InstCombineCasts.cpp revision ce16339930a2b03e53b4e6399ef59c092a7f2cfa
1//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Analysis/ConstantFolding.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Target/TargetLibraryInfo.h"
18#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
23/// expression.  If so, decompose it, returning some value X, such that Val is
24/// X*Scale+Offset.
25///
26static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
27                                        uint64_t &Offset) {
28  if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
29    Offset = CI->getZExtValue();
30    Scale  = 0;
31    return ConstantInt::get(Val->getType(), 0);
32  }
33
34  if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
35    // Cannot look past anything that might overflow.
36    OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
37    if (OBI && !OBI->hasNoUnsignedWrap()) {
38      Scale = 1;
39      Offset = 0;
40      return Val;
41    }
42
43    if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
44      if (I->getOpcode() == Instruction::Shl) {
45        // This is a value scaled by '1 << the shift amt'.
46        Scale = UINT64_C(1) << RHS->getZExtValue();
47        Offset = 0;
48        return I->getOperand(0);
49      }
50
51      if (I->getOpcode() == Instruction::Mul) {
52        // This value is scaled by 'RHS'.
53        Scale = RHS->getZExtValue();
54        Offset = 0;
55        return I->getOperand(0);
56      }
57
58      if (I->getOpcode() == Instruction::Add) {
59        // We have X+C.  Check to see if we really have (X*C2)+C1,
60        // where C1 is divisible by C2.
61        unsigned SubScale;
62        Value *SubVal =
63          DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
64        Offset += RHS->getZExtValue();
65        Scale = SubScale;
66        return SubVal;
67      }
68    }
69  }
70
71  // Otherwise, we can't look past this.
72  Scale = 1;
73  Offset = 0;
74  return Val;
75}
76
77/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
78/// try to eliminate the cast by moving the type information into the alloc.
79Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
80                                                   AllocaInst &AI) {
81  // This requires TargetData to get the alloca alignment and size information.
82  if (!TD) return 0;
83
84  PointerType *PTy = cast<PointerType>(CI.getType());
85
86  BuilderTy AllocaBuilder(*Builder);
87  AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
88
89  // Get the type really allocated and the type casted to.
90  Type *AllocElTy = AI.getAllocatedType();
91  Type *CastElTy = PTy->getElementType();
92  if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
93
94  unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
95  unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
96  if (CastElTyAlign < AllocElTyAlign) return 0;
97
98  // If the allocation has multiple uses, only promote it if we are strictly
99  // increasing the alignment of the resultant allocation.  If we keep it the
100  // same, we open the door to infinite loops of various kinds.
101  if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
102
103  uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
104  uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
105  if (CastElTySize == 0 || AllocElTySize == 0) return 0;
106
107  // See if we can satisfy the modulus by pulling a scale out of the array
108  // size argument.
109  unsigned ArraySizeScale;
110  uint64_t ArrayOffset;
111  Value *NumElements = // See if the array size is a decomposable linear expr.
112    DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
113
114  // If we can now satisfy the modulus, by using a non-1 scale, we really can
115  // do the xform.
116  if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
117      (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
118
119  unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
120  Value *Amt = 0;
121  if (Scale == 1) {
122    Amt = NumElements;
123  } else {
124    Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
125    // Insert before the alloca, not before the cast.
126    Amt = AllocaBuilder.CreateMul(Amt, NumElements);
127  }
128
129  if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
130    Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
131                                  Offset, true);
132    Amt = AllocaBuilder.CreateAdd(Amt, Off);
133  }
134
135  AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
136  New->setAlignment(AI.getAlignment());
137  New->takeName(&AI);
138
139  // If the allocation has multiple real uses, insert a cast and change all
140  // things that used it to use the new cast.  This will also hack on CI, but it
141  // will die soon.
142  if (!AI.hasOneUse()) {
143    // New is the allocation instruction, pointer typed. AI is the original
144    // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
145    Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
146    ReplaceInstUsesWith(AI, NewCast);
147  }
148  return ReplaceInstUsesWith(CI, New);
149}
150
151/// EvaluateInDifferentType - Given an expression that
152/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
153/// insert the code to evaluate the expression.
154Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
155                                             bool isSigned) {
156  if (Constant *C = dyn_cast<Constant>(V)) {
157    C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
158    // If we got a constantexpr back, try to simplify it with TD info.
159    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
160      C = ConstantFoldConstantExpression(CE, TD, TLI);
161    return C;
162  }
163
164  // Otherwise, it must be an instruction.
165  Instruction *I = cast<Instruction>(V);
166  Instruction *Res = 0;
167  unsigned Opc = I->getOpcode();
168  switch (Opc) {
169  case Instruction::Add:
170  case Instruction::Sub:
171  case Instruction::Mul:
172  case Instruction::And:
173  case Instruction::Or:
174  case Instruction::Xor:
175  case Instruction::AShr:
176  case Instruction::LShr:
177  case Instruction::Shl:
178  case Instruction::UDiv:
179  case Instruction::URem: {
180    Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
181    Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
182    Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
183    break;
184  }
185  case Instruction::Trunc:
186  case Instruction::ZExt:
187  case Instruction::SExt:
188    // If the source type of the cast is the type we're trying for then we can
189    // just return the source.  There's no need to insert it because it is not
190    // new.
191    if (I->getOperand(0)->getType() == Ty)
192      return I->getOperand(0);
193
194    // Otherwise, must be the same type of cast, so just reinsert a new one.
195    // This also handles the case of zext(trunc(x)) -> zext(x).
196    Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
197                                      Opc == Instruction::SExt);
198    break;
199  case Instruction::Select: {
200    Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
201    Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
202    Res = SelectInst::Create(I->getOperand(0), True, False);
203    break;
204  }
205  case Instruction::PHI: {
206    PHINode *OPN = cast<PHINode>(I);
207    PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
208    for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
209      Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
210      NPN->addIncoming(V, OPN->getIncomingBlock(i));
211    }
212    Res = NPN;
213    break;
214  }
215  default:
216    // TODO: Can handle more cases here.
217    llvm_unreachable("Unreachable!");
218    break;
219  }
220
221  Res->takeName(I);
222  return InsertNewInstWith(Res, *I);
223}
224
225
226/// This function is a wrapper around CastInst::isEliminableCastPair. It
227/// simply extracts arguments and returns what that function returns.
228static Instruction::CastOps
229isEliminableCastPair(
230  const CastInst *CI, ///< The first cast instruction
231  unsigned opcode,       ///< The opcode of the second cast instruction
232  Type *DstTy,     ///< The target type for the second cast instruction
233  TargetData *TD         ///< The target data for pointer size
234) {
235
236  Type *SrcTy = CI->getOperand(0)->getType();   // A from above
237  Type *MidTy = CI->getType();                  // B from above
238
239  // Get the opcodes of the two Cast instructions
240  Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
241  Instruction::CastOps secondOp = Instruction::CastOps(opcode);
242
243  unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
244                                                DstTy,
245                                  TD ? TD->getIntPtrType(CI->getContext()) : 0);
246
247  // We don't want to form an inttoptr or ptrtoint that converts to an integer
248  // type that differs from the pointer size.
