X86ISelLowering.cpp revision fd49821c3598e254735e7d08469fb7e9905498c6
1//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86ISelLowering.h"
17#include "X86.h"
18#include "X86InstrBuilder.h"
19#include "X86TargetMachine.h"
20#include "X86TargetObjectFile.h"
21#include "Utils/X86ShuffleDecode.h"
22#include "llvm/CallingConv.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/GlobalAlias.h"
26#include "llvm/GlobalVariable.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Intrinsics.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/CodeGen/IntrinsicLowering.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/MC/MCAsmInfo.h"
39#include "llvm/MC/MCContext.h"
40#include "llvm/MC/MCExpr.h"
41#include "llvm/MC/MCSymbol.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45#include "llvm/ADT/VariadicFunction.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/MathExtras.h"
50#include "llvm/Target/TargetOptions.h"
51#include <bitset>
52#include <cctype>
53using namespace llvm;
54
55STATISTIC(NumTailCalls, "Number of tail calls");
56
57// Forward declarations.
58static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
59                       SDValue V2);
60
61/// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
62/// sets things up to match to an AVX VEXTRACTF128 instruction or a
63/// simple subregister reference.  Idx is an index in the 128 bits we
64/// want.  It need not be aligned to a 128-bit bounday.  That makes
65/// lowering EXTRACT_VECTOR_ELT operations easier.
66static SDValue Extract128BitVector(SDValue Vec, unsigned IdxVal,
67                                   SelectionDAG &DAG, DebugLoc dl) {
68  EVT VT = Vec.getValueType();
69  assert(VT.is256BitVector() && "Unexpected vector size!");
70  EVT ElVT = VT.getVectorElementType();
71  unsigned Factor = VT.getSizeInBits()/128;
72  EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
73                                  VT.getVectorNumElements()/Factor);
74
75  // Extract from UNDEF is UNDEF.
76  if (Vec.getOpcode() == ISD::UNDEF)
77    return DAG.getUNDEF(ResultVT);
78
79  // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
80  // we can match to VEXTRACTF128.
81  unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
82
83  // This is the index of the first element of the 128-bit chunk
84  // we want.
85  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
86                               * ElemsPerChunk);
87
88  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
89  SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
90                               VecIdx);
91
92  return Result;
93}
94
95/// Generate a DAG to put 128-bits into a vector > 128 bits.  This
96/// sets things up to match to an AVX VINSERTF128 instruction or a
97/// simple superregister reference.  Idx is an index in the 128 bits
98/// we want.  It need not be aligned to a 128-bit bounday.  That makes
99/// lowering INSERT_VECTOR_ELT operations easier.
100static SDValue Insert128BitVector(SDValue Result, SDValue Vec,
101                                  unsigned IdxVal, SelectionDAG &DAG,
102                                  DebugLoc dl) {
103  // Inserting UNDEF is Result
104  if (Vec.getOpcode() == ISD::UNDEF)
105    return Result;
106
107  EVT VT = Vec.getValueType();
108  assert(VT.is128BitVector() && "Unexpected vector size!");
109
110  EVT ElVT = VT.getVectorElementType();
111  EVT ResultVT = Result.getValueType();
112
113  // Insert the relevant 128 bits.
114  unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
115
116  // This is the index of the first element of the 128-bit chunk
117  // we want.
118  unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
119                               * ElemsPerChunk);
120
121  SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
122  return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
123                     VecIdx);
124}
125
126/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
127/// instructions. This is used because creating CONCAT_VECTOR nodes of
128/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
129/// large BUILD_VECTORS.
130static SDValue Concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
131                                   unsigned NumElems, SelectionDAG &DAG,
132                                   DebugLoc dl) {
133  SDValue V = Insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
134  return Insert128BitVector(V, V2, NumElems/2, DAG, dl);
135}
136
137static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
138  const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
139  bool is64Bit = Subtarget->is64Bit();
140
141  if (Subtarget->isTargetEnvMacho()) {
142    if (is64Bit)
143      return new X86_64MachoTargetObjectFile();
144    return new TargetLoweringObjectFileMachO();
145  }
146
147  if (Subtarget->isTargetLinux())
148    return new X86LinuxTargetObjectFile();
149  if (Subtarget->isTargetELF())
150    return new TargetLoweringObjectFileELF();
151  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
152    return new TargetLoweringObjectFileCOFF();
153  llvm_unreachable("unknown subtarget type");
154}
155
156X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
157  : TargetLowering(TM, createTLOF(TM)) {
158  Subtarget = &TM.getSubtarget<X86Subtarget>();
159  X86ScalarSSEf64 = Subtarget->hasSSE2();
160  X86ScalarSSEf32 = Subtarget->hasSSE1();
161  X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
162
163  RegInfo = TM.getRegisterInfo();
164  TD = getTargetData();
165
166  // Set up the TargetLowering object.
167  static const MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
168
169  // X86 is weird, it always uses i8 for shift amounts and setcc results.
170  setBooleanContents(ZeroOrOneBooleanContent);
171  // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
172  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
173
174  // For 64-bit since we have so many registers use the ILP scheduler, for
175  // 32-bit code use the register pressure specific scheduling.
176  // For Atom, always use ILP scheduling.
177  if (Subtarget->isAtom())
178    setSchedulingPreference(Sched::ILP);
179  else if (Subtarget->is64Bit())
180    setSchedulingPreference(Sched::ILP);
181  else
182    setSchedulingPreference(Sched::RegPressure);
183  setStackPointerRegisterToSaveRestore(X86StackPtr);
184
185  if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
186    // Setup Windows compiler runtime calls.
187    setLibcallName(RTLIB::SDIV_I64, "_alldiv");
188    setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
189    setLibcallName(RTLIB::SREM_I64, "_allrem");
190    setLibcallName(RTLIB::UREM_I64, "_aullrem");
191    setLibcallName(RTLIB::MUL_I64, "_allmul");
192    setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
193    setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
194    setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
195    setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
196    setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
197
198    // The _ftol2 runtime function has an unusual calling conv, which
199    // is modeled by a special pseudo-instruction.
200    setLibcallName(RTLIB::FPTOUINT_F64_I64, 0);
201    setLibcallName(RTLIB::FPTOUINT_F32_I64, 0);
202    setLibcallName(RTLIB::FPTOUINT_F64_I32, 0);
203    setLibcallName(RTLIB::FPTOUINT_F32_I32, 0);
204  }
205
206  if (Subtarget->isTargetDarwin()) {
207    // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
208    setUseUnderscoreSetJmp(false);
209    setUseUnderscoreLongJmp(false);
210  } else if (Subtarget->isTargetMingw()) {
211    // MS runtime is weird: it exports _setjmp, but longjmp!
212    setUseUnderscoreSetJmp(true);
213    setUseUnderscoreLongJmp(false);
214  } else {
215    setUseUnderscoreSetJmp(true);
216    setUseUnderscoreLongJmp(true);
217  }
218
219  // Set up the register classes.
220  addRegisterClass(MVT::i8, &X86::GR8RegClass);
221  addRegisterClass(MVT::i16, &X86::GR16RegClass);
222  addRegisterClass(MVT::i32, &X86::GR32RegClass);
223  if (Subtarget->is64Bit())
224    addRegisterClass(MVT::i64, &X86::GR64RegClass);
225
226  setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
227
228  // We don't accept any truncstore of integer registers.
229  setTruncStoreAction(MVT::i64, MVT::i32, Expand);
230  setTruncStoreAction(MVT::i64, MVT::i16, Expand);
231  setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
232  setTruncStoreAction(MVT::i32, MVT::i16, Expand);
233  setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
234  setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
235
236  // SETOEQ and SETUNE require checking two conditions.
237  setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
238  setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
239  setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
240  setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
241  setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
242  setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
243
244  // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
245  // operation.
246  setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
247  setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
248  setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
249
250  if (Subtarget->is64Bit()) {
251    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
252    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
253  } else if (!TM.Options.UseSoftFloat) {
254    // We have an algorithm for SSE2->double, and we turn this into a
255    // 64-bit FILD followed by conditional FADD for other targets.
256    setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
257    // We have an algorithm for SSE2, and we turn this into a 64-bit
258    // FILD for other targets.
259    setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
260  }
261
262  // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
263  // this operation.
264  setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
265  setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
266
267  if (!TM.Options.UseSoftFloat) {
268    // SSE has no i16 to fp conversion, only i32
269    if (X86ScalarSSEf32) {
270      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
271      // f32 and f64 cases are Legal, f80 case is not
272      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
273    } else {
274      setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
275      setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
276    }
277  } else {
278    setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
279    setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
280  }
281
282  // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
283  // are Legal, f80 is custom lowered.
284  setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
285  setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
286
287  // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
288  // this operation.
289  setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
290  setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
291
292  if (X86ScalarSSEf32) {
293    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
294    // f32 and f64 cases are Legal, f80 case is not
295    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
296  } else {
297    setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
298    setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
299  }
300
301  // Handle FP_TO_UINT by promoting the destination to a larger signed
302  // conversion.
303  setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
304  setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
305  setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
306
307  if (Subtarget->is64Bit()) {
308    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
309    setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
310  } else if (!TM.Options.UseSoftFloat) {
311    // Since AVX is a superset of SSE3, only check for SSE here.
312    if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
313      // Expand FP_TO_UINT into a select.
314      // FIXME: We would like to use a Custom expander here eventually to do
315      // the optimal thing for SSE vs. the default expansion in the legalizer.
316      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
317    else
318      // With SSE3 we can use fisttpll to convert to a signed i64; without
319      // SSE, we're stuck with a fistpll.
320      setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
321  }
322
323  if (isTargetFTOL()) {
324    // Use the _ftol2 runtime function, which has a pseudo-instruction
325    // to handle its weird calling convention.
326    setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Custom);
327  }
328
329  // TODO: when we have SSE, these could be more efficient, by using movd/movq.
330  if (!X86ScalarSSEf64) {
331    setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
332    setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
333    if (Subtarget->is64Bit()) {
334      setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
335      // Without SSE, i64->f64 goes through memory.
336      setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
337    }
338  }
339
340  // Scalar integer divide and remainder are lowered to use operations that
341  // produce two results, to match the available instructions. This exposes
342  // the two-result form to trivial CSE, which is able to combine x/y and x%y
343  // into a single instruction.
344  //
345  // Scalar integer multiply-high is also lowered to use two-result
346  // operations, to match the available instructions. However, plain multiply
347  // (low) operations are left as Legal, as there are single-result
348  // instructions for this in x86. Using the two-result multiply instructions
349  // when both high and low results are needed must be arranged by dagcombine.
350  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
351    MVT VT = IntVTs[i];
352    setOperationAction(ISD::MULHS, VT, Expand);
353    setOperationAction(ISD::MULHU, VT, Expand);
354    setOperationAction(ISD::SDIV, VT, Expand);
355    setOperationAction(ISD::UDIV, VT, Expand);
356    setOperationAction(ISD::SREM, VT, Expand);
357    setOperationAction(ISD::UREM, VT, Expand);
358
359    // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
360    setOperationAction(ISD::ADDC, VT, Custom);
361    setOperationAction(ISD::ADDE, VT, Custom);
362    setOperationAction(ISD::SUBC, VT, Custom);
363    setOperationAction(ISD::SUBE, VT, Custom);
364  }
365
366  setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
367  setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
368  setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
369  setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
370  if (Subtarget->is64Bit())
371    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
372  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
373  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
374  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
375  setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
376  setOperationAction(ISD::FREM             , MVT::f32  , Expand);
377  setOperationAction(ISD::FREM             , MVT::f64  , Expand);
378  setOperationAction(ISD::FREM             , MVT::f80  , Expand);
379  setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
380
381  // Promote the i8 variants and force them on up to i32 which has a shorter
382  // encoding.
383  setOperationAction(ISD::CTTZ             , MVT::i8   , Promote);
384  AddPromotedToType (ISD::CTTZ             , MVT::i8   , MVT::i32);
385  setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , Promote);
386  AddPromotedToType (ISD::CTTZ_ZERO_UNDEF  , MVT::i8   , MVT::i32);
387  if (Subtarget->hasBMI()) {
388    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16  , Expand);
389    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32  , Expand);
390    if (Subtarget->is64Bit())
391      setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
392  } else {
393    setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
394    setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
395    if (Subtarget->is64Bit())
396      setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
397  }
398
399  if (Subtarget->hasLZCNT()) {
400    // When promoting the i8 variants, force them to i32 for a shorter
401    // encoding.
402    setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
403    AddPromotedToType (ISD::CTLZ           , MVT::i8   , MVT::i32);
404    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Promote);
405    AddPromotedToType (ISD::CTLZ_ZERO_UNDEF, MVT::i8   , MVT::i32);
406    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Expand);
407    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Expand);
408    if (Subtarget->is64Bit())
409      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
410  } else {
411    setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
412    setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
413    setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
414    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8   , Custom);
415    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16  , Custom);
416    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32  , Custom);
417    if (Subtarget->is64Bit()) {
418      setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
419      setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
420    }
421  }
422
423  if (Subtarget->hasPOPCNT()) {
424    setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
425  } else {
426    setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
427    setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
428    setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
429    if (Subtarget->is64Bit())
430      setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
431  }
432
433  setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
434  setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
435
436  // These should be promoted to a larger select which is supported.
437  setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
438  // X86 wants to expand cmov itself.
439  setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
440  setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
441  setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
442  setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
443  setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
444  setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
445  setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
446  setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
447  setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
448  setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
449  setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
450  setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
451  if (Subtarget->is64Bit()) {
452    setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
453    setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
454  }
455  setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
456
457  // Darwin ABI issue.
458  setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
459  setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
460  setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
461  setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
462  if (Subtarget->is64Bit())
463    setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
464  setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
465  setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
466  if (Subtarget->is64Bit()) {
467    setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
468    setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
469    setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
470    setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
471    setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
472  }
473  // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
474  setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
475  setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
476  setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
477  if (Subtarget->is64Bit()) {
478    setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
479    setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
480    setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
481  }
482
483  if (Subtarget->hasSSE1())
484    setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
485
486  setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
487  setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
488
489  // On X86 and X86-64, atomic operations are lowered to locked instructions.
490  // Locked instructions, in turn, have implicit fence semantics (all memory
491  // operations are flushed before issuing the locked instruction, and they
492  // are not buffered), so we can fold away the common pattern of
493  // fence-atomic-fence.
494  setShouldFoldAtomicFences(true);
495
496  // Expand certain atomics
497  for (unsigned i = 0; i != array_lengthof(IntVTs); ++i) {
498    MVT VT = IntVTs[i];
499    setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
500    setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
501    setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
502  }
503
504  if (!Subtarget->is64Bit()) {
505    setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
506    setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
507    setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
508    setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
509    setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
510    setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
511    setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
512    setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
513  }
514
515  if (Subtarget->hasCmpxchg16b()) {
516    setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
517  }
518
519  // FIXME - use subtarget debug flags
520  if (!Subtarget->isTargetDarwin() &&
521      !Subtarget->isTargetELF() &&
522      !Subtarget->isTargetCygMing()) {
523    setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
524  }
525
526  setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
527  setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
528  setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
529  setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
530  if (Subtarget->is64Bit()) {
531    setExceptionPointerRegister(X86::RAX);
532    setExceptionSelectorRegister(X86::RDX);
533  } else {
534    setExceptionPointerRegister(X86::EAX);
535    setExceptionSelectorRegister(X86::EDX);
536  }
537  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
538  setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
539
540  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
541  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
542
543  setOperationAction(ISD::TRAP, MVT::Other, Legal);
544
545  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
546  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
547  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
548  if (Subtarget->is64Bit()) {
549    setOperationAction(ISD::VAARG           , MVT::Other, Custom);
550    setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
551  } else {
552    setOperationAction(ISD::VAARG           , MVT::Other, Expand);
553    setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
554  }
555
556  setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
557  setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
558
559  if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
560    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
561                       MVT::i64 : MVT::i32, Custom);
562  else if (TM.Options.EnableSegmentedStacks)
563    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
564                       MVT::i64 : MVT::i32, Custom);
565  else
566    setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
567                       MVT::i64 : MVT::i32, Expand);
568
569  if (!TM.Options.UseSoftFloat && X86ScalarSSEf64) {
570    // f32 and f64 use SSE.
571    // Set up the FP register classes.
572    addRegisterClass(MVT::f32, &X86::FR32RegClass);
573    addRegisterClass(MVT::f64, &X86::FR64RegClass);
574
575    // Use ANDPD to simulate FABS.
576    setOperationAction(ISD::FABS , MVT::f64, Custom);
577    setOperationAction(ISD::FABS , MVT::f32, Custom);
578
579    // Use XORP to simulate FNEG.
580    setOperationAction(ISD::FNEG , MVT::f64, Custom);
581    setOperationAction(ISD::FNEG , MVT::f32, Custom);
582
583    // Use ANDPD and ORPD to simulate FCOPYSIGN.
584    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
585    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
586
587    // Lower this to FGETSIGNx86 plus an AND.
588    setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
589    setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
590
591    // We don't support sin/cos/fmod
592    setOperationAction(ISD::FSIN , MVT::f64, Expand);
593    setOperationAction(ISD::FCOS , MVT::f64, Expand);
594    setOperationAction(ISD::FSIN , MVT::f32, Expand);
595    setOperationAction(ISD::FCOS , MVT::f32, Expand);
596
597    // Expand FP immediates into loads from the stack, except for the special
598    // cases we handle.
599    addLegalFPImmediate(APFloat(+0.0)); // xorpd
600    addLegalFPImmediate(APFloat(+0.0f)); // xorps
601  } else if (!TM.Options.UseSoftFloat && X86ScalarSSEf32) {
602    // Use SSE for f32, x87 for f64.
603    // Set up the FP register classes.
604    addRegisterClass(MVT::f32, &X86::FR32RegClass);
605    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
606
607    // Use ANDPS to simulate FABS.
608    setOperationAction(ISD::FABS , MVT::f32, Custom);
609
610    // Use XORP to simulate FNEG.
611    setOperationAction(ISD::FNEG , MVT::f32, Custom);
612
613    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
614
615    // Use ANDPS and ORPS to simulate FCOPYSIGN.
616    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
617    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
618
619    // We don't support sin/cos/fmod
620    setOperationAction(ISD::FSIN , MVT::f32, Expand);
621    setOperationAction(ISD::FCOS , MVT::f32, Expand);
622
623    // Special cases we handle for FP constants.
624    addLegalFPImmediate(APFloat(+0.0f)); // xorps
625    addLegalFPImmediate(APFloat(+0.0)); // FLD0
626    addLegalFPImmediate(APFloat(+1.0)); // FLD1
627    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
628    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
629
630    if (!TM.Options.UnsafeFPMath) {
631      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
632      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
633    }
634  } else if (!TM.Options.UseSoftFloat) {
635    // f32 and f64 in x87.
636    // Set up the FP register classes.
637    addRegisterClass(MVT::f64, &X86::RFP64RegClass);
638    addRegisterClass(MVT::f32, &X86::RFP32RegClass);
639
640    setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
641    setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
642    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
643    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
644
645    if (!TM.Options.UnsafeFPMath) {
646      setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
647      setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
648    }
649    addLegalFPImmediate(APFloat(+0.0)); // FLD0
650    addLegalFPImmediate(APFloat(+1.0)); // FLD1
651    addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
652    addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
653    addLegalFPImmediate(APFloat(+0.0f)); // FLD0
654    addLegalFPImmediate(APFloat(+1.0f)); // FLD1
655    addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
656    addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
657  }
658
659  // We don't support FMA.
660  setOperationAction(ISD::FMA, MVT::f64, Expand);
661  setOperationAction(ISD::FMA, MVT::f32, Expand);
662
663  // Long double always uses X87.
664  if (!TM.Options.UseSoftFloat) {
665    addRegisterClass(MVT::f80, &X86::RFP80RegClass);
666    setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
667    setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
668    {
669      APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
670      addLegalFPImmediate(TmpFlt);  // FLD0
671      TmpFlt.changeSign();
672      addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
673
674      bool ignored;
675      APFloat TmpFlt2(+1.0);
676      TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
677                      &ignored);
678      addLegalFPImmediate(TmpFlt2);  // FLD1
679      TmpFlt2.changeSign();
680      addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
681    }
682
683    if (!TM.Options.UnsafeFPMath) {
684      setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
685      setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
686    }
687
688    setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
689    setOperationAction(ISD::FCEIL,  MVT::f80, Expand);
690    setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
691    setOperationAction(ISD::FRINT,  MVT::f80, Expand);
692    setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
693    setOperationAction(ISD::FMA, MVT::f80, Expand);
694  }
695
696  // Always use a library call for pow.
697  setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
698  setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
699  setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
700
701  setOperationAction(ISD::FLOG, MVT::f80, Expand);
702  setOperationAction(ISD::FLOG2, MVT::f80, Expand);
703  setOperationAction(ISD::FLOG10, MVT::f80, Expand);
704  setOperationAction(ISD::FEXP, MVT::f80, Expand);
705  setOperationAction(ISD::FEXP2, MVT::f80, Expand);
706
707  // First set operation action for all vector types to either promote
708  // (for widening) or expand (for scalarization). Then we will selectively
709  // turn on ones that can be effectively codegen'd.
710  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
711           VT <= MVT::LAST_VECTOR_VALUETYPE; ++VT) {
712    setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
713    setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
714    setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
715    setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
716    setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
717    setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
718    setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
719    setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
720    setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
721    setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
722    setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
723    setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
724    setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
725    setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
726    setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
727    setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
728    setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
729    setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
730    setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
731    setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
732    setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
733    setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
734    setOperationAction(ISD::FMA,  (MVT::SimpleValueType)VT, Expand);
735    setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
736    setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
737    setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
738    setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
739    setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
740    setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
741    setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
742    setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
743    setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
744    setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
745    setOperationAction(ISD::CTTZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
746    setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
747    setOperationAction(ISD::CTLZ_ZERO_UNDEF, (MVT::SimpleValueType)VT, Expand);
748    setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
749    setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
750    setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
751    setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
752    setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
753    setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
754    setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
755    setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
756    setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
757    setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
758    setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
759    setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
760    setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
761    setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
762    setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
763    setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
764    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
765    setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
766    setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
767    setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
768    setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
769    setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
770    for (int InnerVT = MVT::FIRST_VECTOR_VALUETYPE;
771             InnerVT <= MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
772      setTruncStoreAction((MVT::SimpleValueType)VT,
773                          (MVT::SimpleValueType)InnerVT, Expand);
774    setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
775    setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
776    setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
777  }
778
779  // FIXME: In order to prevent SSE instructions being expanded to MMX ones
780  // with -msoft-float, disable use of MMX as well.
781  if (!TM.Options.UseSoftFloat && Subtarget->hasMMX()) {
782    addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
783    // No operations on x86mmx supported, everything uses intrinsics.
784  }
785
786  // MMX-sized vectors (other than x86mmx) are expected to be expanded
787  // into smaller operations.
788  setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
789  setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
790  setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
791  setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
792  setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
793  setOperationAction(ISD::AND,                MVT::v4i16, Expand);
794  setOperationAction(ISD::AND,                MVT::v2i32, Expand);
795  setOperationAction(ISD::AND,                MVT::v1i64, Expand);
796  setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
797  setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
798  setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
799  setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
800  setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
801  setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
802  setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
803  setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
804  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
805  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
806  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
807  setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
808  setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
809  setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
810  setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
811  setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
812  setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
813  setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
814  setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
815  setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
816  setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
817
818  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE1()) {
819    addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
820
821    setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
822    setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
823    setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
824    setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
825    setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
826    setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
827    setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
828    setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
829    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
830    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
831    setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
832  }
833
834  if (!TM.Options.UseSoftFloat && Subtarget->hasSSE2()) {
835    addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
836
837    // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
838    // registers cannot be used even for integer operations.
839    addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
840    addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
841    addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
842    addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
843
844    setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
845    setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
846    setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
847    setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
848    setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
849    setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
850    setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
851    setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
852    setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
853    setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
854    setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
855    setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
856    setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
857    setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
858    setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
859    setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
860
861    setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
862    setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
863    setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
864    setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
865
866    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
867    setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
868    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
869    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
870    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
871
872    // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
873    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
874      MVT VT = (MVT::SimpleValueType)i;
875      // Do not attempt to custom lower non-power-of-2 vectors
876      if (!isPowerOf2_32(VT.getVectorNumElements()))
877        continue;
878      // Do not attempt to custom lower non-128-bit vectors
879      if (!VT.is128BitVector())
880        continue;
881      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
882      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
883      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
884    }
885
886    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
887    setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
888    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
889    setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
890    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
891    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
892
893    if (Subtarget->is64Bit()) {
894      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
895      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
896    }
897
898    // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
899    for (int i = MVT::v16i8; i != MVT::v2i64; ++i) {
900      MVT VT = (MVT::SimpleValueType)i;
901
902      // Do not attempt to promote non-128-bit vectors
903      if (!VT.is128BitVector())
904        continue;
905
906      setOperationAction(ISD::AND,    VT, Promote);
907      AddPromotedToType (ISD::AND,    VT, MVT::v2i64);
908      setOperationAction(ISD::OR,     VT, Promote);
909      AddPromotedToType (ISD::OR,     VT, MVT::v2i64);
910      setOperationAction(ISD::XOR,    VT, Promote);
911      AddPromotedToType (ISD::XOR,    VT, MVT::v2i64);
912      setOperationAction(ISD::LOAD,   VT, Promote);
913      AddPromotedToType (ISD::LOAD,   VT, MVT::v2i64);
914      setOperationAction(ISD::SELECT, VT, Promote);
915      AddPromotedToType (ISD::SELECT, VT, MVT::v2i64);
916    }
917
918    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
919
920    // Custom lower v2i64 and v2f64 selects.
921    setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
922    setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
923    setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
924    setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
925
926    setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
927    setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
928  }
929
930  if (Subtarget->hasSSE41()) {
931    setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
932    setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
933    setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
934    setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
935    setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
936    setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
937    setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
938    setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
939    setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
940    setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
941
942    // FIXME: Do we need to handle scalar-to-vector here?
943    setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
944
945    setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
946    setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
947    setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
948    setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
949    setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
950
951    // i8 and i16 vectors are custom , because the source register and source
952    // source memory operand types are not the same width.  f32 vectors are
953    // custom since the immediate controlling the insert encodes additional
954    // information.
955    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
956    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
957    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
958    setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
959
960    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
961    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
962    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
963    setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
964
965    // FIXME: these should be Legal but thats only for the case where
966    // the index is constant.  For now custom expand to deal with that.
967    if (Subtarget->is64Bit()) {
968      setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
969      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
970    }
971  }
972
973  if (Subtarget->hasSSE2()) {
974    setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
975    setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
976
977    setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
978    setOperationAction(ISD::SHL,               MVT::v16i8, Custom);
979
980    setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
981    setOperationAction(ISD::SRA,               MVT::v16i8, Custom);
982
983    if (Subtarget->hasAVX2()) {
984      setOperationAction(ISD::SRL,             MVT::v2i64, Legal);
985      setOperationAction(ISD::SRL,             MVT::v4i32, Legal);
986
987      setOperationAction(ISD::SHL,             MVT::v2i64, Legal);
988      setOperationAction(ISD::SHL,             MVT::v4i32, Legal);
989
990      setOperationAction(ISD::SRA,             MVT::v4i32, Legal);
991    } else {
992      setOperationAction(ISD::SRL,             MVT::v2i64, Custom);
993      setOperationAction(ISD::SRL,             MVT::v4i32, Custom);
994
995      setOperationAction(ISD::SHL,             MVT::v2i64, Custom);
996      setOperationAction(ISD::SHL,             MVT::v4i32, Custom);
997
998      setOperationAction(ISD::SRA,             MVT::v4i32, Custom);
999    }
1000  }
1001
1002  if (!TM.Options.UseSoftFloat && Subtarget->hasAVX()) {
1003    addRegisterClass(MVT::v32i8,  &X86::VR256RegClass);
1004    addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
1005    addRegisterClass(MVT::v8i32,  &X86::VR256RegClass);
1006    addRegisterClass(MVT::v8f32,  &X86::VR256RegClass);
1007    addRegisterClass(MVT::v4i64,  &X86::VR256RegClass);
1008    addRegisterClass(MVT::v4f64,  &X86::VR256RegClass);
1009
1010    setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
1011    setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
1012    setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
1013
1014    setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
1015    setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
1016    setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
1017    setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
1018    setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
1019    setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
1020
1021    setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
1022    setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
1023    setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
1024    setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
1025    setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
1026    setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
1027
1028    setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1029    setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1030    setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1031
1032    setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1033    setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1034
1035    setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1036    setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1037
1038    setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1039    setOperationAction(ISD::SRA,               MVT::v32i8, Custom);
1040
1041    setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1042    setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1043    setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1044    setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1045
1046    setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1047    setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1048    setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1049
1050    setOperationAction(ISD::VSELECT,           MVT::v4f64, Legal);
1051    setOperationAction(ISD::VSELECT,           MVT::v4i64, Legal);
1052    setOperationAction(ISD::VSELECT,           MVT::v8i32, Legal);
1053    setOperationAction(ISD::VSELECT,           MVT::v8f32, Legal);
1054
1055    if (Subtarget->hasFMA()) {
1056      setOperationAction(ISD::FMA,             MVT::v8f32, Custom);
1057      setOperationAction(ISD::FMA,             MVT::v4f64, Custom);
1058      setOperationAction(ISD::FMA,             MVT::v4f32, Custom);
1059      setOperationAction(ISD::FMA,             MVT::v2f64, Custom);
1060      setOperationAction(ISD::FMA,             MVT::f32, Custom);
1061      setOperationAction(ISD::FMA,             MVT::f64, Custom);
1062    }
1063
1064    if (Subtarget->hasAVX2()) {
1065      setOperationAction(ISD::ADD,             MVT::v4i64, Legal);
1066      setOperationAction(ISD::ADD,             MVT::v8i32, Legal);
1067      setOperationAction(ISD::ADD,             MVT::v16i16, Legal);
1068      setOperationAction(ISD::ADD,             MVT::v32i8, Legal);
1069
1070      setOperationAction(ISD::SUB,             MVT::v4i64, Legal);
1071      setOperationAction(ISD::SUB,             MVT::v8i32, Legal);
1072      setOperationAction(ISD::SUB,             MVT::v16i16, Legal);
1073      setOperationAction(ISD::SUB,             MVT::v32i8, Legal);
1074
1075      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1076      setOperationAction(ISD::MUL,             MVT::v8i32, Legal);
1077      setOperationAction(ISD::MUL,             MVT::v16i16, Legal);
1078      // Don't lower v32i8 because there is no 128-bit byte mul
1079
1080      setOperationAction(ISD::VSELECT,         MVT::v32i8, Legal);
1081
1082      setOperationAction(ISD::SRL,             MVT::v4i64, Legal);
1083      setOperationAction(ISD::SRL,             MVT::v8i32, Legal);
1084
1085      setOperationAction(ISD::SHL,             MVT::v4i64, Legal);
1086      setOperationAction(ISD::SHL,             MVT::v8i32, Legal);
1087
1088      setOperationAction(ISD::SRA,             MVT::v8i32, Legal);
1089    } else {
1090      setOperationAction(ISD::ADD,             MVT::v4i64, Custom);
1091      setOperationAction(ISD::ADD,             MVT::v8i32, Custom);
1092      setOperationAction(ISD::ADD,             MVT::v16i16, Custom);
1093      setOperationAction(ISD::ADD,             MVT::v32i8, Custom);
1094
1095      setOperationAction(ISD::SUB,             MVT::v4i64, Custom);
1096      setOperationAction(ISD::SUB,             MVT::v8i32, Custom);
1097      setOperationAction(ISD::SUB,             MVT::v16i16, Custom);
1098      setOperationAction(ISD::SUB,             MVT::v32i8, Custom);
1099
1100      setOperationAction(ISD::MUL,             MVT::v4i64, Custom);
1101      setOperationAction(ISD::MUL,             MVT::v8i32, Custom);
1102      setOperationAction(ISD::MUL,             MVT::v16i16, Custom);
1103      // Don't lower v32i8 because there is no 128-bit byte mul
1104
1105      setOperationAction(ISD::SRL,             MVT::v4i64, Custom);
1106      setOperationAction(ISD::SRL,             MVT::v8i32, Custom);
1107
1108      setOperationAction(ISD::SHL,             MVT::v4i64, Custom);
1109      setOperationAction(ISD::SHL,             MVT::v8i32, Custom);
1110
1111      setOperationAction(ISD::SRA,             MVT::v8i32, Custom);
1112    }
1113
1114    // Custom lower several nodes for 256-bit types.
1115    for (int i = MVT::FIRST_VECTOR_VALUETYPE;
1116             i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
1117      MVT VT = (MVT::SimpleValueType)i;
1118
1119      // Extract subvector is special because the value type
1120      // (result) is 128-bit but the source is 256-bit wide.
1121      if (VT.is128BitVector())
1122        setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
1123
1124      // Do not attempt to custom lower other non-256-bit vectors
1125      if (!VT.is256BitVector())
1126        continue;
1127
1128      setOperationAction(ISD::BUILD_VECTOR,       VT, Custom);
1129      setOperationAction(ISD::VECTOR_SHUFFLE,     VT, Custom);
1130      setOperationAction(ISD::INSERT_VECTOR_ELT,  VT, Custom);
1131      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
1132      setOperationAction(ISD::SCALAR_TO_VECTOR,   VT, Custom);
1133      setOperationAction(ISD::INSERT_SUBVECTOR,   VT, Custom);
1134      setOperationAction(ISD::CONCAT_VECTORS,     VT, Custom);
1135    }
1136
1137    // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1138    for (int i = MVT::v32i8; i != MVT::v4i64; ++i) {
1139      MVT VT = (MVT::SimpleValueType)i;
1140
1141      // Do not attempt to promote non-256-bit vectors
1142      if (!VT.is256BitVector())
1143        continue;
1144
1145      setOperationAction(ISD::AND,    VT, Promote);
1146      AddPromotedToType (ISD::AND,    VT, MVT::v4i64);
1147      setOperationAction(ISD::OR,     VT, Promote);
1148      AddPromotedToType (ISD::OR,     VT, MVT::v4i64);
1149      setOperationAction(ISD::XOR,    VT, Promote);
1150      AddPromotedToType (ISD::XOR,    VT, MVT::v4i64);
1151      setOperationAction(ISD::LOAD,   VT, Promote);
1152      AddPromotedToType (ISD::LOAD,   VT, MVT::v4i64);
1153      setOperationAction(ISD::SELECT, VT, Promote);
1154      AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
1155    }
1156  }
1157
1158  // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1159  // of this type with custom code.
1160  for (int VT = MVT::FIRST_VECTOR_VALUETYPE;
1161           VT != MVT::LAST_VECTOR_VALUETYPE; VT++) {
1162    setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,
1163                       Custom);
1164  }
1165
1166  // We want to custom lower some of our intrinsics.
1167  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1168  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
1169
1170
1171  // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1172  // handle type legalization for these operations here.
1173  //
1174  // FIXME: We really should do custom legalization for addition and
1175  // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1176  // than generic legalization for 64-bit multiplication-with-overflow, though.
1177  for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1178    // Add/Sub/Mul with overflow operations are custom lowered.
1179    MVT VT = IntVTs[i];
1180    setOperationAction(ISD::SADDO, VT, Custom);
1181    setOperationAction(ISD::UADDO, VT, Custom);
1182    setOperationAction(ISD::SSUBO, VT, Custom);
1183    setOperationAction(ISD::USUBO, VT, Custom);
1184    setOperationAction(ISD::SMULO, VT, Custom);
1185    setOperationAction(ISD::UMULO, VT, Custom);
1186  }
1187
1188  // There are no 8-bit 3-address imul/mul instructions
1189  setOperationAction(ISD::SMULO, MVT::i8, Expand);
1190  setOperationAction(ISD::UMULO, MVT::i8, Expand);
1191
1192  if (!Subtarget->is64Bit()) {
1193    // These libcalls are not available in 32-bit.
1194    setLibcallName(RTLIB::SHL_I128, 0);
1195    setLibcallName(RTLIB::SRL_I128, 0);
1196    setLibcallName(RTLIB::SRA_I128, 0);
1197  }
1198
1199  // We have target-specific dag combine patterns for the following nodes:
1200  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1201  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1202  setTargetDAGCombine(ISD::VSELECT);
1203  setTargetDAGCombine(ISD::SELECT);
1204  setTargetDAGCombine(ISD::SHL);
1205  setTargetDAGCombine(ISD::SRA);
1206  setTargetDAGCombine(ISD::SRL);
1207  setTargetDAGCombine(ISD::OR);
1208  setTargetDAGCombine(ISD::AND);
1209  setTargetDAGCombine(ISD::ADD);
1210  setTargetDAGCombine(ISD::FADD);
1211  setTargetDAGCombine(ISD::FSUB);
1212  setTargetDAGCombine(ISD::FMA);
1213  setTargetDAGCombine(ISD::SUB);
1214  setTargetDAGCombine(ISD::LOAD);
1215  setTargetDAGCombine(ISD::STORE);
1216  setTargetDAGCombine(ISD::ZERO_EXTEND);
1217  setTargetDAGCombine(ISD::ANY_EXTEND);
1218  setTargetDAGCombine(ISD::SIGN_EXTEND);
1219  setTargetDAGCombine(ISD::TRUNCATE);
1220  setTargetDAGCombine(ISD::UINT_TO_FP);
1221  setTargetDAGCombine(ISD::SINT_TO_FP);
1222  setTargetDAGCombine(ISD::SETCC);
1223  setTargetDAGCombine(ISD::FP_TO_SINT);
1224  if (Subtarget->is64Bit())
1225    setTargetDAGCombine(ISD::MUL);
1226  setTargetDAGCombine(ISD::XOR);
1227
1228  computeRegisterProperties();
1229
1230  // On Darwin, -Os means optimize for size without hurting performance,
1231  // do not reduce the limit.
1232  maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1233  maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1234  maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1235  maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1236  maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1237  maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1238  setPrefLoopAlignment(4); // 2^4 bytes.
1239  benefitFromCodePlacementOpt = true;
1240
1241  // Predictable cmov don't hurt on atom because it's in-order.
1242  predictableSelectIsExpensive = !Subtarget->isAtom();
1243
1244  setPrefFunctionAlignment(4); // 2^4 bytes.
1245}
1246
1247
1248EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1249  if (!VT.isVector()) return MVT::i8;
1250  return VT.changeVectorElementTypeToInteger();
1251}
1252
1253
1254/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1255/// the desired ByVal argument alignment.
1256static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1257  if (MaxAlign == 16)
1258    return;
1259  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1260    if (VTy->getBitWidth() == 128)
1261      MaxAlign = 16;
1262  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1263    unsigned EltAlign = 0;
1264    getMaxByValAlign(ATy->getElementType(), EltAlign);
1265    if (EltAlign > MaxAlign)
1266      MaxAlign = EltAlign;
1267  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1268    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1269      unsigned EltAlign = 0;
1270      getMaxByValAlign(STy->getElementType(i), EltAlign);
1271      if (EltAlign > MaxAlign)
1272        MaxAlign = EltAlign;
1273      if (MaxAlign == 16)
1274        break;
1275    }
1276  }
1277}
1278
1279/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1280/// function arguments in the caller parameter area. For X86, aggregates
1281/// that contain SSE vectors are placed at 16-byte boundaries while the rest
1282/// are at 4-byte boundaries.
1283unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1284  if (Subtarget->is64Bit()) {
1285    // Max of 8 and alignment of type.
1286    unsigned TyAlign = TD->getABITypeAlignment(Ty);
1287    if (TyAlign > 8)
1288      return TyAlign;
1289    return 8;
1290  }
1291
1292  unsigned Align = 4;
1293  if (Subtarget->hasSSE1())
1294    getMaxByValAlign(Ty, Align);
1295  return Align;
1296}
1297
1298/// getOptimalMemOpType - Returns the target specific optimal type for load
1299/// and store operations as a result of memset, memcpy, and memmove
1300/// lowering. If DstAlign is zero that means it's safe to destination
1301/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1302/// means there isn't a need to check it against alignment requirement,
1303/// probably because the source does not need to be loaded. If
1304/// 'IsZeroVal' is true, that means it's safe to return a
1305/// non-scalar-integer type, e.g. empty string source, constant, or loaded
1306/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1307/// constant so it does not need to be loaded.
1308/// It returns EVT::Other if the type should be determined using generic
1309/// target-independent logic.
1310EVT
1311X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1312                                       unsigned DstAlign, unsigned SrcAlign,
1313                                       bool IsZeroVal,
1314                                       bool MemcpyStrSrc,
1315                                       MachineFunction &MF) const {
1316  // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1317  // linux.  This is because the stack realignment code can't handle certain
1318  // cases like PR2962.  This should be removed when PR2962 is fixed.
1319  const Function *F = MF.getFunction();
1320  if (IsZeroVal &&
1321      !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1322    if (Size >= 16 &&
1323        (Subtarget->isUnalignedMemAccessFast() ||
1324         ((DstAlign == 0 || DstAlign >= 16) &&
1325          (SrcAlign == 0 || SrcAlign >= 16))) &&
1326        Subtarget->getStackAlignment() >= 16) {
1327      if (Subtarget->getStackAlignment() >= 32) {
1328        if (Subtarget->hasAVX2())
1329          return MVT::v8i32;
1330        if (Subtarget->hasAVX())
1331          return MVT::v8f32;
1332      }
1333      if (Subtarget->hasSSE2())
1334        return MVT::v4i32;
1335      if (Subtarget->hasSSE1())
1336        return MVT::v4f32;
1337    } else if (!MemcpyStrSrc && Size >= 8 &&
1338               !Subtarget->is64Bit() &&
1339               Subtarget->getStackAlignment() >= 8 &&
1340               Subtarget->hasSSE2()) {
1341      // Do not use f64 to lower memcpy if source is string constant. It's
1342      // better to use i32 to avoid the loads.
1343      return MVT::f64;
1344    }
1345  }
1346  if (Subtarget->is64Bit() && Size >= 8)
1347    return MVT::i64;
1348  return MVT::i32;
1349}
1350
1351/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1352/// current function.  The returned value is a member of the
1353/// MachineJumpTableInfo::JTEntryKind enum.
1354unsigned X86TargetLowering::getJumpTableEncoding() const {
1355  // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1356  // symbol.
1357  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1358      Subtarget->isPICStyleGOT())
1359    return MachineJumpTableInfo::EK_Custom32;
1360
1361  // Otherwise, use the normal jump table encoding heuristics.
1362  return TargetLowering::getJumpTableEncoding();
1363}
1364
1365const MCExpr *
1366X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1367                                             const MachineBasicBlock *MBB,
1368                                             unsigned uid,MCContext &Ctx) const{
1369  assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1370         Subtarget->isPICStyleGOT());
1371  // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1372  // entries.
1373  return MCSymbolRefExpr::Create(MBB->getSymbol(),
1374                                 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1375}
1376
1377/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1378/// jumptable.
1379SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1380                                                    SelectionDAG &DAG) const {
1381  if (!Subtarget->is64Bit())
1382    // This doesn't have DebugLoc associated with it, but is not really the
1383    // same as a Register.
1384    return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1385  return Table;
1386}
1387
1388/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1389/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1390/// MCExpr.
1391const MCExpr *X86TargetLowering::
1392getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1393                             MCContext &Ctx) const {
1394  // X86-64 uses RIP relative addressing based on the jump table label.
1395  if (Subtarget->isPICStyleRIPRel())
1396    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1397
1398  // Otherwise, the reference is relative to the PIC base.
1399  return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1400}
1401
1402// FIXME: Why this routine is here? Move to RegInfo!
1403std::pair<const TargetRegisterClass*, uint8_t>
1404X86TargetLowering::findRepresentativeClass(EVT VT) const{
1405  const TargetRegisterClass *RRC = 0;
1406  uint8_t Cost = 1;
1407  switch (VT.getSimpleVT().SimpleTy) {
1408  default:
1409    return TargetLowering::findRepresentativeClass(VT);
1410  case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1411    RRC = Subtarget->is64Bit() ?
1412      (const TargetRegisterClass*)&X86::GR64RegClass :
1413      (const TargetRegisterClass*)&X86::GR32RegClass;
1414    break;
1415  case MVT::x86mmx:
1416    RRC = &X86::VR64RegClass;
1417    break;
1418  case MVT::f32: case MVT::f64:
1419  case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1420  case MVT::v4f32: case MVT::v2f64:
1421  case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1422  case MVT::v4f64:
1423    RRC = &X86::VR128RegClass;
1424    break;
1425  }
1426  return std::make_pair(RRC, Cost);
1427}
1428
1429bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1430                                               unsigned &Offset) const {
1431  if (!Subtarget->isTargetLinux())
1432    return false;
1433
1434  if (Subtarget->is64Bit()) {
1435    // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1436    Offset = 0x28;
1437    if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1438      AddressSpace = 256;
1439    else
1440      AddressSpace = 257;
1441  } else {
1442    // %gs:0x14 on i386
1443    Offset = 0x14;
1444    AddressSpace = 256;
1445  }
1446  return true;
1447}
1448
1449
1450//===----------------------------------------------------------------------===//
1451//               Return Value Calling Convention Implementation
1452//===----------------------------------------------------------------------===//
1453
1454#include "X86GenCallingConv.inc"
1455
1456bool
1457X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1458                                  MachineFunction &MF, bool isVarArg,
1459                        const SmallVectorImpl<ISD::OutputArg> &Outs,
1460                        LLVMContext &Context) const {
1461  SmallVector<CCValAssign, 16> RVLocs;
1462  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1463                 RVLocs, Context);
1464  return CCInfo.CheckReturn(Outs, RetCC_X86);
1465}
1466
1467SDValue
1468X86TargetLowering::LowerReturn(SDValue Chain,
1469                               CallingConv::ID CallConv, bool isVarArg,
1470                               const SmallVectorImpl<ISD::OutputArg> &Outs,
1471                               const SmallVectorImpl<SDValue> &OutVals,
1472                               DebugLoc dl, SelectionDAG &DAG) const {
1473  MachineFunction &MF = DAG.getMachineFunction();
1474  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1475
1476  SmallVector<CCValAssign, 16> RVLocs;
1477  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1478                 RVLocs, *DAG.getContext());
1479  CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1480
1481  // Add the regs to the liveout set for the function.
1482  MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1483  for (unsigned i = 0; i != RVLocs.size(); ++i)
1484    if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1485      MRI.addLiveOut(RVLocs[i].getLocReg());
1486
1487  SDValue Flag;
1488
1489  SmallVector<SDValue, 6> RetOps;
1490  RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1491  // Operand #1 = Bytes To Pop
1492  RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1493                   MVT::i16));
1494
1495  // Copy the result values into the output registers.
1496  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1497    CCValAssign &VA = RVLocs[i];
1498    assert(VA.isRegLoc() && "Can only return in registers!");
1499    SDValue ValToCopy = OutVals[i];
1500    EVT ValVT = ValToCopy.getValueType();
1501
1502    // Promote values to the appropriate types
1503    if (VA.getLocInfo() == CCValAssign::SExt)
1504      ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
1505    else if (VA.getLocInfo() == CCValAssign::ZExt)
1506      ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
1507    else if (VA.getLocInfo() == CCValAssign::AExt)
1508      ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
1509    else if (VA.getLocInfo() == CCValAssign::BCvt)
1510      ValToCopy = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), ValToCopy);
1511
1512    // If this is x86-64, and we disabled SSE, we can't return FP values,
1513    // or SSE or MMX vectors.
1514    if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1515         VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1516          (Subtarget->is64Bit() && !Subtarget->hasSSE1())) {
1517      report_fatal_error("SSE register return with SSE disabled");
1518    }
1519    // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1520    // llvm-gcc has never done it right and no one has noticed, so this
1521    // should be OK for now.
1522    if (ValVT == MVT::f64 &&
1523        (Subtarget->is64Bit() && !Subtarget->hasSSE2()))
1524      report_fatal_error("SSE2 register return with SSE2 disabled");
1525
1526    // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1527    // the RET instruction and handled by the FP Stackifier.
1528    if (VA.getLocReg() == X86::ST0 ||
1529        VA.getLocReg() == X86::ST1) {
1530      // If this is a copy from an xmm register to ST(0), use an FPExtend to
1531      // change the value to the FP stack register class.
1532      if (isScalarFPTypeInSSEReg(VA.getValVT()))
1533        ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1534      RetOps.push_back(ValToCopy);
1535      // Don't emit a copytoreg.
1536      continue;
1537    }
1538
1539    // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1540    // which is returned in RAX / RDX.
1541    if (Subtarget->is64Bit()) {
1542      if (ValVT == MVT::x86mmx) {
1543        if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1544          ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1545          ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1546                                  ValToCopy);
1547          // If we don't have SSE2 available, convert to v4f32 so the generated
1548          // register is legal.
1549          if (!Subtarget->hasSSE2())
1550            ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1551        }
1552      }
1553    }
1554
1555    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1556    Flag = Chain.getValue(1);
1557  }
1558
1559  // The x86-64 ABI for returning structs by value requires that we copy
1560  // the sret argument into %rax for the return. We saved the argument into
1561  // a virtual register in the entry block, so now we copy the value out
1562  // and into %rax.
1563  if (Subtarget->is64Bit() &&
1564      DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1565    MachineFunction &MF = DAG.getMachineFunction();
1566    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1567    unsigned Reg = FuncInfo->getSRetReturnReg();
1568    assert(Reg &&
1569           "SRetReturnReg should have been set in LowerFormalArguments().");
1570    SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1571
1572    Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1573    Flag = Chain.getValue(1);
1574
1575    // RAX now acts like a return value.
1576    MRI.addLiveOut(X86::RAX);
1577  }
1578
1579  RetOps[0] = Chain;  // Update chain.
1580
1581  // Add the flag if we have it.
1582  if (Flag.getNode())
1583    RetOps.push_back(Flag);
1584
1585  return DAG.getNode(X86ISD::RET_FLAG, dl,
1586                     MVT::Other, &RetOps[0], RetOps.size());
1587}
1588
1589bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
1590  if (N->getNumValues() != 1)
1591    return false;
1592  if (!N->hasNUsesOfValue(1, 0))
1593    return false;
1594
1595  SDValue TCChain = Chain;
1596  SDNode *Copy = *N->use_begin();
1597  if (Copy->getOpcode() == ISD::CopyToReg) {
1598    // If the copy has a glue operand, we conservatively assume it isn't safe to
1599    // perform a tail call.
1600    if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
1601      return false;
1602    TCChain = Copy->getOperand(0);
1603  } else if (Copy->getOpcode() != ISD::FP_EXTEND)
1604    return false;
1605
1606  bool HasRet = false;
1607  for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1608       UI != UE; ++UI) {
1609    if (UI->getOpcode() != X86ISD::RET_FLAG)
1610      return false;
1611    HasRet = true;
1612  }
1613
1614  if (!HasRet)
1615    return false;
1616
1617  Chain = TCChain;
1618  return true;
1619}
1620
1621EVT
1622X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1623                                            ISD::NodeType ExtendKind) const {
1624  MVT ReturnMVT;
1625  // TODO: Is this also valid on 32-bit?
1626  if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1627    ReturnMVT = MVT::i8;
1628  else
1629    ReturnMVT = MVT::i32;
1630
1631  EVT MinVT = getRegisterType(Context, ReturnMVT);
1632  return VT.bitsLT(MinVT) ? MinVT : VT;
1633}
1634
1635/// LowerCallResult - Lower the result values of a call into the
1636/// appropriate copies out of appropriate physical registers.
1637///
1638SDValue
1639X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1640                                   CallingConv::ID CallConv, bool isVarArg,
1641                                   const SmallVectorImpl<ISD::InputArg> &Ins,
1642                                   DebugLoc dl, SelectionDAG &DAG,
1643                                   SmallVectorImpl<SDValue> &InVals) const {
1644
1645  // Assign locations to each value returned by this call.
1646  SmallVector<CCValAssign, 16> RVLocs;
1647  bool Is64Bit = Subtarget->is64Bit();
1648  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1649                 getTargetMachine(), RVLocs, *DAG.getContext());
1650  CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1651
1652  // Copy all of the result registers out of their specified physreg.
1653  for (unsigned i = 0; i != RVLocs.size(); ++i) {
1654    CCValAssign &VA = RVLocs[i];
1655    EVT CopyVT = VA.getValVT();
1656
1657    // If this is x86-64, and we disabled SSE, we can't return FP values
1658    if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1659        ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
1660      report_fatal_error("SSE register return with SSE disabled");
1661    }
1662
1663    SDValue Val;
1664
1665    // If this is a call to a function that returns an fp value on the floating
1666    // point stack, we must guarantee the value is popped from the stack, so
1667    // a CopyFromReg is not good enough - the copy instruction may be eliminated
1668    // if the return value is not used. We use the FpPOP_RETVAL instruction
1669    // instead.
1670    if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1671      // If we prefer to use the value in xmm registers, copy it out as f80 and
1672      // use a truncate to move it from fp stack reg to xmm reg.
1673      if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1674      SDValue Ops[] = { Chain, InFlag };
1675      Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1676                                         MVT::Other, MVT::Glue, Ops, 2), 1);
1677      Val = Chain.getValue(0);
1678
1679      // Round the f80 to the right size, which also moves it to the appropriate
1680      // xmm register.
1681      if (CopyVT != VA.getValVT())
1682        Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1683                          // This truncation won't change the value.
1684                          DAG.getIntPtrConstant(1));
1685    } else {
1686      Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1687                                 CopyVT, InFlag).getValue(1);
1688      Val = Chain.getValue(0);
1689    }
1690    InFlag = Chain.getValue(2);
1691    InVals.push_back(Val);
1692  }
1693
1694  return Chain;
1695}
1696
1697
1698//===----------------------------------------------------------------------===//
1699//                C & StdCall & Fast Calling Convention implementation
1700//===----------------------------------------------------------------------===//
1701//  StdCall calling convention seems to be standard for many Windows' API
1702//  routines and around. It differs from C calling convention just a little:
1703//  callee should clean up the stack, not caller. Symbols should be also
1704//  decorated in some fancy way :) It doesn't support any vector arguments.
1705//  For info on fast calling convention see Fast Calling Convention (tail call)
1706//  implementation LowerX86_32FastCCCallTo.
1707
1708/// CallIsStructReturn - Determines whether a call uses struct return
1709/// semantics.
1710enum StructReturnType {
1711  NotStructReturn,
1712  RegStructReturn,
1713  StackStructReturn
1714};
1715static StructReturnType
1716callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1717  if (Outs.empty())
1718    return NotStructReturn;
1719
1720  const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
1721  if (!Flags.isSRet())
1722    return NotStructReturn;
1723  if (Flags.isInReg())
1724    return RegStructReturn;
1725  return StackStructReturn;
1726}
1727
1728/// ArgsAreStructReturn - Determines whether a function uses struct
1729/// return semantics.
1730static StructReturnType
1731argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1732  if (Ins.empty())
1733    return NotStructReturn;
1734
1735  const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
1736  if (!Flags.isSRet())
1737    return NotStructReturn;
1738  if (Flags.isInReg())
1739    return RegStructReturn;
1740  return StackStructReturn;
1741}
1742
1743/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1744/// by "Src" to address "Dst" with size and alignment information specified by
1745/// the specific parameter attribute. The copy will be passed as a byval
1746/// function parameter.
1747static SDValue
1748CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1749                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1750                          DebugLoc dl) {
1751  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1752
1753  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1754                       /*isVolatile*/false, /*AlwaysInline=*/true,
1755                       MachinePointerInfo(), MachinePointerInfo());
1756}
1757
1758/// IsTailCallConvention - Return true if the calling convention is one that
1759/// supports tail call optimization.
1760static bool IsTailCallConvention(CallingConv::ID CC) {
1761  return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1762}
1763
1764bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1765  if (!CI->isTailCall() || getTargetMachine().Options.DisableTailCalls)
1766    return false;
1767
1768  CallSite CS(CI);
1769  CallingConv::ID CalleeCC = CS.getCallingConv();
1770  if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1771    return false;
1772
1773  return true;
1774}
1775
1776/// FuncIsMadeTailCallSafe - Return true if the function is being made into
1777/// a tailcall target by changing its ABI.
1778static bool FuncIsMadeTailCallSafe(CallingConv::ID CC,
1779                                   bool GuaranteedTailCallOpt) {
1780  return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1781}
1782
1783SDValue
1784X86TargetLowering::LowerMemArgument(SDValue Chain,
1785                                    CallingConv::ID CallConv,
1786                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1787                                    DebugLoc dl, SelectionDAG &DAG,
1788                                    const CCValAssign &VA,
1789                                    MachineFrameInfo *MFI,
1790                                    unsigned i) const {
1791  // Create the nodes corresponding to a load from this parameter slot.
1792  ISD::ArgFlagsTy Flags = Ins[i].Flags;
1793  bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv,
1794                              getTargetMachine().Options.GuaranteedTailCallOpt);
1795  bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1796  EVT ValVT;
1797
1798  // If value is passed by pointer we have address passed instead of the value
1799  // itself.
1800  if (VA.getLocInfo() == CCValAssign::Indirect)
1801    ValVT = VA.getLocVT();
1802  else
1803    ValVT = VA.getValVT();
1804
1805  // FIXME: For now, all byval parameter objects are marked mutable. This can be
1806  // changed with more analysis.
1807  // In case of tail call optimization mark all arguments mutable. Since they
1808  // could be overwritten by lowering of arguments in case of a tail call.
1809  if (Flags.isByVal()) {
1810    unsigned Bytes = Flags.getByValSize();
1811    if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1812    int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1813    return DAG.getFrameIndex(FI, getPointerTy());
1814  } else {
1815    int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1816                                    VA.getLocMemOffset(), isImmutable);
1817    SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1818    return DAG.getLoad(ValVT, dl, Chain, FIN,
1819                       MachinePointerInfo::getFixedStack(FI),
1820                       false, false, false, 0);
1821  }
1822}
1823
1824SDValue
1825X86TargetLowering::LowerFormalArguments(SDValue Chain,
1826                                        CallingConv::ID CallConv,
1827                                        bool isVarArg,
1828                                      const SmallVectorImpl<ISD::InputArg> &Ins,
1829                                        DebugLoc dl,
1830                                        SelectionDAG &DAG,
1831                                        SmallVectorImpl<SDValue> &InVals)
1832                                          const {
1833  MachineFunction &MF = DAG.getMachineFunction();
1834  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1835
1836  const Function* Fn = MF.getFunction();
1837  if (Fn->hasExternalLinkage() &&
1838      Subtarget->isTargetCygMing() &&
1839      Fn->getName() == "main")
1840    FuncInfo->setForceFramePointer(true);
1841
1842  MachineFrameInfo *MFI = MF.getFrameInfo();
1843  bool Is64Bit = Subtarget->is64Bit();
1844  bool IsWindows = Subtarget->isTargetWindows();
1845  bool IsWin64 = Subtarget->isTargetWin64();
1846
1847  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1848         "Var args not supported with calling convention fastcc or ghc");
1849
1850  // Assign locations to all of the incoming arguments.
1851  SmallVector<CCValAssign, 16> ArgLocs;
1852  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1853                 ArgLocs, *DAG.getContext());
1854
1855  // Allocate shadow area for Win64
1856  if (IsWin64) {
1857    CCInfo.AllocateStack(32, 8);
1858  }
1859
1860  CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1861
1862  unsigned LastVal = ~0U;
1863  SDValue ArgValue;
1864  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1865    CCValAssign &VA = ArgLocs[i];
1866    // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1867    // places.
1868    assert(VA.getValNo() != LastVal &&
1869           "Don't support value assigned to multiple locs yet");
1870    (void)LastVal;
1871    LastVal = VA.getValNo();
1872
1873    if (VA.isRegLoc()) {
1874      EVT RegVT = VA.getLocVT();
1875      const TargetRegisterClass *RC;
1876      if (RegVT == MVT::i32)
1877        RC = &X86::GR32RegClass;
1878      else if (Is64Bit && RegVT == MVT::i64)
1879        RC = &X86::GR64RegClass;
1880      else if (RegVT == MVT::f32)
1881        RC = &X86::FR32RegClass;
1882      else if (RegVT == MVT::f64)
1883        RC = &X86::FR64RegClass;
1884      else if (RegVT.is256BitVector())
1885        RC = &X86::VR256RegClass;
1886      else if (RegVT.is128BitVector())
1887        RC = &X86::VR128RegClass;
1888      else if (RegVT == MVT::x86mmx)
1889        RC = &X86::VR64RegClass;
1890      else
1891        llvm_unreachable("Unknown argument type!");
1892
1893      unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1894      ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1895
1896      // If this is an 8 or 16-bit value, it is really passed promoted to 32
1897      // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1898      // right size.
1899      if (VA.getLocInfo() == CCValAssign::SExt)
1900        ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1901                               DAG.getValueType(VA.getValVT()));
1902      else if (VA.getLocInfo() == CCValAssign::ZExt)
1903        ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1904                               DAG.getValueType(VA.getValVT()));
1905      else if (VA.getLocInfo() == CCValAssign::BCvt)
1906        ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1907
1908      if (VA.isExtInLoc()) {
1909        // Handle MMX values passed in XMM regs.
1910        if (RegVT.isVector()) {
1911          ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1912                                 ArgValue);
1913        } else
1914          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1915      }
1916    } else {
1917      assert(VA.isMemLoc());
1918      ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1919    }
1920
1921    // If value is passed via pointer - do a load.
1922    if (VA.getLocInfo() == CCValAssign::Indirect)
1923      ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1924                             MachinePointerInfo(), false, false, false, 0);
1925
1926    InVals.push_back(ArgValue);
1927  }
1928
1929  // The x86-64 ABI for returning structs by value requires that we copy
1930  // the sret argument into %rax for the return. Save the argument into
1931  // a virtual register so that we can access it from the return points.
1932  if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1933    X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1934    unsigned Reg = FuncInfo->getSRetReturnReg();
1935    if (!Reg) {
1936      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1937      FuncInfo->setSRetReturnReg(Reg);
1938    }
1939    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1940    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1941  }
1942
1943  unsigned StackSize = CCInfo.getNextStackOffset();
1944  // Align stack specially for tail calls.
1945  if (FuncIsMadeTailCallSafe(CallConv,
1946                             MF.getTarget().Options.GuaranteedTailCallOpt))
1947    StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1948
1949  // If the function takes variable number of arguments, make a frame index for
1950  // the start of the first vararg value... for expansion of llvm.va_start.
1951  if (isVarArg) {
1952    if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1953                    CallConv != CallingConv::X86_ThisCall)) {
1954      FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1955    }
1956    if (Is64Bit) {
1957      unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1958
1959      // FIXME: We should really autogenerate these arrays
1960      static const uint16_t GPR64ArgRegsWin64[] = {
1961        X86::RCX, X86::RDX, X86::R8,  X86::R9
1962      };
1963      static const uint16_t GPR64ArgRegs64Bit[] = {
1964        X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1965      };
1966      static const uint16_t XMMArgRegs64Bit[] = {
1967        X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1968        X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1969      };
1970      const uint16_t *GPR64ArgRegs;
1971      unsigned NumXMMRegs = 0;
1972
1973      if (IsWin64) {
1974        // The XMM registers which might contain var arg parameters are shadowed
1975        // in their paired GPR.  So we only need to save the GPR to their home
1976        // slots.
1977        TotalNumIntRegs = 4;
1978        GPR64ArgRegs = GPR64ArgRegsWin64;
1979      } else {
1980        TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1981        GPR64ArgRegs = GPR64ArgRegs64Bit;
1982
1983        NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit,
1984                                                TotalNumXMMRegs);
1985      }
1986      unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1987                                                       TotalNumIntRegs);
1988
1989      bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1990      assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
1991             "SSE register cannot be used when SSE is disabled!");
1992      assert(!(NumXMMRegs && MF.getTarget().Options.UseSoftFloat &&
1993               NoImplicitFloatOps) &&
1994             "SSE register cannot be used when SSE is disabled!");
1995      if (MF.getTarget().Options.UseSoftFloat || NoImplicitFloatOps ||
1996          !Subtarget->hasSSE1())
1997        // Kernel mode asks for SSE to be disabled, so don't push them
1998        // on the stack.
1999        TotalNumXMMRegs = 0;
2000
2001      if (IsWin64) {
2002        const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
2003        // Get to the caller-allocated home save location.  Add 8 to account
2004        // for the return address.
2005        int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
2006        FuncInfo->setRegSaveFrameIndex(
2007          MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
2008        // Fixup to set vararg frame on shadow area (4 x i64).
2009        if (NumIntRegs < 4)
2010          FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
2011      } else {
2012        // For X86-64, if there are vararg parameters that are passed via
2013        // registers, then we must store them to their spots on the stack so
2014        // they may be loaded by deferencing the result of va_next.
2015        FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
2016        FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
2017        FuncInfo->setRegSaveFrameIndex(
2018          MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
2019                               false));
2020      }
2021
2022      // Store the integer parameter registers.
2023      SmallVector<SDValue, 8> MemOps;
2024      SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
2025                                        getPointerTy());
2026      unsigned Offset = FuncInfo->getVarArgsGPOffset();
2027      for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
2028        SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
2029                                  DAG.getIntPtrConstant(Offset));
2030        unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
2031                                     &X86::GR64RegClass);
2032        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2033        SDValue Store =
2034          DAG.getStore(Val.getValue(1), dl, Val, FIN,
2035                       MachinePointerInfo::getFixedStack(
2036                         FuncInfo->getRegSaveFrameIndex(), Offset),
2037                       false, false, 0);
2038        MemOps.push_back(Store);
2039        Offset += 8;
2040      }
2041
2042      if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
2043        // Now store the XMM (fp + vector) parameter registers.
2044        SmallVector<SDValue, 11> SaveXMMOps;
2045        SaveXMMOps.push_back(Chain);
2046
2047        unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
2048        SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
2049        SaveXMMOps.push_back(ALVal);
2050
2051        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2052                               FuncInfo->getRegSaveFrameIndex()));
2053        SaveXMMOps.push_back(DAG.getIntPtrConstant(
2054                               FuncInfo->getVarArgsFPOffset()));
2055
2056        for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
2057          unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
2058                                       &X86::VR128RegClass);
2059          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
2060          SaveXMMOps.push_back(Val);
2061        }
2062        MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
2063                                     MVT::Other,
2064                                     &SaveXMMOps[0], SaveXMMOps.size()));
2065      }
2066
2067      if (!MemOps.empty())
2068        Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2069                            &MemOps[0], MemOps.size());
2070    }
2071  }
2072
2073  // Some CCs need callee pop.
2074  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2075                       MF.getTarget().Options.GuaranteedTailCallOpt)) {
2076    FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
2077  } else {
2078    FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
2079    // If this is an sret function, the return should pop the hidden pointer.
2080    if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2081        argsAreStructReturn(Ins) == StackStructReturn)
2082      FuncInfo->setBytesToPopOnReturn(4);
2083  }
2084
2085  if (!Is64Bit) {
2086    // RegSaveFrameIndex is X86-64 only.
2087    FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
2088    if (CallConv == CallingConv::X86_FastCall ||
2089        CallConv == CallingConv::X86_ThisCall)
2090      // fastcc functions can't have varargs.
2091      FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
2092  }
2093
2094  FuncInfo->setArgumentStackSize(StackSize);
2095
2096  return Chain;
2097}
2098
2099SDValue
2100X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
2101                                    SDValue StackPtr, SDValue Arg,
2102                                    DebugLoc dl, SelectionDAG &DAG,
2103                                    const CCValAssign &VA,
2104                                    ISD::ArgFlagsTy Flags) const {
2105  unsigned LocMemOffset = VA.getLocMemOffset();
2106  SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
2107  PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
2108  if (Flags.isByVal())
2109    return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
2110
2111  return DAG.getStore(Chain, dl, Arg, PtrOff,
2112                      MachinePointerInfo::getStack(LocMemOffset),
2113                      false, false, 0);
2114}
2115
2116/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
2117/// optimization is performed and it is required.
2118SDValue
2119X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2120                                           SDValue &OutRetAddr, SDValue Chain,
2121                                           bool IsTailCall, bool Is64Bit,
2122                                           int FPDiff, DebugLoc dl) const {
2123  // Adjust the Return address stack slot.
2124  EVT VT = getPointerTy();
2125  OutRetAddr = getReturnAddressFrameIndex(DAG);
2126
2127  // Load the "old" Return address.
2128  OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2129                           false, false, false, 0);
2130  return SDValue(OutRetAddr.getNode(), 1);
2131}
2132
2133/// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2134/// optimization is performed and it is required (FPDiff!=0).
2135static SDValue
2136EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2137                         SDValue Chain, SDValue RetAddrFrIdx,
2138                         bool Is64Bit, int FPDiff, DebugLoc dl) {
2139  // Store the return address to the appropriate stack slot.
2140  if (!FPDiff) return Chain;
2141  // Calculate the new stack slot for the return address.
2142  int SlotSize = Is64Bit ? 8 : 4;
2143  int NewReturnAddrFI =
2144    MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2145  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2146  SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2147  Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2148                       MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2149                       false, false, 0);
2150  return Chain;
2151}
2152
2153SDValue
2154X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2155                             SmallVectorImpl<SDValue> &InVals) const {
2156  SelectionDAG &DAG                     = CLI.DAG;
2157  DebugLoc &dl                          = CLI.DL;
2158  SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2159  SmallVector<SDValue, 32> &OutVals     = CLI.OutVals;
2160  SmallVector<ISD::InputArg, 32> &Ins   = CLI.Ins;
2161  SDValue Chain                         = CLI.Chain;
2162  SDValue Callee                        = CLI.Callee;
2163  CallingConv::ID CallConv              = CLI.CallConv;
2164  bool &isTailCall                      = CLI.IsTailCall;
2165  bool isVarArg                         = CLI.IsVarArg;
2166
2167  MachineFunction &MF = DAG.getMachineFunction();
2168  bool Is64Bit        = Subtarget->is64Bit();
2169  bool IsWin64        = Subtarget->isTargetWin64();
2170  bool IsWindows      = Subtarget->isTargetWindows();
2171  StructReturnType SR = callIsStructReturn(Outs);
2172  bool IsSibcall      = false;
2173
2174  if (MF.getTarget().Options.DisableTailCalls)
2175    isTailCall = false;
2176
2177  if (isTailCall) {
2178    // Check if it's really possible to do a tail call.
2179    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2180                    isVarArg, SR != NotStructReturn,
2181                    MF.getFunction()->hasStructRetAttr(),
2182                    Outs, OutVals, Ins, DAG);
2183
2184    // Sibcalls are automatically detected tailcalls which do not require
2185    // ABI changes.
2186    if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
2187      IsSibcall = true;
2188
2189    if (isTailCall)
2190      ++NumTailCalls;
2191  }
2192
2193  assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2194         "Var args not supported with calling convention fastcc or ghc");
2195
2196  // Analyze operands of the call, assigning locations to each operand.
2197  SmallVector<CCValAssign, 16> ArgLocs;
2198  CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2199                 ArgLocs, *DAG.getContext());
2200
2201  // Allocate shadow area for Win64
2202  if (IsWin64) {
2203    CCInfo.AllocateStack(32, 8);
2204  }
2205
2206  CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2207
2208  // Get a count of how many bytes are to be pushed on the stack.
2209  unsigned NumBytes = CCInfo.getNextStackOffset();
2210  if (IsSibcall)
2211    // This is a sibcall. The memory operands are available in caller's
2212    // own caller's stack.
2213    NumBytes = 0;
2214  else if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2215           IsTailCallConvention(CallConv))
2216    NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2217
2218  int FPDiff = 0;
2219  if (isTailCall && !IsSibcall) {
2220    // Lower arguments at fp - stackoffset + fpdiff.
2221    unsigned NumBytesCallerPushed =
2222      MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2223    FPDiff = NumBytesCallerPushed - NumBytes;
2224
2225    // Set the delta of movement of the returnaddr stackslot.
2226    // But only set if delta is greater than previous delta.
2227    if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2228      MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2229  }
2230
2231  if (!IsSibcall)
2232    Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2233
2234  SDValue RetAddrFrIdx;
2235  // Load return address for tail calls.
2236  if (isTailCall && FPDiff)
2237    Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2238                                    Is64Bit, FPDiff, dl);
2239
2240  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2241  SmallVector<SDValue, 8> MemOpChains;
2242  SDValue StackPtr;
2243
2244  // Walk the register/memloc assignments, inserting copies/loads.  In the case
2245  // of tail call optimization arguments are handle later.
2246  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2247    CCValAssign &VA = ArgLocs[i];
2248    EVT RegVT = VA.getLocVT();
2249    SDValue Arg = OutVals[i];
2250    ISD::ArgFlagsTy Flags = Outs[i].Flags;
2251    bool isByVal = Flags.isByVal();
2252
2253    // Promote the value if needed.
2254    switch (VA.getLocInfo()) {
2255    default: llvm_unreachable("Unknown loc info!");
2256    case CCValAssign::Full: break;
2257    case CCValAssign::SExt:
2258      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2259      break;
2260    case CCValAssign::ZExt:
2261      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2262      break;
2263    case CCValAssign::AExt:
2264      if (RegVT.is128BitVector()) {
2265        // Special case: passing MMX values in XMM registers.
2266        Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2267        Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2268        Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2269      } else
2270        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2271      break;
2272    case CCValAssign::BCvt:
2273      Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2274      break;
2275    case CCValAssign::Indirect: {
2276      // Store the argument.
2277      SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2278      int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2279      Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2280                           MachinePointerInfo::getFixedStack(FI),
2281                           false, false, 0);
2282      Arg = SpillSlot;
2283      break;
2284    }
2285    }
2286
2287    if (VA.isRegLoc()) {
2288      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2289      if (isVarArg && IsWin64) {
2290        // Win64 ABI requires argument XMM reg to be copied to the corresponding
2291        // shadow reg if callee is a varargs function.
