927
7928  Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
7929  Flag = Chain.getValue(1);
7930
7931  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7932
7933  Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
7934  Flag = Chain.getValue(1);
7935
7936  Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
7937
7938  SDValue Ops1[2] = { Chain.getValue(0), Chain };
7939  return DAG.getMergeValues(Ops1, 2, dl);
7940}
7941
7942SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
7943  MachineFunction &MF = DAG.getMachineFunction();
7944  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
7945
7946  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
7947  DebugLoc DL = Op.getDebugLoc();
7948
7949  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
7950    // vastart just stores the address of the VarArgsFrameIndex slot into the
7951    // memory location argument.
7952    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7953                                   getPointerTy());
7954    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
7955                        MachinePointerInfo(SV), false, false, 0);
7956  }
7957
7958  // __va_list_tag:
7959  //   gp_offset         (0 - 6 * 8)
7960  //   fp_offset         (48 - 48 + 8 * 16)
7961  //   overflow_arg_area (point to parameters coming in memory).
7962  //   reg_save_area
7963  SmallVector<SDValue, 8> MemOps;
7964  SDValue FIN = Op.getOperand(1);
7965  // Store gp_offset
7966  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
7967                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
7968                                               MVT::i32),
7969                               FIN, MachinePointerInfo(SV), false, false, 0);
7970  MemOps.push_back(Store);
7971
7972  // Store fp_offset
7973  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7974                    FIN, DAG.getIntPtrConstant(4));
7975  Store = DAG.getStore(Op.getOperand(0), DL,
7976                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
7977                                       MVT::i32),
7978                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
7979  MemOps.push_back(Store);
7980
7981  // Store ptr to overflow_arg_area
7982  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7983                    FIN, DAG.getIntPtrConstant(4));
7984  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
7985                                    getPointerTy());
7986  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
7987                       MachinePointerInfo(SV, 8),
7988                       false, false, 0);
7989  MemOps.push_back(Store);
7990
7991  // Store ptr to reg_save_area.
7992  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7993                    FIN, DAG.getIntPtrConstant(8));
7994  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
7995                                    getPointerTy());
7996  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
7997                       MachinePointerInfo(SV, 16), false, false, 0);
7998  MemOps.push_back(Store);
7999  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
8000                     &MemOps[0], MemOps.size());
8001}
8002
8003SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
8004  assert(Subtarget->is64Bit() &&
8005         "LowerVAARG only handles 64-bit va_arg!");
8006  assert((Subtarget->isTargetLinux() ||
8007          Subtarget->isTargetDarwin()) &&
8008          "Unhandled target in LowerVAARG");
8009  assert(Op.getNode()->getNumOperands() == 4);
8010  SDValue Chain = Op.getOperand(0);
8011  SDValue SrcPtr = Op.getOperand(1);
8012  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8013  unsigned Align = Op.getConstantOperandVal(3);
8014  DebugLoc dl = Op.getDebugLoc();
8015
8016  EVT ArgVT = Op.getNode()->getValueType(0);
8017  const Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8018  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
8019  uint8_t ArgMode;
8020
8021  // Decide which area this value should be read from.
8022  // TODO: Implement the AMD64 ABI in its entirety. This simple
8023  // selection mechanism works only for the basic types.
8024  if (ArgVT == MVT::f80) {
8025    llvm_unreachable("va_arg for f80 not yet implemented");
8026  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
8027    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
8028  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
8029    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
8030  } else {
8031    llvm_unreachable("Unhandled argument type in LowerVAARG");
8032  }
8033
8034  if (ArgMode == 2) {
8035    // Sanity Check: Make sure using fp_offset makes sense.
8036    assert(!UseSoftFloat &&
8037           !(DAG.getMachineFunction()
8038                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
8039           Subtarget->hasXMM());
8040  }
8041
8042  // Insert VAARG_64 node into the DAG
8043  // VAARG_64 returns two values: Variable Argument Address, Chain
8044  SmallVector<SDValue, 11> InstOps;
8045  InstOps.push_back(Chain);
8046  InstOps.push_back(SrcPtr);
8047  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
8048  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
8049  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
8050  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
8051  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
8052                                          VTs, &InstOps[0], InstOps.size(),
8053                                          MVT::i64,
8054                                          MachinePointerInfo(SV),
8055                                          /*Align=*/0,
8056                                          /*Volatile=*/false,
8057                                          /*ReadMem=*/true,
8058                                          /*WriteMem=*/true);
8059  Chain = VAARG.getValue(1);
8060
8061  // Load the next argument and return it
8062  return DAG.getLoad(ArgVT, dl,
8063                     Chain,
8064                     VAARG,
8065                     MachinePointerInfo(),
8066                     false, false, 0);
8067}
8068
8069SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
8070  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
8071  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
8072  SDValue Chain = Op.getOperand(0);
8073  SDValue DstPtr = Op.getOperand(1);
8074  SDValue SrcPtr = Op.getOperand(2);
8075  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
8076  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8077  DebugLoc DL = Op.getDebugLoc();
8078
8079  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
8080                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
8081                       false,
8082                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
8083}
8084
8085SDValue
8086X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
8087  DebugLoc dl = Op.getDebugLoc();
8088  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8089  switch (IntNo) {
8090  default: return SDValue();    // Don't custom lower most intrinsics.
8091  // Comparison intrinsics.
8092  case Intrinsic::x86_sse_comieq_ss:
8093  case Intrinsic::x86_sse_comilt_ss:
8094  case Intrinsic::x86_sse_comile_ss:
8095  case Intrinsic::x86_sse_comigt_ss:
8096  case Intrinsic::x86_sse_comige_ss:
8097  case Intrinsic::x86_sse_comineq_ss:
8098  case Intrinsic::x86_sse_ucomieq_ss:
8099  case Intrinsic::x86_sse_ucomilt_ss:
8100  case Intrinsic::x86_sse_ucomile_ss:
8101  case Intrinsic::x86_sse_ucomigt_ss:
8102  case Intrinsic::x86_sse_ucomige_ss:
8103  case Intrinsic::x86_sse_ucomineq_ss:
8104  case Intrinsic::x86_sse2_comieq_sd:
8105  case Intrinsic::x86_sse2_comilt_sd:
8106  case Intrinsic::x86_sse2_comile_sd:
8107  case Intrinsic::x86_sse2_comigt_sd:
8108  case Intrinsic::x86_sse2_comige_sd:
8109  case Intrinsic::x86_sse2_comineq_sd:
8110  case Intrinsic::x86_sse2_ucomieq_sd:
8111  case Intrinsic::x86_sse2_ucomilt_sd:
8112  case Intrinsic::x86_sse2_ucomile_sd:
8113  case Intrinsic::x86_sse2_ucomigt_sd:
8114  case Intrinsic::x86_sse2_ucomige_sd:
8115  case Intrinsic::x86_sse2_ucomineq_sd: {
8116    unsigned Opc = 0;
8117    ISD::CondCode CC = ISD::SETCC_INVALID;
8118    switch (IntNo) {
8119    default: break;
8120    case Intrinsic::x86_sse_comieq_ss:
8121    case Intrinsic::x86_sse2_comieq_sd:
8122      Opc = X86ISD::COMI;
8123      CC = ISD::SETEQ;
8124      break;
8125    case Intrinsic::x86_sse_comilt_ss:
8126    case Intrinsic::x86_sse2_comilt_sd:
8127      Opc = X86ISD::COMI;
8128      CC = ISD::SETLT;
8129      break;
8130    case Intrinsic::x86_sse_comile_ss:
8131    case Intrinsic::x86_sse2_comile_sd:
8132      Opc = X86ISD::COMI;
8133      CC = ISD::SETLE;
8134      break;
8135    case Intrinsic::x86_sse_comigt_ss:
8136    case Intrinsic::x86_sse2_comigt_sd:
8137      Opc = X86ISD::COMI;
8138      CC = ISD::SETGT;
8139      break;
8140    case Intrinsic::x86_sse_comige_ss:
8141    case Intrinsic::x86_sse2_comige_sd:
8142      Opc = X86ISD::COMI;
8143      CC = ISD::SETGE;
8144      break;
8145    case Intrinsic::x86_sse_comineq_ss:
8146    case Intrinsic::x86_sse2_comineq_sd:
8147      Opc = X86ISD::COMI;
8148      CC = ISD::SETNE;
8149      break;
8150    case Intrinsic::x86_sse_ucomieq_ss:
8151    case Intrinsic::x86_sse2_ucomieq_sd:
8152      Opc = X86ISD::UCOMI;
8153      CC = ISD::SETEQ;
8154      break;
8155    case Intrinsic::x86_sse_ucomilt_ss:
8156    case Intrinsic::x86_sse2_ucomilt_sd:
8157      Opc = X86ISD::UCOMI;
8158      CC = ISD::SETLT;
8159      break;
8160    case Intrinsic::x86_sse_ucomile_ss:
8161    case Intrinsic::x86_sse2_ucomile_sd:
8162      Opc = X86ISD::UCOMI;
8163      CC = ISD::SETLE;
8164      break;
8165    case Intrinsic::x86_sse_ucomigt_ss:
8166    case Intrinsic::x86_sse2_ucomigt_sd:
8167      Opc = X86ISD::UCOMI;
8168      CC = ISD::SETGT;
8169      break;
8170    case Intrinsic::x86_sse_ucomige_ss:
8171    case Intrinsic::x86_sse2_ucomige_sd:
8172      Opc = X86ISD::UCOMI;
8173      CC = ISD::SETGE;
8174      break;
8175    case Intrinsic::x86_sse_ucomineq_ss:
8176    case Intrinsic::x86_sse2_ucomineq_sd:
8177      Opc = X86ISD::UCOMI;
8178      CC = ISD::SETNE;
8179      break;
8180    }
8181
8182    SDValue LHS = Op.getOperand(1);
8183    SDValue RHS = Op.getOperand(2);
8184    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
8185    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
8186    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
8187    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8188                                DAG.getConstant(X86CC, MVT::i8), Cond);
8189    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8190  }
8191  // ptest and testp intrinsics. The intrinsic these come from are designed to
8192  // return an integer value, not just an instruction so lower it to the ptest
8193  // or testp pattern and a setcc for the result.
8194  case Intrinsic::x86_sse41_ptestz:
8195  case Intrinsic::x86_sse41_ptestc:
8196  case Intrinsic::x86_sse41_ptestnzc:
8197  case Intrinsic::x86_avx_ptestz_256:
8198  case Intrinsic::x86_avx_ptestc_256:
8199  case Intrinsic::x86_avx_ptestnzc_256:
8200  case Intrinsic::x86_avx_vtestz_ps:
8201  case Intrinsic::x86_avx_vtestc_ps:
8202  case Intrinsic::x86_avx_vtestnzc_ps:
8203  case Intrinsic::x86_avx_vtestz_pd:
8204  case Intrinsic::x86_avx_vtestc_pd:
8205  case Intrinsic::x86_avx_vtestnzc_pd:
8206  case Intrinsic::x86_avx_vtestz_ps_256:
8207  case Intrinsic::x86_avx_vtestc_ps_256:
8208  case Intrinsic::x86_avx_vtestnzc_ps_256:
8209  case Intrinsic::x86_avx_vtestz_pd_256:
8210  case Intrinsic::x86_avx_vtestc_pd_256:
8211  case Intrinsic::x86_avx_vtestnzc_pd_256: {
8212    bool IsTestPacked = false;
8213    unsigned X86CC = 0;
8214    switch (IntNo) {
8215    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
8216    case Intrinsic::x86_avx_vtestz_ps:
8217    case Intrinsic::x86_avx_vtestz_pd:
8218    case Intrinsic::x86_avx_vtestz_ps_256:
8219    case Intrinsic::x86_avx_vtestz_pd_256:
8220      IsTestPacked = true; // Fallthrough
8221    case Intrinsic::x86_sse41_ptestz:
8222    case Intrinsic::x86_avx_ptestz_256:
8223      // ZF = 1
8224      X86CC = X86::COND_E;
8225      break;
8226    case Intrinsic::x86_avx_vtestc_ps:
8227    case Intrinsic::x86_avx_vtestc_pd:
8228    case Intrinsic::x86_avx_vtestc_ps_256:
8229    case Intrinsic::x86_avx_vtestc_pd_256:
8230      IsTestPacked = true; // Fallthrough
8231    case Intrinsic::x86_sse41_ptestc:
8232    case Intrinsic::x86_avx_ptestc_256:
8233      // CF = 1
8234      X86CC = X86::COND_B;
8235      break;
8236    case Intrinsic::x86_avx_vtestnzc_ps:
8237    case Intrinsic::x86_avx_vtestnzc_pd:
8238    case Intrinsic::x86_avx_vtestnzc_ps_256:
8239    case Intrinsic::x86_avx_vtestnzc_pd_256:
8240      IsTestPacked = true; // Fallthrough
8241    case Intrinsic::x86_sse41_ptestnzc:
8242    case Intrinsic::x86_avx_ptestnzc_256:
8243      // ZF and CF = 0
8244      X86CC = X86::COND_A;
8245      break;
8246    }
8247
8248    SDValue LHS = Op.getOperand(1);
8249    SDValue RHS = Op.getOperand(2);
8250    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
8251    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
8252    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
8253    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
8254    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
8255  }
8256
8257  // Fix vector shift instructions where the last operand is a non-immediate
8258  // i32 value.
8259  case Intrinsic::x86_sse2_pslli_w:
8260  case Intrinsic::x86_sse2_pslli_d:
8261  case Intrinsic::x86_sse2_pslli_q:
8262  case Intrinsic::x86_sse2_psrli_w:
8263  case Intrinsic::x86_sse2_psrli_d:
8264  case Intrinsic::x86_sse2_psrli_q:
8265  case Intrinsic::x86_sse2_psrai_w:
8266  case Intrinsic::x86_sse2_psrai_d:
8267  case Intrinsic::x86_mmx_pslli_w:
8268  case Intrinsic::x86_mmx_pslli_d:
8269  case Intrinsic::x86_mmx_pslli_q:
8270  case Intrinsic::x86_mmx_psrli_w:
8271  case Intrinsic::x86_mmx_psrli_d:
8272  case Intrinsic::x86_mmx_psrli_q:
8273  case Intrinsic::x86_mmx_psrai_w:
8274  case Intrinsic::x86_mmx_psrai_d: {
8275    SDValue ShAmt = Op.getOperand(2);
8276    if (isa<ConstantSDNode>(ShAmt))
8277      return SDValue();
8278
8279    unsigned NewIntNo = 0;
8280    EVT ShAmtVT = MVT::v4i32;
8281    switch (IntNo) {
8282    case Intrinsic::x86_sse2_pslli_w:
8283      NewIntNo = Intrinsic::x86_sse2_psll_w;
8284      break;
8285    case Intrinsic::x86_sse2_pslli_d:
8286      NewIntNo = Intrinsic::x86_sse2_psll_d;
8287      break;
8288    case Intrinsic::x86_sse2_pslli_q:
8289      NewIntNo = Intrinsic::x86_sse2_psll_q;
8290      break;
8291    case Intrinsic::x86_sse2_psrli_w:
8292      NewIntNo = Intrinsic::x86_sse2_psrl_w;
8293      break;
8294    case Intrinsic::x86_sse2_psrli_d:
8295      NewIntNo = Intrinsic::x86_sse2_psrl_d;
8296      break;
8297    case Intrinsic::x86_sse2_psrli_q:
8298      NewIntNo = Intrinsic::x86_sse2_psrl_q;
8299      break;
8300    case Intrinsic::x86_sse2_psrai_w:
8301      NewIntNo = Intrinsic::x86_sse2_psra_w;
8302      break;
8303    case Intrinsic::x86_sse2_psrai_d:
8304      NewIntNo = Intrinsic::x86_sse2_psra_d;
8305      break;
8306    default: {
8307      ShAmtVT = MVT::v2i32;
8308      switch (IntNo) {
8309      case Intrinsic::x86_mmx_pslli_w:
8310        NewIntNo = Intrinsic::x86_mmx_psll_w;
8311        break;
8312      case Intrinsic::x86_mmx_pslli_d:
8313        NewIntNo = Intrinsic::x86_mmx_psll_d;
8314        break;
8315      case Intrinsic::x86_mmx_pslli_q:
8316        NewIntNo = Intrinsic::x86_mmx_psll_q;
8317        break;
8318      case Intrinsic::x86_mmx_psrli_w:
8319        NewIntNo = Intrinsic::x86_mmx_psrl_w;
8320        break;
8321      case Intrinsic::x86_mmx_psrli_d:
8322        NewIntNo = Intrinsic::x86_mmx_psrl_d;
8323        break;
8324      case Intrinsic::x86_mmx_psrli_q:
8325        NewIntNo = Intrinsic::x86_mmx_psrl_q;
8326        break;
8327      case Intrinsic::x86_mmx_psrai_w:
8328        NewIntNo = Intrinsic::x86_mmx_psra_w;
8329        break;
8330      case Intrinsic::x86_mmx_psrai_d:
8331        NewIntNo = Intrinsic::x86_mmx_psra_d;
8332        break;
8333      default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
8334      }
8335      break;
8336    }
8337    }
8338
8339    // The vector shift intrinsics with scalars uses 32b shift amounts but
8340    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
8341    // to be zero.
8342    SDValue ShOps[4];
8343    ShOps[0] = ShAmt;
8344    ShOps[1] = DAG.getConstant(0, MVT::i32);
8345    if (ShAmtVT == MVT::v4i32) {
8346      ShOps[2] = DAG.getUNDEF(MVT::i32);
8347      ShOps[3] = DAG.getUNDEF(MVT::i32);
8348      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
8349    } else {
8350      ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
8351// FIXME this must be lowered to get rid of the invalid type.
8352    }
8353
8354    EVT VT = Op.getValueType();
8355    ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
8356    return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8357                       DAG.getConstant(NewIntNo, MVT::i32),
8358                       Op.getOperand(1), ShAmt);
8359  }
8360  }
8361}
8362
8363SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
8364                                           SelectionDAG &DAG) const {
8365  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8366  MFI->setReturnAddressIsTaken(true);
8367
8368  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8369  DebugLoc dl = Op.getDebugLoc();
8370
8371  if (Depth > 0) {
8372    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
8373    SDValue Offset =
8374      DAG.getConstant(TD->getPointerSize(),
8375                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8376    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8377                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
8378                                   FrameAddr, Offset),
8379                       MachinePointerInfo(), false, false, 0);
8380  }
8381
8382  // Just load the return address.
8383  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
8384  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
8385                     RetAddrFI, MachinePointerInfo(), false, false, 0);
8386}
8387
8388SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
8389  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
8390  MFI->setFrameAddressIsTaken(true);
8391
8392  EVT VT = Op.getValueType();
8393  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
8394  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8395  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
8396  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
8397  while (Depth--)
8398    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
8399                            MachinePointerInfo(),
8400                            false, false, 0);
8401  return FrameAddr;
8402}
8403
8404SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
8405                                                     SelectionDAG &DAG) const {
8406  return DAG.getIntPtrConstant(2*TD->getPointerSize());
8407}
8408
8409SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
8410  MachineFunction &MF = DAG.getMachineFunction();
8411  SDValue Chain     = Op.getOperand(0);
8412  SDValue Offset    = Op.getOperand(1);
8413  SDValue Handler   = Op.getOperand(2);
8414  DebugLoc dl       = Op.getDebugLoc();
8415
8416  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
8417                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
8418                                     getPointerTy());
8419  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
8420
8421  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
8422                                  DAG.getIntPtrConstant(TD->getPointerSize()));
8423  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
8424  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
8425                       false, false, 0);
8426  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
8427  MF.getRegInfo().addLiveOut(StoreAddrReg);
8428
8429  return DAG.getNode(X86ISD::EH_RETURN, dl,
8430                     MVT::Other,
8431                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
8432}
8433
8434SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
8435                                             SelectionDAG &DAG) const {
8436  SDValue Root = Op.getOperand(0);
8437  SDValue Trmp = Op.getOperand(1); // trampoline
8438  SDValue FPtr = Op.getOperand(2); // nested function
8439  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
8440  DebugLoc dl  = Op.getDebugLoc();
8441
8442  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
8443
8444  if (Subtarget->is64Bit()) {
8445    SDValue OutChains[6];
8446
8447    // Large code-model.
8448    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
8449    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
8450
8451    const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
8452    const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
8453
8454    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
8455
8456    // Load the pointer to the nested function into R11.