249  if ((Res == Instruction::IntToPtr &&
250          (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
251      (Res == Instruction::PtrToInt &&
252          (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
253    Res = 0;
254
255  return Instruction::CastOps(Res);
256}
257
258/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
259/// results in any code being generated and is interesting to optimize out. If
260/// the cast can be eliminated by some other simple transformation, we prefer
261/// to do the simplification first.
262bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
263                                      Type *Ty) {
264  // Noop casts and casts of constants should be eliminated trivially.
265  if (V->getType() == Ty || isa<Constant>(V)) return false;
266
267  // If this is another cast that can be eliminated, we prefer to have it
268  // eliminated.
269  if (const CastInst *CI = dyn_cast<CastInst>(V))
270    if (isEliminableCastPair(CI, opc, Ty, TD))
271      return false;
272
273  // If this is a vector sext from a compare, then we don't want to break the
274  // idiom where each element of the extended vector is either zero or all ones.
275  if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
276    return false;
277
278  return true;
279}
280
281
282/// @brief Implement the transforms common to all CastInst visitors.
283Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
284  Value *Src = CI.getOperand(0);
285
286  // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
287  // eliminate it now.
288  if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
289    if (Instruction::CastOps opc =
290        isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
291      // The first cast (CSrc) is eliminable so we need to fix up or replace
292      // the second cast (CI). CSrc will then have a good chance of being dead.
293      return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
294    }
295  }
296
297  // If we are casting a select then fold the cast into the select
298  if (SelectInst *SI = dyn_cast<SelectInst>(Src))
299    if (Instruction *NV = FoldOpIntoSelect(CI, SI))
300      return NV;
301
302  // If we are casting a PHI then fold the cast into the PHI
303  if (isa<PHINode>(Src)) {
304    // We don't do this if this would create a PHI node with an illegal type if
305    // it is currently legal.
306    if (!Src->getType()->isIntegerTy() ||
307        !CI.getType()->isIntegerTy() ||
308        ShouldChangeType(CI.getType(), Src->getType()))
309      if (Instruction *NV = FoldOpIntoPhi(CI))
310        return NV;
311  }
312
313  return 0;
314}
315
316/// CanEvaluateTruncated - Return true if we can evaluate the specified
317/// expression tree as type Ty instead of its larger type, and arrive with the
318/// same value.  This is used by code that tries to eliminate truncates.
319///
320/// Ty will always be a type smaller than V.  We should return true if trunc(V)
321/// can be computed by computing V in the smaller type.  If V is an instruction,
322/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
323/// makes sense if x and y can be efficiently truncated.
324///
325/// This function works on both vectors and scalars.
326///
327static bool CanEvaluateTruncated(Value *V, Type *Ty) {
328  // We can always evaluate constants in another type.
329  if (isa<Constant>(V))
330    return true;
331
332  Instruction *I = dyn_cast<Instruction>(V);
333  if (!I) return false;
334
335  Type *OrigTy = V->getType();
336
337  // If this is an extension from the dest type, we can eliminate it, even if it
338  // has multiple uses.
339  if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
340      I->getOperand(0)->getType() == Ty)
341    return true;
342
343  // We can't extend or shrink something that has multiple uses: doing so would
344  // require duplicating the instruction in general, which isn't profitable.
345  if (!I->hasOneUse()) return false;
346
347  unsigned Opc = I->getOpcode();
348  switch (Opc) {
349  case Instruction::Add:
350  case Instruction::Sub:
351  case Instruction::Mul:
352  case Instruction::And:
353  case Instruction::Or:
354  case Instruction::Xor:
355    // These operators can all arbitrarily be extended or truncated.
356    return CanEvaluateTruncated(I->getOperand(0), Ty) &&
357           CanEvaluateTruncated(I->getOperand(1), Ty);
358
359  case Instruction::UDiv:
360  case Instruction::URem: {
361    // UDiv and URem can be truncated if all the truncated bits are zero.
362    uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
363    uint32_t BitWidth = Ty->getScalarSizeInBits();
364    if (BitWidth < OrigBitWidth) {
365      APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
366      if (MaskedValueIsZero(I->getOperand(0), Mask) &&
367          MaskedValueIsZero(I->getOperand(1), Mask)) {
368        return CanEvaluateTruncated(I->getOperand(0), Ty) &&
369               CanEvaluateTruncated(I->getOperand(1), Ty);
370      }
371    }
372    break;
373  }
374  case Instruction::Shl:
375    // If we are truncating the result of this SHL, and if it's a shift of a
376    // constant amount, we can always perform a SHL in a smaller type.
377    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
378      uint32_t BitWidth = Ty->getScalarSizeInBits();
379      if (CI->getLimitedValue(BitWidth) < BitWidth)
380        return CanEvaluateTruncated(I->getOperand(0), Ty);
381    }
382    break;
383  case Instruction::LShr:
384    // If this is a truncate of a logical shr, we can truncate it to a smaller
385    // lshr iff we know that the bits we would otherwise be shifting in are
386    // already zeros.
387    if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
388      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
389      uint32_t BitWidth = Ty->getScalarSizeInBits();
390      if (MaskedValueIsZero(I->getOperand(0),
391            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
392          CI->getLimitedValue(BitWidth) < BitWidth) {
393        return CanEvaluateTruncated(I->getOperand(0), Ty);
394      }
395    }
396    break;
397  case Instruction::Trunc:
398    // trunc(trunc(x)) -> trunc(x)
399    return true;
400  case Instruction::ZExt:
401  case Instruction::SExt:
402    // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
403    // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
404    return true;
405  case Instruction::Select: {
406    SelectInst *SI = cast<SelectInst>(I);
407    return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
408           CanEvaluateTruncated(SI->getFalseValue(), Ty);
409  }
410  case Instruction::PHI: {
411    // We can change a phi if we can change all operands.  Note that we never
412    // get into trouble with cyclic PHIs here because we only consider
413    // instructions with a single use.
414    PHINode *PN = cast<PHINode>(I);
415    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
416      if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
417        return false;
418    return true;
419  }
420  default:
421    // TODO: Can handle more cases here.
422    break;
423  }
424
425  return false;
426}
427
428Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
429  if (Instruction *Result = commonCastTransforms(CI))
430    return Result;
431
432  // See if we can simplify any instructions used by the input whose sole
433  // purpose is to compute bits we don't care about.
434  if (SimplifyDemandedInstructionBits(CI))
435    return &CI;
436
437  Value *Src = CI.getOperand(0);
438  Type *DestTy = CI.getType(), *SrcTy = Src->getType();
439
440  // Attempt to truncate the entire input expression tree to the destination
441  // type.   Only do this if the dest type is a simple type, don't convert the
442  // expression tree to something weird like i93 unless the source is also
443  // strange.
444  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
445      CanEvaluateTruncated(Src, DestTy)) {
446
447    // If this cast is a truncate, evaluting in a different type always
448    // eliminates the cast, so it is always a win.
449    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
450          " to avoid cast: " << CI << '\n');
451    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
452    assert(Res->getType() == DestTy);
453    return ReplaceInstUsesWith(CI, Res);
454  }
455
456  // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
457  if (DestTy->getScalarSizeInBits() == 1) {
458    Constant *One = ConstantInt::get(Src->getType(), 1);
459    Src = Builder->CreateAnd(Src, One);
460    Value *Zero = Constant::getNullValue(Src->getType());
461    return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
462  }
463
464  // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
465  Value *A = 0; ConstantInt *Cst = 0;
466  if (Src->hasOneUse() &&
467      match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
468    // We have three types to worry about here, the type of A, the source of
469    // the truncate (MidSize), and the destination of the truncate. We know that
470    // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
471    // between ASize and ResultSize.