2292        unsigned ShadowReg = 0;
2293        switch (VA.getLocReg()) {
2294        case X86::XMM0: ShadowReg = X86::RCX; break;
2295        case X86::XMM1: ShadowReg = X86::RDX; break;
2296        case X86::XMM2: ShadowReg = X86::R8; break;
2297        case X86::XMM3: ShadowReg = X86::R9; break;
2298        }
2299        if (ShadowReg)
2300          RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2301      }
2302    } else if (!IsSibcall && (!isTailCall || isByVal)) {
2303      assert(VA.isMemLoc());
2304      if (StackPtr.getNode() == 0)
2305        StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2306      MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2307                                             dl, DAG, VA, Flags));
2308    }
2309  }
2310
2311  if (!MemOpChains.empty())
2312    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2313                        &MemOpChains[0], MemOpChains.size());
2314
2315  if (Subtarget->isPICStyleGOT()) {
2316    // ELF / PIC requires GOT in the EBX register before function calls via PLT
2317    // GOT pointer.
2318    if (!isTailCall) {
2319      RegsToPass.push_back(std::make_pair(unsigned(X86::EBX),
2320               DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy())));
2321    } else {
2322      // If we are tail calling and generating PIC/GOT style code load the
2323      // address of the callee into ECX. The value in ecx is used as target of
2324      // the tail jump. This is done to circumvent the ebx/callee-saved problem
2325      // for tail calls on PIC/GOT architectures. Normally we would just put the
2326      // address of GOT into ebx and then call target@PLT. But for tail calls
2327      // ebx would be restored (since ebx is callee saved) before jumping to the
2328      // target@PLT.
2329
2330      // Note: The actual moving to ECX is done further down.
2331      GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2332      if (G && !G->getGlobal()->hasHiddenVisibility() &&
2333          !G->getGlobal()->hasProtectedVisibility())
2334        Callee = LowerGlobalAddress(Callee, DAG);
2335      else if (isa<ExternalSymbolSDNode>(Callee))
2336        Callee = LowerExternalSymbol(Callee, DAG);
2337    }
2338  }
2339
2340  if (Is64Bit && isVarArg && !IsWin64) {
2341    // From AMD64 ABI document:
2342    // For calls that may call functions that use varargs or stdargs
2343    // (prototype-less calls or calls to functions containing ellipsis (...) in
2344    // the declaration) %al is used as hidden argument to specify the number
2345    // of SSE registers used. The contents of %al do not need to match exactly
2346    // the number of registers, but must be an ubound on the number of SSE
2347    // registers used and is in the range 0 - 8 inclusive.
2348
2349    // Count the number of XMM registers allocated.
2350    static const uint16_t XMMArgRegs[] = {
2351      X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2352      X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2353    };
2354    unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2355    assert((Subtarget->hasSSE1() || !NumXMMRegs)
2356           && "SSE registers cannot be used when SSE is disabled");
2357
2358    RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
2359                                        DAG.getConstant(NumXMMRegs, MVT::i8)));
2360  }
2361
2362  // For tail calls lower the arguments to the 'real' stack slot.
2363  if (isTailCall) {
2364    // Force all the incoming stack arguments to be loaded from the stack
2365    // before any new outgoing arguments are stored to the stack, because the
2366    // outgoing stack slots may alias the incoming argument stack slots, and
2367    // the alias isn't otherwise explicit. This is slightly more conservative
2368    // than necessary, because it means that each store effectively depends
2369    // on every argument instead of just those arguments it would clobber.
2370    SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2371
2372    SmallVector<SDValue, 8> MemOpChains2;
2373    SDValue FIN;
2374    int FI = 0;
2375    if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2376      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2377        CCValAssign &VA = ArgLocs[i];
2378        if (VA.isRegLoc())
2379          continue;
2380        assert(VA.isMemLoc());
2381        SDValue Arg = OutVals[i];
2382        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2383        // Create frame index.
2384        int32_t Offset = VA.getLocMemOffset()+FPDiff;
2385        uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2386        FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2387        FIN = DAG.getFrameIndex(FI, getPointerTy());
2388
2389        if (Flags.isByVal()) {
2390          // Copy relative to framepointer.
2391          SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2392          if (StackPtr.getNode() == 0)
2393            StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2394                                          getPointerTy());
2395          Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2396
2397          MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2398                                                           ArgChain,
2399                                                           Flags, DAG, dl));
2400        } else {
2401          // Store relative to framepointer.
2402          MemOpChains2.push_back(
2403            DAG.getStore(ArgChain, dl, Arg, FIN,
2404                         MachinePointerInfo::getFixedStack(FI),
2405                         false, false, 0));
2406        }
2407      }
2408    }
2409
2410    if (!MemOpChains2.empty())
2411      Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2412                          &MemOpChains2[0], MemOpChains2.size());
2413
2414    // Store the return address to the appropriate stack slot.
2415    Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2416                                     FPDiff, dl);
2417  }
2418
2419  // Build a sequence of copy-to-reg nodes chained together with token chain
2420  // and flag operands which copy the outgoing args into registers.
2421  SDValue InFlag;
2422  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2423    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2424                             RegsToPass[i].second, InFlag);
2425    InFlag = Chain.getValue(1);
2426  }
2427
2428  if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2429    assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2430    // In the 64-bit large code model, we have to make all calls
2431    // through a register, since the call instruction's 32-bit
2432    // pc-relative offset may not be large enough to hold the whole
2433    // address.
2434  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2435    // If the callee is a GlobalAddress node (quite common, every direct call
2436    // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2437    // it.
2438
2439    // We should use extra load for direct calls to dllimported functions in
2440    // non-JIT mode.
2441    const GlobalValue *GV = G->getGlobal();
2442    if (!GV->hasDLLImportLinkage()) {
2443      unsigned char OpFlags = 0;
2444      bool ExtraLoad = false;
2445      unsigned WrapperKind = ISD::DELETED_NODE;
2446
2447      // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2448      // external symbols most go through the PLT in PIC mode.  If the symbol
2449      // has hidden or protected visibility, or if it is static or local, then
2450      // we don't need to use the PLT - we can directly call it.
2451      if (Subtarget->isTargetELF() &&
2452          getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2453          GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2454        OpFlags = X86II::MO_PLT;
2455      } else if (Subtarget->isPICStyleStubAny() &&
2456                 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2457                 (!Subtarget->getTargetTriple().isMacOSX() ||
2458                  Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2459        // PC-relative references to external symbols should go through $stub,
2460        // unless we're building with the leopard linker or later, which
2461        // automatically synthesizes these stubs.
2462        OpFlags = X86II::MO_DARWIN_STUB;
2463      } else if (Subtarget->isPICStyleRIPRel() &&
2464                 isa<Function>(GV) &&
2465                 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2466        // If the function is marked as non-lazy, generate an indirect call
2467        // which loads from the GOT directly. This avoids runtime overhead
2468        // at the cost of eager binding (and one extra byte of encoding).
2469        OpFlags = X86II::MO_GOTPCREL;
2470        WrapperKind = X86ISD::WrapperRIP;
2471        ExtraLoad = true;
2472      }
2473
2474      Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2475                                          G->getOffset(), OpFlags);
2476
2477      // Add a wrapper if needed.
2478      if (WrapperKind != ISD::DELETED_NODE)
2479        Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2480      // Add extra indirection if needed.
2481      if (ExtraLoad)
2482        Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2483                             MachinePointerInfo::getGOT(),
2484                             false, false, false, 0);
2485    }
2486  } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2487    unsigned char OpFlags = 0;
2488
2489    // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2490    // external symbols should go through the PLT.
2491    if (Subtarget->isTargetELF() &&
2492        getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2493      OpFlags = X86II::MO_PLT;
2494    } else if (Subtarget->isPICStyleStubAny() &&
2495               (!Subtarget->getTargetTriple().isMacOSX() ||
2496                Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2497      // PC-relative references to external symbols should go through $stub,
2498      // unless we're building with the leopard linker or later, which
2499      // automatically synthesizes these stubs.
2500      OpFlags = X86II::MO_DARWIN_STUB;
2501    }
2502
2503    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2504                                         OpFlags);
2505  }
2506
2507  // Returns a chain & a flag for retval copy to use.
2508  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2509  SmallVector<SDValue, 8> Ops;
2510
2511  if (!IsSibcall && isTailCall) {
2512    Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2513                           DAG.getIntPtrConstant(0, true), InFlag);
2514    InFlag = Chain.getValue(1);
2515  }
2516
2517  Ops.push_back(Chain);
2518  Ops.push_back(Callee);
2519
2520  if (isTailCall)
2521    Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2522
2523  // Add argument registers to the end of the list so that they are known live
2524  // into the call.
2525  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2526    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2527                                  RegsToPass[i].second.getValueType()));
2528
2529  // Add a register mask operand representing the call-preserved registers.
2530  const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2531  const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2532  assert(Mask && "Missing call preserved mask for calling convention");
2533  Ops.push_back(DAG.getRegisterMask(Mask));
2534
2535  if (InFlag.getNode())
2536    Ops.push_back(InFlag);
2537
2538  if (isTailCall) {
2539    // We used to do:
2540    //// If this is the first return lowered for this function, add the regs
2541    //// to the liveout set for the function.
2542    // This isn't right, although it's probably harmless on x86; liveouts
2543    // should be computed from returns not tail calls.  Consider a void
2544    // function making a tail call to a function returning int.
2545    return DAG.getNode(X86ISD::TC_RETURN, dl,
2546                       NodeTys, &Ops[0], Ops.size());
2547  }
2548
2549  Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2550  InFlag = Chain.getValue(1);
2551
2552  // Create the CALLSEQ_END node.
2553  unsigned NumBytesForCalleeToPush;
2554  if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
2555                       getTargetMachine().Options.GuaranteedTailCallOpt))
2556    NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2557  else if (!Is64Bit && !IsTailCallConvention(CallConv) && !IsWindows &&
2558           SR == StackStructReturn)
2559    // If this is a call to a struct-return function, the callee
2560    // pops the hidden struct pointer, so we have to push it back.
2561    // This is common for Darwin/X86, Linux & Mingw32 targets.
2562    // For MSVC Win32 targets, the caller pops the hidden struct pointer.
2563    NumBytesForCalleeToPush = 4;
2564  else
2565    NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2566
2567  // Returns a flag for retval copy to use.
2568  if (!IsSibcall) {
2569    Chain = DAG.getCALLSEQ_END(Chain,
2570                               DAG.getIntPtrConstant(NumBytes, true),
2571                               DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2572                                                     true),
2573                               InFlag);
2574    InFlag = Chain.getValue(1);
2575  }
2576
2577  // Handle result values, copying them out of physregs into vregs that we
2578  // return.
2579  return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2580                         Ins, dl, DAG, InVals);
2581}
2582
2583
2584//===----------------------------------------------------------------------===//
2585//                Fast Calling Convention (tail call) implementation
2586//===----------------------------------------------------------------------===//
2587
2588//  Like std call, callee cleans arguments, convention except that ECX is
2589//  reserved for storing the tail called function address. Only 2 registers are
2590//  free for argument passing (inreg). Tail call optimization is performed
2591//  provided:
2592//                * tailcallopt is enabled
2593//                * caller/callee are fastcc
2594//  On X86_64 architecture with GOT-style position independent code only local
2595//  (within module) calls are supported at the moment.
2596//  To keep the stack aligned according to platform abi the function
2597//  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2598//  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2599//  If a tail called function callee has more arguments than the caller the
2600//  caller needs to make sure that there is room to move the RETADDR to. This is
2601//  achieved by reserving an area the size of the argument delta right after the
2602//  original REtADDR, but before the saved framepointer or the spilled registers
2603//  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2604//  stack layout:
2605//    arg1
2606//    arg2
2607//    RETADDR
2608//    [ new RETADDR
2609//      move area ]
2610//    (possible EBP)
2611//    ESI
2612//    EDI
2613//    local1 ..
2614
2615/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2616/// for a 16 byte align requirement.
2617unsigned
2618X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2619                                               SelectionDAG& DAG) const {
2620  MachineFunction &MF = DAG.getMachineFunction();
2621  const TargetMachine &TM = MF.getTarget();
2622  const TargetFrameLowering &TFI = *TM.getFrameLowering();
2623  unsigned StackAlignment = TFI.getStackAlignment();
2624  uint64_t AlignMask = StackAlignment - 1;
2625  int64_t Offset = StackSize;
2626  uint64_t SlotSize = TD->getPointerSize();
2627  if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2628    // Number smaller than 12 so just add the difference.
2629    Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2630  } else {
2631    // Mask out lower bits, add stackalignment once plus the 12 bytes.
2632    Offset = ((~AlignMask) & Offset) + StackAlignment +
2633      (StackAlignment-SlotSize);
2634  }
2635  return Offset;
2636}
2637
2638/// MatchingStackOffset - Return true if the given stack call argument is
2639/// already available in the same position (relatively) of the caller's
2640/// incoming argument stack.
2641static
2642bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2643                         MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2644                         const X86InstrInfo *TII) {
2645  unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2646  int FI = INT_MAX;
2647  if (Arg.getOpcode() == ISD::CopyFromReg) {
2648    unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2649    if (!TargetRegisterInfo::isVirtualRegister(VR))
2650      return false;
2651    MachineInstr *Def = MRI->getVRegDef(VR);
2652    if (!Def)
2653      return false;
2654    if (!Flags.isByVal()) {
2655      if (!TII->isLoadFromStackSlot(Def, FI))
2656        return false;
2657    } else {
2658      unsigned Opcode = Def->getOpcode();
2659      if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2660          Def->getOperand(1).isFI()) {
2661        FI = Def->getOperand(1).getIndex();
2662        Bytes = Flags.getByValSize();
2663      } else
2664        return false;
2665    }
2666  } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2667    if (Flags.isByVal())
2668      // ByVal argument is passed in as a pointer but it's now being
2669      // dereferenced. e.g.
2670      // define @foo(%struct.X* %A) {
2671      //   tail call @bar(%struct.X* byval %A)
2672      // }
2673      return false;
2674    SDValue Ptr = Ld->getBasePtr();
2675    FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2676    if (!FINode)
2677      return false;
2678    FI = FINode->getIndex();
2679  } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2680    FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2681    FI = FINode->getIndex();
2682    Bytes = Flags.getByValSize();
2683  } else
2684    return false;
2685
2686  assert(FI != INT_MAX);
2687  if (!MFI->isFixedObjectIndex(FI))
2688    return false;
2689  return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2690}
2691
2692/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2693/// for tail call optimization. Targets which want to do tail call
2694/// optimization should implement this function.
2695bool
2696X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2697                                                     CallingConv::ID CalleeCC,
2698                                                     bool isVarArg,
2699                                                     bool isCalleeStructRet,
2700                                                     bool isCallerStructRet,
2701                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
2702                                    const SmallVectorImpl<SDValue> &OutVals,
2703                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2704                                                     SelectionDAG& DAG) const {
2705  if (!IsTailCallConvention(CalleeCC) &&
2706      CalleeCC != CallingConv::C)
2707    return false;
2708
2709  // If -tailcallopt is specified, make fastcc functions tail-callable.
2710  const MachineFunction &MF = DAG.getMachineFunction();
2711  const Function *CallerF = DAG.getMachineFunction().getFunction();
2712  CallingConv::ID CallerCC = CallerF->getCallingConv();
2713  bool CCMatch = CallerCC == CalleeCC;
2714
2715  if (getTargetMachine().Options.GuaranteedTailCallOpt) {
2716    if (IsTailCallConvention(CalleeCC) && CCMatch)
2717      return true;
2718    return false;
2719  }
2720
2721  // Look for obvious safe cases to perform tail call optimization that do not
2722  // require ABI changes. This is what gcc calls sibcall.
2723
2724  // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2725  // emit a special epilogue.
2726  if (RegInfo->needsStackRealignment(MF))
2727    return false;
2728
2729  // Also avoid sibcall optimization if either caller or callee uses struct
2730  // return semantics.
2731  if (isCalleeStructRet || isCallerStructRet)
2732    return false;
2733
2734  // An stdcall caller is expected to clean up its arguments; the callee
2735  // isn't going to do that.
2736  if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2737    return false;
2738
2739  // Do not sibcall optimize vararg calls unless all arguments are passed via
2740  // registers.
2741  if (isVarArg && !Outs.empty()) {
2742
2743    // Optimizing for varargs on Win64 is unlikely to be safe without
2744    // additional testing.
2745    if (Subtarget->isTargetWin64())
2746      return false;
2747
2748    SmallVector<CCValAssign, 16> ArgLocs;
2749    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2750                   getTargetMachine(), ArgLocs, *DAG.getContext());
2751
2752    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2753    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2754      if (!ArgLocs[i].isRegLoc())
2755        return false;
2756  }
2757
2758  // If the call result is in ST0 / ST1, it needs to be popped off the x87
2759  // stack.  Therefore, if it's not used by the call it is not safe to optimize
2760  // this into a sibcall.
2761  bool Unused = false;
2762  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2763    if (!Ins[i].Used) {
2764      Unused = true;
2765      break;
2766    }
2767  }
2768  if (Unused) {
2769    SmallVector<CCValAssign, 16> RVLocs;
2770    CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2771                   getTargetMachine(), RVLocs, *DAG.getContext());
2772    CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2773    for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2774      CCValAssign &VA = RVLocs[i];
2775      if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2776        return false;
2777    }
2778  }
2779
2780  // If the calling conventions do not match, then we'd better make sure the
2781  // results are returned in the same way as what the caller expects.
2782  if (!CCMatch) {
2783    SmallVector<CCValAssign, 16> RVLocs1;
2784    CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2785                    getTargetMachine(), RVLocs1, *DAG.getContext());
2786    CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2787
2788    SmallVector<CCValAssign, 16> RVLocs2;
2789    CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2790                    getTargetMachine(), RVLocs2, *DAG.getContext());
2791    CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2792
2793    if (RVLocs1.size() != RVLocs2.size())
2794      return false;
2795    for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2796      if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2797        return false;
2798      if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2799        return false;
2800      if (RVLocs1[i].isRegLoc()) {
2801        if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2802          return false;
2803      } else {
2804        if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2805          return false;
2806      }
2807    }
2808  }
2809
2810  // If the callee takes no arguments then go on to check the results of the
2811  // call.
2812  if (!Outs.empty()) {
2813    // Check if stack adjustment is needed. For now, do not do this if any
2814    // argument is passed on the stack.
2815    SmallVector<CCValAssign, 16> ArgLocs;
2816    CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2817                   getTargetMachine(), ArgLocs, *DAG.getContext());
2818
2819    // Allocate shadow area for Win64
2820    if (Subtarget->isTargetWin64()) {
2821      CCInfo.AllocateStack(32, 8);
2822    }
2823
2824    CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2825    if (CCInfo.getNextStackOffset()) {
2826      MachineFunction &MF = DAG.getMachineFunction();
2827      if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2828        return false;
2829
2830      // Check if the arguments are already laid out in the right way as
2831      // the caller's fixed stack objects.
2832      MachineFrameInfo *MFI = MF.getFrameInfo();
2833      const MachineRegisterInfo *MRI = &MF.getRegInfo();
2834      const X86InstrInfo *TII =
2835        ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2836      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2837        CCValAssign &VA = ArgLocs[i];
2838        SDValue Arg = OutVals[i];
2839        ISD::ArgFlagsTy Flags = Outs[i].Flags;
2840        if (VA.getLocInfo() == CCValAssign::Indirect)
2841          return false;
2842        if (!VA.isRegLoc()) {
2843          if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2844                                   MFI, MRI, TII))
2845            return false;
2846        }
2847      }
2848    }
2849
2850    // If the tailcall address may be in a register, then make sure it's
2851    // possible to register allocate for it. In 32-bit, the call address can
2852    // only target EAX, EDX, or ECX since the tail call must be scheduled after
2853    // callee-saved registers are restored. These happen to be the same
2854    // registers used to pass 'inreg' arguments so watch out for those.
2855    if (!Subtarget->is64Bit() &&
2856        !isa<GlobalAddressSDNode>(Callee) &&
2857        !isa<ExternalSymbolSDNode>(Callee)) {
2858      unsigned NumInRegs = 0;
2859      for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2860        CCValAssign &VA = ArgLocs[i];
2861        if (!VA.isRegLoc())
2862          continue;
2863        unsigned Reg = VA.getLocReg();
2864        switch (Reg) {
2865        default: break;
2866        case X86::EAX: case X86::EDX: case X86::ECX:
2867          if (++NumInRegs == 3)
2868            return false;
2869          break;
2870        }
2871      }
2872    }
2873  }
2874
2875  return true;
2876}
2877
2878FastISel *
2879X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
2880                                  const TargetLibraryInfo *libInfo) const {
2881  return X86::createFastISel(funcInfo, libInfo);
2882}
2883
2884
2885//===----------------------------------------------------------------------===//
2886//                           Other Lowering Hooks
2887//===----------------------------------------------------------------------===//
2888
2889static bool MayFoldLoad(SDValue Op) {
2890  return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2891}
2892
2893static bool MayFoldIntoStore(SDValue Op) {
2894  return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2895}
2896
2897static bool isTargetShuffle(unsigned Opcode) {
2898  switch(Opcode) {
2899  default: return false;
2900  case X86ISD::PSHUFD:
2901  case X86ISD::PSHUFHW:
2902  case X86ISD::PSHUFLW:
2903  case X86ISD::SHUFP:
2904  case X86ISD::PALIGN:
2905  case X86ISD::MOVLHPS:
2906  case X86ISD::MOVLHPD:
2907  case X86ISD::MOVHLPS:
2908  case X86ISD::MOVLPS:
2909  case X86ISD::MOVLPD:
2910  case X86ISD::MOVSHDUP:
2911  case X86ISD::MOVSLDUP:
2912  case X86ISD::MOVDDUP:
2913  case X86ISD::MOVSS:
2914  case X86ISD::MOVSD:
2915  case X86ISD::UNPCKL:
2916  case X86ISD::UNPCKH:
2917  case X86ISD::VPERMILP:
2918  case X86ISD::VPERM2X128:
2919  case X86ISD::VPERMI:
2920    return true;
2921  }
2922}
2923
2924static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2925                                    SDValue V1, SelectionDAG &DAG) {
2926  switch(Opc) {
2927  default: llvm_unreachable("Unknown x86 shuffle node");
2928  case X86ISD::MOVSHDUP:
2929  case X86ISD::MOVSLDUP:
2930  case X86ISD::MOVDDUP:
2931    return DAG.getNode(Opc, dl, VT, V1);
2932  }
2933}
2934
2935static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2936                                    SDValue V1, unsigned TargetMask,
2937                                    SelectionDAG &DAG) {
2938  switch(Opc) {
2939  default: llvm_unreachable("Unknown x86 shuffle node");
2940  case X86ISD::PSHUFD:
2941  case X86ISD::PSHUFHW:
2942  case X86ISD::PSHUFLW:
2943  case X86ISD::VPERMILP:
2944  case X86ISD::VPERMI:
2945    return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2946  }
2947}
2948
2949static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2950                                    SDValue V1, SDValue V2, unsigned TargetMask,
2951                                    SelectionDAG &DAG) {
2952  switch(Opc) {
2953  default: llvm_unreachable("Unknown x86 shuffle node");
2954  case X86ISD::PALIGN:
2955  case X86ISD::SHUFP:
2956  case X86ISD::VPERM2X128:
2957    return DAG.getNode(Opc, dl, VT, V1, V2,
2958                       DAG.getConstant(TargetMask, MVT::i8));
2959  }
2960}
2961
2962static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2963                                    SDValue V1, SDValue V2, SelectionDAG &DAG) {
2964  switch(Opc) {
2965  default: llvm_unreachable("Unknown x86 shuffle node");
2966  case X86ISD::MOVLHPS:
2967  case X86ISD::MOVLHPD:
2968  case X86ISD::MOVHLPS:
2969  case X86ISD::MOVLPS:
2970  case X86ISD::MOVLPD:
2971  case X86ISD::MOVSS:
2972  case X86ISD::MOVSD:
2973  case X86ISD::UNPCKL:
2974  case X86ISD::UNPCKH:
2975    return DAG.getNode(Opc, dl, VT, V1, V2);
2976  }
2977}
2978
2979SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2980  MachineFunction &MF = DAG.getMachineFunction();
2981  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2982  int ReturnAddrIndex = FuncInfo->getRAIndex();
2983
2984  if (ReturnAddrIndex == 0) {
2985    // Set up a frame object for the return address.
2986    uint64_t SlotSize = TD->getPointerSize();
2987    ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2988                                                           false);
2989    FuncInfo->setRAIndex(ReturnAddrIndex);
2990  }
2991
2992  return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2993}
2994
2995
2996bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2997                                       bool hasSymbolicDisplacement) {
2998  // Offset should fit into 32 bit immediate field.
2999  if (!isInt<32>(Offset))
3000    return false;
3001
3002  // If we don't have a symbolic displacement - we don't have any extra
3003  // restrictions.
3004  if (!hasSymbolicDisplacement)
3005    return true;
3006
3007  // FIXME: Some tweaks might be needed for medium code model.
3008  if (M != CodeModel::Small && M != CodeModel::Kernel)
3009    return false;
3010
3011  // For small code model we assume that latest object is 16MB before end of 31
3012  // bits boundary. We may also accept pretty large negative constants knowing
3013  // that all objects are in the positive half of address space.
3014  if (M == CodeModel::Small && Offset < 16*1024*1024)
3015    return true;
3016
3017  // For kernel code model we know that all object resist in the negative half
3018  // of 32bits address space. We may not accept negative offsets, since they may
3019  // be just off and we may accept pretty large positive ones.
3020  if (M == CodeModel::Kernel && Offset > 0)
3021    return true;
3022
3023  return false;
3024}
3025
3026/// isCalleePop - Determines whether the callee is required to pop its
3027/// own arguments. Callee pop is necessary to support tail calls.
3028bool X86::isCalleePop(CallingConv::ID CallingConv,
3029                      bool is64Bit, bool IsVarArg, bool TailCallOpt) {
3030  if (IsVarArg)
3031    return false;
3032
3033  switch (CallingConv) {
3034  default:
3035    return false;
3036  case CallingConv::X86_StdCall:
3037    return !is64Bit;
3038  case CallingConv::X86_FastCall:
3039    return !is64Bit;
3040  case CallingConv::X86_ThisCall:
3041    return !is64Bit;
3042  case CallingConv::Fast:
3043    return TailCallOpt;
3044  case CallingConv::GHC:
3045    return TailCallOpt;
3046  }
3047}
3048
3049/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
3050/// specific condition code, returning the condition code and the LHS/RHS of the
3051/// comparison to make.
3052static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
3053                               SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
3054  if (!isFP) {
3055    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
3056      if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
3057        // X > -1   -> X == 0, jump !sign.
3058        RHS = DAG.getConstant(0, RHS.getValueType());
3059        return X86::COND_NS;
3060      }
3061      if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
3062        // X < 0   -> X == 0, jump on sign.
3063        return X86::COND_S;
3064      }
3065      if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
3066        // X < 1   -> X <= 0
3067        RHS = DAG.getConstant(0, RHS.getValueType());
3068        return X86::COND_LE;
3069      }
3070    }
3071
3072    switch (SetCCOpcode) {
3073    default: llvm_unreachable("Invalid integer condition!");
3074    case ISD::SETEQ:  return X86::COND_E;
3075    case ISD::SETGT:  return X86::COND_G;
3076    case ISD::SETGE:  return X86::COND_GE;
3077    case ISD::SETLT:  return X86::COND_L;
3078    case ISD::SETLE:  return X86::COND_LE;
3079    case ISD::SETNE:  return X86::COND_NE;
3080    case ISD::SETULT: return X86::COND_B;
3081    case ISD::SETUGT: return X86::COND_A;
3082    case ISD::SETULE: return X86::COND_BE;
3083    case ISD::SETUGE: return X86::COND_AE;
3084    }
3085  }
3086
3087  // First determine if it is required or is profitable to flip the operands.
3088
3089  // If LHS is a foldable load, but RHS is not, flip the condition.
3090  if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3091      !ISD::isNON_EXTLoad(RHS.getNode())) {
3092    SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3093    std::swap(LHS, RHS);
3094  }
3095
3096  switch (SetCCOpcode) {
3097  default: break;
3098  case ISD::SETOLT:
3099  case ISD::SETOLE:
3100  case ISD::SETUGT:
3101  case ISD::SETUGE:
3102    std::swap(LHS, RHS);
3103    break;
3104  }
3105
3106  // On a floating point condition, the flags are set as follows:
3107  // ZF  PF  CF   op
3108  //  0 | 0 | 0 | X > Y
3109  //  0 | 0 | 1 | X < Y
3110  //  1 | 0 | 0 | X == Y
3111  //  1 | 1 | 1 | unordered
3112  switch (SetCCOpcode) {
3113  default: llvm_unreachable("Condcode should be pre-legalized away");
3114  case ISD::SETUEQ:
3115  case ISD::SETEQ:   return X86::COND_E;
3116  case ISD::SETOLT:              // flipped
3117  case ISD::SETOGT:
3118  case ISD::SETGT:   return X86::COND_A;
3119  case ISD::SETOLE:              // flipped
3120  case ISD::SETOGE:
3121  case ISD::SETGE:   return X86::COND_AE;
3122  case ISD::SETUGT:              // flipped
3123  case ISD::SETULT:
3124  case ISD::SETLT:   return X86::COND_B;
3125  case ISD::SETUGE:              // flipped
3126  case ISD::SETULE:
3127  case ISD::SETLE:   return X86::COND_BE;
3128  case ISD::SETONE:
3129  case ISD::SETNE:   return X86::COND_NE;
3130  case ISD::SETUO:   return X86::COND_P;
3131  case ISD::SETO:    return X86::COND_NP;
3132  case ISD::SETOEQ:
3133  case ISD::SETUNE:  return X86::COND_INVALID;
3134  }
3135}
3136
3137/// hasFPCMov - is there a floating point cmov for the specific X86 condition
3138/// code. Current x86 isa includes the following FP cmov instructions:
3139/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
3140static bool hasFPCMov(unsigned X86CC) {
3141  switch (X86CC) {
3142  default:
3143    return false;
3144  case X86::COND_B:
3145  case X86::COND_BE:
3146  case X86::COND_E:
3147  case X86::COND_P:
3148  case X86::COND_A:
3149  case X86::COND_AE:
3150  case X86::COND_NE:
3151  case X86::COND_NP:
3152    return true;
3153  }
3154}
3155
3156/// isFPImmLegal - Returns true if the target can instruction select the
3157/// specified FP immediate natively. If false, the legalizer will
3158/// materialize the FP immediate as a load from a constant pool.
3159bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3160  for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3161    if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3162      return true;
3163  }
3164  return false;
3165}
3166
3167/// isUndefOrInRange - Return true if Val is undef or if its value falls within
3168/// the specified range (L, H].
3169static bool isUndefOrInRange(int Val, int Low, int Hi) {
3170  return (Val < 0) || (Val >= Low && Val < Hi);
3171}
3172
3173/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3174/// specified value.
3175static bool isUndefOrEqual(int Val, int CmpVal) {
3176  if (Val < 0 || Val == CmpVal)
3177    return true;
3178  return false;
3179}
3180
3181/// isSequentialOrUndefInRange - Return true if every element in Mask, beginning
3182/// from position Pos and ending in Pos+Size, falls within the specified
3183/// sequential range (L, L+Pos]. or is undef.
3184static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
3185                                       unsigned Pos, unsigned Size, int Low) {
3186  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3187    if (!isUndefOrEqual(Mask[i], Low))
3188      return false;
3189  return true;
3190}
3191
3192/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3193/// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3194/// the second operand.
3195static bool isPSHUFDMask(ArrayRef<int> Mask, EVT VT) {
3196  if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3197    return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3198  if (VT == MVT::v2f64 || VT == MVT::v2i64)
3199    return (Mask[0] < 2 && Mask[1] < 2);
3200  return false;
3201}
3202
3203/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3204/// is suitable for input to PSHUFHW.
3205static bool isPSHUFHWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3206  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3207    return false;
3208
3209  // Lower quadword copied in order or undef.
3210  if (!isSequentialOrUndefInRange(Mask, 0, 4, 0))
3211    return false;
3212
3213  // Upper quadword shuffled.
3214  for (unsigned i = 4; i != 8; ++i)
3215    if (!isUndefOrInRange(Mask[i], 4, 8))
3216      return false;
3217
3218  if (VT == MVT::v16i16) {
3219    // Lower quadword copied in order or undef.
3220    if (!isSequentialOrUndefInRange(Mask, 8, 4, 8))
3221      return false;
3222
3223    // Upper quadword shuffled.
3224    for (unsigned i = 12; i != 16; ++i)
3225      if (!isUndefOrInRange(Mask[i], 12, 16))
3226        return false;
3227  }
3228
3229  return true;
3230}
3231
3232/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3233/// is suitable for input to PSHUFLW.
3234static bool isPSHUFLWMask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3235  if (VT != MVT::v8i16 && (!HasAVX2 || VT != MVT::v16i16))
3236    return false;
3237
3238  // Upper quadword copied in order.
3239  if (!isSequentialOrUndefInRange(Mask, 4, 4, 4))
3240    return false;
3241
3242  // Lower quadword shuffled.
3243  for (unsigned i = 0; i != 4; ++i)
3244    if (!isUndefOrInRange(Mask[i], 0, 4))
3245      return false;
3246
3247  if (VT == MVT::v16i16) {
3248    // Upper quadword copied in order.
3249    if (!isSequentialOrUndefInRange(Mask, 12, 4, 12))
3250      return false;
3251
3252    // Lower quadword shuffled.
3253    for (unsigned i = 8; i != 12; ++i)
3254      if (!isUndefOrInRange(Mask[i], 8, 12))
3255        return false;
3256  }
3257
3258  return true;
3259}
3260
3261/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3262/// is suitable for input to PALIGNR.
3263static bool isPALIGNRMask(ArrayRef<int> Mask, EVT VT,
3264                          const X86Subtarget *Subtarget) {
3265  if ((VT.getSizeInBits() == 128 && !Subtarget->hasSSSE3()) ||
3266      (VT.getSizeInBits() == 256 && !Subtarget->hasAVX2()))
3267    return false;
3268
3269  unsigned NumElts = VT.getVectorNumElements();
3270  unsigned NumLanes = VT.getSizeInBits()/128;
3271  unsigned NumLaneElts = NumElts/NumLanes;
3272
3273  // Do not handle 64-bit element shuffles with palignr.
3274  if (NumLaneElts == 2)
3275    return false;
3276
3277  for (unsigned l = 0; l != NumElts; l+=NumLaneElts) {
3278    unsigned i;
3279    for (i = 0; i != NumLaneElts; ++i) {
3280      if (Mask[i+l] >= 0)
3281        break;
3282    }
3283
3284    // Lane is all undef, go to next lane
3285    if (i == NumLaneElts)
3286      continue;
3287
3288    int Start = Mask[i+l];
3289
3290    // Make sure its in this lane in one of the sources
3291    if (!isUndefOrInRange(Start, l, l+NumLaneElts) &&
3292        !isUndefOrInRange(Start, l+NumElts, l+NumElts+NumLaneElts))
3293      return false;
3294
3295    // If not lane 0, then we must match lane 0
3296    if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Start, Mask[i]+l))
3297      return false;
3298
3299    // Correct second source to be contiguous with first source
3300    if (Start >= (int)NumElts)
3301      Start -= NumElts - NumLaneElts;
3302
3303    // Make sure we're shifting in the right direction.
3304    if (Start <= (int)(i+l))
3305      return false;
3306
3307    Start -= i;
3308
3309    // Check the rest of the elements to see if they are consecutive.
3310    for (++i; i != NumLaneElts; ++i) {
3311      int Idx = Mask[i+l];
3312
3313      // Make sure its in this lane
3314      if (!isUndefOrInRange(Idx, l, l+NumLaneElts) &&
3315          !isUndefOrInRange(Idx, l+NumElts, l+NumElts+NumLaneElts))
3316        return false;
3317
3318      // If not lane 0, then we must match lane 0
3319      if (l != 0 && Mask[i] >= 0 && !isUndefOrEqual(Idx, Mask[i]+l))
3320        return false;
3321
3322      if (Idx >= (int)NumElts)
3323        Idx -= NumElts - NumLaneElts;
3324
3325      if (!isUndefOrEqual(Idx, Start+i))
3326        return false;
3327
3328    }
3329  }
3330
3331  return true;
3332}
3333
3334/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
3335/// the two vector operands have swapped position.
3336static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask,
3337                                     unsigned NumElems) {
3338  for (unsigned i = 0; i != NumElems; ++i) {
3339    int idx = Mask[i];
3340    if (idx < 0)
3341      continue;
3342    else if (idx < (int)NumElems)
3343      Mask[i] = idx + NumElems;
3344    else
3345      Mask[i] = idx - NumElems;
3346  }
3347}
3348
3349/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3350/// specifies a shuffle of elements that is suitable for input to 128/256-bit
3351/// SHUFPS and SHUFPD. If Commuted is true, then it checks for sources to be
3352/// reverse of what x86 shuffles want.
3353static bool isSHUFPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX,
3354                        bool Commuted = false) {
3355  if (!HasAVX && VT.getSizeInBits() == 256)
3356    return false;
3357
3358  unsigned NumElems = VT.getVectorNumElements();
3359  unsigned NumLanes = VT.getSizeInBits()/128;
3360  unsigned NumLaneElems = NumElems/NumLanes;
3361
3362  if (NumLaneElems != 2 && NumLaneElems != 4)
3363    return false;
3364
3365  // VSHUFPSY divides the resulting vector into 4 chunks.
3366  // The sources are also splitted into 4 chunks, and each destination
3367  // chunk must come from a different source chunk.
3368  //
3369  //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3370  //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3371  //
3372  //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3373  //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3374  //
3375  // VSHUFPDY divides the resulting vector into 4 chunks.
3376  // The sources are also splitted into 4 chunks, and each destination
3377  // chunk must come from a different source chunk.
3378  //
3379  //  SRC1 =>      X3       X2       X1       X0
3380  //  SRC2 =>      Y3       Y2       Y1       Y0
3381  //
3382  //  DST  =>  Y3..Y2,  X3..X2,  Y1..Y0,  X1..X0
3383  //
3384  unsigned HalfLaneElems = NumLaneElems/2;
3385  for (unsigned l = 0; l != NumElems; l += NumLaneElems) {
3386    for (unsigned i = 0; i != NumLaneElems; ++i) {
3387      int Idx = Mask[i+l];
3388      unsigned RngStart = l + ((Commuted == (i<HalfLaneElems)) ? NumElems : 0);
3389      if (!isUndefOrInRange(Idx, RngStart, RngStart+NumLaneElems))
3390        return false;
3391      // For VSHUFPSY, the mask of the second half must be the same as the
3392      // first but with the appropriate offsets. This works in the same way as
3393      // VPERMILPS works with masks.
3394      if (NumElems != 8 || l == 0 || Mask[i] < 0)
3395        continue;
3396      if (!isUndefOrEqual(Idx, Mask[i]+l))
3397        return false;
3398    }
3399  }
3400
3401  return true;
3402}
3403
3404/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3405/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
3406static bool isMOVHLPSMask(ArrayRef<int> Mask, EVT VT) {
3407  if (!VT.is128BitVector())
3408    return false;
3409
3410  unsigned NumElems = VT.getVectorNumElements();
3411
3412  if (NumElems != 4)
3413    return false;
3414
3415  // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3416  return isUndefOrEqual(Mask[0], 6) &&
3417         isUndefOrEqual(Mask[1], 7) &&
3418         isUndefOrEqual(Mask[2], 2) &&
3419         isUndefOrEqual(Mask[3], 3);
3420}
3421
3422/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3423/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3424/// <2, 3, 2, 3>
3425static bool isMOVHLPS_v_undef_Mask(ArrayRef<int> Mask, EVT VT) {
3426  if (!VT.is128BitVector())
3427    return false;
3428
3429  unsigned NumElems = VT.getVectorNumElements();
3430
3431  if (NumElems != 4)
3432    return false;
3433
3434  return isUndefOrEqual(Mask[0], 2) &&
3435         isUndefOrEqual(Mask[1], 3) &&
3436         isUndefOrEqual(Mask[2], 2) &&
3437         isUndefOrEqual(Mask[3], 3);
3438}
3439
3440/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3441/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
3442static bool isMOVLPMask(ArrayRef<int> Mask, EVT VT) {
3443  if (!VT.is128BitVector())
3444    return false;
3445
3446  unsigned NumElems = VT.getVectorNumElements();
3447
3448  if (NumElems != 2 && NumElems != 4)
3449    return false;
3450
3451  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3452    if (!isUndefOrEqual(Mask[i], i + NumElems))
3453      return false;
3454
3455  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
3456    if (!isUndefOrEqual(Mask[i], i))
3457      return false;
3458
3459  return true;
3460}
3461
3462/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3463/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
3464static bool isMOVLHPSMask(ArrayRef<int> Mask, EVT VT) {
3465  if (!VT.is128BitVector())
3466    return false;
3467
3468  unsigned NumElems = VT.getVectorNumElements();
3469
3470  if (NumElems != 2 && NumElems != 4)
3471    return false;
3472
3473  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3474    if (!isUndefOrEqual(Mask[i], i))
3475      return false;
3476
3477  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
3478    if (!isUndefOrEqual(Mask[i + e], i + NumElems))
3479      return false;
3480
3481  return true;
3482}
3483
3484//
3485// Some special combinations that can be optimized.
3486//
3487static
3488SDValue Compact8x32ShuffleNode(ShuffleVectorSDNode *SVOp,
3489                               SelectionDAG &DAG) {
3490  EVT VT = SVOp->getValueType(0);
3491  DebugLoc dl = SVOp->getDebugLoc();
3492
3493  if (VT != MVT::v8i32 && VT != MVT::v8f32)
3494    return SDValue();
3495
3496  ArrayRef<int> Mask = SVOp->getMask();
3497
3498  // These are the special masks that may be optimized.
3499  static const int MaskToOptimizeEven[] = {0, 8, 2, 10, 4, 12, 6, 14};
3500  static const int MaskToOptimizeOdd[]  = {1, 9, 3, 11, 5, 13, 7, 15};
3501  bool MatchEvenMask = true;
3502  bool MatchOddMask  = true;
3503  for (int i=0; i<8; ++i) {
3504    if (!isUndefOrEqual(Mask[i], MaskToOptimizeEven[i]))
3505      MatchEvenMask = false;
3506    if (!isUndefOrEqual(Mask[i], MaskToOptimizeOdd[i]))
3507      MatchOddMask = false;
3508  }
3509  static const int CompactionMaskEven[] = {0, 2, -1, -1, 4, 6, -1, -1};
3510  static const int CompactionMaskOdd [] = {1, 3, -1, -1, 5, 7, -1, -1};
3511
3512  const int *CompactionMask;
3513  if (MatchEvenMask)
3514    CompactionMask = CompactionMaskEven;
3515  else if (MatchOddMask)
3516    CompactionMask = CompactionMaskOdd;
3517  else
3518    return SDValue();
3519
3520  SDValue UndefNode = DAG.getNode(ISD::UNDEF, dl, VT);
3521
3522  SDValue Op0 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(0),
3523                                     UndefNode, CompactionMask);
3524  SDValue Op1 = DAG.getVectorShuffle(VT, dl, SVOp->getOperand(1),
3525                                     UndefNode, CompactionMask);
3526  static const int UnpackMask[] = {0, 8, 1, 9, 4, 12, 5, 13};
3527  return DAG.getVectorShuffle(VT, dl, Op0, Op1, UnpackMask);
3528}
3529
3530/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3531/// specifies a shuffle of elements that is suitable for input to UNPCKL.
3532static bool isUNPCKLMask(ArrayRef<int> Mask, EVT VT,
3533                         bool HasAVX2, bool V2IsSplat = false) {
3534  unsigned NumElts = VT.getVectorNumElements();
3535
3536  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3537         "Unsupported vector type for unpckh");
3538
3539  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3540      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3541    return false;
3542
3543  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3544  // independently on 128-bit lanes.
3545  unsigned NumLanes = VT.getSizeInBits()/128;
3546  unsigned NumLaneElts = NumElts/NumLanes;
3547
3548  for (unsigned l = 0; l != NumLanes; ++l) {
3549    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3550         i != (l+1)*NumLaneElts;
3551         i += 2, ++j) {
3552      int BitI  = Mask[i];
3553      int BitI1 = Mask[i+1];
3554      if (!isUndefOrEqual(BitI, j))
3555        return false;
3556      if (V2IsSplat) {
3557        if (!isUndefOrEqual(BitI1, NumElts))
3558          return false;
3559      } else {
3560        if (!isUndefOrEqual(BitI1, j + NumElts))
3561          return false;
3562      }
3563    }
3564  }
3565
3566  return true;
3567}
3568
3569/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3570/// specifies a shuffle of elements that is suitable for input to UNPCKH.
3571static bool isUNPCKHMask(ArrayRef<int> Mask, EVT VT,
3572                         bool HasAVX2, bool V2IsSplat = false) {
3573  unsigned NumElts = VT.getVectorNumElements();
3574
3575  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3576         "Unsupported vector type for unpckh");
3577
3578  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3579      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3580    return false;
3581
3582  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3583  // independently on 128-bit lanes.
3584  unsigned NumLanes = VT.getSizeInBits()/128;
3585  unsigned NumLaneElts = NumElts/NumLanes;
3586
3587  for (unsigned l = 0; l != NumLanes; ++l) {
3588    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3589         i != (l+1)*NumLaneElts; i += 2, ++j) {
3590      int BitI  = Mask[i];
3591      int BitI1 = Mask[i+1];
3592      if (!isUndefOrEqual(BitI, j))
3593        return false;
3594      if (V2IsSplat) {
3595        if (isUndefOrEqual(BitI1, NumElts))
3596          return false;
3597      } else {
3598        if (!isUndefOrEqual(BitI1, j+NumElts))
3599          return false;
3600      }
3601    }
3602  }
3603  return true;
3604}
3605
3606/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3607/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3608/// <0, 0, 1, 1>
3609static bool isUNPCKL_v_undef_Mask(ArrayRef<int> Mask, EVT VT,
3610                                  bool HasAVX2) {
3611  unsigned NumElts = VT.getVectorNumElements();
3612
3613  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3614         "Unsupported vector type for unpckh");
3615
3616  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3617      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3618    return false;
3619
3620  // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3621  // FIXME: Need a better way to get rid of this, there's no latency difference
3622  // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3623  // the former later. We should also remove the "_undef" special mask.
3624  if (NumElts == 4 && VT.getSizeInBits() == 256)
3625    return false;
3626
3627  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3628  // independently on 128-bit lanes.
3629  unsigned NumLanes = VT.getSizeInBits()/128;
3630  unsigned NumLaneElts = NumElts/NumLanes;
3631
3632  for (unsigned l = 0; l != NumLanes; ++l) {
3633    for (unsigned i = l*NumLaneElts, j = l*NumLaneElts;
3634         i != (l+1)*NumLaneElts;
3635         i += 2, ++j) {
3636      int BitI  = Mask[i];
3637      int BitI1 = Mask[i+1];
3638
3639      if (!isUndefOrEqual(BitI, j))
3640        return false;
3641      if (!isUndefOrEqual(BitI1, j))
3642        return false;
3643    }
3644  }
3645
3646  return true;
3647}
3648
3649/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3650/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3651/// <2, 2, 3, 3>
3652static bool isUNPCKH_v_undef_Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX2) {
3653  unsigned NumElts = VT.getVectorNumElements();
3654
3655  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3656         "Unsupported vector type for unpckh");
3657
3658  if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8 &&
3659      (!HasAVX2 || (NumElts != 16 && NumElts != 32)))
3660    return false;
3661
3662  // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3663  // independently on 128-bit lanes.
3664  unsigned NumLanes = VT.getSizeInBits()/128;
3665  unsigned NumLaneElts = NumElts/NumLanes;
3666
3667  for (unsigned l = 0; l != NumLanes; ++l) {
3668    for (unsigned i = l*NumLaneElts, j = (l*NumLaneElts)+NumLaneElts/2;
3669         i != (l+1)*NumLaneElts; i += 2, ++j) {
3670      int BitI  = Mask[i];
3671      int BitI1 = Mask[i+1];
3672      if (!isUndefOrEqual(BitI, j))
3673        return false;
3674      if (!isUndefOrEqual(BitI1, j))
3675        return false;
3676    }
3677  }
3678  return true;
3679}
3680
3681/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3682/// specifies a shuffle of elements that is suitable for input to MOVSS,
3683/// MOVSD, and MOVD, i.e. setting the lowest element.
3684static bool isMOVLMask(ArrayRef<int> Mask, EVT VT) {
3685  if (VT.getVectorElementType().getSizeInBits() < 32)
3686    return false;
3687  if (!VT.is128BitVector())
3688    return false;
3689
3690  unsigned NumElts = VT.getVectorNumElements();
3691
3692  if (!isUndefOrEqual(Mask[0], NumElts))
3693    return false;
3694
3695  for (unsigned i = 1; i != NumElts; ++i)
3696    if (!isUndefOrEqual(Mask[i], i))
3697      return false;
3698
3699  return true;
3700}
3701
3702/// isVPERM2X128Mask - Match 256-bit shuffles where the elements are considered
3703/// as permutations between 128-bit chunks or halves. As an example: this
3704/// shuffle bellow:
3705///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3706/// The first half comes from the second half of V1 and the second half from the
3707/// the second half of V2.
3708static bool isVPERM2X128Mask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3709  if (!HasAVX || !VT.is256BitVector())
3710    return false;
3711
3712  // The shuffle result is divided into half A and half B. In total the two
3713  // sources have 4 halves, namely: C, D, E, F. The final values of A and
3714  // B must come from C, D, E or F.
3715  unsigned HalfSize = VT.getVectorNumElements()/2;
3716  bool MatchA = false, MatchB = false;
3717
3718  // Check if A comes from one of C, D, E, F.
3719  for (unsigned Half = 0; Half != 4; ++Half) {
3720    if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3721      MatchA = true;
3722      break;
3723    }
3724  }
3725
3726  // Check if B comes from one of C, D, E, F.
3727  for (unsigned Half = 0; Half != 4; ++Half) {
3728    if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3729      MatchB = true;
3730      break;
3731    }
3732  }
3733
3734  return MatchA && MatchB;
3735}
3736
3737/// getShuffleVPERM2X128Immediate - Return the appropriate immediate to shuffle
3738/// the specified VECTOR_MASK mask with VPERM2F128/VPERM2I128 instructions.
3739static unsigned getShuffleVPERM2X128Immediate(ShuffleVectorSDNode *SVOp) {
3740  EVT VT = SVOp->getValueType(0);
3741
3742  unsigned HalfSize = VT.getVectorNumElements()/2;
3743
3744  unsigned FstHalf = 0, SndHalf = 0;
3745  for (unsigned i = 0; i < HalfSize; ++i) {
3746    if (SVOp->getMaskElt(i) > 0) {
3747      FstHalf = SVOp->getMaskElt(i)/HalfSize;
3748      break;
3749    }
3750  }
3751  for (unsigned i = HalfSize; i < HalfSize*2; ++i) {
3752    if (SVOp->getMaskElt(i) > 0) {
3753      SndHalf = SVOp->getMaskElt(i)/HalfSize;
3754      break;
3755    }
3756  }
3757
3758  return (FstHalf | (SndHalf << 4));
3759}
3760
3761/// isVPERMILPMask - Return true if the specified VECTOR_SHUFFLE operand
3762/// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3763/// Note that VPERMIL mask matching is different depending whether theunderlying
3764/// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3765/// to the same elements of the low, but to the higher half of the source.
3766/// In VPERMILPD the two lanes could be shuffled independently of each other
3767/// with the same restriction that lanes can't be crossed. Also handles PSHUFDY.
3768static bool isVPERMILPMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3769  if (!HasAVX)
3770    return false;
3771
3772  unsigned NumElts = VT.getVectorNumElements();
3773  // Only match 256-bit with 32/64-bit types
3774  if (VT.getSizeInBits() != 256 || (NumElts != 4 && NumElts != 8))
3775    return false;
3776
3777  unsigned NumLanes = VT.getSizeInBits()/128;
3778  unsigned LaneSize = NumElts/NumLanes;
3779  for (unsigned l = 0; l != NumElts; l += LaneSize) {
3780    for (unsigned i = 0; i != LaneSize; ++i) {
3781      if (!isUndefOrInRange(Mask[i+l], l, l+LaneSize))
3782        return false;
3783      if (NumElts != 8 || l == 0)
3784        continue;
3785      // VPERMILPS handling
3786      if (Mask[i] < 0)
3787        continue;
3788      if (!isUndefOrEqual(Mask[i+l], Mask[i]+l))
3789        return false;
3790    }
3791  }
3792
3793  return true;
3794}
3795
3796/// isCommutedMOVLMask - Returns true if the shuffle mask is except the reverse
3797/// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3798/// element of vector 2 and the other elements to come from vector 1 in order.
3799static bool isCommutedMOVLMask(ArrayRef<int> Mask, EVT VT,
3800                               bool V2IsSplat = false, bool V2IsUndef = false) {
3801  if (!VT.is128BitVector())
3802    return false;
3803
3804  unsigned NumOps = VT.getVectorNumElements();
3805  if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3806    return false;
3807
3808  if (!isUndefOrEqual(Mask[0], 0))
3809    return false;
3810
3811  for (unsigned i = 1; i != NumOps; ++i)
3812    if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3813          (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3814          (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3815      return false;
3816
3817  return true;
3818}
3819
3820/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3821/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3822/// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
3823static bool isMOVSHDUPMask(ArrayRef<int> Mask, EVT VT,
3824                           const X86Subtarget *Subtarget) {
3825  if (!Subtarget->hasSSE3())
3826    return false;
3827
3828  unsigned NumElems = VT.getVectorNumElements();
3829
3830  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3831      (VT.getSizeInBits() == 256 && NumElems != 8))
3832    return false;
3833
3834  // "i+1" is the value the indexed mask element must have
3835  for (unsigned i = 0; i != NumElems; i += 2)
3836    if (!isUndefOrEqual(Mask[i], i+1) ||
3837        !isUndefOrEqual(Mask[i+1], i+1))
3838      return false;
3839
3840  return true;
3841}
3842
3843/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3844/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3845/// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
3846static bool isMOVSLDUPMask(ArrayRef<int> Mask, EVT VT,
3847                           const X86Subtarget *Subtarget) {
3848  if (!Subtarget->hasSSE3())
3849    return false;
3850
3851  unsigned NumElems = VT.getVectorNumElements();
3852
3853  if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3854      (VT.getSizeInBits() == 256 && NumElems != 8))
3855    return false;
3856
3857  // "i" is the value the indexed mask element must have
3858  for (unsigned i = 0; i != NumElems; i += 2)
3859    if (!isUndefOrEqual(Mask[i], i) ||
3860        !isUndefOrEqual(Mask[i+1], i))
3861      return false;
3862
3863  return true;
3864}
3865
3866/// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3867/// specifies a shuffle of elements that is suitable for input to 256-bit
3868/// version of MOVDDUP.
3869static bool isMOVDDUPYMask(ArrayRef<int> Mask, EVT VT, bool HasAVX) {
3870  if (!HasAVX || !VT.is256BitVector())
3871    return false;
3872
3873  unsigned NumElts = VT.getVectorNumElements();
3874  if (NumElts != 4)
3875    return false;
3876
3877  for (unsigned i = 0; i != NumElts/2; ++i)
3878    if (!isUndefOrEqual(Mask[i], 0))
3879      return false;
3880  for (unsigned i = NumElts/2; i != NumElts; ++i)
3881    if (!isUndefOrEqual(Mask[i], NumElts/2))
3882      return false;
3883  return true;
3884}
3885
3886/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3887/// specifies a shuffle of elements that is suitable for input to 128-bit
3888/// version of MOVDDUP.
3889static bool isMOVDDUPMask(ArrayRef<int> Mask, EVT VT) {
3890  if (!VT.is128BitVector())
3891    return false;
3892
3893  unsigned e = VT.getVectorNumElements() / 2;
3894  for (unsigned i = 0; i != e; ++i)
3895    if (!isUndefOrEqual(Mask[i], i))
3896      return false;
3897  for (unsigned i = 0; i != e; ++i)
3898    if (!isUndefOrEqual(Mask[e+i], i))
3899      return false;
3900  return true;
3901}
3902
3903/// isVEXTRACTF128Index - Return true if the specified
3904/// EXTRACT_SUBVECTOR operand specifies a vector extract that is
3905/// suitable for input to VEXTRACTF128.
3906bool X86::isVEXTRACTF128Index(SDNode *N) {
3907  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
3908    return false;
3909
3910  // The index should be aligned on a 128-bit boundary.
3911  uint64_t Index =
3912    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
3913
3914  unsigned VL = N->getValueType(0).getVectorNumElements();
3915  unsigned VBits = N->getValueType(0).getSizeInBits();
3916  unsigned ElSize = VBits / VL;
3917  bool Result = (Index * ElSize) % 128 == 0;
3918
3919  return Result;
3920}
3921
3922/// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
3923/// operand specifies a subvector insert that is suitable for input to
3924/// VINSERTF128.
3925bool X86::isVINSERTF128Index(SDNode *N) {
3926  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
3927    return false;
3928
3929  // The index should be aligned on a 128-bit boundary.
3930  uint64_t Index =
3931    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
3932
3933  unsigned VL = N->getValueType(0).getVectorNumElements();
3934  unsigned VBits = N->getValueType(0).getSizeInBits();
3935  unsigned ElSize = VBits / VL;
3936  bool Result = (Index * ElSize) % 128 == 0;
3937
3938  return Result;
3939}
3940
3941/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
3942/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
3943/// Handles 128-bit and 256-bit.
3944static unsigned getShuffleSHUFImmediate(ShuffleVectorSDNode *N) {
3945  EVT VT = N->getValueType(0);
3946
3947  assert((VT.is128BitVector() || VT.is256BitVector()) &&
3948         "Unsupported vector type for PSHUF/SHUFP");
3949
3950  // Handle 128 and 256-bit vector lengths. AVX defines PSHUF/SHUFP to operate
3951  // independently on 128-bit lanes.
3952  unsigned NumElts = VT.getVectorNumElements();
3953  unsigned NumLanes = VT.getSizeInBits()/128;
3954  unsigned NumLaneElts = NumElts/NumLanes;
3955
3956  assert((NumLaneElts == 2 || NumLaneElts == 4) &&
3957         "Only supports 2 or 4 elements per lane");
3958
3959  unsigned Shift = (NumLaneElts == 4) ? 1 : 0;
3960  unsigned Mask = 0;
3961  for (unsigned i = 0; i != NumElts; ++i) {
3962    int Elt = N->getMaskElt(i);
3963    if (Elt < 0) continue;
3964    Elt &= NumLaneElts - 1;
3965    unsigned ShAmt = (i << Shift) % 8;
3966    Mask |= Elt << ShAmt;
3967  }
3968
3969  return Mask;
3970}
3971
3972/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
3973/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
3974static unsigned getShufflePSHUFHWImmediate(ShuffleVectorSDNode *N) {
3975  EVT VT = N->getValueType(0);
3976
3977  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
3978         "Unsupported vector type for PSHUFHW");
3979
3980  unsigned NumElts = VT.getVectorNumElements();
3981
3982  unsigned Mask = 0;
3983  for (unsigned l = 0; l != NumElts; l += 8) {
3984    // 8 nodes per lane, but we only care about the last 4.
3985    for (unsigned i = 0; i < 4; ++i) {
3986      int Elt = N->getMaskElt(l+i+4);
3987      if (Elt < 0) continue;
3988      Elt &= 0x3; // only 2-bits.
3989      Mask |= Elt << (i * 2);
3990    }
3991  }
3992
3993  return Mask;
3994}
3995
3996/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
3997/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
3998static unsigned getShufflePSHUFLWImmediate(ShuffleVectorSDNode *N) {
3999  EVT VT = N->getValueType(0);
4000
4001  assert((VT == MVT::v8i16 || VT == MVT::v16i16) &&
4002         "Unsupported vector type for PSHUFHW");
4003
4004  unsigned NumElts = VT.getVectorNumElements();
4005
4006  unsigned Mask = 0;
4007  for (unsigned l = 0; l != NumElts; l += 8) {
4008    // 8 nodes per lane, but we only care about the first 4.
4009    for (unsigned i = 0; i < 4; ++i) {
4010      int Elt = N->getMaskElt(l+i);
4011      if (Elt < 0) continue;
4012      Elt &= 0x3; // only 2-bits
4013      Mask |= Elt << (i * 2);
4014    }
4015  }
4016
4017  return Mask;
4018}
4019
4020/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4021/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
4022static unsigned getShufflePALIGNRImmediate(ShuffleVectorSDNode *SVOp) {
4023  EVT VT = SVOp->getValueType(0);
4024  unsigned EltSize = VT.getVectorElementType().getSizeInBits() >> 3;
4025
4026  unsigned NumElts = VT.getVectorNumElements();
4027  unsigned NumLanes = VT.getSizeInBits()/128;
4028  unsigned NumLaneElts = NumElts/NumLanes;
4029
4030  int Val = 0;
4031  unsigned i;
4032  for (i = 0; i != NumElts; ++i) {
4033    Val = SVOp->getMaskElt(i);
4034    if (Val >= 0)
4035      break;
4036  }
4037  if (Val >= (int)NumElts)
4038    Val -= NumElts - NumLaneElts;
4039
4040  assert(Val - i > 0 && "PALIGNR imm should be positive");
4041  return (Val - i) * EltSize;
4042}
4043
4044/// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4045/// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4046/// instructions.
4047unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4048  if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4049    llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4050
4051  uint64_t Index =
4052    cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4053
4054  EVT VecVT = N->getOperand(0).getValueType();
4055  EVT ElVT = VecVT.getVectorElementType();
4056
4057  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4058  return Index / NumElemsPerChunk;
4059}
4060
4061/// getInsertVINSERTF128Immediate - Return the appropriate immediate
4062/// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4063/// instructions.
4064unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4065  if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4066    llvm_unreachable("Illegal insert subvector for VINSERTF128");
4067
4068  uint64_t Index =
4069    cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4070
4071  EVT VecVT = N->getValueType(0);
4072  EVT ElVT = VecVT.getVectorElementType();
4073
4074  unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4075  return Index / NumElemsPerChunk;
4076}
4077
4078/// getShuffleCLImmediate - Return the appropriate immediate to shuffle
4079/// the specified VECTOR_SHUFFLE mask with VPERMQ and VPERMPD instructions.
4080/// Handles 256-bit.
4081static unsigned getShuffleCLImmediate(ShuffleVectorSDNode *N) {
4082  EVT VT = N->getValueType(0);
4083
4084  unsigned NumElts = VT.getVectorNumElements();
4085
4086  assert((VT.is256BitVector() && NumElts == 4) &&
4087         "Unsupported vector type for VPERMQ/VPERMPD");
4088
4089  unsigned Mask = 0;
4090  for (unsigned i = 0; i != NumElts; ++i) {
4091    int Elt = N->getMaskElt(i);
4092    if (Elt < 0)
4093      continue;
4094    Mask |= Elt << (i*2);
4095  }
4096
4097  return Mask;
4098}
4099/// isZeroNode - Returns true if Elt is a constant zero or a floating point
4100/// constant +0.0.
4101bool X86::isZeroNode(SDValue Elt) {
4102  return ((isa<ConstantSDNode>(Elt) &&
4103           cast<ConstantSDNode>(Elt)->isNullValue()) ||
4104          (isa<ConstantFPSDNode>(Elt) &&
4105           cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4106}
4107
4108/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4109/// their permute mask.
4110static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4111                                    SelectionDAG &DAG) {
4112  EVT VT = SVOp->getValueType(0);
4113  unsigned NumElems = VT.getVectorNumElements();
4114  SmallVector<int, 8> MaskVec;
4115
4116  for (unsigned i = 0; i != NumElems; ++i) {
4117    int Idx = SVOp->getMaskElt(i);
4118    if (Idx >= 0) {
4119      if (Idx < (int)NumElems)
4120        Idx += NumElems;
4121      else
4122        Idx -= NumElems;
4123    }
4124    MaskVec.push_back(Idx);
4125  }
4126  return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4127                              SVOp->getOperand(0), &MaskVec[0]);
4128}
4129
4130/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4131/// match movhlps. The lower half elements should come from upper half of
4132/// V1 (and in order), and the upper half elements should come from the upper
4133/// half of V2 (and in order).
4134static bool ShouldXformToMOVHLPS(ArrayRef<int> Mask, EVT VT) {
4135  if (!VT.is128BitVector())
4136    return false;
4137  if (VT.getVectorNumElements() != 4)
4138    return false;
4139  for (unsigned i = 0, e = 2; i != e; ++i)
4140    if (!isUndefOrEqual(Mask[i], i+2))
4141      return false;
4142  for (unsigned i = 2; i != 4; ++i)
4143    if (!isUndefOrEqual(Mask[i], i+4))
4144      return false;
4145  return true;
4146}
4147
4148/// isScalarLoadToVector - Returns true if the node is a scalar load that
4149/// is promoted to a vector. It also returns the LoadSDNode by reference if
4150/// required.
4151static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4152  if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4153    return false;
4154  N = N->getOperand(0).getNode();
4155  if (!ISD::isNON_EXTLoad(N))
4156    return false;
4157  if (LD)
4158    *LD = cast<LoadSDNode>(N);
4159  return true;
4160}
4161
4162// Test whether the given value is a vector value which will be legalized
4163// into a load.
4164static bool WillBeConstantPoolLoad(SDNode *N) {
4165  if (N->getOpcode() != ISD::BUILD_VECTOR)
4166    return false;
4167
4168  // Check for any non-constant elements.
4169  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4170    switch (N->getOperand(i).getNode()->getOpcode()) {
4171    case ISD::UNDEF:
4172    case ISD::ConstantFP:
4173    case ISD::Constant:
4174      break;
4175    default:
4176      return false;
4177    }
4178
4179  // Vectors of all-zeros and all-ones are materialized with special
4180  // instructions rather than being loaded.
4181  return !ISD::isBuildVectorAllZeros(N) &&
4182         !ISD::isBuildVectorAllOnes(N);
4183}
4184
4185/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4186/// match movlp{s|d}. The lower half elements should come from lower half of
4187/// V1 (and in order), and the upper half elements should come from the upper
4188/// half of V2 (and in order). And since V1 will become the source of the
4189/// MOVLP, it must be either a vector load or a scalar load to vector.
4190static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4191                               ArrayRef<int> Mask, EVT VT) {
4192  if (!VT.is128BitVector())
4193    return false;
4194
4195  if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4196    return false;
4197  // Is V2 is a vector load, don't do this transformation. We will try to use
4198  // load folding shufps op.
4199  if (ISD::isNON_EXTLoad(V2) || WillBeConstantPoolLoad(V2))
4200    return false;
4201
4202  unsigned NumElems = VT.getVectorNumElements();
4203
4204  if (NumElems != 2 && NumElems != 4)
4205    return false;
4206  for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4207    if (!isUndefOrEqual(Mask[i], i))
4208      return false;
4209  for (unsigned i = NumElems/2, e = NumElems; i != e; ++i)
4210    if (!isUndefOrEqual(Mask[i], i+NumElems))
4211      return false;
4212  return true;
4213}
4214
4215/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4216/// all the same.
4217static bool isSplatVector(SDNode *N) {
4218  if (N->getOpcode() != ISD::BUILD_VECTOR)
4219    return false;
4220
4221  SDValue SplatValue = N->getOperand(0);
4222  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4223    if (N->getOperand(i) != SplatValue)
4224      return false;
4225  return true;
4226}
4227
4228/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4229/// to an zero vector.
4230/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
4231static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4232  SDValue V1 = N->getOperand(0);
4233  SDValue V2 = N->getOperand(1);
4234  unsigned NumElems = N->getValueType(0).getVectorNumElements();
4235  for (unsigned i = 0; i != NumElems; ++i) {
4236    int Idx = N->getMaskElt(i);
4237    if (Idx >= (int)NumElems) {
4238      unsigned Opc = V2.getOpcode();
4239      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4240        continue;
4241      if (Opc != ISD::BUILD_VECTOR ||
4242          !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4243        return false;
4244    } else if (Idx >= 0) {
4245      unsigned Opc = V1.getOpcode();
4246      if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4247        continue;
4248      if (Opc != ISD::BUILD_VECTOR ||
4249          !X86::isZeroNode(V1.getOperand(Idx)))
4250        return false;
4251    }
4252  }
4253  return true;
4254}
4255
4256/// getZeroVector - Returns a vector of specified type with all zero elements.
4257///
4258static SDValue getZeroVector(EVT VT, const X86Subtarget *Subtarget,
4259                             SelectionDAG &DAG, DebugLoc dl) {
4260  assert(VT.isVector() && "Expected a vector type");
4261  unsigned Size = VT.getSizeInBits();
4262
4263  // Always build SSE zero vectors as <4 x i32> bitcasted
4264  // to their dest type. This ensures they get CSE'd.
4265  SDValue Vec;
4266  if (Size == 128) {  // SSE
4267    if (Subtarget->hasSSE2()) {  // SSE2
4268      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4269      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4270    } else { // SSE1
4271      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4272      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4273    }
4274  } else if (Size == 256) { // AVX
4275    if (Subtarget->hasAVX2()) { // AVX2
4276      SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4277      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4278      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4279    } else {
4280      // 256-bit logic and arithmetic instructions in AVX are all
4281      // floating-point, no support for integer ops. Emit fp zeroed vectors.
4282      SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4283      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4284      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4285    }
4286  } else
4287    llvm_unreachable("Unexpected vector type");
4288
4289  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4290}
4291
4292/// getOnesVector - Returns a vector of specified type with all bits set.
4293/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
4294/// no AVX2 supprt, use two <4 x i32> inserted in a <8 x i32> appropriately.
4295/// Then bitcast to their original type, ensuring they get CSE'd.
4296static SDValue getOnesVector(EVT VT, bool HasAVX2, SelectionDAG &DAG,
4297                             DebugLoc dl) {
4298  assert(VT.isVector() && "Expected a vector type");
4299  unsigned Size = VT.getSizeInBits();
4300
4301  SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4302  SDValue Vec;
4303  if (Size == 256) {
4304    if (HasAVX2) { // AVX2
4305      SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4306      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32, Ops, 8);
4307    } else { // AVX
4308      Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4309      Vec = Concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
4310    }
4311  } else if (Size == 128) {
4312    Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4313  } else
4314    llvm_unreachable("Unexpected vector type");
4315
4316  return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4317}
4318
4319/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4320/// that point to V2 points to its first element.
4321static void NormalizeMask(SmallVectorImpl<int> &Mask, unsigned NumElems) {
4322  for (unsigned i = 0; i != NumElems; ++i) {
4323    if (Mask[i] > (int)NumElems) {
4324      Mask[i] = NumElems;
4325    }
4326  }
4327}
4328
4329/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4330/// operation of specified width.
4331static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4332                       SDValue V2) {
4333  unsigned NumElems = VT.getVectorNumElements();
4334  SmallVector<int, 8> Mask;
4335  Mask.push_back(NumElems);
4336  for (unsigned i = 1; i != NumElems; ++i)
4337    Mask.push_back(i);
4338  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4339}
4340
4341/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
4342static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4343                          SDValue V2) {
4344  unsigned NumElems = VT.getVectorNumElements();
4345  SmallVector<int, 8> Mask;
4346  for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4347    Mask.push_back(i);
4348    Mask.push_back(i + NumElems);
4349  }
4350  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4351}
4352
4353/// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
4354static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4355                          SDValue V2) {
4356  unsigned NumElems = VT.getVectorNumElements();
4357  SmallVector<int, 8> Mask;
4358  for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
4359    Mask.push_back(i + Half);
4360    Mask.push_back(i + NumElems + Half);
4361  }
4362  return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4363}
4364
4365// PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4366// a generic shuffle instruction because the target has no such instructions.
4367// Generate shuffles which repeat i16 and i8 several times until they can be
4368// represented by v4f32 and then be manipulated by target suported shuffles.
4369static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4370  EVT VT = V.getValueType();
4371  int NumElems = VT.getVectorNumElements();
4372  DebugLoc dl = V.getDebugLoc();
4373
4374  while (NumElems > 4) {
4375    if (EltNo < NumElems/2) {
4376      V = getUnpackl(DAG, dl, VT, V, V);
4377    } else {
4378      V = getUnpackh(DAG, dl, VT, V, V);
4379      EltNo -= NumElems/2;
4380    }
4381    NumElems >>= 1;
4382  }
4383  return V;
4384}
4385
4386/// getLegalSplat - Generate a legal splat with supported x86 shuffles
4387static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4388  EVT VT = V.getValueType();
4389  DebugLoc dl = V.getDebugLoc();
4390  unsigned Size = VT.getSizeInBits();
4391
4392  if (Size == 128) {
4393    V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4394    int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4395    V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4396                             &SplatMask[0]);
4397  } else if (Size == 256) {
4398    // To use VPERMILPS to splat scalars, the second half of indicies must
4399    // refer to the higher part, which is a duplication of the lower one,
4400    // because VPERMILPS can only handle in-lane permutations.
4401    int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4402                         EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4403
4404    V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4405    V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4406                             &SplatMask[0]);
4407  } else
4408    llvm_unreachable("Vector size not supported");
4409
4410  return DAG.getNode(ISD::BITCAST, dl, VT, V);
4411}
4412
4413/// PromoteSplat - Splat is promoted to target supported vector shuffles.
4414static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4415  EVT SrcVT = SV->getValueType(0);
4416  SDValue V1 = SV->getOperand(0);
4417  DebugLoc dl = SV->getDebugLoc();
4418
4419  int EltNo = SV->getSplatIndex();
4420  int NumElems = SrcVT.getVectorNumElements();
4421  unsigned Size = SrcVT.getSizeInBits();
4422
4423  assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4424          "Unknown how to promote splat for type");
4425
4426  // Extract the 128-bit part containing the splat element and update
4427  // the splat element index when it refers to the higher register.
4428  if (Size == 256) {
4429    V1 = Extract128BitVector(V1, EltNo, DAG, dl);
4430    if (EltNo >= NumElems/2)
4431      EltNo -= NumElems/2;
4432  }
4433
4434  // All i16 and i8 vector types can't be used directly by a generic shuffle
4435  // instruction because the target has no such instruction. Generate shuffles
4436  // which repeat i16 and i8 several times until they fit in i32, and then can
4437  // be manipulated by target suported shuffles.