8457    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
8458    SDValue Addr = Trmp;
8459    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8460                                Addr, MachinePointerInfo(TrmpAddr),
8461                                false, false, 0);
8462
8463    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8464                       DAG.getConstant(2, MVT::i64));
8465    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
8466                                MachinePointerInfo(TrmpAddr, 2),
8467                                false, false, 2);
8468
8469    // Load the 'nest' parameter value into R10.
8470    // R10 is specified in X86CallingConv.td
8471    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
8472    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8473                       DAG.getConstant(10, MVT::i64));
8474    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8475                                Addr, MachinePointerInfo(TrmpAddr, 10),
8476                                false, false, 0);
8477
8478    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8479                       DAG.getConstant(12, MVT::i64));
8480    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
8481                                MachinePointerInfo(TrmpAddr, 12),
8482                                false, false, 2);
8483
8484    // Jump to the nested function.
8485    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
8486    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8487                       DAG.getConstant(20, MVT::i64));
8488    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
8489                                Addr, MachinePointerInfo(TrmpAddr, 20),
8490                                false, false, 0);
8491
8492    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
8493    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
8494                       DAG.getConstant(22, MVT::i64));
8495    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
8496                                MachinePointerInfo(TrmpAddr, 22),
8497                                false, false, 0);
8498
8499    SDValue Ops[] =
8500      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
8501    return DAG.getMergeValues(Ops, 2, dl);
8502  } else {
8503    const Function *Func =
8504      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
8505    CallingConv::ID CC = Func->getCallingConv();
8506    unsigned NestReg;
8507
8508    switch (CC) {
8509    default:
8510      llvm_unreachable("Unsupported calling convention");
8511    case CallingConv::C:
8512    case CallingConv::X86_StdCall: {
8513      // Pass 'nest' parameter in ECX.
8514      // Must be kept in sync with X86CallingConv.td
8515      NestReg = X86::ECX;
8516
8517      // Check that ECX wasn't needed by an 'inreg' parameter.
8518      const FunctionType *FTy = Func->getFunctionType();
8519      const AttrListPtr &Attrs = Func->getAttributes();
8520
8521      if (!Attrs.isEmpty() && !Func->isVarArg()) {
8522        unsigned InRegCount = 0;
8523        unsigned Idx = 1;
8524
8525        for (FunctionType::param_iterator I = FTy->param_begin(),
8526             E = FTy->param_end(); I != E; ++I, ++Idx)
8527          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
8528            // FIXME: should only count parameters that are lowered to integers.
8529            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
8530
8531        if (InRegCount > 2) {
8532          report_fatal_error("Nest register in use - reduce number of inreg"
8533                             " parameters!");
8534        }
8535      }
8536      break;
8537    }
8538    case CallingConv::X86_FastCall:
8539    case CallingConv::X86_ThisCall:
8540    case CallingConv::Fast:
8541      // Pass 'nest' parameter in EAX.
8542      // Must be kept in sync with X86CallingConv.td
8543      NestReg = X86::EAX;
8544      break;
8545    }
8546
8547    SDValue OutChains[4];
8548    SDValue Addr, Disp;
8549
8550    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8551                       DAG.getConstant(10, MVT::i32));
8552    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
8553
8554    // This is storing the opcode for MOV32ri.
8555    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
8556    const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
8557    OutChains[0] = DAG.getStore(Root, dl,
8558                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
8559                                Trmp, MachinePointerInfo(TrmpAddr),
8560                                false, false, 0);
8561
8562    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8563                       DAG.getConstant(1, MVT::i32));
8564    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
8565                                MachinePointerInfo(TrmpAddr, 1),
8566                                false, false, 1);
8567
8568    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
8569    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8570                       DAG.getConstant(5, MVT::i32));
8571    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
8572                                MachinePointerInfo(TrmpAddr, 5),
8573                                false, false, 1);
8574
8575    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
8576                       DAG.getConstant(6, MVT::i32));
8577    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
8578                                MachinePointerInfo(TrmpAddr, 6),
8579                                false, false, 1);
8580
8581    SDValue Ops[] =
8582      { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
8583    return DAG.getMergeValues(Ops, 2, dl);
8584  }
8585}
8586
8587SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8588                                            SelectionDAG &DAG) const {
8589  /*
8590   The rounding mode is in bits 11:10 of FPSR, and has the following
8591   settings:
8592     00 Round to nearest
8593     01 Round to -inf
8594     10 Round to +inf
8595     11 Round to 0
8596
8597  FLT_ROUNDS, on the other hand, expects the following:
8598    -1 Undefined
8599     0 Round to 0
8600     1 Round to nearest
8601     2 Round to +inf
8602     3 Round to -inf
8603
8604  To perform the conversion, we do:
8605    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
8606  */
8607
8608  MachineFunction &MF = DAG.getMachineFunction();
8609  const TargetMachine &TM = MF.getTarget();
8610  const TargetFrameLowering &TFI = *TM.getFrameLowering();
8611  unsigned StackAlignment = TFI.getStackAlignment();
8612  EVT VT = Op.getValueType();
8613  DebugLoc DL = Op.getDebugLoc();
8614
8615  // Save FP Control Word to stack slot
8616  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
8617  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8618
8619
8620  MachineMemOperand *MMO =
8621   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8622                           MachineMemOperand::MOStore, 2, 2);
8623
8624  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
8625  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
8626                                          DAG.getVTList(MVT::Other),
8627                                          Ops, 2, MVT::i16, MMO);
8628
8629  // Load FP Control Word from stack slot
8630  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
8631                            MachinePointerInfo(), false, false, 0);
8632
8633  // Transform as necessary
8634  SDValue CWD1 =
8635    DAG.getNode(ISD::SRL, DL, MVT::i16,
8636                DAG.getNode(ISD::AND, DL, MVT::i16,
8637                            CWD, DAG.getConstant(0x800, MVT::i16)),
8638                DAG.getConstant(11, MVT::i8));
8639  SDValue CWD2 =
8640    DAG.getNode(ISD::SRL, DL, MVT::i16,
8641                DAG.getNode(ISD::AND, DL, MVT::i16,
8642                            CWD, DAG.getConstant(0x400, MVT::i16)),
8643                DAG.getConstant(9, MVT::i8));
8644
8645  SDValue RetVal =
8646    DAG.getNode(ISD::AND, DL, MVT::i16,
8647                DAG.getNode(ISD::ADD, DL, MVT::i16,
8648                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
8649                            DAG.getConstant(1, MVT::i16)),
8650                DAG.getConstant(3, MVT::i16));
8651
8652
8653  return DAG.getNode((VT.getSizeInBits() < 16 ?
8654                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
8655}
8656
8657SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
8658  EVT VT = Op.getValueType();
8659  EVT OpVT = VT;
8660  unsigned NumBits = VT.getSizeInBits();
8661  DebugLoc dl = Op.getDebugLoc();
8662
8663  Op = Op.getOperand(0);
8664  if (VT == MVT::i8) {
8665    // Zero extend to i32 since there is not an i8 bsr.
8666    OpVT = MVT::i32;
8667    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8668  }
8669
8670  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
8671  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8672  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
8673
8674  // If src is zero (i.e. bsr sets ZF), returns NumBits.
8675  SDValue Ops[] = {
8676    Op,
8677    DAG.getConstant(NumBits+NumBits-1, OpVT),
8678    DAG.getConstant(X86::COND_E, MVT::i8),
8679    Op.getValue(1)
8680  };
8681  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8682
8683  // Finally xor with NumBits-1.
8684  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
8685
8686  if (VT == MVT::i8)
8687    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8688  return Op;
8689}
8690
8691SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
8692  EVT VT = Op.getValueType();
8693  EVT OpVT = VT;
8694  unsigned NumBits = VT.getSizeInBits();
8695  DebugLoc dl = Op.getDebugLoc();
8696
8697  Op = Op.getOperand(0);
8698  if (VT == MVT::i8) {
8699    OpVT = MVT::i32;
8700    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
8701  }
8702
8703  // Issue a bsf (scan bits forward) which also sets EFLAGS.
8704  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
8705  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
8706
8707  // If src is zero (i.e. bsf sets ZF), returns NumBits.
8708  SDValue Ops[] = {
8709    Op,
8710    DAG.getConstant(NumBits, OpVT),
8711    DAG.getConstant(X86::COND_E, MVT::i8),
8712    Op.getValue(1)
8713  };
8714  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
8715
8716  if (VT == MVT::i8)
8717    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
8718  return Op;
8719}
8720
8721SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
8722  EVT VT = Op.getValueType();
8723  assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
8724  DebugLoc dl = Op.getDebugLoc();
8725
8726  //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
8727  //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
8728  //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
8729  //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
8730  //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
8731  //
8732  //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
8733  //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
8734  //  return AloBlo + AloBhi + AhiBlo;
8735
8736  SDValue A = Op.getOperand(0);
8737  SDValue B = Op.getOperand(1);
8738
8739  SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8740                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8741                       A, DAG.getConstant(32, MVT::i32));
8742  SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8743                       DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
8744                       B, DAG.getConstant(32, MVT::i32));
8745  SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8746                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8747                       A, B);
8748  SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8749                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8750                       A, Bhi);
8751  SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8752                       DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
8753                       Ahi, B);
8754  AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8755                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8756                       AloBhi, DAG.getConstant(32, MVT::i32));
8757  AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8758                       DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
8759                       AhiBlo, DAG.getConstant(32, MVT::i32));
8760  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
8761  Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
8762  return Res;
8763}
8764
8765SDValue X86TargetLowering::LowerSHL(SDValue Op, SelectionDAG &DAG) const {
8766  EVT VT = Op.getValueType();
8767  DebugLoc dl = Op.getDebugLoc();
8768  SDValue R = Op.getOperand(0);
8769
8770  LLVMContext *Context = DAG.getContext();
8771
8772  assert(Subtarget->hasSSE41() && "Cannot lower SHL without SSE4.1 or later");
8773
8774  if (VT == MVT::v4i32) {
8775    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8776                     DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
8777                     Op.getOperand(1), DAG.getConstant(23, MVT::i32));
8778
8779    ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
8780
8781    std::vector<Constant*> CV(4, CI);
8782    Constant *C = ConstantVector::get(CV);
8783    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8784    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8785                                 MachinePointerInfo::getConstantPool(),
8786                                 false, false, 16);
8787
8788    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
8789    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
8790    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
8791    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
8792  }
8793  if (VT == MVT::v16i8) {
8794    // a = a << 5;
8795    Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8796                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
8797                     Op.getOperand(1), DAG.getConstant(5, MVT::i32));
8798
8799    ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
8800    ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
8801
8802    std::vector<Constant*> CVM1(16, CM1);
8803    std::vector<Constant*> CVM2(16, CM2);
8804    Constant *C = ConstantVector::get(CVM1);
8805    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8806    SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8807                            MachinePointerInfo::getConstantPool(),
8808                            false, false, 16);
8809
8810    // r = pblendv(r, psllw(r & (char16)15, 4), a);
8811    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8812    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8813                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8814                    DAG.getConstant(4, MVT::i32));
8815    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8816    // a += a
8817    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8818
8819    C = ConstantVector::get(CVM2);
8820    CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8821    M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8822                    MachinePointerInfo::getConstantPool(),
8823                    false, false, 16);
8824
8825    // r = pblendv(r, psllw(r & (char16)63, 2), a);
8826    M = DAG.getNode(ISD::AND, dl, VT, R, M);
8827    M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
8828                    DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
8829                    DAG.getConstant(2, MVT::i32));
8830    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT, R, M, Op);
8831    // a += a
8832    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
8833
8834    // return pblendv(r, r+r, a);
8835    R = DAG.getNode(X86ISD::PBLENDVB, dl, VT,
8836                    R, DAG.getNode(ISD::ADD, dl, VT, R, R), Op);
8837    return R;
8838  }
8839  return SDValue();
8840}
8841
8842SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
8843  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
8844  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
8845  // looks for this combo and may remove the "setcc" instruction if the "setcc"
8846  // has only one use.
8847  SDNode *N = Op.getNode();
8848  SDValue LHS = N->getOperand(0);
8849  SDValue RHS = N->getOperand(1);
8850  unsigned BaseOp = 0;
8851  unsigned Cond = 0;
8852  DebugLoc DL = Op.getDebugLoc();
8853  switch (Op.getOpcode()) {
8854  default: llvm_unreachable("Unknown ovf instruction!");
8855  case ISD::SADDO:
8856    // A subtract of one will be selected as a INC. Note that INC doesn't
8857    // set CF, so we can't do this for UADDO.
8858    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8859      if (C->getAPIntValue() == 1) {
8860        BaseOp = X86ISD::INC;
8861        Cond = X86::COND_O;
8862        break;
8863      }
8864    BaseOp = X86ISD::ADD;
8865    Cond = X86::COND_O;
8866    break;
8867  case ISD::UADDO:
8868    BaseOp = X86ISD::ADD;
8869    Cond = X86::COND_B;
8870    break;
8871  case ISD::SSUBO:
8872    // A subtract of one will be selected as a DEC. Note that DEC doesn't
8873    // set CF, so we can't do this for USUBO.
8874    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
8875      if (C->getAPIntValue() == 1) {
8876        BaseOp = X86ISD::DEC;
8877        Cond = X86::COND_O;
8878        break;
8879      }
8880    BaseOp = X86ISD::SUB;
8881    Cond = X86::COND_O;
8882    break;
8883  case ISD::USUBO:
8884    BaseOp = X86ISD::SUB;
8885    Cond = X86::COND_B;
8886    break;
8887  case ISD::SMULO:
8888    BaseOp = X86ISD::SMUL;
8889    Cond = X86::COND_O;
8890    break;
8891  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
8892    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
8893                                 MVT::i32);
8894    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
8895
8896    SDValue SetCC =
8897      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
8898                  DAG.getConstant(X86::COND_O, MVT::i32),
8899                  SDValue(Sum.getNode(), 2));
8900
8901    DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8902    return Sum;
8903  }
8904  }
8905
8906  // Also sets EFLAGS.
8907  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
8908  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
8909
8910  SDValue SetCC =
8911    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
8912                DAG.getConstant(Cond, MVT::i32),
8913                SDValue(Sum.getNode(), 1));
8914
8915  DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
8916  return Sum;
8917}
8918
8919SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
8920  DebugLoc dl = Op.getDebugLoc();
8921
8922  if (!Subtarget->hasSSE2()) {
8923    SDValue Chain = Op.getOperand(0);
8924    SDValue Zero = DAG.getConstant(0,
8925                                   Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
8926    SDValue Ops[] = {
8927      DAG.getRegister(X86::ESP, MVT::i32), // Base
8928      DAG.getTargetConstant(1, MVT::i8),   // Scale
8929      DAG.getRegister(0, MVT::i32),        // Index
8930      DAG.getTargetConstant(0, MVT::i32),  // Disp
8931      DAG.getRegister(0, MVT::i32),        // Segment.
8932      Zero,
8933      Chain
8934    };
8935    SDNode *Res =
8936      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
8937                          array_lengthof(Ops));
8938    return SDValue(Res, 0);
8939  }
8940
8941  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
8942  if (!isDev)
8943    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
8944
8945  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8946  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8947  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
8948  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
8949
8950  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
8951  if (!Op1 && !Op2 && !Op3 && Op4)
8952    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
8953
8954  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
8955  if (Op1 && !Op2 && !Op3 && !Op4)
8956    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
8957
8958  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
8959  //           (MFENCE)>;
8960  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
8961}
8962
8963SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
8964  EVT T = Op.getValueType();
8965  DebugLoc DL = Op.getDebugLoc();
8966  unsigned Reg = 0;
8967  unsigned size = 0;
8968  switch(T.getSimpleVT().SimpleTy) {
8969  default:
8970    assert(false && "Invalid value type!");
8971  case MVT::i8:  Reg = X86::AL;  size = 1; break;
8972  case MVT::i16: Reg = X86::AX;  size = 2; break;
8973  case MVT::i32: Reg = X86::EAX; size = 4; break;
8974  case MVT::i64:
8975    assert(Subtarget->is64Bit() && "Node not type legal!");
8976    Reg = X86::RAX; size = 8;
8977    break;
8978  }
8979  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
8980                                    Op.getOperand(2), SDValue());
8981  SDValue Ops[] = { cpIn.getValue(0),
8982                    Op.getOperand(1),
8983                    Op.getOperand(3),
8984                    DAG.getTargetConstant(size, MVT::i8),
8985                    cpIn.getValue(1) };
8986  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8987  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
8988  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
8989                                           Ops, 5, T, MMO);
8990  SDValue cpOut =
8991    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
8992  return cpOut;
8993}
8994
8995SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
8996                                                 SelectionDAG &DAG) const {
8997  assert(Subtarget->is64Bit() && "Result not type legalized?");
8998  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
8999  SDValue TheChain = Op.getOperand(0);
9000  DebugLoc dl = Op.getDebugLoc();
9001  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9002  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
9003  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
9004                                   rax.getValue(2));
9005  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
9006                            DAG.getConstant(32, MVT::i8));
9007  SDValue Ops[] = {
9008    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
9009    rdx.getValue(1)
9010  };
9011  return DAG.getMergeValues(Ops, 2, dl);
9012}
9013
9014SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
9015                                            SelectionDAG &DAG) const {
9016  EVT SrcVT = Op.getOperand(0).getValueType();
9017  EVT DstVT = Op.getValueType();
9018  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
9019         Subtarget->hasMMX() && "Unexpected custom BITCAST");
9020  assert((DstVT == MVT::i64 ||
9021          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
9022         "Unexpected custom BITCAST");
9023  // i64 <=> MMX conversions are Legal.
9024  if (SrcVT==MVT::i64 && DstVT.isVector())
9025    return Op;
9026  if (DstVT==MVT::i64 && SrcVT.isVector())
9027    return Op;
9028  // MMX <=> MMX conversions are Legal.
9029  if (SrcVT.isVector() && DstVT.isVector())
9030    return Op;
9031  // All other conversions need to be expanded.
9032  return SDValue();
9033}
9034
9035SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
9036  SDNode *Node = Op.getNode();
9037  DebugLoc dl = Node->getDebugLoc();
9038  EVT T = Node->getValueType(0);
9039  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
9040                              DAG.getConstant(0, T), Node->getOperand(2));
9041  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
9042                       cast<AtomicSDNode>(Node)->getMemoryVT(),
9043                       Node->getOperand(0),
9044                       Node->getOperand(1), negOp,
9045                       cast<AtomicSDNode>(Node)->getSrcValue(),
9046                       cast<AtomicSDNode>(Node)->getAlignment());
9047}
9048
9049static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
9050  EVT VT = Op.getNode()->getValueType(0);
9051
9052  // Let legalize expand this if it isn't a legal type yet.
9053  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9054    return SDValue();
9055
9056  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9057
9058  unsigned Opc;
9059  bool ExtraOp = false;
9060  switch (Op.getOpcode()) {
9061  default: assert(0 && "Invalid code");
9062  case ISD::ADDC: Opc = X86ISD::ADD; break;
9063  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
9064  case ISD::SUBC: Opc = X86ISD::SUB; break;
9065  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
9066  }
9067
9068  if (!ExtraOp)
9069    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9070                       Op.getOperand(1));
9071  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
9072                     Op.getOperand(1), Op.getOperand(2));
9073}
9074
9075/// LowerOperation - Provide custom lowering hooks for some operations.