472    unsigned ASize = A->getType()->getPrimitiveSizeInBits();
473
474    // If the shift amount is larger than the size of A, then the result is
475    // known to be zero because all the input bits got shifted out.
476    if (Cst->getZExtValue() >= ASize)
477      return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
478
479    // Since we're doing an lshr and a zero extend, and know that the shift
480    // amount is smaller than ASize, it is always safe to do the shift in A's
481    // type, then zero extend or truncate to the result.
482    Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
483    Shift->takeName(Src);
484    return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
485  }
486
487  // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
488  // type isn't non-native.
489  if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
490      ShouldChangeType(Src->getType(), CI.getType()) &&
491      match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
492    Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
493    return BinaryOperator::CreateAnd(NewTrunc,
494                                     ConstantExpr::getTrunc(Cst, CI.getType()));
495  }
496
497  return 0;
498}
499
500/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
501/// in order to eliminate the icmp.
502Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
503                                             bool DoXform) {
504  // If we are just checking for a icmp eq of a single bit and zext'ing it
505  // to an integer, then shift the bit to the appropriate place and then
506  // cast to integer to avoid the comparison.
507  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
508    const APInt &Op1CV = Op1C->getValue();
509
510    // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
511    // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
512    if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
513        (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
514      if (!DoXform) return ICI;
515
516      Value *In = ICI->getOperand(0);
517      Value *Sh = ConstantInt::get(In->getType(),
518                                   In->getType()->getScalarSizeInBits()-1);
519      In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
520      if (In->getType() != CI.getType())
521        In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
522
523      if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
524        Constant *One = ConstantInt::get(In->getType(), 1);
525        In = Builder->CreateXor(In, One, In->getName()+".not");
526      }
527
528      return ReplaceInstUsesWith(CI, In);
529    }
530
531    // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
532    // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
533    // zext (X == 1) to i32 --> X        iff X has only the low bit set.
534    // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
535    // zext (X != 0) to i32 --> X        iff X has only the low bit set.
536    // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
537    // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
538    // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
539    if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
540        // This only works for EQ and NE
541        ICI->isEquality()) {
542      // If Op1C some other power of two, convert:
543      uint32_t BitWidth = Op1C->getType()->getBitWidth();
544      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
545      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
546      ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
547
548      APInt KnownZeroMask(~KnownZero);
549      if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
550        if (!DoXform) return ICI;
551
552        bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
553        if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
554          // (X&4) == 2 --> false
555          // (X&4) != 2 --> true
556          Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
557                                           isNE);
558          Res = ConstantExpr::getZExt(Res, CI.getType());
559          return ReplaceInstUsesWith(CI, Res);
560        }
561
562        uint32_t ShiftAmt = KnownZeroMask.logBase2();
563        Value *In = ICI->getOperand(0);
564        if (ShiftAmt) {
565          // Perform a logical shr by shiftamt.
566          // Insert the shift to put the result in the low bit.
567          In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
568                                   In->getName()+".lobit");
569        }
570
571        if ((Op1CV != 0) == isNE) { // Toggle the low bit.
572          Constant *One = ConstantInt::get(In->getType(), 1);
573          In = Builder->CreateXor(In, One);
574        }
575
576        if (CI.getType() == In->getType())
577          return ReplaceInstUsesWith(CI, In);
578        return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
579      }
580    }
581  }
582
583  // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
584  // It is also profitable to transform icmp eq into not(xor(A, B)) because that
585  // may lead to additional simplifications.
586  if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
587    if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
588      uint32_t BitWidth = ITy->getBitWidth();
589      Value *LHS = ICI->getOperand(0);
590      Value *RHS = ICI->getOperand(1);
591
592      APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
593      APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
594      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
595      ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
596      ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
597
598      if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
599        APInt KnownBits = KnownZeroLHS | KnownOneLHS;
600        APInt UnknownBit = ~KnownBits;
601        if (UnknownBit.countPopulation() == 1) {
602          if (!DoXform) return ICI;
603
604          Value *Result = Builder->CreateXor(LHS, RHS);
605
606          // Mask off any bits that are set and won't be shifted away.
607          if (KnownOneLHS.uge(UnknownBit))
608            Result = Builder->CreateAnd(Result,
609                                        ConstantInt::get(ITy, UnknownBit));
610
611          // Shift the bit we're testing down to the lsb.
612          Result = Builder->CreateLShr(
613               Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
614
615          if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
616            Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
617          Result->takeName(ICI);
618          return ReplaceInstUsesWith(CI, Result);
619        }
620      }
621    }
622  }
623
624  return 0;
625}
626
627/// CanEvaluateZExtd - Determine if the specified value can be computed in the
628/// specified wider type and produce the same low bits.  If not, return false.
629///
630/// If this function returns true, it can also return a non-zero number of bits
631/// (in BitsToClear) which indicates that the value it computes is correct for
632/// the zero extend, but that the additional BitsToClear bits need to be zero'd
633/// out.  For example, to promote something like:
634///
635///   %B = trunc i64 %A to i32
636///   %C = lshr i32 %B, 8
637///   %E = zext i32 %C to i64
638///
639/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
640/// set to 8 to indicate that the promoted value needs to have bits 24-31
641/// cleared in addition to bits 32-63.  Since an 'and' will be generated to
642/// clear the top bits anyway, doing this has no extra cost.
643///
644/// This function works on both vectors and scalars.
645static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
646  BitsToClear = 0;
647  if (isa<Constant>(V))
648    return true;
649
650  Instruction *I = dyn_cast<Instruction>(V);
651  if (!I) return false;
652
653  // If the input is a truncate from the destination type, we can trivially
654  // eliminate it, even if it has multiple uses.
655  // FIXME: This is currently disabled until codegen can handle this without
656  // pessimizing code, PR5997.
657  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
658    return true;
659
660  // We can't extend or shrink something that has multiple uses: doing so would
661  // require duplicating the instruction in general, which isn't profitable.
662  if (!I->hasOneUse()) return false;
663
664  unsigned Opc = I->getOpcode(), Tmp;
665  switch (Opc) {
666  case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
667  case Instruction::SExt:  // zext(sext(x)) -> sext(x).
668  case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
669    return true;
670  case Instruction::And:
671  case Instruction::Or:
672  case Instruction::Xor:
673  case Instruction::Add:
674  case Instruction::Sub:
675  case Instruction::Mul:
676  case Instruction::Shl:
677    if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
678        !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
679      return false;
680    // These can all be promoted if neither operand has 'bits to clear'.
681    if (BitsToClear == 0 && Tmp == 0)
682      return true;
683
684    // If the operation is an AND/OR/XOR and the bits to clear are zero in the
685    // other side, BitsToClear is ok.
686    if (Tmp == 0 &&
687        (Opc == Instruction::And || Opc == Instruction::Or ||
688         Opc == Instruction::Xor)) {
689      // We use MaskedValueIsZero here for generality, but the case we care
690      // about the most is constant RHS.