4438  EVT EltVT = SrcVT.getVectorElementType();
4439  if (EltVT == MVT::i8 || EltVT == MVT::i16)
4440    V1 = PromoteSplati8i16(V1, DAG, EltNo);
4441
4442  // Recreate the 256-bit vector and place the same 128-bit vector
4443  // into the low and high part. This is necessary because we want
4444  // to use VPERM* to shuffle the vectors
4445  if (Size == 256) {
4446    V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, SrcVT, V1, V1);
4447  }
4448
4449  return getLegalSplat(DAG, V1, EltNo);
4450}
4451
4452/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4453/// vector of zero or undef vector.  This produces a shuffle where the low
4454/// element of V2 is swizzled into the zero/undef vector, landing at element
4455/// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
4456static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4457                                           bool IsZero,
4458                                           const X86Subtarget *Subtarget,
4459                                           SelectionDAG &DAG) {
4460  EVT VT = V2.getValueType();
4461  SDValue V1 = IsZero
4462    ? getZeroVector(VT, Subtarget, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4463  unsigned NumElems = VT.getVectorNumElements();
4464  SmallVector<int, 16> MaskVec;
4465  for (unsigned i = 0; i != NumElems; ++i)
4466    // If this is the insertion idx, put the low elt of V2 here.
4467    MaskVec.push_back(i == Idx ? NumElems : i);
4468  return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4469}
4470
4471/// getTargetShuffleMask - Calculates the shuffle mask corresponding to the
4472/// target specific opcode. Returns true if the Mask could be calculated.
4473/// Sets IsUnary to true if only uses one source.
4474static bool getTargetShuffleMask(SDNode *N, MVT VT,
4475                                 SmallVectorImpl<int> &Mask, bool &IsUnary) {
4476  unsigned NumElems = VT.getVectorNumElements();
4477  SDValue ImmN;
4478
4479  IsUnary = false;
4480  switch(N->getOpcode()) {
4481  case X86ISD::SHUFP:
4482    ImmN = N->getOperand(N->getNumOperands()-1);
4483    DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4484    break;
4485  case X86ISD::UNPCKH:
4486    DecodeUNPCKHMask(VT, Mask);
4487    break;
4488  case X86ISD::UNPCKL:
4489    DecodeUNPCKLMask(VT, Mask);
4490    break;
4491  case X86ISD::MOVHLPS:
4492    DecodeMOVHLPSMask(NumElems, Mask);
4493    break;
4494  case X86ISD::MOVLHPS:
4495    DecodeMOVLHPSMask(NumElems, Mask);
4496    break;
4497  case X86ISD::PSHUFD:
4498  case X86ISD::VPERMILP:
4499    ImmN = N->getOperand(N->getNumOperands()-1);
4500    DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4501    IsUnary = true;
4502    break;
4503  case X86ISD::PSHUFHW:
4504    ImmN = N->getOperand(N->getNumOperands()-1);
4505    DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4506    IsUnary = true;
4507    break;
4508  case X86ISD::PSHUFLW:
4509    ImmN = N->getOperand(N->getNumOperands()-1);
4510    DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4511    IsUnary = true;
4512    break;
4513  case X86ISD::VPERMI:
4514    ImmN = N->getOperand(N->getNumOperands()-1);
4515    DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4516    IsUnary = true;
4517    break;
4518  case X86ISD::MOVSS:
4519  case X86ISD::MOVSD: {
4520    // The index 0 always comes from the first element of the second source,
4521    // this is why MOVSS and MOVSD are used in the first place. The other
4522    // elements come from the other positions of the first source vector
4523    Mask.push_back(NumElems);
4524    for (unsigned i = 1; i != NumElems; ++i) {
4525      Mask.push_back(i);
4526    }
4527    break;
4528  }
4529  case X86ISD::VPERM2X128:
4530    ImmN = N->getOperand(N->getNumOperands()-1);
4531    DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
4532    if (Mask.empty()) return false;
4533    break;
4534  case X86ISD::MOVDDUP:
4535  case X86ISD::MOVLHPD:
4536  case X86ISD::MOVLPD:
4537  case X86ISD::MOVLPS:
4538  case X86ISD::MOVSHDUP:
4539  case X86ISD::MOVSLDUP:
4540  case X86ISD::PALIGN:
4541    // Not yet implemented
4542    return false;
4543  default: llvm_unreachable("unknown target shuffle node");
4544  }
4545
4546  return true;
4547}
4548
4549/// getShuffleScalarElt - Returns the scalar element that will make up the ith
4550/// element of the result of the vector shuffle.
4551static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
4552                                   unsigned Depth) {
4553  if (Depth == 6)
4554    return SDValue();  // Limit search depth.
4555
4556  SDValue V = SDValue(N, 0);
4557  EVT VT = V.getValueType();
4558  unsigned Opcode = V.getOpcode();
4559
4560  // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4561  if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4562    int Elt = SV->getMaskElt(Index);
4563
4564    if (Elt < 0)
4565      return DAG.getUNDEF(VT.getVectorElementType());
4566
4567    unsigned NumElems = VT.getVectorNumElements();
4568    SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
4569                                         : SV->getOperand(1);
4570    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
4571  }
4572
4573  // Recurse into target specific vector shuffles to find scalars.
4574  if (isTargetShuffle(Opcode)) {
4575    MVT ShufVT = V.getValueType().getSimpleVT();
4576    unsigned NumElems = ShufVT.getVectorNumElements();
4577    SmallVector<int, 16> ShuffleMask;
4578    SDValue ImmN;
4579    bool IsUnary;
4580
4581    if (!getTargetShuffleMask(N, ShufVT, ShuffleMask, IsUnary))
4582      return SDValue();
4583
4584    int Elt = ShuffleMask[Index];
4585    if (Elt < 0)
4586      return DAG.getUNDEF(ShufVT.getVectorElementType());
4587
4588    SDValue NewV = (Elt < (int)NumElems) ? N->getOperand(0)
4589                                         : N->getOperand(1);
4590    return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
4591                               Depth+1);
4592  }
4593
4594  // Actual nodes that may contain scalar elements
4595  if (Opcode == ISD::BITCAST) {
4596    V = V.getOperand(0);
4597    EVT SrcVT = V.getValueType();
4598    unsigned NumElems = VT.getVectorNumElements();
4599
4600    if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4601      return SDValue();
4602  }
4603
4604  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4605    return (Index == 0) ? V.getOperand(0)
4606                        : DAG.getUNDEF(VT.getVectorElementType());
4607
4608  if (V.getOpcode() == ISD::BUILD_VECTOR)
4609    return V.getOperand(Index);
4610
4611  return SDValue();
4612}
4613
4614/// getNumOfConsecutiveZeros - Return the number of elements of a vector
4615/// shuffle operation which come from a consecutively from a zero. The
4616/// search can start in two different directions, from left or right.
4617static
4618unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, unsigned NumElems,
4619                                  bool ZerosFromLeft, SelectionDAG &DAG) {
4620  unsigned i;
4621  for (i = 0; i != NumElems; ++i) {
4622    unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4623    SDValue Elt = getShuffleScalarElt(SVOp, Index, DAG, 0);
4624    if (!(Elt.getNode() &&
4625         (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4626      break;
4627  }
4628
4629  return i;
4630}
4631
4632/// isShuffleMaskConsecutive - Check if the shuffle mask indicies [MaskI, MaskE)
4633/// correspond consecutively to elements from one of the vector operands,
4634/// starting from its index OpIdx. Also tell OpNum which source vector operand.
4635static
4636bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp,
4637                              unsigned MaskI, unsigned MaskE, unsigned OpIdx,
4638                              unsigned NumElems, unsigned &OpNum) {
4639  bool SeenV1 = false;
4640  bool SeenV2 = false;
4641
4642  for (unsigned i = MaskI; i != MaskE; ++i, ++OpIdx) {
4643    int Idx = SVOp->getMaskElt(i);
4644    // Ignore undef indicies
4645    if (Idx < 0)
4646      continue;
4647
4648    if (Idx < (int)NumElems)
4649      SeenV1 = true;
4650    else
4651      SeenV2 = true;
4652
4653    // Only accept consecutive elements from the same vector
4654    if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4655      return false;
4656  }
4657
4658  OpNum = SeenV1 ? 0 : 1;
4659  return true;
4660}
4661
4662/// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4663/// logical left shift of a vector.
4664static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4665                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4666  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4667  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4668              false /* check zeros from right */, DAG);
4669  unsigned OpSrc;
4670
4671  if (!NumZeros)
4672    return false;
4673
4674  // Considering the elements in the mask that are not consecutive zeros,
4675  // check if they consecutively come from only one of the source vectors.
4676  //
4677  //               V1 = {X, A, B, C}     0
4678  //                         \  \  \    /
4679  //   vector_shuffle V1, V2 <1, 2, 3, X>
4680  //
4681  if (!isShuffleMaskConsecutive(SVOp,
4682            0,                   // Mask Start Index
4683            NumElems-NumZeros,   // Mask End Index(exclusive)
4684            NumZeros,            // Where to start looking in the src vector
4685            NumElems,            // Number of elements in vector
4686            OpSrc))              // Which source operand ?
4687    return false;
4688
4689  isLeft = false;
4690  ShAmt = NumZeros;
4691  ShVal = SVOp->getOperand(OpSrc);
4692  return true;
4693}
4694
4695/// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4696/// logical left shift of a vector.
4697static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4698                              bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4699  unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4700  unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4701              true /* check zeros from left */, DAG);
4702  unsigned OpSrc;
4703
4704  if (!NumZeros)
4705    return false;
4706
4707  // Considering the elements in the mask that are not consecutive zeros,
4708  // check if they consecutively come from only one of the source vectors.
4709  //
4710  //                           0    { A, B, X, X } = V2
4711  //                          / \    /  /
4712  //   vector_shuffle V1, V2 <X, X, 4, 5>
4713  //
4714  if (!isShuffleMaskConsecutive(SVOp,
4715            NumZeros,     // Mask Start Index
4716            NumElems,     // Mask End Index(exclusive)
4717            0,            // Where to start looking in the src vector
4718            NumElems,     // Number of elements in vector
4719            OpSrc))       // Which source operand ?
4720    return false;
4721
4722  isLeft = true;
4723  ShAmt = NumZeros;
4724  ShVal = SVOp->getOperand(OpSrc);
4725  return true;
4726}
4727
4728/// isVectorShift - Returns true if the shuffle can be implemented as a
4729/// logical left or right shift of a vector.
4730static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4731                          bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4732  // Although the logic below support any bitwidth size, there are no
4733  // shift instructions which handle more than 128-bit vectors.
4734  if (!SVOp->getValueType(0).is128BitVector())
4735    return false;
4736
4737  if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4738      isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4739    return true;
4740
4741  return false;
4742}
4743
4744/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4745///
4746static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4747                                       unsigned NumNonZero, unsigned NumZero,
4748                                       SelectionDAG &DAG,
4749                                       const X86Subtarget* Subtarget,
4750                                       const TargetLowering &TLI) {
4751  if (NumNonZero > 8)
4752    return SDValue();
4753
4754  DebugLoc dl = Op.getDebugLoc();
4755  SDValue V(0, 0);
4756  bool First = true;
4757  for (unsigned i = 0; i < 16; ++i) {
4758    bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4759    if (ThisIsNonZero && First) {
4760      if (NumZero)
4761        V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4762      else
4763        V = DAG.getUNDEF(MVT::v8i16);
4764      First = false;
4765    }
4766
4767    if ((i & 1) != 0) {
4768      SDValue ThisElt(0, 0), LastElt(0, 0);
4769      bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4770      if (LastIsNonZero) {
4771        LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4772                              MVT::i16, Op.getOperand(i-1));
4773      }
4774      if (ThisIsNonZero) {
4775        ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4776        ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4777                              ThisElt, DAG.getConstant(8, MVT::i8));
4778        if (LastIsNonZero)
4779          ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4780      } else
4781        ThisElt = LastElt;
4782
4783      if (ThisElt.getNode())
4784        V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4785                        DAG.getIntPtrConstant(i/2));
4786    }
4787  }
4788
4789  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4790}
4791
4792/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4793///
4794static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4795                                     unsigned NumNonZero, unsigned NumZero,
4796                                     SelectionDAG &DAG,
4797                                     const X86Subtarget* Subtarget,
4798                                     const TargetLowering &TLI) {
4799  if (NumNonZero > 4)
4800    return SDValue();
4801
4802  DebugLoc dl = Op.getDebugLoc();
4803  SDValue V(0, 0);
4804  bool First = true;
4805  for (unsigned i = 0; i < 8; ++i) {
4806    bool isNonZero = (NonZeros & (1 << i)) != 0;
4807    if (isNonZero) {
4808      if (First) {
4809        if (NumZero)
4810          V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
4811        else
4812          V = DAG.getUNDEF(MVT::v8i16);
4813        First = false;
4814      }
4815      V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4816                      MVT::v8i16, V, Op.getOperand(i),
4817                      DAG.getIntPtrConstant(i));
4818    }
4819  }
4820
4821  return V;
4822}
4823
4824/// getVShift - Return a vector logical shift node.
4825///
4826static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4827                         unsigned NumBits, SelectionDAG &DAG,
4828                         const TargetLowering &TLI, DebugLoc dl) {
4829  assert(VT.is128BitVector() && "Unknown type for VShift");
4830  EVT ShVT = MVT::v2i64;
4831  unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
4832  SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4833  return DAG.getNode(ISD::BITCAST, dl, VT,
4834                     DAG.getNode(Opc, dl, ShVT, SrcOp,
4835                             DAG.getConstant(NumBits,
4836                                  TLI.getShiftAmountTy(SrcOp.getValueType()))));
4837}
4838
4839SDValue
4840X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4841                                          SelectionDAG &DAG) const {
4842
4843  // Check if the scalar load can be widened into a vector load. And if
4844  // the address is "base + cst" see if the cst can be "absorbed" into
4845  // the shuffle mask.
4846  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4847    SDValue Ptr = LD->getBasePtr();
4848    if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4849      return SDValue();
4850    EVT PVT = LD->getValueType(0);
4851    if (PVT != MVT::i32 && PVT != MVT::f32)
4852      return SDValue();
4853
4854    int FI = -1;
4855    int64_t Offset = 0;
4856    if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4857      FI = FINode->getIndex();
4858      Offset = 0;
4859    } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4860               isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4861      FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4862      Offset = Ptr.getConstantOperandVal(1);
4863      Ptr = Ptr.getOperand(0);
4864    } else {
4865      return SDValue();
4866    }
4867
4868    // FIXME: 256-bit vector instructions don't require a strict alignment,
4869    // improve this code to support it better.
4870    unsigned RequiredAlign = VT.getSizeInBits()/8;
4871    SDValue Chain = LD->getChain();
4872    // Make sure the stack object alignment is at least 16 or 32.
4873    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4874    if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4875      if (MFI->isFixedObjectIndex(FI)) {
4876        // Can't change the alignment. FIXME: It's possible to compute
4877        // the exact stack offset and reference FI + adjust offset instead.
4878        // If someone *really* cares about this. That's the way to implement it.
4879        return SDValue();
4880      } else {
4881        MFI->setObjectAlignment(FI, RequiredAlign);
4882      }
4883    }
4884
4885    // (Offset % 16 or 32) must be multiple of 4. Then address is then
4886    // Ptr + (Offset & ~15).
4887    if (Offset < 0)
4888      return SDValue();
4889    if ((Offset % RequiredAlign) & 3)
4890      return SDValue();
4891    int64_t StartOffset = Offset & ~(RequiredAlign-1);
4892    if (StartOffset)
4893      Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4894                        Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4895
4896    int EltNo = (Offset - StartOffset) >> 2;
4897    unsigned NumElems = VT.getVectorNumElements();
4898
4899    EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4900    SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4901                             LD->getPointerInfo().getWithOffset(StartOffset),
4902                             false, false, false, 0);
4903
4904    SmallVector<int, 8> Mask;
4905    for (unsigned i = 0; i != NumElems; ++i)
4906      Mask.push_back(EltNo);
4907
4908    return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
4909  }
4910
4911  return SDValue();
4912}
4913
4914/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4915/// vector of type 'VT', see if the elements can be replaced by a single large
4916/// load which has the same value as a build_vector whose operands are 'elts'.
4917///
4918/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4919///
4920/// FIXME: we'd also like to handle the case where the last elements are zero
4921/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4922/// There's even a handy isZeroNode for that purpose.
4923static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4924                                        DebugLoc &DL, SelectionDAG &DAG) {
4925  EVT EltVT = VT.getVectorElementType();
4926  unsigned NumElems = Elts.size();
4927
4928  LoadSDNode *LDBase = NULL;
4929  unsigned LastLoadedElt = -1U;
4930
4931  // For each element in the initializer, see if we've found a load or an undef.
4932  // If we don't find an initial load element, or later load elements are
4933  // non-consecutive, bail out.
4934  for (unsigned i = 0; i < NumElems; ++i) {
4935    SDValue Elt = Elts[i];
4936
4937    if (!Elt.getNode() ||
4938        (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
4939      return SDValue();
4940    if (!LDBase) {
4941      if (Elt.getNode()->getOpcode() == ISD::UNDEF)
4942        return SDValue();
4943      LDBase = cast<LoadSDNode>(Elt.getNode());
4944      LastLoadedElt = i;
4945      continue;
4946    }
4947    if (Elt.getOpcode() == ISD::UNDEF)
4948      continue;
4949
4950    LoadSDNode *LD = cast<LoadSDNode>(Elt);
4951    if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
4952      return SDValue();
4953    LastLoadedElt = i;
4954  }
4955
4956  // If we have found an entire vector of loads and undefs, then return a large
4957  // load of the entire vector width starting at the base pointer.  If we found
4958  // consecutive loads for the low half, generate a vzext_load node.
4959  if (LastLoadedElt == NumElems - 1) {
4960    if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
4961      return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4962                         LDBase->getPointerInfo(),
4963                         LDBase->isVolatile(), LDBase->isNonTemporal(),
4964                         LDBase->isInvariant(), 0);
4965    return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
4966                       LDBase->getPointerInfo(),
4967                       LDBase->isVolatile(), LDBase->isNonTemporal(),
4968                       LDBase->isInvariant(), LDBase->getAlignment());
4969  }
4970  if (NumElems == 4 && LastLoadedElt == 1 &&
4971      DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
4972    SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
4973    SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
4974    SDValue ResNode =
4975        DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
4976                                LDBase->getPointerInfo(),
4977                                LDBase->getAlignment(),
4978                                false/*isVolatile*/, true/*ReadMem*/,
4979                                false/*WriteMem*/);
4980    return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
4981  }
4982  return SDValue();
4983}
4984
4985/// LowerVectorBroadcast - Attempt to use the vbroadcast instruction
4986/// to generate a splat value for the following cases:
4987/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
4988/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
4989/// a scalar load, or a constant.
4990/// The VBROADCAST node is returned when a pattern is found,
4991/// or SDValue() otherwise.
4992SDValue
4993X86TargetLowering::LowerVectorBroadcast(SDValue &Op, SelectionDAG &DAG) const {
4994  if (!Subtarget->hasAVX())
4995    return SDValue();
4996
4997  EVT VT = Op.getValueType();
4998  DebugLoc dl = Op.getDebugLoc();
4999
5000  assert((VT.is128BitVector() || VT.is256BitVector()) &&
5001         "Unsupported vector type for broadcast.");
5002
5003  SDValue Ld;
5004  bool ConstSplatVal;
5005
5006  switch (Op.getOpcode()) {
5007    default:
5008      // Unknown pattern found.
5009      return SDValue();
5010
5011    case ISD::BUILD_VECTOR: {
5012      // The BUILD_VECTOR node must be a splat.
5013      if (!isSplatVector(Op.getNode()))
5014        return SDValue();
5015
5016      Ld = Op.getOperand(0);
5017      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5018                     Ld.getOpcode() == ISD::ConstantFP);
5019
5020      // The suspected load node has several users. Make sure that all
5021      // of its users are from the BUILD_VECTOR node.
5022      // Constants may have multiple users.
5023      if (!ConstSplatVal && !Ld->hasNUsesOfValue(VT.getVectorNumElements(), 0))
5024        return SDValue();
5025      break;
5026    }
5027
5028    case ISD::VECTOR_SHUFFLE: {
5029      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5030
5031      // Shuffles must have a splat mask where the first element is
5032      // broadcasted.
5033      if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
5034        return SDValue();
5035
5036      SDValue Sc = Op.getOperand(0);
5037      if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
5038          Sc.getOpcode() != ISD::BUILD_VECTOR) {
5039
5040        if (!Subtarget->hasAVX2())
5041          return SDValue();
5042
5043        // Use the register form of the broadcast instruction available on AVX2.
5044        if (VT.is256BitVector())
5045          Sc = Extract128BitVector(Sc, 0, DAG, dl);
5046        return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
5047      }
5048
5049      Ld = Sc.getOperand(0);
5050      ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
5051                       Ld.getOpcode() == ISD::ConstantFP);
5052
5053      // The scalar_to_vector node and the suspected
5054      // load node must have exactly one user.
5055      // Constants may have multiple users.
5056      if (!ConstSplatVal && (!Sc.hasOneUse() || !Ld.hasOneUse()))
5057        return SDValue();
5058      break;
5059    }
5060  }
5061
5062  bool Is256 = VT.is256BitVector();
5063
5064  // Handle the broadcasting a single constant scalar from the constant pool
5065  // into a vector. On Sandybridge it is still better to load a constant vector
5066  // from the constant pool and not to broadcast it from a scalar.
5067  if (ConstSplatVal && Subtarget->hasAVX2()) {
5068    EVT CVT = Ld.getValueType();
5069    assert(!CVT.isVector() && "Must not broadcast a vector type");
5070    unsigned ScalarSize = CVT.getSizeInBits();
5071
5072    if (ScalarSize == 32 || (Is256 && ScalarSize == 64)) {
5073      const Constant *C = 0;
5074      if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
5075        C = CI->getConstantIntValue();
5076      else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
5077        C = CF->getConstantFPValue();
5078
5079      assert(C && "Invalid constant type");
5080
5081      SDValue CP = DAG.getConstantPool(C, getPointerTy());
5082      unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
5083      Ld = DAG.getLoad(CVT, dl, DAG.getEntryNode(), CP,
5084                       MachinePointerInfo::getConstantPool(),
5085                       false, false, false, Alignment);
5086
5087      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5088    }
5089  }
5090
5091  bool IsLoad = ISD::isNormalLoad(Ld.getNode());
5092  unsigned ScalarSize = Ld.getValueType().getSizeInBits();
5093
5094  // Handle AVX2 in-register broadcasts.
5095  if (!IsLoad && Subtarget->hasAVX2() &&
5096      (ScalarSize == 32 || (Is256 && ScalarSize == 64)))
5097    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5098
5099  // The scalar source must be a normal load.
5100  if (!IsLoad)
5101    return SDValue();
5102
5103  if (ScalarSize == 32 || (Is256 && ScalarSize == 64))
5104    return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5105
5106  // The integer check is needed for the 64-bit into 128-bit so it doesn't match
5107  // double since there is no vbroadcastsd xmm
5108  if (Subtarget->hasAVX2() && Ld.getValueType().isInteger()) {
5109    if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
5110      return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
5111  }
5112
5113  // Unsupported broadcast.
5114  return SDValue();
5115}
5116
5117// LowerVectorFpExtend - Recognize the scalarized FP_EXTEND from v2f32 to v2f64
5118// and convert it into X86ISD::VFPEXT due to the current ISD::FP_EXTEND has the
5119// constraint of matching input/output vector elements.
5120SDValue
5121X86TargetLowering::LowerVectorFpExtend(SDValue &Op, SelectionDAG &DAG) const {
5122  DebugLoc DL = Op.getDebugLoc();
5123  SDNode *N = Op.getNode();
5124  EVT VT = Op.getValueType();
5125  unsigned NumElts = Op.getNumOperands();
5126
5127  // Check supported types and sub-targets.
5128  //
5129  // Only v2f32 -> v2f64 needs special handling.
5130  if (VT != MVT::v2f64 || !Subtarget->hasSSE2())
5131    return SDValue();
5132
5133  SDValue VecIn;
5134  EVT VecInVT;
5135  SmallVector<int, 8> Mask;
5136  EVT SrcVT = MVT::Other;
5137
5138  // Check the patterns could be translated into X86vfpext.
5139  for (unsigned i = 0; i < NumElts; ++i) {
5140    SDValue In = N->getOperand(i);
5141    unsigned Opcode = In.getOpcode();
5142
5143    // Skip if the element is undefined.
5144    if (Opcode == ISD::UNDEF) {
5145      Mask.push_back(-1);
5146      continue;
5147    }
5148
5149    // Quit if one of the elements is not defined from 'fpext'.
5150    if (Opcode != ISD::FP_EXTEND)
5151      return SDValue();
5152
5153    // Check how the source of 'fpext' is defined.
5154    SDValue L2In = In.getOperand(0);
5155    EVT L2InVT = L2In.getValueType();
5156
5157    // Check the original type
5158    if (SrcVT == MVT::Other)
5159      SrcVT = L2InVT;
5160    else if (SrcVT != L2InVT) // Quit if non-homogenous typed.
5161      return SDValue();
5162
5163    // Check whether the value being 'fpext'ed is extracted from the same
5164    // source.
5165    Opcode = L2In.getOpcode();
5166
5167    // Quit if it's not extracted with a constant index.
5168    if (Opcode != ISD::EXTRACT_VECTOR_ELT ||
5169        !isa<ConstantSDNode>(L2In.getOperand(1)))
5170      return SDValue();
5171
5172    SDValue ExtractedFromVec = L2In.getOperand(0);
5173
5174    if (VecIn.getNode() == 0) {
5175      VecIn = ExtractedFromVec;
5176      VecInVT = ExtractedFromVec.getValueType();
5177    } else if (VecIn != ExtractedFromVec) // Quit if built from more than 1 vec.
5178      return SDValue();
5179
5180    Mask.push_back(cast<ConstantSDNode>(L2In.getOperand(1))->getZExtValue());
5181  }
5182
5183  // Quit if all operands of BUILD_VECTOR are undefined.
5184  if (!VecIn.getNode())
5185    return SDValue();
5186
5187  // Fill the remaining mask as undef.
5188  for (unsigned i = NumElts; i < VecInVT.getVectorNumElements(); ++i)
5189    Mask.push_back(-1);
5190
5191  return DAG.getNode(X86ISD::VFPEXT, DL, VT,
5192                     DAG.getVectorShuffle(VecInVT, DL,
5193                                          VecIn, DAG.getUNDEF(VecInVT),
5194                                          &Mask[0]));
5195}
5196
5197SDValue
5198X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5199  DebugLoc dl = Op.getDebugLoc();
5200
5201  EVT VT = Op.getValueType();
5202  EVT ExtVT = VT.getVectorElementType();
5203  unsigned NumElems = Op.getNumOperands();
5204
5205  // Vectors containing all zeros can be matched by pxor and xorps later
5206  if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5207    // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5208    // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5209    if (VT == MVT::v4i32 || VT == MVT::v8i32)
5210      return Op;
5211
5212    return getZeroVector(VT, Subtarget, DAG, dl);
5213  }
5214
5215  // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5216  // vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
5217  // vpcmpeqd on 256-bit vectors.
5218  if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5219    if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget->hasAVX2()))
5220      return Op;
5221
5222    return getOnesVector(VT, Subtarget->hasAVX2(), DAG, dl);
5223  }
5224
5225  SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
5226  if (Broadcast.getNode())
5227    return Broadcast;
5228
5229  SDValue FpExt = LowerVectorFpExtend(Op, DAG);
5230  if (FpExt.getNode())
5231    return FpExt;
5232
5233  unsigned EVTBits = ExtVT.getSizeInBits();
5234
5235  unsigned NumZero  = 0;
5236  unsigned NumNonZero = 0;
5237  unsigned NonZeros = 0;
5238  bool IsAllConstants = true;
5239  SmallSet<SDValue, 8> Values;
5240  for (unsigned i = 0; i < NumElems; ++i) {
5241    SDValue Elt = Op.getOperand(i);
5242    if (Elt.getOpcode() == ISD::UNDEF)
5243      continue;
5244    Values.insert(Elt);
5245    if (Elt.getOpcode() != ISD::Constant &&
5246        Elt.getOpcode() != ISD::ConstantFP)
5247      IsAllConstants = false;
5248    if (X86::isZeroNode(Elt))
5249      NumZero++;
5250    else {
5251      NonZeros |= (1 << i);
5252      NumNonZero++;
5253    }
5254  }
5255
5256  // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5257  if (NumNonZero == 0)
5258    return DAG.getUNDEF(VT);
5259
5260  // Special case for single non-zero, non-undef, element.
5261  if (NumNonZero == 1) {
5262    unsigned Idx = CountTrailingZeros_32(NonZeros);
5263    SDValue Item = Op.getOperand(Idx);
5264
5265    // If this is an insertion of an i64 value on x86-32, and if the top bits of
5266    // the value are obviously zero, truncate the value to i32 and do the
5267    // insertion that way.  Only do this if the value is non-constant or if the
5268    // value is a constant being inserted into element 0.  It is cheaper to do
5269    // a constant pool load than it is to do a movd + shuffle.
5270    if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5271        (!IsAllConstants || Idx == 0)) {
5272      if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5273        // Handle SSE only.
5274        assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5275        EVT VecVT = MVT::v4i32;
5276        unsigned VecElts = 4;
5277
5278        // Truncate the value (which may itself be a constant) to i32, and
5279        // convert it to a vector with movd (S2V+shuffle to zero extend).
5280        Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5281        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5282        Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5283
5284        // Now we have our 32-bit value zero extended in the low element of
5285        // a vector.  If Idx != 0, swizzle it into place.
5286        if (Idx != 0) {
5287          SmallVector<int, 4> Mask;
5288          Mask.push_back(Idx);
5289          for (unsigned i = 1; i != VecElts; ++i)
5290            Mask.push_back(i);
5291          Item = DAG.getVectorShuffle(VecVT, dl, Item, DAG.getUNDEF(VecVT),
5292                                      &Mask[0]);
5293        }
5294        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5295      }
5296    }
5297
5298    // If we have a constant or non-constant insertion into the low element of
5299    // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5300    // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5301    // depending on what the source datatype is.
5302    if (Idx == 0) {
5303      if (NumZero == 0)
5304        return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5305
5306      if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5307          (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5308        if (VT.is256BitVector()) {
5309          SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
5310          return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
5311                             Item, DAG.getIntPtrConstant(0));
5312        }
5313        assert(VT.is128BitVector() && "Expected an SSE value type!");
5314        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5315        // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5316        return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5317      }
5318
5319      if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5320        Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5321        Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
5322        if (VT.is256BitVector()) {
5323          SDValue ZeroVec = getZeroVector(MVT::v8i32, Subtarget, DAG, dl);
5324          Item = Insert128BitVector(ZeroVec, Item, 0, DAG, dl);
5325        } else {
5326          assert(VT.is128BitVector() && "Expected an SSE value type!");
5327          Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
5328        }
5329        return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5330      }
5331    }
5332
5333    // Is it a vector logical left shift?
5334    if (NumElems == 2 && Idx == 1 &&
5335        X86::isZeroNode(Op.getOperand(0)) &&
5336        !X86::isZeroNode(Op.getOperand(1))) {
5337      unsigned NumBits = VT.getSizeInBits();
5338      return getVShift(true, VT,
5339                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5340                                   VT, Op.getOperand(1)),
5341                       NumBits/2, DAG, *this, dl);
5342    }
5343
5344    if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5345      return SDValue();
5346
5347    // Otherwise, if this is a vector with i32 or f32 elements, and the element
5348    // is a non-constant being inserted into an element other than the low one,
5349    // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5350    // movd/movss) to move this into the low element, then shuffle it into
5351    // place.
5352    if (EVTBits == 32) {
5353      Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5354
5355      // Turn it into a shuffle of zero and zero-extended scalar to vector.
5356      Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, Subtarget, DAG);
5357      SmallVector<int, 8> MaskVec;
5358      for (unsigned i = 0; i != NumElems; ++i)
5359        MaskVec.push_back(i == Idx ? 0 : 1);
5360      return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5361    }
5362  }
5363
5364  // Splat is obviously ok. Let legalizer expand it to a shuffle.
5365  if (Values.size() == 1) {
5366    if (EVTBits == 32) {
5367      // Instead of a shuffle like this:
5368      // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5369      // Check if it's possible to issue this instead.
5370      // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5371      unsigned Idx = CountTrailingZeros_32(NonZeros);
5372      SDValue Item = Op.getOperand(Idx);
5373      if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5374        return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5375    }
5376    return SDValue();
5377  }
5378
5379  // A vector full of immediates; various special cases are already
5380  // handled, so this is best done with a single constant-pool load.
5381  if (IsAllConstants)
5382    return SDValue();
5383
5384  // For AVX-length vectors, build the individual 128-bit pieces and use
5385  // shuffles to put them in place.
5386  if (VT.is256BitVector()) {
5387    SmallVector<SDValue, 32> V;
5388    for (unsigned i = 0; i != NumElems; ++i)
5389      V.push_back(Op.getOperand(i));
5390
5391    EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5392
5393    // Build both the lower and upper subvector.
5394    SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5395    SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5396                                NumElems/2);
5397
5398    // Recreate the wider vector with the lower and upper part.
5399    return Concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
5400  }
5401
5402  // Let legalizer expand 2-wide build_vectors.
5403  if (EVTBits == 64) {
5404    if (NumNonZero == 1) {
5405      // One half is zero or undef.
5406      unsigned Idx = CountTrailingZeros_32(NonZeros);
5407      SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5408                                 Op.getOperand(Idx));
5409      return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
5410    }
5411    return SDValue();
5412  }
5413
5414  // If element VT is < 32 bits, convert it to inserts into a zero vector.
5415  if (EVTBits == 8 && NumElems == 16) {
5416    SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5417                                        Subtarget, *this);
5418    if (V.getNode()) return V;
5419  }
5420
5421  if (EVTBits == 16 && NumElems == 8) {
5422    SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5423                                      Subtarget, *this);
5424    if (V.getNode()) return V;
5425  }
5426
5427  // If element VT is == 32 bits, turn it into a number of shuffles.
5428  SmallVector<SDValue, 8> V(NumElems);
5429  if (NumElems == 4 && NumZero > 0) {
5430    for (unsigned i = 0; i < 4; ++i) {
5431      bool isZero = !(NonZeros & (1 << i));
5432      if (isZero)
5433        V[i] = getZeroVector(VT, Subtarget, DAG, dl);
5434      else
5435        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5436    }
5437
5438    for (unsigned i = 0; i < 2; ++i) {
5439      switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5440        default: break;
5441        case 0:
5442          V[i] = V[i*2];  // Must be a zero vector.
5443          break;
5444        case 1:
5445          V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5446          break;
5447        case 2:
5448          V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5449          break;
5450        case 3:
5451          V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5452          break;
5453      }
5454    }
5455
5456    bool Reverse1 = (NonZeros & 0x3) == 2;
5457    bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5458    int MaskVec[] = {
5459      Reverse1 ? 1 : 0,
5460      Reverse1 ? 0 : 1,
5461      static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
5462      static_cast<int>(Reverse2 ? NumElems   : NumElems+1)
5463    };
5464    return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5465  }
5466
5467  if (Values.size() > 1 && VT.is128BitVector()) {
5468    // Check for a build vector of consecutive loads.
5469    for (unsigned i = 0; i < NumElems; ++i)
5470      V[i] = Op.getOperand(i);
5471
5472    // Check for elements which are consecutive loads.
5473    SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5474    if (LD.getNode())
5475      return LD;
5476
5477    // For SSE 4.1, use insertps to put the high elements into the low element.
5478    if (getSubtarget()->hasSSE41()) {
5479      SDValue Result;
5480      if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5481        Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5482      else
5483        Result = DAG.getUNDEF(VT);
5484
5485      for (unsigned i = 1; i < NumElems; ++i) {
5486        if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5487        Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5488                             Op.getOperand(i), DAG.getIntPtrConstant(i));
5489      }
5490      return Result;
5491    }
5492
5493    // Otherwise, expand into a number of unpckl*, start by extending each of
5494    // our (non-undef) elements to the full vector width with the element in the
5495    // bottom slot of the vector (which generates no code for SSE).
5496    for (unsigned i = 0; i < NumElems; ++i) {
5497      if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5498        V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5499      else
5500        V[i] = DAG.getUNDEF(VT);
5501    }
5502
5503    // Next, we iteratively mix elements, e.g. for v4f32:
5504    //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5505    //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5506    //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5507    unsigned EltStride = NumElems >> 1;
5508    while (EltStride != 0) {
5509      for (unsigned i = 0; i < EltStride; ++i) {
5510        // If V[i+EltStride] is undef and this is the first round of mixing,
5511        // then it is safe to just drop this shuffle: V[i] is already in the
5512        // right place, the one element (since it's the first round) being
5513        // inserted as undef can be dropped.  This isn't safe for successive
5514        // rounds because they will permute elements within both vectors.
5515        if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5516            EltStride == NumElems/2)
5517          continue;
5518
5519        V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5520      }
5521      EltStride >>= 1;
5522    }
5523    return V[0];
5524  }
5525  return SDValue();
5526}
5527
5528// LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5529// to create 256-bit vectors from two other 128-bit ones.
5530static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5531  DebugLoc dl = Op.getDebugLoc();
5532  EVT ResVT = Op.getValueType();
5533
5534  assert(ResVT.is256BitVector() && "Value type must be 256-bit wide");
5535
5536  SDValue V1 = Op.getOperand(0);
5537  SDValue V2 = Op.getOperand(1);
5538  unsigned NumElems = ResVT.getVectorNumElements();
5539
5540  return Concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
5541}
5542
5543SDValue
5544X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5545  assert(Op.getNumOperands() == 2);
5546
5547  // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5548  // from two other 128-bit ones.
5549  return LowerAVXCONCAT_VECTORS(Op, DAG);
5550}
5551
5552// Try to lower a shuffle node into a simple blend instruction.
5553static SDValue LowerVECTOR_SHUFFLEtoBlend(ShuffleVectorSDNode *SVOp,
5554                                          const X86Subtarget *Subtarget,
5555                                          SelectionDAG &DAG) {
5556  SDValue V1 = SVOp->getOperand(0);
5557  SDValue V2 = SVOp->getOperand(1);
5558  DebugLoc dl = SVOp->getDebugLoc();
5559  MVT VT = SVOp->getValueType(0).getSimpleVT();
5560  unsigned NumElems = VT.getVectorNumElements();
5561
5562  if (!Subtarget->hasSSE41())
5563    return SDValue();
5564
5565  unsigned ISDNo = 0;
5566  MVT OpTy;
5567
5568  switch (VT.SimpleTy) {
5569  default: return SDValue();
5570  case MVT::v8i16:
5571    ISDNo = X86ISD::BLENDPW;
5572    OpTy = MVT::v8i16;
5573    break;
5574  case MVT::v4i32:
5575  case MVT::v4f32:
5576    ISDNo = X86ISD::BLENDPS;
5577    OpTy = MVT::v4f32;
5578    break;
5579  case MVT::v2i64:
5580  case MVT::v2f64:
5581    ISDNo = X86ISD::BLENDPD;
5582    OpTy = MVT::v2f64;
5583    break;
5584  case MVT::v8i32:
5585  case MVT::v8f32:
5586    if (!Subtarget->hasAVX())
5587      return SDValue();
5588    ISDNo = X86ISD::BLENDPS;
5589    OpTy = MVT::v8f32;
5590    break;
5591  case MVT::v4i64:
5592  case MVT::v4f64:
5593    if (!Subtarget->hasAVX())
5594      return SDValue();
5595    ISDNo = X86ISD::BLENDPD;
5596    OpTy = MVT::v4f64;
5597    break;
5598  }
5599  assert(ISDNo && "Invalid Op Number");
5600
5601  unsigned MaskVals = 0;
5602
5603  for (unsigned i = 0; i != NumElems; ++i) {
5604    int EltIdx = SVOp->getMaskElt(i);
5605    if (EltIdx == (int)i || EltIdx < 0)
5606      MaskVals |= (1<<i);
5607    else if (EltIdx == (int)(i + NumElems))
5608      continue; // Bit is set to zero;
5609    else
5610      return SDValue();
5611  }
5612
5613  V1 = DAG.getNode(ISD::BITCAST, dl, OpTy, V1);
5614  V2 = DAG.getNode(ISD::BITCAST, dl, OpTy, V2);
5615  SDValue Ret =  DAG.getNode(ISDNo, dl, OpTy, V1, V2,
5616                             DAG.getConstant(MaskVals, MVT::i32));
5617  return DAG.getNode(ISD::BITCAST, dl, VT, Ret);
5618}
5619
5620// v8i16 shuffles - Prefer shuffles in the following order:
5621// 1. [all]   pshuflw, pshufhw, optional move
5622// 2. [ssse3] 1 x pshufb
5623// 3. [ssse3] 2 x pshufb + 1 x por
5624// 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5625SDValue
5626X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5627                                            SelectionDAG &DAG) const {
5628  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5629  SDValue V1 = SVOp->getOperand(0);
5630  SDValue V2 = SVOp->getOperand(1);
5631  DebugLoc dl = SVOp->getDebugLoc();
5632  SmallVector<int, 8> MaskVals;
5633
5634  // Determine if more than 1 of the words in each of the low and high quadwords
5635  // of the result come from the same quadword of one of the two inputs.  Undef
5636  // mask values count as coming from any quadword, for better codegen.
5637  unsigned LoQuad[] = { 0, 0, 0, 0 };
5638  unsigned HiQuad[] = { 0, 0, 0, 0 };
5639  std::bitset<4> InputQuads;
5640  for (unsigned i = 0; i < 8; ++i) {
5641    unsigned *Quad = i < 4 ? LoQuad : HiQuad;
5642    int EltIdx = SVOp->getMaskElt(i);
5643    MaskVals.push_back(EltIdx);
5644    if (EltIdx < 0) {
5645      ++Quad[0];
5646      ++Quad[1];
5647      ++Quad[2];
5648      ++Quad[3];
5649      continue;
5650    }
5651    ++Quad[EltIdx / 4];
5652    InputQuads.set(EltIdx / 4);
5653  }
5654
5655  int BestLoQuad = -1;
5656  unsigned MaxQuad = 1;
5657  for (unsigned i = 0; i < 4; ++i) {
5658    if (LoQuad[i] > MaxQuad) {
5659      BestLoQuad = i;
5660      MaxQuad = LoQuad[i];
5661    }
5662  }
5663
5664  int BestHiQuad = -1;
5665  MaxQuad = 1;
5666  for (unsigned i = 0; i < 4; ++i) {
5667    if (HiQuad[i] > MaxQuad) {
5668      BestHiQuad = i;
5669      MaxQuad = HiQuad[i];
5670    }
5671  }
5672
5673  // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5674  // of the two input vectors, shuffle them into one input vector so only a
5675  // single pshufb instruction is necessary. If There are more than 2 input
5676  // quads, disable the next transformation since it does not help SSSE3.
5677  bool V1Used = InputQuads[0] || InputQuads[1];
5678  bool V2Used = InputQuads[2] || InputQuads[3];
5679  if (Subtarget->hasSSSE3()) {
5680    if (InputQuads.count() == 2 && V1Used && V2Used) {
5681      BestLoQuad = InputQuads[0] ? 0 : 1;
5682      BestHiQuad = InputQuads[2] ? 2 : 3;
5683    }
5684    if (InputQuads.count() > 2) {
5685      BestLoQuad = -1;
5686      BestHiQuad = -1;
5687    }
5688  }
5689
5690  // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5691  // the shuffle mask.  If a quad is scored as -1, that means that it contains
5692  // words from all 4 input quadwords.
5693  SDValue NewV;
5694  if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5695    int MaskV[] = {
5696      BestLoQuad < 0 ? 0 : BestLoQuad,
5697      BestHiQuad < 0 ? 1 : BestHiQuad
5698    };
5699    NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5700                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5701                  DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5702    NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5703
5704    // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5705    // source words for the shuffle, to aid later transformations.
5706    bool AllWordsInNewV = true;
5707    bool InOrder[2] = { true, true };
5708    for (unsigned i = 0; i != 8; ++i) {
5709      int idx = MaskVals[i];
5710      if (idx != (int)i)
5711        InOrder[i/4] = false;
5712      if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5713        continue;
5714      AllWordsInNewV = false;
5715      break;
5716    }
5717
5718    bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5719    if (AllWordsInNewV) {
5720      for (int i = 0; i != 8; ++i) {
5721        int idx = MaskVals[i];
5722        if (idx < 0)
5723          continue;
5724        idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5725        if ((idx != i) && idx < 4)
5726          pshufhw = false;
5727        if ((idx != i) && idx > 3)
5728          pshuflw = false;
5729      }
5730      V1 = NewV;
5731      V2Used = false;
5732      BestLoQuad = 0;
5733      BestHiQuad = 1;
5734    }
5735
5736    // If we've eliminated the use of V2, and the new mask is a pshuflw or
5737    // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5738    if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5739      unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5740      unsigned TargetMask = 0;
5741      NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5742                                  DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5743      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5744      TargetMask = pshufhw ? getShufflePSHUFHWImmediate(SVOp):
5745                             getShufflePSHUFLWImmediate(SVOp);
5746      V1 = NewV.getOperand(0);
5747      return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5748    }
5749  }
5750
5751  // If we have SSSE3, and all words of the result are from 1 input vector,
5752  // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5753  // is present, fall back to case 4.
5754  if (Subtarget->hasSSSE3()) {
5755    SmallVector<SDValue,16> pshufbMask;
5756
5757    // If we have elements from both input vectors, set the high bit of the
5758    // shuffle mask element to zero out elements that come from V2 in the V1
5759    // mask, and elements that come from V1 in the V2 mask, so that the two
5760    // results can be OR'd together.
5761    bool TwoInputs = V1Used && V2Used;
5762    for (unsigned i = 0; i != 8; ++i) {
5763      int EltIdx = MaskVals[i] * 2;
5764      int Idx0 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx;
5765      int Idx1 = (TwoInputs && (EltIdx >= 16)) ? 0x80 : EltIdx+1;
5766      pshufbMask.push_back(DAG.getConstant(Idx0,   MVT::i8));
5767      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5768    }
5769    V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5770    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5771                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5772                                 MVT::v16i8, &pshufbMask[0], 16));
5773    if (!TwoInputs)
5774      return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5775
5776    // Calculate the shuffle mask for the second input, shuffle it, and
5777    // OR it with the first shuffled input.
5778    pshufbMask.clear();
5779    for (unsigned i = 0; i != 8; ++i) {
5780      int EltIdx = MaskVals[i] * 2;
5781      int Idx0 = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5782      int Idx1 = (EltIdx < 16) ? 0x80 : EltIdx - 15;
5783      pshufbMask.push_back(DAG.getConstant(Idx0, MVT::i8));
5784      pshufbMask.push_back(DAG.getConstant(Idx1, MVT::i8));
5785    }
5786    V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5787    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5788                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5789                                 MVT::v16i8, &pshufbMask[0], 16));
5790    V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5791    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5792  }
5793
5794  // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5795  // and update MaskVals with new element order.
5796  std::bitset<8> InOrder;
5797  if (BestLoQuad >= 0) {
5798    int MaskV[] = { -1, -1, -1, -1, 4, 5, 6, 7 };
5799    for (int i = 0; i != 4; ++i) {
5800      int idx = MaskVals[i];
5801      if (idx < 0) {
5802        InOrder.set(i);
5803      } else if ((idx / 4) == BestLoQuad) {
5804        MaskV[i] = idx & 3;
5805        InOrder.set(i);
5806      }
5807    }
5808    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5809                                &MaskV[0]);
5810
5811    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5812      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5813      NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5814                                  NewV.getOperand(0),
5815                                  getShufflePSHUFLWImmediate(SVOp), DAG);
5816    }
5817  }
5818
5819  // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5820  // and update MaskVals with the new element order.
5821  if (BestHiQuad >= 0) {
5822    int MaskV[] = { 0, 1, 2, 3, -1, -1, -1, -1 };
5823    for (unsigned i = 4; i != 8; ++i) {
5824      int idx = MaskVals[i];
5825      if (idx < 0) {
5826        InOrder.set(i);
5827      } else if ((idx / 4) == BestHiQuad) {
5828        MaskV[i] = (idx & 3) + 4;
5829        InOrder.set(i);
5830      }
5831    }
5832    NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5833                                &MaskV[0]);
5834
5835    if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE && Subtarget->hasSSSE3()) {
5836      ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(NewV.getNode());
5837      NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5838                                  NewV.getOperand(0),
5839                                  getShufflePSHUFHWImmediate(SVOp), DAG);
5840    }
5841  }
5842
5843  // In case BestHi & BestLo were both -1, which means each quadword has a word
5844  // from each of the four input quadwords, calculate the InOrder bitvector now
5845  // before falling through to the insert/extract cleanup.
5846  if (BestLoQuad == -1 && BestHiQuad == -1) {
5847    NewV = V1;
5848    for (int i = 0; i != 8; ++i)
5849      if (MaskVals[i] < 0 || MaskVals[i] == i)
5850        InOrder.set(i);
5851  }
5852
5853  // The other elements are put in the right place using pextrw and pinsrw.
5854  for (unsigned i = 0; i != 8; ++i) {
5855    if (InOrder[i])
5856      continue;
5857    int EltIdx = MaskVals[i];
5858    if (EltIdx < 0)
5859      continue;
5860    SDValue ExtOp = (EltIdx < 8) ?
5861      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5862                  DAG.getIntPtrConstant(EltIdx)) :
5863      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5864                  DAG.getIntPtrConstant(EltIdx - 8));
5865    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5866                       DAG.getIntPtrConstant(i));
5867  }
5868  return NewV;
5869}
5870
5871// v16i8 shuffles - Prefer shuffles in the following order:
5872// 1. [ssse3] 1 x pshufb
5873// 2. [ssse3] 2 x pshufb + 1 x por
5874// 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5875static
5876SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5877                                 SelectionDAG &DAG,
5878                                 const X86TargetLowering &TLI) {
5879  SDValue V1 = SVOp->getOperand(0);
5880  SDValue V2 = SVOp->getOperand(1);
5881  DebugLoc dl = SVOp->getDebugLoc();
5882  ArrayRef<int> MaskVals = SVOp->getMask();
5883
5884  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
5885
5886  // If we have SSSE3, case 1 is generated when all result bytes come from
5887  // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5888  // present, fall back to case 3.
5889
5890  // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5891  if (TLI.getSubtarget()->hasSSSE3()) {
5892    SmallVector<SDValue,16> pshufbMask;
5893
5894    // If all result elements are from one input vector, then only translate
5895    // undef mask values to 0x80 (zero out result) in the pshufb mask.
5896    //
5897    // Otherwise, we have elements from both input vectors, and must zero out
5898    // elements that come from V2 in the first mask, and V1 in the second mask
5899    // so that we can OR them together.
5900    for (unsigned i = 0; i != 16; ++i) {
5901      int EltIdx = MaskVals[i];
5902      if (EltIdx < 0 || EltIdx >= 16)
5903        EltIdx = 0x80;
5904      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5905    }
5906    V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5907                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5908                                 MVT::v16i8, &pshufbMask[0], 16));
5909    if (V2IsUndef)
5910      return V1;
5911
5912    // Calculate the shuffle mask for the second input, shuffle it, and
5913    // OR it with the first shuffled input.
5914    pshufbMask.clear();
5915    for (unsigned i = 0; i != 16; ++i) {
5916      int EltIdx = MaskVals[i];
5917      EltIdx = (EltIdx < 16) ? 0x80 : EltIdx - 16;
5918      pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5919    }
5920    V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5921                     DAG.getNode(ISD::BUILD_VECTOR, dl,
5922                                 MVT::v16i8, &pshufbMask[0], 16));
5923    return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5924  }
5925
5926  // No SSSE3 - Calculate in place words and then fix all out of place words
5927  // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5928  // the 16 different words that comprise the two doublequadword input vectors.
5929  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5930  V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5931  SDValue NewV = V1;
5932  for (int i = 0; i != 8; ++i) {
5933    int Elt0 = MaskVals[i*2];
5934    int Elt1 = MaskVals[i*2+1];
5935
5936    // This word of the result is all undef, skip it.
5937    if (Elt0 < 0 && Elt1 < 0)
5938      continue;
5939
5940    // This word of the result is already in the correct place, skip it.
5941    if ((Elt0 == i*2) && (Elt1 == i*2+1))
5942      continue;
5943
5944    SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5945    SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5946    SDValue InsElt;
5947
5948    // If Elt0 and Elt1 are defined, are consecutive, and can be load
5949    // using a single extract together, load it and store it.
5950    if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5951      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5952                           DAG.getIntPtrConstant(Elt1 / 2));
5953      NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5954                        DAG.getIntPtrConstant(i));
5955      continue;
5956    }
5957
5958    // If Elt1 is defined, extract it from the appropriate source.  If the
5959    // source byte is not also odd, shift the extracted word left 8 bits
5960    // otherwise clear the bottom 8 bits if we need to do an or.
5961    if (Elt1 >= 0) {
5962      InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5963                           DAG.getIntPtrConstant(Elt1 / 2));
5964      if ((Elt1 & 1) == 0)
5965        InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5966                             DAG.getConstant(8,
5967                                  TLI.getShiftAmountTy(InsElt.getValueType())));
5968      else if (Elt0 >= 0)
5969        InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5970                             DAG.getConstant(0xFF00, MVT::i16));
5971    }
5972    // If Elt0 is defined, extract it from the appropriate source.  If the
5973    // source byte is not also even, shift the extracted word right 8 bits. If
5974    // Elt1 was also defined, OR the extracted values together before
5975    // inserting them in the result.
5976    if (Elt0 >= 0) {
5977      SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5978                                    Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5979      if ((Elt0 & 1) != 0)
5980        InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5981                              DAG.getConstant(8,
5982                                 TLI.getShiftAmountTy(InsElt0.getValueType())));
5983      else if (Elt1 >= 0)
5984        InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5985                             DAG.getConstant(0x00FF, MVT::i16));
5986      InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5987                         : InsElt0;
5988    }
5989    NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5990                       DAG.getIntPtrConstant(i));
5991  }
5992  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5993}
5994
5995/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5996/// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5997/// done when every pair / quad of shuffle mask elements point to elements in
5998/// the right sequence. e.g.
5999/// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
6000static
6001SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
6002                                 SelectionDAG &DAG, DebugLoc dl) {
6003  MVT VT = SVOp->getValueType(0).getSimpleVT();
6004  unsigned NumElems = VT.getVectorNumElements();
6005  MVT NewVT;
6006  unsigned Scale;
6007  switch (VT.SimpleTy) {
6008  default: llvm_unreachable("Unexpected!");
6009  case MVT::v4f32:  NewVT = MVT::v2f64; Scale = 2; break;
6010  case MVT::v4i32:  NewVT = MVT::v2i64; Scale = 2; break;
6011  case MVT::v8i16:  NewVT = MVT::v4i32; Scale = 2; break;
6012  case MVT::v16i8:  NewVT = MVT::v4i32; Scale = 4; break;
6013  case MVT::v16i16: NewVT = MVT::v8i32; Scale = 2; break;
6014  case MVT::v32i8:  NewVT = MVT::v8i32; Scale = 4; break;
6015  }
6016
6017  SmallVector<int, 8> MaskVec;
6018  for (unsigned i = 0; i != NumElems; i += Scale) {
6019    int StartIdx = -1;
6020    for (unsigned j = 0; j != Scale; ++j) {
6021      int EltIdx = SVOp->getMaskElt(i+j);
6022      if (EltIdx < 0)
6023        continue;
6024      if (StartIdx < 0)
6025        StartIdx = (EltIdx / Scale);
6026      if (EltIdx != (int)(StartIdx*Scale + j))
6027        return SDValue();
6028    }
6029    MaskVec.push_back(StartIdx);
6030  }
6031
6032  SDValue V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(0));
6033  SDValue V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, SVOp->getOperand(1));
6034  return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
6035}
6036
6037/// getVZextMovL - Return a zero-extending vector move low node.
6038///
6039static SDValue getVZextMovL(EVT VT, EVT OpVT,
6040                            SDValue SrcOp, SelectionDAG &DAG,
6041                            const X86Subtarget *Subtarget, DebugLoc dl) {
6042  if (VT == MVT::v2f64 || VT == MVT::v4f32) {
6043    LoadSDNode *LD = NULL;
6044    if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
6045      LD = dyn_cast<LoadSDNode>(SrcOp);
6046    if (!LD) {
6047      // movssrr and movsdrr do not clear top bits. Try to use movd, movq
6048      // instead.
6049      MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
6050      if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
6051          SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
6052          SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
6053          SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
6054        // PR2108
6055        OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
6056        return DAG.getNode(ISD::BITCAST, dl, VT,
6057                           DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6058                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
6059                                                   OpVT,
6060                                                   SrcOp.getOperand(0)
6061                                                          .getOperand(0))));
6062      }
6063    }
6064  }
6065
6066  return DAG.getNode(ISD::BITCAST, dl, VT,
6067                     DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
6068                                 DAG.getNode(ISD::BITCAST, dl,
6069                                             OpVT, SrcOp)));
6070}
6071
6072/// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
6073/// which could not be matched by any known target speficic shuffle
6074static SDValue
6075LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6076
6077  SDValue NewOp = Compact8x32ShuffleNode(SVOp, DAG);
6078  if (NewOp.getNode())
6079    return NewOp;
6080
6081  EVT VT = SVOp->getValueType(0);
6082
6083  unsigned NumElems = VT.getVectorNumElements();
6084  unsigned NumLaneElems = NumElems / 2;
6085
6086  DebugLoc dl = SVOp->getDebugLoc();
6087  MVT EltVT = VT.getVectorElementType().getSimpleVT();
6088  EVT NVT = MVT::getVectorVT(EltVT, NumLaneElems);
6089  SDValue Output[2];
6090
6091  SmallVector<int, 16> Mask;
6092  for (unsigned l = 0; l < 2; ++l) {
6093    // Build a shuffle mask for the output, discovering on the fly which
6094    // input vectors to use as shuffle operands (recorded in InputUsed).
6095    // If building a suitable shuffle vector proves too hard, then bail
6096    // out with UseBuildVector set.
6097    bool UseBuildVector = false;
6098    int InputUsed[2] = { -1, -1 }; // Not yet discovered.
6099    unsigned LaneStart = l * NumLaneElems;
6100    for (unsigned i = 0; i != NumLaneElems; ++i) {
6101      // The mask element.  This indexes into the input.
6102      int Idx = SVOp->getMaskElt(i+LaneStart);
6103      if (Idx < 0) {
6104        // the mask element does not index into any input vector.
6105        Mask.push_back(-1);
6106        continue;
6107      }
6108
6109      // The input vector this mask element indexes into.
6110      int Input = Idx / NumLaneElems;
6111
6112      // Turn the index into an offset from the start of the input vector.
6113      Idx -= Input * NumLaneElems;
6114
6115      // Find or create a shuffle vector operand to hold this input.
6116      unsigned OpNo;
6117      for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
6118        if (InputUsed[OpNo] == Input)
6119          // This input vector is already an operand.
6120          break;
6121        if (InputUsed[OpNo] < 0) {
6122          // Create a new operand for this input vector.
6123          InputUsed[OpNo] = Input;
6124          break;
6125        }
6126      }
6127
6128      if (OpNo >= array_lengthof(InputUsed)) {
6129        // More than two input vectors used!  Give up on trying to create a
6130        // shuffle vector.  Insert all elements into a BUILD_VECTOR instead.
6131        UseBuildVector = true;
6132        break;
6133      }
6134
6135      // Add the mask index for the new shuffle vector.
6136      Mask.push_back(Idx + OpNo * NumLaneElems);
6137    }
6138
6139    if (UseBuildVector) {
6140      SmallVector<SDValue, 16> SVOps;
6141      for (unsigned i = 0; i != NumLaneElems; ++i) {
6142        // The mask element.  This indexes into the input.
6143        int Idx = SVOp->getMaskElt(i+LaneStart);
6144        if (Idx < 0) {
6145          SVOps.push_back(DAG.getUNDEF(EltVT));
6146          continue;
6147        }
6148
6149        // The input vector this mask element indexes into.
6150        int Input = Idx / NumElems;
6151
6152        // Turn the index into an offset from the start of the input vector.
6153        Idx -= Input * NumElems;
6154
6155        // Extract the vector element by hand.
6156        SVOps.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6157                                    SVOp->getOperand(Input),
6158                                    DAG.getIntPtrConstant(Idx)));
6159      }
6160
6161      // Construct the output using a BUILD_VECTOR.
6162      Output[l] = DAG.getNode(ISD::BUILD_VECTOR, dl, NVT, &SVOps[0],
6163                              SVOps.size());
6164    } else if (InputUsed[0] < 0) {
6165      // No input vectors were used! The result is undefined.
6166      Output[l] = DAG.getUNDEF(NVT);
6167    } else {
6168      SDValue Op0 = Extract128BitVector(SVOp->getOperand(InputUsed[0] / 2),
6169                                        (InputUsed[0] % 2) * NumLaneElems,
6170                                        DAG, dl);
6171      // If only one input was used, use an undefined vector for the other.
6172      SDValue Op1 = (InputUsed[1] < 0) ? DAG.getUNDEF(NVT) :
6173        Extract128BitVector(SVOp->getOperand(InputUsed[1] / 2),
6174                            (InputUsed[1] % 2) * NumLaneElems, DAG, dl);
6175      // At least one input vector was used. Create a new shuffle vector.
6176      Output[l] = DAG.getVectorShuffle(NVT, dl, Op0, Op1, &Mask[0]);
6177    }
6178
6179    Mask.clear();
6180  }
6181
6182  // Concatenate the result back
6183  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Output[0], Output[1]);
6184}
6185
6186/// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6187/// 4 elements, and match them with several different shuffle types.
6188static SDValue
6189LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6190  SDValue V1 = SVOp->getOperand(0);
6191  SDValue V2 = SVOp->getOperand(1);
6192  DebugLoc dl = SVOp->getDebugLoc();
6193  EVT VT = SVOp->getValueType(0);
6194
6195  assert(VT.is128BitVector() && "Unsupported vector size");
6196
6197  std::pair<int, int> Locs[4];
6198  int Mask1[] = { -1, -1, -1, -1 };
6199  SmallVector<int, 8> PermMask(SVOp->getMask().begin(), SVOp->getMask().end());
6200
6201  unsigned NumHi = 0;
6202  unsigned NumLo = 0;
6203  for (unsigned i = 0; i != 4; ++i) {
6204    int Idx = PermMask[i];
6205    if (Idx < 0) {
6206      Locs[i] = std::make_pair(-1, -1);
6207    } else {
6208      assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6209      if (Idx < 4) {
6210        Locs[i] = std::make_pair(0, NumLo);
6211        Mask1[NumLo] = Idx;
6212        NumLo++;
6213      } else {
6214        Locs[i] = std::make_pair(1, NumHi);
6215        if (2+NumHi < 4)
6216          Mask1[2+NumHi] = Idx;
6217        NumHi++;
6218      }
6219    }
6220  }
6221
6222  if (NumLo <= 2 && NumHi <= 2) {
6223    // If no more than two elements come from either vector. This can be
6224    // implemented with two shuffles. First shuffle gather the elements.
6225    // The second shuffle, which takes the first shuffle as both of its
6226    // vector operands, put the elements into the right order.
6227    V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6228
6229    int Mask2[] = { -1, -1, -1, -1 };
6230
6231    for (unsigned i = 0; i != 4; ++i)
6232      if (Locs[i].first != -1) {
6233        unsigned Idx = (i < 2) ? 0 : 4;
6234        Idx += Locs[i].first * 2 + Locs[i].second;
6235        Mask2[i] = Idx;
6236      }
6237
6238    return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6239  }
6240
6241  if (NumLo == 3 || NumHi == 3) {
6242    // Otherwise, we must have three elements from one vector, call it X, and
6243    // one element from the other, call it Y.  First, use a shufps to build an
6244    // intermediate vector with the one element from Y and the element from X
6245    // that will be in the same half in the final destination (the indexes don't
6246    // matter). Then, use a shufps to build the final vector, taking the half
6247    // containing the element from Y from the intermediate, and the other half
6248    // from X.
6249    if (NumHi == 3) {
6250      // Normalize it so the 3 elements come from V1.
6251      CommuteVectorShuffleMask(PermMask, 4);
6252      std::swap(V1, V2);
6253    }
6254
6255    // Find the element from V2.
6256    unsigned HiIndex;
6257    for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6258      int Val = PermMask[HiIndex];
6259      if (Val < 0)
6260        continue;
6261      if (Val >= 4)
6262        break;
6263    }
6264
6265    Mask1[0] = PermMask[HiIndex];
6266    Mask1[1] = -1;
6267    Mask1[2] = PermMask[HiIndex^1];
6268    Mask1[3] = -1;
6269    V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6270
6271    if (HiIndex >= 2) {
6272      Mask1[0] = PermMask[0];
6273      Mask1[1] = PermMask[1];
6274      Mask1[2] = HiIndex & 1 ? 6 : 4;
6275      Mask1[3] = HiIndex & 1 ? 4 : 6;
6276      return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6277    }
6278
6279    Mask1[0] = HiIndex & 1 ? 2 : 0;
6280    Mask1[1] = HiIndex & 1 ? 0 : 2;
6281    Mask1[2] = PermMask[2];
6282    Mask1[3] = PermMask[3];
6283    if (Mask1[2] >= 0)
6284      Mask1[2] += 4;
6285    if (Mask1[3] >= 0)
6286      Mask1[3] += 4;
6287    return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6288  }
6289
6290  // Break it into (shuffle shuffle_hi, shuffle_lo).
6291  int LoMask[] = { -1, -1, -1, -1 };
6292  int HiMask[] = { -1, -1, -1, -1 };
6293
6294  int *MaskPtr = LoMask;
6295  unsigned MaskIdx = 0;
6296  unsigned LoIdx = 0;
6297  unsigned HiIdx = 2;
6298  for (unsigned i = 0; i != 4; ++i) {
6299    if (i == 2) {
6300      MaskPtr = HiMask;
6301      MaskIdx = 1;
6302      LoIdx = 0;
6303      HiIdx = 2;
6304    }
6305    int Idx = PermMask[i];
6306    if (Idx < 0) {
6307      Locs[i] = std::make_pair(-1, -1);
6308    } else if (Idx < 4) {
6309      Locs[i] = std::make_pair(MaskIdx, LoIdx);
6310      MaskPtr[LoIdx] = Idx;
6311      LoIdx++;
6312    } else {
6313      Locs[i] = std::make_pair(MaskIdx, HiIdx);
6314      MaskPtr[HiIdx] = Idx;
6315      HiIdx++;
6316    }
6317  }
6318
6319  SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6320  SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6321  int MaskOps[] = { -1, -1, -1, -1 };
6322  for (unsigned i = 0; i != 4; ++i)
6323    if (Locs[i].first != -1)
6324      MaskOps[i] = Locs[i].first * 4 + Locs[i].second;
6325  return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6326}
6327
6328static bool MayFoldVectorLoad(SDValue V) {
6329  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6330    V = V.getOperand(0);
6331  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6332    V = V.getOperand(0);
6333  if (V.hasOneUse() && V.getOpcode() == ISD::BUILD_VECTOR &&
6334      V.getNumOperands() == 2 && V.getOperand(1).getOpcode() == ISD::UNDEF)
6335    // BUILD_VECTOR (load), undef
6336    V = V.getOperand(0);
6337  if (MayFoldLoad(V))
6338    return true;
6339  return false;
6340}
6341
6342// FIXME: the version above should always be used. Since there's
6343// a bug where several vector shuffles can't be folded because the
6344// DAG is not updated during lowering and a node claims to have two
6345// uses while it only has one, use this version, and let isel match
6346// another instruction if the load really happens to have more than
6347// one use. Remove this version after this bug get fixed.
6348// rdar://8434668, PR8156
6349static bool RelaxedMayFoldVectorLoad(SDValue V) {
6350  if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6351    V = V.getOperand(0);
6352  if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6353    V = V.getOperand(0);
6354  if (ISD::isNormalLoad(V.getNode()))
6355    return true;
6356  return false;
6357}
6358
6359static
6360SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6361  EVT VT = Op.getValueType();
6362
6363  // Canonizalize to v2f64.
6364  V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6365  return DAG.getNode(ISD::BITCAST, dl, VT,
6366                     getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6367                                          V1, DAG));
6368}
6369
6370static
6371SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6372                        bool HasSSE2) {
6373  SDValue V1 = Op.getOperand(0);
6374  SDValue V2 = Op.getOperand(1);
6375  EVT VT = Op.getValueType();
6376
6377  assert(VT != MVT::v2i64 && "unsupported shuffle type");
6378
6379  if (HasSSE2 && VT == MVT::v2f64)
6380    return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6381
6382  // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6383  return DAG.getNode(ISD::BITCAST, dl, VT,
6384                     getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6385                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6386                           DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6387}
6388
6389static
6390SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6391  SDValue V1 = Op.getOperand(0);
6392  SDValue V2 = Op.getOperand(1);
6393  EVT VT = Op.getValueType();
6394
6395  assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6396         "unsupported shuffle type");
6397
6398  if (V2.getOpcode() == ISD::UNDEF)
6399    V2 = V1;
6400
6401  // v4i32 or v4f32
6402  return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6403}
6404
6405static
6406SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasSSE2) {
6407  SDValue V1 = Op.getOperand(0);
6408  SDValue V2 = Op.getOperand(1);
6409  EVT VT = Op.getValueType();
6410  unsigned NumElems = VT.getVectorNumElements();
6411
6412  // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6413  // operand of these instructions is only memory, so check if there's a
6414  // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6415  // same masks.
6416  bool CanFoldLoad = false;
6417
6418  // Trivial case, when V2 comes from a load.
6419  if (MayFoldVectorLoad(V2))
6420    CanFoldLoad = true;
6421
6422  // When V1 is a load, it can be folded later into a store in isel, example:
6423  //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6424  //    turns into:
6425  //  (MOVLPSmr addr:$src1, VR128:$src2)
6426  // So, recognize this potential and also use MOVLPS or MOVLPD
6427  else if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6428    CanFoldLoad = true;
6429
6430  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6431  if (CanFoldLoad) {
6432    if (HasSSE2 && NumElems == 2)
6433      return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6434
6435    if (NumElems == 4)
6436      // If we don't care about the second element, proceed to use movss.
6437      if (SVOp->getMaskElt(1) != -1)
6438        return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6439  }
6440
6441  // movl and movlp will both match v2i64, but v2i64 is never matched by
6442  // movl earlier because we make it strict to avoid messing with the movlp load
6443  // folding logic (see the code above getMOVLP call). Match it here then,
6444  // this is horrible, but will stay like this until we move all shuffle
6445  // matching to x86 specific nodes. Note that for the 1st condition all
6446  // types are matched with movsd.
6447  if (HasSSE2) {
6448    // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6449    // as to remove this logic from here, as much as possible
6450    if (NumElems == 2 || !isMOVLMask(SVOp->getMask(), VT))
6451      return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6452    return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6453  }
6454
6455  assert(VT != MVT::v4i32 && "unsupported shuffle type");
6456
6457  // Invert the operand order and use SHUFPS to match it.
6458  return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V2, V1,
6459                              getShuffleSHUFImmediate(SVOp), DAG);
6460}
6461
6462SDValue
6463X86TargetLowering::NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG) const {
6464  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6465  EVT VT = Op.getValueType();
6466  DebugLoc dl = Op.getDebugLoc();
6467  SDValue V1 = Op.getOperand(0);
6468  SDValue V2 = Op.getOperand(1);
6469
6470  if (isZeroShuffle(SVOp))
6471    return getZeroVector(VT, Subtarget, DAG, dl);
6472
6473  // Handle splat operations
6474  if (SVOp->isSplat()) {
6475    unsigned NumElem = VT.getVectorNumElements();
6476    int Size = VT.getSizeInBits();
6477
6478    // Use vbroadcast whenever the splat comes from a foldable load
6479    SDValue Broadcast = LowerVectorBroadcast(Op, DAG);
6480    if (Broadcast.getNode())
6481      return Broadcast;
6482
6483    // Handle splats by matching through known shuffle masks
6484    if ((Size == 128 && NumElem <= 4) ||
6485        (Size == 256 && NumElem < 8))
6486      return SDValue();
6487
6488    // All remaning splats are promoted to target supported vector shuffles.
6489    return PromoteSplat(SVOp, DAG);
6490  }
6491
6492  // If the shuffle can be profitably rewritten as a narrower shuffle, then
6493  // do it!
6494  if (VT == MVT::v8i16  || VT == MVT::v16i8 ||
6495      VT == MVT::v16i16 || VT == MVT::v32i8) {
6496    SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6497    if (NewOp.getNode())
6498      return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6499  } else if ((VT == MVT::v4i32 ||
6500             (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
6501    // FIXME: Figure out a cleaner way to do this.
6502    // Try to make use of movq to zero out the top part.
6503    if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6504      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6505      if (NewOp.getNode()) {
6506        EVT NewVT = NewOp.getValueType();
6507        if (isCommutedMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(),
6508                               NewVT, true, false))
6509          return getVZextMovL(VT, NewVT, NewOp.getOperand(0),
6510                              DAG, Subtarget, dl);
6511      }
6512    } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6513      SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6514      if (NewOp.getNode()) {
6515        EVT NewVT = NewOp.getValueType();
6516        if (isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)->getMask(), NewVT))
6517          return getVZextMovL(VT, NewVT, NewOp.getOperand(1),
6518                              DAG, Subtarget, dl);
6519      }
6520    }
6521  }
6522  return SDValue();
6523}
6524
6525SDValue
6526X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6527  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6528  SDValue V1 = Op.getOperand(0);
6529  SDValue V2 = Op.getOperand(1);
6530  EVT VT = Op.getValueType();
6531  DebugLoc dl = Op.getDebugLoc();
6532  unsigned NumElems = VT.getVectorNumElements();
6533  bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6534  bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6535  bool V1IsSplat = false;
6536  bool V2IsSplat = false;
6537  bool HasSSE2 = Subtarget->hasSSE2();
6538  bool HasAVX    = Subtarget->hasAVX();
6539  bool HasAVX2   = Subtarget->hasAVX2();
6540  MachineFunction &MF = DAG.getMachineFunction();
6541  bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6542
6543  assert(VT.getSizeInBits() != 64 && "Can't lower MMX shuffles");
6544
6545  if (V1IsUndef && V2IsUndef)
6546    return DAG.getUNDEF(VT);
6547
6548  assert(!V1IsUndef && "Op 1 of shuffle should not be undef");
6549
6550  // Vector shuffle lowering takes 3 steps:
6551  //
6552  // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6553  //    narrowing and commutation of operands should be handled.