9076///
9077SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9078  switch (Op.getOpcode()) {
9079  default: llvm_unreachable("Should not custom lower this!");
9080  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
9081  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
9082  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
9083  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
9084  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
9085  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
9086  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9087  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
9088  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
9089  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
9090  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
9091  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
9092  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
9093  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
9094  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
9095  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
9096  case ISD::SHL_PARTS:
9097  case ISD::SRA_PARTS:
9098  case ISD::SRL_PARTS:          return LowerShift(Op, DAG);
9099  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
9100  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
9101  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
9102  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
9103  case ISD::FABS:               return LowerFABS(Op, DAG);
9104  case ISD::FNEG:               return LowerFNEG(Op, DAG);
9105  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
9106  case ISD::SETCC:              return LowerSETCC(Op, DAG);
9107  case ISD::VSETCC:             return LowerVSETCC(Op, DAG);
9108  case ISD::SELECT:             return LowerSELECT(Op, DAG);
9109  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
9110  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
9111  case ISD::VASTART:            return LowerVASTART(Op, DAG);
9112  case ISD::VAARG:              return LowerVAARG(Op, DAG);
9113  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
9114  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9115  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
9116  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
9117  case ISD::FRAME_TO_ARGS_OFFSET:
9118                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
9119  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9120  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
9121  case ISD::TRAMPOLINE:         return LowerTRAMPOLINE(Op, DAG);
9122  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
9123  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
9124  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
9125  case ISD::MUL:                return LowerMUL_V2I64(Op, DAG);
9126  case ISD::SHL:                return LowerSHL(Op, DAG);
9127  case ISD::SADDO:
9128  case ISD::UADDO:
9129  case ISD::SSUBO:
9130  case ISD::USUBO:
9131  case ISD::SMULO:
9132  case ISD::UMULO:              return LowerXALUO(Op, DAG);
9133  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
9134  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
9135  case ISD::ADDC:
9136  case ISD::ADDE:
9137  case ISD::SUBC:
9138  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
9139  }
9140}
9141
9142void X86TargetLowering::
9143ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
9144                        SelectionDAG &DAG, unsigned NewOp) const {
9145  EVT T = Node->getValueType(0);
9146  DebugLoc dl = Node->getDebugLoc();
9147  assert (T == MVT::i64 && "Only know how to expand i64 atomics");
9148
9149  SDValue Chain = Node->getOperand(0);
9150  SDValue In1 = Node->getOperand(1);
9151  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9152                             Node->getOperand(2), DAG.getIntPtrConstant(0));
9153  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9154                             Node->getOperand(2), DAG.getIntPtrConstant(1));
9155  SDValue Ops[] = { Chain, In1, In2L, In2H };
9156  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9157  SDValue Result =
9158    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
9159                            cast<MemSDNode>(Node)->getMemOperand());
9160  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
9161  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9162  Results.push_back(Result.getValue(2));
9163}
9164
9165/// ReplaceNodeResults - Replace a node with an illegal result type
9166/// with a new node built out of custom code.
9167void X86TargetLowering::ReplaceNodeResults(SDNode *N,
9168                                           SmallVectorImpl<SDValue>&Results,
9169                                           SelectionDAG &DAG) const {
9170  DebugLoc dl = N->getDebugLoc();
9171  switch (N->getOpcode()) {
9172  default:
9173    assert(false && "Do not know how to custom type legalize this operation!");
9174    return;
9175  case ISD::ADDC:
9176  case ISD::ADDE:
9177  case ISD::SUBC:
9178  case ISD::SUBE:
9179    // We don't want to expand or promote these.
9180    return;
9181  case ISD::FP_TO_SINT: {
9182    std::pair<SDValue,SDValue> Vals =
9183        FP_TO_INTHelper(SDValue(N, 0), DAG, true);
9184    SDValue FIST = Vals.first, StackSlot = Vals.second;
9185    if (FIST.getNode() != 0) {
9186      EVT VT = N->getValueType(0);
9187      // Return a load from the stack slot.
9188      Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
9189                                    MachinePointerInfo(), false, false, 0));
9190    }
9191    return;
9192  }
9193  case ISD::READCYCLECOUNTER: {
9194    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9195    SDValue TheChain = N->getOperand(0);
9196    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
9197    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
9198                                     rd.getValue(1));
9199    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
9200                                     eax.getValue(2));
9201    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
9202    SDValue Ops[] = { eax, edx };
9203    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
9204    Results.push_back(edx.getValue(1));
9205    return;
9206  }
9207  case ISD::ATOMIC_CMP_SWAP: {
9208    EVT T = N->getValueType(0);
9209    assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
9210    SDValue cpInL, cpInH;
9211    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9212                        DAG.getConstant(0, MVT::i32));
9213    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
9214                        DAG.getConstant(1, MVT::i32));
9215    cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
9216    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
9217                             cpInL.getValue(1));
9218    SDValue swapInL, swapInH;
9219    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9220                          DAG.getConstant(0, MVT::i32));
9221    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
9222                          DAG.getConstant(1, MVT::i32));
9223    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
9224                               cpInH.getValue(1));
9225    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
9226                               swapInL.getValue(1));
9227    SDValue Ops[] = { swapInH.getValue(0),
9228                      N->getOperand(1),
9229                      swapInH.getValue(1) };
9230    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
9231    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
9232    SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG8_DAG, dl, Tys,
9233                                             Ops, 3, T, MMO);
9234    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
9235                                        MVT::i32, Result.getValue(1));
9236    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
9237                                        MVT::i32, cpOutL.getValue(2));
9238    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
9239    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
9240    Results.push_back(cpOutH.getValue(1));
9241    return;
9242  }
9243  case ISD::ATOMIC_LOAD_ADD:
9244    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
9245    return;
9246  case ISD::ATOMIC_LOAD_AND:
9247    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
9248    return;
9249  case ISD::ATOMIC_LOAD_NAND:
9250    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
9251    return;
9252  case ISD::ATOMIC_LOAD_OR:
9253    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
9254    return;
9255  case ISD::ATOMIC_LOAD_SUB:
9256    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
9257    return;
9258  case ISD::ATOMIC_LOAD_XOR:
9259    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
9260    return;
9261  case ISD::ATOMIC_SWAP:
9262    ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
9263    return;
9264  }
9265}
9266
9267const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
9268  switch (Opcode) {
9269  default: return NULL;
9270  case X86ISD::BSF:                return "X86ISD::BSF";
9271  case X86ISD::BSR:                return "X86ISD::BSR";
9272  case X86ISD::SHLD:               return "X86ISD::SHLD";
9273  case X86ISD::SHRD:               return "X86ISD::SHRD";
9274  case X86ISD::FAND:               return "X86ISD::FAND";
9275  case X86ISD::FOR:                return "X86ISD::FOR";
9276  case X86ISD::FXOR:               return "X86ISD::FXOR";
9277  case X86ISD::FSRL:               return "X86ISD::FSRL";
9278  case X86ISD::FILD:               return "X86ISD::FILD";
9279  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
9280  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
9281  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
9282  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
9283  case X86ISD::FLD:                return "X86ISD::FLD";
9284  case X86ISD::FST:                return "X86ISD::FST";
9285  case X86ISD::CALL:               return "X86ISD::CALL";
9286  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
9287  case X86ISD::BT:                 return "X86ISD::BT";
9288  case X86ISD::CMP:                return "X86ISD::CMP";
9289  case X86ISD::COMI:               return "X86ISD::COMI";
9290  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
9291  case X86ISD::SETCC:              return "X86ISD::SETCC";
9292  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
9293  case X86ISD::CMOV:               return "X86ISD::CMOV";
9294  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
9295  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
9296  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
9297  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
9298  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
9299  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
9300  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
9301  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
9302  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
9303  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
9304  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
9305  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
9306  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
9307  case X86ISD::PANDN:              return "X86ISD::PANDN";
9308  case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
9309  case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
9310  case X86ISD::PSIGND:             return "X86ISD::PSIGND";
9311  case X86ISD::PBLENDVB:           return "X86ISD::PBLENDVB";
9312  case X86ISD::FMAX:               return "X86ISD::FMAX";
9313  case X86ISD::FMIN:               return "X86ISD::FMIN";
9314  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
9315  case X86ISD::FRCP:               return "X86ISD::FRCP";
9316  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
9317  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
9318  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
9319  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
9320  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
9321  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
9322  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
9323  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
9324  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
9325  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
9326  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
9327  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
9328  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
9329  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
9330  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
9331  case X86ISD::VSHL:               return "X86ISD::VSHL";
9332  case X86ISD::VSRL:               return "X86ISD::VSRL";
9333  case X86ISD::CMPPD:              return "X86ISD::CMPPD";
9334  case X86ISD::CMPPS:              return "X86ISD::CMPPS";
9335  case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
9336  case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
9337  case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
9338  case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
9339  case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
9340  case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
9341  case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
9342  case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
9343  case X86ISD::ADD:                return "X86ISD::ADD";
9344  case X86ISD::SUB:                return "X86ISD::SUB";
9345  case X86ISD::ADC:                return "X86ISD::ADC";
9346  case X86ISD::SBB:                return "X86ISD::SBB";
9347  case X86ISD::SMUL:               return "X86ISD::SMUL";
9348  case X86ISD::UMUL:               return "X86ISD::UMUL";
9349  case X86ISD::INC:                return "X86ISD::INC";
9350  case X86ISD::DEC:                return "X86ISD::DEC";
9351  case X86ISD::OR:                 return "X86ISD::OR";
9352  case X86ISD::XOR:                return "X86ISD::XOR";
9353  case X86ISD::AND:                return "X86ISD::AND";
9354  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
9355  case X86ISD::PTEST:              return "X86ISD::PTEST";
9356  case X86ISD::TESTP:              return "X86ISD::TESTP";
9357  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
9358  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
9359  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
9360  case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
9361  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
9362  case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
9363  case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
9364  case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
9365  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
9366  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
9367  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
9368  case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
9369  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
9370  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
9371  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
9372  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
9373  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
9374  case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
9375  case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
9376  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
9377  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
9378  case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
9379  case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
9380  case X86ISD::VUNPCKLPS:          return "X86ISD::VUNPCKLPS";
9381  case X86ISD::VUNPCKLPD:          return "X86ISD::VUNPCKLPD";
9382  case X86ISD::VUNPCKLPSY:         return "X86ISD::VUNPCKLPSY";
9383  case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
9384  case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
9385  case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
9386  case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
9387  case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
9388  case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
9389  case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
9390  case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
9391  case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
9392  case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
9393  case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
9394  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
9395  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
9396  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
9397  }
9398}
9399
9400// isLegalAddressingMode - Return true if the addressing mode represented
9401// by AM is legal for this target, for a load/store of the specified type.
9402bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
9403                                              const Type *Ty) const {
9404  // X86 supports extremely general addressing modes.
9405  CodeModel::Model M = getTargetMachine().getCodeModel();
9406  Reloc::Model R = getTargetMachine().getRelocationModel();
9407
9408  // X86 allows a sign-extended 32-bit immediate field as a displacement.
9409  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
9410    return false;
9411
9412  if (AM.BaseGV) {
9413    unsigned GVFlags =
9414      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
9415
9416    // If a reference to this global requires an extra load, we can't fold it.
9417    if (isGlobalStubReference(GVFlags))
9418      return false;
9419
9420    // If BaseGV requires a register for the PIC base, we cannot also have a
9421    // BaseReg specified.
9422    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
9423      return false;
9424
9425    // If lower 4G is not available, then we must use rip-relative addressing.
9426    if ((M != CodeModel::Small || R != Reloc::Static) &&
9427        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
9428      return false;
9429  }
9430
9431  switch (AM.Scale) {
9432  case 0:
9433  case 1:
9434  case 2:
9435  case 4:
9436  case 8:
9437    // These scales always work.
9438    break;
9439  case 3:
9440  case 5:
9441  case 9:
9442    // These scales are formed with basereg+scalereg.  Only accept if there is
9443    // no basereg yet.
9444    if (AM.HasBaseReg)
9445      return false;
9446    break;
9447  default:  // Other stuff never works.
9448    return false;
9449  }
9450
9451  return true;
9452}
9453
9454
9455bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
9456  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
9457    return false;
9458  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
9459  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
9460  if (NumBits1 <= NumBits2)
9461    return false;
9462  return true;
9463}
9464
9465bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
9466  if (!VT1.isInteger() || !VT2.isInteger())
9467    return false;
9468  unsigned NumBits1 = VT1.getSizeInBits();
9469  unsigned NumBits2 = VT2.getSizeInBits();
9470  if (NumBits1 <= NumBits2)
9471    return false;
9472  return true;
9473}
9474
9475bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
9476  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9477  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
9478}
9479
9480bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
9481  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
9482  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
9483}
9484
9485bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
9486  // i16 instructions are longer (0x66 prefix) and potentially slower.
9487  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
9488}
9489
9490/// isShuffleMaskLegal - Targets can use this to indicate that they only
9491/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
9492/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
9493/// are assumed to be legal.
9494bool
9495X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
9496                                      EVT VT) const {
9497  // Very little shuffling can be done for 64-bit vectors right now.
9498  if (VT.getSizeInBits() == 64)
9499    return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
9500
9501  // FIXME: pshufb, blends, shifts.
9502  return (VT.getVectorNumElements() == 2 ||
9503          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
9504          isMOVLMask(M, VT) ||
9505          isSHUFPMask(M, VT) ||
9506          isPSHUFDMask(M, VT) ||
9507          isPSHUFHWMask(M, VT) ||
9508          isPSHUFLWMask(M, VT) ||
9509          isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
9510          isUNPCKLMask(M, VT) ||
9511          isUNPCKHMask(M, VT) ||
9512          isUNPCKL_v_undef_Mask(M, VT) ||
9513          isUNPCKH_v_undef_Mask(M, VT));
9514}
9515
9516bool
9517X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
9518                                          EVT VT) const {
9519  unsigned NumElts = VT.getVectorNumElements();
9520  // FIXME: This collection of masks seems suspect.
9521  if (NumElts == 2)
9522    return true;
9523  if (NumElts == 4 && VT.getSizeInBits() == 128) {
9524    return (isMOVLMask(Mask, VT)  ||
9525            isCommutedMOVLMask(Mask, VT, true) ||
9526            isSHUFPMask(Mask, VT) ||
9527            isCommutedSHUFPMask(Mask, VT));
9528  }
9529  return false;
9530}
9531
9532//===----------------------------------------------------------------------===//
9533//                           X86 Scheduler Hooks
9534//===----------------------------------------------------------------------===//
9535
9536// private utility function
9537MachineBasicBlock *
9538X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
9539                                                       MachineBasicBlock *MBB,
9540                                                       unsigned regOpc,
9541                                                       unsigned immOpc,
9542                                                       unsigned LoadOpc,
9543                                                       unsigned CXchgOpc,
9544                                                       unsigned notOpc,
9545                                                       unsigned EAXreg,
9546                                                       TargetRegisterClass *RC,
9547                                                       bool invSrc) const {
9548  // For the atomic bitwise operator, we generate
9549  //   thisMBB:
9550  //   newMBB:
9551  //     ld  t1 = [bitinstr.addr]
9552  //     op  t2 = t1, [bitinstr.val]
9553  //     mov EAX = t1
9554  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9555  //     bz  newMBB
9556  //     fallthrough -->nextMBB
9557  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9558  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9559  MachineFunction::iterator MBBIter = MBB;
9560  ++MBBIter;
9561
9562  /// First build the CFG
9563  MachineFunction *F = MBB->getParent();
9564  MachineBasicBlock *thisMBB = MBB;
9565  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9566  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9567  F->insert(MBBIter, newMBB);
9568  F->insert(MBBIter, nextMBB);
9569
9570  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9571  nextMBB->splice(nextMBB->begin(), thisMBB,
9572                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9573                  thisMBB->end());
9574  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9575
9576  // Update thisMBB to fall through to newMBB
9577  thisMBB->addSuccessor(newMBB);
9578
9579  // newMBB jumps to itself and fall through to nextMBB
9580  newMBB->addSuccessor(nextMBB);
9581  newMBB->addSuccessor(newMBB);
9582
9583  // Insert instructions into newMBB based on incoming instruction
9584  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9585         "unexpected number of operands");
9586  DebugLoc dl = bInstr->getDebugLoc();
9587  MachineOperand& destOper = bInstr->getOperand(0);
9588  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9589  int numArgs = bInstr->getNumOperands() - 1;
9590  for (int i=0; i < numArgs; ++i)
9591    argOpers[i] = &bInstr->getOperand(i+1);
9592
9593  // x86 address has 4 operands: base, index, scale, and displacement
9594  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9595  int valArgIndx = lastAddrIndx + 1;
9596
9597  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9598  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
9599  for (int i=0; i <= lastAddrIndx; ++i)
9600    (*MIB).addOperand(*argOpers[i]);
9601
9602  unsigned tt = F->getRegInfo().createVirtualRegister(RC);
9603  if (invSrc) {
9604    MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
9605  }
9606  else
9607    tt = t1;
9608
9609  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9610  assert((argOpers[valArgIndx]->isReg() ||
9611          argOpers[valArgIndx]->isImm()) &&
9612         "invalid operand");
9613  if (argOpers[valArgIndx]->isReg())
9614    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
9615  else
9616    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
9617  MIB.addReg(tt);
9618  (*MIB).addOperand(*argOpers[valArgIndx]);
9619
9620  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
9621  MIB.addReg(t1);
9622
9623  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
9624  for (int i=0; i <= lastAddrIndx; ++i)
9625    (*MIB).addOperand(*argOpers[i]);
9626  MIB.addReg(t2);
9627  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9628  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9629                    bInstr->memoperands_end());
9630
9631  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9632  MIB.addReg(EAXreg);
9633
9634  // insert branch
9635  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9636
9637  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9638  return nextMBB;
9639}
9640
9641// private utility function:  64 bit atomics on 32 bit host.
9642MachineBasicBlock *
9643X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
9644                                                       MachineBasicBlock *MBB,
9645                                                       unsigned regOpcL,
9646                                                       unsigned regOpcH,
9647                                                       unsigned immOpcL,
9648                                                       unsigned immOpcH,
9649                                                       bool invSrc) const {
9650  // For the atomic bitwise operator, we generate
9651  //   thisMBB (instructions are in pairs, except cmpxchg8b)
9652  //     ld t1,t2 = [bitinstr.addr]
9653  //   newMBB:
9654  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
9655  //     op  t5, t6 <- out1, out2, [bitinstr.val]
9656  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
9657  //     mov ECX, EBX <- t5, t6
9658  //     mov EAX, EDX <- t1, t2
9659  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
9660  //     mov t3, t4 <- EAX, EDX
9661  //     bz  newMBB
9662  //     result in out1, out2
9663  //     fallthrough -->nextMBB
9664
9665  const TargetRegisterClass *RC = X86::GR32RegisterClass;
9666  const unsigned LoadOpc = X86::MOV32rm;
9667  const unsigned NotOpc = X86::NOT32r;
9668  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9669  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9670  MachineFunction::iterator MBBIter = MBB;
9671  ++MBBIter;
9672
9673  /// First build the CFG
9674  MachineFunction *F = MBB->getParent();
9675  MachineBasicBlock *thisMBB = MBB;
9676  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9677  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9678  F->insert(MBBIter, newMBB);
9679  F->insert(MBBIter, nextMBB);
9680
9681  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9682  nextMBB->splice(nextMBB->begin(), thisMBB,
9683                  llvm::next(MachineBasicBlock::iterator(bInstr)),
9684                  thisMBB->end());
9685  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9686
9687  // Update thisMBB to fall through to newMBB
9688  thisMBB->addSuccessor(newMBB);
9689
9690  // newMBB jumps to itself and fall through to nextMBB
9691  newMBB->addSuccessor(nextMBB);
9692  newMBB->addSuccessor(newMBB);
9693
9694  DebugLoc dl = bInstr->getDebugLoc();
9695  // Insert instructions into newMBB based on incoming instruction
9696  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
9697  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
9698         "unexpected number of operands");
9699  MachineOperand& dest1Oper = bInstr->getOperand(0);
9700  MachineOperand& dest2Oper = bInstr->getOperand(1);
9701  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9702  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
9703    argOpers[i] = &bInstr->getOperand(i+2);
9704
9705    // We use some of the operands multiple times, so conservatively just
9706    // clear any kill flags that might be present.
9707    if (argOpers[i]->isReg() && argOpers[i]->isUse())
9708      argOpers[i]->setIsKill(false);
9709  }
9710
9711  // x86 address has 5 operands: base, index, scale, displacement, and segment.
9712  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9713
9714  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
9715  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
9716  for (int i=0; i <= lastAddrIndx; ++i)
9717    (*MIB).addOperand(*argOpers[i]);
9718  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
9719  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
9720  // add 4 to displacement.
9721  for (int i=0; i <= lastAddrIndx-2; ++i)
9722    (*MIB).addOperand(*argOpers[i]);
9723  MachineOperand newOp3 = *(argOpers[3]);
9724  if (newOp3.isImm())
9725    newOp3.setImm(newOp3.getImm()+4);
9726  else
9727    newOp3.setOffset(newOp3.getOffset()+4);
9728  (*MIB).addOperand(newOp3);
9729  (*MIB).addOperand(*argOpers[lastAddrIndx]);
9730
9731  // t3/4 are defined later, at the bottom of the loop
9732  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
9733  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
9734  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
9735    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
9736  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
9737    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
9738
9739  // The subsequent operations should be using the destination registers of
9740  //the PHI instructions.