691      unsigned VSize = V->getType()->getScalarSizeInBits();
692      if (MaskedValueIsZero(I->getOperand(1),
693                            APInt::getHighBitsSet(VSize, BitsToClear)))
694        return true;
695    }
696
697    // Otherwise, we don't know how to analyze this BitsToClear case yet.
698    return false;
699
700  case Instruction::LShr:
701    // We can promote lshr(x, cst) if we can promote x.  This requires the
702    // ultimate 'and' to clear out the high zero bits we're clearing out though.
703    if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
704      if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
705        return false;
706      BitsToClear += Amt->getZExtValue();
707      if (BitsToClear > V->getType()->getScalarSizeInBits())
708        BitsToClear = V->getType()->getScalarSizeInBits();
709      return true;
710    }
711    // Cannot promote variable LSHR.
712    return false;
713  case Instruction::Select:
714    if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
715        !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
716        // TODO: If important, we could handle the case when the BitsToClear are
717        // known zero in the disagreeing side.
718        Tmp != BitsToClear)
719      return false;
720    return true;
721
722  case Instruction::PHI: {
723    // We can change a phi if we can change all operands.  Note that we never
724    // get into trouble with cyclic PHIs here because we only consider
725    // instructions with a single use.
726    PHINode *PN = cast<PHINode>(I);
727    if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
728      return false;
729    for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
730      if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
731          // TODO: If important, we could handle the case when the BitsToClear
732          // are known zero in the disagreeing input.
733          Tmp != BitsToClear)
734        return false;
735    return true;
736  }
737  default:
738    // TODO: Can handle more cases here.
739    return false;
740  }
741}
742
743Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
744  // If this zero extend is only used by a truncate, let the truncate by
745  // eliminated before we try to optimize this zext.
746  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
747    return 0;
748
749  // If one of the common conversion will work, do it.
750  if (Instruction *Result = commonCastTransforms(CI))
751    return Result;
752
753  // See if we can simplify any instructions used by the input whose sole
754  // purpose is to compute bits we don't care about.
755  if (SimplifyDemandedInstructionBits(CI))
756    return &CI;
757
758  Value *Src = CI.getOperand(0);
759  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
760
761  // Attempt to extend the entire input expression tree to the destination
762  // type.   Only do this if the dest type is a simple type, don't convert the
763  // expression tree to something weird like i93 unless the source is also
764  // strange.
765  unsigned BitsToClear;
766  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
767      CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
768    assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
769           "Unreasonable BitsToClear");
770
771    // Okay, we can transform this!  Insert the new expression now.
772    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
773          " to avoid zero extend: " << CI);
774    Value *Res = EvaluateInDifferentType(Src, DestTy, false);
775    assert(Res->getType() == DestTy);
776
777    uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
778    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
779
780    // If the high bits are already filled with zeros, just replace this
781    // cast with the result.
782    if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
783                                                     DestBitSize-SrcBitsKept)))
784      return ReplaceInstUsesWith(CI, Res);
785
786    // We need to emit an AND to clear the high bits.
787    Constant *C = ConstantInt::get(Res->getType(),
788                               APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
789    return BinaryOperator::CreateAnd(Res, C);
790  }
791
792  // If this is a TRUNC followed by a ZEXT then we are dealing with integral
793  // types and if the sizes are just right we can convert this into a logical
794  // 'and' which will be much cheaper than the pair of casts.
795  if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
796    // TODO: Subsume this into EvaluateInDifferentType.
797
798    // Get the sizes of the types involved.  We know that the intermediate type
799    // will be smaller than A or C, but don't know the relation between A and C.
800    Value *A = CSrc->getOperand(0);
801    unsigned SrcSize = A->getType()->getScalarSizeInBits();
802    unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
803    unsigned DstSize = CI.getType()->getScalarSizeInBits();
804    // If we're actually extending zero bits, then if
805    // SrcSize <  DstSize: zext(a & mask)
806    // SrcSize == DstSize: a & mask
807    // SrcSize  > DstSize: trunc(a) & mask
808    if (SrcSize < DstSize) {
809      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
810      Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
811      Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
812      return new ZExtInst(And, CI.getType());
813    }
814
815    if (SrcSize == DstSize) {
816      APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
817      return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
818                                                           AndValue));
819    }
820    if (SrcSize > DstSize) {
821      Value *Trunc = Builder->CreateTrunc(A, CI.getType());
822      APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
823      return BinaryOperator::CreateAnd(Trunc,
824                                       ConstantInt::get(Trunc->getType(),
825                                                        AndValue));
826    }
827  }
828
829  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
830    return transformZExtICmp(ICI, CI);
831
832  BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
833  if (SrcI && SrcI->getOpcode() == Instruction::Or) {
834    // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
835    // of the (zext icmp) will be transformed.
836    ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
837    ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
838    if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
839        (transformZExtICmp(LHS, CI, false) ||
840         transformZExtICmp(RHS, CI, false))) {
841      Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
842      Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
843      return BinaryOperator::Create(Instruction::Or, LCast, RCast);
844    }
845  }
846
847  // zext(trunc(t) & C) -> (t & zext(C)).
848  if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
849    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
850      if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
851        Value *TI0 = TI->getOperand(0);
852        if (TI0->getType() == CI.getType())
853          return
854            BinaryOperator::CreateAnd(TI0,
855                                ConstantExpr::getZExt(C, CI.getType()));
856      }
857
858  // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
859  if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
860    if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
861      if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
862        if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
863            And->getOperand(1) == C)
864          if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
865            Value *TI0 = TI->getOperand(0);
866            if (TI0->getType() == CI.getType()) {
867              Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
868              Value *NewAnd = Builder->CreateAnd(TI0, ZC);
869              return BinaryOperator::CreateXor(NewAnd, ZC);
870            }
871          }
872
873  // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
874  Value *X;
875  if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
876      match(SrcI, m_Not(m_Value(X))) &&
877      (!X->hasOneUse() || !isa<CmpInst>(X))) {
878    Value *New = Builder->CreateZExt(X, CI.getType());
879    return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
880  }
881
882  return 0;
883}
884
885/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
886/// in order to eliminate the icmp.
887Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
888  Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
889  ICmpInst::Predicate Pred = ICI->getPredicate();
890
891  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
892    // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
893    // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
894    if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
895        (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
896
897      Value *Sh = ConstantInt::get(Op0->getType(),
898                                   Op0->getType()->getScalarSizeInBits()-1);
899      Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
900      if (In->getType() != CI.getType())
901        In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
902
903      if (Pred == ICmpInst::ICMP_SGT)
904        In = Builder->CreateNot(In, In->getName()+".not");
905      return ReplaceInstUsesWith(CI, In);
906    }
907
908    // If we know that only one bit of the LHS of the icmp can be set and we
909    // have an equality comparison with zero or a power of 2, we can transform
910    // the icmp and sext into bitwise/integer operations.
911    if (ICI->hasOneUse() &&
912        ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
913      unsigned BitWidth = Op1C->getType()->getBitWidth();
914      APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
915      APInt TypeMask(APInt::getAllOnesValue(BitWidth));
916      ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
917
918      APInt KnownZeroMask(~KnownZero);
919      if (KnownZeroMask.isPowerOf2()) {
920        Value *In = ICI->getOperand(0);
921
922        // If the icmp tests for a known zero bit we can constant fold it.