6554  // 2) Matching of shuffles with known shuffle masks to x86 target specific
6555  //    shuffle nodes.
6556  // 3) Rewriting of unmatched masks into new generic shuffle operations,
6557  //    so the shuffle can be broken into other shuffles and the legalizer can
6558  //    try the lowering again.
6559  //
6560  // The general idea is that no vector_shuffle operation should be left to
6561  // be matched during isel, all of them must be converted to a target specific
6562  // node here.
6563
6564  // Normalize the input vectors. Here splats, zeroed vectors, profitable
6565  // narrowing and commutation of operands should be handled. The actual code
6566  // doesn't include all of those, work in progress...
6567  SDValue NewOp = NormalizeVectorShuffle(Op, DAG);
6568  if (NewOp.getNode())
6569    return NewOp;
6570
6571  SmallVector<int, 8> M(SVOp->getMask().begin(), SVOp->getMask().end());
6572
6573  // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6574  // unpckh_undef). Only use pshufd if speed is more important than size.
6575  if (OptForSize && isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6576    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6577  if (OptForSize && isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6578    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6579
6580  if (isMOVDDUPMask(M, VT) && Subtarget->hasSSE3() &&
6581      V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6582    return getMOVDDup(Op, dl, V1, DAG);
6583
6584  if (isMOVHLPS_v_undef_Mask(M, VT))
6585    return getMOVHighToLow(Op, dl, DAG);
6586
6587  // Use to match splats
6588  if (HasSSE2 && isUNPCKHMask(M, VT, HasAVX2) && V2IsUndef &&
6589      (VT == MVT::v2f64 || VT == MVT::v2i64))
6590    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6591
6592  if (isPSHUFDMask(M, VT)) {
6593    // The actual implementation will match the mask in the if above and then
6594    // during isel it can match several different instructions, not only pshufd
6595    // as its name says, sad but true, emulate the behavior for now...
6596    if (isMOVDDUPMask(M, VT) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6597      return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6598
6599    unsigned TargetMask = getShuffleSHUFImmediate(SVOp);
6600
6601    if (HasAVX && (VT == MVT::v4f32 || VT == MVT::v2f64))
6602      return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1, TargetMask, DAG);
6603
6604    if (HasSSE2 && (VT == MVT::v4f32 || VT == MVT::v4i32))
6605      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6606
6607    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V1,
6608                                TargetMask, DAG);
6609  }
6610
6611  // Check if this can be converted into a logical shift.
6612  bool isLeft = false;
6613  unsigned ShAmt = 0;
6614  SDValue ShVal;
6615  bool isShift = HasSSE2 && isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6616  if (isShift && ShVal.hasOneUse()) {
6617    // If the shifted value has multiple uses, it may be cheaper to use
6618    // v_set0 + movlhps or movhlps, etc.
6619    EVT EltVT = VT.getVectorElementType();
6620    ShAmt *= EltVT.getSizeInBits();
6621    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6622  }
6623
6624  if (isMOVLMask(M, VT)) {
6625    if (ISD::isBuildVectorAllZeros(V1.getNode()))
6626      return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6627    if (!isMOVLPMask(M, VT)) {
6628      if (HasSSE2 && (VT == MVT::v2i64 || VT == MVT::v2f64))
6629        return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6630
6631      if (VT == MVT::v4i32 || VT == MVT::v4f32)
6632        return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6633    }
6634  }
6635
6636  // FIXME: fold these into legal mask.
6637  if (isMOVLHPSMask(M, VT) && !isUNPCKLMask(M, VT, HasAVX2))
6638    return getMOVLowToHigh(Op, dl, DAG, HasSSE2);
6639
6640  if (isMOVHLPSMask(M, VT))
6641    return getMOVHighToLow(Op, dl, DAG);
6642
6643  if (V2IsUndef && isMOVSHDUPMask(M, VT, Subtarget))
6644    return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6645
6646  if (V2IsUndef && isMOVSLDUPMask(M, VT, Subtarget))
6647    return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6648
6649  if (isMOVLPMask(M, VT))
6650    return getMOVLP(Op, dl, DAG, HasSSE2);
6651
6652  if (ShouldXformToMOVHLPS(M, VT) ||
6653      ShouldXformToMOVLP(V1.getNode(), V2.getNode(), M, VT))
6654    return CommuteVectorShuffle(SVOp, DAG);
6655
6656  if (isShift) {
6657    // No better options. Use a vshldq / vsrldq.
6658    EVT EltVT = VT.getVectorElementType();
6659    ShAmt *= EltVT.getSizeInBits();
6660    return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6661  }
6662
6663  bool Commuted = false;
6664  // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6665  // 1,1,1,1 -> v8i16 though.
6666  V1IsSplat = isSplatVector(V1.getNode());
6667  V2IsSplat = isSplatVector(V2.getNode());
6668
6669  // Canonicalize the splat or undef, if present, to be on the RHS.
6670  if (!V2IsUndef && V1IsSplat && !V2IsSplat) {
6671    CommuteVectorShuffleMask(M, NumElems);
6672    std::swap(V1, V2);
6673    std::swap(V1IsSplat, V2IsSplat);
6674    Commuted = true;
6675  }
6676
6677  if (isCommutedMOVLMask(M, VT, V2IsSplat, V2IsUndef)) {
6678    // Shuffling low element of v1 into undef, just return v1.
6679    if (V2IsUndef)
6680      return V1;
6681    // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6682    // the instruction selector will not match, so get a canonical MOVL with
6683    // swapped operands to undo the commute.
6684    return getMOVL(DAG, dl, VT, V2, V1);
6685  }
6686
6687  if (isUNPCKLMask(M, VT, HasAVX2))
6688    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6689
6690  if (isUNPCKHMask(M, VT, HasAVX2))
6691    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6692
6693  if (V2IsSplat) {
6694    // Normalize mask so all entries that point to V2 points to its first
6695    // element then try to match unpck{h|l} again. If match, return a
6696    // new vector_shuffle with the corrected mask.p
6697    SmallVector<int, 8> NewMask(M.begin(), M.end());
6698    NormalizeMask(NewMask, NumElems);
6699    if (isUNPCKLMask(NewMask, VT, HasAVX2, true))
6700      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6701    if (isUNPCKHMask(NewMask, VT, HasAVX2, true))
6702      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6703  }
6704
6705  if (Commuted) {
6706    // Commute is back and try unpck* again.
6707    // FIXME: this seems wrong.
6708    CommuteVectorShuffleMask(M, NumElems);
6709    std::swap(V1, V2);
6710    std::swap(V1IsSplat, V2IsSplat);
6711    Commuted = false;
6712
6713    if (isUNPCKLMask(M, VT, HasAVX2))
6714      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V2, DAG);
6715
6716    if (isUNPCKHMask(M, VT, HasAVX2))
6717      return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V2, DAG);
6718  }
6719
6720  // Normalize the node to match x86 shuffle ops if needed
6721  if (!V2IsUndef && (isSHUFPMask(M, VT, HasAVX, /* Commuted */ true)))
6722    return CommuteVectorShuffle(SVOp, DAG);
6723
6724  // The checks below are all present in isShuffleMaskLegal, but they are
6725  // inlined here right now to enable us to directly emit target specific
6726  // nodes, and remove one by one until they don't return Op anymore.
6727
6728  if (isPALIGNRMask(M, VT, Subtarget))
6729    return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6730                                getShufflePALIGNRImmediate(SVOp),
6731                                DAG);
6732
6733  if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6734      SVOp->getSplatIndex() == 0 && V2IsUndef) {
6735    if (VT == MVT::v2f64 || VT == MVT::v2i64)
6736      return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6737  }
6738
6739  if (isPSHUFHWMask(M, VT, HasAVX2))
6740    return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6741                                getShufflePSHUFHWImmediate(SVOp),
6742                                DAG);
6743
6744  if (isPSHUFLWMask(M, VT, HasAVX2))
6745    return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6746                                getShufflePSHUFLWImmediate(SVOp),
6747                                DAG);
6748
6749  if (isSHUFPMask(M, VT, HasAVX))
6750    return getTargetShuffleNode(X86ISD::SHUFP, dl, VT, V1, V2,
6751                                getShuffleSHUFImmediate(SVOp), DAG);
6752
6753  if (isUNPCKL_v_undef_Mask(M, VT, HasAVX2))
6754    return getTargetShuffleNode(X86ISD::UNPCKL, dl, VT, V1, V1, DAG);
6755  if (isUNPCKH_v_undef_Mask(M, VT, HasAVX2))
6756    return getTargetShuffleNode(X86ISD::UNPCKH, dl, VT, V1, V1, DAG);
6757
6758  //===--------------------------------------------------------------------===//
6759  // Generate target specific nodes for 128 or 256-bit shuffles only
6760  // supported in the AVX instruction set.
6761  //
6762
6763  // Handle VMOVDDUPY permutations
6764  if (V2IsUndef && isMOVDDUPYMask(M, VT, HasAVX))
6765    return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6766
6767  // Handle VPERMILPS/D* permutations
6768  if (isVPERMILPMask(M, VT, HasAVX)) {
6769    if (HasAVX2 && VT == MVT::v8i32)
6770      return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1,
6771                                  getShuffleSHUFImmediate(SVOp), DAG);
6772    return getTargetShuffleNode(X86ISD::VPERMILP, dl, VT, V1,
6773                                getShuffleSHUFImmediate(SVOp), DAG);
6774  }
6775
6776  // Handle VPERM2F128/VPERM2I128 permutations
6777  if (isVPERM2X128Mask(M, VT, HasAVX))
6778    return getTargetShuffleNode(X86ISD::VPERM2X128, dl, VT, V1,
6779                                V2, getShuffleVPERM2X128Immediate(SVOp), DAG);
6780
6781  SDValue BlendOp = LowerVECTOR_SHUFFLEtoBlend(SVOp, Subtarget, DAG);
6782  if (BlendOp.getNode())
6783    return BlendOp;
6784
6785  if (V2IsUndef && HasAVX2 && (VT == MVT::v8i32 || VT == MVT::v8f32)) {
6786    SmallVector<SDValue, 8> permclMask;
6787    for (unsigned i = 0; i != 8; ++i) {
6788      permclMask.push_back(DAG.getConstant((M[i]>=0) ? M[i] : 0, MVT::i32));
6789    }
6790    SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8i32,
6791                               &permclMask[0], 8);
6792    // Bitcast is for VPERMPS since mask is v8i32 but node takes v8f32
6793    return DAG.getNode(X86ISD::VPERMV, dl, VT,
6794                       DAG.getNode(ISD::BITCAST, dl, VT, Mask), V1);
6795  }
6796
6797  if (V2IsUndef && HasAVX2 && (VT == MVT::v4i64 || VT == MVT::v4f64))
6798    return getTargetShuffleNode(X86ISD::VPERMI, dl, VT, V1,
6799                                getShuffleCLImmediate(SVOp), DAG);
6800
6801
6802  //===--------------------------------------------------------------------===//
6803  // Since no target specific shuffle was selected for this generic one,
6804  // lower it into other known shuffles. FIXME: this isn't true yet, but
6805  // this is the plan.
6806  //
6807
6808  // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6809  if (VT == MVT::v8i16) {
6810    SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6811    if (NewOp.getNode())
6812      return NewOp;
6813  }
6814
6815  if (VT == MVT::v16i8) {
6816    SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6817    if (NewOp.getNode())
6818      return NewOp;
6819  }
6820
6821  // Handle all 128-bit wide vectors with 4 elements, and match them with
6822  // several different shuffle types.
6823  if (NumElems == 4 && VT.is128BitVector())
6824    return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6825
6826  // Handle general 256-bit shuffles
6827  if (VT.is256BitVector())
6828    return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6829
6830  return SDValue();
6831}
6832
6833SDValue
6834X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6835                                                SelectionDAG &DAG) const {
6836  EVT VT = Op.getValueType();
6837  DebugLoc dl = Op.getDebugLoc();
6838
6839  if (!Op.getOperand(0).getValueType().is128BitVector())
6840    return SDValue();
6841
6842  if (VT.getSizeInBits() == 8) {
6843    SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6844                                    Op.getOperand(0), Op.getOperand(1));
6845    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6846                                    DAG.getValueType(VT));
6847    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6848  }
6849
6850  if (VT.getSizeInBits() == 16) {
6851    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6852    // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6853    if (Idx == 0)
6854      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6855                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6856                                     DAG.getNode(ISD::BITCAST, dl,
6857                                                 MVT::v4i32,
6858                                                 Op.getOperand(0)),
6859                                     Op.getOperand(1)));
6860    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6861                                    Op.getOperand(0), Op.getOperand(1));
6862    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6863                                    DAG.getValueType(VT));
6864    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6865  }
6866
6867  if (VT == MVT::f32) {
6868    // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6869    // the result back to FR32 register. It's only worth matching if the
6870    // result has a single use which is a store or a bitcast to i32.  And in
6871    // the case of a store, it's not worth it if the index is a constant 0,
6872    // because a MOVSSmr can be used instead, which is smaller and faster.
6873    if (!Op.hasOneUse())
6874      return SDValue();
6875    SDNode *User = *Op.getNode()->use_begin();
6876    if ((User->getOpcode() != ISD::STORE ||
6877         (isa<ConstantSDNode>(Op.getOperand(1)) &&
6878          cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6879        (User->getOpcode() != ISD::BITCAST ||
6880         User->getValueType(0) != MVT::i32))
6881      return SDValue();
6882    SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6883                                  DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6884                                              Op.getOperand(0)),
6885                                              Op.getOperand(1));
6886    return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6887  }
6888
6889  if (VT == MVT::i32 || VT == MVT::i64) {
6890    // ExtractPS/pextrq works with constant index.
6891    if (isa<ConstantSDNode>(Op.getOperand(1)))
6892      return Op;
6893  }
6894  return SDValue();
6895}
6896
6897
6898SDValue
6899X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6900                                           SelectionDAG &DAG) const {
6901  if (!isa<ConstantSDNode>(Op.getOperand(1)))
6902    return SDValue();
6903
6904  SDValue Vec = Op.getOperand(0);
6905  EVT VecVT = Vec.getValueType();
6906
6907  // If this is a 256-bit vector result, first extract the 128-bit vector and
6908  // then extract the element from the 128-bit vector.
6909  if (VecVT.is256BitVector()) {
6910    DebugLoc dl = Op.getNode()->getDebugLoc();
6911    unsigned NumElems = VecVT.getVectorNumElements();
6912    SDValue Idx = Op.getOperand(1);
6913    unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6914
6915    // Get the 128-bit vector.
6916    Vec = Extract128BitVector(Vec, IdxVal, DAG, dl);
6917
6918    if (IdxVal >= NumElems/2)
6919      IdxVal -= NumElems/2;
6920    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6921                       DAG.getConstant(IdxVal, MVT::i32));
6922  }
6923
6924  assert(VecVT.is128BitVector() && "Unexpected vector length");
6925
6926  if (Subtarget->hasSSE41()) {
6927    SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6928    if (Res.getNode())
6929      return Res;
6930  }
6931
6932  EVT VT = Op.getValueType();
6933  DebugLoc dl = Op.getDebugLoc();
6934  // TODO: handle v16i8.
6935  if (VT.getSizeInBits() == 16) {
6936    SDValue Vec = Op.getOperand(0);
6937    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6938    if (Idx == 0)
6939      return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6940                         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6941                                     DAG.getNode(ISD::BITCAST, dl,
6942                                                 MVT::v4i32, Vec),
6943                                     Op.getOperand(1)));
6944    // Transform it so it match pextrw which produces a 32-bit result.
6945    EVT EltVT = MVT::i32;
6946    SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6947                                    Op.getOperand(0), Op.getOperand(1));
6948    SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6949                                    DAG.getValueType(VT));
6950    return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6951  }
6952
6953  if (VT.getSizeInBits() == 32) {
6954    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6955    if (Idx == 0)
6956      return Op;
6957
6958    // SHUFPS the element to the lowest double word, then movss.
6959    int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6960    EVT VVT = Op.getOperand(0).getValueType();
6961    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6962                                       DAG.getUNDEF(VVT), Mask);
6963    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6964                       DAG.getIntPtrConstant(0));
6965  }
6966
6967  if (VT.getSizeInBits() == 64) {
6968    // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6969    // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6970    //        to match extract_elt for f64.
6971    unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6972    if (Idx == 0)
6973      return Op;
6974
6975    // UNPCKHPD the element to the lowest double word, then movsd.
6976    // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6977    // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6978    int Mask[2] = { 1, -1 };
6979    EVT VVT = Op.getOperand(0).getValueType();
6980    SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6981                                       DAG.getUNDEF(VVT), Mask);
6982    return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6983                       DAG.getIntPtrConstant(0));
6984  }
6985
6986  return SDValue();
6987}
6988
6989SDValue
6990X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6991                                               SelectionDAG &DAG) const {
6992  EVT VT = Op.getValueType();
6993  EVT EltVT = VT.getVectorElementType();
6994  DebugLoc dl = Op.getDebugLoc();
6995
6996  SDValue N0 = Op.getOperand(0);
6997  SDValue N1 = Op.getOperand(1);
6998  SDValue N2 = Op.getOperand(2);
6999
7000  if (!VT.is128BitVector())
7001    return SDValue();
7002
7003  if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7004      isa<ConstantSDNode>(N2)) {
7005    unsigned Opc;
7006    if (VT == MVT::v8i16)
7007      Opc = X86ISD::PINSRW;
7008    else if (VT == MVT::v16i8)
7009      Opc = X86ISD::PINSRB;
7010    else
7011      Opc = X86ISD::PINSRB;
7012
7013    // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7014    // argument.
7015    if (N1.getValueType() != MVT::i32)
7016      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7017    if (N2.getValueType() != MVT::i32)
7018      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7019    return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7020  }
7021
7022  if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7023    // Bits [7:6] of the constant are the source select.  This will always be
7024    //  zero here.  The DAG Combiner may combine an extract_elt index into these
7025    //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7026    //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7027    // Bits [5:4] of the constant are the destination select.  This is the
7028    //  value of the incoming immediate.
7029    // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7030    //   combine either bitwise AND or insert of float 0.0 to set these bits.
7031    N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7032    // Create this as a scalar to vector..
7033    N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7034    return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7035  }
7036
7037  if ((EltVT == MVT::i32 || EltVT == MVT::i64) && isa<ConstantSDNode>(N2)) {
7038    // PINSR* works with constant index.
7039    return Op;
7040  }
7041  return SDValue();
7042}
7043
7044SDValue
7045X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7046  EVT VT = Op.getValueType();
7047  EVT EltVT = VT.getVectorElementType();
7048
7049  DebugLoc dl = Op.getDebugLoc();
7050  SDValue N0 = Op.getOperand(0);
7051  SDValue N1 = Op.getOperand(1);
7052  SDValue N2 = Op.getOperand(2);
7053
7054  // If this is a 256-bit vector result, first extract the 128-bit vector,
7055  // insert the element into the extracted half and then place it back.
7056  if (VT.is256BitVector()) {
7057    if (!isa<ConstantSDNode>(N2))
7058      return SDValue();
7059
7060    // Get the desired 128-bit vector half.
7061    unsigned NumElems = VT.getVectorNumElements();
7062    unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7063    SDValue V = Extract128BitVector(N0, IdxVal, DAG, dl);
7064
7065    // Insert the element into the desired half.
7066    bool Upper = IdxVal >= NumElems/2;
7067    V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
7068                 DAG.getConstant(Upper ? IdxVal-NumElems/2 : IdxVal, MVT::i32));
7069
7070    // Insert the changed part back to the 256-bit vector
7071    return Insert128BitVector(N0, V, IdxVal, DAG, dl);
7072  }
7073
7074  if (Subtarget->hasSSE41())
7075    return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7076
7077  if (EltVT == MVT::i8)
7078    return SDValue();
7079
7080  if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7081    // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7082    // as its second argument.
7083    if (N1.getValueType() != MVT::i32)
7084      N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7085    if (N2.getValueType() != MVT::i32)
7086      N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7087    return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7088  }
7089  return SDValue();
7090}
7091
7092SDValue
7093X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7094  LLVMContext *Context = DAG.getContext();
7095  DebugLoc dl = Op.getDebugLoc();
7096  EVT OpVT = Op.getValueType();
7097
7098  // If this is a 256-bit vector result, first insert into a 128-bit
7099  // vector and then insert into the 256-bit vector.
7100  if (!OpVT.is128BitVector()) {
7101    // Insert into a 128-bit vector.
7102    EVT VT128 = EVT::getVectorVT(*Context,
7103                                 OpVT.getVectorElementType(),
7104                                 OpVT.getVectorNumElements() / 2);
7105
7106    Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7107
7108    // Insert the 128-bit vector.
7109    return Insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
7110  }
7111
7112  if (OpVT == MVT::v1i64 &&
7113      Op.getOperand(0).getValueType() == MVT::i64)
7114    return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7115
7116  SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7117  assert(OpVT.is128BitVector() && "Expected an SSE type!");
7118  return DAG.getNode(ISD::BITCAST, dl, OpVT,
7119                     DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7120}
7121
7122// Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7123// a simple subregister reference or explicit instructions to grab
7124// upper bits of a vector.
7125SDValue
7126X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7127  if (Subtarget->hasAVX()) {
7128    DebugLoc dl = Op.getNode()->getDebugLoc();
7129    SDValue Vec = Op.getNode()->getOperand(0);
7130    SDValue Idx = Op.getNode()->getOperand(1);
7131
7132    if (Op.getNode()->getValueType(0).is128BitVector() &&
7133        Vec.getNode()->getValueType(0).is256BitVector() &&
7134        isa<ConstantSDNode>(Idx)) {
7135      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7136      return Extract128BitVector(Vec, IdxVal, DAG, dl);
7137    }
7138  }
7139  return SDValue();
7140}
7141
7142// Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7143// simple superregister reference or explicit instructions to insert
7144// the upper bits of a vector.
7145SDValue
7146X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7147  if (Subtarget->hasAVX()) {
7148    DebugLoc dl = Op.getNode()->getDebugLoc();
7149    SDValue Vec = Op.getNode()->getOperand(0);
7150    SDValue SubVec = Op.getNode()->getOperand(1);
7151    SDValue Idx = Op.getNode()->getOperand(2);
7152
7153    if (Op.getNode()->getValueType(0).is256BitVector() &&
7154        SubVec.getNode()->getValueType(0).is128BitVector() &&
7155        isa<ConstantSDNode>(Idx)) {
7156      unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
7157      return Insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
7158    }
7159  }
7160  return SDValue();
7161}
7162
7163// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7164// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7165// one of the above mentioned nodes. It has to be wrapped because otherwise
7166// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7167// be used to form addressing mode. These wrapped nodes will be selected
7168// into MOV32ri.
7169SDValue
7170X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7171  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7172
7173  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7174  // global base reg.
7175  unsigned char OpFlag = 0;
7176  unsigned WrapperKind = X86ISD::Wrapper;
7177  CodeModel::Model M = getTargetMachine().getCodeModel();
7178
7179  if (Subtarget->isPICStyleRIPRel() &&
7180      (M == CodeModel::Small || M == CodeModel::Kernel))
7181    WrapperKind = X86ISD::WrapperRIP;
7182  else if (Subtarget->isPICStyleGOT())
7183    OpFlag = X86II::MO_GOTOFF;
7184  else if (Subtarget->isPICStyleStubPIC())
7185    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7186
7187  SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7188                                             CP->getAlignment(),
7189                                             CP->getOffset(), OpFlag);
7190  DebugLoc DL = CP->getDebugLoc();
7191  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7192  // With PIC, the address is actually $g + Offset.
7193  if (OpFlag) {
7194    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7195                         DAG.getNode(X86ISD::GlobalBaseReg,
7196                                     DebugLoc(), getPointerTy()),
7197                         Result);
7198  }
7199
7200  return Result;
7201}
7202
7203SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7204  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7205
7206  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7207  // global base reg.
7208  unsigned char OpFlag = 0;
7209  unsigned WrapperKind = X86ISD::Wrapper;
7210  CodeModel::Model M = getTargetMachine().getCodeModel();
7211
7212  if (Subtarget->isPICStyleRIPRel() &&
7213      (M == CodeModel::Small || M == CodeModel::Kernel))
7214    WrapperKind = X86ISD::WrapperRIP;
7215  else if (Subtarget->isPICStyleGOT())
7216    OpFlag = X86II::MO_GOTOFF;
7217  else if (Subtarget->isPICStyleStubPIC())
7218    OpFlag = X86II::MO_PIC_BASE_OFFSET;
7219
7220  SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7221                                          OpFlag);
7222  DebugLoc DL = JT->getDebugLoc();
7223  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7224
7225  // With PIC, the address is actually $g + Offset.
7226  if (OpFlag)
7227    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7228                         DAG.getNode(X86ISD::GlobalBaseReg,
7229                                     DebugLoc(), getPointerTy()),
7230                         Result);
7231
7232  return Result;
7233}
7234
7235SDValue
7236X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7237  const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7238
7239  // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7240  // global base reg.
7241  unsigned char OpFlag = 0;
7242  unsigned WrapperKind = X86ISD::Wrapper;
7243  CodeModel::Model M = getTargetMachine().getCodeModel();
7244
7245  if (Subtarget->isPICStyleRIPRel() &&
7246      (M == CodeModel::Small || M == CodeModel::Kernel)) {
7247    if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7248      OpFlag = X86II::MO_GOTPCREL;
7249    WrapperKind = X86ISD::WrapperRIP;
7250  } else if (Subtarget->isPICStyleGOT()) {
7251    OpFlag = X86II::MO_GOT;
7252  } else if (Subtarget->isPICStyleStubPIC()) {
7253    OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7254  } else if (Subtarget->isPICStyleStubNoDynamic()) {
7255    OpFlag = X86II::MO_DARWIN_NONLAZY;
7256  }
7257
7258  SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7259
7260  DebugLoc DL = Op.getDebugLoc();
7261  Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7262
7263
7264  // With PIC, the address is actually $g + Offset.
7265  if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7266      !Subtarget->is64Bit()) {
7267    Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7268                         DAG.getNode(X86ISD::GlobalBaseReg,
7269                                     DebugLoc(), getPointerTy()),
7270                         Result);
7271  }
7272
7273  // For symbols that require a load from a stub to get the address, emit the
7274  // load.
7275  if (isGlobalStubReference(OpFlag))
7276    Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7277                         MachinePointerInfo::getGOT(), false, false, false, 0);
7278
7279  return Result;
7280}
7281
7282SDValue
7283X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7284  // Create the TargetBlockAddressAddress node.
7285  unsigned char OpFlags =
7286    Subtarget->ClassifyBlockAddressReference();
7287  CodeModel::Model M = getTargetMachine().getCodeModel();
7288  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7289  DebugLoc dl = Op.getDebugLoc();
7290  SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7291                                       /*isTarget=*/true, OpFlags);
7292
7293  if (Subtarget->isPICStyleRIPRel() &&
7294      (M == CodeModel::Small || M == CodeModel::Kernel))
7295    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7296  else
7297    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7298
7299  // With PIC, the address is actually $g + Offset.
7300  if (isGlobalRelativeToPICBase(OpFlags)) {
7301    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7302                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7303                         Result);
7304  }
7305
7306  return Result;
7307}
7308
7309SDValue
7310X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7311                                      int64_t Offset,
7312                                      SelectionDAG &DAG) const {
7313  // Create the TargetGlobalAddress node, folding in the constant
7314  // offset if it is legal.
7315  unsigned char OpFlags =
7316    Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7317  CodeModel::Model M = getTargetMachine().getCodeModel();
7318  SDValue Result;
7319  if (OpFlags == X86II::MO_NO_FLAG &&
7320      X86::isOffsetSuitableForCodeModel(Offset, M)) {
7321    // A direct static reference to a global.
7322    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7323    Offset = 0;
7324  } else {
7325    Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7326  }
7327
7328  if (Subtarget->isPICStyleRIPRel() &&
7329      (M == CodeModel::Small || M == CodeModel::Kernel))
7330    Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7331  else
7332    Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7333
7334  // With PIC, the address is actually $g + Offset.
7335  if (isGlobalRelativeToPICBase(OpFlags)) {
7336    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7337                         DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7338                         Result);
7339  }
7340
7341  // For globals that require a load from a stub to get the address, emit the
7342  // load.
7343  if (isGlobalStubReference(OpFlags))
7344    Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7345                         MachinePointerInfo::getGOT(), false, false, false, 0);
7346
7347  // If there was a non-zero offset that we didn't fold, create an explicit
7348  // addition for it.
7349  if (Offset != 0)
7350    Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7351                         DAG.getConstant(Offset, getPointerTy()));
7352
7353  return Result;
7354}
7355
7356SDValue
7357X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7358  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7359  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7360  return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7361}
7362
7363static SDValue
7364GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7365           SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7366           unsigned char OperandFlags, bool LocalDynamic = false) {
7367  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7368  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7369  DebugLoc dl = GA->getDebugLoc();
7370  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7371                                           GA->getValueType(0),
7372                                           GA->getOffset(),
7373                                           OperandFlags);
7374
7375  X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
7376                                           : X86ISD::TLSADDR;
7377
7378  if (InFlag) {
7379    SDValue Ops[] = { Chain,  TGA, *InFlag };
7380    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 3);
7381  } else {
7382    SDValue Ops[]  = { Chain, TGA };
7383    Chain = DAG.getNode(CallType, dl, NodeTys, Ops, 2);
7384  }
7385
7386  // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7387  MFI->setAdjustsStack(true);
7388
7389  SDValue Flag = Chain.getValue(1);
7390  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7391}
7392
7393// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7394static SDValue
7395LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7396                                const EVT PtrVT) {
7397  SDValue InFlag;
7398  DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7399  SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7400                                     DAG.getNode(X86ISD::GlobalBaseReg,
7401                                                 DebugLoc(), PtrVT), InFlag);
7402  InFlag = Chain.getValue(1);
7403
7404  return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7405}
7406
7407// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7408static SDValue
7409LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7410                                const EVT PtrVT) {
7411  return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7412                    X86::RAX, X86II::MO_TLSGD);
7413}
7414
7415static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
7416                                           SelectionDAG &DAG,
7417                                           const EVT PtrVT,
7418                                           bool is64Bit) {
7419  DebugLoc dl = GA->getDebugLoc();
7420
7421  // Get the start address of the TLS block for this module.
7422  X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
7423      .getInfo<X86MachineFunctionInfo>();
7424  MFI->incNumLocalDynamicTLSAccesses();
7425
7426  SDValue Base;
7427  if (is64Bit) {
7428    Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, X86::RAX,
7429                      X86II::MO_TLSLD, /*LocalDynamic=*/true);
7430  } else {
7431    SDValue InFlag;
7432    SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7433        DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT), InFlag);
7434    InFlag = Chain.getValue(1);
7435    Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
7436                      X86II::MO_TLSLDM, /*LocalDynamic=*/true);
7437  }
7438
7439  // Note: the CleanupLocalDynamicTLSPass will remove redundant computations
7440  // of Base.
7441
7442  // Build x@dtpoff.
7443  unsigned char OperandFlags = X86II::MO_DTPOFF;
7444  unsigned WrapperKind = X86ISD::Wrapper;
7445  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7446                                           GA->getValueType(0),
7447                                           GA->getOffset(), OperandFlags);
7448  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7449
7450  // Add x@dtpoff with the base.
7451  return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
7452}
7453
7454// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
7455static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7456                                   const EVT PtrVT, TLSModel::Model model,
7457                                   bool is64Bit, bool isPIC) {
7458  DebugLoc dl = GA->getDebugLoc();
7459
7460  // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7461  Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7462                                                         is64Bit ? 257 : 256));
7463
7464  SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7465                                      DAG.getIntPtrConstant(0),
7466                                      MachinePointerInfo(Ptr),
7467                                      false, false, false, 0);
7468
7469  unsigned char OperandFlags = 0;
7470  // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7471  // initialexec.
7472  unsigned WrapperKind = X86ISD::Wrapper;
7473  if (model == TLSModel::LocalExec) {
7474    OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7475  } else if (model == TLSModel::InitialExec) {
7476    if (is64Bit) {
7477      OperandFlags = X86II::MO_GOTTPOFF;
7478      WrapperKind = X86ISD::WrapperRIP;
7479    } else {
7480      OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
7481    }
7482  } else {
7483    llvm_unreachable("Unexpected model");
7484  }
7485
7486  // emit "addl x@ntpoff,%eax" (local exec)
7487  // or "addl x@indntpoff,%eax" (initial exec)
7488  // or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
7489  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7490                                           GA->getValueType(0),
7491                                           GA->getOffset(), OperandFlags);
7492  SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7493
7494  if (model == TLSModel::InitialExec) {
7495    if (isPIC && !is64Bit) {
7496      Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
7497                          DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), PtrVT),
7498                           Offset);
7499    }
7500
7501    Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7502                         MachinePointerInfo::getGOT(), false, false, false,
7503                         0);
7504  }
7505
7506  // The address of the thread local variable is the add of the thread
7507  // pointer with the offset of the variable.
7508  return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7509}
7510
7511SDValue
7512X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7513
7514  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7515  const GlobalValue *GV = GA->getGlobal();
7516
7517  if (Subtarget->isTargetELF()) {
7518    TLSModel::Model model = getTargetMachine().getTLSModel(GV);
7519
7520    switch (model) {
7521      case TLSModel::GeneralDynamic:
7522        if (Subtarget->is64Bit())
7523          return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7524        return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7525      case TLSModel::LocalDynamic:
7526        return LowerToTLSLocalDynamicModel(GA, DAG, getPointerTy(),
7527                                           Subtarget->is64Bit());
7528      case TLSModel::InitialExec:
7529      case TLSModel::LocalExec:
7530        return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7531                                   Subtarget->is64Bit(),
7532                         getTargetMachine().getRelocationModel() == Reloc::PIC_);
7533    }
7534    llvm_unreachable("Unknown TLS model.");
7535  }
7536
7537  if (Subtarget->isTargetDarwin()) {
7538    // Darwin only has one model of TLS.  Lower to that.
7539    unsigned char OpFlag = 0;
7540    unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7541                           X86ISD::WrapperRIP : X86ISD::Wrapper;
7542
7543    // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7544    // global base reg.
7545    bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7546                  !Subtarget->is64Bit();
7547    if (PIC32)
7548      OpFlag = X86II::MO_TLVP_PIC_BASE;
7549    else
7550      OpFlag = X86II::MO_TLVP;
7551    DebugLoc DL = Op.getDebugLoc();
7552    SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7553                                                GA->getValueType(0),
7554                                                GA->getOffset(), OpFlag);
7555    SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7556
7557    // With PIC32, the address is actually $g + Offset.
7558    if (PIC32)
7559      Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7560                           DAG.getNode(X86ISD::GlobalBaseReg,
7561                                       DebugLoc(), getPointerTy()),
7562                           Offset);
7563
7564    // Lowering the machine isd will make sure everything is in the right
7565    // location.
7566    SDValue Chain = DAG.getEntryNode();
7567    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7568    SDValue Args[] = { Chain, Offset };
7569    Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7570
7571    // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7572    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7573    MFI->setAdjustsStack(true);
7574
7575    // And our return value (tls address) is in the standard call return value
7576    // location.
7577    unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7578    return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7579                              Chain.getValue(1));
7580  }
7581
7582  if (Subtarget->isTargetWindows()) {
7583    // Just use the implicit TLS architecture
7584    // Need to generate someting similar to:
7585    //   mov     rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
7586    //                                  ; from TEB
7587    //   mov     ecx, dword [rel _tls_index]: Load index (from C runtime)
7588    //   mov     rcx, qword [rdx+rcx*8]
7589    //   mov     eax, .tls$:tlsvar
7590    //   [rax+rcx] contains the address
7591    // Windows 64bit: gs:0x58
7592    // Windows 32bit: fs:__tls_array
7593
7594    // If GV is an alias then use the aliasee for determining
7595    // thread-localness.
7596    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7597      GV = GA->resolveAliasedGlobal(false);
7598    DebugLoc dl = GA->getDebugLoc();
7599    SDValue Chain = DAG.getEntryNode();
7600
7601    // Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
7602    // %gs:0x58 (64-bit).
7603    Value *Ptr = Constant::getNullValue(Subtarget->is64Bit()
7604                                        ? Type::getInt8PtrTy(*DAG.getContext(),
7605                                                             256)
7606                                        : Type::getInt32PtrTy(*DAG.getContext(),
7607                                                              257));
7608
7609    SDValue ThreadPointer = DAG.getLoad(getPointerTy(), dl, Chain,
7610                                        Subtarget->is64Bit()
7611                                        ? DAG.getIntPtrConstant(0x58)
7612                                        : DAG.getExternalSymbol("_tls_array",
7613                                                                getPointerTy()),
7614                                        MachinePointerInfo(Ptr),
7615                                        false, false, false, 0);
7616
7617    // Load the _tls_index variable
7618    SDValue IDX = DAG.getExternalSymbol("_tls_index", getPointerTy());
7619    if (Subtarget->is64Bit())
7620      IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, getPointerTy(), Chain,
7621                           IDX, MachinePointerInfo(), MVT::i32,
7622                           false, false, 0);
7623    else
7624      IDX = DAG.getLoad(getPointerTy(), dl, Chain, IDX, MachinePointerInfo(),
7625                        false, false, false, 0);
7626
7627    SDValue Scale = DAG.getConstant(Log2_64_Ceil(TD->getPointerSize()),
7628                                    getPointerTy());
7629    IDX = DAG.getNode(ISD::SHL, dl, getPointerTy(), IDX, Scale);
7630
7631    SDValue res = DAG.getNode(ISD::ADD, dl, getPointerTy(), ThreadPointer, IDX);
7632    res = DAG.getLoad(getPointerTy(), dl, Chain, res, MachinePointerInfo(),
7633                      false, false, false, 0);
7634
7635    // Get the offset of start of .tls section
7636    SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7637                                             GA->getValueType(0),
7638                                             GA->getOffset(), X86II::MO_SECREL);
7639    SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), TGA);
7640
7641    // The address of the thread local variable is the add of the thread
7642    // pointer with the offset of the variable.
7643    return DAG.getNode(ISD::ADD, dl, getPointerTy(), res, Offset);
7644  }
7645
7646  llvm_unreachable("TLS not implemented for this target.");
7647}
7648
7649
7650/// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values
7651/// and take a 2 x i32 value to shift plus a shift amount.
7652SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const{
7653  assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7654  EVT VT = Op.getValueType();
7655  unsigned VTBits = VT.getSizeInBits();
7656  DebugLoc dl = Op.getDebugLoc();
7657  bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7658  SDValue ShOpLo = Op.getOperand(0);
7659  SDValue ShOpHi = Op.getOperand(1);
7660  SDValue ShAmt  = Op.getOperand(2);
7661  SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7662                                     DAG.getConstant(VTBits - 1, MVT::i8))
7663                       : DAG.getConstant(0, VT);
7664
7665  SDValue Tmp2, Tmp3;
7666  if (Op.getOpcode() == ISD::SHL_PARTS) {
7667    Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7668    Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7669  } else {
7670    Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7671    Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7672  }
7673
7674  SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7675                                DAG.getConstant(VTBits, MVT::i8));
7676  SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7677                             AndNode, DAG.getConstant(0, MVT::i8));
7678
7679  SDValue Hi, Lo;
7680  SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7681  SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7682  SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7683
7684  if (Op.getOpcode() == ISD::SHL_PARTS) {
7685    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7686    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7687  } else {
7688    Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7689    Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7690  }
7691
7692  SDValue Ops[2] = { Lo, Hi };
7693  return DAG.getMergeValues(Ops, 2, dl);
7694}
7695
7696SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7697                                           SelectionDAG &DAG) const {
7698  EVT SrcVT = Op.getOperand(0).getValueType();
7699
7700  if (SrcVT.isVector())
7701    return SDValue();
7702
7703  assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7704         "Unknown SINT_TO_FP to lower!");
7705
7706  // These are really Legal; return the operand so the caller accepts it as
7707  // Legal.
7708  if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7709    return Op;
7710  if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7711      Subtarget->is64Bit()) {
7712    return Op;
7713  }
7714
7715  DebugLoc dl = Op.getDebugLoc();
7716  unsigned Size = SrcVT.getSizeInBits()/8;
7717  MachineFunction &MF = DAG.getMachineFunction();
7718  int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7719  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7720  SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7721                               StackSlot,
7722                               MachinePointerInfo::getFixedStack(SSFI),
7723                               false, false, 0);
7724  return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7725}
7726
7727SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7728                                     SDValue StackSlot,
7729                                     SelectionDAG &DAG) const {
7730  // Build the FILD
7731  DebugLoc DL = Op.getDebugLoc();
7732  SDVTList Tys;
7733  bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7734  if (useSSE)
7735    Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7736  else
7737    Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7738
7739  unsigned ByteSize = SrcVT.getSizeInBits()/8;
7740
7741  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7742  MachineMemOperand *MMO;
7743  if (FI) {
7744    int SSFI = FI->getIndex();
7745    MMO =
7746      DAG.getMachineFunction()
7747      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7748                            MachineMemOperand::MOLoad, ByteSize, ByteSize);
7749  } else {
7750    MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7751    StackSlot = StackSlot.getOperand(1);
7752  }
7753  SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7754  SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7755                                           X86ISD::FILD, DL,
7756                                           Tys, Ops, array_lengthof(Ops),
7757                                           SrcVT, MMO);
7758
7759  if (useSSE) {
7760    Chain = Result.getValue(1);
7761    SDValue InFlag = Result.getValue(2);
7762
7763    // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7764    // shouldn't be necessary except that RFP cannot be live across
7765    // multiple blocks. When stackifier is fixed, they can be uncoupled.
7766    MachineFunction &MF = DAG.getMachineFunction();
7767    unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7768    int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7769    SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7770    Tys = DAG.getVTList(MVT::Other);
7771    SDValue Ops[] = {
7772      Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7773    };
7774    MachineMemOperand *MMO =
7775      DAG.getMachineFunction()
7776      .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7777                            MachineMemOperand::MOStore, SSFISize, SSFISize);
7778
7779    Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7780                                    Ops, array_lengthof(Ops),
7781                                    Op.getValueType(), MMO);
7782    Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7783                         MachinePointerInfo::getFixedStack(SSFI),
7784                         false, false, false, 0);
7785  }
7786
7787  return Result;
7788}
7789
7790// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
7791SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7792                                               SelectionDAG &DAG) const {
7793  // This algorithm is not obvious. Here it is what we're trying to output:
7794  /*
7795     movq       %rax,  %xmm0
7796     punpckldq  (c0),  %xmm0  // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
7797     subpd      (c1),  %xmm0  // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
7798     #ifdef __SSE3__
7799       haddpd   %xmm0, %xmm0
7800     #else
7801       pshufd   $0x4e, %xmm0, %xmm1
7802       addpd    %xmm1, %xmm0
7803     #endif
7804  */
7805
7806  DebugLoc dl = Op.getDebugLoc();
7807  LLVMContext *Context = DAG.getContext();
7808
7809  // Build some magic constants.
7810  const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
7811  Constant *C0 = ConstantDataVector::get(*Context, CV0);
7812  SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7813
7814  SmallVector<Constant*,2> CV1;
7815  CV1.push_back(
7816        ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7817  CV1.push_back(
7818        ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7819  Constant *C1 = ConstantVector::get(CV1);
7820  SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7821
7822  // Load the 64-bit value into an XMM register.
7823  SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
7824                            Op.getOperand(0));
7825  SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7826                              MachinePointerInfo::getConstantPool(),
7827                              false, false, false, 16);
7828  SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32,
7829                              DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, XR1),
7830                              CLod0);
7831
7832  SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7833                              MachinePointerInfo::getConstantPool(),
7834                              false, false, false, 16);
7835  SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck1);
7836  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7837  SDValue Result;
7838
7839  if (Subtarget->hasSSE3()) {
7840    // FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
7841    Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
7842  } else {
7843    SDValue S2F = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Sub);
7844    SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
7845                                           S2F, 0x4E, DAG);
7846    Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
7847                         DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Shuffle),
7848                         Sub);
7849  }
7850
7851  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
7852                     DAG.getIntPtrConstant(0));
7853}
7854
7855// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
7856SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7857                                               SelectionDAG &DAG) const {
7858  DebugLoc dl = Op.getDebugLoc();
7859  // FP constant to bias correct the final result.
7860  SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7861                                   MVT::f64);
7862
7863  // Load the 32-bit value into an XMM register.
7864  SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7865                             Op.getOperand(0));
7866
7867  // Zero out the upper parts of the register.
7868  Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
7869
7870  Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7871                     DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7872                     DAG.getIntPtrConstant(0));
7873
7874  // Or the load with the bias.
7875  SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7876                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7877                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7878                                                   MVT::v2f64, Load)),
7879                           DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7880                                       DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7881                                                   MVT::v2f64, Bias)));
7882  Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7883                   DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7884                   DAG.getIntPtrConstant(0));
7885
7886  // Subtract the bias.
7887  SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7888
7889  // Handle final rounding.
7890  EVT DestVT = Op.getValueType();
7891
7892  if (DestVT.bitsLT(MVT::f64))
7893    return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7894                       DAG.getIntPtrConstant(0));
7895  if (DestVT.bitsGT(MVT::f64))
7896    return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7897
7898  // Handle final rounding.
7899  return Sub;
7900}
7901
7902SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7903                                           SelectionDAG &DAG) const {
7904  SDValue N0 = Op.getOperand(0);
7905  DebugLoc dl = Op.getDebugLoc();
7906
7907  // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7908  // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7909  // the optimization here.
7910  if (DAG.SignBitIsZero(N0))
7911    return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7912
7913  EVT SrcVT = N0.getValueType();
7914  EVT DstVT = Op.getValueType();
7915  if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7916    return LowerUINT_TO_FP_i64(Op, DAG);
7917  if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7918    return LowerUINT_TO_FP_i32(Op, DAG);
7919  if (Subtarget->is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
7920    return SDValue();
7921
7922  // Make a 64-bit buffer, and use it to build an FILD.
7923  SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7924  if (SrcVT == MVT::i32) {
7925    SDValue WordOff = DAG.getConstant(4, getPointerTy());
7926    SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7927                                     getPointerTy(), StackSlot, WordOff);
7928    SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7929                                  StackSlot, MachinePointerInfo(),
7930                                  false, false, 0);
7931    SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7932                                  OffsetSlot, MachinePointerInfo(),
7933                                  false, false, 0);
7934    SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7935    return Fild;
7936  }
7937
7938  assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7939  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7940                               StackSlot, MachinePointerInfo(),
7941                               false, false, 0);
7942  // For i64 source, we need to add the appropriate power of 2 if the input
7943  // was negative.  This is the same as the optimization in
7944  // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7945  // we must be careful to do the computation in x87 extended precision, not
7946  // in SSE. (The generic code can't know it's OK to do this, or how to.)
7947  int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7948  MachineMemOperand *MMO =
7949    DAG.getMachineFunction()
7950    .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7951                          MachineMemOperand::MOLoad, 8, 8);
7952
7953  SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7954  SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7955  SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7956                                         MVT::i64, MMO);
7957
7958  APInt FF(32, 0x5F800000ULL);
7959
7960  // Check whether the sign bit is set.
7961  SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7962                                 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7963                                 ISD::SETLT);
7964
7965  // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7966  SDValue FudgePtr = DAG.getConstantPool(
7967                             ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7968                                         getPointerTy());
7969
7970  // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7971  SDValue Zero = DAG.getIntPtrConstant(0);
7972  SDValue Four = DAG.getIntPtrConstant(4);
7973  SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7974                               Zero, Four);
7975  FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7976
7977  // Load the value out, extending it from f32 to f80.
7978  // FIXME: Avoid the extend by constructing the right constant pool?
7979  SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7980                                 FudgePtr, MachinePointerInfo::getConstantPool(),
7981                                 MVT::f32, false, false, 4);
7982  // Extend everything to 80 bits to force it to be done on x87.
7983  SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7984  return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7985}
7986
7987std::pair<SDValue,SDValue> X86TargetLowering::
7988FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned, bool IsReplace) const {
7989  DebugLoc DL = Op.getDebugLoc();
7990
7991  EVT DstTy = Op.getValueType();
7992
7993  if (!IsSigned && !isIntegerTypeFTOL(DstTy)) {
7994    assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7995    DstTy = MVT::i64;
7996  }
7997
7998  assert(DstTy.getSimpleVT() <= MVT::i64 &&
7999         DstTy.getSimpleVT() >= MVT::i16 &&
8000         "Unknown FP_TO_INT to lower!");
8001
8002  // These are really Legal.
8003  if (DstTy == MVT::i32 &&
8004      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8005    return std::make_pair(SDValue(), SDValue());
8006  if (Subtarget->is64Bit() &&
8007      DstTy == MVT::i64 &&
8008      isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
8009    return std::make_pair(SDValue(), SDValue());
8010
8011  // We lower FP->int64 either into FISTP64 followed by a load from a temporary
8012  // stack slot, or into the FTOL runtime function.
8013  MachineFunction &MF = DAG.getMachineFunction();
8014  unsigned MemSize = DstTy.getSizeInBits()/8;
8015  int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8016  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8017
8018  unsigned Opc;
8019  if (!IsSigned && isIntegerTypeFTOL(DstTy))
8020    Opc = X86ISD::WIN_FTOL;
8021  else
8022    switch (DstTy.getSimpleVT().SimpleTy) {
8023    default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
8024    case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
8025    case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
8026    case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
8027    }
8028
8029  SDValue Chain = DAG.getEntryNode();
8030  SDValue Value = Op.getOperand(0);
8031  EVT TheVT = Op.getOperand(0).getValueType();
8032  // FIXME This causes a redundant load/store if the SSE-class value is already
8033  // in memory, such as if it is on the callstack.
8034  if (isScalarFPTypeInSSEReg(TheVT)) {
8035    assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
8036    Chain = DAG.getStore(Chain, DL, Value, StackSlot,
8037                         MachinePointerInfo::getFixedStack(SSFI),
8038                         false, false, 0);
8039    SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
8040    SDValue Ops[] = {
8041      Chain, StackSlot, DAG.getValueType(TheVT)
8042    };
8043
8044    MachineMemOperand *MMO =
8045      MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8046                              MachineMemOperand::MOLoad, MemSize, MemSize);
8047    Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
8048                                    DstTy, MMO);
8049    Chain = Value.getValue(1);
8050    SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
8051    StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
8052  }
8053
8054  MachineMemOperand *MMO =
8055    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
8056                            MachineMemOperand::MOStore, MemSize, MemSize);
8057
8058  if (Opc != X86ISD::WIN_FTOL) {
8059    // Build the FP_TO_INT*_IN_MEM
8060    SDValue Ops[] = { Chain, Value, StackSlot };
8061    SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
8062                                           Ops, 3, DstTy, MMO);
8063    return std::make_pair(FIST, StackSlot);
8064  } else {
8065    SDValue ftol = DAG.getNode(X86ISD::WIN_FTOL, DL,
8066      DAG.getVTList(MVT::Other, MVT::Glue),
8067      Chain, Value);
8068    SDValue eax = DAG.getCopyFromReg(ftol, DL, X86::EAX,
8069      MVT::i32, ftol.getValue(1));
8070    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), DL, X86::EDX,
8071      MVT::i32, eax.getValue(2));
8072    SDValue Ops[] = { eax, edx };
8073    SDValue pair = IsReplace
8074      ? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops, 2)
8075      : DAG.getMergeValues(Ops, 2, DL);
8076    return std::make_pair(pair, SDValue());
8077  }
8078}
8079
8080SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
8081                                           SelectionDAG &DAG) const {
8082  if (Op.getValueType().isVector())
8083    return SDValue();
8084
8085  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8086    /*IsSigned=*/ true, /*IsReplace=*/ false);
8087  SDValue FIST = Vals.first, StackSlot = Vals.second;
8088  // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
8089  if (FIST.getNode() == 0) return Op;
8090
8091  if (StackSlot.getNode())
8092    // Load the result.
8093    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8094                       FIST, StackSlot, MachinePointerInfo(),
8095                       false, false, false, 0);
8096
8097  // The node is the result.
8098  return FIST;
8099}
8100
8101SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
8102                                           SelectionDAG &DAG) const {
8103  std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
8104    /*IsSigned=*/ false, /*IsReplace=*/ false);
8105  SDValue FIST = Vals.first, StackSlot = Vals.second;
8106  assert(FIST.getNode() && "Unexpected failure");
8107
8108  if (StackSlot.getNode())
8109    // Load the result.
8110    return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
8111                       FIST, StackSlot, MachinePointerInfo(),
8112                       false, false, false, 0);
8113
8114  // The node is the result.
8115  return FIST;
8116}
8117
8118SDValue X86TargetLowering::LowerFABS(SDValue Op,
8119                                     SelectionDAG &DAG) const {
8120  LLVMContext *Context = DAG.getContext();
8121  DebugLoc dl = Op.getDebugLoc();
8122  EVT VT = Op.getValueType();
8123  EVT EltVT = VT;
8124  if (VT.isVector())
8125    EltVT = VT.getVectorElementType();
8126  Constant *C;
8127  if (EltVT == MVT::f64) {
8128    C = ConstantVector::getSplat(2,
8129                ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8130  } else {
8131    C = ConstantVector::getSplat(4,
8132               ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8133  }
8134  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8135  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8136                             MachinePointerInfo::getConstantPool(),
8137                             false, false, false, 16);
8138  return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8139}
8140
8141SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8142  LLVMContext *Context = DAG.getContext();
8143  DebugLoc dl = Op.getDebugLoc();
8144  EVT VT = Op.getValueType();
8145  EVT EltVT = VT;
8146  unsigned NumElts = VT == MVT::f64 ? 2 : 4;
8147  if (VT.isVector()) {
8148    EltVT = VT.getVectorElementType();
8149    NumElts = VT.getVectorNumElements();
8150  }
8151  Constant *C;
8152  if (EltVT == MVT::f64)
8153    C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8154  else
8155    C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8156  C = ConstantVector::getSplat(NumElts, C);
8157  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8158  SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8159                             MachinePointerInfo::getConstantPool(),
8160                             false, false, false, 16);
8161  if (VT.isVector()) {
8162    MVT XORVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
8163    return DAG.getNode(ISD::BITCAST, dl, VT,
8164                       DAG.getNode(ISD::XOR, dl, XORVT,
8165                                   DAG.getNode(ISD::BITCAST, dl, XORVT,
8166                                               Op.getOperand(0)),
8167                                   DAG.getNode(ISD::BITCAST, dl, XORVT, Mask)));
8168  }
8169
8170  return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8171}
8172
8173SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8174  LLVMContext *Context = DAG.getContext();
8175  SDValue Op0 = Op.getOperand(0);
8176  SDValue Op1 = Op.getOperand(1);
8177  DebugLoc dl = Op.getDebugLoc();
8178  EVT VT = Op.getValueType();
8179  EVT SrcVT = Op1.getValueType();
8180
8181  // If second operand is smaller, extend it first.
8182  if (SrcVT.bitsLT(VT)) {
8183    Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8184    SrcVT = VT;
8185  }
8186  // And if it is bigger, shrink it first.
8187  if (SrcVT.bitsGT(VT)) {
8188    Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8189    SrcVT = VT;
8190  }
8191
8192  // At this point the operands and the result should have the same
8193  // type, and that won't be f80 since that is not custom lowered.
8194
8195  // First get the sign bit of second operand.
8196  SmallVector<Constant*,4> CV;
8197  if (SrcVT == MVT::f64) {
8198    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8199    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8200  } else {
8201    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8202    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8203    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8204    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8205  }
8206  Constant *C = ConstantVector::get(CV);
8207  SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8208  SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8209                              MachinePointerInfo::getConstantPool(),
8210                              false, false, false, 16);
8211  SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8212
8213  // Shift sign bit right or left if the two operands have different types.
8214  if (SrcVT.bitsGT(VT)) {
8215    // Op0 is MVT::f32, Op1 is MVT::f64.
8216    SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8217    SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8218                          DAG.getConstant(32, MVT::i32));
8219    SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8220    SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8221                          DAG.getIntPtrConstant(0));
8222  }
8223
8224  // Clear first operand sign bit.
8225  CV.clear();
8226  if (VT == MVT::f64) {
8227    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8228    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8229  } else {
8230    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8231    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8232    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8233    CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8234  }
8235  C = ConstantVector::get(CV);
8236  CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8237  SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8238                              MachinePointerInfo::getConstantPool(),
8239                              false, false, false, 16);
8240  SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8241
8242  // Or the value with the sign bit.
8243  return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8244}
8245
8246SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8247  SDValue N0 = Op.getOperand(0);
8248  DebugLoc dl = Op.getDebugLoc();
8249  EVT VT = Op.getValueType();
8250
8251  // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8252  SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8253                                  DAG.getConstant(1, VT));
8254  return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8255}
8256
8257/// Emit nodes that will be selected as "test Op0,Op0", or something
8258/// equivalent.
8259SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8260                                    SelectionDAG &DAG) const {
8261  DebugLoc dl = Op.getDebugLoc();
8262
8263  // CF and OF aren't always set the way we want. Determine which
8264  // of these we need.
8265  bool NeedCF = false;
8266  bool NeedOF = false;
8267  switch (X86CC) {
8268  default: break;
8269  case X86::COND_A: case X86::COND_AE:
8270  case X86::COND_B: case X86::COND_BE:
8271    NeedCF = true;
8272    break;
8273  case X86::COND_G: case X86::COND_GE:
8274  case X86::COND_L: case X86::COND_LE:
8275  case X86::COND_O: case X86::COND_NO:
8276    NeedOF = true;
8277    break;
8278  }
8279
8280  // See if we can use the EFLAGS value from the operand instead of
8281  // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8282  // we prove that the arithmetic won't overflow, we can't use OF or CF.
8283  if (Op.getResNo() != 0 || NeedOF || NeedCF)
8284    // Emit a CMP with 0, which is the TEST pattern.
8285    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8286                       DAG.getConstant(0, Op.getValueType()));
8287
8288  unsigned Opcode = 0;
8289  unsigned NumOperands = 0;
8290
8291  // Truncate operations may prevent the merge of the SETCC instruction
8292  // and the arithmetic intruction before it. Attempt to truncate the operands
8293  // of the arithmetic instruction and use a reduced bit-width instruction.
8294  bool NeedTruncation = false;
8295  SDValue ArithOp = Op;
8296  if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
8297    SDValue Arith = Op->getOperand(0);
8298    // Both the trunc and the arithmetic op need to have one user each.
8299    if (Arith->hasOneUse())
8300      switch (Arith.getOpcode()) {
8301        default: break;
8302        case ISD::ADD:
8303        case ISD::SUB:
8304        case ISD::AND:
8305        case ISD::OR:
8306        case ISD::XOR: {
8307          NeedTruncation = true;
8308          ArithOp = Arith;
8309        }
8310      }
8311  }
8312
8313  // NOTICE: In the code below we use ArithOp to hold the arithmetic operation
8314  // which may be the result of a CAST.  We use the variable 'Op', which is the
8315  // non-casted variable when we check for possible users.
8316  switch (ArithOp.getOpcode()) {
8317  case ISD::ADD:
8318    // Due to an isel shortcoming, be conservative if this add is likely to be
8319    // selected as part of a load-modify-store instruction. When the root node
8320    // in a match is a store, isel doesn't know how to remap non-chain non-flag
8321    // uses of other nodes in the match, such as the ADD in this case. This
8322    // leads to the ADD being left around and reselected, with the result being
8323    // two adds in the output.  Alas, even if none our users are stores, that
8324    // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8325    // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8326    // climbing the DAG back to the root, and it doesn't seem to be worth the
8327    // effort.
8328    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8329         UE = Op.getNode()->use_end(); UI != UE; ++UI)
8330      if (UI->getOpcode() != ISD::CopyToReg &&
8331          UI->getOpcode() != ISD::SETCC &&
8332          UI->getOpcode() != ISD::STORE)
8333        goto default_case;
8334
8335    if (ConstantSDNode *C =
8336        dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
8337      // An add of one will be selected as an INC.
8338      if (C->getAPIntValue() == 1) {
8339        Opcode = X86ISD::INC;
8340        NumOperands = 1;
8341        break;
8342      }
8343
8344      // An add of negative one (subtract of one) will be selected as a DEC.
8345      if (C->getAPIntValue().isAllOnesValue()) {
8346        Opcode = X86ISD::DEC;
8347        NumOperands = 1;
8348        break;
8349      }
8350    }
8351
8352    // Otherwise use a regular EFLAGS-setting add.
8353    Opcode = X86ISD::ADD;
8354    NumOperands = 2;
8355    break;
8356  case ISD::AND: {
8357    // If the primary and result isn't used, don't bother using X86ISD::AND,
8358    // because a TEST instruction will be better.
8359    bool NonFlagUse = false;
8360    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8361           UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8362      SDNode *User = *UI;
8363      unsigned UOpNo = UI.getOperandNo();
8364      if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8365        // Look pass truncate.
8366        UOpNo = User->use_begin().getOperandNo();
8367        User = *User->use_begin();
8368      }
8369
8370      if (User->getOpcode() != ISD::BRCOND &&
8371          User->getOpcode() != ISD::SETCC &&
8372          !(User->getOpcode() == ISD::SELECT && UOpNo == 0)) {
8373        NonFlagUse = true;
8374        break;
8375      }
8376    }
8377
8378    if (!NonFlagUse)
8379      break;
8380  }
8381    // FALL THROUGH
8382  case ISD::SUB:
8383  case ISD::OR:
8384  case ISD::XOR:
8385    // Due to the ISEL shortcoming noted above, be conservative if this op is
8386    // likely to be selected as part of a load-modify-store instruction.
8387    for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8388           UE = Op.getNode()->use_end(); UI != UE; ++UI)
8389      if (UI->getOpcode() == ISD::STORE)
8390        goto default_case;
8391
8392    // Otherwise use a regular EFLAGS-setting instruction.
8393    switch (ArithOp.getOpcode()) {
8394    default: llvm_unreachable("unexpected operator!");
8395    case ISD::SUB: Opcode = X86ISD::SUB; break;
8396    case ISD::OR:  Opcode = X86ISD::OR;  break;
8397    case ISD::XOR: Opcode = X86ISD::XOR; break;
8398    case ISD::AND: Opcode = X86ISD::AND; break;
8399    }
8400
8401    NumOperands = 2;
8402    break;
8403  case X86ISD::ADD:
8404  case X86ISD::SUB:
8405  case X86ISD::INC:
8406  case X86ISD::DEC:
8407  case X86ISD::OR:
8408  case X86ISD::XOR:
8409  case X86ISD::AND:
8410    return SDValue(Op.getNode(), 1);
8411  default:
8412  default_case:
8413    break;
8414  }
8415
8416  // If we found that truncation is beneficial, perform the truncation and
8417  // update 'Op'.
8418  if (NeedTruncation) {
8419    EVT VT = Op.getValueType();
8420    SDValue WideVal = Op->getOperand(0);
8421    EVT WideVT = WideVal.getValueType();
8422    unsigned ConvertedOp = 0;
8423    // Use a target machine opcode to prevent further DAGCombine
8424    // optimizations that may separate the arithmetic operations
8425    // from the setcc node.
8426    switch (WideVal.getOpcode()) {
8427      default: break;
8428      case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
8429      case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
8430      case ISD::AND: ConvertedOp = X86ISD::AND; break;
8431      case ISD::OR:  ConvertedOp = X86ISD::OR;  break;
8432      case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
8433    }
8434
8435    if (ConvertedOp) {
8436      const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8437      if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
8438        SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
8439        SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
8440        Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
8441      }
8442    }
8443  }
8444
8445  if (Opcode == 0)
8446    // Emit a CMP with 0, which is the TEST pattern.
8447    return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8448                       DAG.getConstant(0, Op.getValueType()));
8449
8450  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8451  SmallVector<SDValue, 4> Ops;
8452  for (unsigned i = 0; i != NumOperands; ++i)
8453    Ops.push_back(Op.getOperand(i));
8454
8455  SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8456  DAG.ReplaceAllUsesWith(Op, New);
8457  return SDValue(New.getNode(), 1);
8458}
8459
8460/// Emit nodes that will be selected as "cmp Op0,Op1", or something
8461/// equivalent.
8462SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8463                                   SelectionDAG &DAG) const {
8464  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8465    if (C->getAPIntValue() == 0)
8466      return EmitTest(Op0, X86CC, DAG);
8467
8468  DebugLoc dl = Op0.getDebugLoc();
8469  if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
8470       Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
8471    // Use SUB instead of CMP to enable CSE between SUB and CMP.
8472    SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
8473    SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
8474                              Op0, Op1);
8475    return SDValue(Sub.getNode(), 1);
8476  }
8477  return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8478}
8479
8480/// Convert a comparison if required by the subtarget.
8481SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
8482                                                 SelectionDAG &DAG) const {
8483  // If the subtarget does not support the FUCOMI instruction, floating-point
8484  // comparisons have to be converted.
8485  if (Subtarget->hasCMov() ||
8486      Cmp.getOpcode() != X86ISD::CMP ||
8487      !Cmp.getOperand(0).getValueType().isFloatingPoint() ||
8488      !Cmp.getOperand(1).getValueType().isFloatingPoint())
8489    return Cmp;
8490
8491  // The instruction selector will select an FUCOM instruction instead of
8492  // FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
8493  // build an SDNode sequence that transfers the result from FPSW into EFLAGS:
8494  // (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
8495  DebugLoc dl = Cmp.getDebugLoc();
8496  SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
8497  SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
8498  SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
8499                            DAG.getConstant(8, MVT::i8));
8500  SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
8501  return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
8502}
8503
8504/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8505/// if it's possible.
8506SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8507                                     DebugLoc dl, SelectionDAG &DAG) const {
8508  SDValue Op0 = And.getOperand(0);
8509  SDValue Op1 = And.getOperand(1);
8510  if (Op0.getOpcode() == ISD::TRUNCATE)
8511    Op0 = Op0.getOperand(0);
8512  if (Op1.getOpcode() == ISD::TRUNCATE)
8513    Op1 = Op1.getOperand(0);
8514
8515  SDValue LHS, RHS;
8516  if (Op1.getOpcode() == ISD::SHL)
8517    std::swap(Op0, Op1);
8518  if (Op0.getOpcode() == ISD::SHL) {
8519    if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8520      if (And00C->getZExtValue() == 1) {
8521        // If we looked past a truncate, check that it's only truncating away
8522        // known zeros.
8523        unsigned BitWidth = Op0.getValueSizeInBits();
8524        unsigned AndBitWidth = And.getValueSizeInBits();
8525        if (BitWidth > AndBitWidth) {
8526          APInt Zeros, Ones;
8527          DAG.ComputeMaskedBits(Op0, Zeros, Ones);
8528          if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8529            return SDValue();
8530        }
8531        LHS = Op1;
8532        RHS = Op0.getOperand(1);
8533      }
8534  } else if (Op1.getOpcode() == ISD::Constant) {
8535    ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8536    uint64_t AndRHSVal = AndRHS->getZExtValue();
8537    SDValue AndLHS = Op0;
8538
8539    if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
8540      LHS = AndLHS.getOperand(0);
8541      RHS = AndLHS.getOperand(1);
8542    }
8543
8544    // Use BT if the immediate can't be encoded in a TEST instruction.
8545    if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
8546      LHS = AndLHS;
8547      RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), LHS.getValueType());
8548    }
8549  }
8550
8551  if (LHS.getNode()) {
8552    // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8553    // instruction.  Since the shift amount is in-range-or-undefined, we know
8554    // that doing a bittest on the i32 value is ok.  We extend to i32 because
8555    // the encoding for the i16 version is larger than the i32 version.
8556    // Also promote i16 to i32 for performance / code size reason.
8557    if (LHS.getValueType() == MVT::i8 ||
8558        LHS.getValueType() == MVT::i16)
8559      LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8560
8561    // If the operand types disagree, extend the shift amount to match.  Since
8562    // BT ignores high bits (like shifts) we can use anyextend.
8563    if (LHS.getValueType() != RHS.getValueType())
8564      RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8565
8566    SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8567    unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8568    return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8569                       DAG.getConstant(Cond, MVT::i8), BT);
8570  }
8571
8572  return SDValue();
8573}
8574
8575SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8576
8577  if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8578
8579  assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8580  SDValue Op0 = Op.getOperand(0);
8581  SDValue Op1 = Op.getOperand(1);
8582  DebugLoc dl = Op.getDebugLoc();
8583  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8584
8585  // Optimize to BT if possible.
8586  // Lower (X & (1 << N)) == 0 to BT(X, N).
8587  // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8588  // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8589  if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8590      Op1.getOpcode() == ISD::Constant &&
8591      cast<ConstantSDNode>(Op1)->isNullValue() &&
8592      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8593    SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8594    if (NewSetCC.getNode())
8595      return NewSetCC;
8596  }
8597
8598  // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8599  // these.
8600  if (Op1.getOpcode() == ISD::Constant &&
8601      (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8602       cast<ConstantSDNode>(Op1)->isNullValue()) &&
8603      (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8604
8605    // If the input is a setcc, then reuse the input setcc or use a new one with
8606    // the inverted condition.
8607    if (Op0.getOpcode() == X86ISD::SETCC) {
8608      X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8609      bool Invert = (CC == ISD::SETNE) ^
8610        cast<ConstantSDNode>(Op1)->isNullValue();
8611      if (!Invert) return Op0;
8612
8613      CCode = X86::GetOppositeBranchCondition(CCode);
8614      return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8615                         DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8616    }
8617  }
8618
8619  bool isFP = Op1.getValueType().isFloatingPoint();
8620  unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8621  if (X86CC == X86::COND_INVALID)
8622    return SDValue();
8623
8624  SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8625  EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
8626  return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8627                     DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8628}
8629
8630// Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8631// ones, and then concatenate the result back.
8632static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8633  EVT VT = Op.getValueType();
8634
8635  assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
8636         "Unsupported value type for operation");
8637
8638  unsigned NumElems = VT.getVectorNumElements();
8639  DebugLoc dl = Op.getDebugLoc();
8640  SDValue CC = Op.getOperand(2);
8641
8642  // Extract the LHS vectors
8643  SDValue LHS = Op.getOperand(0);
8644  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
8645  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
8646
8647  // Extract the RHS vectors
8648  SDValue RHS = Op.getOperand(1);
8649  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
8650  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
8651
8652  // Issue the operation on the smaller types and concatenate the result back
8653  MVT EltVT = VT.getVectorElementType().getSimpleVT();
8654  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8655  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8656                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8657                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8658}
8659
8660
8661SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8662  SDValue Cond;
8663  SDValue Op0 = Op.getOperand(0);
8664  SDValue Op1 = Op.getOperand(1);
8665  SDValue CC = Op.getOperand(2);
8666  EVT VT = Op.getValueType();
8667  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8668  bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8669  DebugLoc dl = Op.getDebugLoc();
8670
8671  if (isFP) {
8672#ifndef NDEBUG
8673    EVT EltVT = Op0.getValueType().getVectorElementType();
8674    assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8675#endif
8676
8677    unsigned SSECC;
8678    bool Swap = false;
8679
8680    // SSE Condition code mapping:
8681    //  0 - EQ
8682    //  1 - LT
8683    //  2 - LE
8684    //  3 - UNORD
8685    //  4 - NEQ
8686    //  5 - NLT
8687    //  6 - NLE
8688    //  7 - ORD
8689    switch (SetCCOpcode) {
8690    default: llvm_unreachable("Unexpected SETCC condition");
8691    case ISD::SETOEQ:
8692    case ISD::SETEQ:  SSECC = 0; break;
8693    case ISD::SETOGT:
8694    case ISD::SETGT: Swap = true; // Fallthrough
8695    case ISD::SETLT:
8696    case ISD::SETOLT: SSECC = 1; break;
8697    case ISD::SETOGE:
8698    case ISD::SETGE: Swap = true; // Fallthrough
8699    case ISD::SETLE:
8700    case ISD::SETOLE: SSECC = 2; break;
8701    case ISD::SETUO:  SSECC = 3; break;
8702    case ISD::SETUNE:
8703    case ISD::SETNE:  SSECC = 4; break;
8704    case ISD::SETULE: Swap = true; // Fallthrough
8705    case ISD::SETUGE: SSECC = 5; break;
8706    case ISD::SETULT: Swap = true; // Fallthrough
8707    case ISD::SETUGT: SSECC = 6; break;
8708    case ISD::SETO:   SSECC = 7; break;
8709    case ISD::SETUEQ:
8710    case ISD::SETONE: SSECC = 8; break;
8711    }
8712    if (Swap)
8713      std::swap(Op0, Op1);
8714
8715    // In the two special cases we can't handle, emit two comparisons.
8716    if (SSECC == 8) {
8717      unsigned CC0, CC1;
8718      unsigned CombineOpc;
8719      if (SetCCOpcode == ISD::SETUEQ) {
8720        CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
8721      } else {
8722        assert(SetCCOpcode == ISD::SETONE);
8723        CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
8724      }
8725
8726      SDValue Cmp0 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8727                                 DAG.getConstant(CC0, MVT::i8));
8728      SDValue Cmp1 = DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8729                                 DAG.getConstant(CC1, MVT::i8));
8730      return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
8731    }
8732    // Handle all other FP comparisons here.