9741  if (invSrc) {
9742    t1 = F->getRegInfo().createVirtualRegister(RC);
9743    t2 = F->getRegInfo().createVirtualRegister(RC);
9744    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
9745    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
9746  } else {
9747    t1 = dest1Oper.getReg();
9748    t2 = dest2Oper.getReg();
9749  }
9750
9751  int valArgIndx = lastAddrIndx + 1;
9752  assert((argOpers[valArgIndx]->isReg() ||
9753          argOpers[valArgIndx]->isImm()) &&
9754         "invalid operand");
9755  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
9756  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
9757  if (argOpers[valArgIndx]->isReg())
9758    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
9759  else
9760    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
9761  if (regOpcL != X86::MOV32rr)
9762    MIB.addReg(t1);
9763  (*MIB).addOperand(*argOpers[valArgIndx]);
9764  assert(argOpers[valArgIndx + 1]->isReg() ==
9765         argOpers[valArgIndx]->isReg());
9766  assert(argOpers[valArgIndx + 1]->isImm() ==
9767         argOpers[valArgIndx]->isImm());
9768  if (argOpers[valArgIndx + 1]->isReg())
9769    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
9770  else
9771    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
9772  if (regOpcH != X86::MOV32rr)
9773    MIB.addReg(t2);
9774  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
9775
9776  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9777  MIB.addReg(t1);
9778  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
9779  MIB.addReg(t2);
9780
9781  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
9782  MIB.addReg(t5);
9783  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
9784  MIB.addReg(t6);
9785
9786  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
9787  for (int i=0; i <= lastAddrIndx; ++i)
9788    (*MIB).addOperand(*argOpers[i]);
9789
9790  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9791  (*MIB).setMemRefs(bInstr->memoperands_begin(),
9792                    bInstr->memoperands_end());
9793
9794  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
9795  MIB.addReg(X86::EAX);
9796  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
9797  MIB.addReg(X86::EDX);
9798
9799  // insert branch
9800  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9801
9802  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
9803  return nextMBB;
9804}
9805
9806// private utility function
9807MachineBasicBlock *
9808X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
9809                                                      MachineBasicBlock *MBB,
9810                                                      unsigned cmovOpc) const {
9811  // For the atomic min/max operator, we generate
9812  //   thisMBB:
9813  //   newMBB:
9814  //     ld t1 = [min/max.addr]
9815  //     mov t2 = [min/max.val]
9816  //     cmp  t1, t2
9817  //     cmov[cond] t2 = t1
9818  //     mov EAX = t1
9819  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
9820  //     bz   newMBB
9821  //     fallthrough -->nextMBB
9822  //
9823  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9824  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
9825  MachineFunction::iterator MBBIter = MBB;
9826  ++MBBIter;
9827
9828  /// First build the CFG
9829  MachineFunction *F = MBB->getParent();
9830  MachineBasicBlock *thisMBB = MBB;
9831  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
9832  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
9833  F->insert(MBBIter, newMBB);
9834  F->insert(MBBIter, nextMBB);
9835
9836  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
9837  nextMBB->splice(nextMBB->begin(), thisMBB,
9838                  llvm::next(MachineBasicBlock::iterator(mInstr)),
9839                  thisMBB->end());
9840  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
9841
9842  // Update thisMBB to fall through to newMBB
9843  thisMBB->addSuccessor(newMBB);
9844
9845  // newMBB jumps to newMBB and fall through to nextMBB
9846  newMBB->addSuccessor(nextMBB);
9847  newMBB->addSuccessor(newMBB);
9848
9849  DebugLoc dl = mInstr->getDebugLoc();
9850  // Insert instructions into newMBB based on incoming instruction
9851  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
9852         "unexpected number of operands");
9853  MachineOperand& destOper = mInstr->getOperand(0);
9854  MachineOperand* argOpers[2 + X86::AddrNumOperands];
9855  int numArgs = mInstr->getNumOperands() - 1;
9856  for (int i=0; i < numArgs; ++i)
9857    argOpers[i] = &mInstr->getOperand(i+1);
9858
9859  // x86 address has 4 operands: base, index, scale, and displacement
9860  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
9861  int valArgIndx = lastAddrIndx + 1;
9862
9863  unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9864  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
9865  for (int i=0; i <= lastAddrIndx; ++i)
9866    (*MIB).addOperand(*argOpers[i]);
9867
9868  // We only support register and immediate values
9869  assert((argOpers[valArgIndx]->isReg() ||
9870          argOpers[valArgIndx]->isImm()) &&
9871         "invalid operand");
9872
9873  unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9874  if (argOpers[valArgIndx]->isReg())
9875    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
9876  else
9877    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
9878  (*MIB).addOperand(*argOpers[valArgIndx]);
9879
9880  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
9881  MIB.addReg(t1);
9882
9883  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
9884  MIB.addReg(t1);
9885  MIB.addReg(t2);
9886
9887  // Generate movc
9888  unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
9889  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
9890  MIB.addReg(t2);
9891  MIB.addReg(t1);
9892
9893  // Cmp and exchange if none has modified the memory location
9894  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
9895  for (int i=0; i <= lastAddrIndx; ++i)
9896    (*MIB).addOperand(*argOpers[i]);
9897  MIB.addReg(t3);
9898  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
9899  (*MIB).setMemRefs(mInstr->memoperands_begin(),
9900                    mInstr->memoperands_end());
9901
9902  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
9903  MIB.addReg(X86::EAX);
9904
9905  // insert branch
9906  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
9907
9908  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
9909  return nextMBB;
9910}
9911
9912// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
9913// or XMM0_V32I8 in AVX all of this code can be replaced with that
9914// in the .td file.
9915MachineBasicBlock *
9916X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
9917                            unsigned numArgs, bool memArg) const {
9918  assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
9919         "Target must have SSE4.2 or AVX features enabled");
9920
9921  DebugLoc dl = MI->getDebugLoc();
9922  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9923  unsigned Opc;
9924  if (!Subtarget->hasAVX()) {
9925    if (memArg)
9926      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
9927    else
9928      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
9929  } else {
9930    if (memArg)
9931      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
9932    else
9933      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
9934  }
9935
9936  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
9937  for (unsigned i = 0; i < numArgs; ++i) {
9938    MachineOperand &Op = MI->getOperand(i+1);
9939    if (!(Op.isReg() && Op.isImplicit()))
9940      MIB.addOperand(Op);
9941  }
9942  BuildMI(*BB, MI, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
9943    .addReg(X86::XMM0);
9944
9945  MI->eraseFromParent();
9946  return BB;
9947}
9948
9949MachineBasicBlock *
9950X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
9951  DebugLoc dl = MI->getDebugLoc();
9952  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9953
9954  // Address into RAX/EAX, other two args into ECX, EDX.
9955  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
9956  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
9957  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
9958  for (int i = 0; i < X86::AddrNumOperands; ++i)
9959    MIB.addOperand(MI->getOperand(i));
9960
9961  unsigned ValOps = X86::AddrNumOperands;
9962  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9963    .addReg(MI->getOperand(ValOps).getReg());
9964  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
9965    .addReg(MI->getOperand(ValOps+1).getReg());
9966
9967  // The instruction doesn't actually take any operands though.
9968  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
9969
9970  MI->eraseFromParent(); // The pseudo is gone now.
9971  return BB;
9972}
9973
9974MachineBasicBlock *
9975X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
9976  DebugLoc dl = MI->getDebugLoc();
9977  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
9978
9979  // First arg in ECX, the second in EAX.
9980  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
9981    .addReg(MI->getOperand(0).getReg());
9982  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
9983    .addReg(MI->getOperand(1).getReg());
9984
9985  // The instruction doesn't actually take any operands though.
9986  BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
9987
9988  MI->eraseFromParent(); // The pseudo is gone now.
9989  return BB;
9990}
9991
9992MachineBasicBlock *
9993X86TargetLowering::EmitVAARG64WithCustomInserter(
9994                   MachineInstr *MI,
9995                   MachineBasicBlock *MBB) const {
9996  // Emit va_arg instruction on X86-64.
9997
9998  // Operands to this pseudo-instruction:
9999  // 0  ) Output        : destination address (reg)
10000  // 1-5) Input         : va_list address (addr, i64mem)
10001  // 6  ) ArgSize       : Size (in bytes) of vararg type
10002  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
10003  // 8  ) Align         : Alignment of type
10004  // 9  ) EFLAGS (implicit-def)
10005
10006  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
10007  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
10008
10009  unsigned DestReg = MI->getOperand(0).getReg();
10010  MachineOperand &Base = MI->getOperand(1);
10011  MachineOperand &Scale = MI->getOperand(2);
10012  MachineOperand &Index = MI->getOperand(3);
10013  MachineOperand &Disp = MI->getOperand(4);
10014  MachineOperand &Segment = MI->getOperand(5);
10015  unsigned ArgSize = MI->getOperand(6).getImm();
10016  unsigned ArgMode = MI->getOperand(7).getImm();
10017  unsigned Align = MI->getOperand(8).getImm();
10018
10019  // Memory Reference
10020  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
10021  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
10022  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
10023
10024  // Machine Information
10025  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10026  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10027  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
10028  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
10029  DebugLoc DL = MI->getDebugLoc();
10030
10031  // struct va_list {
10032  //   i32   gp_offset
10033  //   i32   fp_offset
10034  //   i64   overflow_area (address)
10035  //   i64   reg_save_area (address)
10036  // }
10037  // sizeof(va_list) = 24
10038  // alignment(va_list) = 8
10039
10040  unsigned TotalNumIntRegs = 6;
10041  unsigned TotalNumXMMRegs = 8;
10042  bool UseGPOffset = (ArgMode == 1);
10043  bool UseFPOffset = (ArgMode == 2);
10044  unsigned MaxOffset = TotalNumIntRegs * 8 +
10045                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
10046
10047  /* Align ArgSize to a multiple of 8 */
10048  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
10049  bool NeedsAlign = (Align > 8);
10050
10051  MachineBasicBlock *thisMBB = MBB;
10052  MachineBasicBlock *overflowMBB;
10053  MachineBasicBlock *offsetMBB;
10054  MachineBasicBlock *endMBB;
10055
10056  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
10057  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
10058  unsigned OffsetReg = 0;
10059
10060  if (!UseGPOffset && !UseFPOffset) {
10061    // If we only pull from the overflow region, we don't create a branch.
10062    // We don't need to alter control flow.
10063    OffsetDestReg = 0; // unused
10064    OverflowDestReg = DestReg;
10065
10066    offsetMBB = NULL;
10067    overflowMBB = thisMBB;
10068    endMBB = thisMBB;
10069  } else {
10070    // First emit code to check if gp_offset (or fp_offset) is below the bound.
10071    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
10072    // If not, pull from overflow_area. (branch to overflowMBB)
10073    //
10074    //       thisMBB
10075    //         |     .
10076    //         |        .
10077    //     offsetMBB   overflowMBB
10078    //         |        .
10079    //         |     .
10080    //        endMBB
10081
10082    // Registers for the PHI in endMBB
10083    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
10084    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
10085
10086    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10087    MachineFunction *MF = MBB->getParent();
10088    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10089    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10090    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10091
10092    MachineFunction::iterator MBBIter = MBB;
10093    ++MBBIter;
10094
10095    // Insert the new basic blocks
10096    MF->insert(MBBIter, offsetMBB);
10097    MF->insert(MBBIter, overflowMBB);
10098    MF->insert(MBBIter, endMBB);
10099
10100    // Transfer the remainder of MBB and its successor edges to endMBB.
10101    endMBB->splice(endMBB->begin(), thisMBB,
10102                    llvm::next(MachineBasicBlock::iterator(MI)),
10103                    thisMBB->end());
10104    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10105
10106    // Make offsetMBB and overflowMBB successors of thisMBB
10107    thisMBB->addSuccessor(offsetMBB);
10108    thisMBB->addSuccessor(overflowMBB);
10109
10110    // endMBB is a successor of both offsetMBB and overflowMBB
10111    offsetMBB->addSuccessor(endMBB);
10112    overflowMBB->addSuccessor(endMBB);
10113
10114    // Load the offset value into a register
10115    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10116    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
10117      .addOperand(Base)
10118      .addOperand(Scale)
10119      .addOperand(Index)
10120      .addDisp(Disp, UseFPOffset ? 4 : 0)
10121      .addOperand(Segment)
10122      .setMemRefs(MMOBegin, MMOEnd);
10123
10124    // Check if there is enough room left to pull this argument.
10125    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
10126      .addReg(OffsetReg)
10127      .addImm(MaxOffset + 8 - ArgSizeA8);
10128
10129    // Branch to "overflowMBB" if offset >= max
10130    // Fall through to "offsetMBB" otherwise
10131    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
10132      .addMBB(overflowMBB);
10133  }
10134
10135  // In offsetMBB, emit code to use the reg_save_area.
10136  if (offsetMBB) {
10137    assert(OffsetReg != 0);
10138
10139    // Read the reg_save_area address.
10140    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
10141    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
10142      .addOperand(Base)
10143      .addOperand(Scale)
10144      .addOperand(Index)
10145      .addDisp(Disp, 16)
10146      .addOperand(Segment)
10147      .setMemRefs(MMOBegin, MMOEnd);
10148
10149    // Zero-extend the offset
10150    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
10151      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
10152        .addImm(0)
10153        .addReg(OffsetReg)
10154        .addImm(X86::sub_32bit);
10155
10156    // Add the offset to the reg_save_area to get the final address.
10157    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
10158      .addReg(OffsetReg64)
10159      .addReg(RegSaveReg);
10160
10161    // Compute the offset for the next argument
10162    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
10163    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
10164      .addReg(OffsetReg)
10165      .addImm(UseFPOffset ? 16 : 8);
10166
10167    // Store it back into the va_list.
10168    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
10169      .addOperand(Base)
10170      .addOperand(Scale)
10171      .addOperand(Index)
10172      .addDisp(Disp, UseFPOffset ? 4 : 0)
10173      .addOperand(Segment)
10174      .addReg(NextOffsetReg)
10175      .setMemRefs(MMOBegin, MMOEnd);
10176
10177    // Jump to endMBB
10178    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
10179      .addMBB(endMBB);
10180  }
10181
10182  //
10183  // Emit code to use overflow area
10184  //
10185
10186  // Load the overflow_area address into a register.
10187  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
10188  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
10189    .addOperand(Base)
10190    .addOperand(Scale)
10191    .addOperand(Index)
10192    .addDisp(Disp, 8)
10193    .addOperand(Segment)
10194    .setMemRefs(MMOBegin, MMOEnd);
10195
10196  // If we need to align it, do so. Otherwise, just copy the address
10197  // to OverflowDestReg.
10198  if (NeedsAlign) {
10199    // Align the overflow address
10200    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
10201    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
10202
10203    // aligned_addr = (addr + (align-1)) & ~(align-1)
10204    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
10205      .addReg(OverflowAddrReg)
10206      .addImm(Align-1);
10207
10208    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
10209      .addReg(TmpReg)
10210      .addImm(~(uint64_t)(Align-1));
10211  } else {
10212    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
10213      .addReg(OverflowAddrReg);
10214  }
10215
10216  // Compute the next overflow address after this argument.
10217  // (the overflow address should be kept 8-byte aligned)
10218  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
10219  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
10220    .addReg(OverflowDestReg)
10221    .addImm(ArgSizeA8);
10222
10223  // Store the new overflow address.
10224  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
10225    .addOperand(Base)
10226    .addOperand(Scale)
10227    .addOperand(Index)
10228    .addDisp(Disp, 8)
10229    .addOperand(Segment)
10230    .addReg(NextAddrReg)
10231    .setMemRefs(MMOBegin, MMOEnd);
10232
10233  // If we branched, emit the PHI to the front of endMBB.
10234  if (offsetMBB) {
10235    BuildMI(*endMBB, endMBB->begin(), DL,
10236            TII->get(X86::PHI), DestReg)
10237      .addReg(OffsetDestReg).addMBB(offsetMBB)
10238      .addReg(OverflowDestReg).addMBB(overflowMBB);
10239  }
10240
10241  // Erase the pseudo instruction
10242  MI->eraseFromParent();
10243
10244  return endMBB;
10245}
10246
10247MachineBasicBlock *
10248X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
10249                                                 MachineInstr *MI,
10250                                                 MachineBasicBlock *MBB) const {
10251  // Emit code to save XMM registers to the stack. The ABI says that the
10252  // number of registers to save is given in %al, so it's theoretically
10253  // possible to do an indirect jump trick to avoid saving all of them,
10254  // however this code takes a simpler approach and just executes all
10255  // of the stores if %al is non-zero. It's less code, and it's probably
10256  // easier on the hardware branch predictor, and stores aren't all that
10257  // expensive anyway.
10258
10259  // Create the new basic blocks. One block contains all the XMM stores,
10260  // and one block is the final destination regardless of whether any
10261  // stores were performed.
10262  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10263  MachineFunction *F = MBB->getParent();
10264  MachineFunction::iterator MBBIter = MBB;
10265  ++MBBIter;
10266  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
10267  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
10268  F->insert(MBBIter, XMMSaveMBB);
10269  F->insert(MBBIter, EndMBB);
10270
10271  // Transfer the remainder of MBB and its successor edges to EndMBB.
10272  EndMBB->splice(EndMBB->begin(), MBB,
10273                 llvm::next(MachineBasicBlock::iterator(MI)),
10274                 MBB->end());
10275  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
10276
10277  // The original block will now fall through to the XMM save block.
10278  MBB->addSuccessor(XMMSaveMBB);
10279  // The XMMSaveMBB will fall through to the end block.
10280  XMMSaveMBB->addSuccessor(EndMBB);
10281
10282  // Now add the instructions.
10283  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10284  DebugLoc DL = MI->getDebugLoc();
10285
10286  unsigned CountReg = MI->getOperand(0).getReg();
10287  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
10288  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
10289
10290  if (!Subtarget->isTargetWin64()) {
10291    // If %al is 0, branch around the XMM save block.
10292    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
10293    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
10294    MBB->addSuccessor(EndMBB);
10295  }
10296
10297  // In the XMM save block, save all the XMM argument registers.
10298  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
10299    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
10300    MachineMemOperand *MMO =
10301      F->getMachineMemOperand(
10302          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
10303        MachineMemOperand::MOStore,
10304        /*Size=*/16, /*Align=*/16);
10305    BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
10306      .addFrameIndex(RegSaveFrameIndex)
10307      .addImm(/*Scale=*/1)
10308      .addReg(/*IndexReg=*/0)
10309      .addImm(/*Disp=*/Offset)
10310      .addReg(/*Segment=*/0)
10311      .addReg(MI->getOperand(i).getReg())
10312      .addMemOperand(MMO);
10313  }
10314
10315  MI->eraseFromParent();   // The pseudo instruction is gone now.
10316
10317  return EndMBB;
10318}
10319
10320MachineBasicBlock *
10321X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
10322                                     MachineBasicBlock *BB) const {
10323  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10324  DebugLoc DL = MI->getDebugLoc();
10325
10326  // To "insert" a SELECT_CC instruction, we actually have to insert the
10327  // diamond control-flow pattern.  The incoming instruction knows the
10328  // destination vreg to set, the condition code register to branch on, the
10329  // true/false values to select between, and a branch opcode to use.
10330  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10331  MachineFunction::iterator It = BB;
10332  ++It;
10333
10334  //  thisMBB:
10335  //  ...
10336  //   TrueVal = ...
10337  //   cmpTY ccX, r1, r2
10338  //   bCC copy1MBB
10339  //   fallthrough --> copy0MBB
10340  MachineBasicBlock *thisMBB = BB;
10341  MachineFunction *F = BB->getParent();
10342  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10343  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10344  F->insert(It, copy0MBB);
10345  F->insert(It, sinkMBB);
10346
10347  // If the EFLAGS register isn't dead in the terminator, then claim that it's
10348  // live into the sink and copy blocks.
10349  const MachineFunction *MF = BB->getParent();
10350  const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
10351  BitVector ReservedRegs = TRI->getReservedRegs(*MF);
10352
10353  for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) {
10354    const MachineOperand &MO = MI->getOperand(I);
10355    if (!MO.isReg() || !MO.isUse() || MO.isKill()) continue;
10356    unsigned Reg = MO.getReg();
10357    if (Reg != X86::EFLAGS) continue;
10358    copy0MBB->addLiveIn(Reg);
10359    sinkMBB->addLiveIn(Reg);
10360  }
10361
10362  // Transfer the remainder of BB and its successor edges to sinkMBB.
10363  sinkMBB->splice(sinkMBB->begin(), BB,
10364                  llvm::next(MachineBasicBlock::iterator(MI)),
10365                  BB->end());
10366  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10367
10368  // Add the true and fallthrough blocks as its successors.
10369  BB->addSuccessor(copy0MBB);
10370  BB->addSuccessor(sinkMBB);
10371
10372  // Create the conditional branch instruction.
10373  unsigned Opc =
10374    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
10375  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
10376
10377  //  copy0MBB:
10378  //   %FalseValue = ...