923        if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
924          Value *V = Pred == ICmpInst::ICMP_NE ?
925                       ConstantInt::getAllOnesValue(CI.getType()) :
926                       ConstantInt::getNullValue(CI.getType());
927          return ReplaceInstUsesWith(CI, V);
928        }
929
930        if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
931          // sext ((x & 2^n) == 0)   -> (x >> n) - 1
932          // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
933          unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
934          // Perform a right shift to place the desired bit in the LSB.
935          if (ShiftAmt)
936            In = Builder->CreateLShr(In,
937                                     ConstantInt::get(In->getType(), ShiftAmt));
938
939          // At this point "In" is either 1 or 0. Subtract 1 to turn
940          // {1, 0} -> {0, -1}.
941          In = Builder->CreateAdd(In,
942                                  ConstantInt::getAllOnesValue(In->getType()),
943                                  "sext");
944        } else {
945          // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
946          // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
947          unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
948          // Perform a left shift to place the desired bit in the MSB.
949          if (ShiftAmt)
950            In = Builder->CreateShl(In,
951                                    ConstantInt::get(In->getType(), ShiftAmt));
952
953          // Distribute the bit over the whole bit width.
954          In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
955                                                        BitWidth - 1), "sext");
956        }
957
958        if (CI.getType() == In->getType())
959          return ReplaceInstUsesWith(CI, In);
960        return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
961      }
962    }
963  }
964
965  // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
966  if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
967    if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
968        Op0->getType() == CI.getType()) {
969      Type *EltTy = VTy->getElementType();
970
971      // splat the shift constant to a constant vector.
972      Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
973      Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
974      return ReplaceInstUsesWith(CI, In);
975    }
976  }
977
978  return 0;
979}
980
981/// CanEvaluateSExtd - Return true if we can take the specified value
982/// and return it as type Ty without inserting any new casts and without
983/// changing the value of the common low bits.  This is used by code that tries
984/// to promote integer operations to a wider types will allow us to eliminate
985/// the extension.
986///
987/// This function works on both vectors and scalars.
988///
989static bool CanEvaluateSExtd(Value *V, Type *Ty) {
990  assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
991         "Can't sign extend type to a smaller type");
992  // If this is a constant, it can be trivially promoted.
993  if (isa<Constant>(V))
994    return true;
995
996  Instruction *I = dyn_cast<Instruction>(V);
997  if (!I) return false;
998
999  // If this is a truncate from the dest type, we can trivially eliminate it,
1000  // even if it has multiple uses.
1001  // FIXME: This is currently disabled until codegen can handle this without
1002  // pessimizing code, PR5997.
1003  if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
1004    return true;
1005
1006  // We can't extend or shrink something that has multiple uses: doing so would
1007  // require duplicating the instruction in general, which isn't profitable.
1008  if (!I->hasOneUse()) return false;
1009
1010  switch (I->getOpcode()) {
1011  case Instruction::SExt:  // sext(sext(x)) -> sext(x)
1012  case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
1013  case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
1014    return true;
1015  case Instruction::And:
1016  case Instruction::Or:
1017  case Instruction::Xor:
1018  case Instruction::Add:
1019  case Instruction::Sub:
1020  case Instruction::Mul:
1021    // These operators can all arbitrarily be extended if their inputs can.
1022    return CanEvaluateSExtd(I->getOperand(0), Ty) &&
1023           CanEvaluateSExtd(I->getOperand(1), Ty);
1024
1025  //case Instruction::Shl:   TODO
1026  //case Instruction::LShr:  TODO
1027
1028  case Instruction::Select:
1029    return CanEvaluateSExtd(I->getOperand(1), Ty) &&
1030           CanEvaluateSExtd(I->getOperand(2), Ty);
1031
1032  case Instruction::PHI: {
1033    // We can change a phi if we can change all operands.  Note that we never
1034    // get into trouble with cyclic PHIs here because we only consider
1035    // instructions with a single use.
1036    PHINode *PN = cast<PHINode>(I);
1037    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1038      if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
1039    return true;
1040  }
1041  default:
1042    // TODO: Can handle more cases here.
1043    break;
1044  }
1045
1046  return false;
1047}
1048
1049Instruction *InstCombiner::visitSExt(SExtInst &CI) {
1050  // If this sign extend is only used by a truncate, let the truncate by
1051  // eliminated before we try to optimize this zext.
1052  if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
1053    return 0;
1054
1055  if (Instruction *I = commonCastTransforms(CI))
1056    return I;
1057
1058  // See if we can simplify any instructions used by the input whose sole
1059  // purpose is to compute bits we don't care about.
1060  if (SimplifyDemandedInstructionBits(CI))
1061    return &CI;
1062
1063  Value *Src = CI.getOperand(0);
1064  Type *SrcTy = Src->getType(), *DestTy = CI.getType();
1065
1066  // Attempt to extend the entire input expression tree to the destination
1067  // type.   Only do this if the dest type is a simple type, don't convert the
1068  // expression tree to something weird like i93 unless the source is also
1069  // strange.
1070  if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
1071      CanEvaluateSExtd(Src, DestTy)) {
1072    // Okay, we can transform this!  Insert the new expression now.
1073    DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
1074          " to avoid sign extend: " << CI);
1075    Value *Res = EvaluateInDifferentType(Src, DestTy, true);
1076    assert(Res->getType() == DestTy);
1077
1078    uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1079    uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1080
1081    // If the high bits are already filled with sign bit, just replace this
1082    // cast with the result.
1083    if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
1084      return ReplaceInstUsesWith(CI, Res);
1085
1086    // We need to emit a shl + ashr to do the sign extend.
1087    Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1088    return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
1089                                      ShAmt);
1090  }
1091
1092  // If this input is a trunc from our destination, then turn sext(trunc(x))
1093  // into shifts.
1094  if (TruncInst *TI = dyn_cast<TruncInst>(Src))
1095    if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
1096      uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
1097      uint32_t DestBitSize = DestTy->getScalarSizeInBits();
1098
1099      // We need to emit a shl + ashr to do the sign extend.
1100      Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
1101      Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
1102      return BinaryOperator::CreateAShr(Res, ShAmt);
1103    }
1104
1105  if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
1106    return transformSExtICmp(ICI, CI);
1107
1108  // If the input is a shl/ashr pair of a same constant, then this is a sign
1109  // extension from a smaller value.  If we could trust arbitrary bitwidth
1110  // integers, we could turn this into a truncate to the smaller bit and then
1111  // use a sext for the whole extension.  Since we don't, look deeper and check
1112  // for a truncate.  If the source and dest are the same type, eliminate the
1113  // trunc and extend and just do shifts.  For example, turn:
1114  //   %a = trunc i32 %i to i8
1115  //   %b = shl i8 %a, 6
1116  //   %c = ashr i8 %b, 6
1117  //   %d = sext i8 %c to i32
1118  // into:
1119  //   %a = shl i32 %i, 30
1120  //   %d = ashr i32 %a, 30
1121  Value *A = 0;
1122  // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
1123  ConstantInt *BA = 0, *CA = 0;
1124  if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
1125                        m_ConstantInt(CA))) &&
1126      BA == CA && A->getType() == CI.getType()) {
1127    unsigned MidSize = Src->getType()->getScalarSizeInBits();
1128    unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
1129    unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
1130    Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
1131    A = Builder->CreateShl(A, ShAmtV, CI.getName());
1132    return BinaryOperator::CreateAShr(A, ShAmtV);
1133  }
1134
1135  return 0;
1136}
1137
1138
1139/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
1140/// in the specified FP type without changing its value.