8733    return DAG.getNode(X86ISD::CMPP, dl, VT, Op0, Op1,
8734                       DAG.getConstant(SSECC, MVT::i8));
8735  }
8736
8737  // Break 256-bit integer vector compare into smaller ones.
8738  if (VT.is256BitVector() && !Subtarget->hasAVX2())
8739    return Lower256IntVSETCC(Op, DAG);
8740
8741  // We are handling one of the integer comparisons here.  Since SSE only has
8742  // GT and EQ comparisons for integer, swapping operands and multiple
8743  // operations may be required for some comparisons.
8744  unsigned Opc;
8745  bool Swap = false, Invert = false, FlipSigns = false;
8746
8747  switch (SetCCOpcode) {
8748  default: llvm_unreachable("Unexpected SETCC condition");
8749  case ISD::SETNE:  Invert = true;
8750  case ISD::SETEQ:  Opc = X86ISD::PCMPEQ; break;
8751  case ISD::SETLT:  Swap = true;
8752  case ISD::SETGT:  Opc = X86ISD::PCMPGT; break;
8753  case ISD::SETGE:  Swap = true;
8754  case ISD::SETLE:  Opc = X86ISD::PCMPGT; Invert = true; break;
8755  case ISD::SETULT: Swap = true;
8756  case ISD::SETUGT: Opc = X86ISD::PCMPGT; FlipSigns = true; break;
8757  case ISD::SETUGE: Swap = true;
8758  case ISD::SETULE: Opc = X86ISD::PCMPGT; FlipSigns = true; Invert = true; break;
8759  }
8760  if (Swap)
8761    std::swap(Op0, Op1);
8762
8763  // Check that the operation in question is available (most are plain SSE2,
8764  // but PCMPGTQ and PCMPEQQ have different requirements).
8765  if (VT == MVT::v2i64) {
8766    if (Opc == X86ISD::PCMPGT && !Subtarget->hasSSE42())
8767      return SDValue();
8768    if (Opc == X86ISD::PCMPEQ && !Subtarget->hasSSE41())
8769      return SDValue();
8770  }
8771
8772  // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8773  // bits of the inputs before performing those operations.
8774  if (FlipSigns) {
8775    EVT EltVT = VT.getVectorElementType();
8776    SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8777                                      EltVT);
8778    std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8779    SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8780                                    SignBits.size());
8781    Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8782    Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8783  }
8784
8785  SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8786
8787  // If the logical-not of the result is required, perform that now.
8788  if (Invert)
8789    Result = DAG.getNOT(dl, Result, VT);
8790
8791  return Result;
8792}
8793
8794// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
8795static bool isX86LogicalCmp(SDValue Op) {
8796  unsigned Opc = Op.getNode()->getOpcode();
8797  if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
8798      Opc == X86ISD::SAHF)
8799    return true;
8800  if (Op.getResNo() == 1 &&
8801      (Opc == X86ISD::ADD ||
8802       Opc == X86ISD::SUB ||
8803       Opc == X86ISD::ADC ||
8804       Opc == X86ISD::SBB ||
8805       Opc == X86ISD::SMUL ||
8806       Opc == X86ISD::UMUL ||
8807       Opc == X86ISD::INC ||
8808       Opc == X86ISD::DEC ||
8809       Opc == X86ISD::OR ||
8810       Opc == X86ISD::XOR ||
8811       Opc == X86ISD::AND))
8812    return true;
8813
8814  if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8815    return true;
8816
8817  return false;
8818}
8819
8820static bool isZero(SDValue V) {
8821  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8822  return C && C->isNullValue();
8823}
8824
8825static bool isAllOnes(SDValue V) {
8826  ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8827  return C && C->isAllOnesValue();
8828}
8829
8830static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
8831  if (V.getOpcode() != ISD::TRUNCATE)
8832    return false;
8833
8834  SDValue VOp0 = V.getOperand(0);
8835  unsigned InBits = VOp0.getValueSizeInBits();
8836  unsigned Bits = V.getValueSizeInBits();
8837  return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
8838}
8839
8840SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8841  bool addTest = true;
8842  SDValue Cond  = Op.getOperand(0);
8843  SDValue Op1 = Op.getOperand(1);
8844  SDValue Op2 = Op.getOperand(2);
8845  DebugLoc DL = Op.getDebugLoc();
8846  SDValue CC;
8847
8848  if (Cond.getOpcode() == ISD::SETCC) {
8849    SDValue NewCond = LowerSETCC(Cond, DAG);
8850    if (NewCond.getNode())
8851      Cond = NewCond;
8852  }
8853
8854  // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8855  // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8856  // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8857  // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8858  if (Cond.getOpcode() == X86ISD::SETCC &&
8859      Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8860      isZero(Cond.getOperand(1).getOperand(1))) {
8861    SDValue Cmp = Cond.getOperand(1);
8862
8863    unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8864
8865    if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8866        (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8867      SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8868
8869      SDValue CmpOp0 = Cmp.getOperand(0);
8870      // Apply further optimizations for special cases
8871      // (select (x != 0), -1, 0) -> neg & sbb
8872      // (select (x == 0), 0, -1) -> neg & sbb
8873      if (ConstantSDNode *YC = dyn_cast<ConstantSDNode>(Y))
8874        if (YC->isNullValue() &&
8875            (isAllOnes(Op1) == (CondCode == X86::COND_NE))) {
8876          SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
8877          SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
8878                                    DAG.getConstant(0, CmpOp0.getValueType()),
8879                                    CmpOp0);
8880          SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8881                                    DAG.getConstant(X86::COND_B, MVT::i8),
8882                                    SDValue(Neg.getNode(), 1));
8883          return Res;
8884        }
8885
8886      Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8887                        CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8888      Cmp = ConvertCmpIfNecessary(Cmp, DAG);
8889
8890      SDValue Res =   // Res = 0 or -1.
8891        DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8892                    DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8893
8894      if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8895        Res = DAG.getNOT(DL, Res, Res.getValueType());
8896
8897      ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8898      if (N2C == 0 || !N2C->isNullValue())
8899        Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8900      return Res;
8901    }
8902  }
8903
8904  // Look past (and (setcc_carry (cmp ...)), 1).
8905  if (Cond.getOpcode() == ISD::AND &&
8906      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8907    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8908    if (C && C->getAPIntValue() == 1)
8909      Cond = Cond.getOperand(0);
8910  }
8911
8912  // If condition flag is set by a X86ISD::CMP, then use it as the condition
8913  // setting operand in place of the X86ISD::SETCC.
8914  unsigned CondOpcode = Cond.getOpcode();
8915  if (CondOpcode == X86ISD::SETCC ||
8916      CondOpcode == X86ISD::SETCC_CARRY) {
8917    CC = Cond.getOperand(0);
8918
8919    SDValue Cmp = Cond.getOperand(1);
8920    unsigned Opc = Cmp.getOpcode();
8921    EVT VT = Op.getValueType();
8922
8923    bool IllegalFPCMov = false;
8924    if (VT.isFloatingPoint() && !VT.isVector() &&
8925        !isScalarFPTypeInSSEReg(VT))  // FPStack?
8926      IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8927
8928    if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8929        Opc == X86ISD::BT) { // FIXME
8930      Cond = Cmp;
8931      addTest = false;
8932    }
8933  } else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
8934             CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
8935             ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
8936              Cond.getOperand(0).getValueType() != MVT::i8)) {
8937    SDValue LHS = Cond.getOperand(0);
8938    SDValue RHS = Cond.getOperand(1);
8939    unsigned X86Opcode;
8940    unsigned X86Cond;
8941    SDVTList VTs;
8942    switch (CondOpcode) {
8943    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
8944    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
8945    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
8946    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
8947    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
8948    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
8949    default: llvm_unreachable("unexpected overflowing operator");
8950    }
8951    if (CondOpcode == ISD::UMULO)
8952      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
8953                          MVT::i32);
8954    else
8955      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
8956
8957    SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
8958
8959    if (CondOpcode == ISD::UMULO)
8960      Cond = X86Op.getValue(2);
8961    else
8962      Cond = X86Op.getValue(1);
8963
8964    CC = DAG.getConstant(X86Cond, MVT::i8);
8965    addTest = false;
8966  }
8967
8968  if (addTest) {
8969    // Look pass the truncate if the high bits are known zero.
8970    if (isTruncWithZeroHighBitsInput(Cond, DAG))
8971        Cond = Cond.getOperand(0);
8972
8973    // We know the result of AND is compared against zero. Try to match
8974    // it to BT.
8975    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8976      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8977      if (NewSetCC.getNode()) {
8978        CC = NewSetCC.getOperand(0);
8979        Cond = NewSetCC.getOperand(1);
8980        addTest = false;
8981      }
8982    }
8983  }
8984
8985  if (addTest) {
8986    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8987    Cond = EmitTest(Cond, X86::COND_NE, DAG);
8988  }
8989
8990  // a <  b ? -1 :  0 -> RES = ~setcc_carry
8991  // a <  b ?  0 : -1 -> RES = setcc_carry
8992  // a >= b ? -1 :  0 -> RES = setcc_carry
8993  // a >= b ?  0 : -1 -> RES = ~setcc_carry
8994  if (Cond.getOpcode() == X86ISD::SUB) {
8995    Cond = ConvertCmpIfNecessary(Cond, DAG);
8996    unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8997
8998    if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8999        (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
9000      SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
9001                                DAG.getConstant(X86::COND_B, MVT::i8), Cond);
9002      if (isAllOnes(Op1) != (CondCode == X86::COND_B))
9003        return DAG.getNOT(DL, Res, Res.getValueType());
9004      return Res;
9005    }
9006  }
9007
9008  // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
9009  // condition is true.
9010  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
9011  SDValue Ops[] = { Op2, Op1, CC, Cond };
9012  return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
9013}
9014
9015// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
9016// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
9017// from the AND / OR.
9018static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
9019  Opc = Op.getOpcode();
9020  if (Opc != ISD::OR && Opc != ISD::AND)
9021    return false;
9022  return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9023          Op.getOperand(0).hasOneUse() &&
9024          Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
9025          Op.getOperand(1).hasOneUse());
9026}
9027
9028// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
9029// 1 and that the SETCC node has a single use.
9030static bool isXor1OfSetCC(SDValue Op) {
9031  if (Op.getOpcode() != ISD::XOR)
9032    return false;
9033  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
9034  if (N1C && N1C->getAPIntValue() == 1) {
9035    return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
9036      Op.getOperand(0).hasOneUse();
9037  }
9038  return false;
9039}
9040
9041SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
9042  bool addTest = true;
9043  SDValue Chain = Op.getOperand(0);
9044  SDValue Cond  = Op.getOperand(1);
9045  SDValue Dest  = Op.getOperand(2);
9046  DebugLoc dl = Op.getDebugLoc();
9047  SDValue CC;
9048  bool Inverted = false;
9049
9050  if (Cond.getOpcode() == ISD::SETCC) {
9051    // Check for setcc([su]{add,sub,mul}o == 0).
9052    if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
9053        isa<ConstantSDNode>(Cond.getOperand(1)) &&
9054        cast<ConstantSDNode>(Cond.getOperand(1))->isNullValue() &&
9055        Cond.getOperand(0).getResNo() == 1 &&
9056        (Cond.getOperand(0).getOpcode() == ISD::SADDO ||
9057         Cond.getOperand(0).getOpcode() == ISD::UADDO ||
9058         Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
9059         Cond.getOperand(0).getOpcode() == ISD::USUBO ||
9060         Cond.getOperand(0).getOpcode() == ISD::SMULO ||
9061         Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
9062      Inverted = true;
9063      Cond = Cond.getOperand(0);
9064    } else {
9065      SDValue NewCond = LowerSETCC(Cond, DAG);
9066      if (NewCond.getNode())
9067        Cond = NewCond;
9068    }
9069  }
9070#if 0
9071  // FIXME: LowerXALUO doesn't handle these!!
9072  else if (Cond.getOpcode() == X86ISD::ADD  ||
9073           Cond.getOpcode() == X86ISD::SUB  ||
9074           Cond.getOpcode() == X86ISD::SMUL ||
9075           Cond.getOpcode() == X86ISD::UMUL)
9076    Cond = LowerXALUO(Cond, DAG);
9077#endif
9078
9079  // Look pass (and (setcc_carry (cmp ...)), 1).
9080  if (Cond.getOpcode() == ISD::AND &&
9081      Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
9082    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
9083    if (C && C->getAPIntValue() == 1)
9084      Cond = Cond.getOperand(0);
9085  }
9086
9087  // If condition flag is set by a X86ISD::CMP, then use it as the condition
9088  // setting operand in place of the X86ISD::SETCC.
9089  unsigned CondOpcode = Cond.getOpcode();
9090  if (CondOpcode == X86ISD::SETCC ||
9091      CondOpcode == X86ISD::SETCC_CARRY) {
9092    CC = Cond.getOperand(0);
9093
9094    SDValue Cmp = Cond.getOperand(1);
9095    unsigned Opc = Cmp.getOpcode();
9096    // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
9097    if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
9098      Cond = Cmp;
9099      addTest = false;
9100    } else {
9101      switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
9102      default: break;
9103      case X86::COND_O:
9104      case X86::COND_B:
9105        // These can only come from an arithmetic instruction with overflow,
9106        // e.g. SADDO, UADDO.
9107        Cond = Cond.getNode()->getOperand(1);
9108        addTest = false;
9109        break;
9110      }
9111    }
9112  }
9113  CondOpcode = Cond.getOpcode();
9114  if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
9115      CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
9116      ((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
9117       Cond.getOperand(0).getValueType() != MVT::i8)) {
9118    SDValue LHS = Cond.getOperand(0);
9119    SDValue RHS = Cond.getOperand(1);
9120    unsigned X86Opcode;
9121    unsigned X86Cond;
9122    SDVTList VTs;
9123    switch (CondOpcode) {
9124    case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
9125    case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
9126    case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
9127    case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
9128    case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
9129    case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
9130    default: llvm_unreachable("unexpected overflowing operator");
9131    }
9132    if (Inverted)
9133      X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
9134    if (CondOpcode == ISD::UMULO)
9135      VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
9136                          MVT::i32);
9137    else
9138      VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
9139
9140    SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
9141
9142    if (CondOpcode == ISD::UMULO)
9143      Cond = X86Op.getValue(2);
9144    else
9145      Cond = X86Op.getValue(1);
9146
9147    CC = DAG.getConstant(X86Cond, MVT::i8);
9148    addTest = false;
9149  } else {
9150    unsigned CondOpc;
9151    if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
9152      SDValue Cmp = Cond.getOperand(0).getOperand(1);
9153      if (CondOpc == ISD::OR) {
9154        // Also, recognize the pattern generated by an FCMP_UNE. We can emit
9155        // two branches instead of an explicit OR instruction with a
9156        // separate test.
9157        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9158            isX86LogicalCmp(Cmp)) {
9159          CC = Cond.getOperand(0).getOperand(0);
9160          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9161                              Chain, Dest, CC, Cmp);
9162          CC = Cond.getOperand(1).getOperand(0);
9163          Cond = Cmp;
9164          addTest = false;
9165        }
9166      } else { // ISD::AND
9167        // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
9168        // two branches instead of an explicit AND instruction with a
9169        // separate test. However, we only do this if this block doesn't
9170        // have a fall-through edge, because this requires an explicit
9171        // jmp when the condition is false.
9172        if (Cmp == Cond.getOperand(1).getOperand(1) &&
9173            isX86LogicalCmp(Cmp) &&
9174            Op.getNode()->hasOneUse()) {
9175          X86::CondCode CCode =
9176            (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9177          CCode = X86::GetOppositeBranchCondition(CCode);
9178          CC = DAG.getConstant(CCode, MVT::i8);
9179          SDNode *User = *Op.getNode()->use_begin();
9180          // Look for an unconditional branch following this conditional branch.
9181          // We need this because we need to reverse the successors in order
9182          // to implement FCMP_OEQ.
9183          if (User->getOpcode() == ISD::BR) {
9184            SDValue FalseBB = User->getOperand(1);
9185            SDNode *NewBR =
9186              DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9187            assert(NewBR == User);
9188            (void)NewBR;
9189            Dest = FalseBB;
9190
9191            Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9192                                Chain, Dest, CC, Cmp);
9193            X86::CondCode CCode =
9194              (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
9195            CCode = X86::GetOppositeBranchCondition(CCode);
9196            CC = DAG.getConstant(CCode, MVT::i8);
9197            Cond = Cmp;
9198            addTest = false;
9199          }
9200        }
9201      }
9202    } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
9203      // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
9204      // It should be transformed during dag combiner except when the condition
9205      // is set by a arithmetics with overflow node.
9206      X86::CondCode CCode =
9207        (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
9208      CCode = X86::GetOppositeBranchCondition(CCode);
9209      CC = DAG.getConstant(CCode, MVT::i8);
9210      Cond = Cond.getOperand(0).getOperand(1);
9211      addTest = false;
9212    } else if (Cond.getOpcode() == ISD::SETCC &&
9213               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
9214      // For FCMP_OEQ, we can emit
9215      // two branches instead of an explicit AND instruction with a
9216      // separate test. However, we only do this if this block doesn't
9217      // have a fall-through edge, because this requires an explicit
9218      // jmp when the condition is false.
9219      if (Op.getNode()->hasOneUse()) {
9220        SDNode *User = *Op.getNode()->use_begin();
9221        // Look for an unconditional branch following this conditional branch.
9222        // We need this because we need to reverse the successors in order
9223        // to implement FCMP_OEQ.
9224        if (User->getOpcode() == ISD::BR) {
9225          SDValue FalseBB = User->getOperand(1);
9226          SDNode *NewBR =
9227            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9228          assert(NewBR == User);
9229          (void)NewBR;
9230          Dest = FalseBB;
9231
9232          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9233                                    Cond.getOperand(0), Cond.getOperand(1));
9234          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9235          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9236          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9237                              Chain, Dest, CC, Cmp);
9238          CC = DAG.getConstant(X86::COND_P, MVT::i8);
9239          Cond = Cmp;
9240          addTest = false;
9241        }
9242      }
9243    } else if (Cond.getOpcode() == ISD::SETCC &&
9244               cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
9245      // For FCMP_UNE, we can emit
9246      // two branches instead of an explicit AND instruction with a
9247      // separate test. However, we only do this if this block doesn't
9248      // have a fall-through edge, because this requires an explicit
9249      // jmp when the condition is false.
9250      if (Op.getNode()->hasOneUse()) {
9251        SDNode *User = *Op.getNode()->use_begin();
9252        // Look for an unconditional branch following this conditional branch.
9253        // We need this because we need to reverse the successors in order
9254        // to implement FCMP_UNE.
9255        if (User->getOpcode() == ISD::BR) {
9256          SDValue FalseBB = User->getOperand(1);
9257          SDNode *NewBR =
9258            DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
9259          assert(NewBR == User);
9260          (void)NewBR;
9261
9262          SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
9263                                    Cond.getOperand(0), Cond.getOperand(1));
9264          Cmp = ConvertCmpIfNecessary(Cmp, DAG);
9265          CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9266          Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9267                              Chain, Dest, CC, Cmp);
9268          CC = DAG.getConstant(X86::COND_NP, MVT::i8);
9269          Cond = Cmp;
9270          addTest = false;
9271          Dest = FalseBB;
9272        }
9273      }
9274    }
9275  }
9276
9277  if (addTest) {
9278    // Look pass the truncate if the high bits are known zero.
9279    if (isTruncWithZeroHighBitsInput(Cond, DAG))
9280        Cond = Cond.getOperand(0);
9281
9282    // We know the result of AND is compared against zero. Try to match
9283    // it to BT.
9284    if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
9285      SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
9286      if (NewSetCC.getNode()) {
9287        CC = NewSetCC.getOperand(0);
9288        Cond = NewSetCC.getOperand(1);
9289        addTest = false;
9290      }
9291    }
9292  }
9293
9294  if (addTest) {
9295    CC = DAG.getConstant(X86::COND_NE, MVT::i8);
9296    Cond = EmitTest(Cond, X86::COND_NE, DAG);
9297  }
9298  Cond = ConvertCmpIfNecessary(Cond, DAG);
9299  return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
9300                     Chain, Dest, CC, Cond);
9301}
9302
9303
9304// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
9305// Calls to _alloca is needed to probe the stack when allocating more than 4k
9306// bytes in one go. Touching the stack at 4K increments is necessary to ensure
9307// that the guard pages used by the OS virtual memory manager are allocated in
9308// correct sequence.
9309SDValue
9310X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
9311                                           SelectionDAG &DAG) const {
9312  assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
9313          getTargetMachine().Options.EnableSegmentedStacks) &&
9314         "This should be used only on Windows targets or when segmented stacks "
9315         "are being used");
9316  assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
9317  DebugLoc dl = Op.getDebugLoc();
9318
9319  // Get the inputs.
9320  SDValue Chain = Op.getOperand(0);
9321  SDValue Size  = Op.getOperand(1);
9322  // FIXME: Ensure alignment here
9323
9324  bool Is64Bit = Subtarget->is64Bit();
9325  EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
9326
9327  if (getTargetMachine().Options.EnableSegmentedStacks) {
9328    MachineFunction &MF = DAG.getMachineFunction();
9329    MachineRegisterInfo &MRI = MF.getRegInfo();
9330
9331    if (Is64Bit) {
9332      // The 64 bit implementation of segmented stacks needs to clobber both r10
9333      // r11. This makes it impossible to use it along with nested parameters.
9334      const Function *F = MF.getFunction();
9335
9336      for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
9337           I != E; ++I)
9338        if (I->hasNestAttr())
9339          report_fatal_error("Cannot use segmented stacks with functions that "
9340                             "have nested arguments.");
9341    }
9342
9343    const TargetRegisterClass *AddrRegClass =
9344      getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
9345    unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
9346    Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
9347    SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
9348                                DAG.getRegister(Vreg, SPTy));
9349    SDValue Ops1[2] = { Value, Chain };
9350    return DAG.getMergeValues(Ops1, 2, dl);
9351  } else {
9352    SDValue Flag;
9353    unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
9354
9355    Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
9356    Flag = Chain.getValue(1);
9357    SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9358
9359    Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
9360    Flag = Chain.getValue(1);
9361
9362    Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
9363
9364    SDValue Ops1[2] = { Chain.getValue(0), Chain };
9365    return DAG.getMergeValues(Ops1, 2, dl);
9366  }
9367}
9368
9369SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
9370  MachineFunction &MF = DAG.getMachineFunction();
9371  X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
9372
9373  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9374  DebugLoc DL = Op.getDebugLoc();
9375
9376  if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
9377    // vastart just stores the address of the VarArgsFrameIndex slot into the
9378    // memory location argument.
9379    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9380                                   getPointerTy());
9381    return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
9382                        MachinePointerInfo(SV), false, false, 0);
9383  }
9384
9385  // __va_list_tag:
9386  //   gp_offset         (0 - 6 * 8)
9387  //   fp_offset         (48 - 48 + 8 * 16)
9388  //   overflow_arg_area (point to parameters coming in memory).
9389  //   reg_save_area
9390  SmallVector<SDValue, 8> MemOps;
9391  SDValue FIN = Op.getOperand(1);
9392  // Store gp_offset
9393  SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9394                               DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9395                                               MVT::i32),
9396                               FIN, MachinePointerInfo(SV), false, false, 0);
9397  MemOps.push_back(Store);
9398
9399  // Store fp_offset
9400  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9401                    FIN, DAG.getIntPtrConstant(4));
9402  Store = DAG.getStore(Op.getOperand(0), DL,
9403                       DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9404                                       MVT::i32),
9405                       FIN, MachinePointerInfo(SV, 4), false, false, 0);
9406  MemOps.push_back(Store);
9407
9408  // Store ptr to overflow_arg_area
9409  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9410                    FIN, DAG.getIntPtrConstant(4));
9411  SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9412                                    getPointerTy());
9413  Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9414                       MachinePointerInfo(SV, 8),
9415                       false, false, 0);
9416  MemOps.push_back(Store);
9417
9418  // Store ptr to reg_save_area.
9419  FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9420                    FIN, DAG.getIntPtrConstant(8));
9421  SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9422                                    getPointerTy());
9423  Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9424                       MachinePointerInfo(SV, 16), false, false, 0);
9425  MemOps.push_back(Store);
9426  return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9427                     &MemOps[0], MemOps.size());
9428}
9429
9430SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9431  assert(Subtarget->is64Bit() &&
9432         "LowerVAARG only handles 64-bit va_arg!");
9433  assert((Subtarget->isTargetLinux() ||
9434          Subtarget->isTargetDarwin()) &&
9435          "Unhandled target in LowerVAARG");
9436  assert(Op.getNode()->getNumOperands() == 4);
9437  SDValue Chain = Op.getOperand(0);
9438  SDValue SrcPtr = Op.getOperand(1);
9439  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9440  unsigned Align = Op.getConstantOperandVal(3);
9441  DebugLoc dl = Op.getDebugLoc();
9442
9443  EVT ArgVT = Op.getNode()->getValueType(0);
9444  Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9445  uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9446  uint8_t ArgMode;
9447
9448  // Decide which area this value should be read from.
9449  // TODO: Implement the AMD64 ABI in its entirety. This simple
9450  // selection mechanism works only for the basic types.
9451  if (ArgVT == MVT::f80) {
9452    llvm_unreachable("va_arg for f80 not yet implemented");
9453  } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9454    ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9455  } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9456    ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9457  } else {
9458    llvm_unreachable("Unhandled argument type in LowerVAARG");
9459  }
9460
9461  if (ArgMode == 2) {
9462    // Sanity Check: Make sure using fp_offset makes sense.
9463    assert(!getTargetMachine().Options.UseSoftFloat &&
9464           !(DAG.getMachineFunction()
9465                .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9466           Subtarget->hasSSE1());
9467  }
9468
9469  // Insert VAARG_64 node into the DAG
9470  // VAARG_64 returns two values: Variable Argument Address, Chain
9471  SmallVector<SDValue, 11> InstOps;
9472  InstOps.push_back(Chain);
9473  InstOps.push_back(SrcPtr);
9474  InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9475  InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9476  InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9477  SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9478  SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9479                                          VTs, &InstOps[0], InstOps.size(),
9480                                          MVT::i64,
9481                                          MachinePointerInfo(SV),
9482                                          /*Align=*/0,
9483                                          /*Volatile=*/false,
9484                                          /*ReadMem=*/true,
9485                                          /*WriteMem=*/true);
9486  Chain = VAARG.getValue(1);
9487
9488  // Load the next argument and return it
9489  return DAG.getLoad(ArgVT, dl,
9490                     Chain,
9491                     VAARG,
9492                     MachinePointerInfo(),
9493                     false, false, false, 0);
9494}
9495
9496SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9497  // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9498  assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9499  SDValue Chain = Op.getOperand(0);
9500  SDValue DstPtr = Op.getOperand(1);
9501  SDValue SrcPtr = Op.getOperand(2);
9502  const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9503  const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9504  DebugLoc DL = Op.getDebugLoc();
9505
9506  return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9507                       DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9508                       false,
9509                       MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9510}
9511
9512// getTargetVShiftNOde - Handle vector element shifts where the shift amount
9513// may or may not be a constant. Takes immediate version of shift as input.
9514static SDValue getTargetVShiftNode(unsigned Opc, DebugLoc dl, EVT VT,
9515                                   SDValue SrcOp, SDValue ShAmt,
9516                                   SelectionDAG &DAG) {
9517  assert(ShAmt.getValueType() == MVT::i32 && "ShAmt is not i32");
9518
9519  if (isa<ConstantSDNode>(ShAmt)) {
9520    // Constant may be a TargetConstant. Use a regular constant.
9521    uint32_t ShiftAmt = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9522    switch (Opc) {
9523      default: llvm_unreachable("Unknown target vector shift node");
9524      case X86ISD::VSHLI:
9525      case X86ISD::VSRLI:
9526      case X86ISD::VSRAI:
9527        return DAG.getNode(Opc, dl, VT, SrcOp,
9528                           DAG.getConstant(ShiftAmt, MVT::i32));
9529    }
9530  }
9531
9532  // Change opcode to non-immediate version
9533  switch (Opc) {
9534    default: llvm_unreachable("Unknown target vector shift node");
9535    case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
9536    case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
9537    case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
9538  }
9539
9540  // Need to build a vector containing shift amount
9541  // Shift amount is 32-bits, but SSE instructions read 64-bit, so fill with 0
9542  SDValue ShOps[4];
9543  ShOps[0] = ShAmt;
9544  ShOps[1] = DAG.getConstant(0, MVT::i32);
9545  ShOps[2] = ShOps[3] = DAG.getUNDEF(MVT::i32);
9546  ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, &ShOps[0], 4);
9547
9548  // The return type has to be a 128-bit type with the same element
9549  // type as the input type.
9550  MVT EltVT = VT.getVectorElementType().getSimpleVT();
9551  EVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
9552
9553  ShAmt = DAG.getNode(ISD::BITCAST, dl, ShVT, ShAmt);
9554  return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
9555}
9556
9557SDValue
9558X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9559  DebugLoc dl = Op.getDebugLoc();
9560  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9561  switch (IntNo) {
9562  default: return SDValue();    // Don't custom lower most intrinsics.
9563  // Comparison intrinsics.
9564  case Intrinsic::x86_sse_comieq_ss:
9565  case Intrinsic::x86_sse_comilt_ss:
9566  case Intrinsic::x86_sse_comile_ss:
9567  case Intrinsic::x86_sse_comigt_ss:
9568  case Intrinsic::x86_sse_comige_ss:
9569  case Intrinsic::x86_sse_comineq_ss:
9570  case Intrinsic::x86_sse_ucomieq_ss:
9571  case Intrinsic::x86_sse_ucomilt_ss:
9572  case Intrinsic::x86_sse_ucomile_ss:
9573  case Intrinsic::x86_sse_ucomigt_ss:
9574  case Intrinsic::x86_sse_ucomige_ss:
9575  case Intrinsic::x86_sse_ucomineq_ss:
9576  case Intrinsic::x86_sse2_comieq_sd:
9577  case Intrinsic::x86_sse2_comilt_sd:
9578  case Intrinsic::x86_sse2_comile_sd:
9579  case Intrinsic::x86_sse2_comigt_sd:
9580  case Intrinsic::x86_sse2_comige_sd:
9581  case Intrinsic::x86_sse2_comineq_sd:
9582  case Intrinsic::x86_sse2_ucomieq_sd:
9583  case Intrinsic::x86_sse2_ucomilt_sd:
9584  case Intrinsic::x86_sse2_ucomile_sd:
9585  case Intrinsic::x86_sse2_ucomigt_sd:
9586  case Intrinsic::x86_sse2_ucomige_sd:
9587  case Intrinsic::x86_sse2_ucomineq_sd: {
9588    unsigned Opc;
9589    ISD::CondCode CC;
9590    switch (IntNo) {
9591    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9592    case Intrinsic::x86_sse_comieq_ss:
9593    case Intrinsic::x86_sse2_comieq_sd:
9594      Opc = X86ISD::COMI;
9595      CC = ISD::SETEQ;
9596      break;
9597    case Intrinsic::x86_sse_comilt_ss:
9598    case Intrinsic::x86_sse2_comilt_sd:
9599      Opc = X86ISD::COMI;
9600      CC = ISD::SETLT;
9601      break;
9602    case Intrinsic::x86_sse_comile_ss:
9603    case Intrinsic::x86_sse2_comile_sd:
9604      Opc = X86ISD::COMI;
9605      CC = ISD::SETLE;
9606      break;
9607    case Intrinsic::x86_sse_comigt_ss:
9608    case Intrinsic::x86_sse2_comigt_sd:
9609      Opc = X86ISD::COMI;
9610      CC = ISD::SETGT;
9611      break;
9612    case Intrinsic::x86_sse_comige_ss:
9613    case Intrinsic::x86_sse2_comige_sd:
9614      Opc = X86ISD::COMI;
9615      CC = ISD::SETGE;
9616      break;
9617    case Intrinsic::x86_sse_comineq_ss:
9618    case Intrinsic::x86_sse2_comineq_sd:
9619      Opc = X86ISD::COMI;
9620      CC = ISD::SETNE;
9621      break;
9622    case Intrinsic::x86_sse_ucomieq_ss:
9623    case Intrinsic::x86_sse2_ucomieq_sd:
9624      Opc = X86ISD::UCOMI;
9625      CC = ISD::SETEQ;
9626      break;
9627    case Intrinsic::x86_sse_ucomilt_ss:
9628    case Intrinsic::x86_sse2_ucomilt_sd:
9629      Opc = X86ISD::UCOMI;
9630      CC = ISD::SETLT;
9631      break;
9632    case Intrinsic::x86_sse_ucomile_ss:
9633    case Intrinsic::x86_sse2_ucomile_sd:
9634      Opc = X86ISD::UCOMI;
9635      CC = ISD::SETLE;
9636      break;
9637    case Intrinsic::x86_sse_ucomigt_ss:
9638    case Intrinsic::x86_sse2_ucomigt_sd:
9639      Opc = X86ISD::UCOMI;
9640      CC = ISD::SETGT;
9641      break;
9642    case Intrinsic::x86_sse_ucomige_ss:
9643    case Intrinsic::x86_sse2_ucomige_sd:
9644      Opc = X86ISD::UCOMI;
9645      CC = ISD::SETGE;
9646      break;
9647    case Intrinsic::x86_sse_ucomineq_ss:
9648    case Intrinsic::x86_sse2_ucomineq_sd:
9649      Opc = X86ISD::UCOMI;
9650      CC = ISD::SETNE;
9651      break;
9652    }
9653
9654    SDValue LHS = Op.getOperand(1);
9655    SDValue RHS = Op.getOperand(2);
9656    unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9657    assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9658    SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9659    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9660                                DAG.getConstant(X86CC, MVT::i8), Cond);
9661    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9662  }
9663
9664  // Arithmetic intrinsics.
9665  case Intrinsic::x86_sse2_pmulu_dq:
9666  case Intrinsic::x86_avx2_pmulu_dq:
9667    return DAG.getNode(X86ISD::PMULUDQ, dl, Op.getValueType(),
9668                       Op.getOperand(1), Op.getOperand(2));
9669
9670  // SSE3/AVX horizontal add/sub intrinsics
9671  case Intrinsic::x86_sse3_hadd_ps:
9672  case Intrinsic::x86_sse3_hadd_pd:
9673  case Intrinsic::x86_avx_hadd_ps_256:
9674  case Intrinsic::x86_avx_hadd_pd_256:
9675  case Intrinsic::x86_sse3_hsub_ps:
9676  case Intrinsic::x86_sse3_hsub_pd:
9677  case Intrinsic::x86_avx_hsub_ps_256:
9678  case Intrinsic::x86_avx_hsub_pd_256:
9679  case Intrinsic::x86_ssse3_phadd_w_128:
9680  case Intrinsic::x86_ssse3_phadd_d_128:
9681  case Intrinsic::x86_avx2_phadd_w:
9682  case Intrinsic::x86_avx2_phadd_d:
9683  case Intrinsic::x86_ssse3_phsub_w_128:
9684  case Intrinsic::x86_ssse3_phsub_d_128:
9685  case Intrinsic::x86_avx2_phsub_w:
9686  case Intrinsic::x86_avx2_phsub_d: {
9687    unsigned Opcode;
9688    switch (IntNo) {
9689    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9690    case Intrinsic::x86_sse3_hadd_ps:
9691    case Intrinsic::x86_sse3_hadd_pd:
9692    case Intrinsic::x86_avx_hadd_ps_256:
9693    case Intrinsic::x86_avx_hadd_pd_256:
9694      Opcode = X86ISD::FHADD;
9695      break;
9696    case Intrinsic::x86_sse3_hsub_ps:
9697    case Intrinsic::x86_sse3_hsub_pd:
9698    case Intrinsic::x86_avx_hsub_ps_256:
9699    case Intrinsic::x86_avx_hsub_pd_256:
9700      Opcode = X86ISD::FHSUB;
9701      break;
9702    case Intrinsic::x86_ssse3_phadd_w_128:
9703    case Intrinsic::x86_ssse3_phadd_d_128:
9704    case Intrinsic::x86_avx2_phadd_w:
9705    case Intrinsic::x86_avx2_phadd_d:
9706      Opcode = X86ISD::HADD;
9707      break;
9708    case Intrinsic::x86_ssse3_phsub_w_128:
9709    case Intrinsic::x86_ssse3_phsub_d_128:
9710    case Intrinsic::x86_avx2_phsub_w:
9711    case Intrinsic::x86_avx2_phsub_d:
9712      Opcode = X86ISD::HSUB;
9713      break;
9714    }
9715    return DAG.getNode(Opcode, dl, Op.getValueType(),
9716                       Op.getOperand(1), Op.getOperand(2));
9717  }
9718
9719  // AVX2 variable shift intrinsics
9720  case Intrinsic::x86_avx2_psllv_d:
9721  case Intrinsic::x86_avx2_psllv_q:
9722  case Intrinsic::x86_avx2_psllv_d_256:
9723  case Intrinsic::x86_avx2_psllv_q_256:
9724  case Intrinsic::x86_avx2_psrlv_d:
9725  case Intrinsic::x86_avx2_psrlv_q:
9726  case Intrinsic::x86_avx2_psrlv_d_256:
9727  case Intrinsic::x86_avx2_psrlv_q_256:
9728  case Intrinsic::x86_avx2_psrav_d:
9729  case Intrinsic::x86_avx2_psrav_d_256: {
9730    unsigned Opcode;
9731    switch (IntNo) {
9732    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9733    case Intrinsic::x86_avx2_psllv_d:
9734    case Intrinsic::x86_avx2_psllv_q:
9735    case Intrinsic::x86_avx2_psllv_d_256:
9736    case Intrinsic::x86_avx2_psllv_q_256:
9737      Opcode = ISD::SHL;
9738      break;
9739    case Intrinsic::x86_avx2_psrlv_d:
9740    case Intrinsic::x86_avx2_psrlv_q:
9741    case Intrinsic::x86_avx2_psrlv_d_256:
9742    case Intrinsic::x86_avx2_psrlv_q_256:
9743      Opcode = ISD::SRL;
9744      break;
9745    case Intrinsic::x86_avx2_psrav_d:
9746    case Intrinsic::x86_avx2_psrav_d_256:
9747      Opcode = ISD::SRA;
9748      break;
9749    }
9750    return DAG.getNode(Opcode, dl, Op.getValueType(),
9751                       Op.getOperand(1), Op.getOperand(2));
9752  }
9753
9754  case Intrinsic::x86_ssse3_pshuf_b_128:
9755  case Intrinsic::x86_avx2_pshuf_b:
9756    return DAG.getNode(X86ISD::PSHUFB, dl, Op.getValueType(),
9757                       Op.getOperand(1), Op.getOperand(2));
9758
9759  case Intrinsic::x86_ssse3_psign_b_128:
9760  case Intrinsic::x86_ssse3_psign_w_128:
9761  case Intrinsic::x86_ssse3_psign_d_128:
9762  case Intrinsic::x86_avx2_psign_b:
9763  case Intrinsic::x86_avx2_psign_w:
9764  case Intrinsic::x86_avx2_psign_d:
9765    return DAG.getNode(X86ISD::PSIGN, dl, Op.getValueType(),
9766                       Op.getOperand(1), Op.getOperand(2));
9767
9768  case Intrinsic::x86_sse41_insertps:
9769    return DAG.getNode(X86ISD::INSERTPS, dl, Op.getValueType(),
9770                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9771
9772  case Intrinsic::x86_avx_vperm2f128_ps_256:
9773  case Intrinsic::x86_avx_vperm2f128_pd_256:
9774  case Intrinsic::x86_avx_vperm2f128_si_256:
9775  case Intrinsic::x86_avx2_vperm2i128:
9776    return DAG.getNode(X86ISD::VPERM2X128, dl, Op.getValueType(),
9777                       Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
9778
9779  case Intrinsic::x86_avx2_permd:
9780  case Intrinsic::x86_avx2_permps:
9781    // Operands intentionally swapped. Mask is last operand to intrinsic,
9782    // but second operand for node/intruction.
9783    return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
9784                       Op.getOperand(2), Op.getOperand(1));
9785
9786  // ptest and testp intrinsics. The intrinsic these come from are designed to
9787  // return an integer value, not just an instruction so lower it to the ptest
9788  // or testp pattern and a setcc for the result.
9789  case Intrinsic::x86_sse41_ptestz:
9790  case Intrinsic::x86_sse41_ptestc:
9791  case Intrinsic::x86_sse41_ptestnzc:
9792  case Intrinsic::x86_avx_ptestz_256:
9793  case Intrinsic::x86_avx_ptestc_256:
9794  case Intrinsic::x86_avx_ptestnzc_256:
9795  case Intrinsic::x86_avx_vtestz_ps:
9796  case Intrinsic::x86_avx_vtestc_ps:
9797  case Intrinsic::x86_avx_vtestnzc_ps:
9798  case Intrinsic::x86_avx_vtestz_pd:
9799  case Intrinsic::x86_avx_vtestc_pd:
9800  case Intrinsic::x86_avx_vtestnzc_pd:
9801  case Intrinsic::x86_avx_vtestz_ps_256:
9802  case Intrinsic::x86_avx_vtestc_ps_256:
9803  case Intrinsic::x86_avx_vtestnzc_ps_256:
9804  case Intrinsic::x86_avx_vtestz_pd_256:
9805  case Intrinsic::x86_avx_vtestc_pd_256:
9806  case Intrinsic::x86_avx_vtestnzc_pd_256: {
9807    bool IsTestPacked = false;
9808    unsigned X86CC;
9809    switch (IntNo) {
9810    default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9811    case Intrinsic::x86_avx_vtestz_ps:
9812    case Intrinsic::x86_avx_vtestz_pd:
9813    case Intrinsic::x86_avx_vtestz_ps_256:
9814    case Intrinsic::x86_avx_vtestz_pd_256:
9815      IsTestPacked = true; // Fallthrough
9816    case Intrinsic::x86_sse41_ptestz:
9817    case Intrinsic::x86_avx_ptestz_256:
9818      // ZF = 1
9819      X86CC = X86::COND_E;
9820      break;
9821    case Intrinsic::x86_avx_vtestc_ps:
9822    case Intrinsic::x86_avx_vtestc_pd:
9823    case Intrinsic::x86_avx_vtestc_ps_256:
9824    case Intrinsic::x86_avx_vtestc_pd_256:
9825      IsTestPacked = true; // Fallthrough
9826    case Intrinsic::x86_sse41_ptestc:
9827    case Intrinsic::x86_avx_ptestc_256:
9828      // CF = 1
9829      X86CC = X86::COND_B;
9830      break;
9831    case Intrinsic::x86_avx_vtestnzc_ps:
9832    case Intrinsic::x86_avx_vtestnzc_pd:
9833    case Intrinsic::x86_avx_vtestnzc_ps_256:
9834    case Intrinsic::x86_avx_vtestnzc_pd_256:
9835      IsTestPacked = true; // Fallthrough
9836    case Intrinsic::x86_sse41_ptestnzc:
9837    case Intrinsic::x86_avx_ptestnzc_256:
9838      // ZF and CF = 0
9839      X86CC = X86::COND_A;
9840      break;
9841    }
9842
9843    SDValue LHS = Op.getOperand(1);
9844    SDValue RHS = Op.getOperand(2);
9845    unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9846    SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9847    SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9848    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9849    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9850  }
9851
9852  // SSE/AVX shift intrinsics
9853  case Intrinsic::x86_sse2_psll_w:
9854  case Intrinsic::x86_sse2_psll_d:
9855  case Intrinsic::x86_sse2_psll_q:
9856  case Intrinsic::x86_avx2_psll_w:
9857  case Intrinsic::x86_avx2_psll_d:
9858  case Intrinsic::x86_avx2_psll_q:
9859  case Intrinsic::x86_sse2_psrl_w:
9860  case Intrinsic::x86_sse2_psrl_d:
9861  case Intrinsic::x86_sse2_psrl_q:
9862  case Intrinsic::x86_avx2_psrl_w:
9863  case Intrinsic::x86_avx2_psrl_d:
9864  case Intrinsic::x86_avx2_psrl_q:
9865  case Intrinsic::x86_sse2_psra_w:
9866  case Intrinsic::x86_sse2_psra_d:
9867  case Intrinsic::x86_avx2_psra_w:
9868  case Intrinsic::x86_avx2_psra_d: {
9869    unsigned Opcode;
9870    switch (IntNo) {
9871    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9872    case Intrinsic::x86_sse2_psll_w:
9873    case Intrinsic::x86_sse2_psll_d:
9874    case Intrinsic::x86_sse2_psll_q:
9875    case Intrinsic::x86_avx2_psll_w:
9876    case Intrinsic::x86_avx2_psll_d:
9877    case Intrinsic::x86_avx2_psll_q:
9878      Opcode = X86ISD::VSHL;
9879      break;
9880    case Intrinsic::x86_sse2_psrl_w:
9881    case Intrinsic::x86_sse2_psrl_d:
9882    case Intrinsic::x86_sse2_psrl_q:
9883    case Intrinsic::x86_avx2_psrl_w:
9884    case Intrinsic::x86_avx2_psrl_d:
9885    case Intrinsic::x86_avx2_psrl_q:
9886      Opcode = X86ISD::VSRL;
9887      break;
9888    case Intrinsic::x86_sse2_psra_w:
9889    case Intrinsic::x86_sse2_psra_d:
9890    case Intrinsic::x86_avx2_psra_w:
9891    case Intrinsic::x86_avx2_psra_d:
9892      Opcode = X86ISD::VSRA;
9893      break;
9894    }
9895    return DAG.getNode(Opcode, dl, Op.getValueType(),
9896                       Op.getOperand(1), Op.getOperand(2));
9897  }
9898
9899  // SSE/AVX immediate shift intrinsics
9900  case Intrinsic::x86_sse2_pslli_w:
9901  case Intrinsic::x86_sse2_pslli_d:
9902  case Intrinsic::x86_sse2_pslli_q:
9903  case Intrinsic::x86_avx2_pslli_w:
9904  case Intrinsic::x86_avx2_pslli_d:
9905  case Intrinsic::x86_avx2_pslli_q:
9906  case Intrinsic::x86_sse2_psrli_w:
9907  case Intrinsic::x86_sse2_psrli_d:
9908  case Intrinsic::x86_sse2_psrli_q:
9909  case Intrinsic::x86_avx2_psrli_w:
9910  case Intrinsic::x86_avx2_psrli_d:
9911  case Intrinsic::x86_avx2_psrli_q:
9912  case Intrinsic::x86_sse2_psrai_w:
9913  case Intrinsic::x86_sse2_psrai_d:
9914  case Intrinsic::x86_avx2_psrai_w:
9915  case Intrinsic::x86_avx2_psrai_d: {
9916    unsigned Opcode;
9917    switch (IntNo) {
9918    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9919    case Intrinsic::x86_sse2_pslli_w:
9920    case Intrinsic::x86_sse2_pslli_d:
9921    case Intrinsic::x86_sse2_pslli_q:
9922    case Intrinsic::x86_avx2_pslli_w:
9923    case Intrinsic::x86_avx2_pslli_d:
9924    case Intrinsic::x86_avx2_pslli_q:
9925      Opcode = X86ISD::VSHLI;
9926      break;
9927    case Intrinsic::x86_sse2_psrli_w:
9928    case Intrinsic::x86_sse2_psrli_d:
9929    case Intrinsic::x86_sse2_psrli_q:
9930    case Intrinsic::x86_avx2_psrli_w:
9931    case Intrinsic::x86_avx2_psrli_d:
9932    case Intrinsic::x86_avx2_psrli_q:
9933      Opcode = X86ISD::VSRLI;
9934      break;
9935    case Intrinsic::x86_sse2_psrai_w:
9936    case Intrinsic::x86_sse2_psrai_d:
9937    case Intrinsic::x86_avx2_psrai_w:
9938    case Intrinsic::x86_avx2_psrai_d:
9939      Opcode = X86ISD::VSRAI;
9940      break;
9941    }
9942    return getTargetVShiftNode(Opcode, dl, Op.getValueType(),
9943                               Op.getOperand(1), Op.getOperand(2), DAG);
9944  }
9945
9946  case Intrinsic::x86_sse42_pcmpistria128:
9947  case Intrinsic::x86_sse42_pcmpestria128:
9948  case Intrinsic::x86_sse42_pcmpistric128:
9949  case Intrinsic::x86_sse42_pcmpestric128:
9950  case Intrinsic::x86_sse42_pcmpistrio128:
9951  case Intrinsic::x86_sse42_pcmpestrio128:
9952  case Intrinsic::x86_sse42_pcmpistris128:
9953  case Intrinsic::x86_sse42_pcmpestris128:
9954  case Intrinsic::x86_sse42_pcmpistriz128:
9955  case Intrinsic::x86_sse42_pcmpestriz128: {
9956    unsigned Opcode;
9957    unsigned X86CC;
9958    switch (IntNo) {
9959    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9960    case Intrinsic::x86_sse42_pcmpistria128:
9961      Opcode = X86ISD::PCMPISTRI;
9962      X86CC = X86::COND_A;
9963      break;
9964    case Intrinsic::x86_sse42_pcmpestria128:
9965      Opcode = X86ISD::PCMPESTRI;
9966      X86CC = X86::COND_A;
9967      break;
9968    case Intrinsic::x86_sse42_pcmpistric128:
9969      Opcode = X86ISD::PCMPISTRI;
9970      X86CC = X86::COND_B;
9971      break;
9972    case Intrinsic::x86_sse42_pcmpestric128:
9973      Opcode = X86ISD::PCMPESTRI;
9974      X86CC = X86::COND_B;
9975      break;
9976    case Intrinsic::x86_sse42_pcmpistrio128:
9977      Opcode = X86ISD::PCMPISTRI;
9978      X86CC = X86::COND_O;
9979      break;
9980    case Intrinsic::x86_sse42_pcmpestrio128:
9981      Opcode = X86ISD::PCMPESTRI;
9982      X86CC = X86::COND_O;
9983      break;
9984    case Intrinsic::x86_sse42_pcmpistris128:
9985      Opcode = X86ISD::PCMPISTRI;
9986      X86CC = X86::COND_S;
9987      break;
9988    case Intrinsic::x86_sse42_pcmpestris128:
9989      Opcode = X86ISD::PCMPESTRI;
9990      X86CC = X86::COND_S;
9991      break;
9992    case Intrinsic::x86_sse42_pcmpistriz128:
9993      Opcode = X86ISD::PCMPISTRI;
9994      X86CC = X86::COND_E;
9995      break;
9996    case Intrinsic::x86_sse42_pcmpestriz128:
9997      Opcode = X86ISD::PCMPESTRI;
9998      X86CC = X86::COND_E;
9999      break;
10000    }
10001    SmallVector<SDValue, 5> NewOps;
10002    NewOps.append(Op->op_begin()+1, Op->op_end());
10003    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10004    SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10005    SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
10006                                DAG.getConstant(X86CC, MVT::i8),
10007                                SDValue(PCMP.getNode(), 1));
10008    return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
10009  }
10010
10011  case Intrinsic::x86_sse42_pcmpistri128:
10012  case Intrinsic::x86_sse42_pcmpestri128: {
10013    unsigned Opcode;
10014    if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
10015      Opcode = X86ISD::PCMPISTRI;
10016    else
10017      Opcode = X86ISD::PCMPESTRI;
10018
10019    SmallVector<SDValue, 5> NewOps;
10020    NewOps.append(Op->op_begin()+1, Op->op_end());
10021    SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
10022    return DAG.getNode(Opcode, dl, VTs, NewOps.data(), NewOps.size());
10023  }
10024  case Intrinsic::x86_fma_vfmadd_ps:
10025  case Intrinsic::x86_fma_vfmadd_pd:
10026  case Intrinsic::x86_fma_vfmsub_ps:
10027  case Intrinsic::x86_fma_vfmsub_pd:
10028  case Intrinsic::x86_fma_vfnmadd_ps:
10029  case Intrinsic::x86_fma_vfnmadd_pd:
10030  case Intrinsic::x86_fma_vfnmsub_ps:
10031  case Intrinsic::x86_fma_vfnmsub_pd:
10032  case Intrinsic::x86_fma_vfmaddsub_ps:
10033  case Intrinsic::x86_fma_vfmaddsub_pd:
10034  case Intrinsic::x86_fma_vfmsubadd_ps:
10035  case Intrinsic::x86_fma_vfmsubadd_pd:
10036  case Intrinsic::x86_fma_vfmadd_ps_256:
10037  case Intrinsic::x86_fma_vfmadd_pd_256:
10038  case Intrinsic::x86_fma_vfmsub_ps_256:
10039  case Intrinsic::x86_fma_vfmsub_pd_256:
10040  case Intrinsic::x86_fma_vfnmadd_ps_256:
10041  case Intrinsic::x86_fma_vfnmadd_pd_256:
10042  case Intrinsic::x86_fma_vfnmsub_ps_256:
10043  case Intrinsic::x86_fma_vfnmsub_pd_256:
10044  case Intrinsic::x86_fma_vfmaddsub_ps_256:
10045  case Intrinsic::x86_fma_vfmaddsub_pd_256:
10046  case Intrinsic::x86_fma_vfmsubadd_ps_256:
10047  case Intrinsic::x86_fma_vfmsubadd_pd_256: {
10048    unsigned Opc;
10049    switch (IntNo) {
10050    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
10051    case Intrinsic::x86_fma_vfmadd_ps:
10052    case Intrinsic::x86_fma_vfmadd_pd:
10053    case Intrinsic::x86_fma_vfmadd_ps_256:
10054    case Intrinsic::x86_fma_vfmadd_pd_256:
10055      Opc = X86ISD::FMADD;
10056      break;
10057    case Intrinsic::x86_fma_vfmsub_ps:
10058    case Intrinsic::x86_fma_vfmsub_pd:
10059    case Intrinsic::x86_fma_vfmsub_ps_256:
10060    case Intrinsic::x86_fma_vfmsub_pd_256:
10061      Opc = X86ISD::FMSUB;
10062      break;
10063    case Intrinsic::x86_fma_vfnmadd_ps:
10064    case Intrinsic::x86_fma_vfnmadd_pd:
10065    case Intrinsic::x86_fma_vfnmadd_ps_256:
10066    case Intrinsic::x86_fma_vfnmadd_pd_256:
10067      Opc = X86ISD::FNMADD;
10068      break;
10069    case Intrinsic::x86_fma_vfnmsub_ps:
10070    case Intrinsic::x86_fma_vfnmsub_pd:
10071    case Intrinsic::x86_fma_vfnmsub_ps_256:
10072    case Intrinsic::x86_fma_vfnmsub_pd_256:
10073      Opc = X86ISD::FNMSUB;
10074      break;
10075    case Intrinsic::x86_fma_vfmaddsub_ps:
10076    case Intrinsic::x86_fma_vfmaddsub_pd:
10077    case Intrinsic::x86_fma_vfmaddsub_ps_256:
10078    case Intrinsic::x86_fma_vfmaddsub_pd_256:
10079      Opc = X86ISD::FMADDSUB;
10080      break;
10081    case Intrinsic::x86_fma_vfmsubadd_ps:
10082    case Intrinsic::x86_fma_vfmsubadd_pd:
10083    case Intrinsic::x86_fma_vfmsubadd_ps_256:
10084    case Intrinsic::x86_fma_vfmsubadd_pd_256:
10085      Opc = X86ISD::FMSUBADD;
10086      break;
10087    }
10088
10089    return DAG.getNode(Opc, dl, Op.getValueType(), Op.getOperand(1),
10090                       Op.getOperand(2), Op.getOperand(3));
10091  }
10092  }
10093}
10094
10095SDValue
10096X86TargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const {
10097  DebugLoc dl = Op.getDebugLoc();
10098  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10099  switch (IntNo) {
10100  default: return SDValue();    // Don't custom lower most intrinsics.
10101
10102  // RDRAND intrinsics.
10103  case Intrinsic::x86_rdrand_16:
10104  case Intrinsic::x86_rdrand_32:
10105  case Intrinsic::x86_rdrand_64: {
10106    // Emit the node with the right value type.
10107    SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
10108    SDValue Result = DAG.getNode(X86ISD::RDRAND, dl, VTs, Op.getOperand(0));
10109
10110    // If the value returned by RDRAND was valid (CF=1), return 1. Otherwise
10111    // return the value from Rand, which is always 0, casted to i32.
10112    SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
10113                      DAG.getConstant(1, Op->getValueType(1)),
10114                      DAG.getConstant(X86::COND_B, MVT::i32),
10115                      SDValue(Result.getNode(), 1) };
10116    SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
10117                                  DAG.getVTList(Op->getValueType(1), MVT::Glue),
10118                                  Ops, 4);
10119
10120    // Return { result, isValid, chain }.
10121    return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
10122                       SDValue(Result.getNode(), 2));
10123  }
10124  }
10125}
10126
10127SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
10128                                           SelectionDAG &DAG) const {
10129  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10130  MFI->setReturnAddressIsTaken(true);
10131
10132  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10133  DebugLoc dl = Op.getDebugLoc();
10134
10135  if (Depth > 0) {
10136    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
10137    SDValue Offset =
10138      DAG.getConstant(TD->getPointerSize(),
10139                      Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
10140    return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10141                       DAG.getNode(ISD::ADD, dl, getPointerTy(),
10142                                   FrameAddr, Offset),
10143                       MachinePointerInfo(), false, false, false, 0);
10144  }
10145
10146  // Just load the return address.
10147  SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
10148  return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
10149                     RetAddrFI, MachinePointerInfo(), false, false, false, 0);
10150}
10151
10152SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
10153  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
10154  MFI->setFrameAddressIsTaken(true);
10155
10156  EVT VT = Op.getValueType();
10157  DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
10158  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10159  unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
10160  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
10161  while (Depth--)
10162    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
10163                            MachinePointerInfo(),
10164                            false, false, false, 0);
10165  return FrameAddr;
10166}
10167
10168SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
10169                                                     SelectionDAG &DAG) const {
10170  return DAG.getIntPtrConstant(2*TD->getPointerSize());
10171}
10172
10173SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
10174  SDValue Chain     = Op.getOperand(0);
10175  SDValue Offset    = Op.getOperand(1);
10176  SDValue Handler   = Op.getOperand(2);
10177  DebugLoc dl       = Op.getDebugLoc();
10178
10179  SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
10180                                     Subtarget->is64Bit() ? X86::RBP : X86::EBP,
10181                                     getPointerTy());
10182  unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
10183
10184  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
10185                                  DAG.getIntPtrConstant(TD->getPointerSize()));
10186  StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
10187  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
10188                       false, false, 0);
10189  Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
10190
10191  return DAG.getNode(X86ISD::EH_RETURN, dl,
10192                     MVT::Other,
10193                     Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
10194}
10195
10196SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
10197                                                  SelectionDAG &DAG) const {
10198  return Op.getOperand(0);
10199}
10200
10201SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
10202                                                SelectionDAG &DAG) const {
10203  SDValue Root = Op.getOperand(0);
10204  SDValue Trmp = Op.getOperand(1); // trampoline
10205  SDValue FPtr = Op.getOperand(2); // nested function
10206  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
10207  DebugLoc dl  = Op.getDebugLoc();
10208
10209  const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
10210
10211  if (Subtarget->is64Bit()) {
10212    SDValue OutChains[6];
10213
10214    // Large code-model.
10215    const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
10216    const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
10217
10218    const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
10219    const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
10220
10221    const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
10222
10223    // Load the pointer to the nested function into R11.
10224    unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
10225    SDValue Addr = Trmp;
10226    OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10227                                Addr, MachinePointerInfo(TrmpAddr),
10228                                false, false, 0);
10229
10230    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10231                       DAG.getConstant(2, MVT::i64));
10232    OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
10233                                MachinePointerInfo(TrmpAddr, 2),
10234                                false, false, 2);
10235
10236    // Load the 'nest' parameter value into R10.
10237    // R10 is specified in X86CallingConv.td
10238    OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
10239    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10240                       DAG.getConstant(10, MVT::i64));
10241    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10242                                Addr, MachinePointerInfo(TrmpAddr, 10),
10243                                false, false, 0);
10244
10245    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10246                       DAG.getConstant(12, MVT::i64));
10247    OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
10248                                MachinePointerInfo(TrmpAddr, 12),
10249                                false, false, 2);
10250
10251    // Jump to the nested function.
10252    OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
10253    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10254                       DAG.getConstant(20, MVT::i64));
10255    OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
10256                                Addr, MachinePointerInfo(TrmpAddr, 20),
10257                                false, false, 0);
10258
10259    unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
10260    Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
10261                       DAG.getConstant(22, MVT::i64));
10262    OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
10263                                MachinePointerInfo(TrmpAddr, 22),
10264                                false, false, 0);
10265
10266    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
10267  } else {
10268    const Function *Func =
10269      cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
10270    CallingConv::ID CC = Func->getCallingConv();
10271    unsigned NestReg;
10272
10273    switch (CC) {
10274    default:
10275      llvm_unreachable("Unsupported calling convention");
10276    case CallingConv::C:
10277    case CallingConv::X86_StdCall: {
10278      // Pass 'nest' parameter in ECX.
10279      // Must be kept in sync with X86CallingConv.td
10280      NestReg = X86::ECX;
10281
10282      // Check that ECX wasn't needed by an 'inreg' parameter.
10283      FunctionType *FTy = Func->getFunctionType();
10284      const AttrListPtr &Attrs = Func->getAttributes();
10285
10286      if (!Attrs.isEmpty() && !Func->isVarArg()) {
10287        unsigned InRegCount = 0;
10288        unsigned Idx = 1;
10289
10290        for (FunctionType::param_iterator I = FTy->param_begin(),
10291             E = FTy->param_end(); I != E; ++I, ++Idx)
10292          if (Attrs.paramHasAttr(Idx, Attribute::InReg))
10293            // FIXME: should only count parameters that are lowered to integers.
10294            InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
10295
10296        if (InRegCount > 2) {
10297          report_fatal_error("Nest register in use - reduce number of inreg"
10298                             " parameters!");
10299        }
10300      }
10301      break;
10302    }
10303    case CallingConv::X86_FastCall:
10304    case CallingConv::X86_ThisCall:
10305    case CallingConv::Fast:
10306      // Pass 'nest' parameter in EAX.
10307      // Must be kept in sync with X86CallingConv.td
10308      NestReg = X86::EAX;
10309      break;
10310    }
10311
10312    SDValue OutChains[4];
10313    SDValue Addr, Disp;
10314
10315    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10316                       DAG.getConstant(10, MVT::i32));
10317    Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
10318
10319    // This is storing the opcode for MOV32ri.
10320    const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
10321    const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
10322    OutChains[0] = DAG.getStore(Root, dl,
10323                                DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
10324                                Trmp, MachinePointerInfo(TrmpAddr),
10325                                false, false, 0);
10326
10327    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10328                       DAG.getConstant(1, MVT::i32));
10329    OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
10330                                MachinePointerInfo(TrmpAddr, 1),
10331                                false, false, 1);
10332
10333    const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
10334    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10335                       DAG.getConstant(5, MVT::i32));
10336    OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
10337                                MachinePointerInfo(TrmpAddr, 5),
10338                                false, false, 1);
10339
10340    Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
10341                       DAG.getConstant(6, MVT::i32));
10342    OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
10343                                MachinePointerInfo(TrmpAddr, 6),
10344                                false, false, 1);
10345
10346    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
10347  }
10348}
10349
10350SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
10351                                            SelectionDAG &DAG) const {
10352  /*
10353   The rounding mode is in bits 11:10 of FPSR, and has the following
10354   settings:
10355     00 Round to nearest
10356     01 Round to -inf
10357     10 Round to +inf
10358     11 Round to 0
10359
10360  FLT_ROUNDS, on the other hand, expects the following:
10361    -1 Undefined
10362     0 Round to 0
10363     1 Round to nearest
10364     2 Round to +inf
10365     3 Round to -inf
10366
10367  To perform the conversion, we do:
10368    (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
10369  */
10370
10371  MachineFunction &MF = DAG.getMachineFunction();
10372  const TargetMachine &TM = MF.getTarget();
10373  const TargetFrameLowering &TFI = *TM.getFrameLowering();
10374  unsigned StackAlignment = TFI.getStackAlignment();
10375  EVT VT = Op.getValueType();
10376  DebugLoc DL = Op.getDebugLoc();
10377
10378  // Save FP Control Word to stack slot
10379  int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
10380  SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
10381
10382
10383  MachineMemOperand *MMO =
10384   MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
10385                           MachineMemOperand::MOStore, 2, 2);
10386
10387  SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
10388  SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
10389                                          DAG.getVTList(MVT::Other),
10390                                          Ops, 2, MVT::i16, MMO);
10391
10392  // Load FP Control Word from stack slot
10393  SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
10394                            MachinePointerInfo(), false, false, false, 0);
10395
10396  // Transform as necessary
10397  SDValue CWD1 =
10398    DAG.getNode(ISD::SRL, DL, MVT::i16,
10399                DAG.getNode(ISD::AND, DL, MVT::i16,
10400                            CWD, DAG.getConstant(0x800, MVT::i16)),
10401                DAG.getConstant(11, MVT::i8));
10402  SDValue CWD2 =
10403    DAG.getNode(ISD::SRL, DL, MVT::i16,
10404                DAG.getNode(ISD::AND, DL, MVT::i16,
10405                            CWD, DAG.getConstant(0x400, MVT::i16)),
10406                DAG.getConstant(9, MVT::i8));
10407
10408  SDValue RetVal =
10409    DAG.getNode(ISD::AND, DL, MVT::i16,
10410                DAG.getNode(ISD::ADD, DL, MVT::i16,
10411                            DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
10412                            DAG.getConstant(1, MVT::i16)),
10413                DAG.getConstant(3, MVT::i16));
10414
10415
10416  return DAG.getNode((VT.getSizeInBits() < 16 ?
10417                      ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
10418}
10419
10420SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
10421  EVT VT = Op.getValueType();
10422  EVT OpVT = VT;
10423  unsigned NumBits = VT.getSizeInBits();
10424  DebugLoc dl = Op.getDebugLoc();
10425
10426  Op = Op.getOperand(0);
10427  if (VT == MVT::i8) {
10428    // Zero extend to i32 since there is not an i8 bsr.
10429    OpVT = MVT::i32;
10430    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10431  }
10432
10433  // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
10434  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10435  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10436
10437  // If src is zero (i.e. bsr sets ZF), returns NumBits.
10438  SDValue Ops[] = {
10439    Op,
10440    DAG.getConstant(NumBits+NumBits-1, OpVT),
10441    DAG.getConstant(X86::COND_E, MVT::i8),
10442    Op.getValue(1)
10443  };
10444  Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
10445
10446  // Finally xor with NumBits-1.
10447  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10448
10449  if (VT == MVT::i8)
10450    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10451  return Op;
10452}
10453
10454SDValue X86TargetLowering::LowerCTLZ_ZERO_UNDEF(SDValue Op,
10455                                                SelectionDAG &DAG) const {
10456  EVT VT = Op.getValueType();
10457  EVT OpVT = VT;
10458  unsigned NumBits = VT.getSizeInBits();
10459  DebugLoc dl = Op.getDebugLoc();
10460
10461  Op = Op.getOperand(0);
10462  if (VT == MVT::i8) {
10463    // Zero extend to i32 since there is not an i8 bsr.
10464    OpVT = MVT::i32;
10465    Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
10466  }
10467
10468  // Issue a bsr (scan bits in reverse).
10469  SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
10470  Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
10471
10472  // And xor with NumBits-1.
10473  Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
10474
10475  if (VT == MVT::i8)
10476    Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
10477  return Op;
10478}
10479
10480SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
10481  EVT VT = Op.getValueType();
10482  unsigned NumBits = VT.getSizeInBits();
10483  DebugLoc dl = Op.getDebugLoc();
10484  Op = Op.getOperand(0);
10485
10486  // Issue a bsf (scan bits forward) which also sets EFLAGS.
10487  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10488  Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
10489
10490  // If src is zero (i.e. bsf sets ZF), returns NumBits.
10491  SDValue Ops[] = {
10492    Op,
10493    DAG.getConstant(NumBits, VT),
10494    DAG.getConstant(X86::COND_E, MVT::i8),
10495    Op.getValue(1)
10496  };
10497  return DAG.getNode(X86ISD::CMOV, dl, VT, Ops, array_lengthof(Ops));
10498}
10499
10500// Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
10501// ones, and then concatenate the result back.
10502static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
10503  EVT VT = Op.getValueType();
10504
10505  assert(VT.is256BitVector() && VT.isInteger() &&
10506         "Unsupported value type for operation");
10507
10508  unsigned NumElems = VT.getVectorNumElements();
10509  DebugLoc dl = Op.getDebugLoc();
10510
10511  // Extract the LHS vectors
10512  SDValue LHS = Op.getOperand(0);
10513  SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10514  SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10515
10516  // Extract the RHS vectors
10517  SDValue RHS = Op.getOperand(1);
10518  SDValue RHS1 = Extract128BitVector(RHS, 0, DAG, dl);
10519  SDValue RHS2 = Extract128BitVector(RHS, NumElems/2, DAG, dl);
10520
10521  MVT EltVT = VT.getVectorElementType().getSimpleVT();
10522  EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10523
10524  return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
10525                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
10526                     DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
10527}
10528
10529SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
10530  assert(Op.getValueType().is256BitVector() &&
10531         Op.getValueType().isInteger() &&
10532         "Only handle AVX 256-bit vector integer operation");
10533  return Lower256IntArith(Op, DAG);
10534}
10535
10536SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
10537  assert(Op.getValueType().is256BitVector() &&
10538         Op.getValueType().isInteger() &&
10539         "Only handle AVX 256-bit vector integer operation");
10540  return Lower256IntArith(Op, DAG);
10541}
10542
10543SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10544  EVT VT = Op.getValueType();
10545
10546  // Decompose 256-bit ops into smaller 128-bit ops.
10547  if (VT.is256BitVector() && !Subtarget->hasAVX2())
10548    return Lower256IntArith(Op, DAG);
10549
10550  assert((VT == MVT::v2i64 || VT == MVT::v4i64) &&
10551         "Only know how to lower V2I64/V4I64 multiply");
10552
10553  DebugLoc dl = Op.getDebugLoc();
10554
10555  //  Ahi = psrlqi(a, 32);
10556  //  Bhi = psrlqi(b, 32);
10557  //
10558  //  AloBlo = pmuludq(a, b);
10559  //  AloBhi = pmuludq(a, Bhi);
10560  //  AhiBlo = pmuludq(Ahi, b);
10561
10562  //  AloBhi = psllqi(AloBhi, 32);
10563  //  AhiBlo = psllqi(AhiBlo, 32);
10564  //  return AloBlo + AloBhi + AhiBlo;
10565
10566  SDValue A = Op.getOperand(0);
10567  SDValue B = Op.getOperand(1);
10568
10569  SDValue ShAmt = DAG.getConstant(32, MVT::i32);
10570
10571  SDValue Ahi = DAG.getNode(X86ISD::VSRLI, dl, VT, A, ShAmt);
10572  SDValue Bhi = DAG.getNode(X86ISD::VSRLI, dl, VT, B, ShAmt);
10573
10574  // Bit cast to 32-bit vectors for MULUDQ
10575  EVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 : MVT::v8i32;
10576  A = DAG.getNode(ISD::BITCAST, dl, MulVT, A);
10577  B = DAG.getNode(ISD::BITCAST, dl, MulVT, B);
10578  Ahi = DAG.getNode(ISD::BITCAST, dl, MulVT, Ahi);
10579  Bhi = DAG.getNode(ISD::BITCAST, dl, MulVT, Bhi);
10580
10581  SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
10582  SDValue AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
10583  SDValue AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
10584
10585  AloBhi = DAG.getNode(X86ISD::VSHLI, dl, VT, AloBhi, ShAmt);
10586  AhiBlo = DAG.getNode(X86ISD::VSHLI, dl, VT, AhiBlo, ShAmt);
10587
10588  SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
10589  return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
10590}
10591
10592SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
10593
10594  EVT VT = Op.getValueType();
10595  DebugLoc dl = Op.getDebugLoc();
10596  SDValue R = Op.getOperand(0);
10597  SDValue Amt = Op.getOperand(1);
10598  LLVMContext *Context = DAG.getContext();
10599
10600  if (!Subtarget->hasSSE2())
10601    return SDValue();
10602
10603  // Optimize shl/srl/sra with constant shift amount.
10604  if (isSplatVector(Amt.getNode())) {
10605    SDValue SclrAmt = Amt->getOperand(0);
10606    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
10607      uint64_t ShiftAmt = C->getZExtValue();
10608
10609      if (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10610          (Subtarget->hasAVX2() &&
10611           (VT == MVT::v4i64 || VT == MVT::v8i32 || VT == MVT::v16i16))) {
10612        if (Op.getOpcode() == ISD::SHL)
10613          return DAG.getNode(X86ISD::VSHLI, dl, VT, R,
10614                             DAG.getConstant(ShiftAmt, MVT::i32));
10615        if (Op.getOpcode() == ISD::SRL)
10616          return DAG.getNode(X86ISD::VSRLI, dl, VT, R,
10617                             DAG.getConstant(ShiftAmt, MVT::i32));
10618        if (Op.getOpcode() == ISD::SRA && VT != MVT::v2i64 && VT != MVT::v4i64)
10619          return DAG.getNode(X86ISD::VSRAI, dl, VT, R,
10620                             DAG.getConstant(ShiftAmt, MVT::i32));
10621      }
10622
10623      if (VT == MVT::v16i8) {
10624        if (Op.getOpcode() == ISD::SHL) {
10625          // Make a large shift.
10626          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, R,
10627                                    DAG.getConstant(ShiftAmt, MVT::i32));
10628          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10629          // Zero out the rightmost bits.
10630          SmallVector<SDValue, 16> V(16,
10631                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10632                                                     MVT::i8));
10633          return DAG.getNode(ISD::AND, dl, VT, SHL,
10634                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10635        }
10636        if (Op.getOpcode() == ISD::SRL) {
10637          // Make a large shift.
10638          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v8i16, R,
10639                                    DAG.getConstant(ShiftAmt, MVT::i32));
10640          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10641          // Zero out the leftmost bits.