10379  //   # fallthrough to sinkMBB
10380  copy0MBB->addSuccessor(sinkMBB);
10381
10382  //  sinkMBB:
10383  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10384  //  ...
10385  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10386          TII->get(X86::PHI), MI->getOperand(0).getReg())
10387    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
10388    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
10389
10390  MI->eraseFromParent();   // The pseudo instruction is gone now.
10391  return sinkMBB;
10392}
10393
10394MachineBasicBlock *
10395X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
10396                                          MachineBasicBlock *BB) const {
10397  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10398  DebugLoc DL = MI->getDebugLoc();
10399
10400  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
10401  // non-trivial part is impdef of ESP.
10402  // FIXME: The code should be tweaked as soon as we'll try to do codegen for
10403  // mingw-w64.
10404
10405  const char *StackProbeSymbol =
10406      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
10407
10408  BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
10409    .addExternalSymbol(StackProbeSymbol)
10410    .addReg(X86::EAX, RegState::Implicit)
10411    .addReg(X86::ESP, RegState::Implicit)
10412    .addReg(X86::EAX, RegState::Define | RegState::Implicit)
10413    .addReg(X86::ESP, RegState::Define | RegState::Implicit)
10414    .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
10415
10416  MI->eraseFromParent();   // The pseudo instruction is gone now.
10417  return BB;
10418}
10419
10420MachineBasicBlock *
10421X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
10422                                      MachineBasicBlock *BB) const {
10423  // This is pretty easy.  We're taking the value that we received from
10424  // our load from the relocation, sticking it in either RDI (x86-64)
10425  // or EAX and doing an indirect call.  The return value will then
10426  // be in the normal return register.
10427  const X86InstrInfo *TII
10428    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
10429  DebugLoc DL = MI->getDebugLoc();
10430  MachineFunction *F = BB->getParent();
10431
10432  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
10433  assert(MI->getOperand(3).isGlobal() && "This should be a global");
10434
10435  if (Subtarget->is64Bit()) {
10436    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10437                                      TII->get(X86::MOV64rm), X86::RDI)
10438    .addReg(X86::RIP)
10439    .addImm(0).addReg(0)
10440    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10441                      MI->getOperand(3).getTargetFlags())
10442    .addReg(0);
10443    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
10444    addDirectMem(MIB, X86::RDI);
10445  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
10446    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10447                                      TII->get(X86::MOV32rm), X86::EAX)
10448    .addReg(0)
10449    .addImm(0).addReg(0)
10450    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10451                      MI->getOperand(3).getTargetFlags())
10452    .addReg(0);
10453    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10454    addDirectMem(MIB, X86::EAX);
10455  } else {
10456    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
10457                                      TII->get(X86::MOV32rm), X86::EAX)
10458    .addReg(TII->getGlobalBaseReg(F))
10459    .addImm(0).addReg(0)
10460    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
10461                      MI->getOperand(3).getTargetFlags())
10462    .addReg(0);
10463    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
10464    addDirectMem(MIB, X86::EAX);
10465  }
10466
10467  MI->eraseFromParent(); // The pseudo instruction is gone now.
10468  return BB;
10469}
10470
10471MachineBasicBlock *
10472X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
10473                                               MachineBasicBlock *BB) const {
10474  switch (MI->getOpcode()) {
10475  default: assert(false && "Unexpected instr type to insert");
10476  case X86::TAILJMPd64:
10477  case X86::TAILJMPr64:
10478  case X86::TAILJMPm64:
10479    assert(!"TAILJMP64 would not be touched here.");
10480  case X86::TCRETURNdi64:
10481  case X86::TCRETURNri64:
10482  case X86::TCRETURNmi64:
10483    // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
10484    // On AMD64, additional defs should be added before register allocation.
10485    if (!Subtarget->isTargetWin64()) {
10486      MI->addRegisterDefined(X86::RSI);
10487      MI->addRegisterDefined(X86::RDI);
10488      MI->addRegisterDefined(X86::XMM6);
10489      MI->addRegisterDefined(X86::XMM7);
10490      MI->addRegisterDefined(X86::XMM8);
10491      MI->addRegisterDefined(X86::XMM9);
10492      MI->addRegisterDefined(X86::XMM10);
10493      MI->addRegisterDefined(X86::XMM11);
10494      MI->addRegisterDefined(X86::XMM12);
10495      MI->addRegisterDefined(X86::XMM13);
10496      MI->addRegisterDefined(X86::XMM14);
10497      MI->addRegisterDefined(X86::XMM15);
10498    }
10499    return BB;
10500  case X86::WIN_ALLOCA:
10501    return EmitLoweredWinAlloca(MI, BB);
10502  case X86::TLSCall_32:
10503  case X86::TLSCall_64:
10504    return EmitLoweredTLSCall(MI, BB);
10505  case X86::CMOV_GR8:
10506  case X86::CMOV_FR32:
10507  case X86::CMOV_FR64:
10508  case X86::CMOV_V4F32:
10509  case X86::CMOV_V2F64:
10510  case X86::CMOV_V2I64:
10511  case X86::CMOV_GR16:
10512  case X86::CMOV_GR32:
10513  case X86::CMOV_RFP32:
10514  case X86::CMOV_RFP64:
10515  case X86::CMOV_RFP80:
10516    return EmitLoweredSelect(MI, BB);
10517
10518  case X86::FP32_TO_INT16_IN_MEM:
10519  case X86::FP32_TO_INT32_IN_MEM:
10520  case X86::FP32_TO_INT64_IN_MEM:
10521  case X86::FP64_TO_INT16_IN_MEM:
10522  case X86::FP64_TO_INT32_IN_MEM:
10523  case X86::FP64_TO_INT64_IN_MEM:
10524  case X86::FP80_TO_INT16_IN_MEM:
10525  case X86::FP80_TO_INT32_IN_MEM:
10526  case X86::FP80_TO_INT64_IN_MEM: {
10527    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10528    DebugLoc DL = MI->getDebugLoc();
10529
10530    // Change the floating point control register to use "round towards zero"
10531    // mode when truncating to an integer value.
10532    MachineFunction *F = BB->getParent();
10533    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
10534    addFrameReference(BuildMI(*BB, MI, DL,
10535                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
10536
10537    // Load the old value of the high byte of the control word...
10538    unsigned OldCW =
10539      F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
10540    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
10541                      CWFrameIdx);
10542
10543    // Set the high part to be round to zero...
10544    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
10545      .addImm(0xC7F);
10546
10547    // Reload the modified control word now...
10548    addFrameReference(BuildMI(*BB, MI, DL,
10549                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10550
10551    // Restore the memory image of control word to original value
10552    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
10553      .addReg(OldCW);
10554
10555    // Get the X86 opcode to use.
10556    unsigned Opc;
10557    switch (MI->getOpcode()) {
10558    default: llvm_unreachable("illegal opcode!");
10559    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
10560    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
10561    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
10562    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
10563    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
10564    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
10565    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
10566    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
10567    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
10568    }
10569
10570    X86AddressMode AM;
10571    MachineOperand &Op = MI->getOperand(0);
10572    if (Op.isReg()) {
10573      AM.BaseType = X86AddressMode::RegBase;
10574      AM.Base.Reg = Op.getReg();
10575    } else {
10576      AM.BaseType = X86AddressMode::FrameIndexBase;
10577      AM.Base.FrameIndex = Op.getIndex();
10578    }
10579    Op = MI->getOperand(1);
10580    if (Op.isImm())
10581      AM.Scale = Op.getImm();
10582    Op = MI->getOperand(2);
10583    if (Op.isImm())
10584      AM.IndexReg = Op.getImm();
10585    Op = MI->getOperand(3);
10586    if (Op.isGlobal()) {
10587      AM.GV = Op.getGlobal();
10588    } else {
10589      AM.Disp = Op.getImm();
10590    }
10591    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
10592                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
10593
10594    // Reload the original control word now.
10595    addFrameReference(BuildMI(*BB, MI, DL,
10596                              TII->get(X86::FLDCW16m)), CWFrameIdx);
10597
10598    MI->eraseFromParent();   // The pseudo instruction is gone now.
10599    return BB;
10600  }
10601    // String/text processing lowering.
10602  case X86::PCMPISTRM128REG:
10603  case X86::VPCMPISTRM128REG:
10604    return EmitPCMP(MI, BB, 3, false /* in-mem */);
10605  case X86::PCMPISTRM128MEM:
10606  case X86::VPCMPISTRM128MEM:
10607    return EmitPCMP(MI, BB, 3, true /* in-mem */);
10608  case X86::PCMPESTRM128REG:
10609  case X86::VPCMPESTRM128REG:
10610    return EmitPCMP(MI, BB, 5, false /* in mem */);
10611  case X86::PCMPESTRM128MEM:
10612  case X86::VPCMPESTRM128MEM:
10613    return EmitPCMP(MI, BB, 5, true /* in mem */);
10614
10615    // Thread synchronization.
10616  case X86::MONITOR:
10617    return EmitMonitor(MI, BB);
10618  case X86::MWAIT:
10619    return EmitMwait(MI, BB);
10620
10621    // Atomic Lowering.
10622  case X86::ATOMAND32:
10623    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10624                                               X86::AND32ri, X86::MOV32rm,
10625                                               X86::LCMPXCHG32,
10626                                               X86::NOT32r, X86::EAX,
10627                                               X86::GR32RegisterClass);
10628  case X86::ATOMOR32:
10629    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
10630                                               X86::OR32ri, X86::MOV32rm,
10631                                               X86::LCMPXCHG32,
10632                                               X86::NOT32r, X86::EAX,
10633                                               X86::GR32RegisterClass);
10634  case X86::ATOMXOR32:
10635    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
10636                                               X86::XOR32ri, X86::MOV32rm,
10637                                               X86::LCMPXCHG32,
10638                                               X86::NOT32r, X86::EAX,
10639                                               X86::GR32RegisterClass);
10640  case X86::ATOMNAND32:
10641    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
10642                                               X86::AND32ri, X86::MOV32rm,
10643                                               X86::LCMPXCHG32,
10644                                               X86::NOT32r, X86::EAX,
10645                                               X86::GR32RegisterClass, true);
10646  case X86::ATOMMIN32:
10647    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
10648  case X86::ATOMMAX32:
10649    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
10650  case X86::ATOMUMIN32:
10651    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
10652  case X86::ATOMUMAX32:
10653    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
10654
10655  case X86::ATOMAND16:
10656    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10657                                               X86::AND16ri, X86::MOV16rm,
10658                                               X86::LCMPXCHG16,
10659                                               X86::NOT16r, X86::AX,
10660                                               X86::GR16RegisterClass);
10661  case X86::ATOMOR16:
10662    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
10663                                               X86::OR16ri, X86::MOV16rm,
10664                                               X86::LCMPXCHG16,
10665                                               X86::NOT16r, X86::AX,
10666                                               X86::GR16RegisterClass);
10667  case X86::ATOMXOR16:
10668    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
10669                                               X86::XOR16ri, X86::MOV16rm,
10670                                               X86::LCMPXCHG16,
10671                                               X86::NOT16r, X86::AX,
10672                                               X86::GR16RegisterClass);
10673  case X86::ATOMNAND16:
10674    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
10675                                               X86::AND16ri, X86::MOV16rm,
10676                                               X86::LCMPXCHG16,
10677                                               X86::NOT16r, X86::AX,
10678                                               X86::GR16RegisterClass, true);
10679  case X86::ATOMMIN16:
10680    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
10681  case X86::ATOMMAX16:
10682    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
10683  case X86::ATOMUMIN16:
10684    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
10685  case X86::ATOMUMAX16:
10686    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
10687
10688  case X86::ATOMAND8:
10689    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10690                                               X86::AND8ri, X86::MOV8rm,
10691                                               X86::LCMPXCHG8,
10692                                               X86::NOT8r, X86::AL,
10693                                               X86::GR8RegisterClass);
10694  case X86::ATOMOR8:
10695    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
10696                                               X86::OR8ri, X86::MOV8rm,
10697                                               X86::LCMPXCHG8,
10698                                               X86::NOT8r, X86::AL,
10699                                               X86::GR8RegisterClass);
10700  case X86::ATOMXOR8:
10701    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
10702                                               X86::XOR8ri, X86::MOV8rm,
10703                                               X86::LCMPXCHG8,
10704                                               X86::NOT8r, X86::AL,
10705                                               X86::GR8RegisterClass);
10706  case X86::ATOMNAND8:
10707    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
10708                                               X86::AND8ri, X86::MOV8rm,
10709                                               X86::LCMPXCHG8,
10710                                               X86::NOT8r, X86::AL,
10711                                               X86::GR8RegisterClass, true);
10712  // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
10713  // This group is for 64-bit host.
10714  case X86::ATOMAND64:
10715    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10716                                               X86::AND64ri32, X86::MOV64rm,
10717                                               X86::LCMPXCHG64,
10718                                               X86::NOT64r, X86::RAX,
10719                                               X86::GR64RegisterClass);
10720  case X86::ATOMOR64:
10721    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
10722                                               X86::OR64ri32, X86::MOV64rm,
10723                                               X86::LCMPXCHG64,
10724                                               X86::NOT64r, X86::RAX,
10725                                               X86::GR64RegisterClass);
10726  case X86::ATOMXOR64:
10727    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
10728                                               X86::XOR64ri32, X86::MOV64rm,
10729                                               X86::LCMPXCHG64,
10730                                               X86::NOT64r, X86::RAX,
10731                                               X86::GR64RegisterClass);
10732  case X86::ATOMNAND64:
10733    return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
10734                                               X86::AND64ri32, X86::MOV64rm,
10735                                               X86::LCMPXCHG64,
10736                                               X86::NOT64r, X86::RAX,
10737                                               X86::GR64RegisterClass, true);
10738  case X86::ATOMMIN64:
10739    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
10740  case X86::ATOMMAX64:
10741    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
10742  case X86::ATOMUMIN64:
10743    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
10744  case X86::ATOMUMAX64:
10745    return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
10746
10747  // This group does 64-bit operations on a 32-bit host.
10748  case X86::ATOMAND6432:
10749    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10750                                               X86::AND32rr, X86::AND32rr,
10751                                               X86::AND32ri, X86::AND32ri,
10752                                               false);
10753  case X86::ATOMOR6432:
10754    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10755                                               X86::OR32rr, X86::OR32rr,
10756                                               X86::OR32ri, X86::OR32ri,
10757                                               false);
10758  case X86::ATOMXOR6432:
10759    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10760                                               X86::XOR32rr, X86::XOR32rr,
10761                                               X86::XOR32ri, X86::XOR32ri,
10762                                               false);
10763  case X86::ATOMNAND6432:
10764    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10765                                               X86::AND32rr, X86::AND32rr,
10766                                               X86::AND32ri, X86::AND32ri,
10767                                               true);
10768  case X86::ATOMADD6432:
10769    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10770                                               X86::ADD32rr, X86::ADC32rr,
10771                                               X86::ADD32ri, X86::ADC32ri,
10772                                               false);
10773  case X86::ATOMSUB6432:
10774    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10775                                               X86::SUB32rr, X86::SBB32rr,
10776                                               X86::SUB32ri, X86::SBB32ri,
10777                                               false);
10778  case X86::ATOMSWAP6432:
10779    return EmitAtomicBit6432WithCustomInserter(MI, BB,
10780                                               X86::MOV32rr, X86::MOV32rr,
10781                                               X86::MOV32ri, X86::MOV32ri,
10782                                               false);
10783  case X86::VASTART_SAVE_XMM_REGS:
10784    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
10785
10786  case X86::VAARG_64:
10787    return EmitVAARG64WithCustomInserter(MI, BB);
10788  }
10789}
10790
10791//===----------------------------------------------------------------------===//
10792//                           X86 Optimization Hooks
10793//===----------------------------------------------------------------------===//
10794
10795void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
10796                                                       const APInt &Mask,
10797                                                       APInt &KnownZero,
10798                                                       APInt &KnownOne,
10799                                                       const SelectionDAG &DAG,
10800                                                       unsigned Depth) const {
10801  unsigned Opc = Op.getOpcode();
10802  assert((Opc >= ISD::BUILTIN_OP_END ||
10803          Opc == ISD::INTRINSIC_WO_CHAIN ||
10804          Opc == ISD::INTRINSIC_W_CHAIN ||
10805          Opc == ISD::INTRINSIC_VOID) &&
10806         "Should use MaskedValueIsZero if you don't know whether Op"
10807         " is a target node!");
10808
10809  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
10810  switch (Opc) {
10811  default: break;
10812  case X86ISD::ADD:
10813  case X86ISD::SUB:
10814  case X86ISD::ADC:
10815  case X86ISD::SBB:
10816  case X86ISD::SMUL:
10817  case X86ISD::UMUL:
10818  case X86ISD::INC:
10819  case X86ISD::DEC:
10820  case X86ISD::OR:
10821  case X86ISD::XOR:
10822  case X86ISD::AND:
10823    // These nodes' second result is a boolean.
10824    if (Op.getResNo() == 0)
10825      break;
10826    // Fallthrough
10827  case X86ISD::SETCC:
10828    KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
10829                                       Mask.getBitWidth() - 1);
10830    break;
10831  }
10832}
10833
10834unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
10835                                                         unsigned Depth) const {
10836  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
10837  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
10838    return Op.getValueType().getScalarType().getSizeInBits();
10839
10840  // Fallback case.
10841  return 1;
10842}
10843
10844/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
10845/// node is a GlobalAddress + offset.
10846bool X86TargetLowering::isGAPlusOffset(SDNode *N,
10847                                       const GlobalValue* &GA,
10848                                       int64_t &Offset) const {
10849  if (N->getOpcode() == X86ISD::Wrapper) {
10850    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
10851      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
10852      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
10853      return true;
10854    }
10855  }
10856  return TargetLowering::isGAPlusOffset(N, GA, Offset);
10857}
10858
10859/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
10860/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
10861/// if the load addresses are consecutive, non-overlapping, and in the right
10862/// order.
10863static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
10864                                     TargetLowering::DAGCombinerInfo &DCI) {
10865  DebugLoc dl = N->getDebugLoc();
10866  EVT VT = N->getValueType(0);
10867
10868  if (VT.getSizeInBits() != 128)
10869    return SDValue();
10870
10871  // Don't create instructions with illegal types after legalize types has run.
10872  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10873  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
10874    return SDValue();
10875
10876  SmallVector<SDValue, 16> Elts;
10877  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
10878    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
10879
10880  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
10881}
10882
10883/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
10884/// generation and convert it from being a bunch of shuffles and extracts
10885/// to a simple store and scalar loads to extract the elements.
10886static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
10887                                                const TargetLowering &TLI) {
10888  SDValue InputVector = N->getOperand(0);
10889
10890  // Only operate on vectors of 4 elements, where the alternative shuffling
10891  // gets to be more expensive.
10892  if (InputVector.getValueType() != MVT::v4i32)
10893    return SDValue();
10894
10895  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
10896  // single use which is a sign-extend or zero-extend, and all elements are
10897  // used.
10898  SmallVector<SDNode *, 4> Uses;
10899  unsigned ExtractedElements = 0;
10900  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
10901       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
10902    if (UI.getUse().getResNo() != InputVector.getResNo())
10903      return SDValue();
10904
10905    SDNode *Extract = *UI;
10906    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
10907      return SDValue();
10908
10909    if (Extract->getValueType(0) != MVT::i32)
10910      return SDValue();
10911    if (!Extract->hasOneUse())
10912      return SDValue();
10913    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
10914        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
10915      return SDValue();
10916    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
10917      return SDValue();
10918
10919    // Record which element was extracted.
10920    ExtractedElements |=
10921      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
10922
10923    Uses.push_back(Extract);
10924  }
10925
10926  // If not all the elements were used, this may not be worthwhile.
10927  if (ExtractedElements != 15)
10928    return SDValue();
10929
10930  // Ok, we've now decided to do the transformation.
10931  DebugLoc dl = InputVector.getDebugLoc();
10932
10933  // Store the value to a temporary stack slot.
10934  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
10935  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
10936                            MachinePointerInfo(), false, false, 0);
10937
10938  // Replace each use (extract) with a load of the appropriate element.
10939  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
10940       UE = Uses.end(); UI != UE; ++UI) {
10941    SDNode *Extract = *UI;
10942
10943    // Compute the element's address.
10944    SDValue Idx = Extract->getOperand(1);
10945    unsigned EltSize =
10946        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
10947    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
10948    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
10949
10950    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(),
10951                                     StackPtr, OffsetVal);
10952
10953    // Load the scalar.