1141static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
1142  bool losesInfo;
1143  APFloat F = CFP->getValueAPF();
1144  (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
1145  if (!losesInfo)
1146    return ConstantFP::get(CFP->getContext(), F);
1147  return 0;
1148}
1149
1150/// LookThroughFPExtensions - If this is an fp extension instruction, look
1151/// through it until we get the source value.
1152static Value *LookThroughFPExtensions(Value *V) {
1153  if (Instruction *I = dyn_cast<Instruction>(V))
1154    if (I->getOpcode() == Instruction::FPExt)
1155      return LookThroughFPExtensions(I->getOperand(0));
1156
1157  // If this value is a constant, return the constant in the smallest FP type
1158  // that can accurately represent it.  This allows us to turn
1159  // (float)((double)X+2.0) into x+2.0f.
1160  if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1161    if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1162      return V;  // No constant folding of this.
1163    // See if the value can be truncated to half and then reextended.
1164    if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
1165      return V;
1166    // See if the value can be truncated to float and then reextended.
1167    if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1168      return V;
1169    if (CFP->getType()->isDoubleTy())
1170      return V;  // Won't shrink.
1171    if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1172      return V;
1173    // Don't try to shrink to various long double types.
1174  }
1175
1176  return V;
1177}
1178
1179Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1180  if (Instruction *I = commonCastTransforms(CI))
1181    return I;
1182
1183  // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1184  // smaller than the destination type, we can eliminate the truncate by doing
1185  // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
1186  // as many builtins (sqrt, etc).
1187  BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1188  if (OpI && OpI->hasOneUse()) {
1189    switch (OpI->getOpcode()) {
1190    default: break;
1191    case Instruction::FAdd:
1192    case Instruction::FSub:
1193    case Instruction::FMul:
1194    case Instruction::FDiv:
1195    case Instruction::FRem:
1196      Type *SrcTy = OpI->getType();
1197      Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1198      Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1199      if (LHSTrunc->getType() != SrcTy &&
1200          RHSTrunc->getType() != SrcTy) {
1201        unsigned DstSize = CI.getType()->getScalarSizeInBits();
1202        // If the source types were both smaller than the destination type of
1203        // the cast, do this xform.
1204        if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1205            RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1206          LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1207          RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1208          return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1209        }
1210      }
1211      break;
1212    }
1213  }
1214
1215  // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
1216  CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
1217  if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
1218      Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) &&
1219      Call->getNumArgOperands() == 1 &&
1220      Call->hasOneUse()) {
1221    CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
1222    if (Arg && Arg->getOpcode() == Instruction::FPExt &&
1223        CI.getType()->isFloatTy() &&
1224        Call->getType()->isDoubleTy() &&
1225        Arg->getType()->isDoubleTy() &&
1226        Arg->getOperand(0)->getType()->isFloatTy()) {
1227      Function *Callee = Call->getCalledFunction();
1228      Module *M = CI.getParent()->getParent()->getParent();
1229      Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
1230                                                   Callee->getAttributes(),
1231                                                   Builder->getFloatTy(),
1232                                                   Builder->getFloatTy(),
1233                                                   NULL);
1234      CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
1235                                       "sqrtfcall");
1236      ret->setAttributes(Callee->getAttributes());
1237
1238
1239      // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
1240      ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
1241      EraseInstFromFunction(*Call);
1242      return ret;
1243    }
1244  }
1245
1246  return 0;
1247}
1248
1249Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1250  return commonCastTransforms(CI);
1251}
1252
1253Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1254  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1255  if (OpI == 0)
1256    return commonCastTransforms(FI);
1257
1258  // fptoui(uitofp(X)) --> X
1259  // fptoui(sitofp(X)) --> X
1260  // This is safe if the intermediate type has enough bits in its mantissa to
1261  // accurately represent all values of X.  For example, do not do this with
1262  // i64->float->i64.  This is also safe for sitofp case, because any negative
1263  // 'X' value would cause an undefined result for the fptoui.
1264  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1265      OpI->getOperand(0)->getType() == FI.getType() &&
1266      (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1267                    OpI->getType()->getFPMantissaWidth())
1268    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1269
1270  return commonCastTransforms(FI);
1271}
1272
1273Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1274  Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1275  if (OpI == 0)
1276    return commonCastTransforms(FI);
1277
1278  // fptosi(sitofp(X)) --> X
1279  // fptosi(uitofp(X)) --> X
1280  // This is safe if the intermediate type has enough bits in its mantissa to
1281  // accurately represent all values of X.  For example, do not do this with
1282  // i64->float->i64.  This is also safe for sitofp case, because any negative
1283  // 'X' value would cause an undefined result for the fptoui.
1284  if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1285      OpI->getOperand(0)->getType() == FI.getType() &&
1286      (int)FI.getType()->getScalarSizeInBits() <=
1287                    OpI->getType()->getFPMantissaWidth())
1288    return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1289
1290  return commonCastTransforms(FI);
1291}
1292
1293Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1294  return commonCastTransforms(CI);
1295}
1296
1297Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1298  return commonCastTransforms(CI);
1299}
1300
1301Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1302  // If the source integer type is not the intptr_t type for this target, do a
1303  // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
1304  // cast to be exposed to other transforms.
1305  if (TD) {
1306    if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
1307        TD->getPointerSizeInBits()) {
1308      Value *P = Builder->CreateTrunc(CI.getOperand(0),
1309                                      TD->getIntPtrType(CI.getContext()));
1310      return new IntToPtrInst(P, CI.getType());
1311    }
1312    if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
1313        TD->getPointerSizeInBits()) {
1314      Value *P = Builder->CreateZExt(CI.getOperand(0),
1315                                     TD->getIntPtrType(CI.getContext()));
1316      return new IntToPtrInst(P, CI.getType());
1317    }
1318  }
1319
1320  if (Instruction *I = commonCastTransforms(CI))
1321    return I;
1322
1323  return 0;
1324}
1325
1326/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1327Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1328  Value *Src = CI.getOperand(0);
1329
1330  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1331    // If casting the result of a getelementptr instruction with no offset, turn
1332    // this into a cast of the original pointer!
1333    if (GEP->hasAllZeroIndices()) {
1334      // Changing the cast operand is usually not a good idea but it is safe
1335      // here because the pointer operand is being replaced with another
1336      // pointer operand so the opcode doesn't need to change.
1337      Worklist.Add(GEP);
1338      CI.setOperand(0, GEP->getOperand(0));
1339      return &CI;
1340    }
1341
1342    // If the GEP has a single use, and the base pointer is a bitcast, and the
1343    // GEP computes a constant offset, see if we can convert these three
1344    // instructions into fewer.  This typically happens with unions and other
1345    // non-type-safe code.
1346    if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1347        GEP->hasAllConstantIndices()) {
1348      // We are guaranteed to get a constant from EmitGEPOffset.
1349      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1350      int64_t Offset = OffsetV->getSExtValue();
1351
1352      // Get the base pointer input of the bitcast, and the type it points to.