10642          SmallVector<SDValue, 16> V(16,
10643                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10644                                                     MVT::i8));
10645          return DAG.getNode(ISD::AND, dl, VT, SRL,
10646                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16));
10647        }
10648        if (Op.getOpcode() == ISD::SRA) {
10649          if (ShiftAmt == 7) {
10650            // R s>> 7  ===  R s< 0
10651            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10652            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10653          }
10654
10655          // R s>> a === ((R u>> a) ^ m) - m
10656          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10657          SmallVector<SDValue, 16> V(16, DAG.getConstant(128 >> ShiftAmt,
10658                                                         MVT::i8));
10659          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 16);
10660          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10661          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10662          return Res;
10663        }
10664        llvm_unreachable("Unknown shift opcode.");
10665      }
10666
10667      if (Subtarget->hasAVX2() && VT == MVT::v32i8) {
10668        if (Op.getOpcode() == ISD::SHL) {
10669          // Make a large shift.
10670          SDValue SHL = DAG.getNode(X86ISD::VSHLI, dl, MVT::v16i16, R,
10671                                    DAG.getConstant(ShiftAmt, MVT::i32));
10672          SHL = DAG.getNode(ISD::BITCAST, dl, VT, SHL);
10673          // Zero out the rightmost bits.
10674          SmallVector<SDValue, 32> V(32,
10675                                     DAG.getConstant(uint8_t(-1U << ShiftAmt),
10676                                                     MVT::i8));
10677          return DAG.getNode(ISD::AND, dl, VT, SHL,
10678                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10679        }
10680        if (Op.getOpcode() == ISD::SRL) {
10681          // Make a large shift.
10682          SDValue SRL = DAG.getNode(X86ISD::VSRLI, dl, MVT::v16i16, R,
10683                                    DAG.getConstant(ShiftAmt, MVT::i32));
10684          SRL = DAG.getNode(ISD::BITCAST, dl, VT, SRL);
10685          // Zero out the leftmost bits.
10686          SmallVector<SDValue, 32> V(32,
10687                                     DAG.getConstant(uint8_t(-1U) >> ShiftAmt,
10688                                                     MVT::i8));
10689          return DAG.getNode(ISD::AND, dl, VT, SRL,
10690                             DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32));
10691        }
10692        if (Op.getOpcode() == ISD::SRA) {
10693          if (ShiftAmt == 7) {
10694            // R s>> 7  ===  R s< 0
10695            SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
10696            return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
10697          }
10698
10699          // R s>> a === ((R u>> a) ^ m) - m
10700          SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
10701          SmallVector<SDValue, 32> V(32, DAG.getConstant(128 >> ShiftAmt,
10702                                                         MVT::i8));
10703          SDValue Mask = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &V[0], 32);
10704          Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
10705          Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
10706          return Res;
10707        }
10708        llvm_unreachable("Unknown shift opcode.");
10709      }
10710    }
10711  }
10712
10713  // Lower SHL with variable shift amount.
10714  if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
10715    Op = DAG.getNode(X86ISD::VSHLI, dl, VT, Op.getOperand(1),
10716                     DAG.getConstant(23, MVT::i32));
10717
10718    const uint32_t CV[] = { 0x3f800000U, 0x3f800000U, 0x3f800000U, 0x3f800000U};
10719    Constant *C = ConstantDataVector::get(*Context, CV);
10720    SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10721    SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10722                                 MachinePointerInfo::getConstantPool(),
10723                                 false, false, false, 16);
10724
10725    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
10726    Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
10727    Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
10728    return DAG.getNode(ISD::MUL, dl, VT, Op, R);
10729  }
10730  if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
10731    assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
10732
10733    // a = a << 5;
10734    Op = DAG.getNode(X86ISD::VSHLI, dl, MVT::v8i16, Op.getOperand(1),
10735                     DAG.getConstant(5, MVT::i32));
10736    Op = DAG.getNode(ISD::BITCAST, dl, VT, Op);
10737
10738    // Turn 'a' into a mask suitable for VSELECT
10739    SDValue VSelM = DAG.getConstant(0x80, VT);
10740    SDValue OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10741    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10742
10743    SDValue CM1 = DAG.getConstant(0x0f, VT);
10744    SDValue CM2 = DAG.getConstant(0x3f, VT);
10745
10746    // r = VSELECT(r, psllw(r & (char16)15, 4), a);
10747    SDValue M = DAG.getNode(ISD::AND, dl, VT, R, CM1);
10748    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10749                            DAG.getConstant(4, MVT::i32), DAG);
10750    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10751    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10752
10753    // a += a
10754    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10755    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10756    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10757
10758    // r = VSELECT(r, psllw(r & (char16)63, 2), a);
10759    M = DAG.getNode(ISD::AND, dl, VT, R, CM2);
10760    M = getTargetVShiftNode(X86ISD::VSHLI, dl, MVT::v8i16, M,
10761                            DAG.getConstant(2, MVT::i32), DAG);
10762    M = DAG.getNode(ISD::BITCAST, dl, VT, M);
10763    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel, M, R);
10764
10765    // a += a
10766    Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10767    OpVSel = DAG.getNode(ISD::AND, dl, VT, VSelM, Op);
10768    OpVSel = DAG.getNode(X86ISD::PCMPEQ, dl, VT, OpVSel, VSelM);
10769
10770    // return VSELECT(r, r+r, a);
10771    R = DAG.getNode(ISD::VSELECT, dl, VT, OpVSel,
10772                    DAG.getNode(ISD::ADD, dl, VT, R, R), R);
10773    return R;
10774  }
10775
10776  // Decompose 256-bit shifts into smaller 128-bit shifts.
10777  if (VT.is256BitVector()) {
10778    unsigned NumElems = VT.getVectorNumElements();
10779    MVT EltVT = VT.getVectorElementType().getSimpleVT();
10780    EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10781
10782    // Extract the two vectors
10783    SDValue V1 = Extract128BitVector(R, 0, DAG, dl);
10784    SDValue V2 = Extract128BitVector(R, NumElems/2, DAG, dl);
10785
10786    // Recreate the shift amount vectors
10787    SDValue Amt1, Amt2;
10788    if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
10789      // Constant shift amount
10790      SmallVector<SDValue, 4> Amt1Csts;
10791      SmallVector<SDValue, 4> Amt2Csts;
10792      for (unsigned i = 0; i != NumElems/2; ++i)
10793        Amt1Csts.push_back(Amt->getOperand(i));
10794      for (unsigned i = NumElems/2; i != NumElems; ++i)
10795        Amt2Csts.push_back(Amt->getOperand(i));
10796
10797      Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10798                                 &Amt1Csts[0], NumElems/2);
10799      Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
10800                                 &Amt2Csts[0], NumElems/2);
10801    } else {
10802      // Variable shift amount
10803      Amt1 = Extract128BitVector(Amt, 0, DAG, dl);
10804      Amt2 = Extract128BitVector(Amt, NumElems/2, DAG, dl);
10805    }
10806
10807    // Issue new vector shifts for the smaller types
10808    V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
10809    V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
10810
10811    // Concatenate the result back
10812    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
10813  }
10814
10815  return SDValue();
10816}
10817
10818SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10819  // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10820  // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10821  // looks for this combo and may remove the "setcc" instruction if the "setcc"
10822  // has only one use.
10823  SDNode *N = Op.getNode();
10824  SDValue LHS = N->getOperand(0);
10825  SDValue RHS = N->getOperand(1);
10826  unsigned BaseOp = 0;
10827  unsigned Cond = 0;
10828  DebugLoc DL = Op.getDebugLoc();
10829  switch (Op.getOpcode()) {
10830  default: llvm_unreachable("Unknown ovf instruction!");
10831  case ISD::SADDO:
10832    // A subtract of one will be selected as a INC. Note that INC doesn't
10833    // set CF, so we can't do this for UADDO.
10834    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10835      if (C->isOne()) {
10836        BaseOp = X86ISD::INC;
10837        Cond = X86::COND_O;
10838        break;
10839      }
10840    BaseOp = X86ISD::ADD;
10841    Cond = X86::COND_O;
10842    break;
10843  case ISD::UADDO:
10844    BaseOp = X86ISD::ADD;
10845    Cond = X86::COND_B;
10846    break;
10847  case ISD::SSUBO:
10848    // A subtract of one will be selected as a DEC. Note that DEC doesn't
10849    // set CF, so we can't do this for USUBO.
10850    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10851      if (C->isOne()) {
10852        BaseOp = X86ISD::DEC;
10853        Cond = X86::COND_O;
10854        break;
10855      }
10856    BaseOp = X86ISD::SUB;
10857    Cond = X86::COND_O;
10858    break;
10859  case ISD::USUBO:
10860    BaseOp = X86ISD::SUB;
10861    Cond = X86::COND_B;
10862    break;
10863  case ISD::SMULO:
10864    BaseOp = X86ISD::SMUL;
10865    Cond = X86::COND_O;
10866    break;
10867  case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10868    SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10869                                 MVT::i32);
10870    SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10871
10872    SDValue SetCC =
10873      DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10874                  DAG.getConstant(X86::COND_O, MVT::i32),
10875                  SDValue(Sum.getNode(), 2));
10876
10877    return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10878  }
10879  }
10880
10881  // Also sets EFLAGS.
10882  SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10883  SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10884
10885  SDValue SetCC =
10886    DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10887                DAG.getConstant(Cond, MVT::i32),
10888                SDValue(Sum.getNode(), 1));
10889
10890  return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10891}
10892
10893SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
10894                                                  SelectionDAG &DAG) const {
10895  DebugLoc dl = Op.getDebugLoc();
10896  EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
10897  EVT VT = Op.getValueType();
10898
10899  if (!Subtarget->hasSSE2() || !VT.isVector())
10900    return SDValue();
10901
10902  unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10903                      ExtraVT.getScalarType().getSizeInBits();
10904  SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10905
10906  switch (VT.getSimpleVT().SimpleTy) {
10907    default: return SDValue();
10908    case MVT::v8i32:
10909    case MVT::v16i16:
10910      if (!Subtarget->hasAVX())
10911        return SDValue();
10912      if (!Subtarget->hasAVX2()) {
10913        // needs to be split
10914        unsigned NumElems = VT.getVectorNumElements();
10915
10916        // Extract the LHS vectors
10917        SDValue LHS = Op.getOperand(0);
10918        SDValue LHS1 = Extract128BitVector(LHS, 0, DAG, dl);
10919        SDValue LHS2 = Extract128BitVector(LHS, NumElems/2, DAG, dl);
10920
10921        MVT EltVT = VT.getVectorElementType().getSimpleVT();
10922        EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
10923
10924        EVT ExtraEltVT = ExtraVT.getVectorElementType();
10925        unsigned ExtraNumElems = ExtraVT.getVectorNumElements();
10926        ExtraVT = EVT::getVectorVT(*DAG.getContext(), ExtraEltVT,
10927                                   ExtraNumElems/2);
10928        SDValue Extra = DAG.getValueType(ExtraVT);
10929
10930        LHS1 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, Extra);
10931        LHS2 = DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, Extra);
10932
10933        return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, LHS1, LHS2);;
10934      }
10935      // fall through
10936    case MVT::v4i32:
10937    case MVT::v8i16: {
10938      SDValue Tmp1 = getTargetVShiftNode(X86ISD::VSHLI, dl, VT,
10939                                         Op.getOperand(0), ShAmt, DAG);
10940      return getTargetVShiftNode(X86ISD::VSRAI, dl, VT, Tmp1, ShAmt, DAG);
10941    }
10942  }
10943}
10944
10945
10946SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10947  DebugLoc dl = Op.getDebugLoc();
10948
10949  // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10950  // There isn't any reason to disable it if the target processor supports it.
10951  if (!Subtarget->hasSSE2() && !Subtarget->is64Bit()) {
10952    SDValue Chain = Op.getOperand(0);
10953    SDValue Zero = DAG.getConstant(0, MVT::i32);
10954    SDValue Ops[] = {
10955      DAG.getRegister(X86::ESP, MVT::i32), // Base
10956      DAG.getTargetConstant(1, MVT::i8),   // Scale
10957      DAG.getRegister(0, MVT::i32),        // Index
10958      DAG.getTargetConstant(0, MVT::i32),  // Disp
10959      DAG.getRegister(0, MVT::i32),        // Segment.
10960      Zero,
10961      Chain
10962    };
10963    SDNode *Res =
10964      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10965                          array_lengthof(Ops));
10966    return SDValue(Res, 0);
10967  }
10968
10969  unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10970  if (!isDev)
10971    return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10972
10973  unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10974  unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10975  unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10976  unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10977
10978  // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10979  if (!Op1 && !Op2 && !Op3 && Op4)
10980    return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10981
10982  // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10983  if (Op1 && !Op2 && !Op3 && !Op4)
10984    return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10985
10986  // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10987  //           (MFENCE)>;
10988  return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10989}
10990
10991SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10992                                             SelectionDAG &DAG) const {
10993  DebugLoc dl = Op.getDebugLoc();
10994  AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10995    cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10996  SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10997    cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10998
10999  // The only fence that needs an instruction is a sequentially-consistent
11000  // cross-thread fence.
11001  if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
11002    // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
11003    // no-sse2). There isn't any reason to disable it if the target processor
11004    // supports it.
11005    if (Subtarget->hasSSE2() || Subtarget->is64Bit())
11006      return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
11007
11008    SDValue Chain = Op.getOperand(0);
11009    SDValue Zero = DAG.getConstant(0, MVT::i32);
11010    SDValue Ops[] = {
11011      DAG.getRegister(X86::ESP, MVT::i32), // Base
11012      DAG.getTargetConstant(1, MVT::i8),   // Scale
11013      DAG.getRegister(0, MVT::i32),        // Index
11014      DAG.getTargetConstant(0, MVT::i32),  // Disp
11015      DAG.getRegister(0, MVT::i32),        // Segment.
11016      Zero,
11017      Chain
11018    };
11019    SDNode *Res =
11020      DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
11021                         array_lengthof(Ops));
11022    return SDValue(Res, 0);
11023  }
11024
11025  // MEMBARRIER is a compiler barrier; it codegens to a no-op.
11026  return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
11027}
11028
11029
11030SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
11031  EVT T = Op.getValueType();
11032  DebugLoc DL = Op.getDebugLoc();
11033  unsigned Reg = 0;
11034  unsigned size = 0;
11035  switch(T.getSimpleVT().SimpleTy) {
11036  default: llvm_unreachable("Invalid value type!");
11037  case MVT::i8:  Reg = X86::AL;  size = 1; break;
11038  case MVT::i16: Reg = X86::AX;  size = 2; break;
11039  case MVT::i32: Reg = X86::EAX; size = 4; break;
11040  case MVT::i64:
11041    assert(Subtarget->is64Bit() && "Node not type legal!");
11042    Reg = X86::RAX; size = 8;
11043    break;
11044  }
11045  SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
11046                                    Op.getOperand(2), SDValue());
11047  SDValue Ops[] = { cpIn.getValue(0),
11048                    Op.getOperand(1),
11049                    Op.getOperand(3),
11050                    DAG.getTargetConstant(size, MVT::i8),
11051                    cpIn.getValue(1) };
11052  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11053  MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
11054  SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
11055                                           Ops, 5, T, MMO);
11056  SDValue cpOut =
11057    DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
11058  return cpOut;
11059}
11060
11061SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
11062                                                 SelectionDAG &DAG) const {
11063  assert(Subtarget->is64Bit() && "Result not type legalized?");
11064  SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11065  SDValue TheChain = Op.getOperand(0);
11066  DebugLoc dl = Op.getDebugLoc();
11067  SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11068  SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
11069  SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
11070                                   rax.getValue(2));
11071  SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
11072                            DAG.getConstant(32, MVT::i8));
11073  SDValue Ops[] = {
11074    DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
11075    rdx.getValue(1)
11076  };
11077  return DAG.getMergeValues(Ops, 2, dl);
11078}
11079
11080SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
11081                                            SelectionDAG &DAG) const {
11082  EVT SrcVT = Op.getOperand(0).getValueType();
11083  EVT DstVT = Op.getValueType();
11084  assert(Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
11085         Subtarget->hasMMX() && "Unexpected custom BITCAST");
11086  assert((DstVT == MVT::i64 ||
11087          (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
11088         "Unexpected custom BITCAST");
11089  // i64 <=> MMX conversions are Legal.
11090  if (SrcVT==MVT::i64 && DstVT.isVector())
11091    return Op;
11092  if (DstVT==MVT::i64 && SrcVT.isVector())
11093    return Op;
11094  // MMX <=> MMX conversions are Legal.
11095  if (SrcVT.isVector() && DstVT.isVector())
11096    return Op;
11097  // All other conversions need to be expanded.
11098  return SDValue();
11099}
11100
11101SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
11102  SDNode *Node = Op.getNode();
11103  DebugLoc dl = Node->getDebugLoc();
11104  EVT T = Node->getValueType(0);
11105  SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
11106                              DAG.getConstant(0, T), Node->getOperand(2));
11107  return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
11108                       cast<AtomicSDNode>(Node)->getMemoryVT(),
11109                       Node->getOperand(0),
11110                       Node->getOperand(1), negOp,
11111                       cast<AtomicSDNode>(Node)->getSrcValue(),
11112                       cast<AtomicSDNode>(Node)->getAlignment(),
11113                       cast<AtomicSDNode>(Node)->getOrdering(),
11114                       cast<AtomicSDNode>(Node)->getSynchScope());
11115}
11116
11117static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
11118  SDNode *Node = Op.getNode();
11119  DebugLoc dl = Node->getDebugLoc();
11120  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11121
11122  // Convert seq_cst store -> xchg
11123  // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
11124  // FIXME: On 32-bit, store -> fist or movq would be more efficient
11125  //        (The only way to get a 16-byte store is cmpxchg16b)
11126  // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
11127  if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
11128      !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
11129    SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
11130                                 cast<AtomicSDNode>(Node)->getMemoryVT(),
11131                                 Node->getOperand(0),
11132                                 Node->getOperand(1), Node->getOperand(2),
11133                                 cast<AtomicSDNode>(Node)->getMemOperand(),
11134                                 cast<AtomicSDNode>(Node)->getOrdering(),
11135                                 cast<AtomicSDNode>(Node)->getSynchScope());
11136    return Swap.getValue(1);
11137  }
11138  // Other atomic stores have a simple pattern.
11139  return Op;
11140}
11141
11142static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
11143  EVT VT = Op.getNode()->getValueType(0);
11144
11145  // Let legalize expand this if it isn't a legal type yet.
11146  if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
11147    return SDValue();
11148
11149  SDVTList VTs = DAG.getVTList(VT, MVT::i32);
11150
11151  unsigned Opc;
11152  bool ExtraOp = false;
11153  switch (Op.getOpcode()) {
11154  default: llvm_unreachable("Invalid code");
11155  case ISD::ADDC: Opc = X86ISD::ADD; break;
11156  case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
11157  case ISD::SUBC: Opc = X86ISD::SUB; break;
11158  case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
11159  }
11160
11161  if (!ExtraOp)
11162    return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11163                       Op.getOperand(1));
11164  return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
11165                     Op.getOperand(1), Op.getOperand(2));
11166}
11167
11168/// LowerOperation - Provide custom lowering hooks for some operations.
11169///
11170SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11171  switch (Op.getOpcode()) {
11172  default: llvm_unreachable("Should not custom lower this!");
11173  case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
11174  case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
11175  case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
11176  case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
11177  case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
11178  case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
11179  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11180  case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
11181  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11182  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
11183  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11184  case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
11185  case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
11186  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11187  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11188  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11189  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11190  case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
11191  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11192  case ISD::SHL_PARTS:
11193  case ISD::SRA_PARTS:
11194  case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
11195  case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
11196  case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
11197  case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
11198  case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
11199  case ISD::FABS:               return LowerFABS(Op, DAG);
11200  case ISD::FNEG:               return LowerFNEG(Op, DAG);
11201  case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
11202  case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
11203  case ISD::SETCC:              return LowerSETCC(Op, DAG);
11204  case ISD::SELECT:             return LowerSELECT(Op, DAG);
11205  case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
11206  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11207  case ISD::VASTART:            return LowerVASTART(Op, DAG);
11208  case ISD::VAARG:              return LowerVAARG(Op, DAG);
11209  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11210  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11211  case ISD::INTRINSIC_W_CHAIN:  return LowerINTRINSIC_W_CHAIN(Op, DAG);
11212  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11213  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11214  case ISD::FRAME_TO_ARGS_OFFSET:
11215                                return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
11216  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11217  case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
11218  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11219  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11220  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
11221  case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
11222  case ISD::CTLZ_ZERO_UNDEF:    return LowerCTLZ_ZERO_UNDEF(Op, DAG);
11223  case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
11224  case ISD::MUL:                return LowerMUL(Op, DAG);
11225  case ISD::SRA:
11226  case ISD::SRL:
11227  case ISD::SHL:                return LowerShift(Op, DAG);
11228  case ISD::SADDO:
11229  case ISD::UADDO:
11230  case ISD::SSUBO:
11231  case ISD::USUBO:
11232  case ISD::SMULO:
11233  case ISD::UMULO:              return LowerXALUO(Op, DAG);
11234  case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
11235  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11236  case ISD::ADDC:
11237  case ISD::ADDE:
11238  case ISD::SUBC:
11239  case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
11240  case ISD::ADD:                return LowerADD(Op, DAG);
11241  case ISD::SUB:                return LowerSUB(Op, DAG);
11242  }
11243}
11244
11245static void ReplaceATOMIC_LOAD(SDNode *Node,
11246                                  SmallVectorImpl<SDValue> &Results,
11247                                  SelectionDAG &DAG) {
11248  DebugLoc dl = Node->getDebugLoc();
11249  EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
11250
11251  // Convert wide load -> cmpxchg8b/cmpxchg16b
11252  // FIXME: On 32-bit, load -> fild or movq would be more efficient
11253  //        (The only way to get a 16-byte load is cmpxchg16b)
11254  // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
11255  SDValue Zero = DAG.getConstant(0, VT);
11256  SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
11257                               Node->getOperand(0),
11258                               Node->getOperand(1), Zero, Zero,
11259                               cast<AtomicSDNode>(Node)->getMemOperand(),
11260                               cast<AtomicSDNode>(Node)->getOrdering(),
11261                               cast<AtomicSDNode>(Node)->getSynchScope());
11262  Results.push_back(Swap.getValue(0));
11263  Results.push_back(Swap.getValue(1));
11264}
11265
11266static void
11267ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
11268                        SelectionDAG &DAG, unsigned NewOp) {
11269  DebugLoc dl = Node->getDebugLoc();
11270  assert (Node->getValueType(0) == MVT::i64 &&
11271          "Only know how to expand i64 atomics");
11272
11273  SDValue Chain = Node->getOperand(0);
11274  SDValue In1 = Node->getOperand(1);
11275  SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11276                             Node->getOperand(2), DAG.getIntPtrConstant(0));
11277  SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
11278                             Node->getOperand(2), DAG.getIntPtrConstant(1));
11279  SDValue Ops[] = { Chain, In1, In2L, In2H };
11280  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11281  SDValue Result =
11282    DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
11283                            cast<MemSDNode>(Node)->getMemOperand());
11284  SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
11285  Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
11286  Results.push_back(Result.getValue(2));
11287}
11288
11289/// ReplaceNodeResults - Replace a node with an illegal result type
11290/// with a new node built out of custom code.
11291void X86TargetLowering::ReplaceNodeResults(SDNode *N,
11292                                           SmallVectorImpl<SDValue>&Results,
11293                                           SelectionDAG &DAG) const {
11294  DebugLoc dl = N->getDebugLoc();
11295  switch (N->getOpcode()) {
11296  default:
11297    llvm_unreachable("Do not know how to custom type legalize this operation!");
11298  case ISD::SIGN_EXTEND_INREG:
11299  case ISD::ADDC:
11300  case ISD::ADDE:
11301  case ISD::SUBC:
11302  case ISD::SUBE:
11303    // We don't want to expand or promote these.
11304    return;
11305  case ISD::FP_TO_SINT:
11306  case ISD::FP_TO_UINT: {
11307    bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
11308
11309    if (!IsSigned && !isIntegerTypeFTOL(SDValue(N, 0).getValueType()))
11310      return;
11311
11312    std::pair<SDValue,SDValue> Vals =
11313        FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
11314    SDValue FIST = Vals.first, StackSlot = Vals.second;
11315    if (FIST.getNode() != 0) {
11316      EVT VT = N->getValueType(0);
11317      // Return a load from the stack slot.
11318      if (StackSlot.getNode() != 0)
11319        Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
11320                                      MachinePointerInfo(),
11321                                      false, false, false, 0));
11322      else
11323        Results.push_back(FIST);
11324    }
11325    return;
11326  }
11327  case ISD::READCYCLECOUNTER: {
11328    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11329    SDValue TheChain = N->getOperand(0);
11330    SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
11331    SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
11332                                     rd.getValue(1));
11333    SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
11334                                     eax.getValue(2));
11335    // Use a buildpair to merge the two 32-bit values into a 64-bit one.
11336    SDValue Ops[] = { eax, edx };
11337    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
11338    Results.push_back(edx.getValue(1));
11339    return;
11340  }
11341  case ISD::ATOMIC_CMP_SWAP: {
11342    EVT T = N->getValueType(0);
11343    assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
11344    bool Regs64bit = T == MVT::i128;
11345    EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
11346    SDValue cpInL, cpInH;
11347    cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11348                        DAG.getConstant(0, HalfT));
11349    cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
11350                        DAG.getConstant(1, HalfT));
11351    cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
11352                             Regs64bit ? X86::RAX : X86::EAX,
11353                             cpInL, SDValue());
11354    cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
11355                             Regs64bit ? X86::RDX : X86::EDX,
11356                             cpInH, cpInL.getValue(1));
11357    SDValue swapInL, swapInH;
11358    swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11359                          DAG.getConstant(0, HalfT));
11360    swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
11361                          DAG.getConstant(1, HalfT));
11362    swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
11363                               Regs64bit ? X86::RBX : X86::EBX,
11364                               swapInL, cpInH.getValue(1));
11365    swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
11366                               Regs64bit ? X86::RCX : X86::ECX,
11367                               swapInH, swapInL.getValue(1));
11368    SDValue Ops[] = { swapInH.getValue(0),
11369                      N->getOperand(1),
11370                      swapInH.getValue(1) };
11371    SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
11372    MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
11373    unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
11374                                  X86ISD::LCMPXCHG8_DAG;
11375    SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
11376                                             Ops, 3, T, MMO);
11377    SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
11378                                        Regs64bit ? X86::RAX : X86::EAX,
11379                                        HalfT, Result.getValue(1));
11380    SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
11381                                        Regs64bit ? X86::RDX : X86::EDX,
11382                                        HalfT, cpOutL.getValue(2));
11383    SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
11384    Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
11385    Results.push_back(cpOutH.getValue(1));
11386    return;
11387  }
11388  case ISD::ATOMIC_LOAD_ADD:
11389  case ISD::ATOMIC_LOAD_AND:
11390  case ISD::ATOMIC_LOAD_NAND:
11391  case ISD::ATOMIC_LOAD_OR:
11392  case ISD::ATOMIC_LOAD_SUB:
11393  case ISD::ATOMIC_LOAD_XOR:
11394  case ISD::ATOMIC_SWAP: {
11395    unsigned Opc;
11396    switch (N->getOpcode()) {
11397    default: llvm_unreachable("Unexpected opcode");
11398    case ISD::ATOMIC_LOAD_ADD:
11399      Opc = X86ISD::ATOMADD64_DAG;
11400      break;
11401    case ISD::ATOMIC_LOAD_AND:
11402      Opc = X86ISD::ATOMAND64_DAG;
11403      break;
11404    case ISD::ATOMIC_LOAD_NAND:
11405      Opc = X86ISD::ATOMNAND64_DAG;
11406      break;
11407    case ISD::ATOMIC_LOAD_OR:
11408      Opc = X86ISD::ATOMOR64_DAG;
11409      break;
11410    case ISD::ATOMIC_LOAD_SUB:
11411      Opc = X86ISD::ATOMSUB64_DAG;
11412      break;
11413    case ISD::ATOMIC_LOAD_XOR:
11414      Opc = X86ISD::ATOMXOR64_DAG;
11415      break;
11416    case ISD::ATOMIC_SWAP:
11417      Opc = X86ISD::ATOMSWAP64_DAG;
11418      break;
11419    }
11420    ReplaceATOMIC_BINARY_64(N, Results, DAG, Opc);
11421    return;
11422  }
11423  case ISD::ATOMIC_LOAD:
11424    ReplaceATOMIC_LOAD(N, Results, DAG);
11425  }
11426}
11427
11428const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
11429  switch (Opcode) {
11430  default: return NULL;
11431  case X86ISD::BSF:                return "X86ISD::BSF";
11432  case X86ISD::BSR:                return "X86ISD::BSR";
11433  case X86ISD::SHLD:               return "X86ISD::SHLD";
11434  case X86ISD::SHRD:               return "X86ISD::SHRD";
11435  case X86ISD::FAND:               return "X86ISD::FAND";
11436  case X86ISD::FOR:                return "X86ISD::FOR";
11437  case X86ISD::FXOR:               return "X86ISD::FXOR";
11438  case X86ISD::FSRL:               return "X86ISD::FSRL";
11439  case X86ISD::FILD:               return "X86ISD::FILD";
11440  case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
11441  case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
11442  case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
11443  case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
11444  case X86ISD::FLD:                return "X86ISD::FLD";
11445  case X86ISD::FST:                return "X86ISD::FST";
11446  case X86ISD::CALL:               return "X86ISD::CALL";
11447  case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
11448  case X86ISD::BT:                 return "X86ISD::BT";
11449  case X86ISD::CMP:                return "X86ISD::CMP";
11450  case X86ISD::COMI:               return "X86ISD::COMI";
11451  case X86ISD::UCOMI:              return "X86ISD::UCOMI";
11452  case X86ISD::SETCC:              return "X86ISD::SETCC";
11453  case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
11454  case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
11455  case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
11456  case X86ISD::CMOV:               return "X86ISD::CMOV";
11457  case X86ISD::BRCOND:             return "X86ISD::BRCOND";
11458  case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
11459  case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
11460  case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
11461  case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
11462  case X86ISD::Wrapper:            return "X86ISD::Wrapper";
11463  case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
11464  case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
11465  case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
11466  case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
11467  case X86ISD::PINSRB:             return "X86ISD::PINSRB";
11468  case X86ISD::PINSRW:             return "X86ISD::PINSRW";
11469  case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
11470  case X86ISD::ANDNP:              return "X86ISD::ANDNP";
11471  case X86ISD::PSIGN:              return "X86ISD::PSIGN";
11472  case X86ISD::BLENDV:             return "X86ISD::BLENDV";
11473  case X86ISD::BLENDPW:            return "X86ISD::BLENDPW";
11474  case X86ISD::BLENDPS:            return "X86ISD::BLENDPS";
11475  case X86ISD::BLENDPD:            return "X86ISD::BLENDPD";
11476  case X86ISD::HADD:               return "X86ISD::HADD";
11477  case X86ISD::HSUB:               return "X86ISD::HSUB";
11478  case X86ISD::FHADD:              return "X86ISD::FHADD";
11479  case X86ISD::FHSUB:              return "X86ISD::FHSUB";
11480  case X86ISD::FMAX:               return "X86ISD::FMAX";
11481  case X86ISD::FMIN:               return "X86ISD::FMIN";
11482  case X86ISD::FMAXC:              return "X86ISD::FMAXC";
11483  case X86ISD::FMINC:              return "X86ISD::FMINC";
11484  case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
11485  case X86ISD::FRCP:               return "X86ISD::FRCP";
11486  case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
11487  case X86ISD::TLSBASEADDR:        return "X86ISD::TLSBASEADDR";
11488  case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
11489  case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
11490  case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
11491  case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
11492  case X86ISD::FNSTSW16r:          return "X86ISD::FNSTSW16r";
11493  case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
11494  case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
11495  case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
11496  case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
11497  case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
11498  case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
11499  case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
11500  case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
11501  case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
11502  case X86ISD::VSEXT_MOVL:         return "X86ISD::VSEXT_MOVL";
11503  case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
11504  case X86ISD::VFPEXT:             return "X86ISD::VFPEXT";
11505  case X86ISD::VSHLDQ:             return "X86ISD::VSHLDQ";
11506  case X86ISD::VSRLDQ:             return "X86ISD::VSRLDQ";
11507  case X86ISD::VSHL:               return "X86ISD::VSHL";
11508  case X86ISD::VSRL:               return "X86ISD::VSRL";
11509  case X86ISD::VSRA:               return "X86ISD::VSRA";
11510  case X86ISD::VSHLI:              return "X86ISD::VSHLI";
11511  case X86ISD::VSRLI:              return "X86ISD::VSRLI";
11512  case X86ISD::VSRAI:              return "X86ISD::VSRAI";
11513  case X86ISD::CMPP:               return "X86ISD::CMPP";
11514  case X86ISD::PCMPEQ:             return "X86ISD::PCMPEQ";
11515  case X86ISD::PCMPGT:             return "X86ISD::PCMPGT";
11516  case X86ISD::ADD:                return "X86ISD::ADD";
11517  case X86ISD::SUB:                return "X86ISD::SUB";
11518  case X86ISD::ADC:                return "X86ISD::ADC";
11519  case X86ISD::SBB:                return "X86ISD::SBB";
11520  case X86ISD::SMUL:               return "X86ISD::SMUL";
11521  case X86ISD::UMUL:               return "X86ISD::UMUL";
11522  case X86ISD::INC:                return "X86ISD::INC";
11523  case X86ISD::DEC:                return "X86ISD::DEC";
11524  case X86ISD::OR:                 return "X86ISD::OR";
11525  case X86ISD::XOR:                return "X86ISD::XOR";
11526  case X86ISD::AND:                return "X86ISD::AND";
11527  case X86ISD::ANDN:               return "X86ISD::ANDN";
11528  case X86ISD::BLSI:               return "X86ISD::BLSI";
11529  case X86ISD::BLSMSK:             return "X86ISD::BLSMSK";
11530  case X86ISD::BLSR:               return "X86ISD::BLSR";
11531  case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
11532  case X86ISD::PTEST:              return "X86ISD::PTEST";
11533  case X86ISD::TESTP:              return "X86ISD::TESTP";
11534  case X86ISD::PALIGN:             return "X86ISD::PALIGN";
11535  case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
11536  case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
11537  case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
11538  case X86ISD::SHUFP:              return "X86ISD::SHUFP";
11539  case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
11540  case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
11541  case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
11542  case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
11543  case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
11544  case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
11545  case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
11546  case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
11547  case X86ISD::MOVSD:              return "X86ISD::MOVSD";
11548  case X86ISD::MOVSS:              return "X86ISD::MOVSS";
11549  case X86ISD::UNPCKL:             return "X86ISD::UNPCKL";
11550  case X86ISD::UNPCKH:             return "X86ISD::UNPCKH";
11551  case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
11552  case X86ISD::VPERMILP:           return "X86ISD::VPERMILP";
11553  case X86ISD::VPERM2X128:         return "X86ISD::VPERM2X128";
11554  case X86ISD::VPERMV:             return "X86ISD::VPERMV";
11555  case X86ISD::VPERMI:             return "X86ISD::VPERMI";
11556  case X86ISD::PMULUDQ:            return "X86ISD::PMULUDQ";
11557  case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
11558  case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
11559  case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
11560  case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
11561  case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
11562  case X86ISD::WIN_FTOL:           return "X86ISD::WIN_FTOL";
11563  case X86ISD::SAHF:               return "X86ISD::SAHF";
11564  case X86ISD::RDRAND:             return "X86ISD::RDRAND";
11565  case X86ISD::FMADD:              return "X86ISD::FMADD";
11566  case X86ISD::FMSUB:              return "X86ISD::FMSUB";
11567  case X86ISD::FNMADD:             return "X86ISD::FNMADD";
11568  case X86ISD::FNMSUB:             return "X86ISD::FNMSUB";
11569  case X86ISD::FMADDSUB:           return "X86ISD::FMADDSUB";
11570  case X86ISD::FMSUBADD:           return "X86ISD::FMSUBADD";
11571  }
11572}
11573
11574// isLegalAddressingMode - Return true if the addressing mode represented
11575// by AM is legal for this target, for a load/store of the specified type.
11576bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
11577                                              Type *Ty) const {
11578  // X86 supports extremely general addressing modes.
11579  CodeModel::Model M = getTargetMachine().getCodeModel();
11580  Reloc::Model R = getTargetMachine().getRelocationModel();
11581
11582  // X86 allows a sign-extended 32-bit immediate field as a displacement.
11583  if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
11584    return false;
11585
11586  if (AM.BaseGV) {
11587    unsigned GVFlags =
11588      Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
11589
11590    // If a reference to this global requires an extra load, we can't fold it.
11591    if (isGlobalStubReference(GVFlags))
11592      return false;
11593
11594    // If BaseGV requires a register for the PIC base, we cannot also have a
11595    // BaseReg specified.
11596    if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
11597      return false;
11598
11599    // If lower 4G is not available, then we must use rip-relative addressing.
11600    if ((M != CodeModel::Small || R != Reloc::Static) &&
11601        Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
11602      return false;
11603  }
11604
11605  switch (AM.Scale) {
11606  case 0:
11607  case 1:
11608  case 2:
11609  case 4:
11610  case 8:
11611    // These scales always work.
11612    break;
11613  case 3:
11614  case 5:
11615  case 9:
11616    // These scales are formed with basereg+scalereg.  Only accept if there is
11617    // no basereg yet.
11618    if (AM.HasBaseReg)
11619      return false;
11620    break;
11621  default:  // Other stuff never works.
11622    return false;
11623  }
11624
11625  return true;
11626}
11627
11628
11629bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
11630  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11631    return false;
11632  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
11633  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
11634  if (NumBits1 <= NumBits2)
11635    return false;
11636  return true;
11637}
11638
11639bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11640  return Imm == (int32_t)Imm;
11641}
11642
11643bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
11644  // Can also use sub to handle negated immediates.
11645  return Imm == (int32_t)Imm;
11646}
11647
11648bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
11649  if (!VT1.isInteger() || !VT2.isInteger())
11650    return false;
11651  unsigned NumBits1 = VT1.getSizeInBits();
11652  unsigned NumBits2 = VT2.getSizeInBits();
11653  if (NumBits1 <= NumBits2)
11654    return false;
11655  return true;
11656}
11657
11658bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
11659  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11660  return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
11661}
11662
11663bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
11664  // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
11665  return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
11666}
11667
11668bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
11669  // i16 instructions are longer (0x66 prefix) and potentially slower.
11670  return !(VT1 == MVT::i32 && VT2 == MVT::i16);
11671}
11672
11673/// isShuffleMaskLegal - Targets can use this to indicate that they only
11674/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
11675/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
11676/// are assumed to be legal.
11677bool
11678X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
11679                                      EVT VT) const {
11680  // Very little shuffling can be done for 64-bit vectors right now.
11681  if (VT.getSizeInBits() == 64)
11682    return false;
11683
11684  // FIXME: pshufb, blends, shifts.
11685  return (VT.getVectorNumElements() == 2 ||
11686          ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
11687          isMOVLMask(M, VT) ||
11688          isSHUFPMask(M, VT, Subtarget->hasAVX()) ||
11689          isPSHUFDMask(M, VT) ||
11690          isPSHUFHWMask(M, VT, Subtarget->hasAVX2()) ||
11691          isPSHUFLWMask(M, VT, Subtarget->hasAVX2()) ||
11692          isPALIGNRMask(M, VT, Subtarget) ||
11693          isUNPCKLMask(M, VT, Subtarget->hasAVX2()) ||
11694          isUNPCKHMask(M, VT, Subtarget->hasAVX2()) ||
11695          isUNPCKL_v_undef_Mask(M, VT, Subtarget->hasAVX2()) ||
11696          isUNPCKH_v_undef_Mask(M, VT, Subtarget->hasAVX2()));
11697}
11698
11699bool
11700X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
11701                                          EVT VT) const {
11702  unsigned NumElts = VT.getVectorNumElements();
11703  // FIXME: This collection of masks seems suspect.
11704  if (NumElts == 2)
11705    return true;
11706  if (NumElts == 4 && VT.is128BitVector()) {
11707    return (isMOVLMask(Mask, VT)  ||
11708            isCommutedMOVLMask(Mask, VT, true) ||
11709            isSHUFPMask(Mask, VT, Subtarget->hasAVX()) ||
11710            isSHUFPMask(Mask, VT, Subtarget->hasAVX(), /* Commuted */ true));
11711  }
11712  return false;
11713}
11714
11715//===----------------------------------------------------------------------===//
11716//                           X86 Scheduler Hooks
11717//===----------------------------------------------------------------------===//
11718
11719// private utility function
11720MachineBasicBlock *
11721X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
11722                                                       MachineBasicBlock *MBB,
11723                                                       unsigned regOpc,
11724                                                       unsigned immOpc,
11725                                                       unsigned LoadOpc,
11726                                                       unsigned CXchgOpc,
11727                                                       unsigned notOpc,
11728                                                       unsigned EAXreg,
11729                                                 const TargetRegisterClass *RC,
11730                                                       bool Invert) const {
11731  // For the atomic bitwise operator, we generate
11732  //   thisMBB:
11733  //   newMBB:
11734  //     ld  t1 = [bitinstr.addr]
11735  //     op  t2 = t1, [bitinstr.val]
11736  //     not t3 = t2  (if Invert)
11737  //     mov EAX = t1
11738  //     lcs dest = [bitinstr.addr], t3  [EAX is implicit]
11739  //     bz  newMBB
11740  //     fallthrough -->nextMBB
11741  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11742  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11743  MachineFunction::iterator MBBIter = MBB;
11744  ++MBBIter;
11745
11746  /// First build the CFG
11747  MachineFunction *F = MBB->getParent();
11748  MachineBasicBlock *thisMBB = MBB;
11749  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11750  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11751  F->insert(MBBIter, newMBB);
11752  F->insert(MBBIter, nextMBB);
11753
11754  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11755  nextMBB->splice(nextMBB->begin(), thisMBB,
11756                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11757                  thisMBB->end());
11758  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11759
11760  // Update thisMBB to fall through to newMBB
11761  thisMBB->addSuccessor(newMBB);
11762
11763  // newMBB jumps to itself and fall through to nextMBB
11764  newMBB->addSuccessor(nextMBB);
11765  newMBB->addSuccessor(newMBB);
11766
11767  // Insert instructions into newMBB based on incoming instruction
11768  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11769         "unexpected number of operands");
11770  DebugLoc dl = bInstr->getDebugLoc();
11771  MachineOperand& destOper = bInstr->getOperand(0);
11772  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11773  int numArgs = bInstr->getNumOperands() - 1;
11774  for (int i=0; i < numArgs; ++i)
11775    argOpers[i] = &bInstr->getOperand(i+1);
11776
11777  // x86 address has 4 operands: base, index, scale, and displacement
11778  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11779  int valArgIndx = lastAddrIndx + 1;
11780
11781  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11782  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
11783  for (int i=0; i <= lastAddrIndx; ++i)
11784    (*MIB).addOperand(*argOpers[i]);
11785
11786  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11787  assert((argOpers[valArgIndx]->isReg() ||
11788          argOpers[valArgIndx]->isImm()) &&
11789         "invalid operand");
11790  if (argOpers[valArgIndx]->isReg())
11791    MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
11792  else
11793    MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
11794  MIB.addReg(t1);
11795  (*MIB).addOperand(*argOpers[valArgIndx]);
11796
11797  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11798  if (Invert) {
11799    MIB = BuildMI(newMBB, dl, TII->get(notOpc), t3).addReg(t2);
11800  }
11801  else
11802    t3 = t2;
11803
11804  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
11805  MIB.addReg(t1);
11806
11807  MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
11808  for (int i=0; i <= lastAddrIndx; ++i)
11809    (*MIB).addOperand(*argOpers[i]);
11810  MIB.addReg(t3);
11811  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11812  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11813                    bInstr->memoperands_end());
11814
11815  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11816  MIB.addReg(EAXreg);
11817
11818  // insert branch
11819  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11820
11821  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11822  return nextMBB;
11823}
11824
11825// private utility function:  64 bit atomics on 32 bit host.
11826MachineBasicBlock *
11827X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11828                                                       MachineBasicBlock *MBB,
11829                                                       unsigned regOpcL,
11830                                                       unsigned regOpcH,
11831                                                       unsigned immOpcL,
11832                                                       unsigned immOpcH,
11833                                                       bool Invert) const {
11834  // For the atomic bitwise operator, we generate
11835  //   thisMBB (instructions are in pairs, except cmpxchg8b)
11836  //     ld t1,t2 = [bitinstr.addr]
11837  //   newMBB:
11838  //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11839  //     op  t5, t6 <- out1, out2, [bitinstr.val]
11840  //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11841  //     neg t7, t8 < t5, t6  (if Invert)
11842  //     mov ECX, EBX <- t5, t6
11843  //     mov EAX, EDX <- t1, t2
11844  //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11845  //     mov t3, t4 <- EAX, EDX
11846  //     bz  newMBB
11847  //     result in out1, out2
11848  //     fallthrough -->nextMBB
11849
11850  const TargetRegisterClass *RC = &X86::GR32RegClass;
11851  const unsigned LoadOpc = X86::MOV32rm;
11852  const unsigned NotOpc = X86::NOT32r;
11853  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11854  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11855  MachineFunction::iterator MBBIter = MBB;
11856  ++MBBIter;
11857
11858  /// First build the CFG
11859  MachineFunction *F = MBB->getParent();
11860  MachineBasicBlock *thisMBB = MBB;
11861  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11862  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11863  F->insert(MBBIter, newMBB);
11864  F->insert(MBBIter, nextMBB);
11865
11866  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11867  nextMBB->splice(nextMBB->begin(), thisMBB,
11868                  llvm::next(MachineBasicBlock::iterator(bInstr)),
11869                  thisMBB->end());
11870  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11871
11872  // Update thisMBB to fall through to newMBB
11873  thisMBB->addSuccessor(newMBB);
11874
11875  // newMBB jumps to itself and fall through to nextMBB
11876  newMBB->addSuccessor(nextMBB);
11877  newMBB->addSuccessor(newMBB);
11878
11879  DebugLoc dl = bInstr->getDebugLoc();
11880  // Insert instructions into newMBB based on incoming instruction
11881  // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11882  assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11883         "unexpected number of operands");
11884  MachineOperand& dest1Oper = bInstr->getOperand(0);
11885  MachineOperand& dest2Oper = bInstr->getOperand(1);
11886  MachineOperand* argOpers[2 + X86::AddrNumOperands];
11887  for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11888    argOpers[i] = &bInstr->getOperand(i+2);
11889
11890    // We use some of the operands multiple times, so conservatively just
11891    // clear any kill flags that might be present.
11892    if (argOpers[i]->isReg() && argOpers[i]->isUse())
11893      argOpers[i]->setIsKill(false);
11894  }
11895
11896  // x86 address has 5 operands: base, index, scale, displacement, and segment.
11897  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11898
11899  unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11900  MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11901  for (int i=0; i <= lastAddrIndx; ++i)
11902    (*MIB).addOperand(*argOpers[i]);
11903  unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11904  MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11905  // add 4 to displacement.
11906  for (int i=0; i <= lastAddrIndx-2; ++i)
11907    (*MIB).addOperand(*argOpers[i]);
11908  MachineOperand newOp3 = *(argOpers[3]);
11909  if (newOp3.isImm())
11910    newOp3.setImm(newOp3.getImm()+4);
11911  else
11912    newOp3.setOffset(newOp3.getOffset()+4);
11913  (*MIB).addOperand(newOp3);
11914  (*MIB).addOperand(*argOpers[lastAddrIndx]);
11915
11916  // t3/4 are defined later, at the bottom of the loop
11917  unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11918  unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11919  BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11920    .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11921  BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11922    .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11923
11924  // The subsequent operations should be using the destination registers of
11925  // the PHI instructions.
11926  t1 = dest1Oper.getReg();
11927  t2 = dest2Oper.getReg();
11928
11929  int valArgIndx = lastAddrIndx + 1;
11930  assert((argOpers[valArgIndx]->isReg() ||
11931          argOpers[valArgIndx]->isImm()) &&
11932         "invalid operand");
11933  unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11934  unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11935  if (argOpers[valArgIndx]->isReg())
11936    MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11937  else
11938    MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11939  if (regOpcL != X86::MOV32rr)
11940    MIB.addReg(t1);
11941  (*MIB).addOperand(*argOpers[valArgIndx]);
11942  assert(argOpers[valArgIndx + 1]->isReg() ==
11943         argOpers[valArgIndx]->isReg());
11944  assert(argOpers[valArgIndx + 1]->isImm() ==
11945         argOpers[valArgIndx]->isImm());
11946  if (argOpers[valArgIndx + 1]->isReg())
11947    MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11948  else
11949    MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11950  if (regOpcH != X86::MOV32rr)
11951    MIB.addReg(t2);
11952  (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11953
11954  unsigned t7, t8;
11955  if (Invert) {
11956    t7 = F->getRegInfo().createVirtualRegister(RC);
11957    t8 = F->getRegInfo().createVirtualRegister(RC);
11958    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t7).addReg(t5);
11959    MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t8).addReg(t6);
11960  } else {
11961    t7 = t5;
11962    t8 = t6;
11963  }
11964
11965  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11966  MIB.addReg(t1);
11967  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11968  MIB.addReg(t2);
11969
11970  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11971  MIB.addReg(t7);
11972  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11973  MIB.addReg(t8);
11974
11975  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11976  for (int i=0; i <= lastAddrIndx; ++i)
11977    (*MIB).addOperand(*argOpers[i]);
11978
11979  assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11980  (*MIB).setMemRefs(bInstr->memoperands_begin(),
11981                    bInstr->memoperands_end());
11982
11983  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11984  MIB.addReg(X86::EAX);
11985  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11986  MIB.addReg(X86::EDX);
11987
11988  // insert branch
11989  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11990
11991  bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11992  return nextMBB;
11993}
11994
11995// private utility function
11996MachineBasicBlock *
11997X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11998                                                      MachineBasicBlock *MBB,
11999                                                      unsigned cmovOpc) const {
12000  // For the atomic min/max operator, we generate
12001  //   thisMBB:
12002  //   newMBB:
12003  //     ld t1 = [min/max.addr]
12004  //     mov t2 = [min/max.val]
12005  //     cmp  t1, t2
12006  //     cmov[cond] t2 = t1
12007  //     mov EAX = t1
12008  //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
12009  //     bz   newMBB
12010  //     fallthrough -->nextMBB
12011  //
12012  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12013  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12014  MachineFunction::iterator MBBIter = MBB;
12015  ++MBBIter;
12016
12017  /// First build the CFG
12018  MachineFunction *F = MBB->getParent();
12019  MachineBasicBlock *thisMBB = MBB;
12020  MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
12021  MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
12022  F->insert(MBBIter, newMBB);
12023  F->insert(MBBIter, nextMBB);
12024
12025  // Transfer the remainder of thisMBB and its successor edges to nextMBB.
12026  nextMBB->splice(nextMBB->begin(), thisMBB,
12027                  llvm::next(MachineBasicBlock::iterator(mInstr)),
12028                  thisMBB->end());
12029  nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12030
12031  // Update thisMBB to fall through to newMBB
12032  thisMBB->addSuccessor(newMBB);
12033
12034  // newMBB jumps to newMBB and fall through to nextMBB
12035  newMBB->addSuccessor(nextMBB);
12036  newMBB->addSuccessor(newMBB);
12037
12038  DebugLoc dl = mInstr->getDebugLoc();
12039  // Insert instructions into newMBB based on incoming instruction
12040  assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
12041         "unexpected number of operands");
12042  MachineOperand& destOper = mInstr->getOperand(0);
12043  MachineOperand* argOpers[2 + X86::AddrNumOperands];
12044  int numArgs = mInstr->getNumOperands() - 1;
12045  for (int i=0; i < numArgs; ++i)
12046    argOpers[i] = &mInstr->getOperand(i+1);
12047
12048  // x86 address has 4 operands: base, index, scale, and displacement
12049  int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
12050  int valArgIndx = lastAddrIndx + 1;
12051
12052  unsigned t1 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
12053  MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
12054  for (int i=0; i <= lastAddrIndx; ++i)
12055    (*MIB).addOperand(*argOpers[i]);
12056
12057  // We only support register and immediate values
12058  assert((argOpers[valArgIndx]->isReg() ||
12059          argOpers[valArgIndx]->isImm()) &&
12060         "invalid operand");
12061
12062  unsigned t2 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
12063  if (argOpers[valArgIndx]->isReg())
12064    MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
12065  else
12066    MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
12067  (*MIB).addOperand(*argOpers[valArgIndx]);
12068
12069  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
12070  MIB.addReg(t1);
12071
12072  MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
12073  MIB.addReg(t1);
12074  MIB.addReg(t2);
12075
12076  // Generate movc
12077  unsigned t3 = F->getRegInfo().createVirtualRegister(&X86::GR32RegClass);
12078  MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
12079  MIB.addReg(t2);
12080  MIB.addReg(t1);
12081
12082  // Cmp and exchange if none has modified the memory location
12083  MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
12084  for (int i=0; i <= lastAddrIndx; ++i)
12085    (*MIB).addOperand(*argOpers[i]);
12086  MIB.addReg(t3);
12087  assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
12088  (*MIB).setMemRefs(mInstr->memoperands_begin(),
12089                    mInstr->memoperands_end());
12090
12091  MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
12092  MIB.addReg(X86::EAX);
12093
12094  // insert branch
12095  BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
12096
12097  mInstr->eraseFromParent();   // The pseudo instruction is gone now.
12098  return nextMBB;
12099}
12100
12101// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
12102// or XMM0_V32I8 in AVX all of this code can be replaced with that
12103// in the .td file.
12104MachineBasicBlock *
12105X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
12106                            unsigned numArgs, bool memArg) const {
12107  assert(Subtarget->hasSSE42() &&
12108         "Target must have SSE4.2 or AVX features enabled");
12109
12110  DebugLoc dl = MI->getDebugLoc();
12111  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12112  unsigned Opc;
12113  if (!Subtarget->hasAVX()) {
12114    if (memArg)
12115      Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
12116    else
12117      Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
12118  } else {
12119    if (memArg)
12120      Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
12121    else
12122      Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
12123  }
12124
12125  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
12126  for (unsigned i = 0; i < numArgs; ++i) {
12127    MachineOperand &Op = MI->getOperand(i+1);
12128    if (!(Op.isReg() && Op.isImplicit()))
12129      MIB.addOperand(Op);
12130  }
12131  BuildMI(*BB, MI, dl,
12132    TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
12133    .addReg(X86::XMM0);
12134
12135  MI->eraseFromParent();
12136  return BB;
12137}
12138
12139MachineBasicBlock *
12140X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
12141  DebugLoc dl = MI->getDebugLoc();
12142  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12143
12144  // Address into RAX/EAX, other two args into ECX, EDX.
12145  unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
12146  unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
12147  MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
12148  for (int i = 0; i < X86::AddrNumOperands; ++i)
12149    MIB.addOperand(MI->getOperand(i));
12150
12151  unsigned ValOps = X86::AddrNumOperands;
12152  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
12153    .addReg(MI->getOperand(ValOps).getReg());
12154  BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
12155    .addReg(MI->getOperand(ValOps+1).getReg());
12156
12157  // The instruction doesn't actually take any operands though.
12158  BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
12159
12160  MI->eraseFromParent(); // The pseudo is gone now.
12161  return BB;
12162}
12163
12164MachineBasicBlock *
12165X86TargetLowering::EmitVAARG64WithCustomInserter(
12166                   MachineInstr *MI,
12167                   MachineBasicBlock *MBB) const {
12168  // Emit va_arg instruction on X86-64.
12169
12170  // Operands to this pseudo-instruction:
12171  // 0  ) Output        : destination address (reg)
12172  // 1-5) Input         : va_list address (addr, i64mem)
12173  // 6  ) ArgSize       : Size (in bytes) of vararg type
12174  // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
12175  // 8  ) Align         : Alignment of type
12176  // 9  ) EFLAGS (implicit-def)
12177
12178  assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
12179  assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
12180
12181  unsigned DestReg = MI->getOperand(0).getReg();
12182  MachineOperand &Base = MI->getOperand(1);
12183  MachineOperand &Scale = MI->getOperand(2);
12184  MachineOperand &Index = MI->getOperand(3);
12185  MachineOperand &Disp = MI->getOperand(4);
12186  MachineOperand &Segment = MI->getOperand(5);
12187  unsigned ArgSize = MI->getOperand(6).getImm();
12188  unsigned ArgMode = MI->getOperand(7).getImm();
12189  unsigned Align = MI->getOperand(8).getImm();
12190
12191  // Memory Reference
12192  assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
12193  MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
12194  MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
12195
12196  // Machine Information
12197  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12198  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
12199  const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
12200  const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
12201  DebugLoc DL = MI->getDebugLoc();
12202
12203  // struct va_list {
12204  //   i32   gp_offset
12205  //   i32   fp_offset
12206  //   i64   overflow_area (address)
12207  //   i64   reg_save_area (address)
12208  // }
12209  // sizeof(va_list) = 24
12210  // alignment(va_list) = 8
12211
12212  unsigned TotalNumIntRegs = 6;
12213  unsigned TotalNumXMMRegs = 8;
12214  bool UseGPOffset = (ArgMode == 1);
12215  bool UseFPOffset = (ArgMode == 2);
12216  unsigned MaxOffset = TotalNumIntRegs * 8 +
12217                       (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
12218
12219  /* Align ArgSize to a multiple of 8 */
12220  unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
12221  bool NeedsAlign = (Align > 8);
12222
12223  MachineBasicBlock *thisMBB = MBB;
12224  MachineBasicBlock *overflowMBB;
12225  MachineBasicBlock *offsetMBB;
12226  MachineBasicBlock *endMBB;
12227
12228  unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
12229  unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
12230  unsigned OffsetReg = 0;
12231
12232  if (!UseGPOffset && !UseFPOffset) {
12233    // If we only pull from the overflow region, we don't create a branch.
12234    // We don't need to alter control flow.
12235    OffsetDestReg = 0; // unused
12236    OverflowDestReg = DestReg;
12237
12238    offsetMBB = NULL;
12239    overflowMBB = thisMBB;
12240    endMBB = thisMBB;
12241  } else {
12242    // First emit code to check if gp_offset (or fp_offset) is below the bound.
12243    // If so, pull the argument from reg_save_area. (branch to offsetMBB)
12244    // If not, pull from overflow_area. (branch to overflowMBB)
12245    //
12246    //       thisMBB
12247    //         |     .
12248    //         |        .
12249    //     offsetMBB   overflowMBB
12250    //         |        .
12251    //         |     .
12252    //        endMBB
12253
12254    // Registers for the PHI in endMBB
12255    OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
12256    OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
12257
12258    const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12259    MachineFunction *MF = MBB->getParent();
12260    overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12261    offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12262    endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12263
12264    MachineFunction::iterator MBBIter = MBB;
12265    ++MBBIter;
12266
12267    // Insert the new basic blocks
12268    MF->insert(MBBIter, offsetMBB);
12269    MF->insert(MBBIter, overflowMBB);
12270    MF->insert(MBBIter, endMBB);
12271
12272    // Transfer the remainder of MBB and its successor edges to endMBB.
12273    endMBB->splice(endMBB->begin(), thisMBB,
12274                    llvm::next(MachineBasicBlock::iterator(MI)),
12275                    thisMBB->end());
12276    endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
12277
12278    // Make offsetMBB and overflowMBB successors of thisMBB
12279    thisMBB->addSuccessor(offsetMBB);
12280    thisMBB->addSuccessor(overflowMBB);
12281
12282    // endMBB is a successor of both offsetMBB and overflowMBB
12283    offsetMBB->addSuccessor(endMBB);
12284    overflowMBB->addSuccessor(endMBB);
12285
12286    // Load the offset value into a register
12287    OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12288    BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
12289      .addOperand(Base)
12290      .addOperand(Scale)
12291      .addOperand(Index)
12292      .addDisp(Disp, UseFPOffset ? 4 : 0)
12293      .addOperand(Segment)
12294      .setMemRefs(MMOBegin, MMOEnd);
12295
12296    // Check if there is enough room left to pull this argument.
12297    BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
12298      .addReg(OffsetReg)
12299      .addImm(MaxOffset + 8 - ArgSizeA8);
12300
12301    // Branch to "overflowMBB" if offset >= max
12302    // Fall through to "offsetMBB" otherwise
12303    BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
12304      .addMBB(overflowMBB);
12305  }
12306
12307  // In offsetMBB, emit code to use the reg_save_area.
12308  if (offsetMBB) {
12309    assert(OffsetReg != 0);
12310
12311    // Read the reg_save_area address.
12312    unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
12313    BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
12314      .addOperand(Base)
12315      .addOperand(Scale)
12316      .addOperand(Index)
12317      .addDisp(Disp, 16)
12318      .addOperand(Segment)
12319      .setMemRefs(MMOBegin, MMOEnd);
12320
12321    // Zero-extend the offset
12322    unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
12323      BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
12324        .addImm(0)
12325        .addReg(OffsetReg)
12326        .addImm(X86::sub_32bit);
12327
12328    // Add the offset to the reg_save_area to get the final address.
12329    BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
12330      .addReg(OffsetReg64)
12331      .addReg(RegSaveReg);
12332
12333    // Compute the offset for the next argument
12334    unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
12335    BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
12336      .addReg(OffsetReg)
12337      .addImm(UseFPOffset ? 16 : 8);
12338
12339    // Store it back into the va_list.
12340    BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
12341      .addOperand(Base)
12342      .addOperand(Scale)
12343      .addOperand(Index)
12344      .addDisp(Disp, UseFPOffset ? 4 : 0)
12345      .addOperand(Segment)
12346      .addReg(NextOffsetReg)
12347      .setMemRefs(MMOBegin, MMOEnd);
12348
12349    // Jump to endMBB
12350    BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
12351      .addMBB(endMBB);
12352  }
12353
12354  //
12355  // Emit code to use overflow area
12356  //
12357
12358  // Load the overflow_area address into a register.
12359  unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
12360  BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
12361    .addOperand(Base)
12362    .addOperand(Scale)
12363    .addOperand(Index)
12364    .addDisp(Disp, 8)
12365    .addOperand(Segment)
12366    .setMemRefs(MMOBegin, MMOEnd);
12367
12368  // If we need to align it, do so. Otherwise, just copy the address
12369  // to OverflowDestReg.
12370  if (NeedsAlign) {
12371    // Align the overflow address
12372    assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
12373    unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
12374
12375    // aligned_addr = (addr + (align-1)) & ~(align-1)
12376    BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
12377      .addReg(OverflowAddrReg)
12378      .addImm(Align-1);
12379
12380    BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
12381      .addReg(TmpReg)
12382      .addImm(~(uint64_t)(Align-1));
12383  } else {
12384    BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
12385      .addReg(OverflowAddrReg);
12386  }
12387
12388  // Compute the next overflow address after this argument.
12389  // (the overflow address should be kept 8-byte aligned)
12390  unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
12391  BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
12392    .addReg(OverflowDestReg)
12393    .addImm(ArgSizeA8);
12394
12395  // Store the new overflow address.
12396  BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
12397    .addOperand(Base)
12398    .addOperand(Scale)
12399    .addOperand(Index)
12400    .addDisp(Disp, 8)
12401    .addOperand(Segment)
12402    .addReg(NextAddrReg)
12403    .setMemRefs(MMOBegin, MMOEnd);
12404
12405  // If we branched, emit the PHI to the front of endMBB.
12406  if (offsetMBB) {
12407    BuildMI(*endMBB, endMBB->begin(), DL,
12408            TII->get(X86::PHI), DestReg)
12409      .addReg(OffsetDestReg).addMBB(offsetMBB)
12410      .addReg(OverflowDestReg).addMBB(overflowMBB);
12411  }
12412
12413  // Erase the pseudo instruction
12414  MI->eraseFromParent();
12415
12416  return endMBB;
12417}
12418
12419MachineBasicBlock *
12420X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
12421                                                 MachineInstr *MI,
12422                                                 MachineBasicBlock *MBB) const {
12423  // Emit code to save XMM registers to the stack. The ABI says that the
12424  // number of registers to save is given in %al, so it's theoretically
12425  // possible to do an indirect jump trick to avoid saving all of them,
12426  // however this code takes a simpler approach and just executes all
12427  // of the stores if %al is non-zero. It's less code, and it's probably
12428  // easier on the hardware branch predictor, and stores aren't all that
12429  // expensive anyway.
12430
12431  // Create the new basic blocks. One block contains all the XMM stores,
12432  // and one block is the final destination regardless of whether any
12433  // stores were performed.
12434  const BasicBlock *LLVM_BB = MBB->getBasicBlock();
12435  MachineFunction *F = MBB->getParent();
12436  MachineFunction::iterator MBBIter = MBB;
12437  ++MBBIter;
12438  MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
12439  MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
12440  F->insert(MBBIter, XMMSaveMBB);
12441  F->insert(MBBIter, EndMBB);
12442
12443  // Transfer the remainder of MBB and its successor edges to EndMBB.
12444  EndMBB->splice(EndMBB->begin(), MBB,
12445                 llvm::next(MachineBasicBlock::iterator(MI)),
12446                 MBB->end());
12447  EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
12448
12449  // The original block will now fall through to the XMM save block.
12450  MBB->addSuccessor(XMMSaveMBB);
12451  // The XMMSaveMBB will fall through to the end block.
12452  XMMSaveMBB->addSuccessor(EndMBB);
12453
12454  // Now add the instructions.
12455  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12456  DebugLoc DL = MI->getDebugLoc();
12457
12458  unsigned CountReg = MI->getOperand(0).getReg();
12459  int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
12460  int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
12461
12462  if (!Subtarget->isTargetWin64()) {
12463    // If %al is 0, branch around the XMM save block.
12464    BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
12465    BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
12466    MBB->addSuccessor(EndMBB);
12467  }
12468
12469  unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
12470  // In the XMM save block, save all the XMM argument registers.
12471  for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
12472    int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
12473    MachineMemOperand *MMO =
12474      F->getMachineMemOperand(
12475          MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
12476        MachineMemOperand::MOStore,
12477        /*Size=*/16, /*Align=*/16);
12478    BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
12479      .addFrameIndex(RegSaveFrameIndex)
12480      .addImm(/*Scale=*/1)
12481      .addReg(/*IndexReg=*/0)
12482      .addImm(/*Disp=*/Offset)
12483      .addReg(/*Segment=*/0)
12484      .addReg(MI->getOperand(i).getReg())
12485      .addMemOperand(MMO);
12486  }
12487
12488  MI->eraseFromParent();   // The pseudo instruction is gone now.
12489
12490  return EndMBB;
12491}
12492
12493// The EFLAGS operand of SelectItr might be missing a kill marker
12494// because there were multiple uses of EFLAGS, and ISel didn't know
12495// which to mark. Figure out whether SelectItr should have had a
12496// kill marker, and set it if it should. Returns the correct kill
12497// marker value.
12498static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
12499                                     MachineBasicBlock* BB,
12500                                     const TargetRegisterInfo* TRI) {
12501  // Scan forward through BB for a use/def of EFLAGS.
12502  MachineBasicBlock::iterator miI(llvm::next(SelectItr));
12503  for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
12504    const MachineInstr& mi = *miI;
12505    if (mi.readsRegister(X86::EFLAGS))
12506      return false;
12507    if (mi.definesRegister(X86::EFLAGS))
12508      break; // Should have kill-flag - update below.
12509  }
12510
12511  // If we hit the end of the block, check whether EFLAGS is live into a
12512  // successor.
12513  if (miI == BB->end()) {
12514    for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
12515                                          sEnd = BB->succ_end();
12516         sItr != sEnd; ++sItr) {
12517      MachineBasicBlock* succ = *sItr;
12518      if (succ->isLiveIn(X86::EFLAGS))
12519        return false;
12520    }
12521  }
12522
12523  // We found a def, or hit the end of the basic block and EFLAGS wasn't live
12524  // out. SelectMI should have a kill flag on EFLAGS.
12525  SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
12526  return true;
12527}
12528
12529MachineBasicBlock *
12530X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
12531                                     MachineBasicBlock *BB) const {
12532  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12533  DebugLoc DL = MI->getDebugLoc();
12534
12535  // To "insert" a SELECT_CC instruction, we actually have to insert the
12536  // diamond control-flow pattern.  The incoming instruction knows the
12537  // destination vreg to set, the condition code register to branch on, the
12538  // true/false values to select between, and a branch opcode to use.
12539  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12540  MachineFunction::iterator It = BB;
12541  ++It;
12542
12543  //  thisMBB:
12544  //  ...
12545  //   TrueVal = ...
12546  //   cmpTY ccX, r1, r2
12547  //   bCC copy1MBB
12548  //   fallthrough --> copy0MBB
12549  MachineBasicBlock *thisMBB = BB;
12550  MachineFunction *F = BB->getParent();
12551  MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12552  MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12553  F->insert(It, copy0MBB);
12554  F->insert(It, sinkMBB);
12555
12556  // If the EFLAGS register isn't dead in the terminator, then claim that it's
12557  // live into the sink and copy blocks.
12558  const TargetRegisterInfo* TRI = getTargetMachine().getRegisterInfo();
12559  if (!MI->killsRegister(X86::EFLAGS) &&
12560      !checkAndUpdateEFLAGSKill(MI, BB, TRI)) {
12561    copy0MBB->addLiveIn(X86::EFLAGS);
12562    sinkMBB->addLiveIn(X86::EFLAGS);
12563  }
12564
12565  // Transfer the remainder of BB and its successor edges to sinkMBB.
12566  sinkMBB->splice(sinkMBB->begin(), BB,
12567                  llvm::next(MachineBasicBlock::iterator(MI)),
12568                  BB->end());
12569  sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12570
12571  // Add the true and fallthrough blocks as its successors.
12572  BB->addSuccessor(copy0MBB);
12573  BB->addSuccessor(sinkMBB);
12574
12575  // Create the conditional branch instruction.
12576  unsigned Opc =
12577    X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
12578  BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
12579
12580  //  copy0MBB:
12581  //   %FalseValue = ...
12582  //   # fallthrough to sinkMBB
12583  copy0MBB->addSuccessor(sinkMBB);
12584
12585  //  sinkMBB:
12586  //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12587  //  ...
12588  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12589          TII->get(X86::PHI), MI->getOperand(0).getReg())
12590    .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
12591    .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
12592
12593  MI->eraseFromParent();   // The pseudo instruction is gone now.
12594  return sinkMBB;
12595}
12596
12597MachineBasicBlock *
12598X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
12599                                        bool Is64Bit) const {
12600  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12601  DebugLoc DL = MI->getDebugLoc();
12602  MachineFunction *MF = BB->getParent();
12603  const BasicBlock *LLVM_BB = BB->getBasicBlock();
12604
12605  assert(getTargetMachine().Options.EnableSegmentedStacks);
12606
12607  unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
12608  unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
12609
12610  // BB:
12611  //  ... [Till the alloca]
12612  // If stacklet is not large enough, jump to mallocMBB
12613  //
12614  // bumpMBB:
12615  //  Allocate by subtracting from RSP
12616  //  Jump to continueMBB
12617  //
12618  // mallocMBB:
12619  //  Allocate by call to runtime
12620  //
12621  // continueMBB:
12622  //  ...
12623  //  [rest of original BB]
12624  //
12625
12626  MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12627  MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12628  MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
12629
12630  MachineRegisterInfo &MRI = MF->getRegInfo();
12631  const TargetRegisterClass *AddrRegClass =
12632    getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
12633
12634  unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12635    bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
12636    tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
12637    SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
12638    sizeVReg = MI->getOperand(1).getReg(),
12639    physSPReg = Is64Bit ? X86::RSP : X86::ESP;
12640
12641  MachineFunction::iterator MBBIter = BB;
12642  ++MBBIter;
12643
12644  MF->insert(MBBIter, bumpMBB);
12645  MF->insert(MBBIter, mallocMBB);
12646  MF->insert(MBBIter, continueMBB);
12647
12648  continueMBB->splice(continueMBB->begin(), BB, llvm::next
12649                      (MachineBasicBlock::iterator(MI)), BB->end());
12650  continueMBB->transferSuccessorsAndUpdatePHIs(BB);
12651
12652  // Add code to the main basic block to check if the stack limit has been hit,
12653  // and if so, jump to mallocMBB otherwise to bumpMBB.
12654  BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
12655  BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
12656    .addReg(tmpSPVReg).addReg(sizeVReg);
12657  BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
12658    .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
12659    .addReg(SPLimitVReg);
12660  BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
12661
12662  // bumpMBB simply decreases the stack pointer, since we know the current
12663  // stacklet has enough space.
12664  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
12665    .addReg(SPLimitVReg);
12666  BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
12667    .addReg(SPLimitVReg);
12668  BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12669
12670  // Calls into a routine in libgcc to allocate more space from the heap.
12671  const uint32_t *RegMask =
12672    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12673  if (Is64Bit) {
12674    BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
12675      .addReg(sizeVReg);
12676    BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
12677      .addExternalSymbol("__morestack_allocate_stack_space")
12678      .addRegMask(RegMask)
12679      .addReg(X86::RDI, RegState::Implicit)
12680      .addReg(X86::RAX, RegState::ImplicitDefine);
12681  } else {
12682    BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
12683      .addImm(12);
12684    BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
12685    BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
12686      .addExternalSymbol("__morestack_allocate_stack_space")
12687      .addRegMask(RegMask)
12688      .addReg(X86::EAX, RegState::ImplicitDefine);
12689  }
12690
12691  if (!Is64Bit)
12692    BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
12693      .addImm(16);
12694
12695  BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
12696    .addReg(Is64Bit ? X86::RAX : X86::EAX);
12697  BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
12698
12699  // Set up the CFG correctly.
12700  BB->addSuccessor(bumpMBB);
12701  BB->addSuccessor(mallocMBB);
12702  mallocMBB->addSuccessor(continueMBB);
12703  bumpMBB->addSuccessor(continueMBB);
12704
12705  // Take care of the PHI nodes.