10954    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
10955                                     ScalarAddr, MachinePointerInfo(),
10956                                     false, false, 0);
10957
10958    // Replace the exact with the load.
10959    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
10960  }
10961
10962  // The replacement was made in place; don't return anything.
10963  return SDValue();
10964}
10965
10966/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
10967static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
10968                                    const X86Subtarget *Subtarget) {
10969  DebugLoc DL = N->getDebugLoc();
10970  SDValue Cond = N->getOperand(0);
10971  // Get the LHS/RHS of the select.
10972  SDValue LHS = N->getOperand(1);
10973  SDValue RHS = N->getOperand(2);
10974
10975  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
10976  // instructions match the semantics of the common C idiom x<y?x:y but not
10977  // x<=y?x:y, because of how they handle negative zero (which can be
10978  // ignored in unsafe-math mode).
10979  if (Subtarget->hasSSE2() &&
10980      (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
10981      Cond.getOpcode() == ISD::SETCC) {
10982    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
10983
10984    unsigned Opcode = 0;
10985    // Check for x CC y ? x : y.
10986    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
10987        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
10988      switch (CC) {
10989      default: break;
10990      case ISD::SETULT:
10991        // Converting this to a min would handle NaNs incorrectly, and swapping
10992        // the operands would cause it to handle comparisons between positive
10993        // and negative zero incorrectly.
10994        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
10995          if (!UnsafeFPMath &&
10996              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
10997            break;
10998          std::swap(LHS, RHS);
10999        }
11000        Opcode = X86ISD::FMIN;
11001        break;
11002      case ISD::SETOLE:
11003        // Converting this to a min would handle comparisons between positive
11004        // and negative zero incorrectly.
11005        if (!UnsafeFPMath &&
11006            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
11007          break;
11008        Opcode = X86ISD::FMIN;
11009        break;
11010      case ISD::SETULE:
11011        // Converting this to a min would handle both negative zeros and NaNs
11012        // incorrectly, but we can swap the operands to fix both.
11013        std::swap(LHS, RHS);
11014      case ISD::SETOLT:
11015      case ISD::SETLT:
11016      case ISD::SETLE:
11017        Opcode = X86ISD::FMIN;
11018        break;
11019
11020      case ISD::SETOGE:
11021        // Converting this to a max would handle comparisons between positive
11022        // and negative zero incorrectly.
11023        if (!UnsafeFPMath &&
11024            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
11025          break;
11026        Opcode = X86ISD::FMAX;
11027        break;
11028      case ISD::SETUGT:
11029        // Converting this to a max would handle NaNs incorrectly, and swapping
11030        // the operands would cause it to handle comparisons between positive
11031        // and negative zero incorrectly.
11032        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
11033          if (!UnsafeFPMath &&
11034              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
11035            break;
11036          std::swap(LHS, RHS);
11037        }
11038        Opcode = X86ISD::FMAX;
11039        break;
11040      case ISD::SETUGE:
11041        // Converting this to a max would handle both negative zeros and NaNs
11042        // incorrectly, but we can swap the operands to fix both.
11043        std::swap(LHS, RHS);
11044      case ISD::SETOGT:
11045      case ISD::SETGT:
11046      case ISD::SETGE:
11047        Opcode = X86ISD::FMAX;
11048        break;
11049      }
11050    // Check for x CC y ? y : x -- a min/max with reversed arms.
11051    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
11052               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
11053      switch (CC) {
11054      default: break;
11055      case ISD::SETOGE:
11056        // Converting this to a min would handle comparisons between positive
11057        // and negative zero incorrectly, and swapping the operands would
11058        // cause it to handle NaNs incorrectly.
11059        if (!UnsafeFPMath &&
11060            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
11061          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11062            break;
11063          std::swap(LHS, RHS);
11064        }
11065        Opcode = X86ISD::FMIN;
11066        break;
11067      case ISD::SETUGT:
11068        // Converting this to a min would handle NaNs incorrectly.
11069        if (!UnsafeFPMath &&
11070            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
11071          break;
11072        Opcode = X86ISD::FMIN;
11073        break;
11074      case ISD::SETUGE:
11075        // Converting this to a min would handle both negative zeros and NaNs
11076        // incorrectly, but we can swap the operands to fix both.
11077        std::swap(LHS, RHS);
11078      case ISD::SETOGT:
11079      case ISD::SETGT:
11080      case ISD::SETGE:
11081        Opcode = X86ISD::FMIN;
11082        break;
11083
11084      case ISD::SETULT:
11085        // Converting this to a max would handle NaNs incorrectly.
11086        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11087          break;
11088        Opcode = X86ISD::FMAX;
11089        break;
11090      case ISD::SETOLE:
11091        // Converting this to a max would handle comparisons between positive
11092        // and negative zero incorrectly, and swapping the operands would
11093        // cause it to handle NaNs incorrectly.
11094        if (!UnsafeFPMath &&
11095            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
11096          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
11097            break;
11098          std::swap(LHS, RHS);
11099        }
11100        Opcode = X86ISD::FMAX;
11101        break;
11102      case ISD::SETULE:
11103        // Converting this to a max would handle both negative zeros and NaNs
11104        // incorrectly, but we can swap the operands to fix both.
11105        std::swap(LHS, RHS);
11106      case ISD::SETOLT:
11107      case ISD::SETLT:
11108      case ISD::SETLE:
11109        Opcode = X86ISD::FMAX;
11110        break;
11111      }
11112    }
11113
11114    if (Opcode)
11115      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
11116  }
11117
11118  // If this is a select between two integer constants, try to do some
11119  // optimizations.
11120  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
11121    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
11122      // Don't do this for crazy integer types.
11123      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
11124        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
11125        // so that TrueC (the true value) is larger than FalseC.
11126        bool NeedsCondInvert = false;
11127
11128        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
11129            // Efficiently invertible.
11130            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
11131             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
11132              isa<ConstantSDNode>(Cond.getOperand(1))))) {
11133          NeedsCondInvert = true;
11134          std::swap(TrueC, FalseC);
11135        }
11136
11137        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
11138        if (FalseC->getAPIntValue() == 0 &&
11139            TrueC->getAPIntValue().isPowerOf2()) {
11140          if (NeedsCondInvert) // Invert the condition if needed.
11141            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11142                               DAG.getConstant(1, Cond.getValueType()));
11143
11144          // Zero extend the condition if needed.
11145          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
11146
11147          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11148          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
11149                             DAG.getConstant(ShAmt, MVT::i8));
11150        }
11151
11152        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
11153        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11154          if (NeedsCondInvert) // Invert the condition if needed.
11155            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11156                               DAG.getConstant(1, Cond.getValueType()));
11157
11158          // Zero extend the condition if needed.
11159          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11160                             FalseC->getValueType(0), Cond);
11161          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11162                             SDValue(FalseC, 0));
11163        }
11164
11165        // Optimize cases that will turn into an LEA instruction.  This requires
11166        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11167        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11168          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11169          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11170
11171          bool isFastMultiplier = false;
11172          if (Diff < 10) {
11173            switch ((unsigned char)Diff) {
11174              default: break;
11175              case 1:  // result = add base, cond
11176              case 2:  // result = lea base(    , cond*2)
11177              case 3:  // result = lea base(cond, cond*2)
11178              case 4:  // result = lea base(    , cond*4)
11179              case 5:  // result = lea base(cond, cond*4)
11180              case 8:  // result = lea base(    , cond*8)
11181              case 9:  // result = lea base(cond, cond*8)
11182                isFastMultiplier = true;
11183                break;
11184            }
11185          }
11186
11187          if (isFastMultiplier) {
11188            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11189            if (NeedsCondInvert) // Invert the condition if needed.
11190              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
11191                                 DAG.getConstant(1, Cond.getValueType()));
11192
11193            // Zero extend the condition if needed.
11194            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11195                               Cond);
11196            // Scale the condition by the difference.
11197            if (Diff != 1)
11198              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11199                                 DAG.getConstant(Diff, Cond.getValueType()));
11200
11201            // Add the base if non-zero.
11202            if (FalseC->getAPIntValue() != 0)
11203              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11204                                 SDValue(FalseC, 0));
11205            return Cond;
11206          }
11207        }
11208      }
11209  }
11210
11211  return SDValue();
11212}
11213
11214/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
11215static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
11216                                  TargetLowering::DAGCombinerInfo &DCI) {
11217  DebugLoc DL = N->getDebugLoc();
11218
11219  // If the flag operand isn't dead, don't touch this CMOV.
11220  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
11221    return SDValue();
11222
11223  // If this is a select between two integer constants, try to do some
11224  // optimizations.  Note that the operands are ordered the opposite of SELECT
11225  // operands.
11226  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
11227    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
11228      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
11229      // larger than FalseC (the false value).
11230      X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
11231
11232      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
11233        CC = X86::GetOppositeBranchCondition(CC);
11234        std::swap(TrueC, FalseC);
11235      }
11236
11237      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
11238      // This is efficient for any integer data type (including i8/i16) and
11239      // shift amount.
11240      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
11241        SDValue Cond = N->getOperand(3);
11242        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11243                           DAG.getConstant(CC, MVT::i8), Cond);
11244
11245        // Zero extend the condition if needed.
11246        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
11247
11248        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
11249        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
11250                           DAG.getConstant(ShAmt, MVT::i8));
11251        if (N->getNumValues() == 2)  // Dead flag value?
11252          return DCI.CombineTo(N, Cond, SDValue());
11253        return Cond;
11254      }
11255
11256      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
11257      // for any integer data type, including i8/i16.
11258      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
11259        SDValue Cond = N->getOperand(3);
11260        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11261                           DAG.getConstant(CC, MVT::i8), Cond);
11262
11263        // Zero extend the condition if needed.
11264        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
11265                           FalseC->getValueType(0), Cond);
11266        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11267                           SDValue(FalseC, 0));
11268
11269        if (N->getNumValues() == 2)  // Dead flag value?
11270          return DCI.CombineTo(N, Cond, SDValue());
11271        return Cond;
11272      }
11273
11274      // Optimize cases that will turn into an LEA instruction.  This requires
11275      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
11276      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
11277        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
11278        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
11279
11280        bool isFastMultiplier = false;
11281        if (Diff < 10) {
11282          switch ((unsigned char)Diff) {
11283          default: break;
11284          case 1:  // result = add base, cond
11285          case 2:  // result = lea base(    , cond*2)
11286          case 3:  // result = lea base(cond, cond*2)
11287          case 4:  // result = lea base(    , cond*4)
11288          case 5:  // result = lea base(cond, cond*4)
11289          case 8:  // result = lea base(    , cond*8)
11290          case 9:  // result = lea base(cond, cond*8)
11291            isFastMultiplier = true;
11292            break;
11293          }
11294        }
11295
11296        if (isFastMultiplier) {
11297          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
11298          SDValue Cond = N->getOperand(3);
11299          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
11300                             DAG.getConstant(CC, MVT::i8), Cond);
11301          // Zero extend the condition if needed.
11302          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
11303                             Cond);
11304          // Scale the condition by the difference.
11305          if (Diff != 1)
11306            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
11307                               DAG.getConstant(Diff, Cond.getValueType()));
11308
11309          // Add the base if non-zero.
11310          if (FalseC->getAPIntValue() != 0)
11311            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
11312                               SDValue(FalseC, 0));
11313          if (N->getNumValues() == 2)  // Dead flag value?
11314            return DCI.CombineTo(N, Cond, SDValue());
11315          return Cond;
11316        }
11317      }
11318    }
11319  }
11320  return SDValue();
11321}
11322
11323
11324/// PerformMulCombine - Optimize a single multiply with constant into two
11325/// in order to implement it with two cheaper instructions, e.g.
11326/// LEA + SHL, LEA + LEA.
11327static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
11328                                 TargetLowering::DAGCombinerInfo &DCI) {
11329  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11330    return SDValue();
11331
11332  EVT VT = N->getValueType(0);
11333  if (VT != MVT::i64)
11334    return SDValue();
11335
11336  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11337  if (!C)
11338    return SDValue();
11339  uint64_t MulAmt = C->getZExtValue();
11340  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
11341    return SDValue();
11342
11343  uint64_t MulAmt1 = 0;
11344  uint64_t MulAmt2 = 0;
11345  if ((MulAmt % 9) == 0) {
11346    MulAmt1 = 9;
11347    MulAmt2 = MulAmt / 9;
11348  } else if ((MulAmt % 5) == 0) {
11349    MulAmt1 = 5;
11350    MulAmt2 = MulAmt / 5;
11351  } else if ((MulAmt % 3) == 0) {
11352    MulAmt1 = 3;
11353    MulAmt2 = MulAmt / 3;
11354  }
11355  if (MulAmt2 &&
11356      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
11357    DebugLoc DL = N->getDebugLoc();
11358
11359    if (isPowerOf2_64(MulAmt2) &&
11360        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
11361      // If second multiplifer is pow2, issue it first. We want the multiply by
11362      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
11363      // is an add.
11364      std::swap(MulAmt1, MulAmt2);
11365
11366    SDValue NewMul;
11367    if (isPowerOf2_64(MulAmt1))
11368      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
11369                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
11370    else
11371      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
11372                           DAG.getConstant(MulAmt1, VT));
11373
11374    if (isPowerOf2_64(MulAmt2))
11375      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
11376                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
11377    else
11378      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
11379                           DAG.getConstant(MulAmt2, VT));
11380
11381    // Do not add new nodes to DAG combiner worklist.
11382    DCI.CombineTo(N, NewMul, false);
11383  }
11384  return SDValue();
11385}
11386
11387static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
11388  SDValue N0 = N->getOperand(0);
11389  SDValue N1 = N->getOperand(1);
11390  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
11391  EVT VT = N0.getValueType();
11392
11393  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
11394  // since the result of setcc_c is all zero's or all ones.
11395  if (N1C && N0.getOpcode() == ISD::AND &&
11396      N0.getOperand(1).getOpcode() == ISD::Constant) {
11397    SDValue N00 = N0.getOperand(0);
11398    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
11399        ((N00.getOpcode() == ISD::ANY_EXTEND ||
11400          N00.getOpcode() == ISD::ZERO_EXTEND) &&
11401         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
11402      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
11403      APInt ShAmt = N1C->getAPIntValue();
11404      Mask = Mask.shl(ShAmt);
11405      if (Mask != 0)
11406        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
11407                           N00, DAG.getConstant(Mask, VT));
11408    }
11409  }
11410
11411  return SDValue();
11412}
11413
11414/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
11415///                       when possible.
11416static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
11417                                   const X86Subtarget *Subtarget) {
11418  EVT VT = N->getValueType(0);
11419  if (!VT.isVector() && VT.isInteger() &&
11420      N->getOpcode() == ISD::SHL)
11421    return PerformSHLCombine(N, DAG);
11422
11423  // On X86 with SSE2 support, we can transform this to a vector shift if
11424  // all elements are shifted by the same amount.  We can't do this in legalize
11425  // because the a constant vector is typically transformed to a constant pool
11426  // so we have no knowledge of the shift amount.
11427  if (!Subtarget->hasSSE2())
11428    return SDValue();
11429
11430  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
11431    return SDValue();
11432
11433  SDValue ShAmtOp = N->getOperand(1);
11434  EVT EltVT = VT.getVectorElementType();
11435  DebugLoc DL = N->getDebugLoc();
11436  SDValue BaseShAmt = SDValue();
11437  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
11438    unsigned NumElts = VT.getVectorNumElements();
11439    unsigned i = 0;
11440    for (; i != NumElts; ++i) {
11441      SDValue Arg = ShAmtOp.getOperand(i);
11442      if (Arg.getOpcode() == ISD::UNDEF) continue;
11443      BaseShAmt = Arg;
11444      break;
11445    }
11446    for (; i != NumElts; ++i) {
11447      SDValue Arg = ShAmtOp.getOperand(i);
11448      if (Arg.getOpcode() == ISD::UNDEF) continue;
11449      if (Arg != BaseShAmt) {
11450        return SDValue();
11451      }
11452    }
11453  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
11454             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
11455    SDValue InVec = ShAmtOp.getOperand(0);
11456    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
11457      unsigned NumElts = InVec.getValueType().getVectorNumElements();
11458      unsigned i = 0;
11459      for (; i != NumElts; ++i) {
11460        SDValue Arg = InVec.getOperand(i);
11461        if (Arg.getOpcode() == ISD::UNDEF) continue;
11462        BaseShAmt = Arg;
11463        break;
11464      }
11465    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
11466       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
11467         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
11468         if (C->getZExtValue() == SplatIdx)
11469           BaseShAmt = InVec.getOperand(1);
11470       }
11471    }
11472    if (BaseShAmt.getNode() == 0)
11473      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
11474                              DAG.getIntPtrConstant(0));
11475  } else
11476    return SDValue();
11477
11478  // The shift amount is an i32.
11479  if (EltVT.bitsGT(MVT::i32))
11480    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
11481  else if (EltVT.bitsLT(MVT::i32))
11482    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
11483
11484  // The shift amount is identical so we can do a vector shift.
11485  SDValue  ValOp = N->getOperand(0);
11486  switch (N->getOpcode()) {
11487  default:
11488    llvm_unreachable("Unknown shift opcode!");
11489    break;
11490  case ISD::SHL:
11491    if (VT == MVT::v2i64)
11492      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11493                         DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
11494                         ValOp, BaseShAmt);
11495    if (VT == MVT::v4i32)
11496      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11497                         DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
11498                         ValOp, BaseShAmt);
11499    if (VT == MVT::v8i16)
11500      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11501                         DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
11502                         ValOp, BaseShAmt);
11503    break;
11504  case ISD::SRA:
11505    if (VT == MVT::v4i32)
11506      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11507                         DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
11508                         ValOp, BaseShAmt);
11509    if (VT == MVT::v8i16)
11510      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11511                         DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
11512                         ValOp, BaseShAmt);
11513    break;
11514  case ISD::SRL:
11515    if (VT == MVT::v2i64)
11516      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11517                         DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
11518                         ValOp, BaseShAmt);
11519    if (VT == MVT::v4i32)
11520      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11521                         DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
11522                         ValOp, BaseShAmt);
11523    if (VT ==  MVT::v8i16)
11524      return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
11525                         DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
11526                         ValOp, BaseShAmt);
11527    break;
11528  }
11529  return SDValue();
11530}
11531
11532
11533static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
11534                                 TargetLowering::DAGCombinerInfo &DCI,
11535                                 const X86Subtarget *Subtarget) {
11536  if (DCI.isBeforeLegalizeOps())
11537    return SDValue();
11538
11539  // Want to form PANDN nodes, in the hopes of then easily combining them with
11540  // OR and AND nodes to form PBLEND/PSIGN.
11541  EVT VT = N->getValueType(0);
11542  if (VT != MVT::v2i64)
11543    return SDValue();
11544
11545  SDValue N0 = N->getOperand(0);
11546  SDValue N1 = N->getOperand(1);
11547  DebugLoc DL = N->getDebugLoc();
11548
11549  // Check LHS for vnot
11550  if (N0.getOpcode() == ISD::XOR &&
11551      ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
11552    return DAG.getNode(X86ISD::PANDN, DL, VT, N0.getOperand(0), N1);
11553
11554  // Check RHS for vnot
11555  if (N1.getOpcode() == ISD::XOR &&
11556      ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
11557    return DAG.getNode(X86ISD::PANDN, DL, VT, N1.getOperand(0), N0);
11558
11559  return SDValue();
11560}
11561
11562static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
11563                                TargetLowering::DAGCombinerInfo &DCI,
11564                                const X86Subtarget *Subtarget) {
11565  if (DCI.isBeforeLegalizeOps())
11566    return SDValue();
11567
11568  EVT VT = N->getValueType(0);
11569  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
11570    return SDValue();
11571
11572  SDValue N0 = N->getOperand(0);
11573  SDValue N1 = N->getOperand(1);
11574
11575  // look for psign/blend
11576  if (Subtarget->hasSSSE3()) {
11577    if (VT == MVT::v2i64) {
11578      // Canonicalize pandn to RHS
11579      if (N0.getOpcode() == X86ISD::PANDN)
11580        std::swap(N0, N1);
11581      // or (and (m, x), (pandn m, y))
11582      if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::PANDN) {
11583        SDValue Mask = N1.getOperand(0);
11584        SDValue X    = N1.getOperand(1);
11585        SDValue Y;
11586        if (N0.getOperand(0) == Mask)
11587          Y = N0.getOperand(1);
11588        if (N0.getOperand(1) == Mask)
11589          Y = N0.getOperand(0);
11590
11591        // Check to see if the mask appeared in both the AND and PANDN and
11592        if (!Y.getNode())
11593          return SDValue();
11594
11595        // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
11596        if (Mask.getOpcode() != ISD::BITCAST ||
11597            X.getOpcode() != ISD::BITCAST ||
11598            Y.getOpcode() != ISD::BITCAST)
11599          return SDValue();
11600
11601        // Look through mask bitcast.