1353      Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1354      Type *GEPIdxTy =
1355      cast<PointerType>(OrigBase->getType())->getElementType();
1356      SmallVector<Value*, 8> NewIndices;
1357      if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1358        // If we were able to index down into an element, create the GEP
1359        // and bitcast the result.  This eliminates one bitcast, potentially
1360        // two.
1361        Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1362        Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
1363        Builder->CreateGEP(OrigBase, NewIndices);
1364        NGEP->takeName(GEP);
1365
1366        if (isa<BitCastInst>(CI))
1367          return new BitCastInst(NGEP, CI.getType());
1368        assert(isa<PtrToIntInst>(CI));
1369        return new PtrToIntInst(NGEP, CI.getType());
1370      }
1371    }
1372  }
1373
1374  return commonCastTransforms(CI);
1375}
1376
1377Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1378  // If the destination integer type is not the intptr_t type for this target,
1379  // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
1380  // to be exposed to other transforms.
1381  if (TD) {
1382    if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1383      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1384                                         TD->getIntPtrType(CI.getContext()));
1385      return new TruncInst(P, CI.getType());
1386    }
1387    if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
1388      Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1389                                         TD->getIntPtrType(CI.getContext()));
1390      return new ZExtInst(P, CI.getType());
1391    }
1392  }
1393
1394  return commonPointerCastTransforms(CI);
1395}
1396
1397/// OptimizeVectorResize - This input value (which is known to have vector type)
1398/// is being zero extended or truncated to the specified vector type.  Try to
1399/// replace it with a shuffle (and vector/vector bitcast) if possible.
1400///
1401/// The source and destination vector types may have different element types.
1402static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
1403                                         InstCombiner &IC) {
1404  // We can only do this optimization if the output is a multiple of the input
1405  // element size, or the input is a multiple of the output element size.
1406  // Convert the input type to have the same element type as the output.
1407  VectorType *SrcTy = cast<VectorType>(InVal->getType());
1408
1409  if (SrcTy->getElementType() != DestTy->getElementType()) {
1410    // The input types don't need to be identical, but for now they must be the
1411    // same size.  There is no specific reason we couldn't handle things like
1412    // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
1413    // there yet.
1414    if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
1415        DestTy->getElementType()->getPrimitiveSizeInBits())
1416      return 0;
1417
1418    SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
1419    InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
1420  }
1421
1422  // Now that the element types match, get the shuffle mask and RHS of the
1423  // shuffle to use, which depends on whether we're increasing or decreasing the
1424  // size of the input.
1425  SmallVector<Constant*, 16> ShuffleMask;
1426  Value *V2;
1427  IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
1428
1429  if (SrcTy->getNumElements() > DestTy->getNumElements()) {
1430    // If we're shrinking the number of elements, just shuffle in the low
1431    // elements from the input and use undef as the second shuffle input.
1432    V2 = UndefValue::get(SrcTy);
1433    for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
1434      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1435
1436  } else {
1437    // If we're increasing the number of elements, shuffle in all of the
1438    // elements from InVal and fill the rest of the result elements with zeros
1439    // from a constant zero.
1440    V2 = Constant::getNullValue(SrcTy);
1441    unsigned SrcElts = SrcTy->getNumElements();
1442    for (unsigned i = 0, e = SrcElts; i != e; ++i)
1443      ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
1444
1445    // The excess elements reference the first element of the zero input.
1446    ShuffleMask.append(DestTy->getNumElements()-SrcElts,
1447                       ConstantInt::get(Int32Ty, SrcElts));
1448  }
1449
1450  return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask));
1451}
1452
1453static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
1454  return Value % Ty->getPrimitiveSizeInBits() == 0;
1455}
1456
1457static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
1458  return Value / Ty->getPrimitiveSizeInBits();
1459}
1460
1461/// CollectInsertionElements - V is a value which is inserted into a vector of
1462/// VecEltTy.  Look through the value to see if we can decompose it into
1463/// insertions into the vector.  See the example in the comment for
1464/// OptimizeIntegerToVectorInsertions for the pattern this handles.
1465/// The type of V is always a non-zero multiple of VecEltTy's size.
1466///
1467/// This returns false if the pattern can't be matched or true if it can,
1468/// filling in Elements with the elements found here.
1469static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
1470                                     SmallVectorImpl<Value*> &Elements,
1471                                     Type *VecEltTy) {
1472  // Undef values never contribute useful bits to the result.
1473  if (isa<UndefValue>(V)) return true;
1474
1475  // If we got down to a value of the right type, we win, try inserting into the
1476  // right element.
1477  if (V->getType() == VecEltTy) {
1478    // Inserting null doesn't actually insert any elements.
1479    if (Constant *C = dyn_cast<Constant>(V))
1480      if (C->isNullValue())
1481        return true;
1482
1483    // Fail if multiple elements are inserted into this slot.
1484    if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
1485      return false;
1486
1487    Elements[ElementIndex] = V;
1488    return true;
1489  }
1490
1491  if (Constant *C = dyn_cast<Constant>(V)) {
1492    // Figure out the # elements this provides, and bitcast it or slice it up
1493    // as required.
1494    unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
1495                                        VecEltTy);
1496    // If the constant is the size of a vector element, we just need to bitcast
1497    // it to the right type so it gets properly inserted.
1498    if (NumElts == 1)
1499      return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
1500                                      ElementIndex, Elements, VecEltTy);
1501
1502    // Okay, this is a constant that covers multiple elements.  Slice it up into
1503    // pieces and insert each element-sized piece into the vector.
1504    if (!isa<IntegerType>(C->getType()))
1505      C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
1506                                       C->getType()->getPrimitiveSizeInBits()));
1507    unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
1508    Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
1509
1510    for (unsigned i = 0; i != NumElts; ++i) {
1511      Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
1512                                                               i*ElementSize));
1513      Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
1514      if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
1515        return false;
1516    }
1517    return true;
1518  }
1519
1520  if (!V->hasOneUse()) return false;
1521
1522  Instruction *I = dyn_cast<Instruction>(V);
1523  if (I == 0) return false;
1524  switch (I->getOpcode()) {
1525  default: return false; // Unhandled case.
1526  case Instruction::BitCast:
1527    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1528                                    Elements, VecEltTy);
1529  case Instruction::ZExt:
1530    if (!isMultipleOfTypeSize(
1531                          I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
1532                              VecEltTy))
1533      return false;
1534    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1535                                    Elements, VecEltTy);
1536  case Instruction::Or:
1537    return CollectInsertionElements(I->getOperand(0), ElementIndex,
1538                                    Elements, VecEltTy) &&
1539           CollectInsertionElements(I->getOperand(1), ElementIndex,
1540                                    Elements, VecEltTy);
1541  case Instruction::Shl: {
1542    // Must be shifting by a constant that is a multiple of the element size.
1543    ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1544    if (CI == 0) return false;
1545    if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
1546    unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
1547
1548    return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
1549                                    Elements, VecEltTy);
1550  }
1551
1552  }
1553}
1554
1555
1556/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
1557/// may be doing shifts and ors to assemble the elements of the vector manually.