12706  BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
12707          MI->getOperand(0).getReg())
12708    .addReg(mallocPtrVReg).addMBB(mallocMBB)
12709    .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
12710
12711  // Delete the original pseudo instruction.
12712  MI->eraseFromParent();
12713
12714  // And we're done.
12715  return continueMBB;
12716}
12717
12718MachineBasicBlock *
12719X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
12720                                          MachineBasicBlock *BB) const {
12721  const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12722  DebugLoc DL = MI->getDebugLoc();
12723
12724  assert(!Subtarget->isTargetEnvMacho());
12725
12726  // The lowering is pretty easy: we're just emitting the call to _alloca.  The
12727  // non-trivial part is impdef of ESP.
12728
12729  if (Subtarget->isTargetWin64()) {
12730    if (Subtarget->isTargetCygMing()) {
12731      // ___chkstk(Mingw64):
12732      // Clobbers R10, R11, RAX and EFLAGS.
12733      // Updates RSP.
12734      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12735        .addExternalSymbol("___chkstk")
12736        .addReg(X86::RAX, RegState::Implicit)
12737        .addReg(X86::RSP, RegState::Implicit)
12738        .addReg(X86::RAX, RegState::Define | RegState::Implicit)
12739        .addReg(X86::RSP, RegState::Define | RegState::Implicit)
12740        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12741    } else {
12742      // __chkstk(MSVCRT): does not update stack pointer.
12743      // Clobbers R10, R11 and EFLAGS.
12744      // FIXME: RAX(allocated size) might be reused and not killed.
12745      BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
12746        .addExternalSymbol("__chkstk")
12747        .addReg(X86::RAX, RegState::Implicit)
12748        .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12749      // RAX has the offset to subtracted from RSP.
12750      BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
12751        .addReg(X86::RSP)
12752        .addReg(X86::RAX);
12753    }
12754  } else {
12755    const char *StackProbeSymbol =
12756      Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
12757
12758    BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
12759      .addExternalSymbol(StackProbeSymbol)
12760      .addReg(X86::EAX, RegState::Implicit)
12761      .addReg(X86::ESP, RegState::Implicit)
12762      .addReg(X86::EAX, RegState::Define | RegState::Implicit)
12763      .addReg(X86::ESP, RegState::Define | RegState::Implicit)
12764      .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
12765  }
12766
12767  MI->eraseFromParent();   // The pseudo instruction is gone now.
12768  return BB;
12769}
12770
12771MachineBasicBlock *
12772X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
12773                                      MachineBasicBlock *BB) const {
12774  // This is pretty easy.  We're taking the value that we received from
12775  // our load from the relocation, sticking it in either RDI (x86-64)
12776  // or EAX and doing an indirect call.  The return value will then
12777  // be in the normal return register.
12778  const X86InstrInfo *TII
12779    = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
12780  DebugLoc DL = MI->getDebugLoc();
12781  MachineFunction *F = BB->getParent();
12782
12783  assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
12784  assert(MI->getOperand(3).isGlobal() && "This should be a global");
12785
12786  // Get a register mask for the lowered call.
12787  // FIXME: The 32-bit calls have non-standard calling conventions. Use a
12788  // proper register mask.
12789  const uint32_t *RegMask =
12790    getTargetMachine().getRegisterInfo()->getCallPreservedMask(CallingConv::C);
12791  if (Subtarget->is64Bit()) {
12792    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12793                                      TII->get(X86::MOV64rm), X86::RDI)
12794    .addReg(X86::RIP)
12795    .addImm(0).addReg(0)
12796    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12797                      MI->getOperand(3).getTargetFlags())
12798    .addReg(0);
12799    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
12800    addDirectMem(MIB, X86::RDI);
12801    MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
12802  } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
12803    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12804                                      TII->get(X86::MOV32rm), X86::EAX)
12805    .addReg(0)
12806    .addImm(0).addReg(0)
12807    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12808                      MI->getOperand(3).getTargetFlags())
12809    .addReg(0);
12810    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12811    addDirectMem(MIB, X86::EAX);
12812    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12813  } else {
12814    MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
12815                                      TII->get(X86::MOV32rm), X86::EAX)
12816    .addReg(TII->getGlobalBaseReg(F))
12817    .addImm(0).addReg(0)
12818    .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
12819                      MI->getOperand(3).getTargetFlags())
12820    .addReg(0);
12821    MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
12822    addDirectMem(MIB, X86::EAX);
12823    MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
12824  }
12825
12826  MI->eraseFromParent(); // The pseudo instruction is gone now.
12827  return BB;
12828}
12829
12830MachineBasicBlock *
12831X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
12832                                               MachineBasicBlock *BB) const {
12833  switch (MI->getOpcode()) {
12834  default: llvm_unreachable("Unexpected instr type to insert");
12835  case X86::TAILJMPd64:
12836  case X86::TAILJMPr64:
12837  case X86::TAILJMPm64:
12838    llvm_unreachable("TAILJMP64 would not be touched here.");
12839  case X86::TCRETURNdi64:
12840  case X86::TCRETURNri64:
12841  case X86::TCRETURNmi64:
12842    return BB;
12843  case X86::WIN_ALLOCA:
12844    return EmitLoweredWinAlloca(MI, BB);
12845  case X86::SEG_ALLOCA_32:
12846    return EmitLoweredSegAlloca(MI, BB, false);
12847  case X86::SEG_ALLOCA_64:
12848    return EmitLoweredSegAlloca(MI, BB, true);
12849  case X86::TLSCall_32:
12850  case X86::TLSCall_64:
12851    return EmitLoweredTLSCall(MI, BB);
12852  case X86::CMOV_GR8:
12853  case X86::CMOV_FR32:
12854  case X86::CMOV_FR64:
12855  case X86::CMOV_V4F32:
12856  case X86::CMOV_V2F64:
12857  case X86::CMOV_V2I64:
12858  case X86::CMOV_V8F32:
12859  case X86::CMOV_V4F64:
12860  case X86::CMOV_V4I64:
12861  case X86::CMOV_GR16:
12862  case X86::CMOV_GR32:
12863  case X86::CMOV_RFP32:
12864  case X86::CMOV_RFP64:
12865  case X86::CMOV_RFP80:
12866    return EmitLoweredSelect(MI, BB);
12867
12868  case X86::FP32_TO_INT16_IN_MEM:
12869  case X86::FP32_TO_INT32_IN_MEM:
12870  case X86::FP32_TO_INT64_IN_MEM:
12871  case X86::FP64_TO_INT16_IN_MEM:
12872  case X86::FP64_TO_INT32_IN_MEM:
12873  case X86::FP64_TO_INT64_IN_MEM:
12874  case X86::FP80_TO_INT16_IN_MEM:
12875  case X86::FP80_TO_INT32_IN_MEM:
12876  case X86::FP80_TO_INT64_IN_MEM: {
12877    const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12878    DebugLoc DL = MI->getDebugLoc();
12879
12880    // Change the floating point control register to use "round towards zero"
12881    // mode when truncating to an integer value.
12882    MachineFunction *F = BB->getParent();
12883    int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12884    addFrameReference(BuildMI(*BB, MI, DL,
12885                              TII->get(X86::FNSTCW16m)), CWFrameIdx);
12886
12887    // Load the old value of the high byte of the control word...
12888    unsigned OldCW =
12889      F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
12890    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12891                      CWFrameIdx);
12892
12893    // Set the high part to be round to zero...
12894    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12895      .addImm(0xC7F);
12896
12897    // Reload the modified control word now...
12898    addFrameReference(BuildMI(*BB, MI, DL,
12899                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12900
12901    // Restore the memory image of control word to original value
12902    addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12903      .addReg(OldCW);
12904
12905    // Get the X86 opcode to use.
12906    unsigned Opc;
12907    switch (MI->getOpcode()) {
12908    default: llvm_unreachable("illegal opcode!");
12909    case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12910    case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12911    case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12912    case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12913    case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12914    case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12915    case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12916    case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12917    case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12918    }
12919
12920    X86AddressMode AM;
12921    MachineOperand &Op = MI->getOperand(0);
12922    if (Op.isReg()) {
12923      AM.BaseType = X86AddressMode::RegBase;
12924      AM.Base.Reg = Op.getReg();
12925    } else {
12926      AM.BaseType = X86AddressMode::FrameIndexBase;
12927      AM.Base.FrameIndex = Op.getIndex();
12928    }
12929    Op = MI->getOperand(1);
12930    if (Op.isImm())
12931      AM.Scale = Op.getImm();
12932    Op = MI->getOperand(2);
12933    if (Op.isImm())
12934      AM.IndexReg = Op.getImm();
12935    Op = MI->getOperand(3);
12936    if (Op.isGlobal()) {
12937      AM.GV = Op.getGlobal();
12938    } else {
12939      AM.Disp = Op.getImm();
12940    }
12941    addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12942                      .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12943
12944    // Reload the original control word now.
12945    addFrameReference(BuildMI(*BB, MI, DL,
12946                              TII->get(X86::FLDCW16m)), CWFrameIdx);
12947
12948    MI->eraseFromParent();   // The pseudo instruction is gone now.
12949    return BB;
12950  }
12951    // String/text processing lowering.
12952  case X86::PCMPISTRM128REG:
12953  case X86::VPCMPISTRM128REG:
12954  case X86::PCMPISTRM128MEM:
12955  case X86::VPCMPISTRM128MEM:
12956  case X86::PCMPESTRM128REG:
12957  case X86::VPCMPESTRM128REG:
12958  case X86::PCMPESTRM128MEM:
12959  case X86::VPCMPESTRM128MEM: {
12960    unsigned NumArgs;
12961    bool MemArg;
12962    switch (MI->getOpcode()) {
12963    default: llvm_unreachable("illegal opcode!");
12964    case X86::PCMPISTRM128REG:
12965    case X86::VPCMPISTRM128REG:
12966      NumArgs = 3; MemArg = false; break;
12967    case X86::PCMPISTRM128MEM:
12968    case X86::VPCMPISTRM128MEM:
12969      NumArgs = 3; MemArg = true; break;
12970    case X86::PCMPESTRM128REG:
12971    case X86::VPCMPESTRM128REG:
12972      NumArgs = 5; MemArg = false; break;
12973    case X86::PCMPESTRM128MEM:
12974    case X86::VPCMPESTRM128MEM:
12975      NumArgs = 5; MemArg = true; break;
12976    }
12977    return EmitPCMP(MI, BB, NumArgs, MemArg);
12978  }
12979
12980    // Thread synchronization.
12981  case X86::MONITOR:
12982    return EmitMonitor(MI, BB);
12983
12984    // Atomic Lowering.
12985  case X86::ATOMMIN32:
12986  case X86::ATOMMAX32:
12987  case X86::ATOMUMIN32:
12988  case X86::ATOMUMAX32:
12989  case X86::ATOMMIN16:
12990  case X86::ATOMMAX16:
12991  case X86::ATOMUMIN16:
12992  case X86::ATOMUMAX16:
12993  case X86::ATOMMIN64:
12994  case X86::ATOMMAX64:
12995  case X86::ATOMUMIN64:
12996  case X86::ATOMUMAX64: {
12997    unsigned Opc;
12998    switch (MI->getOpcode()) {
12999    default: llvm_unreachable("illegal opcode!");
13000    case X86::ATOMMIN32:  Opc = X86::CMOVL32rr; break;
13001    case X86::ATOMMAX32:  Opc = X86::CMOVG32rr; break;
13002    case X86::ATOMUMIN32: Opc = X86::CMOVB32rr; break;
13003    case X86::ATOMUMAX32: Opc = X86::CMOVA32rr; break;
13004    case X86::ATOMMIN16:  Opc = X86::CMOVL16rr; break;
13005    case X86::ATOMMAX16:  Opc = X86::CMOVG16rr; break;
13006    case X86::ATOMUMIN16: Opc = X86::CMOVB16rr; break;
13007    case X86::ATOMUMAX16: Opc = X86::CMOVA16rr; break;
13008    case X86::ATOMMIN64:  Opc = X86::CMOVL64rr; break;
13009    case X86::ATOMMAX64:  Opc = X86::CMOVG64rr; break;
13010    case X86::ATOMUMIN64: Opc = X86::CMOVB64rr; break;
13011    case X86::ATOMUMAX64: Opc = X86::CMOVA64rr; break;
13012    // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
13013    }
13014    return EmitAtomicMinMaxWithCustomInserter(MI, BB, Opc);
13015  }
13016
13017  case X86::ATOMAND32:
13018  case X86::ATOMOR32:
13019  case X86::ATOMXOR32:
13020  case X86::ATOMNAND32: {
13021    bool Invert = false;
13022    unsigned RegOpc, ImmOpc;
13023    switch (MI->getOpcode()) {
13024    default: llvm_unreachable("illegal opcode!");
13025    case X86::ATOMAND32:
13026      RegOpc = X86::AND32rr; ImmOpc = X86::AND32ri; break;
13027    case X86::ATOMOR32:
13028      RegOpc = X86::OR32rr;  ImmOpc = X86::OR32ri; break;
13029    case X86::ATOMXOR32:
13030      RegOpc = X86::XOR32rr; ImmOpc = X86::XOR32ri; break;
13031    case X86::ATOMNAND32:
13032      RegOpc = X86::AND32rr; ImmOpc = X86::AND32ri; Invert = true; break;
13033    }
13034    return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
13035                                               X86::MOV32rm, X86::LCMPXCHG32,
13036                                               X86::NOT32r, X86::EAX,
13037                                               &X86::GR32RegClass, Invert);
13038  }
13039
13040  case X86::ATOMAND16:
13041  case X86::ATOMOR16:
13042  case X86::ATOMXOR16:
13043  case X86::ATOMNAND16: {
13044    bool Invert = false;
13045    unsigned RegOpc, ImmOpc;
13046    switch (MI->getOpcode()) {
13047    default: llvm_unreachable("illegal opcode!");
13048    case X86::ATOMAND16:
13049      RegOpc = X86::AND16rr; ImmOpc = X86::AND16ri; break;
13050    case X86::ATOMOR16:
13051      RegOpc = X86::OR16rr;  ImmOpc = X86::OR16ri; break;
13052    case X86::ATOMXOR16:
13053      RegOpc = X86::XOR16rr; ImmOpc = X86::XOR16ri; break;
13054    case X86::ATOMNAND16:
13055      RegOpc = X86::AND16rr; ImmOpc = X86::AND16ri; Invert = true; break;
13056    }
13057    return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
13058                                               X86::MOV16rm, X86::LCMPXCHG16,
13059                                               X86::NOT16r, X86::AX,
13060                                               &X86::GR16RegClass, Invert);
13061  }
13062
13063  case X86::ATOMAND8:
13064  case X86::ATOMOR8:
13065  case X86::ATOMXOR8:
13066  case X86::ATOMNAND8: {
13067    bool Invert = false;
13068    unsigned RegOpc, ImmOpc;
13069    switch (MI->getOpcode()) {
13070    default: llvm_unreachable("illegal opcode!");
13071    case X86::ATOMAND8:
13072      RegOpc = X86::AND8rr; ImmOpc = X86::AND8ri; break;
13073    case X86::ATOMOR8:
13074      RegOpc = X86::OR8rr;  ImmOpc = X86::OR8ri; break;
13075    case X86::ATOMXOR8:
13076      RegOpc = X86::XOR8rr; ImmOpc = X86::XOR8ri; break;
13077    case X86::ATOMNAND8:
13078      RegOpc = X86::AND8rr; ImmOpc = X86::AND8ri; Invert = true; break;
13079    }
13080    return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
13081                                               X86::MOV8rm, X86::LCMPXCHG8,
13082                                               X86::NOT8r, X86::AL,
13083                                               &X86::GR8RegClass, Invert);
13084  }
13085
13086  // This group is for 64-bit host.
13087  case X86::ATOMAND64:
13088  case X86::ATOMOR64:
13089  case X86::ATOMXOR64:
13090  case X86::ATOMNAND64: {
13091    bool Invert = false;
13092    unsigned RegOpc, ImmOpc;
13093    switch (MI->getOpcode()) {
13094    default: llvm_unreachable("illegal opcode!");
13095    case X86::ATOMAND64:
13096      RegOpc = X86::AND64rr; ImmOpc = X86::AND64ri32; break;
13097    case X86::ATOMOR64:
13098      RegOpc = X86::OR64rr;  ImmOpc = X86::OR64ri32; break;
13099    case X86::ATOMXOR64:
13100      RegOpc = X86::XOR64rr; ImmOpc = X86::XOR64ri32; break;
13101    case X86::ATOMNAND64:
13102      RegOpc = X86::AND64rr; ImmOpc = X86::AND64ri32; Invert = true; break;
13103    }
13104    return EmitAtomicBitwiseWithCustomInserter(MI, BB, RegOpc, ImmOpc,
13105                                               X86::MOV64rm, X86::LCMPXCHG64,
13106                                               X86::NOT64r, X86::RAX,
13107                                               &X86::GR64RegClass, Invert);
13108  }
13109
13110  // This group does 64-bit operations on a 32-bit host.
13111  case X86::ATOMAND6432:
13112  case X86::ATOMOR6432:
13113  case X86::ATOMXOR6432:
13114  case X86::ATOMNAND6432:
13115  case X86::ATOMADD6432:
13116  case X86::ATOMSUB6432:
13117  case X86::ATOMSWAP6432: {
13118    bool Invert = false;
13119    unsigned RegOpcL, RegOpcH, ImmOpcL, ImmOpcH;
13120    switch (MI->getOpcode()) {
13121    default: llvm_unreachable("illegal opcode!");
13122    case X86::ATOMAND6432:
13123      RegOpcL = RegOpcH = X86::AND32rr;
13124      ImmOpcL = ImmOpcH = X86::AND32ri;
13125      break;
13126    case X86::ATOMOR6432:
13127      RegOpcL = RegOpcH = X86::OR32rr;
13128      ImmOpcL = ImmOpcH = X86::OR32ri;
13129      break;
13130    case X86::ATOMXOR6432:
13131      RegOpcL = RegOpcH = X86::XOR32rr;
13132      ImmOpcL = ImmOpcH = X86::XOR32ri;
13133      break;
13134    case X86::ATOMNAND6432:
13135      RegOpcL = RegOpcH = X86::AND32rr;
13136      ImmOpcL = ImmOpcH = X86::AND32ri;
13137      Invert = true;
13138      break;
13139    case X86::ATOMADD6432:
13140      RegOpcL = X86::ADD32rr; RegOpcH = X86::ADC32rr;
13141      ImmOpcL = X86::ADD32ri; ImmOpcH = X86::ADC32ri;
13142      break;
13143    case X86::ATOMSUB6432:
13144      RegOpcL = X86::SUB32rr; RegOpcH = X86::SBB32rr;
13145      ImmOpcL = X86::SUB32ri; ImmOpcH = X86::SBB32ri;
13146      break;
13147    case X86::ATOMSWAP6432:
13148      RegOpcL = RegOpcH = X86::MOV32rr;
13149      ImmOpcL = ImmOpcH = X86::MOV32ri;
13150      break;
13151    }
13152    return EmitAtomicBit6432WithCustomInserter(MI, BB, RegOpcL, RegOpcH,
13153                                               ImmOpcL, ImmOpcH, Invert);
13154  }
13155
13156  case X86::VASTART_SAVE_XMM_REGS:
13157    return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
13158
13159  case X86::VAARG_64:
13160    return EmitVAARG64WithCustomInserter(MI, BB);
13161  }
13162}
13163
13164//===----------------------------------------------------------------------===//
13165//                           X86 Optimization Hooks
13166//===----------------------------------------------------------------------===//
13167
13168void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
13169                                                       APInt &KnownZero,
13170                                                       APInt &KnownOne,
13171                                                       const SelectionDAG &DAG,
13172                                                       unsigned Depth) const {
13173  unsigned BitWidth = KnownZero.getBitWidth();
13174  unsigned Opc = Op.getOpcode();
13175  assert((Opc >= ISD::BUILTIN_OP_END ||
13176          Opc == ISD::INTRINSIC_WO_CHAIN ||
13177          Opc == ISD::INTRINSIC_W_CHAIN ||
13178          Opc == ISD::INTRINSIC_VOID) &&
13179         "Should use MaskedValueIsZero if you don't know whether Op"
13180         " is a target node!");
13181
13182  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
13183  switch (Opc) {
13184  default: break;
13185  case X86ISD::ADD:
13186  case X86ISD::SUB:
13187  case X86ISD::ADC:
13188  case X86ISD::SBB:
13189  case X86ISD::SMUL:
13190  case X86ISD::UMUL:
13191  case X86ISD::INC:
13192  case X86ISD::DEC:
13193  case X86ISD::OR:
13194  case X86ISD::XOR:
13195  case X86ISD::AND:
13196    // These nodes' second result is a boolean.
13197    if (Op.getResNo() == 0)
13198      break;
13199    // Fallthrough
13200  case X86ISD::SETCC:
13201    KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
13202    break;
13203  case ISD::INTRINSIC_WO_CHAIN: {
13204    unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13205    unsigned NumLoBits = 0;
13206    switch (IntId) {
13207    default: break;
13208    case Intrinsic::x86_sse_movmsk_ps:
13209    case Intrinsic::x86_avx_movmsk_ps_256:
13210    case Intrinsic::x86_sse2_movmsk_pd:
13211    case Intrinsic::x86_avx_movmsk_pd_256:
13212    case Intrinsic::x86_mmx_pmovmskb:
13213    case Intrinsic::x86_sse2_pmovmskb_128:
13214    case Intrinsic::x86_avx2_pmovmskb: {
13215      // High bits of movmskp{s|d}, pmovmskb are known zero.
13216      switch (IntId) {
13217        default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
13218        case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
13219        case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
13220        case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
13221        case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
13222        case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
13223        case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
13224        case Intrinsic::x86_avx2_pmovmskb:      NumLoBits = 32; break;
13225      }
13226      KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
13227      break;
13228    }
13229    }
13230    break;
13231  }
13232  }
13233}
13234
13235unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
13236                                                         unsigned Depth) const {
13237  // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
13238  if (Op.getOpcode() == X86ISD::SETCC_CARRY)
13239    return Op.getValueType().getScalarType().getSizeInBits();
13240
13241  // Fallback case.
13242  return 1;
13243}
13244
13245/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
13246/// node is a GlobalAddress + offset.
13247bool X86TargetLowering::isGAPlusOffset(SDNode *N,
13248                                       const GlobalValue* &GA,
13249                                       int64_t &Offset) const {
13250  if (N->getOpcode() == X86ISD::Wrapper) {
13251    if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
13252      GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
13253      Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
13254      return true;
13255    }
13256  }
13257  return TargetLowering::isGAPlusOffset(N, GA, Offset);
13258}
13259
13260/// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
13261/// same as extracting the high 128-bit part of 256-bit vector and then
13262/// inserting the result into the low part of a new 256-bit vector
13263static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
13264  EVT VT = SVOp->getValueType(0);
13265  unsigned NumElems = VT.getVectorNumElements();
13266
13267  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13268  for (unsigned i = 0, j = NumElems/2; i != NumElems/2; ++i, ++j)
13269    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13270        SVOp->getMaskElt(j) >= 0)
13271      return false;
13272
13273  return true;
13274}
13275
13276/// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
13277/// same as extracting the low 128-bit part of 256-bit vector and then
13278/// inserting the result into the high part of a new 256-bit vector
13279static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
13280  EVT VT = SVOp->getValueType(0);
13281  unsigned NumElems = VT.getVectorNumElements();
13282
13283  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13284  for (unsigned i = NumElems/2, j = 0; i != NumElems; ++i, ++j)
13285    if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
13286        SVOp->getMaskElt(j) >= 0)
13287      return false;
13288
13289  return true;
13290}
13291
13292/// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
13293static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
13294                                        TargetLowering::DAGCombinerInfo &DCI,
13295                                        const X86Subtarget* Subtarget) {
13296  DebugLoc dl = N->getDebugLoc();
13297  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
13298  SDValue V1 = SVOp->getOperand(0);
13299  SDValue V2 = SVOp->getOperand(1);
13300  EVT VT = SVOp->getValueType(0);
13301  unsigned NumElems = VT.getVectorNumElements();
13302
13303  if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
13304      V2.getOpcode() == ISD::CONCAT_VECTORS) {
13305    //
13306    //                   0,0,0,...
13307    //                      |
13308    //    V      UNDEF    BUILD_VECTOR    UNDEF
13309    //     \      /           \           /
13310    //  CONCAT_VECTOR         CONCAT_VECTOR
13311    //         \                  /
13312    //          \                /
13313    //          RESULT: V + zero extended
13314    //
13315    if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
13316        V2.getOperand(1).getOpcode() != ISD::UNDEF ||
13317        V1.getOperand(1).getOpcode() != ISD::UNDEF)
13318      return SDValue();
13319
13320    if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
13321      return SDValue();
13322
13323    // To match the shuffle mask, the first half of the mask should
13324    // be exactly the first vector, and all the rest a splat with the
13325    // first element of the second one.
13326    for (unsigned i = 0; i != NumElems/2; ++i)
13327      if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
13328          !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
13329        return SDValue();
13330
13331    // If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
13332    if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
13333      if (Ld->hasNUsesOfValue(1, 0)) {
13334        SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
13335        SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
13336        SDValue ResNode =
13337          DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2,
13338                                  Ld->getMemoryVT(),
13339                                  Ld->getPointerInfo(),
13340                                  Ld->getAlignment(),
13341                                  false/*isVolatile*/, true/*ReadMem*/,
13342                                  false/*WriteMem*/);
13343        return DAG.getNode(ISD::BITCAST, dl, VT, ResNode);
13344      }
13345    }
13346
13347    // Emit a zeroed vector and insert the desired subvector on its
13348    // first half.
13349    SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
13350    SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
13351    return DCI.CombineTo(N, InsV);
13352  }
13353
13354  //===--------------------------------------------------------------------===//
13355  // Combine some shuffles into subvector extracts and inserts:
13356  //
13357
13358  // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
13359  if (isShuffleHigh128VectorInsertLow(SVOp)) {
13360    SDValue V = Extract128BitVector(V1, NumElems/2, DAG, dl);
13361    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, 0, DAG, dl);
13362    return DCI.CombineTo(N, InsV);
13363  }
13364
13365  // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
13366  if (isShuffleLow128VectorInsertHigh(SVOp)) {
13367    SDValue V = Extract128BitVector(V1, 0, DAG, dl);
13368    SDValue InsV = Insert128BitVector(DAG.getUNDEF(VT), V, NumElems/2, DAG, dl);
13369    return DCI.CombineTo(N, InsV);
13370  }
13371
13372  return SDValue();
13373}
13374
13375/// PerformShuffleCombine - Performs several different shuffle combines.
13376static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
13377                                     TargetLowering::DAGCombinerInfo &DCI,
13378                                     const X86Subtarget *Subtarget) {
13379  DebugLoc dl = N->getDebugLoc();
13380  EVT VT = N->getValueType(0);
13381
13382  // Don't create instructions with illegal types after legalize types has run.
13383  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13384  if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
13385    return SDValue();
13386
13387  // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
13388  if (Subtarget->hasAVX() && VT.is256BitVector() &&
13389      N->getOpcode() == ISD::VECTOR_SHUFFLE)
13390    return PerformShuffleCombine256(N, DAG, DCI, Subtarget);
13391
13392  // Only handle 128 wide vector from here on.
13393  if (!VT.is128BitVector())
13394    return SDValue();
13395
13396  // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
13397  // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
13398  // consecutive, non-overlapping, and in the right order.
13399  SmallVector<SDValue, 16> Elts;
13400  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
13401    Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
13402
13403  return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
13404}
13405
13406
13407/// DCI, PerformTruncateCombine - Converts truncate operation to
13408/// a sequence of vector shuffle operations.
13409/// It is possible when we truncate 256-bit vector to 128-bit vector
13410
13411SDValue X86TargetLowering::PerformTruncateCombine(SDNode *N, SelectionDAG &DAG,
13412                                                  DAGCombinerInfo &DCI) const {
13413  if (!DCI.isBeforeLegalizeOps())
13414    return SDValue();
13415
13416  if (!Subtarget->hasAVX())
13417    return SDValue();
13418
13419  EVT VT = N->getValueType(0);
13420  SDValue Op = N->getOperand(0);
13421  EVT OpVT = Op.getValueType();
13422  DebugLoc dl = N->getDebugLoc();
13423
13424  if ((VT == MVT::v4i32) && (OpVT == MVT::v4i64)) {
13425
13426    if (Subtarget->hasAVX2()) {
13427      // AVX2: v4i64 -> v4i32
13428
13429      // VPERMD
13430      static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
13431
13432      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v8i32, Op);
13433      Op = DAG.getVectorShuffle(MVT::v8i32, dl, Op, DAG.getUNDEF(MVT::v8i32),
13434                                ShufMask);
13435
13436      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Op,
13437                         DAG.getIntPtrConstant(0));
13438    }
13439
13440    // AVX: v4i64 -> v4i32
13441    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13442                               DAG.getIntPtrConstant(0));
13443
13444    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13445                               DAG.getIntPtrConstant(2));
13446
13447    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13448    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13449
13450    // PSHUFD
13451    static const int ShufMask1[] = {0, 2, 0, 0};
13452
13453    SDValue Undef = DAG.getUNDEF(VT);
13454    OpLo = DAG.getVectorShuffle(VT, dl, OpLo, Undef, ShufMask1);
13455    OpHi = DAG.getVectorShuffle(VT, dl, OpHi, Undef, ShufMask1);
13456
13457    // MOVLHPS
13458    static const int ShufMask2[] = {0, 1, 4, 5};
13459
13460    return DAG.getVectorShuffle(VT, dl, OpLo, OpHi, ShufMask2);
13461  }
13462
13463  if ((VT == MVT::v8i16) && (OpVT == MVT::v8i32)) {
13464
13465    if (Subtarget->hasAVX2()) {
13466      // AVX2: v8i32 -> v8i16
13467
13468      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v32i8, Op);
13469
13470      // PSHUFB
13471      SmallVector<SDValue,32> pshufbMask;
13472      for (unsigned i = 0; i < 2; ++i) {
13473        pshufbMask.push_back(DAG.getConstant(0x0, MVT::i8));
13474        pshufbMask.push_back(DAG.getConstant(0x1, MVT::i8));
13475        pshufbMask.push_back(DAG.getConstant(0x4, MVT::i8));
13476        pshufbMask.push_back(DAG.getConstant(0x5, MVT::i8));
13477        pshufbMask.push_back(DAG.getConstant(0x8, MVT::i8));
13478        pshufbMask.push_back(DAG.getConstant(0x9, MVT::i8));
13479        pshufbMask.push_back(DAG.getConstant(0xc, MVT::i8));
13480        pshufbMask.push_back(DAG.getConstant(0xd, MVT::i8));
13481        for (unsigned j = 0; j < 8; ++j)
13482          pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
13483      }
13484      SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v32i8,
13485                               &pshufbMask[0], 32);
13486      Op = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v32i8, Op, BV);
13487
13488      Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i64, Op);
13489
13490      static const int ShufMask[] = {0,  2,  -1,  -1};
13491      Op = DAG.getVectorShuffle(MVT::v4i64, dl,  Op, DAG.getUNDEF(MVT::v4i64),
13492                                &ShufMask[0]);
13493
13494      Op = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v2i64, Op,
13495                       DAG.getIntPtrConstant(0));
13496
13497      return DAG.getNode(ISD::BITCAST, dl, VT, Op);
13498    }
13499
13500    SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13501                               DAG.getIntPtrConstant(0));
13502
13503    SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i32, Op,
13504                               DAG.getIntPtrConstant(4));
13505
13506    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLo);
13507    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpHi);
13508
13509    // PSHUFB
13510    static const int ShufMask1[] = {0,  1,  4,  5,  8,  9, 12, 13,
13511                                   -1, -1, -1, -1, -1, -1, -1, -1};
13512
13513    SDValue Undef = DAG.getUNDEF(MVT::v16i8);
13514    OpLo = DAG.getVectorShuffle(MVT::v16i8, dl, OpLo, Undef, ShufMask1);
13515    OpHi = DAG.getVectorShuffle(MVT::v16i8, dl, OpHi, Undef, ShufMask1);
13516
13517    OpLo = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpLo);
13518    OpHi = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, OpHi);
13519
13520    // MOVLHPS
13521    static const int ShufMask2[] = {0, 1, 4, 5};
13522
13523    SDValue res = DAG.getVectorShuffle(MVT::v4i32, dl, OpLo, OpHi, ShufMask2);
13524    return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, res);
13525  }
13526
13527  return SDValue();
13528}
13529
13530/// XFormVExtractWithShuffleIntoLoad - Check if a vector extract from a target
13531/// specific shuffle of a load can be folded into a single element load.
13532/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
13533/// shuffles have been customed lowered so we need to handle those here.
13534static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
13535                                         TargetLowering::DAGCombinerInfo &DCI) {
13536  if (DCI.isBeforeLegalizeOps())
13537    return SDValue();
13538
13539  SDValue InVec = N->getOperand(0);
13540  SDValue EltNo = N->getOperand(1);
13541
13542  if (!isa<ConstantSDNode>(EltNo))
13543    return SDValue();
13544
13545  EVT VT = InVec.getValueType();
13546
13547  bool HasShuffleIntoBitcast = false;
13548  if (InVec.getOpcode() == ISD::BITCAST) {
13549    // Don't duplicate a load with other uses.
13550    if (!InVec.hasOneUse())
13551      return SDValue();
13552    EVT BCVT = InVec.getOperand(0).getValueType();
13553    if (BCVT.getVectorNumElements() != VT.getVectorNumElements())
13554      return SDValue();
13555    InVec = InVec.getOperand(0);
13556    HasShuffleIntoBitcast = true;
13557  }
13558
13559  if (!isTargetShuffle(InVec.getOpcode()))
13560    return SDValue();
13561
13562  // Don't duplicate a load with other uses.
13563  if (!InVec.hasOneUse())
13564    return SDValue();
13565
13566  SmallVector<int, 16> ShuffleMask;
13567  bool UnaryShuffle;
13568  if (!getTargetShuffleMask(InVec.getNode(), VT.getSimpleVT(), ShuffleMask,
13569                            UnaryShuffle))
13570    return SDValue();
13571
13572  // Select the input vector, guarding against out of range extract vector.
13573  unsigned NumElems = VT.getVectorNumElements();
13574  int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
13575  int Idx = (Elt > (int)NumElems) ? -1 : ShuffleMask[Elt];
13576  SDValue LdNode = (Idx < (int)NumElems) ? InVec.getOperand(0)
13577                                         : InVec.getOperand(1);
13578
13579  // If inputs to shuffle are the same for both ops, then allow 2 uses
13580  unsigned AllowedUses = InVec.getOperand(0) == InVec.getOperand(1) ? 2 : 1;
13581
13582  if (LdNode.getOpcode() == ISD::BITCAST) {
13583    // Don't duplicate a load with other uses.
13584    if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
13585      return SDValue();
13586
13587    AllowedUses = 1; // only allow 1 load use if we have a bitcast
13588    LdNode = LdNode.getOperand(0);
13589  }
13590
13591  if (!ISD::isNormalLoad(LdNode.getNode()))
13592    return SDValue();
13593
13594  LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
13595
13596  if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
13597    return SDValue();
13598
13599  if (HasShuffleIntoBitcast) {
13600    // If there's a bitcast before the shuffle, check if the load type and
13601    // alignment is valid.
13602    unsigned Align = LN0->getAlignment();
13603    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13604    unsigned NewAlign = TLI.getTargetData()->
13605      getABITypeAlignment(VT.getTypeForEVT(*DAG.getContext()));
13606
13607    if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
13608      return SDValue();
13609  }
13610
13611  // All checks match so transform back to vector_shuffle so that DAG combiner
13612  // can finish the job
13613  DebugLoc dl = N->getDebugLoc();
13614
13615  // Create shuffle node taking into account the case that its a unary shuffle
13616  SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(VT) : InVec.getOperand(1);
13617  Shuffle = DAG.getVectorShuffle(InVec.getValueType(), dl,
13618                                 InVec.getOperand(0), Shuffle,
13619                                 &ShuffleMask[0]);
13620  Shuffle = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
13621  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
13622                     EltNo);
13623}
13624
13625/// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
13626/// generation and convert it from being a bunch of shuffles and extracts
13627/// to a simple store and scalar loads to extract the elements.
13628static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
13629                                         TargetLowering::DAGCombinerInfo &DCI) {
13630  SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI);
13631  if (NewOp.getNode())
13632    return NewOp;
13633
13634  SDValue InputVector = N->getOperand(0);
13635
13636  // Only operate on vectors of 4 elements, where the alternative shuffling
13637  // gets to be more expensive.
13638  if (InputVector.getValueType() != MVT::v4i32)
13639    return SDValue();
13640
13641  // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
13642  // single use which is a sign-extend or zero-extend, and all elements are
13643  // used.
13644  SmallVector<SDNode *, 4> Uses;
13645  unsigned ExtractedElements = 0;
13646  for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
13647       UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
13648    if (UI.getUse().getResNo() != InputVector.getResNo())
13649      return SDValue();
13650
13651    SDNode *Extract = *UI;
13652    if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13653      return SDValue();
13654
13655    if (Extract->getValueType(0) != MVT::i32)
13656      return SDValue();
13657    if (!Extract->hasOneUse())
13658      return SDValue();
13659    if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
13660        Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
13661      return SDValue();
13662    if (!isa<ConstantSDNode>(Extract->getOperand(1)))
13663      return SDValue();
13664
13665    // Record which element was extracted.
13666    ExtractedElements |=
13667      1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
13668
13669    Uses.push_back(Extract);
13670  }
13671
13672  // If not all the elements were used, this may not be worthwhile.
13673  if (ExtractedElements != 15)
13674    return SDValue();
13675
13676  // Ok, we've now decided to do the transformation.
13677  DebugLoc dl = InputVector.getDebugLoc();
13678
13679  // Store the value to a temporary stack slot.
13680  SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
13681  SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
13682                            MachinePointerInfo(), false, false, 0);
13683
13684  // Replace each use (extract) with a load of the appropriate element.
13685  for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
13686       UE = Uses.end(); UI != UE; ++UI) {
13687    SDNode *Extract = *UI;
13688
13689    // cOMpute the element's address.
13690    SDValue Idx = Extract->getOperand(1);
13691    unsigned EltSize =
13692        InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
13693    uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
13694    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13695    SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
13696
13697    SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
13698                                     StackPtr, OffsetVal);
13699
13700    // Load the scalar.
13701    SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
13702                                     ScalarAddr, MachinePointerInfo(),
13703                                     false, false, false, 0);
13704
13705    // Replace the exact with the load.
13706    DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
13707  }
13708
13709  // The replacement was made in place; don't return anything.
13710  return SDValue();
13711}
13712
13713/// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
13714/// nodes.
13715static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
13716                                    TargetLowering::DAGCombinerInfo &DCI,
13717                                    const X86Subtarget *Subtarget) {
13718  DebugLoc DL = N->getDebugLoc();
13719  SDValue Cond = N->getOperand(0);
13720  // Get the LHS/RHS of the select.
13721  SDValue LHS = N->getOperand(1);
13722  SDValue RHS = N->getOperand(2);
13723  EVT VT = LHS.getValueType();
13724
13725  // If we have SSE[12] support, try to form min/max nodes. SSE min/max
13726  // instructions match the semantics of the common C idiom x<y?x:y but not
13727  // x<=y?x:y, because of how they handle negative zero (which can be
13728  // ignored in unsafe-math mode).
13729  if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
13730      VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
13731      (Subtarget->hasSSE2() ||
13732       (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
13733    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13734
13735    unsigned Opcode = 0;
13736    // Check for x CC y ? x : y.
13737    if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13738        DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13739      switch (CC) {
13740      default: break;
13741      case ISD::SETULT:
13742        // Converting this to a min would handle NaNs incorrectly, and swapping
13743        // the operands would cause it to handle comparisons between positive
13744        // and negative zero incorrectly.
13745        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13746          if (!DAG.getTarget().Options.UnsafeFPMath &&
13747              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13748            break;
13749          std::swap(LHS, RHS);
13750        }
13751        Opcode = X86ISD::FMIN;
13752        break;
13753      case ISD::SETOLE:
13754        // Converting this to a min would handle comparisons between positive
13755        // and negative zero incorrectly.
13756        if (!DAG.getTarget().Options.UnsafeFPMath &&
13757            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13758          break;
13759        Opcode = X86ISD::FMIN;
13760        break;
13761      case ISD::SETULE:
13762        // Converting this to a min would handle both negative zeros and NaNs
13763        // incorrectly, but we can swap the operands to fix both.
13764        std::swap(LHS, RHS);
13765      case ISD::SETOLT:
13766      case ISD::SETLT:
13767      case ISD::SETLE:
13768        Opcode = X86ISD::FMIN;
13769        break;
13770
13771      case ISD::SETOGE:
13772        // Converting this to a max would handle comparisons between positive
13773        // and negative zero incorrectly.
13774        if (!DAG.getTarget().Options.UnsafeFPMath &&
13775            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
13776          break;
13777        Opcode = X86ISD::FMAX;
13778        break;
13779      case ISD::SETUGT:
13780        // Converting this to a max would handle NaNs incorrectly, and swapping
13781        // the operands would cause it to handle comparisons between positive
13782        // and negative zero incorrectly.
13783        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
13784          if (!DAG.getTarget().Options.UnsafeFPMath &&
13785              !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
13786            break;
13787          std::swap(LHS, RHS);
13788        }
13789        Opcode = X86ISD::FMAX;
13790        break;
13791      case ISD::SETUGE:
13792        // Converting this to a max would handle both negative zeros and NaNs
13793        // incorrectly, but we can swap the operands to fix both.
13794        std::swap(LHS, RHS);
13795      case ISD::SETOGT:
13796      case ISD::SETGT:
13797      case ISD::SETGE:
13798        Opcode = X86ISD::FMAX;
13799        break;
13800      }
13801    // Check for x CC y ? y : x -- a min/max with reversed arms.
13802    } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
13803               DAG.isEqualTo(RHS, Cond.getOperand(0))) {
13804      switch (CC) {
13805      default: break;
13806      case ISD::SETOGE:
13807        // Converting this to a min would handle comparisons between positive
13808        // and negative zero incorrectly, and swapping the operands would
13809        // cause it to handle NaNs incorrectly.
13810        if (!DAG.getTarget().Options.UnsafeFPMath &&
13811            !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
13812          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13813            break;
13814          std::swap(LHS, RHS);
13815        }
13816        Opcode = X86ISD::FMIN;
13817        break;
13818      case ISD::SETUGT:
13819        // Converting this to a min would handle NaNs incorrectly.
13820        if (!DAG.getTarget().Options.UnsafeFPMath &&
13821            (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
13822          break;
13823        Opcode = X86ISD::FMIN;
13824        break;
13825      case ISD::SETUGE:
13826        // Converting this to a min would handle both negative zeros and NaNs
13827        // incorrectly, but we can swap the operands to fix both.
13828        std::swap(LHS, RHS);
13829      case ISD::SETOGT:
13830      case ISD::SETGT:
13831      case ISD::SETGE:
13832        Opcode = X86ISD::FMIN;
13833        break;
13834
13835      case ISD::SETULT:
13836        // Converting this to a max would handle NaNs incorrectly.
13837        if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13838          break;
13839        Opcode = X86ISD::FMAX;
13840        break;
13841      case ISD::SETOLE:
13842        // Converting this to a max would handle comparisons between positive
13843        // and negative zero incorrectly, and swapping the operands would
13844        // cause it to handle NaNs incorrectly.
13845        if (!DAG.getTarget().Options.UnsafeFPMath &&
13846            !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
13847          if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
13848            break;
13849          std::swap(LHS, RHS);
13850        }
13851        Opcode = X86ISD::FMAX;
13852        break;
13853      case ISD::SETULE:
13854        // Converting this to a max would handle both negative zeros and NaNs
13855        // incorrectly, but we can swap the operands to fix both.
13856        std::swap(LHS, RHS);
13857      case ISD::SETOLT:
13858      case ISD::SETLT:
13859      case ISD::SETLE:
13860        Opcode = X86ISD::FMAX;
13861        break;
13862      }
13863    }
13864
13865    if (Opcode)
13866      return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
13867  }
13868
13869  // If this is a select between two integer constants, try to do some
13870  // optimizations.
13871  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
13872    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
13873      // Don't do this for crazy integer types.
13874      if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
13875        // If this is efficiently invertible, canonicalize the LHSC/RHSC values
13876        // so that TrueC (the true value) is larger than FalseC.
13877        bool NeedsCondInvert = false;
13878
13879        if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
13880            // Efficiently invertible.
13881            (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
13882             (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
13883              isa<ConstantSDNode>(Cond.getOperand(1))))) {
13884          NeedsCondInvert = true;
13885          std::swap(TrueC, FalseC);
13886        }
13887
13888        // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
13889        if (FalseC->getAPIntValue() == 0 &&
13890            TrueC->getAPIntValue().isPowerOf2()) {
13891          if (NeedsCondInvert) // Invert the condition if needed.
13892            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13893                               DAG.getConstant(1, Cond.getValueType()));
13894
13895          // Zero extend the condition if needed.
13896          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
13897
13898          unsigned ShAmt = TrueC->getAPIntValue().logBase2();
13899          return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
13900                             DAG.getConstant(ShAmt, MVT::i8));
13901        }
13902
13903        // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
13904        if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
13905          if (NeedsCondInvert) // Invert the condition if needed.
13906            Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13907                               DAG.getConstant(1, Cond.getValueType()));
13908
13909          // Zero extend the condition if needed.
13910          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
13911                             FalseC->getValueType(0), Cond);
13912          return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13913                             SDValue(FalseC, 0));
13914        }
13915
13916        // Optimize cases that will turn into an LEA instruction.  This requires
13917        // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
13918        if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
13919          uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
13920          if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
13921
13922          bool isFastMultiplier = false;
13923          if (Diff < 10) {
13924            switch ((unsigned char)Diff) {
13925              default: break;
13926              case 1:  // result = add base, cond
13927              case 2:  // result = lea base(    , cond*2)
13928              case 3:  // result = lea base(cond, cond*2)
13929              case 4:  // result = lea base(    , cond*4)
13930              case 5:  // result = lea base(cond, cond*4)
13931              case 8:  // result = lea base(    , cond*8)
13932              case 9:  // result = lea base(cond, cond*8)
13933                isFastMultiplier = true;
13934                break;
13935            }
13936          }
13937
13938          if (isFastMultiplier) {
13939            APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
13940            if (NeedsCondInvert) // Invert the condition if needed.
13941              Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
13942                                 DAG.getConstant(1, Cond.getValueType()));
13943
13944            // Zero extend the condition if needed.
13945            Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
13946                               Cond);
13947            // Scale the condition by the difference.
13948            if (Diff != 1)
13949              Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
13950                                 DAG.getConstant(Diff, Cond.getValueType()));
13951
13952            // Add the base if non-zero.
13953            if (FalseC->getAPIntValue() != 0)
13954              Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
13955                                 SDValue(FalseC, 0));
13956            return Cond;
13957          }
13958        }
13959      }
13960  }
13961
13962  // Canonicalize max and min:
13963  // (x > y) ? x : y -> (x >= y) ? x : y
13964  // (x < y) ? x : y -> (x <= y) ? x : y
13965  // This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
13966  // the need for an extra compare
13967  // against zero. e.g.
13968  // (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
13969  // subl   %esi, %edi
13970  // testl  %edi, %edi
13971  // movl   $0, %eax
13972  // cmovgl %edi, %eax
13973  // =>
13974  // xorl   %eax, %eax
13975  // subl   %esi, $edi
13976  // cmovsl %eax, %edi
13977  if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
13978      DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
13979      DAG.isEqualTo(RHS, Cond.getOperand(1))) {
13980    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
13981    switch (CC) {
13982    default: break;
13983    case ISD::SETLT:
13984    case ISD::SETGT: {
13985      ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
13986      Cond = DAG.getSetCC(Cond.getDebugLoc(), Cond.getValueType(),
13987                          Cond.getOperand(0), Cond.getOperand(1), NewCC);
13988      return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
13989    }
13990    }
13991  }
13992
13993  // If we know that this node is legal then we know that it is going to be
13994  // matched by one of the SSE/AVX BLEND instructions. These instructions only
13995  // depend on the highest bit in each word. Try to use SimplifyDemandedBits
13996  // to simplify previous instructions.
13997  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13998  if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
13999      !DCI.isBeforeLegalize() && TLI.isOperationLegal(ISD::VSELECT, VT)) {
14000    unsigned BitWidth = Cond.getValueType().getScalarType().getSizeInBits();
14001
14002    // Don't optimize vector selects that map to mask-registers.
14003    if (BitWidth == 1)
14004      return SDValue();
14005
14006    assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
14007    APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
14008
14009    APInt KnownZero, KnownOne;
14010    TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
14011                                          DCI.isBeforeLegalizeOps());
14012    if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
14013        TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLO))
14014      DCI.CommitTargetLoweringOpt(TLO);
14015  }
14016
14017  return SDValue();
14018}
14019
14020// Check whether a boolean test is testing a boolean value generated by
14021// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
14022// code.
14023//
14024// Simplify the following patterns:
14025// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
14026// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
14027// to (Op EFLAGS Cond)
14028//
14029// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
14030// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
14031// to (Op EFLAGS !Cond)
14032//
14033// where Op could be BRCOND or CMOV.
14034//
14035static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
14036  // Quit if not CMP and SUB with its value result used.
14037  if (Cmp.getOpcode() != X86ISD::CMP &&
14038      (Cmp.getOpcode() != X86ISD::SUB || Cmp.getNode()->hasAnyUseOfValue(0)))
14039      return SDValue();
14040
14041  // Quit if not used as a boolean value.
14042  if (CC != X86::COND_E && CC != X86::COND_NE)
14043    return SDValue();
14044
14045  // Check CMP operands. One of them should be 0 or 1 and the other should be
14046  // an SetCC or extended from it.
14047  SDValue Op1 = Cmp.getOperand(0);
14048  SDValue Op2 = Cmp.getOperand(1);
14049
14050  SDValue SetCC;
14051  const ConstantSDNode* C = 0;
14052  bool needOppositeCond = (CC == X86::COND_E);
14053
14054  if ((C = dyn_cast<ConstantSDNode>(Op1)))
14055    SetCC = Op2;
14056  else if ((C = dyn_cast<ConstantSDNode>(Op2)))
14057    SetCC = Op1;
14058  else // Quit if all operands are not constants.
14059    return SDValue();
14060
14061  if (C->getZExtValue() == 1)
14062    needOppositeCond = !needOppositeCond;
14063  else if (C->getZExtValue() != 0)
14064    // Quit if the constant is neither 0 or 1.
14065    return SDValue();
14066
14067  // Skip 'zext' node.
14068  if (SetCC.getOpcode() == ISD::ZERO_EXTEND)
14069    SetCC = SetCC.getOperand(0);
14070
14071  // Quit if not SETCC.
14072  // FIXME: So far we only handle the boolean value generated from SETCC. If
14073  // there is other ways to generate boolean values, we need handle them here
14074  // as well.
14075  if (SetCC.getOpcode() != X86ISD::SETCC)
14076    return SDValue();
14077
14078  // Set the condition code or opposite one if necessary.
14079  CC = X86::CondCode(SetCC.getConstantOperandVal(0));
14080  if (needOppositeCond)
14081    CC = X86::GetOppositeBranchCondition(CC);
14082
14083  return SetCC.getOperand(1);
14084}
14085
14086/// checkFlaggedOrCombine - DAG combination on X86ISD::OR, i.e. with EFLAGS
14087/// updated. If only flag result is used and the result is evaluated from a
14088/// series of element extraction, try to combine it into a PTEST.
14089static SDValue checkFlaggedOrCombine(SDValue Or, X86::CondCode &CC,
14090                                     SelectionDAG &DAG,
14091                                     const X86Subtarget *Subtarget) {
14092  SDNode *N = Or.getNode();
14093  DebugLoc DL = N->getDebugLoc();
14094
14095  // Only SSE4.1 and beyond supports PTEST or like.
14096  if (!Subtarget->hasSSE41())
14097    return SDValue();
14098
14099  if (N->getOpcode() != X86ISD::OR)
14100    return SDValue();
14101
14102  // Quit if the value result of OR is used.
14103  if (N->hasAnyUseOfValue(0))
14104    return SDValue();
14105
14106  // Quit if not used as a boolean value.
14107  if (CC != X86::COND_E && CC != X86::COND_NE)
14108    return SDValue();
14109
14110  SmallVector<SDValue, 8> Opnds;
14111  SDValue VecIn;
14112  EVT VT = MVT::Other;
14113  unsigned Mask = 0;
14114
14115  // Recognize a special case where a vector is casted into wide integer to
14116  // test all 0s.
14117  Opnds.push_back(N->getOperand(0));
14118  Opnds.push_back(N->getOperand(1));
14119
14120  for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
14121    SmallVector<SDValue, 8>::const_iterator I = Opnds.begin() + Slot;
14122    // BFS traverse all OR'd operands.
14123    if (I->getOpcode() == ISD::OR) {
14124      Opnds.push_back(I->getOperand(0));
14125      Opnds.push_back(I->getOperand(1));
14126      // Re-evaluate the number of nodes to be traversed.
14127      e += 2; // 2 more nodes (LHS and RHS) are pushed.
14128      continue;
14129    }
14130
14131    // Quit if a non-EXTRACT_VECTOR_ELT
14132    if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14133      return SDValue();
14134
14135    // Quit if without a constant index.
14136    SDValue Idx = I->getOperand(1);
14137    if (!isa<ConstantSDNode>(Idx))
14138      return SDValue();
14139
14140    // Check if all elements are extracted from the same vector.
14141    SDValue ExtractedFromVec = I->getOperand(0);
14142    if (VecIn.getNode() == 0) {
14143      VT = ExtractedFromVec.getValueType();
14144      // FIXME: only 128-bit vector is supported so far.
14145      if (!VT.is128BitVector())
14146        return SDValue();
14147      VecIn = ExtractedFromVec;
14148    } else if (VecIn != ExtractedFromVec)
14149      return SDValue();
14150
14151    // Record the constant index.
14152    Mask |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
14153  }
14154
14155  assert(VT.is128BitVector() && "Only 128-bit vector PTEST is supported so far.");
14156
14157  // Quit if not all elements are used.
14158  if (Mask != (1U << VT.getVectorNumElements()) - 1U)
14159    return SDValue();
14160
14161  return DAG.getNode(X86ISD::PTEST, DL, MVT::i32, VecIn, VecIn);
14162}
14163
14164static bool isValidFCMOVCondition(X86::CondCode CC) {
14165  switch (CC) {
14166  default:
14167    return false;
14168  case X86::COND_B:
14169  case X86::COND_BE:
14170  case X86::COND_E:
14171  case X86::COND_P:
14172  case X86::COND_AE:
14173  case X86::COND_A:
14174  case X86::COND_NE:
14175  case X86::COND_NP:
14176    return true;
14177  }
14178}
14179
14180/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
14181static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
14182                                  TargetLowering::DAGCombinerInfo &DCI,
14183                                  const X86Subtarget *Subtarget) {
14184  DebugLoc DL = N->getDebugLoc();
14185
14186  // If the flag operand isn't dead, don't touch this CMOV.
14187  if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
14188    return SDValue();
14189
14190  SDValue FalseOp = N->getOperand(0);
14191  SDValue TrueOp = N->getOperand(1);
14192  X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
14193  SDValue Cond = N->getOperand(3);
14194
14195  if (CC == X86::COND_E || CC == X86::COND_NE) {
14196    switch (Cond.getOpcode()) {
14197    default: break;
14198    case X86ISD::BSR:
14199    case X86ISD::BSF:
14200      // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
14201      if (DAG.isKnownNeverZero(Cond.getOperand(0)))
14202        return (CC == X86::COND_E) ? FalseOp : TrueOp;
14203    }
14204  }
14205
14206  SDValue Flags;
14207
14208  Flags = checkBoolTestSetCCCombine(Cond, CC);
14209  if (Flags.getNode() &&
14210      // Extra check as FCMOV only supports a subset of X86 cond.
14211      (FalseOp.getValueType() != MVT::f80 || isValidFCMOVCondition(CC))) {
14212    SDValue Ops[] = { FalseOp, TrueOp,
14213                      DAG.getConstant(CC, MVT::i8), Flags };
14214    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
14215                       Ops, array_lengthof(Ops));
14216  }
14217
14218  Flags = checkFlaggedOrCombine(Cond, CC, DAG, Subtarget);
14219  if (Flags.getNode()) {
14220    SDValue Ops[] = { FalseOp, TrueOp,
14221                      DAG.getConstant(CC, MVT::i8), Flags };
14222    return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(),
14223                       Ops, array_lengthof(Ops));
14224  }
14225
14226  // If this is a select between two integer constants, try to do some
14227  // optimizations.  Note that the operands are ordered the opposite of SELECT
14228  // operands.
14229  if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
14230    if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
14231      // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
14232      // larger than FalseC (the false value).
14233      if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
14234        CC = X86::GetOppositeBranchCondition(CC);
14235        std::swap(TrueC, FalseC);
14236      }
14237
14238      // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
14239      // This is efficient for any integer data type (including i8/i16) and
14240      // shift amount.
14241      if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
14242        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14243                           DAG.getConstant(CC, MVT::i8), Cond);
14244
14245        // Zero extend the condition if needed.
14246        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
14247
14248        unsigned ShAmt = TrueC->getAPIntValue().logBase2();
14249        Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
14250                           DAG.getConstant(ShAmt, MVT::i8));
14251        if (N->getNumValues() == 2)  // Dead flag value?
14252          return DCI.CombineTo(N, Cond, SDValue());
14253        return Cond;
14254      }
14255
14256      // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
14257      // for any integer data type, including i8/i16.
14258      if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
14259        Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14260                           DAG.getConstant(CC, MVT::i8), Cond);
14261
14262        // Zero extend the condition if needed.
14263        Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
14264                           FalseC->getValueType(0), Cond);
14265        Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14266                           SDValue(FalseC, 0));
14267
14268        if (N->getNumValues() == 2)  // Dead flag value?
14269          return DCI.CombineTo(N, Cond, SDValue());
14270        return Cond;
14271      }
14272
14273      // Optimize cases that will turn into an LEA instruction.  This requires
14274      // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
14275      if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
14276        uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
14277        if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
14278
14279        bool isFastMultiplier = false;
14280        if (Diff < 10) {
14281          switch ((unsigned char)Diff) {
14282          default: break;
14283          case 1:  // result = add base, cond
14284          case 2:  // result = lea base(    , cond*2)
14285          case 3:  // result = lea base(cond, cond*2)
14286          case 4:  // result = lea base(    , cond*4)
14287          case 5:  // result = lea base(cond, cond*4)
14288          case 8:  // result = lea base(    , cond*8)
14289          case 9:  // result = lea base(cond, cond*8)
14290            isFastMultiplier = true;
14291            break;
14292          }
14293        }
14294
14295        if (isFastMultiplier) {
14296          APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
14297          Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
14298                             DAG.getConstant(CC, MVT::i8), Cond);
14299          // Zero extend the condition if needed.
14300          Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
14301                             Cond);
14302          // Scale the condition by the difference.
14303          if (Diff != 1)
14304            Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
14305                               DAG.getConstant(Diff, Cond.getValueType()));
14306
14307          // Add the base if non-zero.
14308          if (FalseC->getAPIntValue() != 0)
14309            Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
14310                               SDValue(FalseC, 0));
14311          if (N->getNumValues() == 2)  // Dead flag value?
14312            return DCI.CombineTo(N, Cond, SDValue());
14313          return Cond;
14314        }
14315      }
14316    }
14317  }
14318  return SDValue();
14319}
14320
14321
14322/// PerformMulCombine - Optimize a single multiply with constant into two
14323/// in order to implement it with two cheaper instructions, e.g.
14324/// LEA + SHL, LEA + LEA.
14325static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
14326                                 TargetLowering::DAGCombinerInfo &DCI) {
14327  if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14328    return SDValue();
14329
14330  EVT VT = N->getValueType(0);
14331  if (VT != MVT::i64)
14332    return SDValue();
14333
14334  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14335  if (!C)
14336    return SDValue();
14337  uint64_t MulAmt = C->getZExtValue();
14338  if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
14339    return SDValue();
14340
14341  uint64_t MulAmt1 = 0;
14342  uint64_t MulAmt2 = 0;
14343  if ((MulAmt % 9) == 0) {
14344    MulAmt1 = 9;
14345    MulAmt2 = MulAmt / 9;
14346  } else if ((MulAmt % 5) == 0) {
14347    MulAmt1 = 5;
14348    MulAmt2 = MulAmt / 5;
14349  } else if ((MulAmt % 3) == 0) {
14350    MulAmt1 = 3;
14351    MulAmt2 = MulAmt / 3;
14352  }
14353  if (MulAmt2 &&
14354      (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
14355    DebugLoc DL = N->getDebugLoc();
14356
14357    if (isPowerOf2_64(MulAmt2) &&
14358        !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
14359      // If second multiplifer is pow2, issue it first. We want the multiply by
14360      // 3, 5, or 9 to be folded into the addressing mode unless the lone use
14361      // is an add.
14362      std::swap(MulAmt1, MulAmt2);
14363
14364    SDValue NewMul;
14365    if (isPowerOf2_64(MulAmt1))
14366      NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
14367                           DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
14368    else
14369      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
14370                           DAG.getConstant(MulAmt1, VT));
14371
14372    if (isPowerOf2_64(MulAmt2))
14373      NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
14374                           DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
14375    else
14376      NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
14377                           DAG.getConstant(MulAmt2, VT));
14378
14379    // Do not add new nodes to DAG combiner worklist.
14380    DCI.CombineTo(N, NewMul, false);
14381  }
14382  return SDValue();
14383}
14384
14385static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
14386  SDValue N0 = N->getOperand(0);
14387  SDValue N1 = N->getOperand(1);
14388  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14389  EVT VT = N0.getValueType();
14390
14391  // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
14392  // since the result of setcc_c is all zero's or all ones.
14393  if (VT.isInteger() && !VT.isVector() &&
14394      N1C && N0.getOpcode() == ISD::AND &&
14395      N0.getOperand(1).getOpcode() == ISD::Constant) {
14396    SDValue N00 = N0.getOperand(0);
14397    if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
14398        ((N00.getOpcode() == ISD::ANY_EXTEND ||
14399          N00.getOpcode() == ISD::ZERO_EXTEND) &&
14400         N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
14401      APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
14402      APInt ShAmt = N1C->getAPIntValue();
14403      Mask = Mask.shl(ShAmt);
14404      if (Mask != 0)
14405        return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
14406                           N00, DAG.getConstant(Mask, VT));
14407    }
14408  }
14409
14410
14411  // Hardware support for vector shifts is sparse which makes us scalarize the
14412  // vector operations in many cases. Also, on sandybridge ADD is faster than
14413  // shl.
14414  // (shl V, 1) -> add V,V
14415  if (isSplatVector(N1.getNode())) {
14416    assert(N0.getValueType().isVector() && "Invalid vector shift type");
14417    ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1->getOperand(0));
14418    // We shift all of the values by one. In many cases we do not have
14419    // hardware support for this operation. This is better expressed as an ADD
14420    // of two values.
14421    if (N1C && (1 == N1C->getZExtValue())) {
14422      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, N0, N0);
14423    }
14424  }
14425
14426  return SDValue();
14427}
14428
14429/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
14430///                       when possible.
14431static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
14432                                   TargetLowering::DAGCombinerInfo &DCI,
14433                                   const X86Subtarget *Subtarget) {
14434  EVT VT = N->getValueType(0);
14435  if (N->getOpcode() == ISD::SHL) {
14436    SDValue V = PerformSHLCombine(N, DAG);
14437    if (V.getNode()) return V;
14438  }
14439
14440  // On X86 with SSE2 support, we can transform this to a vector shift if
14441  // all elements are shifted by the same amount.  We can't do this in legalize
14442  // because the a constant vector is typically transformed to a constant pool
14443  // so we have no knowledge of the shift amount.
14444  if (!Subtarget->hasSSE2())
14445    return SDValue();
14446
14447  if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
14448      (!Subtarget->hasAVX2() ||
14449       (VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
14450    return SDValue();
14451
14452  SDValue ShAmtOp = N->getOperand(1);
14453  EVT EltVT = VT.getVectorElementType();
14454  DebugLoc DL = N->getDebugLoc();
14455  SDValue BaseShAmt = SDValue();
14456  if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
14457    unsigned NumElts = VT.getVectorNumElements();
14458    unsigned i = 0;
14459    for (; i != NumElts; ++i) {
14460      SDValue Arg = ShAmtOp.getOperand(i);
14461      if (Arg.getOpcode() == ISD::UNDEF) continue;
14462      BaseShAmt = Arg;
14463      break;
14464    }
14465    // Handle the case where the build_vector is all undef
14466    // FIXME: Should DAG allow this?
14467    if (i == NumElts)
14468      return SDValue();
14469
14470    for (; i != NumElts; ++i) {
14471      SDValue Arg = ShAmtOp.getOperand(i);
14472      if (Arg.getOpcode() == ISD::UNDEF) continue;
14473      if (Arg != BaseShAmt) {
14474        return SDValue();
14475      }
14476    }
14477  } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
14478             cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
14479    SDValue InVec = ShAmtOp.getOperand(0);
14480    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
14481      unsigned NumElts = InVec.getValueType().getVectorNumElements();
14482      unsigned i = 0;
14483      for (; i != NumElts; ++i) {
14484        SDValue Arg = InVec.getOperand(i);
14485        if (Arg.getOpcode() == ISD::UNDEF) continue;
14486        BaseShAmt = Arg;
14487        break;
14488      }
14489    } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14490       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
14491         unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
14492         if (C->getZExtValue() == SplatIdx)
14493           BaseShAmt = InVec.getOperand(1);
14494       }
14495    }
14496    if (BaseShAmt.getNode() == 0) {
14497      // Don't create instructions with illegal types after legalize
14498      // types has run.
14499      if (!DAG.getTargetLoweringInfo().isTypeLegal(EltVT) &&
14500          !DCI.isBeforeLegalize())
14501        return SDValue();
14502
14503      BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
14504                              DAG.getIntPtrConstant(0));
14505    }
14506  } else
14507    return SDValue();
14508
14509  // The shift amount is an i32.
14510  if (EltVT.bitsGT(MVT::i32))
14511    BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
14512  else if (EltVT.bitsLT(MVT::i32))
14513    BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
14514
14515  // The shift amount is identical so we can do a vector shift.
14516  SDValue  ValOp = N->getOperand(0);
14517  switch (N->getOpcode()) {
14518  default:
14519    llvm_unreachable("Unknown shift opcode!");
14520  case ISD::SHL:
14521    switch (VT.getSimpleVT().SimpleTy) {
14522    default: return SDValue();
14523    case MVT::v2i64:
14524    case MVT::v4i32:
14525    case MVT::v8i16:
14526    case MVT::v4i64:
14527    case MVT::v8i32:
14528    case MVT::v16i16:
14529      return getTargetVShiftNode(X86ISD::VSHLI, DL, VT, ValOp, BaseShAmt, DAG);
14530    }
14531  case ISD::SRA:
14532    switch (VT.getSimpleVT().SimpleTy) {
14533    default: return SDValue();
14534    case MVT::v4i32:
14535    case MVT::v8i16:
14536    case MVT::v8i32:
14537    case MVT::v16i16:
14538      return getTargetVShiftNode(X86ISD::VSRAI, DL, VT, ValOp, BaseShAmt, DAG);
14539    }
14540  case ISD::SRL:
14541    switch (VT.getSimpleVT().SimpleTy) {
14542    default: return SDValue();
14543    case MVT::v2i64:
14544    case MVT::v4i32:
14545    case MVT::v8i16:
14546    case MVT::v4i64:
14547    case MVT::v8i32:
14548    case MVT::v16i16:
14549      return getTargetVShiftNode(X86ISD::VSRLI, DL, VT, ValOp, BaseShAmt, DAG);
14550    }
14551  }
14552}
14553
14554
14555// CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
14556// where both setccs reference the same FP CMP, and rewrite for CMPEQSS
14557// and friends.  Likewise for OR -> CMPNEQSS.
14558static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
14559                            TargetLowering::DAGCombinerInfo &DCI,
14560                            const X86Subtarget *Subtarget) {
14561  unsigned opcode;
14562
14563  // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
14564  // we're requiring SSE2 for both.
14565  if (Subtarget->hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
14566    SDValue N0 = N->getOperand(0);
14567    SDValue N1 = N->getOperand(1);
14568    SDValue CMP0 = N0->getOperand(1);
14569    SDValue CMP1 = N1->getOperand(1);
14570    DebugLoc DL = N->getDebugLoc();
14571
14572    // The SETCCs should both refer to the same CMP.
14573    if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
14574      return SDValue();
14575
14576    SDValue CMP00 = CMP0->getOperand(0);
14577    SDValue CMP01 = CMP0->getOperand(1);
14578    EVT     VT    = CMP00.getValueType();
14579
14580    if (VT == MVT::f32 || VT == MVT::f64) {
14581      bool ExpectingFlags = false;
14582      // Check for any users that want flags:
14583      for (SDNode::use_iterator UI = N->use_begin(),
14584             UE = N->use_end();
14585           !ExpectingFlags && UI != UE; ++UI)
14586        switch (UI->getOpcode()) {
14587        default:
14588        case ISD::BR_CC:
14589        case ISD::BRCOND:
14590        case ISD::SELECT:
14591          ExpectingFlags = true;
14592          break;
14593        case ISD::CopyToReg:
14594        case ISD::SIGN_EXTEND:
14595        case ISD::ZERO_EXTEND:
14596        case ISD::ANY_EXTEND:
14597          break;
14598        }
14599
14600      if (!ExpectingFlags) {
14601        enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
14602        enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
14603
14604        if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
14605          X86::CondCode tmp = cc0;
14606          cc0 = cc1;
14607          cc1 = tmp;
14608        }
14609
14610        if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
14611            (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
14612          bool is64BitFP = (CMP00.getValueType() == MVT::f64);
14613          X86ISD::NodeType NTOperator = is64BitFP ?
14614            X86ISD::FSETCCsd : X86ISD::FSETCCss;
14615          // FIXME: need symbolic constants for these magic numbers.
14616          // See X86ATTInstPrinter.cpp:printSSECC().
14617          unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
14618          SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
14619                                              DAG.getConstant(x86cc, MVT::i8));
14620          SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
14621                                              OnesOrZeroesF);
14622          SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
14623                                      DAG.getConstant(1, MVT::i32));
14624          SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
14625          return OneBitOfTruth;
14626        }
14627      }
14628    }
14629  }
14630  return SDValue();
14631}
14632
14633/// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
14634/// so it can be folded inside ANDNP.
14635static bool CanFoldXORWithAllOnes(const SDNode *N) {
14636  EVT VT = N->getValueType(0);
14637
14638  // Match direct AllOnes for 128 and 256-bit vectors
14639  if (ISD::isBuildVectorAllOnes(N))
14640    return true;
14641
14642  // Look through a bit convert.
14643  if (N->getOpcode() == ISD::BITCAST)
14644    N = N->getOperand(0).getNode();
14645
14646  // Sometimes the operand may come from a insert_subvector building a 256-bit
14647  // allones vector
14648  if (VT.is256BitVector() &&
14649      N->getOpcode() == ISD::INSERT_SUBVECTOR) {
14650    SDValue V1 = N->getOperand(0);
14651    SDValue V2 = N->getOperand(1);
14652
14653    if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
14654        V1.getOperand(0).getOpcode() == ISD::UNDEF &&
14655        ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
14656        ISD::isBuildVectorAllOnes(V2.getNode()))
14657      return true;
14658  }
14659
14660  return false;
14661}
14662
14663static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
14664                                 TargetLowering::DAGCombinerInfo &DCI,
14665                                 const X86Subtarget *Subtarget) {
14666  if (DCI.isBeforeLegalizeOps())
14667    return SDValue();
14668
14669  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14670  if (R.getNode())
14671    return R;
14672
14673  EVT VT = N->getValueType(0);
14674
14675  // Create ANDN, BLSI, and BLSR instructions
14676  // BLSI is X & (-X)
14677  // BLSR is X & (X-1)
14678  if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
14679    SDValue N0 = N->getOperand(0);
14680    SDValue N1 = N->getOperand(1);
14681    DebugLoc DL = N->getDebugLoc();
14682
14683    // Check LHS for not
14684    if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
14685      return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
14686    // Check RHS for not
14687    if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
14688      return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
14689
14690    // Check LHS for neg
14691    if (N0.getOpcode() == ISD::SUB && N0.getOperand(1) == N1 &&
14692        isZero(N0.getOperand(0)))
14693      return DAG.getNode(X86ISD::BLSI, DL, VT, N1);
14694
14695    // Check RHS for neg
14696    if (N1.getOpcode() == ISD::SUB && N1.getOperand(1) == N0 &&
14697        isZero(N1.getOperand(0)))
14698      return DAG.getNode(X86ISD::BLSI, DL, VT, N0);
14699
14700    // Check LHS for X-1
14701    if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14702        isAllOnes(N0.getOperand(1)))
14703      return DAG.getNode(X86ISD::BLSR, DL, VT, N1);
14704
14705    // Check RHS for X-1
14706    if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14707        isAllOnes(N1.getOperand(1)))
14708      return DAG.getNode(X86ISD::BLSR, DL, VT, N0);
14709
14710    return SDValue();
14711  }
14712
14713  // Want to form ANDNP nodes:
14714  // 1) In the hopes of then easily combining them with OR and AND nodes
14715  //    to form PBLEND/PSIGN.