11602        Mask = Mask.getOperand(0);
11603        EVT MaskVT = Mask.getValueType();
11604
11605        // Validate that the Mask operand is a vector sra node.  The sra node
11606        // will be an intrinsic.
11607        if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
11608          return SDValue();
11609
11610        // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
11611        // there is no psrai.b
11612        switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
11613        case Intrinsic::x86_sse2_psrai_w:
11614        case Intrinsic::x86_sse2_psrai_d:
11615          break;
11616        default: return SDValue();
11617        }
11618
11619        // Check that the SRA is all signbits.
11620        SDValue SraC = Mask.getOperand(2);
11621        unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
11622        unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
11623        if ((SraAmt + 1) != EltBits)
11624          return SDValue();
11625
11626        DebugLoc DL = N->getDebugLoc();
11627
11628        // Now we know we at least have a plendvb with the mask val.  See if
11629        // we can form a psignb/w/d.
11630        // psign = x.type == y.type == mask.type && y = sub(0, x);
11631        X = X.getOperand(0);
11632        Y = Y.getOperand(0);
11633        if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
11634            ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
11635            X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
11636          unsigned Opc = 0;
11637          switch (EltBits) {
11638          case 8: Opc = X86ISD::PSIGNB; break;
11639          case 16: Opc = X86ISD::PSIGNW; break;
11640          case 32: Opc = X86ISD::PSIGND; break;
11641          default: break;
11642          }
11643          if (Opc) {
11644            SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
11645            return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
11646          }
11647        }
11648        // PBLENDVB only available on SSE 4.1
11649        if (!Subtarget->hasSSE41())
11650          return SDValue();
11651
11652        X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
11653        Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
11654        Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
11655        Mask = DAG.getNode(X86ISD::PBLENDVB, DL, MVT::v16i8, X, Y, Mask);
11656        return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
11657      }
11658    }
11659  }
11660
11661  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
11662  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
11663    std::swap(N0, N1);
11664  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
11665    return SDValue();
11666  if (!N0.hasOneUse() || !N1.hasOneUse())
11667    return SDValue();
11668
11669  SDValue ShAmt0 = N0.getOperand(1);
11670  if (ShAmt0.getValueType() != MVT::i8)
11671    return SDValue();
11672  SDValue ShAmt1 = N1.getOperand(1);
11673  if (ShAmt1.getValueType() != MVT::i8)
11674    return SDValue();
11675  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
11676    ShAmt0 = ShAmt0.getOperand(0);
11677  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
11678    ShAmt1 = ShAmt1.getOperand(0);
11679
11680  DebugLoc DL = N->getDebugLoc();
11681  unsigned Opc = X86ISD::SHLD;
11682  SDValue Op0 = N0.getOperand(0);
11683  SDValue Op1 = N1.getOperand(0);
11684  if (ShAmt0.getOpcode() == ISD::SUB) {
11685    Opc = X86ISD::SHRD;
11686    std::swap(Op0, Op1);
11687    std::swap(ShAmt0, ShAmt1);
11688  }
11689
11690  unsigned Bits = VT.getSizeInBits();
11691  if (ShAmt1.getOpcode() == ISD::SUB) {
11692    SDValue Sum = ShAmt1.getOperand(0);
11693    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
11694      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
11695      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
11696        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
11697      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
11698        return DAG.getNode(Opc, DL, VT,
11699                           Op0, Op1,
11700                           DAG.getNode(ISD::TRUNCATE, DL,
11701                                       MVT::i8, ShAmt0));
11702    }
11703  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
11704    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
11705    if (ShAmt0C &&
11706        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
11707      return DAG.getNode(Opc, DL, VT,
11708                         N0.getOperand(0), N1.getOperand(0),
11709                         DAG.getNode(ISD::TRUNCATE, DL,
11710                                       MVT::i8, ShAmt0));
11711  }
11712
11713  return SDValue();
11714}
11715
11716/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
11717static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
11718                                   const X86Subtarget *Subtarget) {
11719  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
11720  // the FP state in cases where an emms may be missing.
11721  // A preferable solution to the general problem is to figure out the right
11722  // places to insert EMMS.  This qualifies as a quick hack.
11723
11724  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
11725  StoreSDNode *St = cast<StoreSDNode>(N);
11726  EVT VT = St->getValue().getValueType();
11727  if (VT.getSizeInBits() != 64)
11728    return SDValue();
11729
11730  const Function *F = DAG.getMachineFunction().getFunction();
11731  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
11732  bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
11733    && Subtarget->hasSSE2();
11734  if ((VT.isVector() ||
11735       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
11736      isa<LoadSDNode>(St->getValue()) &&
11737      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
11738      St->getChain().hasOneUse() && !St->isVolatile()) {
11739    SDNode* LdVal = St->getValue().getNode();
11740    LoadSDNode *Ld = 0;
11741    int TokenFactorIndex = -1;
11742    SmallVector<SDValue, 8> Ops;
11743    SDNode* ChainVal = St->getChain().getNode();
11744    // Must be a store of a load.  We currently handle two cases:  the load
11745    // is a direct child, and it's under an intervening TokenFactor.  It is
11746    // possible to dig deeper under nested TokenFactors.
11747    if (ChainVal == LdVal)
11748      Ld = cast<LoadSDNode>(St->getChain());
11749    else if (St->getValue().hasOneUse() &&
11750             ChainVal->getOpcode() == ISD::TokenFactor) {
11751      for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
11752        if (ChainVal->getOperand(i).getNode() == LdVal) {
11753          TokenFactorIndex = i;
11754          Ld = cast<LoadSDNode>(St->getValue());
11755        } else
11756          Ops.push_back(ChainVal->getOperand(i));
11757      }
11758    }
11759
11760    if (!Ld || !ISD::isNormalLoad(Ld))
11761      return SDValue();
11762
11763    // If this is not the MMX case, i.e. we are just turning i64 load/store
11764    // into f64 load/store, avoid the transformation if there are multiple
11765    // uses of the loaded value.
11766    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
11767      return SDValue();
11768
11769    DebugLoc LdDL = Ld->getDebugLoc();
11770    DebugLoc StDL = N->getDebugLoc();
11771    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
11772    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
11773    // pair instead.
11774    if (Subtarget->is64Bit() || F64IsLegal) {
11775      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
11776      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
11777                                  Ld->getPointerInfo(), Ld->isVolatile(),
11778                                  Ld->isNonTemporal(), Ld->getAlignment());
11779      SDValue NewChain = NewLd.getValue(1);
11780      if (TokenFactorIndex != -1) {
11781        Ops.push_back(NewChain);
11782        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11783                               Ops.size());
11784      }
11785      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
11786                          St->getPointerInfo(),
11787                          St->isVolatile(), St->isNonTemporal(),
11788                          St->getAlignment());
11789    }
11790
11791    // Otherwise, lower to two pairs of 32-bit loads / stores.
11792    SDValue LoAddr = Ld->getBasePtr();
11793    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
11794                                 DAG.getConstant(4, MVT::i32));
11795
11796    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
11797                               Ld->getPointerInfo(),
11798                               Ld->isVolatile(), Ld->isNonTemporal(),
11799                               Ld->getAlignment());
11800    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
11801                               Ld->getPointerInfo().getWithOffset(4),
11802                               Ld->isVolatile(), Ld->isNonTemporal(),
11803                               MinAlign(Ld->getAlignment(), 4));
11804
11805    SDValue NewChain = LoLd.getValue(1);
11806    if (TokenFactorIndex != -1) {
11807      Ops.push_back(LoLd);
11808      Ops.push_back(HiLd);
11809      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
11810                             Ops.size());
11811    }
11812
11813    LoAddr = St->getBasePtr();
11814    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
11815                         DAG.getConstant(4, MVT::i32));
11816
11817    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
11818                                St->getPointerInfo(),
11819                                St->isVolatile(), St->isNonTemporal(),
11820                                St->getAlignment());
11821    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
11822                                St->getPointerInfo().getWithOffset(4),
11823                                St->isVolatile(),
11824                                St->isNonTemporal(),
11825                                MinAlign(St->getAlignment(), 4));
11826    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
11827  }
11828  return SDValue();
11829}
11830
11831/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
11832/// X86ISD::FXOR nodes.
11833static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
11834  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
11835  // F[X]OR(0.0, x) -> x
11836  // F[X]OR(x, 0.0) -> x
11837  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11838    if (C->getValueAPF().isPosZero())
11839      return N->getOperand(1);
11840  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11841    if (C->getValueAPF().isPosZero())
11842      return N->getOperand(0);
11843  return SDValue();
11844}
11845
11846/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
11847static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
11848  // FAND(0.0, x) -> 0.0
11849  // FAND(x, 0.0) -> 0.0
11850  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
11851    if (C->getValueAPF().isPosZero())
11852      return N->getOperand(0);
11853  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
11854    if (C->getValueAPF().isPosZero())
11855      return N->getOperand(1);
11856  return SDValue();
11857}
11858
11859static SDValue PerformBTCombine(SDNode *N,
11860                                SelectionDAG &DAG,
11861                                TargetLowering::DAGCombinerInfo &DCI) {
11862  // BT ignores high bits in the bit index operand.
11863  SDValue Op1 = N->getOperand(1);
11864  if (Op1.hasOneUse()) {
11865    unsigned BitWidth = Op1.getValueSizeInBits();
11866    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
11867    APInt KnownZero, KnownOne;
11868    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
11869                                          !DCI.isBeforeLegalizeOps());
11870    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11871    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
11872        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
11873      DCI.CommitTargetLoweringOpt(TLO);
11874  }
11875  return SDValue();
11876}
11877
11878static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
11879  SDValue Op = N->getOperand(0);
11880  if (Op.getOpcode() == ISD::BITCAST)
11881    Op = Op.getOperand(0);
11882  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
11883  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
11884      VT.getVectorElementType().getSizeInBits() ==
11885      OpVT.getVectorElementType().getSizeInBits()) {
11886    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
11887  }
11888  return SDValue();
11889}
11890
11891static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
11892  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
11893  //           (and (i32 x86isd::setcc_carry), 1)
11894  // This eliminates the zext. This transformation is necessary because
11895  // ISD::SETCC is always legalized to i8.
11896  DebugLoc dl = N->getDebugLoc();
11897  SDValue N0 = N->getOperand(0);
11898  EVT VT = N->getValueType(0);
11899  if (N0.getOpcode() == ISD::AND &&
11900      N0.hasOneUse() &&
11901      N0.getOperand(0).hasOneUse()) {
11902    SDValue N00 = N0.getOperand(0);
11903    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
11904      return SDValue();
11905    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11906    if (!C || C->getZExtValue() != 1)
11907      return SDValue();
11908    return DAG.getNode(ISD::AND, dl, VT,
11909                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
11910                                   N00.getOperand(0), N00.getOperand(1)),
11911                       DAG.getConstant(1, VT));
11912  }
11913
11914  return SDValue();
11915}
11916
11917// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
11918static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
11919  unsigned X86CC = N->getConstantOperandVal(0);
11920  SDValue EFLAG = N->getOperand(1);
11921  DebugLoc DL = N->getDebugLoc();
11922
11923  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
11924  // a zext and produces an all-ones bit which is more useful than 0/1 in some
11925  // cases.
11926  if (X86CC == X86::COND_B)
11927    return DAG.getNode(ISD::AND, DL, MVT::i8,
11928                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
11929                                   DAG.getConstant(X86CC, MVT::i8), EFLAG),
11930                       DAG.getConstant(1, MVT::i8));
11931
11932  return SDValue();
11933}
11934
11935// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
11936static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
11937                                 X86TargetLowering::DAGCombinerInfo &DCI) {
11938  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
11939  // the result is either zero or one (depending on the input carry bit).
11940  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
11941  if (X86::isZeroNode(N->getOperand(0)) &&
11942      X86::isZeroNode(N->getOperand(1)) &&
11943      // We don't have a good way to replace an EFLAGS use, so only do this when
11944      // dead right now.
11945      SDValue(N, 1).use_empty()) {
11946    DebugLoc DL = N->getDebugLoc();
11947    EVT VT = N->getValueType(0);
11948    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
11949    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
11950                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
11951                                           DAG.getConstant(X86::COND_B,MVT::i8),
11952                                           N->getOperand(2)),
11953                               DAG.getConstant(1, VT));
11954    return DCI.CombineTo(N, Res1, CarryOut);
11955  }
11956
11957  return SDValue();
11958}
11959
11960// fold (add Y, (sete  X, 0)) -> adc  0, Y
11961//      (add Y, (setne X, 0)) -> sbb -1, Y
11962//      (sub (sete  X, 0), Y) -> sbb  0, Y
11963//      (sub (setne X, 0), Y) -> adc -1, Y
11964static SDValue OptimizeConditonalInDecrement(SDNode *N, SelectionDAG &DAG) {
11965  DebugLoc DL = N->getDebugLoc();
11966
11967  // Look through ZExts.
11968  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
11969  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
11970    return SDValue();
11971
11972  SDValue SetCC = Ext.getOperand(0);
11973  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
11974    return SDValue();
11975
11976  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
11977  if (CC != X86::COND_E && CC != X86::COND_NE)
11978    return SDValue();
11979
11980  SDValue Cmp = SetCC.getOperand(1);
11981  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
11982      !X86::isZeroNode(Cmp.getOperand(1)) ||
11983      !Cmp.getOperand(0).getValueType().isInteger())
11984    return SDValue();
11985
11986  SDValue CmpOp0 = Cmp.getOperand(0);
11987  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
11988                               DAG.getConstant(1, CmpOp0.getValueType()));
11989
11990  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
11991  if (CC == X86::COND_NE)
11992    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
11993                       DL, OtherVal.getValueType(), OtherVal,
11994                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
11995  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
11996                     DL, OtherVal.getValueType(), OtherVal,
11997                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
11998}
11999
12000SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
12001                                             DAGCombinerInfo &DCI) const {
12002  SelectionDAG &DAG = DCI.DAG;
12003  switch (N->getOpcode()) {
12004  default: break;
12005  case ISD::EXTRACT_VECTOR_ELT:
12006    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
12007  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
12008  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
12009  case ISD::ADD:
12010  case ISD::SUB:            return OptimizeConditonalInDecrement(N, DAG);
12011  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
12012  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
12013  case ISD::SHL:
12014  case ISD::SRA:
12015  case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
12016  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
12017  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
12018  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
12019  case X86ISD::FXOR:
12020  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
12021  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
12022  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
12023  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
12024  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
12025  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
12026  case X86ISD::SHUFPS:      // Handle all target specific shuffles
12027  case X86ISD::SHUFPD:
12028  case X86ISD::PALIGN:
12029  case X86ISD::PUNPCKHBW:
12030  case X86ISD::PUNPCKHWD:
12031  case X86ISD::PUNPCKHDQ:
12032  case X86ISD::PUNPCKHQDQ:
12033  case X86ISD::UNPCKHPS:
12034  case X86ISD::UNPCKHPD:
12035  case X86ISD::PUNPCKLBW:
12036  case X86ISD::PUNPCKLWD:
12037  case X86ISD::PUNPCKLDQ:
12038  case X86ISD::PUNPCKLQDQ:
12039  case X86ISD::UNPCKLPS:
12040  case X86ISD::UNPCKLPD:
12041  case X86ISD::VUNPCKLPS:
12042  case X86ISD::VUNPCKLPD:
12043  case X86ISD::VUNPCKLPSY:
12044  case X86ISD::VUNPCKLPDY:
12045  case X86ISD::MOVHLPS:
12046  case X86ISD::MOVLHPS:
12047  case X86ISD::PSHUFD:
12048  case X86ISD::PSHUFHW:
12049  case X86ISD::PSHUFLW:
12050  case X86ISD::MOVSS:
12051  case X86ISD::MOVSD:
12052  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI);
12053  }
12054
12055  return SDValue();
12056}
12057
12058/// isTypeDesirableForOp - Return true if the target has native support for
12059/// the specified value type and it is 'desirable' to use the type for the
12060/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
12061/// instruction encodings are longer and some i16 instructions are slow.
12062bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
12063  if (!isTypeLegal(VT))
12064    return false;
12065  if (VT != MVT::i16)
12066    return true;
12067
12068  switch (Opc) {
12069  default:
12070    return true;
12071  case ISD::LOAD:
12072  case ISD::SIGN_EXTEND:
12073  case ISD::ZERO_EXTEND:
12074  case ISD::ANY_EXTEND:
12075  case ISD::SHL:
12076  case ISD::SRL:
12077  case ISD::SUB:
12078  case ISD::ADD:
12079  case ISD::MUL:
12080  case ISD::AND:
12081  case ISD::OR:
12082  case ISD::XOR:
12083    return false;
12084  }
12085}
12086
12087/// IsDesirableToPromoteOp - This method query the target whether it is
12088/// beneficial for dag combiner to promote the specified node. If true, it
12089/// should return the desired promotion type by reference.
12090bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
12091  EVT VT = Op.getValueType();
12092  if (VT != MVT::i16)
12093    return false;
12094
12095  bool Promote = false;
12096  bool Commute = false;
12097  switch (Op.getOpcode()) {
12098  default: break;
12099  case ISD::LOAD: {
12100    LoadSDNode *LD = cast<LoadSDNode>(Op);
12101    // If the non-extending load has a single use and it's not live out, then it
12102    // might be folded.
12103    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
12104                                                     Op.hasOneUse()*/) {
12105      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
12106             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
12107        // The only case where we'd want to promote LOAD (rather then it being
12108        // promoted as an operand is when it's only use is liveout.
12109        if (UI->getOpcode() != ISD::CopyToReg)
12110          return false;
12111      }
12112    }
12113    Promote = true;
12114    break;
12115  }
12116  case ISD::SIGN_EXTEND:
12117  case ISD::ZERO_EXTEND:
12118  case ISD::ANY_EXTEND:
12119    Promote = true;
12120    break;
12121  case ISD::SHL:
12122  case ISD::SRL: {
12123    SDValue N0 = Op.getOperand(0);
12124    // Look out for (store (shl (load), x)).
12125    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
12126      return false;
12127    Promote = true;
12128    break;
12129  }
12130  case ISD::ADD:
12131  case ISD::MUL:
12132  case ISD::AND:
12133  case ISD::OR:
12134  case ISD::XOR:
12135    Commute = true;
12136    // fallthrough
12137  case ISD::SUB: {
12138    SDValue N0 = Op.getOperand(0);
12139    SDValue N1 = Op.getOperand(1);
12140    if (!Commute && MayFoldLoad(N1))
12141      return false;
12142    // Avoid disabling potential load folding opportunities.
12143    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
12144      return false;
12145    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
12146      return false;
12147    Promote = true;
12148  }
12149  }
12150
12151  PVT = MVT::i32;
12152  return Promote;
12153}
12154
12155//===----------------------------------------------------------------------===//
12156//                           X86 Inline Assembly Support
12157//===----------------------------------------------------------------------===//
12158
12159bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
12160  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
12161
12162  std::string AsmStr = IA->getAsmString();
12163
12164  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
12165  SmallVector<StringRef, 4> AsmPieces;
12166  SplitString(AsmStr, AsmPieces, ";\n");
12167
12168  switch (AsmPieces.size()) {
12169  default: return false;
12170  case 1:
12171    AsmStr = AsmPieces[0];
12172    AsmPieces.clear();
12173    SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
12174
12175    // FIXME: this should verify that we are targetting a 486 or better.  If not,
12176    // we will turn this bswap into something that will be lowered to logical ops
12177    // instead of emitting the bswap asm.  For now, we don't support 486 or lower
12178    // so don't worry about this.
12179    // bswap $0
12180    if (AsmPieces.size() == 2 &&
12181        (AsmPieces[0] == "bswap" ||
12182         AsmPieces[0] == "bswapq" ||
12183         AsmPieces[0] == "bswapl") &&
12184        (AsmPieces[1] == "$0" ||
12185         AsmPieces[1] == "${0:q}")) {
12186      // No need to check constraints, nothing other than the equivalent of
12187      // "=r,0" would be valid here.