1558/// Try to rip the code out and replace it with insertelements.  This is to
1559/// optimize code like this:
1560///
1561///    %tmp37 = bitcast float %inc to i32
1562///    %tmp38 = zext i32 %tmp37 to i64
1563///    %tmp31 = bitcast float %inc5 to i32
1564///    %tmp32 = zext i32 %tmp31 to i64
1565///    %tmp33 = shl i64 %tmp32, 32
1566///    %ins35 = or i64 %tmp33, %tmp38
1567///    %tmp43 = bitcast i64 %ins35 to <2 x float>
1568///
1569/// Into two insertelements that do "buildvector{%inc, %inc5}".
1570static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
1571                                                InstCombiner &IC) {
1572  VectorType *DestVecTy = cast<VectorType>(CI.getType());
1573  Value *IntInput = CI.getOperand(0);
1574
1575  SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
1576  if (!CollectInsertionElements(IntInput, 0, Elements,
1577                                DestVecTy->getElementType()))
1578    return 0;
1579
1580  // If we succeeded, we know that all of the element are specified by Elements
1581  // or are zero if Elements has a null entry.  Recast this as a set of
1582  // insertions.
1583  Value *Result = Constant::getNullValue(CI.getType());
1584  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
1585    if (Elements[i] == 0) continue;  // Unset element.
1586
1587    Result = IC.Builder->CreateInsertElement(Result, Elements[i],
1588                                             IC.Builder->getInt32(i));
1589  }
1590
1591  return Result;
1592}
1593
1594
1595/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
1596/// bitcast.  The various long double bitcasts can't get in here.
1597static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
1598  Value *Src = CI.getOperand(0);
1599  Type *DestTy = CI.getType();
1600
1601  // If this is a bitcast from int to float, check to see if the int is an
1602  // extraction from a vector.
1603  Value *VecInput = 0;
1604  // bitcast(trunc(bitcast(somevector)))
1605  if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
1606      isa<VectorType>(VecInput->getType())) {
1607    VectorType *VecTy = cast<VectorType>(VecInput->getType());
1608    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1609
1610    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
1611      // If the element type of the vector doesn't match the result type,
1612      // bitcast it to be a vector type we can extract from.
1613      if (VecTy->getElementType() != DestTy) {
1614        VecTy = VectorType::get(DestTy,
1615                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1616        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1617      }
1618
1619      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
1620    }
1621  }
1622
1623  // bitcast(trunc(lshr(bitcast(somevector), cst))
1624  ConstantInt *ShAmt = 0;
1625  if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
1626                                m_ConstantInt(ShAmt)))) &&
1627      isa<VectorType>(VecInput->getType())) {
1628    VectorType *VecTy = cast<VectorType>(VecInput->getType());
1629    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
1630    if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
1631        ShAmt->getZExtValue() % DestWidth == 0) {
1632      // If the element type of the vector doesn't match the result type,
1633      // bitcast it to be a vector type we can extract from.
1634      if (VecTy->getElementType() != DestTy) {
1635        VecTy = VectorType::get(DestTy,
1636                                VecTy->getPrimitiveSizeInBits() / DestWidth);
1637        VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
1638      }
1639
1640      unsigned Elt = ShAmt->getZExtValue() / DestWidth;
1641      return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
1642    }
1643  }
1644  return 0;
1645}
1646
1647Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1648  // If the operands are integer typed then apply the integer transforms,
1649  // otherwise just apply the common ones.
1650  Value *Src = CI.getOperand(0);
1651  Type *SrcTy = Src->getType();
1652  Type *DestTy = CI.getType();
1653
1654  // Get rid of casts from one type to the same type. These are useless and can
1655  // be replaced by the operand.
1656  if (DestTy == Src->getType())
1657    return ReplaceInstUsesWith(CI, Src);
1658
1659  if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1660    PointerType *SrcPTy = cast<PointerType>(SrcTy);
1661    Type *DstElTy = DstPTy->getElementType();
1662    Type *SrcElTy = SrcPTy->getElementType();
1663
1664    // If the address spaces don't match, don't eliminate the bitcast, which is
1665    // required for changing types.
1666    if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1667      return 0;
1668
1669    // If we are casting a alloca to a pointer to a type of the same
1670    // size, rewrite the allocation instruction to allocate the "right" type.
1671    // There is no need to modify malloc calls because it is their bitcast that
1672    // needs to be cleaned up.
1673    if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1674      if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1675        return V;
1676
1677    // If the source and destination are pointers, and this cast is equivalent
1678    // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
1679    // This can enhance SROA and other transforms that want type-safe pointers.
1680    Constant *ZeroUInt =
1681      Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1682    unsigned NumZeros = 0;
1683    while (SrcElTy != DstElTy &&
1684           isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
1685           SrcElTy->getNumContainedTypes() /* not "{}" */) {
1686      SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1687      ++NumZeros;
1688    }
1689
1690    // If we found a path from the src to dest, create the getelementptr now.
1691    if (SrcElTy == DstElTy) {
1692      SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1693      return GetElementPtrInst::CreateInBounds(Src, Idxs);
1694    }
1695  }
1696
1697  // Try to optimize int -> float bitcasts.
1698  if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
1699    if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
1700      return I;
1701
1702  if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
1703    if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
1704      Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1705      return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
1706                     Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1707      // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1708    }
1709
1710    if (isa<IntegerType>(SrcTy)) {
1711      // If this is a cast from an integer to vector, check to see if the input
1712      // is a trunc or zext of a bitcast from vector.  If so, we can replace all
1713      // the casts with a shuffle and (potentially) a bitcast.
1714      if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
1715        CastInst *SrcCast = cast<CastInst>(Src);
1716        if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
1717          if (isa<VectorType>(BCIn->getOperand(0)->getType()))
1718            if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
1719                                               cast<VectorType>(DestTy), *this))
1720              return I;
1721      }
1722
1723      // If the input is an 'or' instruction, we may be doing shifts and ors to
1724      // assemble the elements of the vector manually.  Try to rip the code out
1725      // and replace it with insertelements.
1726      if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
1727        return ReplaceInstUsesWith(CI, V);
1728    }
1729  }
1730
1731  if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
1732    if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
1733      Value *Elem =
1734        Builder->CreateExtractElement(Src,
1735                   Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1736      return CastInst::Create(Instruction::BitCast, Elem, DestTy);
1737    }
1738  }
1739
1740  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
1741    // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
1742    // a bitcast to a vector with the same # elts.
1743    if (SVI->hasOneUse() && DestTy->isVectorTy() &&
1744        cast<VectorType>(DestTy)->getNumElements() ==
1745              SVI->getType()->getNumElements() &&
1746        SVI->getType()->getNumElements() ==
1747          cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1748      BitCastInst *Tmp;
1749      // If either of the operands is a cast from CI.getType(), then
1750      // evaluating the shuffle in the casted destination's type will allow
1751      // us to eliminate at least one cast.
1752      if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1753           Tmp->getOperand(0)->getType() == DestTy) ||
1754          ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1755           Tmp->getOperand(0)->getType() == DestTy)) {
1756        Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1757        Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1758        // Return a new shuffle vector.  Use the same element ID's, as we
1759        // know the vector types match #elts.
1760        return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
1761      }
1762    }
1763  }
1764
1765  if (SrcTy->isPointerTy())
1766    return commonPointerCastTransforms(CI);
1767  return commonCastTransforms(CI);
1768}
1769