14716  // 2) To match ANDN packed intrinsics
14717  if (VT != MVT::v2i64 && VT != MVT::v4i64)
14718    return SDValue();
14719
14720  SDValue N0 = N->getOperand(0);
14721  SDValue N1 = N->getOperand(1);
14722  DebugLoc DL = N->getDebugLoc();
14723
14724  // Check LHS for vnot
14725  if (N0.getOpcode() == ISD::XOR &&
14726      //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
14727      CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
14728    return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
14729
14730  // Check RHS for vnot
14731  if (N1.getOpcode() == ISD::XOR &&
14732      //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
14733      CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
14734    return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
14735
14736  return SDValue();
14737}
14738
14739static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
14740                                TargetLowering::DAGCombinerInfo &DCI,
14741                                const X86Subtarget *Subtarget) {
14742  if (DCI.isBeforeLegalizeOps())
14743    return SDValue();
14744
14745  SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
14746  if (R.getNode())
14747    return R;
14748
14749  EVT VT = N->getValueType(0);
14750
14751  SDValue N0 = N->getOperand(0);
14752  SDValue N1 = N->getOperand(1);
14753
14754  // look for psign/blend
14755  if (VT == MVT::v2i64 || VT == MVT::v4i64) {
14756    if (!Subtarget->hasSSSE3() ||
14757        (VT == MVT::v4i64 && !Subtarget->hasAVX2()))
14758      return SDValue();
14759
14760    // Canonicalize pandn to RHS
14761    if (N0.getOpcode() == X86ISD::ANDNP)
14762      std::swap(N0, N1);
14763    // or (and (m, y), (pandn m, x))
14764    if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
14765      SDValue Mask = N1.getOperand(0);
14766      SDValue X    = N1.getOperand(1);
14767      SDValue Y;
14768      if (N0.getOperand(0) == Mask)
14769        Y = N0.getOperand(1);
14770      if (N0.getOperand(1) == Mask)
14771        Y = N0.getOperand(0);
14772
14773      // Check to see if the mask appeared in both the AND and ANDNP and
14774      if (!Y.getNode())
14775        return SDValue();
14776
14777      // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
14778      // Look through mask bitcast.
14779      if (Mask.getOpcode() == ISD::BITCAST)
14780        Mask = Mask.getOperand(0);
14781      if (X.getOpcode() == ISD::BITCAST)
14782        X = X.getOperand(0);
14783      if (Y.getOpcode() == ISD::BITCAST)
14784        Y = Y.getOperand(0);
14785
14786      EVT MaskVT = Mask.getValueType();
14787
14788      // Validate that the Mask operand is a vector sra node.
14789      // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
14790      // there is no psrai.b
14791      if (Mask.getOpcode() != X86ISD::VSRAI)
14792        return SDValue();
14793
14794      // Check that the SRA is all signbits.
14795      SDValue SraC = Mask.getOperand(1);
14796      unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
14797      unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
14798      if ((SraAmt + 1) != EltBits)
14799        return SDValue();
14800
14801      DebugLoc DL = N->getDebugLoc();
14802
14803      // Now we know we at least have a plendvb with the mask val.  See if
14804      // we can form a psignb/w/d.
14805      // psign = x.type == y.type == mask.type && y = sub(0, x);
14806      if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
14807          ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
14808          X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
14809        assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
14810               "Unsupported VT for PSIGN");
14811        Mask = DAG.getNode(X86ISD::PSIGN, DL, MaskVT, X, Mask.getOperand(0));
14812        return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14813      }
14814      // PBLENDVB only available on SSE 4.1
14815      if (!Subtarget->hasSSE41())
14816        return SDValue();
14817
14818      EVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
14819
14820      X = DAG.getNode(ISD::BITCAST, DL, BlendVT, X);
14821      Y = DAG.getNode(ISD::BITCAST, DL, BlendVT, Y);
14822      Mask = DAG.getNode(ISD::BITCAST, DL, BlendVT, Mask);
14823      Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
14824      return DAG.getNode(ISD::BITCAST, DL, VT, Mask);
14825    }
14826  }
14827
14828  if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
14829    return SDValue();
14830
14831  // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
14832  if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
14833    std::swap(N0, N1);
14834  if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
14835    return SDValue();
14836  if (!N0.hasOneUse() || !N1.hasOneUse())
14837    return SDValue();
14838
14839  SDValue ShAmt0 = N0.getOperand(1);
14840  if (ShAmt0.getValueType() != MVT::i8)
14841    return SDValue();
14842  SDValue ShAmt1 = N1.getOperand(1);
14843  if (ShAmt1.getValueType() != MVT::i8)
14844    return SDValue();
14845  if (ShAmt0.getOpcode() == ISD::TRUNCATE)
14846    ShAmt0 = ShAmt0.getOperand(0);
14847  if (ShAmt1.getOpcode() == ISD::TRUNCATE)
14848    ShAmt1 = ShAmt1.getOperand(0);
14849
14850  DebugLoc DL = N->getDebugLoc();
14851  unsigned Opc = X86ISD::SHLD;
14852  SDValue Op0 = N0.getOperand(0);
14853  SDValue Op1 = N1.getOperand(0);
14854  if (ShAmt0.getOpcode() == ISD::SUB) {
14855    Opc = X86ISD::SHRD;
14856    std::swap(Op0, Op1);
14857    std::swap(ShAmt0, ShAmt1);
14858  }
14859
14860  unsigned Bits = VT.getSizeInBits();
14861  if (ShAmt1.getOpcode() == ISD::SUB) {
14862    SDValue Sum = ShAmt1.getOperand(0);
14863    if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
14864      SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
14865      if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
14866        ShAmt1Op1 = ShAmt1Op1.getOperand(0);
14867      if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
14868        return DAG.getNode(Opc, DL, VT,
14869                           Op0, Op1,
14870                           DAG.getNode(ISD::TRUNCATE, DL,
14871                                       MVT::i8, ShAmt0));
14872    }
14873  } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
14874    ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
14875    if (ShAmt0C &&
14876        ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
14877      return DAG.getNode(Opc, DL, VT,
14878                         N0.getOperand(0), N1.getOperand(0),
14879                         DAG.getNode(ISD::TRUNCATE, DL,
14880                                       MVT::i8, ShAmt0));
14881  }
14882
14883  return SDValue();
14884}
14885
14886// Generate NEG and CMOV for integer abs.
14887static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) {
14888  EVT VT = N->getValueType(0);
14889
14890  // Since X86 does not have CMOV for 8-bit integer, we don't convert
14891  // 8-bit integer abs to NEG and CMOV.
14892  if (VT.isInteger() && VT.getSizeInBits() == 8)
14893    return SDValue();
14894
14895  SDValue N0 = N->getOperand(0);
14896  SDValue N1 = N->getOperand(1);
14897  DebugLoc DL = N->getDebugLoc();
14898
14899  // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
14900  // and change it to SUB and CMOV.
14901  if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
14902      N0.getOpcode() == ISD::ADD &&
14903      N0.getOperand(1) == N1 &&
14904      N1.getOpcode() == ISD::SRA &&
14905      N1.getOperand(0) == N0.getOperand(0))
14906    if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
14907      if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
14908        // Generate SUB & CMOV.
14909        SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
14910                                  DAG.getConstant(0, VT), N0.getOperand(0));
14911
14912        SDValue Ops[] = { N0.getOperand(0), Neg,
14913                          DAG.getConstant(X86::COND_GE, MVT::i8),
14914                          SDValue(Neg.getNode(), 1) };
14915        return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue),
14916                           Ops, array_lengthof(Ops));
14917      }
14918  return SDValue();
14919}
14920
14921// PerformXorCombine - Attempts to turn XOR nodes into BLSMSK nodes
14922static SDValue PerformXorCombine(SDNode *N, SelectionDAG &DAG,
14923                                 TargetLowering::DAGCombinerInfo &DCI,
14924                                 const X86Subtarget *Subtarget) {
14925  if (DCI.isBeforeLegalizeOps())
14926    return SDValue();
14927
14928  if (Subtarget->hasCMov()) {
14929    SDValue RV = performIntegerAbsCombine(N, DAG);
14930    if (RV.getNode())
14931      return RV;
14932  }
14933
14934  // Try forming BMI if it is available.
14935  if (!Subtarget->hasBMI())
14936    return SDValue();
14937
14938  EVT VT = N->getValueType(0);
14939
14940  if (VT != MVT::i32 && VT != MVT::i64)
14941    return SDValue();
14942
14943  assert(Subtarget->hasBMI() && "Creating BLSMSK requires BMI instructions");
14944
14945  // Create BLSMSK instructions by finding X ^ (X-1)
14946  SDValue N0 = N->getOperand(0);
14947  SDValue N1 = N->getOperand(1);
14948  DebugLoc DL = N->getDebugLoc();
14949
14950  if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1 &&
14951      isAllOnes(N0.getOperand(1)))
14952    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N1);
14953
14954  if (N1.getOpcode() == ISD::ADD && N1.getOperand(0) == N0 &&
14955      isAllOnes(N1.getOperand(1)))
14956    return DAG.getNode(X86ISD::BLSMSK, DL, VT, N0);
14957
14958  return SDValue();
14959}
14960
14961/// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
14962static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
14963                                  TargetLowering::DAGCombinerInfo &DCI,
14964                                  const X86Subtarget *Subtarget) {
14965  LoadSDNode *Ld = cast<LoadSDNode>(N);
14966  EVT RegVT = Ld->getValueType(0);
14967  EVT MemVT = Ld->getMemoryVT();
14968  DebugLoc dl = Ld->getDebugLoc();
14969  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14970
14971  ISD::LoadExtType Ext = Ld->getExtensionType();
14972
14973  // If this is a vector EXT Load then attempt to optimize it using a
14974  // shuffle. We need SSE4 for the shuffles.
14975  // TODO: It is possible to support ZExt by zeroing the undef values
14976  // during the shuffle phase or after the shuffle.
14977  if (RegVT.isVector() && RegVT.isInteger() &&
14978      Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
14979    assert(MemVT != RegVT && "Cannot extend to the same type");
14980    assert(MemVT.isVector() && "Must load a vector from memory");
14981
14982    unsigned NumElems = RegVT.getVectorNumElements();
14983    unsigned RegSz = RegVT.getSizeInBits();
14984    unsigned MemSz = MemVT.getSizeInBits();
14985    assert(RegSz > MemSz && "Register size must be greater than the mem size");
14986
14987    // All sizes must be a power of two.
14988    if (!isPowerOf2_32(RegSz * MemSz * NumElems))
14989      return SDValue();
14990
14991    // Attempt to load the original value using scalar loads.
14992    // Find the largest scalar type that divides the total loaded size.
14993    MVT SclrLoadTy = MVT::i8;
14994    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
14995         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
14996      MVT Tp = (MVT::SimpleValueType)tp;
14997      if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
14998        SclrLoadTy = Tp;
14999      }
15000    }
15001
15002    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15003    if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
15004        (64 <= MemSz))
15005      SclrLoadTy = MVT::f64;
15006
15007    // Calculate the number of scalar loads that we need to perform
15008    // in order to load our vector from memory.
15009    unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
15010
15011    // Represent our vector as a sequence of elements which are the
15012    // largest scalar that we can load.
15013    EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
15014      RegSz/SclrLoadTy.getSizeInBits());
15015
15016    // Represent the data using the same element type that is stored in
15017    // memory. In practice, we ''widen'' MemVT.
15018    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
15019                                  RegSz/MemVT.getScalarType().getSizeInBits());
15020
15021    assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
15022      "Invalid vector type");
15023
15024    // We can't shuffle using an illegal type.
15025    if (!TLI.isTypeLegal(WideVecVT))
15026      return SDValue();
15027
15028    SmallVector<SDValue, 8> Chains;
15029    SDValue Ptr = Ld->getBasePtr();
15030    SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits()/8,
15031                                        TLI.getPointerTy());
15032    SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
15033
15034    for (unsigned i = 0; i < NumLoads; ++i) {
15035      // Perform a single load.
15036      SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
15037                                       Ptr, Ld->getPointerInfo(),
15038                                       Ld->isVolatile(), Ld->isNonTemporal(),
15039                                       Ld->isInvariant(), Ld->getAlignment());
15040      Chains.push_back(ScalarLoad.getValue(1));
15041      // Create the first element type using SCALAR_TO_VECTOR in order to avoid
15042      // another round of DAGCombining.
15043      if (i == 0)
15044        Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
15045      else
15046        Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
15047                          ScalarLoad, DAG.getIntPtrConstant(i));
15048
15049      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15050    }
15051
15052    SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15053                               Chains.size());
15054
15055    // Bitcast the loaded value to a vector of the original element type, in
15056    // the size of the target vector type.
15057    SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, Res);
15058    unsigned SizeRatio = RegSz/MemSz;
15059
15060    // Redistribute the loaded elements into the different locations.
15061    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15062    for (unsigned i = 0; i != NumElems; ++i)
15063      ShuffleVec[i*SizeRatio] = i;
15064
15065    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
15066                                         DAG.getUNDEF(WideVecVT),
15067                                         &ShuffleVec[0]);
15068
15069    // Bitcast to the requested type.
15070    Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
15071    // Replace the original load with the new sequence
15072    // and return the new chain.
15073    return DCI.CombineTo(N, Shuff, TF, true);
15074  }
15075
15076  return SDValue();
15077}
15078
15079/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
15080static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
15081                                   const X86Subtarget *Subtarget) {
15082  StoreSDNode *St = cast<StoreSDNode>(N);
15083  EVT VT = St->getValue().getValueType();
15084  EVT StVT = St->getMemoryVT();
15085  DebugLoc dl = St->getDebugLoc();
15086  SDValue StoredVal = St->getOperand(1);
15087  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15088
15089  // If we are saving a concatenation of two XMM registers, perform two stores.
15090  // On Sandy Bridge, 256-bit memory operations are executed by two
15091  // 128-bit ports. However, on Haswell it is better to issue a single 256-bit
15092  // memory  operation.
15093  if (VT.is256BitVector() && !Subtarget->hasAVX2() &&
15094      StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
15095      StoredVal.getNumOperands() == 2) {
15096    SDValue Value0 = StoredVal.getOperand(0);
15097    SDValue Value1 = StoredVal.getOperand(1);
15098
15099    SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
15100    SDValue Ptr0 = St->getBasePtr();
15101    SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
15102
15103    SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
15104                                St->getPointerInfo(), St->isVolatile(),
15105                                St->isNonTemporal(), St->getAlignment());
15106    SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
15107                                St->getPointerInfo(), St->isVolatile(),
15108                                St->isNonTemporal(), St->getAlignment());
15109    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
15110  }
15111
15112  // Optimize trunc store (of multiple scalars) to shuffle and store.
15113  // First, pack all of the elements in one place. Next, store to memory
15114  // in fewer chunks.
15115  if (St->isTruncatingStore() && VT.isVector()) {
15116    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15117    unsigned NumElems = VT.getVectorNumElements();
15118    assert(StVT != VT && "Cannot truncate to the same type");
15119    unsigned FromSz = VT.getVectorElementType().getSizeInBits();
15120    unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
15121
15122    // From, To sizes and ElemCount must be pow of two
15123    if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
15124    // We are going to use the original vector elt for storing.
15125    // Accumulated smaller vector elements must be a multiple of the store size.
15126    if (0 != (NumElems * FromSz) % ToSz) return SDValue();
15127
15128    unsigned SizeRatio  = FromSz / ToSz;
15129
15130    assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
15131
15132    // Create a type on which we perform the shuffle
15133    EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
15134            StVT.getScalarType(), NumElems*SizeRatio);
15135
15136    assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
15137
15138    SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
15139    SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
15140    for (unsigned i = 0; i != NumElems; ++i)
15141      ShuffleVec[i] = i * SizeRatio;
15142
15143    // Can't shuffle using an illegal type.
15144    if (!TLI.isTypeLegal(WideVecVT))
15145      return SDValue();
15146
15147    SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
15148                                         DAG.getUNDEF(WideVecVT),
15149                                         &ShuffleVec[0]);
15150    // At this point all of the data is stored at the bottom of the
15151    // register. We now need to save it to mem.
15152
15153    // Find the largest store unit
15154    MVT StoreType = MVT::i8;
15155    for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
15156         tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
15157      MVT Tp = (MVT::SimpleValueType)tp;
15158      if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
15159        StoreType = Tp;
15160    }
15161
15162    // On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
15163    if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
15164        (64 <= NumElems * ToSz))
15165      StoreType = MVT::f64;
15166
15167    // Bitcast the original vector into a vector of store-size units
15168    EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
15169            StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
15170    assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
15171    SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
15172    SmallVector<SDValue, 8> Chains;
15173    SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
15174                                        TLI.getPointerTy());
15175    SDValue Ptr = St->getBasePtr();
15176
15177    // Perform one or more big stores into memory.
15178    for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
15179      SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
15180                                   StoreType, ShuffWide,
15181                                   DAG.getIntPtrConstant(i));
15182      SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
15183                                St->getPointerInfo(), St->isVolatile(),
15184                                St->isNonTemporal(), St->getAlignment());
15185      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15186      Chains.push_back(Ch);
15187    }
15188
15189    return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
15190                               Chains.size());
15191  }
15192
15193
15194  // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
15195  // the FP state in cases where an emms may be missing.
15196  // A preferable solution to the general problem is to figure out the right
15197  // places to insert EMMS.  This qualifies as a quick hack.
15198
15199  // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
15200  if (VT.getSizeInBits() != 64)
15201    return SDValue();
15202
15203  const Function *F = DAG.getMachineFunction().getFunction();
15204  bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
15205  bool F64IsLegal = !DAG.getTarget().Options.UseSoftFloat && !NoImplicitFloatOps
15206                     && Subtarget->hasSSE2();
15207  if ((VT.isVector() ||
15208       (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
15209      isa<LoadSDNode>(St->getValue()) &&
15210      !cast<LoadSDNode>(St->getValue())->isVolatile() &&
15211      St->getChain().hasOneUse() && !St->isVolatile()) {
15212    SDNode* LdVal = St->getValue().getNode();
15213    LoadSDNode *Ld = 0;
15214    int TokenFactorIndex = -1;
15215    SmallVector<SDValue, 8> Ops;
15216    SDNode* ChainVal = St->getChain().getNode();
15217    // Must be a store of a load.  We currently handle two cases:  the load
15218    // is a direct child, and it's under an intervening TokenFactor.  It is
15219    // possible to dig deeper under nested TokenFactors.
15220    if (ChainVal == LdVal)
15221      Ld = cast<LoadSDNode>(St->getChain());
15222    else if (St->getValue().hasOneUse() &&
15223             ChainVal->getOpcode() == ISD::TokenFactor) {
15224      for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
15225        if (ChainVal->getOperand(i).getNode() == LdVal) {
15226          TokenFactorIndex = i;
15227          Ld = cast<LoadSDNode>(St->getValue());
15228        } else
15229          Ops.push_back(ChainVal->getOperand(i));
15230      }
15231    }
15232
15233    if (!Ld || !ISD::isNormalLoad(Ld))
15234      return SDValue();
15235
15236    // If this is not the MMX case, i.e. we are just turning i64 load/store
15237    // into f64 load/store, avoid the transformation if there are multiple
15238    // uses of the loaded value.
15239    if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
15240      return SDValue();
15241
15242    DebugLoc LdDL = Ld->getDebugLoc();
15243    DebugLoc StDL = N->getDebugLoc();
15244    // If we are a 64-bit capable x86, lower to a single movq load/store pair.
15245    // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
15246    // pair instead.
15247    if (Subtarget->is64Bit() || F64IsLegal) {
15248      EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
15249      SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
15250                                  Ld->getPointerInfo(), Ld->isVolatile(),
15251                                  Ld->isNonTemporal(), Ld->isInvariant(),
15252                                  Ld->getAlignment());
15253      SDValue NewChain = NewLd.getValue(1);
15254      if (TokenFactorIndex != -1) {
15255        Ops.push_back(NewChain);
15256        NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15257                               Ops.size());
15258      }
15259      return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
15260                          St->getPointerInfo(),
15261                          St->isVolatile(), St->isNonTemporal(),
15262                          St->getAlignment());
15263    }
15264
15265    // Otherwise, lower to two pairs of 32-bit loads / stores.
15266    SDValue LoAddr = Ld->getBasePtr();
15267    SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
15268                                 DAG.getConstant(4, MVT::i32));
15269
15270    SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
15271                               Ld->getPointerInfo(),
15272                               Ld->isVolatile(), Ld->isNonTemporal(),
15273                               Ld->isInvariant(), Ld->getAlignment());
15274    SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
15275                               Ld->getPointerInfo().getWithOffset(4),
15276                               Ld->isVolatile(), Ld->isNonTemporal(),
15277                               Ld->isInvariant(),
15278                               MinAlign(Ld->getAlignment(), 4));
15279
15280    SDValue NewChain = LoLd.getValue(1);
15281    if (TokenFactorIndex != -1) {
15282      Ops.push_back(LoLd);
15283      Ops.push_back(HiLd);
15284      NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
15285                             Ops.size());
15286    }
15287
15288    LoAddr = St->getBasePtr();
15289    HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
15290                         DAG.getConstant(4, MVT::i32));
15291
15292    SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
15293                                St->getPointerInfo(),
15294                                St->isVolatile(), St->isNonTemporal(),
15295                                St->getAlignment());
15296    SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
15297                                St->getPointerInfo().getWithOffset(4),
15298                                St->isVolatile(),
15299                                St->isNonTemporal(),
15300                                MinAlign(St->getAlignment(), 4));
15301    return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
15302  }
15303  return SDValue();
15304}
15305
15306/// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
15307/// and return the operands for the horizontal operation in LHS and RHS.  A
15308/// horizontal operation performs the binary operation on successive elements
15309/// of its first operand, then on successive elements of its second operand,
15310/// returning the resulting values in a vector.  For example, if
15311///   A = < float a0, float a1, float a2, float a3 >
15312/// and
15313///   B = < float b0, float b1, float b2, float b3 >
15314/// then the result of doing a horizontal operation on A and B is
15315///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
15316/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
15317/// A horizontal-op B, for some already available A and B, and if so then LHS is
15318/// set to A, RHS to B, and the routine returns 'true'.
15319/// Note that the binary operation should have the property that if one of the
15320/// operands is UNDEF then the result is UNDEF.
15321static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
15322  // Look for the following pattern: if
15323  //   A = < float a0, float a1, float a2, float a3 >
15324  //   B = < float b0, float b1, float b2, float b3 >
15325  // and
15326  //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
15327  //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
15328  // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
15329  // which is A horizontal-op B.
15330
15331  // At least one of the operands should be a vector shuffle.
15332  if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
15333      RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
15334    return false;
15335
15336  EVT VT = LHS.getValueType();
15337
15338  assert((VT.is128BitVector() || VT.is256BitVector()) &&
15339         "Unsupported vector type for horizontal add/sub");
15340
15341  // Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
15342  // operate independently on 128-bit lanes.
15343  unsigned NumElts = VT.getVectorNumElements();
15344  unsigned NumLanes = VT.getSizeInBits()/128;
15345  unsigned NumLaneElts = NumElts / NumLanes;
15346  assert((NumLaneElts % 2 == 0) &&
15347         "Vector type should have an even number of elements in each lane");
15348  unsigned HalfLaneElts = NumLaneElts/2;
15349
15350  // View LHS in the form
15351  //   LHS = VECTOR_SHUFFLE A, B, LMask
15352  // If LHS is not a shuffle then pretend it is the shuffle
15353  //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
15354  // NOTE: in what follows a default initialized SDValue represents an UNDEF of
15355  // type VT.
15356  SDValue A, B;
15357  SmallVector<int, 16> LMask(NumElts);
15358  if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15359    if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
15360      A = LHS.getOperand(0);
15361    if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
15362      B = LHS.getOperand(1);
15363    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
15364    std::copy(Mask.begin(), Mask.end(), LMask.begin());
15365  } else {
15366    if (LHS.getOpcode() != ISD::UNDEF)
15367      A = LHS;
15368    for (unsigned i = 0; i != NumElts; ++i)
15369      LMask[i] = i;
15370  }
15371
15372  // Likewise, view RHS in the form
15373  //   RHS = VECTOR_SHUFFLE C, D, RMask
15374  SDValue C, D;
15375  SmallVector<int, 16> RMask(NumElts);
15376  if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
15377    if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
15378      C = RHS.getOperand(0);
15379    if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
15380      D = RHS.getOperand(1);
15381    ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
15382    std::copy(Mask.begin(), Mask.end(), RMask.begin());
15383  } else {
15384    if (RHS.getOpcode() != ISD::UNDEF)
15385      C = RHS;
15386    for (unsigned i = 0; i != NumElts; ++i)
15387      RMask[i] = i;
15388  }
15389
15390  // Check that the shuffles are both shuffling the same vectors.
15391  if (!(A == C && B == D) && !(A == D && B == C))
15392    return false;
15393
15394  // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
15395  if (!A.getNode() && !B.getNode())
15396    return false;
15397
15398  // If A and B occur in reverse order in RHS, then "swap" them (which means
15399  // rewriting the mask).
15400  if (A != C)
15401    CommuteVectorShuffleMask(RMask, NumElts);
15402
15403  // At this point LHS and RHS are equivalent to
15404  //   LHS = VECTOR_SHUFFLE A, B, LMask
15405  //   RHS = VECTOR_SHUFFLE A, B, RMask
15406  // Check that the masks correspond to performing a horizontal operation.
15407  for (unsigned i = 0; i != NumElts; ++i) {
15408    int LIdx = LMask[i], RIdx = RMask[i];
15409
15410    // Ignore any UNDEF components.
15411    if (LIdx < 0 || RIdx < 0 ||
15412        (!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
15413        (!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
15414      continue;
15415
15416    // Check that successive elements are being operated on.  If not, this is
15417    // not a horizontal operation.
15418    unsigned Src = (i/HalfLaneElts) % 2; // each lane is split between srcs
15419    unsigned LaneStart = (i/NumLaneElts) * NumLaneElts;
15420    int Index = 2*(i%HalfLaneElts) + NumElts*Src + LaneStart;
15421    if (!(LIdx == Index && RIdx == Index + 1) &&
15422        !(IsCommutative && LIdx == Index + 1 && RIdx == Index))
15423      return false;
15424  }
15425
15426  LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
15427  RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
15428  return true;
15429}
15430
15431/// PerformFADDCombine - Do target-specific dag combines on floating point adds.
15432static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
15433                                  const X86Subtarget *Subtarget) {
15434  EVT VT = N->getValueType(0);
15435  SDValue LHS = N->getOperand(0);
15436  SDValue RHS = N->getOperand(1);
15437
15438  // Try to synthesize horizontal adds from adds of shuffles.
15439  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15440       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15441      isHorizontalBinOp(LHS, RHS, true))
15442    return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
15443  return SDValue();
15444}
15445
15446/// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
15447static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
15448                                  const X86Subtarget *Subtarget) {
15449  EVT VT = N->getValueType(0);
15450  SDValue LHS = N->getOperand(0);
15451  SDValue RHS = N->getOperand(1);
15452
15453  // Try to synthesize horizontal subs from subs of shuffles.
15454  if (((Subtarget->hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
15455       (Subtarget->hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
15456      isHorizontalBinOp(LHS, RHS, false))
15457    return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
15458  return SDValue();
15459}
15460
15461/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
15462/// X86ISD::FXOR nodes.
15463static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
15464  assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
15465  // F[X]OR(0.0, x) -> x
15466  // F[X]OR(x, 0.0) -> x
15467  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15468    if (C->getValueAPF().isPosZero())
15469      return N->getOperand(1);
15470  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15471    if (C->getValueAPF().isPosZero())
15472      return N->getOperand(0);
15473  return SDValue();
15474}
15475
15476/// PerformFMinFMaxCombine - Do target-specific dag combines on X86ISD::FMIN and
15477/// X86ISD::FMAX nodes.
15478static SDValue PerformFMinFMaxCombine(SDNode *N, SelectionDAG &DAG) {
15479  assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
15480
15481  // Only perform optimizations if UnsafeMath is used.
15482  if (!DAG.getTarget().Options.UnsafeFPMath)
15483    return SDValue();
15484
15485  // If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
15486  // into FMINC and MMAXC, which are Commutative operations.
15487  unsigned NewOp = 0;
15488  switch (N->getOpcode()) {
15489    default: llvm_unreachable("unknown opcode");
15490    case X86ISD::FMIN:  NewOp = X86ISD::FMINC; break;
15491    case X86ISD::FMAX:  NewOp = X86ISD::FMAXC; break;
15492  }
15493
15494  return DAG.getNode(NewOp, N->getDebugLoc(), N->getValueType(0),
15495                     N->getOperand(0), N->getOperand(1));
15496}
15497
15498
15499/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
15500static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
15501  // FAND(0.0, x) -> 0.0
15502  // FAND(x, 0.0) -> 0.0
15503  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
15504    if (C->getValueAPF().isPosZero())
15505      return N->getOperand(0);
15506  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
15507    if (C->getValueAPF().isPosZero())
15508      return N->getOperand(1);
15509  return SDValue();
15510}
15511
15512static SDValue PerformBTCombine(SDNode *N,
15513                                SelectionDAG &DAG,
15514                                TargetLowering::DAGCombinerInfo &DCI) {
15515  // BT ignores high bits in the bit index operand.
15516  SDValue Op1 = N->getOperand(1);
15517  if (Op1.hasOneUse()) {
15518    unsigned BitWidth = Op1.getValueSizeInBits();
15519    APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
15520    APInt KnownZero, KnownOne;
15521    TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
15522                                          !DCI.isBeforeLegalizeOps());
15523    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15524    if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
15525        TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
15526      DCI.CommitTargetLoweringOpt(TLO);
15527  }
15528  return SDValue();
15529}
15530
15531static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
15532  SDValue Op = N->getOperand(0);
15533  if (Op.getOpcode() == ISD::BITCAST)
15534    Op = Op.getOperand(0);
15535  EVT VT = N->getValueType(0), OpVT = Op.getValueType();
15536  if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
15537      VT.getVectorElementType().getSizeInBits() ==
15538      OpVT.getVectorElementType().getSizeInBits()) {
15539    return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
15540  }
15541  return SDValue();
15542}
15543
15544static SDValue PerformSExtCombine(SDNode *N, SelectionDAG &DAG,
15545                                  TargetLowering::DAGCombinerInfo &DCI,
15546                                  const X86Subtarget *Subtarget) {
15547  if (!DCI.isBeforeLegalizeOps())
15548    return SDValue();
15549
15550  if (!Subtarget->hasAVX())
15551    return SDValue();
15552
15553  EVT VT = N->getValueType(0);
15554  SDValue Op = N->getOperand(0);
15555  EVT OpVT = Op.getValueType();
15556  DebugLoc dl = N->getDebugLoc();
15557
15558  if ((VT == MVT::v4i64 && OpVT == MVT::v4i32) ||
15559      (VT == MVT::v8i32 && OpVT == MVT::v8i16)) {
15560
15561    if (Subtarget->hasAVX2())
15562      return DAG.getNode(X86ISD::VSEXT_MOVL, dl, VT, Op);
15563
15564    // Optimize vectors in AVX mode
15565    // Sign extend  v8i16 to v8i32 and
15566    //              v4i32 to v4i64
15567    //
15568    // Divide input vector into two parts
15569    // for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
15570    // use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
15571    // concat the vectors to original VT
15572
15573    unsigned NumElems = OpVT.getVectorNumElements();
15574    SDValue Undef = DAG.getUNDEF(OpVT);
15575
15576    SmallVector<int,8> ShufMask1(NumElems, -1);
15577    for (unsigned i = 0; i != NumElems/2; ++i)
15578      ShufMask1[i] = i;
15579
15580    SDValue OpLo = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask1[0]);
15581
15582    SmallVector<int,8> ShufMask2(NumElems, -1);
15583    for (unsigned i = 0; i != NumElems/2; ++i)
15584      ShufMask2[i] = i + NumElems/2;
15585
15586    SDValue OpHi = DAG.getVectorShuffle(OpVT, dl, Op, Undef, &ShufMask2[0]);
15587
15588    EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
15589                                  VT.getVectorNumElements()/2);
15590
15591    OpLo = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpLo);
15592    OpHi = DAG.getNode(X86ISD::VSEXT_MOVL, dl, HalfVT, OpHi);
15593
15594    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15595  }
15596  return SDValue();
15597}
15598
15599static SDValue PerformFMACombine(SDNode *N, SelectionDAG &DAG,
15600                                 const X86Subtarget* Subtarget) {
15601  DebugLoc dl = N->getDebugLoc();
15602  EVT VT = N->getValueType(0);
15603
15604  EVT ScalarVT = VT.getScalarType();
15605  if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget->hasFMA())
15606    return SDValue();
15607
15608  SDValue A = N->getOperand(0);
15609  SDValue B = N->getOperand(1);
15610  SDValue C = N->getOperand(2);
15611
15612  bool NegA = (A.getOpcode() == ISD::FNEG);
15613  bool NegB = (B.getOpcode() == ISD::FNEG);
15614  bool NegC = (C.getOpcode() == ISD::FNEG);
15615
15616  // Negative multiplication when NegA xor NegB
15617  bool NegMul = (NegA != NegB);
15618  if (NegA)
15619    A = A.getOperand(0);
15620  if (NegB)
15621    B = B.getOperand(0);
15622  if (NegC)
15623    C = C.getOperand(0);
15624
15625  unsigned Opcode;
15626  if (!NegMul)
15627    Opcode = (!NegC)? X86ISD::FMADD : X86ISD::FMSUB;
15628  else
15629    Opcode = (!NegC)? X86ISD::FNMADD : X86ISD::FNMSUB;
15630  return DAG.getNode(Opcode, dl, VT, A, B, C);
15631}
15632
15633static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG,
15634                                  TargetLowering::DAGCombinerInfo &DCI,
15635                                  const X86Subtarget *Subtarget) {
15636  // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
15637  //           (and (i32 x86isd::setcc_carry), 1)
15638  // This eliminates the zext. This transformation is necessary because
15639  // ISD::SETCC is always legalized to i8.
15640  DebugLoc dl = N->getDebugLoc();
15641  SDValue N0 = N->getOperand(0);
15642  EVT VT = N->getValueType(0);
15643  EVT OpVT = N0.getValueType();
15644
15645  if (N0.getOpcode() == ISD::AND &&
15646      N0.hasOneUse() &&
15647      N0.getOperand(0).hasOneUse()) {
15648    SDValue N00 = N0.getOperand(0);
15649    if (N00.getOpcode() != X86ISD::SETCC_CARRY)
15650      return SDValue();
15651    ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
15652    if (!C || C->getZExtValue() != 1)
15653      return SDValue();
15654    return DAG.getNode(ISD::AND, dl, VT,
15655                       DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
15656                                   N00.getOperand(0), N00.getOperand(1)),
15657                       DAG.getConstant(1, VT));
15658  }
15659
15660  // Optimize vectors in AVX mode:
15661  //
15662  //   v8i16 -> v8i32
15663  //   Use vpunpcklwd for 4 lower elements  v8i16 -> v4i32.
15664  //   Use vpunpckhwd for 4 upper elements  v8i16 -> v4i32.
15665  //   Concat upper and lower parts.
15666  //
15667  //   v4i32 -> v4i64
15668  //   Use vpunpckldq for 4 lower elements  v4i32 -> v2i64.
15669  //   Use vpunpckhdq for 4 upper elements  v4i32 -> v2i64.
15670  //   Concat upper and lower parts.
15671  //
15672  if (!DCI.isBeforeLegalizeOps())
15673    return SDValue();
15674
15675  if (!Subtarget->hasAVX())
15676    return SDValue();
15677
15678  if (((VT == MVT::v8i32) && (OpVT == MVT::v8i16)) ||
15679      ((VT == MVT::v4i64) && (OpVT == MVT::v4i32)))  {
15680
15681    if (Subtarget->hasAVX2())
15682      return DAG.getNode(X86ISD::VZEXT_MOVL, dl, VT, N0);
15683
15684    SDValue ZeroVec = getZeroVector(OpVT, Subtarget, DAG, dl);
15685    SDValue OpLo = getUnpackl(DAG, dl, OpVT, N0, ZeroVec);
15686    SDValue OpHi = getUnpackh(DAG, dl, OpVT, N0, ZeroVec);
15687
15688    EVT HVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
15689                               VT.getVectorNumElements()/2);
15690
15691    OpLo = DAG.getNode(ISD::BITCAST, dl, HVT, OpLo);
15692    OpHi = DAG.getNode(ISD::BITCAST, dl, HVT, OpHi);
15693
15694    return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
15695  }
15696
15697  return SDValue();
15698}
15699
15700// Optimize x == -y --> x+y == 0
15701//          x != -y --> x+y != 0
15702static SDValue PerformISDSETCCCombine(SDNode *N, SelectionDAG &DAG) {
15703  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
15704  SDValue LHS = N->getOperand(0);
15705  SDValue RHS = N->getOperand(1);
15706
15707  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
15708    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(LHS.getOperand(0)))
15709      if (C->getAPIntValue() == 0 && LHS.hasOneUse()) {
15710        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15711                                   LHS.getValueType(), RHS, LHS.getOperand(1));
15712        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15713                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15714      }
15715  if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
15716    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS.getOperand(0)))
15717      if (C->getAPIntValue() == 0 && RHS.hasOneUse()) {
15718        SDValue addV = DAG.getNode(ISD::ADD, N->getDebugLoc(),
15719                                   RHS.getValueType(), LHS, RHS.getOperand(1));
15720        return DAG.getSetCC(N->getDebugLoc(), N->getValueType(0),
15721                            addV, DAG.getConstant(0, addV.getValueType()), CC);
15722      }
15723  return SDValue();
15724}
15725
15726// Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
15727static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG,
15728                                   TargetLowering::DAGCombinerInfo &DCI,
15729                                   const X86Subtarget *Subtarget) {
15730  DebugLoc DL = N->getDebugLoc();
15731  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
15732  SDValue EFLAGS = N->getOperand(1);
15733
15734  // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
15735  // a zext and produces an all-ones bit which is more useful than 0/1 in some
15736  // cases.
15737  if (CC == X86::COND_B)
15738    return DAG.getNode(ISD::AND, DL, MVT::i8,
15739                       DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
15740                                   DAG.getConstant(CC, MVT::i8), EFLAGS),
15741                       DAG.getConstant(1, MVT::i8));
15742
15743  SDValue Flags;
15744
15745  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
15746  if (Flags.getNode()) {
15747    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15748    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
15749  }
15750
15751  Flags = checkFlaggedOrCombine(EFLAGS, CC, DAG, Subtarget);
15752  if (Flags.getNode()) {
15753    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15754    return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
15755  }
15756
15757  return SDValue();
15758}
15759
15760// Optimize branch condition evaluation.
15761//
15762static SDValue PerformBrCondCombine(SDNode *N, SelectionDAG &DAG,
15763                                    TargetLowering::DAGCombinerInfo &DCI,
15764                                    const X86Subtarget *Subtarget) {
15765  DebugLoc DL = N->getDebugLoc();
15766  SDValue Chain = N->getOperand(0);
15767  SDValue Dest = N->getOperand(1);
15768  SDValue EFLAGS = N->getOperand(3);
15769  X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
15770
15771  SDValue Flags;
15772
15773  Flags = checkBoolTestSetCCCombine(EFLAGS, CC);
15774  if (Flags.getNode()) {
15775    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15776    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
15777                       Flags);
15778  }
15779
15780  Flags = checkFlaggedOrCombine(EFLAGS, CC, DAG, Subtarget);
15781  if (Flags.getNode()) {
15782    SDValue Cond = DAG.getConstant(CC, MVT::i8);
15783    return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), Chain, Dest, Cond,
15784                       Flags);
15785  }
15786
15787  return SDValue();
15788}
15789
15790static SDValue PerformUINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG) {
15791  SDValue Op0 = N->getOperand(0);
15792  EVT InVT = Op0->getValueType(0);
15793
15794  // UINT_TO_FP(v4i8) -> SINT_TO_FP(ZEXT(v4i8 to v4i32))
15795  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15796    DebugLoc dl = N->getDebugLoc();
15797    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15798    SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
15799    // Notice that we use SINT_TO_FP because we know that the high bits
15800    // are zero and SINT_TO_FP is better supported by the hardware.
15801    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15802  }
15803
15804  return SDValue();
15805}
15806
15807static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
15808                                        const X86TargetLowering *XTLI) {
15809  SDValue Op0 = N->getOperand(0);
15810  EVT InVT = Op0->getValueType(0);
15811
15812  // SINT_TO_FP(v4i8) -> SINT_TO_FP(SEXT(v4i8 to v4i32))
15813  if (InVT == MVT::v8i8 || InVT == MVT::v4i8) {
15814    DebugLoc dl = N->getDebugLoc();
15815    MVT DstVT = InVT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15816    SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
15817    return DAG.getNode(ISD::SINT_TO_FP, dl, N->getValueType(0), P);
15818  }
15819
15820  // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
15821  // a 32-bit target where SSE doesn't support i64->FP operations.
15822  if (Op0.getOpcode() == ISD::LOAD) {
15823    LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
15824    EVT VT = Ld->getValueType(0);
15825    if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
15826        ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
15827        !XTLI->getSubtarget()->is64Bit() &&
15828        !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
15829      SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
15830                                          Ld->getChain(), Op0, DAG);
15831      DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
15832      return FILDChain;
15833    }
15834  }
15835  return SDValue();
15836}
15837
15838static SDValue PerformFP_TO_SINTCombine(SDNode *N, SelectionDAG &DAG) {
15839  EVT VT = N->getValueType(0);
15840
15841  // v4i8 = FP_TO_SINT() -> v4i8 = TRUNCATE (V4i32 = FP_TO_SINT()
15842  if (VT == MVT::v8i8 || VT == MVT::v4i8) {
15843    DebugLoc dl = N->getDebugLoc();
15844    MVT DstVT = VT == MVT::v4i8 ? MVT::v4i32 : MVT::v8i32;
15845    SDValue I = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, N->getOperand(0));
15846    return DAG.getNode(ISD::TRUNCATE, dl, VT, I);
15847  }
15848
15849  return SDValue();
15850}
15851
15852// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
15853static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
15854                                 X86TargetLowering::DAGCombinerInfo &DCI) {
15855  // If the LHS and RHS of the ADC node are zero, then it can't overflow and
15856  // the result is either zero or one (depending on the input carry bit).
15857  // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
15858  if (X86::isZeroNode(N->getOperand(0)) &&
15859      X86::isZeroNode(N->getOperand(1)) &&
15860      // We don't have a good way to replace an EFLAGS use, so only do this when
15861      // dead right now.
15862      SDValue(N, 1).use_empty()) {
15863    DebugLoc DL = N->getDebugLoc();
15864    EVT VT = N->getValueType(0);
15865    SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
15866    SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
15867                               DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
15868                                           DAG.getConstant(X86::COND_B,MVT::i8),
15869                                           N->getOperand(2)),
15870                               DAG.getConstant(1, VT));
15871    return DCI.CombineTo(N, Res1, CarryOut);
15872  }
15873
15874  return SDValue();
15875}
15876
15877// fold (add Y, (sete  X, 0)) -> adc  0, Y
15878//      (add Y, (setne X, 0)) -> sbb -1, Y
15879//      (sub (sete  X, 0), Y) -> sbb  0, Y
15880//      (sub (setne X, 0), Y) -> adc -1, Y
15881static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
15882  DebugLoc DL = N->getDebugLoc();
15883
15884  // Look through ZExts.
15885  SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
15886  if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
15887    return SDValue();
15888
15889  SDValue SetCC = Ext.getOperand(0);
15890  if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
15891    return SDValue();
15892
15893  X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
15894  if (CC != X86::COND_E && CC != X86::COND_NE)
15895    return SDValue();
15896
15897  SDValue Cmp = SetCC.getOperand(1);
15898  if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
15899      !X86::isZeroNode(Cmp.getOperand(1)) ||
15900      !Cmp.getOperand(0).getValueType().isInteger())
15901    return SDValue();
15902
15903  SDValue CmpOp0 = Cmp.getOperand(0);
15904  SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
15905                               DAG.getConstant(1, CmpOp0.getValueType()));
15906
15907  SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
15908  if (CC == X86::COND_NE)
15909    return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
15910                       DL, OtherVal.getValueType(), OtherVal,
15911                       DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
15912  return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
15913                     DL, OtherVal.getValueType(), OtherVal,
15914                     DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
15915}
15916
15917/// PerformADDCombine - Do target-specific dag combines on integer adds.
15918static SDValue PerformAddCombine(SDNode *N, SelectionDAG &DAG,
15919                                 const X86Subtarget *Subtarget) {
15920  EVT VT = N->getValueType(0);
15921  SDValue Op0 = N->getOperand(0);
15922  SDValue Op1 = N->getOperand(1);
15923
15924  // Try to synthesize horizontal adds from adds of shuffles.
15925  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15926       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15927      isHorizontalBinOp(Op0, Op1, true))
15928    return DAG.getNode(X86ISD::HADD, N->getDebugLoc(), VT, Op0, Op1);
15929
15930  return OptimizeConditionalInDecrement(N, DAG);
15931}
15932
15933static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG,
15934                                 const X86Subtarget *Subtarget) {
15935  SDValue Op0 = N->getOperand(0);
15936  SDValue Op1 = N->getOperand(1);
15937
15938  // X86 can't encode an immediate LHS of a sub. See if we can push the
15939  // negation into a preceding instruction.
15940  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
15941    // If the RHS of the sub is a XOR with one use and a constant, invert the
15942    // immediate. Then add one to the LHS of the sub so we can turn
15943    // X-Y -> X+~Y+1, saving one register.
15944    if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
15945        isa<ConstantSDNode>(Op1.getOperand(1))) {
15946      APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
15947      EVT VT = Op0.getValueType();
15948      SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
15949                                   Op1.getOperand(0),
15950                                   DAG.getConstant(~XorC, VT));
15951      return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
15952                         DAG.getConstant(C->getAPIntValue()+1, VT));
15953    }
15954  }
15955
15956  // Try to synthesize horizontal adds from adds of shuffles.
15957  EVT VT = N->getValueType(0);
15958  if (((Subtarget->hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
15959       (Subtarget->hasAVX2() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
15960      isHorizontalBinOp(Op0, Op1, true))
15961    return DAG.getNode(X86ISD::HSUB, N->getDebugLoc(), VT, Op0, Op1);
15962
15963  return OptimizeConditionalInDecrement(N, DAG);
15964}
15965
15966SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
15967                                             DAGCombinerInfo &DCI) const {
15968  SelectionDAG &DAG = DCI.DAG;
15969  switch (N->getOpcode()) {
15970  default: break;
15971  case ISD::EXTRACT_VECTOR_ELT:
15972    return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, DCI);
15973  case ISD::VSELECT:
15974  case ISD::SELECT:         return PerformSELECTCombine(N, DAG, DCI, Subtarget);
15975  case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI, Subtarget);
15976  case ISD::ADD:            return PerformAddCombine(N, DAG, Subtarget);
15977  case ISD::SUB:            return PerformSubCombine(N, DAG, Subtarget);
15978  case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
15979  case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
15980  case ISD::SHL:
15981  case ISD::SRA:
15982  case ISD::SRL:            return PerformShiftCombine(N, DAG, DCI, Subtarget);
15983  case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
15984  case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
15985  case ISD::XOR:            return PerformXorCombine(N, DAG, DCI, Subtarget);
15986  case ISD::LOAD:           return PerformLOADCombine(N, DAG, DCI, Subtarget);
15987  case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
15988  case ISD::UINT_TO_FP:     return PerformUINT_TO_FPCombine(N, DAG);
15989  case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
15990  case ISD::FP_TO_SINT:     return PerformFP_TO_SINTCombine(N, DAG);
15991  case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
15992  case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
15993  case X86ISD::FXOR:
15994  case X86ISD::FOR:         return PerformFORCombine(N, DAG);
15995  case X86ISD::FMIN:
15996  case X86ISD::FMAX:        return PerformFMinFMaxCombine(N, DAG);
15997  case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
15998  case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
15999  case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
16000  case ISD::ANY_EXTEND:
16001  case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG, DCI, Subtarget);
16002  case ISD::SIGN_EXTEND:    return PerformSExtCombine(N, DAG, DCI, Subtarget);
16003  case ISD::TRUNCATE:       return PerformTruncateCombine(N, DAG, DCI);
16004  case ISD::SETCC:          return PerformISDSETCCCombine(N, DAG);
16005  case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG, DCI, Subtarget);
16006  case X86ISD::BRCOND:      return PerformBrCondCombine(N, DAG, DCI, Subtarget);
16007  case X86ISD::SHUFP:       // Handle all target specific shuffles
16008  case X86ISD::PALIGN:
16009  case X86ISD::UNPCKH:
16010  case X86ISD::UNPCKL:
16011  case X86ISD::MOVHLPS:
16012  case X86ISD::MOVLHPS:
16013  case X86ISD::PSHUFD:
16014  case X86ISD::PSHUFHW:
16015  case X86ISD::PSHUFLW:
16016  case X86ISD::MOVSS:
16017  case X86ISD::MOVSD:
16018  case X86ISD::VPERMILP:
16019  case X86ISD::VPERM2X128:
16020  case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
16021  case ISD::FMA:            return PerformFMACombine(N, DAG, Subtarget);
16022  }
16023
16024  return SDValue();
16025}
16026
16027/// isTypeDesirableForOp - Return true if the target has native support for
16028/// the specified value type and it is 'desirable' to use the type for the
16029/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
16030/// instruction encodings are longer and some i16 instructions are slow.
16031bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
16032  if (!isTypeLegal(VT))
16033    return false;
16034  if (VT != MVT::i16)
16035    return true;
16036
16037  switch (Opc) {
16038  default:
16039    return true;
16040  case ISD::LOAD:
16041  case ISD::SIGN_EXTEND:
16042  case ISD::ZERO_EXTEND:
16043  case ISD::ANY_EXTEND:
16044  case ISD::SHL:
16045  case ISD::SRL:
16046  case ISD::SUB:
16047  case ISD::ADD:
16048  case ISD::MUL:
16049  case ISD::AND:
16050  case ISD::OR:
16051  case ISD::XOR:
16052    return false;
16053  }
16054}
16055
16056/// IsDesirableToPromoteOp - This method query the target whether it is
16057/// beneficial for dag combiner to promote the specified node. If true, it
16058/// should return the desired promotion type by reference.
16059bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
16060  EVT VT = Op.getValueType();
16061  if (VT != MVT::i16)
16062    return false;
16063
16064  bool Promote = false;
16065  bool Commute = false;
16066  switch (Op.getOpcode()) {
16067  default: break;
16068  case ISD::LOAD: {
16069    LoadSDNode *LD = cast<LoadSDNode>(Op);
16070    // If the non-extending load has a single use and it's not live out, then it
16071    // might be folded.
16072    if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
16073                                                     Op.hasOneUse()*/) {
16074      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
16075             UE = Op.getNode()->use_end(); UI != UE; ++UI) {
16076        // The only case where we'd want to promote LOAD (rather then it being
16077        // promoted as an operand is when it's only use is liveout.
16078        if (UI->getOpcode() != ISD::CopyToReg)
16079          return false;
16080      }
16081    }
16082    Promote = true;
16083    break;
16084  }
16085  case ISD::SIGN_EXTEND:
16086  case ISD::ZERO_EXTEND:
16087  case ISD::ANY_EXTEND:
16088    Promote = true;
16089    break;
16090  case ISD::SHL:
16091  case ISD::SRL: {
16092    SDValue N0 = Op.getOperand(0);
16093    // Look out for (store (shl (load), x)).
16094    if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
16095      return false;
16096    Promote = true;
16097    break;
16098  }
16099  case ISD::ADD:
16100  case ISD::MUL:
16101  case ISD::AND:
16102  case ISD::OR:
16103  case ISD::XOR:
16104    Commute = true;
16105    // fallthrough
16106  case ISD::SUB: {
16107    SDValue N0 = Op.getOperand(0);
16108    SDValue N1 = Op.getOperand(1);
16109    if (!Commute && MayFoldLoad(N1))
16110      return false;
16111    // Avoid disabling potential load folding opportunities.
16112    if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
16113      return false;
16114    if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
16115      return false;
16116    Promote = true;
16117  }
16118  }
16119
16120  PVT = MVT::i32;
16121  return Promote;
16122}
16123
16124//===----------------------------------------------------------------------===//
16125//                           X86 Inline Assembly Support
16126//===----------------------------------------------------------------------===//
16127
16128namespace {
16129  // Helper to match a string separated by whitespace.
16130  bool matchAsmImpl(StringRef s, ArrayRef<const StringRef *> args) {
16131    s = s.substr(s.find_first_not_of(" \t")); // Skip leading whitespace.
16132
16133    for (unsigned i = 0, e = args.size(); i != e; ++i) {
16134      StringRef piece(*args[i]);
16135      if (!s.startswith(piece)) // Check if the piece matches.
16136        return false;
16137
16138      s = s.substr(piece.size());
16139      StringRef::size_type pos = s.find_first_not_of(" \t");
16140      if (pos == 0) // We matched a prefix.
16141        return false;
16142
16143      s = s.substr(pos);
16144    }
16145
16146    return s.empty();
16147  }
16148  const VariadicFunction1<bool, StringRef, StringRef, matchAsmImpl> matchAsm={};
16149}
16150
16151bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
16152  InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
16153
16154  std::string AsmStr = IA->getAsmString();
16155
16156  IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
16157  if (!Ty || Ty->getBitWidth() % 16 != 0)
16158    return false;
16159
16160  // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
16161  SmallVector<StringRef, 4> AsmPieces;
16162  SplitString(AsmStr, AsmPieces, ";\n");
16163
16164  switch (AsmPieces.size()) {
16165  default: return false;
16166  case 1:
16167    // FIXME: this should verify that we are targeting a 486 or better.  If not,
16168    // we will turn this bswap into something that will be lowered to logical
16169    // ops instead of emitting the bswap asm.  For now, we don't support 486 or
16170    // lower so don't worry about this.
16171    // bswap $0
16172    if (matchAsm(AsmPieces[0], "bswap", "$0") ||
16173        matchAsm(AsmPieces[0], "bswapl", "$0") ||
16174        matchAsm(AsmPieces[0], "bswapq", "$0") ||
16175        matchAsm(AsmPieces[0], "bswap", "${0:q}") ||
16176        matchAsm(AsmPieces[0], "bswapl", "${0:q}") ||
16177        matchAsm(AsmPieces[0], "bswapq", "${0:q}")) {
16178      // No need to check constraints, nothing other than the equivalent of
16179      // "=r,0" would be valid here.
16180      return IntrinsicLowering::LowerToByteSwap(CI);
16181    }
16182
16183    // rorw $$8, ${0:w}  -->  llvm.bswap.i16
16184    if (CI->getType()->isIntegerTy(16) &&
16185        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16186        (matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") ||
16187         matchAsm(AsmPieces[0], "rolw", "$$8,", "${0:w}"))) {
16188      AsmPieces.clear();
16189      const std::string &ConstraintsStr = IA->getConstraintString();
16190      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16191      std::sort(AsmPieces.begin(), AsmPieces.end());
16192      if (AsmPieces.size() == 4 &&
16193          AsmPieces[0] == "~{cc}" &&
16194          AsmPieces[1] == "~{dirflag}" &&
16195          AsmPieces[2] == "~{flags}" &&
16196          AsmPieces[3] == "~{fpsr}")
16197      return IntrinsicLowering::LowerToByteSwap(CI);
16198    }
16199    break;
16200  case 3:
16201    if (CI->getType()->isIntegerTy(32) &&
16202        IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
16203        matchAsm(AsmPieces[0], "rorw", "$$8,", "${0:w}") &&
16204        matchAsm(AsmPieces[1], "rorl", "$$16,", "$0") &&
16205        matchAsm(AsmPieces[2], "rorw", "$$8,", "${0:w}")) {
16206      AsmPieces.clear();
16207      const std::string &ConstraintsStr = IA->getConstraintString();
16208      SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
16209      std::sort(AsmPieces.begin(), AsmPieces.end());
16210      if (AsmPieces.size() == 4 &&
16211          AsmPieces[0] == "~{cc}" &&
16212          AsmPieces[1] == "~{dirflag}" &&
16213          AsmPieces[2] == "~{flags}" &&
16214          AsmPieces[3] == "~{fpsr}")
16215        return IntrinsicLowering::LowerToByteSwap(CI);
16216    }
16217
16218    if (CI->getType()->isIntegerTy(64)) {
16219      InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
16220      if (Constraints.size() >= 2 &&
16221          Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
16222          Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
16223        // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
16224        if (matchAsm(AsmPieces[0], "bswap", "%eax") &&
16225            matchAsm(AsmPieces[1], "bswap", "%edx") &&
16226            matchAsm(AsmPieces[2], "xchgl", "%eax,", "%edx"))
16227          return IntrinsicLowering::LowerToByteSwap(CI);
16228      }
16229    }
16230    break;
16231  }
16232  return false;
16233}
16234
16235
16236
16237/// getConstraintType - Given a constraint letter, return the type of
16238/// constraint it is for this target.
16239X86TargetLowering::ConstraintType
16240X86TargetLowering::getConstraintType(const std::string &Constraint) const {
16241  if (Constraint.size() == 1) {
16242    switch (Constraint[0]) {
16243    case 'R':
16244    case 'q':
16245    case 'Q':
16246    case 'f':
16247    case 't':
16248    case 'u':
16249    case 'y':
16250    case 'x':
16251    case 'Y':
16252    case 'l':
16253      return C_RegisterClass;
16254    case 'a':
16255    case 'b':
16256    case 'c':
16257    case 'd':
16258    case 'S':
16259    case 'D':
16260    case 'A':
16261      return C_Register;
16262    case 'I':
16263    case 'J':
16264    case 'K':
16265    case 'L':
16266    case 'M':
16267    case 'N':
16268    case 'G':
16269    case 'C':
16270    case 'e':
16271    case 'Z':
16272      return C_Other;
16273    default:
16274      break;
16275    }
16276  }
16277  return TargetLowering::getConstraintType(Constraint);
16278}
16279
16280/// Examine constraint type and operand type and determine a weight value.
16281/// This object must already have been set up with the operand type
16282/// and the current alternative constraint selected.
16283TargetLowering::ConstraintWeight
16284  X86TargetLowering::getSingleConstraintMatchWeight(
16285    AsmOperandInfo &info, const char *constraint) const {
16286  ConstraintWeight weight = CW_Invalid;
16287  Value *CallOperandVal = info.CallOperandVal;
16288    // If we don't have a value, we can't do a match,
16289    // but allow it at the lowest weight.
16290  if (CallOperandVal == NULL)
16291    return CW_Default;
16292  Type *type = CallOperandVal->getType();
16293  // Look at the constraint type.
16294  switch (*constraint) {
16295  default:
16296    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
16297  case 'R':
16298  case 'q':
16299  case 'Q':
16300  case 'a':
16301  case 'b':
16302  case 'c':
16303  case 'd':
16304  case 'S':
16305  case 'D':
16306  case 'A':
16307    if (CallOperandVal->getType()->isIntegerTy())
16308      weight = CW_SpecificReg;
16309    break;
16310  case 'f':
16311  case 't':
16312  case 'u':
16313      if (type->isFloatingPointTy())
16314        weight = CW_SpecificReg;
16315      break;
16316  case 'y':
16317      if (type->isX86_MMXTy() && Subtarget->hasMMX())
16318        weight = CW_SpecificReg;
16319      break;
16320  case 'x':
16321  case 'Y':
16322    if (((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasSSE1()) ||
16323        ((type->getPrimitiveSizeInBits() == 256) && Subtarget->hasAVX()))
16324      weight = CW_Register;
16325    break;
16326  case 'I':
16327    if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
16328      if (C->getZExtValue() <= 31)
16329        weight = CW_Constant;
16330    }
16331    break;
16332  case 'J':
16333    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16334      if (C->getZExtValue() <= 63)
16335        weight = CW_Constant;
16336    }
16337    break;
16338  case 'K':
16339    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16340      if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
16341        weight = CW_Constant;
16342    }
16343    break;
16344  case 'L':
16345    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16346      if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
16347        weight = CW_Constant;
16348    }
16349    break;
16350  case 'M':
16351    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16352      if (C->getZExtValue() <= 3)
16353        weight = CW_Constant;
16354    }
16355    break;
16356  case 'N':
16357    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16358      if (C->getZExtValue() <= 0xff)
16359        weight = CW_Constant;
16360    }
16361    break;
16362  case 'G':
16363  case 'C':
16364    if (dyn_cast<ConstantFP>(CallOperandVal)) {
16365      weight = CW_Constant;
16366    }
16367    break;
16368  case 'e':
16369    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16370      if ((C->getSExtValue() >= -0x80000000LL) &&
16371          (C->getSExtValue() <= 0x7fffffffLL))
16372        weight = CW_Constant;
16373    }
16374    break;
16375  case 'Z':
16376    if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
16377      if (C->getZExtValue() <= 0xffffffff)
16378        weight = CW_Constant;
16379    }
16380    break;
16381  }
16382  return weight;
16383}
16384
16385/// LowerXConstraint - try to replace an X constraint, which matches anything,
16386/// with another that has more specific requirements based on the type of the
16387/// corresponding operand.
16388const char *X86TargetLowering::
16389LowerXConstraint(EVT ConstraintVT) const {
16390  // FP X constraints get lowered to SSE1/2 registers if available, otherwise
16391  // 'f' like normal targets.
16392  if (ConstraintVT.isFloatingPoint()) {
16393    if (Subtarget->hasSSE2())
16394      return "Y";
16395    if (Subtarget->hasSSE1())
16396      return "x";
16397  }
16398
16399  return TargetLowering::LowerXConstraint(ConstraintVT);
16400}
16401
16402/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16403/// vector.  If it is invalid, don't add anything to Ops.
16404void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16405                                                     std::string &Constraint,
16406                                                     std::vector<SDValue>&Ops,
16407                                                     SelectionDAG &DAG) const {
16408  SDValue Result(0, 0);
16409
16410  // Only support length 1 constraints for now.
16411  if (Constraint.length() > 1) return;
16412
16413  char ConstraintLetter = Constraint[0];
16414  switch (ConstraintLetter) {
16415  default: break;
16416  case 'I':
16417    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16418      if (C->getZExtValue() <= 31) {
16419        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16420        break;
16421      }
16422    }
16423    return;
16424  case 'J':
16425    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16426      if (C->getZExtValue() <= 63) {
16427        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16428        break;
16429      }
16430    }
16431    return;
16432  case 'K':
16433    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16434      if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
16435        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16436        break;
16437      }
16438    }
16439    return;
16440  case 'N':
16441    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16442      if (C->getZExtValue() <= 255) {
16443        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16444        break;
16445      }
16446    }
16447    return;
16448  case 'e': {
16449    // 32-bit signed value
16450    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16451      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16452                                           C->getSExtValue())) {
16453        // Widen to 64 bits here to get it sign extended.
16454        Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
16455        break;
16456      }
16457    // FIXME gcc accepts some relocatable values here too, but only in certain
16458    // memory models; it's complicated.
16459    }
16460    return;
16461  }
16462  case 'Z': {
16463    // 32-bit unsigned value
16464    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
16465      if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
16466                                           C->getZExtValue())) {
16467        Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
16468        break;
16469      }
16470    }
16471    // FIXME gcc accepts some relocatable values here too, but only in certain
16472    // memory models; it's complicated.
16473    return;
16474  }
16475  case 'i': {
16476    // Literal immediates are always ok.
16477    if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
16478      // Widen to 64 bits here to get it sign extended.
16479      Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
16480      break;
16481    }
16482
16483    // In any sort of PIC mode addresses need to be computed at runtime by
16484    // adding in a register or some sort of table lookup.  These can't
16485    // be used as immediates.
16486    if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
16487      return;
16488
16489    // If we are in non-pic codegen mode, we allow the address of a global (with
16490    // an optional displacement) to be used with 'i'.
16491    GlobalAddressSDNode *GA = 0;
16492    int64_t Offset = 0;
16493
16494    // Match either (GA), (GA+C), (GA+C1+C2), etc.
16495    while (1) {
16496      if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
16497        Offset += GA->getOffset();
16498        break;
16499      } else if (Op.getOpcode() == ISD::ADD) {
16500        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16501          Offset += C->getZExtValue();
16502          Op = Op.getOperand(0);
16503          continue;
16504        }
16505      } else if (Op.getOpcode() == ISD::SUB) {
16506        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
16507          Offset += -C->getZExtValue();
16508          Op = Op.getOperand(0);
16509          continue;
16510        }
16511      }
16512
16513      // Otherwise, this isn't something we can handle, reject it.
16514      return;
16515    }
16516
16517    const GlobalValue *GV = GA->getGlobal();
16518    // If we require an extra load to get this address, as in PIC mode, we
16519    // can't accept it.
16520    if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
16521                                                        getTargetMachine())))
16522      return;
16523
16524    Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
16525                                        GA->getValueType(0), Offset);
16526    break;
16527  }
16528  }
16529
16530  if (Result.getNode()) {
16531    Ops.push_back(Result);
16532    return;
16533  }
16534  return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16535}
16536
16537std::pair<unsigned, const TargetRegisterClass*>
16538X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
16539                                                EVT VT) const {
16540  // First, see if this is a constraint that directly corresponds to an LLVM
16541  // register class.
16542  if (Constraint.size() == 1) {
16543    // GCC Constraint Letters
16544    switch (Constraint[0]) {
16545    default: break;
16546      // TODO: Slight differences here in allocation order and leaving
16547      // RIP in the class. Do they matter any more here than they do
16548      // in the normal allocation?
16549    case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
16550      if (Subtarget->is64Bit()) {
16551        if (VT == MVT::i32 || VT == MVT::f32)
16552          return std::make_pair(0U, &X86::GR32RegClass);
16553        if (VT == MVT::i16)
16554          return std::make_pair(0U, &X86::GR16RegClass);
16555        if (VT == MVT::i8 || VT == MVT::i1)
16556          return std::make_pair(0U, &X86::GR8RegClass);
16557        if (VT == MVT::i64 || VT == MVT::f64)
16558          return std::make_pair(0U, &X86::GR64RegClass);
16559        break;
16560      }
16561      // 32-bit fallthrough
16562    case 'Q':   // Q_REGS
16563      if (VT == MVT::i32 || VT == MVT::f32)
16564        return std::make_pair(0U, &X86::GR32_ABCDRegClass);
16565      if (VT == MVT::i16)
16566        return std::make_pair(0U, &X86::GR16_ABCDRegClass);
16567      if (VT == MVT::i8 || VT == MVT::i1)
16568        return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
16569      if (VT == MVT::i64)
16570        return std::make_pair(0U, &X86::GR64_ABCDRegClass);
16571      break;
16572    case 'r':   // GENERAL_REGS
16573    case 'l':   // INDEX_REGS
16574      if (VT == MVT::i8 || VT == MVT::i1)
16575        return std::make_pair(0U, &X86::GR8RegClass);
16576      if (VT == MVT::i16)
16577        return std::make_pair(0U, &X86::GR16RegClass);
16578      if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
16579        return std::make_pair(0U, &X86::GR32RegClass);
16580      return std::make_pair(0U, &X86::GR64RegClass);
16581    case 'R':   // LEGACY_REGS
16582      if (VT == MVT::i8 || VT == MVT::i1)
16583        return std::make_pair(0U, &X86::GR8_NOREXRegClass);
16584      if (VT == MVT::i16)
16585        return std::make_pair(0U, &X86::GR16_NOREXRegClass);
16586      if (VT == MVT::i32 || !Subtarget->is64Bit())
16587        return std::make_pair(0U, &X86::GR32_NOREXRegClass);
16588      return std::make_pair(0U, &X86::GR64_NOREXRegClass);
16589    case 'f':  // FP Stack registers.
16590      // If SSE is enabled for this VT, use f80 to ensure the isel moves the
16591      // value to the correct fpstack register class.
16592      if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
16593        return std::make_pair(0U, &X86::RFP32RegClass);
16594      if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
16595        return std::make_pair(0U, &X86::RFP64RegClass);
16596      return std::make_pair(0U, &X86::RFP80RegClass);
16597    case 'y':   // MMX_REGS if MMX allowed.
16598      if (!Subtarget->hasMMX()) break;
16599      return std::make_pair(0U, &X86::VR64RegClass);
16600    case 'Y':   // SSE_REGS if SSE2 allowed
16601      if (!Subtarget->hasSSE2()) break;
16602      // FALL THROUGH.
16603    case 'x':   // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
16604      if (!Subtarget->hasSSE1()) break;
16605
16606      switch (VT.getSimpleVT().SimpleTy) {
16607      default: break;
16608      // Scalar SSE types.
16609      case MVT::f32:
16610      case MVT::i32:
16611        return std::make_pair(0U, &X86::FR32RegClass);
16612      case MVT::f64:
16613      case MVT::i64:
16614        return std::make_pair(0U, &X86::FR64RegClass);
16615      // Vector types.
16616      case MVT::v16i8:
16617      case MVT::v8i16:
16618      case MVT::v4i32:
16619      case MVT::v2i64:
16620      case MVT::v4f32:
16621      case MVT::v2f64:
16622        return std::make_pair(0U, &X86::VR128RegClass);
16623      // AVX types.
16624      case MVT::v32i8:
16625      case MVT::v16i16:
16626      case MVT::v8i32:
16627      case MVT::v4i64:
16628      case MVT::v8f32:
16629      case MVT::v4f64:
16630        return std::make_pair(0U, &X86::VR256RegClass);
16631      }
16632      break;
16633    }
16634  }
16635
16636  // Use the default implementation in TargetLowering to convert the register
16637  // constraint into a member of a register class.
16638  std::pair<unsigned, const TargetRegisterClass*> Res;
16639  Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
16640
16641  // Not found as a standard register?
16642  if (Res.second == 0) {
16643    // Map st(0) -> st(7) -> ST0
16644    if (Constraint.size() == 7 && Constraint[0] == '{' &&
16645        tolower(Constraint[1]) == 's' &&
16646        tolower(Constraint[2]) == 't' &&
16647        Constraint[3] == '(' &&
16648        (Constraint[4] >= '0' && Constraint[4] <= '7') &&
16649        Constraint[5] == ')' &&
16650        Constraint[6] == '}') {
16651
16652      Res.first = X86::ST0+Constraint[4]-'0';
16653      Res.second = &X86::RFP80RegClass;
16654      return Res;
16655    }
16656
16657    // GCC allows "st(0)" to be called just plain "st".
16658    if (StringRef("{st}").equals_lower(Constraint)) {
16659      Res.first = X86::ST0;
16660      Res.second = &X86::RFP80RegClass;
16661      return Res;
16662    }
16663
16664    // flags -> EFLAGS
16665    if (StringRef("{flags}").equals_lower(Constraint)) {
16666      Res.first = X86::EFLAGS;
16667      Res.second = &X86::CCRRegClass;
16668      return Res;
16669    }
16670
16671    // 'A' means EAX + EDX.
16672    if (Constraint == "A") {
16673      Res.first = X86::EAX;
16674      Res.second = &X86::GR32_ADRegClass;
16675      return Res;
16676    }
16677    return Res;
16678  }
16679
16680  // Otherwise, check to see if this is a register class of the wrong value
16681  // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
16682  // turn into {ax},{dx}.
16683  if (Res.second->hasType(VT))
16684    return Res;   // Correct type already, nothing to do.
16685
16686  // All of the single-register GCC register classes map their values onto
16687  // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
16688  // really want an 8-bit or 32-bit register, map to the appropriate register
16689  // class and return the appropriate register.
16690  if (Res.second == &X86::GR16RegClass) {
16691    if (VT == MVT::i8) {
16692      unsigned DestReg = 0;
16693      switch (Res.first) {
16694      default: break;
16695      case X86::AX: DestReg = X86::AL; break;
16696      case X86::DX: DestReg = X86::DL; break;
16697      case X86::CX: DestReg = X86::CL; break;
16698      case X86::BX: DestReg = X86::BL; break;
16699      }
16700      if (DestReg) {
16701        Res.first = DestReg;
16702        Res.second = &X86::GR8RegClass;
16703      }
16704    } else if (VT == MVT::i32) {
16705      unsigned DestReg = 0;
16706      switch (Res.first) {
16707      default: break;
16708      case X86::AX: DestReg = X86::EAX; break;
16709      case X86::DX: DestReg = X86::EDX; break;
16710      case X86::CX: DestReg = X86::ECX; break;
16711      case X86::BX: DestReg = X86::EBX; break;
16712      case X86::SI: DestReg = X86::ESI; break;
16713      case X86::DI: DestReg = X86::EDI; break;
16714      case X86::BP: DestReg = X86::EBP; break;
16715      case X86::SP: DestReg = X86::ESP; break;
16716      }
16717      if (DestReg) {
16718        Res.first = DestReg;
16719        Res.second = &X86::GR32RegClass;
16720      }
16721    } else if (VT == MVT::i64) {
16722      unsigned DestReg = 0;
16723      switch (Res.first) {
16724      default: break;
16725      case X86::AX: DestReg = X86::RAX; break;
16726      case X86::DX: DestReg = X86::RDX; break;
16727      case X86::CX: DestReg = X86::RCX; break;
16728      case X86::BX: DestReg = X86::RBX; break;
16729      case X86::SI: DestReg = X86::RSI; break;
16730      case X86::DI: DestReg = X86::RDI; break;
16731      case X86::BP: DestReg = X86::RBP; break;
16732      case X86::SP: DestReg = X86::RSP; break;
16733      }
16734      if (DestReg) {
16735        Res.first = DestReg;
16736        Res.second = &X86::GR64RegClass;
16737      }
16738    }
16739  } else if (Res.second == &X86::FR32RegClass ||
16740             Res.second == &X86::FR64RegClass ||
16741             Res.second == &X86::VR128RegClass) {
16742    // Handle references to XMM physical registers that got mapped into the
16743    // wrong class.  This can happen with constraints like {xmm0} where the
16744    // target independent register mapper will just pick the first match it can
16745    // find, ignoring the required type.
16746
16747    if (VT == MVT::f32 || VT == MVT::i32)
16748      Res.second = &X86::FR32RegClass;
16749    else if (VT == MVT::f64 || VT == MVT::i64)
16750      Res.second = &X86::FR64RegClass;
16751    else if (X86::VR128RegClass.hasType(VT))
16752      Res.second = &X86::VR128RegClass;
16753    else if (X86::VR256RegClass.hasType(VT))
16754      Res.second = &X86::VR256RegClass;
16755  }
16756
16757  return Res;
16758}
16759