12188      const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12189      if (!Ty || Ty->getBitWidth() % 16 != 0)
12190        return false;
12191      return IntrinsicLowering::LowerToByteSwap(CI);
12192    }
12193    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
12194    if (CI->getType()->isIntegerTy(16) &&
12195        AsmPieces.size() == 3 &&
12196        (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
12197        AsmPieces[1] == "$$8," &&
12198        AsmPieces[2] == "${0:w}" &&
12199        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12200      AsmPieces.clear();
12201      const std::string &ConstraintsStr = IA->getConstraintString();
12202      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12203      std::sort(AsmPieces.begin(), AsmPieces.end());
12204      if (AsmPieces.size() == 4 &&
12205          AsmPieces[0] == "~{cc}" &&
12206          AsmPieces[1] == "~{dirflag}" &&
12207          AsmPieces[2] == "~{flags}" &&
12208          AsmPieces[3] == "~{fpsr}") {
12209        const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12210        if (!Ty || Ty->getBitWidth() % 16 != 0)
12211          return false;
12212        return IntrinsicLowering::LowerToByteSwap(CI);
12213      }
12214    }
12215    break;
12216  case 3:
12217    if (CI->getType()->isIntegerTy(32) &&
12218        IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
12219      SmallVector<StringRef, 4> Words;
12220      SplitString(AsmPieces[0], Words, " \t,");
12221      if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12222          Words[2] == "${0:w}") {
12223        Words.clear();
12224        SplitString(AsmPieces[1], Words, " \t,");
12225        if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
12226            Words[2] == "$0") {
12227          Words.clear();
12228          SplitString(AsmPieces[2], Words, " \t,");
12229          if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
12230              Words[2] == "${0:w}") {
12231            AsmPieces.clear();
12232            const std::string &ConstraintsStr = IA->getConstraintString();
12233            SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
12234            std::sort(AsmPieces.begin(), AsmPieces.end());
12235            if (AsmPieces.size() == 4 &&
12236                AsmPieces[0] == "~{cc}" &&
12237                AsmPieces[1] == "~{dirflag}" &&
12238                AsmPieces[2] == "~{flags}" &&
12239                AsmPieces[3] == "~{fpsr}") {
12240              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12241              if (!Ty || Ty->getBitWidth() % 16 != 0)
12242                return false;
12243              return IntrinsicLowering::LowerToByteSwap(CI);
12244            }
12245          }
12246        }
12247      }
12248    }
12249
12250    if (CI->getType()->isIntegerTy(64)) {
12251      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
12252      if (Constraints.size() >= 2 &&
12253          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
12254          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
12255        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
12256        SmallVector<StringRef, 4> Words;
12257        SplitString(AsmPieces[0], Words, " \t");
12258        if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
12259          Words.clear();
12260          SplitString(AsmPieces[1], Words, " \t");
12261          if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
12262            Words.clear();
12263            SplitString(AsmPieces[2], Words, " \t,");
12264            if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
12265                Words[2] == "%edx") {
12266              const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
12267              if (!Ty || Ty->getBitWidth() % 16 != 0)
12268                return false;
12269              return IntrinsicLowering::LowerToByteSwap(CI);
12270            }
12271          }
12272        }
12273      }
12274    }
12275    break;
12276  }
12277  return false;
12278}
12279
12280
12281
12282/// getConstraintType - Given a constraint letter, return the type of
12283/// constraint it is for this target.
12284X86TargetLowering::ConstraintType
12285X86TargetLowering::getConstraintType(const std::string &Constraint) const {
12286  if (Constraint.size() == 1) {
12287    switch (Constraint[0]) {
12288    case 'R':
12289    case 'q':
12290    case 'Q':
12291    case 'f':
12292    case 't':
12293    case 'u':
12294    case 'y':
12295    case 'x':
12296    case 'Y':
12297      return C_RegisterClass;
12298    case 'a':
12299    case 'b':
12300    case 'c':
12301    case 'd':
12302    case 'S':
12303    case 'D':
12304    case 'A':
12305      return C_Register;
12306    case 'I':
12307    case 'J':
12308    case 'K':
12309    case 'L':
12310    case 'M':
12311    case 'N':
12312    case 'G':
12313    case 'C':
12314    case 'e':
12315    case 'Z':
12316      return C_Other;
12317    default:
12318      break;
12319    }
12320  }
12321  return TargetLowering::getConstraintType(Constraint);
12322}
12323
12324/// Examine constraint type and operand type and determine a weight value.
12325/// This object must already have been set up with the operand type
12326/// and the current alternative constraint selected.
12327TargetLowering::ConstraintWeight
12328  X86TargetLowering::getSingleConstraintMatchWeight(
12329    AsmOperandInfo &info, const char *constraint) const {
12330  ConstraintWeight weight = CW_Invalid;
12331  Value *CallOperandVal = info.CallOperandVal;
12332    // If we don't have a value, we can't do a match,
12333    // but allow it at the lowest weight.
12334  if (CallOperandVal == NULL)
12335    return CW_Default;
12336  const Type *type = CallOperandVal->getType();
12337  // Look at the constraint type.
12338  switch (*constraint) {
12339  default:
12340    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
12341  case 'R':
12342  case 'q':
12343  case 'Q':
12344  case 'a':
12345  case 'b':
12346  case 'c':
12347  case 'd':
12348  case 'S':
12349  case 'D':
12350  case 'A':
12351    if (CallOperandVal->getType()->isIntegerTy())
12352      weight = CW_SpecificReg;
12353    break;
12354  case 'f':
12355  case 't':
12356  case 'u':
12357      if (type->isFloatingPointTy())
12358        weight = CW_SpecificReg;
12359      break;
12360  case 'y':
12361      if (type->isX86_MMXTy() && Subtarget->hasMMX())
12362        weight = CW_SpecificReg;
12363      break;
12364  case 'x':
12365  case 'Y':
12366    if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
12367      weight = CW_Register;
12368    break;
12369  case 'I':
12370    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
12371      if (C->getZExtValue() <= 31)
12372        weight = CW_Constant;
12373    }
12374    break;
12375  case 'J':
12376    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12377      if (C->getZExtValue() <= 63)
12378        weight = CW_Constant;
12379    }
12380    break;
12381  case 'K':
12382    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12383      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
12384        weight = CW_Constant;
12385    }
12386    break;
12387  case 'L':
12388    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12389      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
12390        weight = CW_Constant;
12391    }
12392    break;
12393  case 'M':
12394    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12395      if (C->getZExtValue() <= 3)
12396        weight = CW_Constant;
12397    }
12398    break;
12399  case 'N':
12400    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12401      if (C->getZExtValue() <= 0xff)
12402        weight = CW_Constant;
12403    }
12404    break;
12405  case 'G':
12406  case 'C':
12407    if (dyn_cast<ConstantFP>(CallOperandVal)) {
12408      weight = CW_Constant;
12409    }
12410    break;
12411  case 'e':
12412    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12413      if ((C->getSExtValue() >= -0x80000000LL) &&
12414          (C->getSExtValue() <= 0x7fffffffLL))
12415        weight = CW_Constant;
12416    }
12417    break;
12418  case 'Z':
12419    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
12420      if (C->getZExtValue() <= 0xffffffff)
12421        weight = CW_Constant;
12422    }
12423    break;
12424  }
12425  return weight;
12426}
12427
12428/// LowerXConstraint - try to replace an X constraint, which matches anything,
12429/// with another that has more specific requirements based on the type of the
12430/// corresponding operand.
12431const char *X86TargetLowering::
12432LowerXConstraint(EVT ConstraintVT) const {
12433  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
12434  // 'f' like normal targets.
12435  if (ConstraintVT.isFloatingPoint()) {
12436    if (Subtarget->hasXMMInt())
12437      return "Y";
12438    if (Subtarget->hasXMM())
12439      return "x";
12440  }
12441
12442  return TargetLowering::LowerXConstraint(ConstraintVT);
12443}
12444
12445/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
12446/// vector.  If it is invalid, don't add anything to Ops.
12447void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
12448                                                     char Constraint,
12449                                                     std::vector<SDValue>&Ops,
12450                                                     SelectionDAG &DAG) const {
12451  SDValue Result(0, 0);
12452
12453  switch (Constraint) {
12454  default: break;
12455  case 'I':
12456    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12457      if (C->getZExtValue() <= 31) {
12458        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12459        break;
12460      }
12461    }
12462    return;
12463  case 'J':
12464    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12465      if (C->getZExtValue() <= 63) {
12466        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12467        break;
12468      }
12469    }
12470    return;
12471  case 'K':
12472    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12473      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
12474        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12475        break;
12476      }
12477    }
12478    return;
12479  case 'N':
12480    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12481      if (C->getZExtValue() <= 255) {
12482        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12483        break;
12484      }
12485    }
12486    return;
12487  case 'e': {
12488    // 32-bit signed value
12489    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12490      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12491                                           C->getSExtValue())) {
12492        // Widen to 64 bits here to get it sign extended.
12493        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
12494        break;
12495      }
12496    // FIXME gcc accepts some relocatable values here too, but only in certain
12497    // memory models; it's complicated.
12498    }
12499    return;
12500  }
12501  case 'Z': {
12502    // 32-bit unsigned value
12503    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
12504      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
12505                                           C->getZExtValue())) {
12506        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
12507        break;
12508      }
12509    }
12510    // FIXME gcc accepts some relocatable values here too, but only in certain
12511    // memory models; it's complicated.
12512    return;
12513  }
12514  case 'i': {
12515    // Literal immediates are always ok.
12516    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
12517      // Widen to 64 bits here to get it sign extended.
12518      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
12519      break;
12520    }
12521
12522    // In any sort of PIC mode addresses need to be computed at runtime by
12523    // adding in a register or some sort of table lookup.  These can't
12524    // be used as immediates.
12525    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
12526      return;
12527
12528    // If we are in non-pic codegen mode, we allow the address of a global (with
12529    // an optional displacement) to be used with 'i'.
12530    GlobalAddressSDNode *GA = 0;
12531    int64_t Offset = 0;
12532
12533    // Match either (GA), (GA+C), (GA+C1+C2), etc.
12534    while (1) {
12535      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
12536        Offset += GA->getOffset();
12537        break;
12538      } else if (Op.getOpcode() == ISD::ADD) {
12539        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12540          Offset += C->getZExtValue();
12541          Op = Op.getOperand(0);
12542          continue;
12543        }
12544      } else if (Op.getOpcode() == ISD::SUB) {
12545        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12546          Offset += -C->getZExtValue();
12547          Op = Op.getOperand(0);
12548          continue;
12549        }
12550      }
12551
12552      // Otherwise, this isn't something we can handle, reject it.
12553      return;
12554    }
12555
12556    const GlobalValue *GV = GA->getGlobal();
12557    // If we require an extra load to get this address, as in PIC mode, we
12558    // can't accept it.
12559    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
12560                                                        getTargetMachine())))
12561      return;
12562
12563    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
12564                                        GA->getValueType(0), Offset);
12565    break;
12566  }
12567  }
12568
12569  if (Result.getNode()) {
12570    Ops.push_back(Result);
12571    return;
12572  }
12573  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12574}
12575
12576std::vector<unsigned> X86TargetLowering::
12577getRegClassForInlineAsmConstraint(const std::string &Constraint,
12578                                  EVT VT) const {
12579  if (Constraint.size() == 1) {
12580    // FIXME: not handling fp-stack yet!
12581    switch (Constraint[0]) {      // GCC X86 Constraint Letters
12582    default: break;  // Unknown constraint letter
12583    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
12584      if (Subtarget->is64Bit()) {
12585        if (VT == MVT::i32)
12586          return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
12587                                       X86::ESI, X86::EDI, X86::R8D, X86::R9D,
12588                                       X86::R10D,X86::R11D,X86::R12D,
12589                                       X86::R13D,X86::R14D,X86::R15D,
12590                                       X86::EBP, X86::ESP, 0);
12591        else if (VT == MVT::i16)
12592          return make_vector<unsigned>(X86::AX,  X86::DX,  X86::CX, X86::BX,
12593                                       X86::SI,  X86::DI,  X86::R8W,X86::R9W,
12594                                       X86::R10W,X86::R11W,X86::R12W,
12595                                       X86::R13W,X86::R14W,X86::R15W,
12596                                       X86::BP,  X86::SP, 0);
12597        else if (VT == MVT::i8)
12598          return make_vector<unsigned>(X86::AL,  X86::DL,  X86::CL, X86::BL,
12599                                       X86::SIL, X86::DIL, X86::R8B,X86::R9B,
12600                                       X86::R10B,X86::R11B,X86::R12B,
12601                                       X86::R13B,X86::R14B,X86::R15B,
12602                                       X86::BPL, X86::SPL, 0);
12603
12604        else if (VT == MVT::i64)
12605          return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
12606                                       X86::RSI, X86::RDI, X86::R8,  X86::R9,
12607                                       X86::R10, X86::R11, X86::R12,
12608                                       X86::R13, X86::R14, X86::R15,
12609                                       X86::RBP, X86::RSP, 0);
12610
12611        break;
12612      }
12613      // 32-bit fallthrough
12614    case 'Q':   // Q_REGS
12615      if (VT == MVT::i32)
12616        return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
12617      else if (VT == MVT::i16)
12618        return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
12619      else if (VT == MVT::i8)
12620        return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
12621      else if (VT == MVT::i64)
12622        return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
12623      break;
12624    }
12625  }
12626
12627  return std::vector<unsigned>();
12628}
12629
12630std::pair<unsigned, const TargetRegisterClass*>
12631X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
12632                                                EVT VT) const {
12633  // First, see if this is a constraint that directly corresponds to an LLVM
12634  // register class.
12635  if (Constraint.size() == 1) {
12636    // GCC Constraint Letters
12637    switch (Constraint[0]) {
12638    default: break;
12639    case 'r':   // GENERAL_REGS
12640    case 'l':   // INDEX_REGS
12641      if (VT == MVT::i8)
12642        return std::make_pair(0U, X86::GR8RegisterClass);
12643      if (VT == MVT::i16)
12644        return std::make_pair(0U, X86::GR16RegisterClass);
12645      if (VT == MVT::i32 || !Subtarget->is64Bit())
12646        return std::make_pair(0U, X86::GR32RegisterClass);
12647      return std::make_pair(0U, X86::GR64RegisterClass);
12648    case 'R':   // LEGACY_REGS
12649      if (VT == MVT::i8)
12650        return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
12651      if (VT == MVT::i16)
12652        return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
12653      if (VT == MVT::i32 || !Subtarget->is64Bit())
12654        return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
12655      return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
12656    case 'f':  // FP Stack registers.
12657      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
12658      // value to the correct fpstack register class.
12659      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
12660        return std::make_pair(0U, X86::RFP32RegisterClass);
12661      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
12662        return std::make_pair(0U, X86::RFP64RegisterClass);
12663      return std::make_pair(0U, X86::RFP80RegisterClass);
12664    case 'y':   // MMX_REGS if MMX allowed.
12665      if (!Subtarget->hasMMX()) break;
12666      return std::make_pair(0U, X86::VR64RegisterClass);
12667    case 'Y':   // SSE_REGS if SSE2 allowed
12668      if (!Subtarget->hasXMMInt()) break;
12669      // FALL THROUGH.
12670    case 'x':   // SSE_REGS if SSE1 allowed
12671      if (!Subtarget->hasXMM()) break;
12672
12673      switch (VT.getSimpleVT().SimpleTy) {
12674      default: break;
12675      // Scalar SSE types.
12676      case MVT::f32:
12677      case MVT::i32:
12678        return std::make_pair(0U, X86::FR32RegisterClass);
12679      case MVT::f64:
12680      case MVT::i64:
12681        return std::make_pair(0U, X86::FR64RegisterClass);
12682      // Vector types.
12683      case MVT::v16i8:
12684      case MVT::v8i16:
12685      case MVT::v4i32:
12686      case MVT::v2i64:
12687      case MVT::v4f32:
12688      case MVT::v2f64:
12689        return std::make_pair(0U, X86::VR128RegisterClass);
12690      }
12691      break;
12692    }
12693  }
12694
12695  // Use the default implementation in TargetLowering to convert the register
12696  // constraint into a member of a register class.
12697  std::pair<unsigned, const TargetRegisterClass*> Res;
12698  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
12699
12700  // Not found as a standard register?
12701  if (Res.second == 0) {
12702    // Map st(0) -> st(7) -> ST0
12703    if (Constraint.size() == 7 && Constraint[0] == '{' &&
12704        tolower(Constraint[1]) == 's' &&
12705        tolower(Constraint[2]) == 't' &&
12706        Constraint[3] == '(' &&
12707        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
12708        Constraint[5] == ')' &&
12709        Constraint[6] == '}') {
12710
12711      Res.first = X86::ST0+Constraint[4]-'0';
12712      Res.second = X86::RFP80RegisterClass;
12713      return Res;
12714    }
12715
12716    // GCC allows "st(0)" to be called just plain "st".
12717    if (StringRef("{st}").equals_lower(Constraint)) {
12718      Res.first = X86::ST0;
12719      Res.second = X86::RFP80RegisterClass;
12720      return Res;
12721    }
12722
12723    // flags -> EFLAGS
12724    if (StringRef("{flags}").equals_lower(Constraint)) {
12725      Res.first = X86::EFLAGS;
12726      Res.second = X86::CCRRegisterClass;
12727      return Res;
12728    }
12729
12730    // 'A' means EAX + EDX.
12731    if (Constraint == "A") {
12732      Res.first = X86::EAX;
12733      Res.second = X86::GR32_ADRegisterClass;
12734      return Res;
12735    }
12736    return Res;
12737  }
12738
12739  // Otherwise, check to see if this is a register class of the wrong value
12740  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
12741  // turn into {ax},{dx}.
12742  if (Res.second->hasType(VT))
12743    return Res;   // Correct type already, nothing to do.
12744
12745  // All of the single-register GCC register classes map their values onto
12746  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
12747  // really want an 8-bit or 32-bit register, map to the appropriate register
12748  // class and return the appropriate register.
12749  if (Res.second == X86::GR16RegisterClass) {
12750    if (VT == MVT::i8) {
12751      unsigned DestReg = 0;
12752      switch (Res.first) {
12753      default: break;
12754      case X86::AX: DestReg = X86::AL; break;
12755      case X86::DX: DestReg = X86::DL; break;
12756      case X86::CX: DestReg = X86::CL; break;
12757      case X86::BX: DestReg = X86::BL; break;
12758      }
12759      if (DestReg) {
12760        Res.first = DestReg;
12761        Res.second = X86::GR8RegisterClass;
12762      }
12763    } else if (VT == MVT::i32) {
12764      unsigned DestReg = 0;
12765      switch (Res.first) {
12766      default: break;
12767      case X86::AX: DestReg = X86::EAX; break;
12768      case X86::DX: DestReg = X86::EDX; break;
12769      case X86::CX: DestReg = X86::ECX; break;
12770      case X86::BX: DestReg = X86::EBX; break;
12771      case X86::SI: DestReg = X86::ESI; break;
12772      case X86::DI: DestReg = X86::EDI; break;
12773      case X86::BP: DestReg = X86::EBP; break;
12774      case X86::SP: DestReg = X86::ESP; break;
12775      }
12776      if (DestReg) {
12777        Res.first = DestReg;
12778        Res.second = X86::GR32RegisterClass;
12779      }
12780    } else if (VT == MVT::i64) {
12781      unsigned DestReg = 0;
12782      switch (Res.first) {
12783      default: break;
12784      case X86::AX: DestReg = X86::RAX; break;
12785      case X86::DX: DestReg = X86::RDX; break;
12786      case X86::CX: DestReg = X86::RCX; break;
12787      case X86::BX: DestReg = X86::RBX; break;
12788      case X86::SI: DestReg = X86::RSI; break;
12789      case X86::DI: DestReg = X86::RDI; break;
12790      case X86::BP: DestReg = X86::RBP; break;
12791      case X86::SP: DestReg = X86::RSP; break;
12792      }
12793      if (DestReg) {
12794        Res.first = DestReg;
12795        Res.second = X86::GR64RegisterClass;
12796      }
12797    }
12798  } else if (Res.second == X86::FR32RegisterClass ||
12799             Res.second == X86::FR64RegisterClass ||
12800             Res.second == X86::VR128RegisterClass) {
12801    // Handle references to XMM physical registers that got mapped into the
12802    // wrong class.  This can happen with constraints like {xmm0} where the
12803    // target independent register mapper will just pick the first match it can
12804    // find, ignoring the required type.
12805    if (VT == MVT::f32)
12806      Res.second = X86::FR32RegisterClass;
12807    else if (VT == MVT::f64)
12808      Res.second = X86::FR64RegisterClass;
12809    else if (X86::VR128RegisterClass->hasType(VT))
12810      Res.second = X86::VR128RegisterClass;
12811  }
12812
12813  return Res;
12814}
12815