InstCombineLoadStoreAlloca.cpp revision d3dc3cc98f0366a9860a68eaa1f823dfc7fa310b
1//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for load, store and alloca.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Transforms/Utils/BasicBlockUtils.h"
18#include "llvm/Transforms/Utils/Local.h"
19#include "llvm/ADT/Statistic.h"
20using namespace llvm;
21
22STATISTIC(NumDeadStore, "Number of dead stores eliminated");
23
24Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
25  // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
26  if (AI.isArrayAllocation()) {  // Check C != 1
27    if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
28      const Type *NewTy =
29        ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
30      assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
31      AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName());
32      New->setAlignment(AI.getAlignment());
33
34      // Scan to the end of the allocation instructions, to skip over a block of
35      // allocas if possible...also skip interleaved debug info
36      //
37      BasicBlock::iterator It = New;
38      while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It;
39
40      // Now that I is pointing to the first non-allocation-inst in the block,
41      // insert our getelementptr instruction...
42      //
43      Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext()));
44      Value *Idx[2];
45      Idx[0] = NullIdx;
46      Idx[1] = NullIdx;
47      Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2,
48                                                   New->getName()+".sub", It);
49
50      // Now make everything use the getelementptr instead of the original
51      // allocation.
52      return ReplaceInstUsesWith(AI, V);
53    } else if (isa<UndefValue>(AI.getArraySize())) {
54      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
55    }
56  }
57
58  if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) {
59    // If alloca'ing a zero byte object, replace the alloca with a null pointer.
60    // Note that we only do this for alloca's, because malloc should allocate
61    // and return a unique pointer, even for a zero byte allocation.
62    if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
63      return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
64
65    // If the alignment is 0 (unspecified), assign it the preferred alignment.
66    if (AI.getAlignment() == 0)
67      AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType()));
68  }
69
70  return 0;
71}
72
73
74/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
75static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
76                                        const TargetData *TD) {
77  User *CI = cast<User>(LI.getOperand(0));
78  Value *CastOp = CI->getOperand(0);
79
80  const PointerType *DestTy = cast<PointerType>(CI->getType());
81  const Type *DestPTy = DestTy->getElementType();
82  if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
83
84    // If the address spaces don't match, don't eliminate the cast.
85    if (DestTy->getAddressSpace() != SrcTy->getAddressSpace())
86      return 0;
87
88    const Type *SrcPTy = SrcTy->getElementType();
89
90    if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
91         isa<VectorType>(DestPTy)) {
92      // If the source is an array, the code below will not succeed.  Check to
93      // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
94      // constants.
95      if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
96        if (Constant *CSrc = dyn_cast<Constant>(CastOp))
97          if (ASrcTy->getNumElements() != 0) {
98            Value *Idxs[2];
99            Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext()));
100            Idxs[1] = Idxs[0];
101            CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
102            SrcTy = cast<PointerType>(CastOp->getType());
103            SrcPTy = SrcTy->getElementType();
104          }
105
106      if (IC.getTargetData() &&
107          (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
108            isa<VectorType>(SrcPTy)) &&
109          // Do not allow turning this into a load of an integer, which is then
110          // casted to a pointer, this pessimizes pointer analysis a lot.
111          (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
112          IC.getTargetData()->getTypeSizeInBits(SrcPTy) ==
113               IC.getTargetData()->getTypeSizeInBits(DestPTy)) {
114
115        // Okay, we are casting from one integer or pointer type to another of
116        // the same size.  Instead of casting the pointer before the load, cast
117        // the result of the loaded value.
118        Value *NewLoad =
119          IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName());
120        // Now cast the result of the load.
121        return new BitCastInst(NewLoad, LI.getType());
122      }
123    }
124  }
125  return 0;
126}
127
128Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
129  Value *Op = LI.getOperand(0);
130
131  // Attempt to improve the alignment.
132  if (TD) {
133    unsigned KnownAlign =
134      GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType()));
135    if (KnownAlign >
136        (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) :
137                                  LI.getAlignment()))
138      LI.setAlignment(KnownAlign);
139  }
140
141  // load (cast X) --> cast (load X) iff safe.
142  if (isa<CastInst>(Op))
143    if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
144      return Res;
145
146  // None of the following transforms are legal for volatile loads.
147  if (LI.isVolatile()) return 0;
148
149  // Do really simple store-to-load forwarding and load CSE, to catch cases
150  // where there are several consequtive memory accesses to the same location,
151  // separated by a few arithmetic operations.
152  BasicBlock::iterator BBI = &LI;
153  if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6))
154    return ReplaceInstUsesWith(LI, AvailableVal);
155
156  // load(gep null, ...) -> unreachable
157  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
158    const Value *GEPI0 = GEPI->getOperand(0);
159    // TODO: Consider a target hook for valid address spaces for this xform.
160    if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
161      // Insert a new store to null instruction before the load to indicate
162      // that this code is not reachable.  We do this instead of inserting
163      // an unreachable instruction directly because we cannot modify the
164      // CFG.
165      new StoreInst(UndefValue::get(LI.getType()),
166                    Constant::getNullValue(Op->getType()), &LI);
167      return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
168    }
169  }
170
171  // load null/undef -> unreachable
172  // TODO: Consider a target hook for valid address spaces for this xform.
173  if (isa<UndefValue>(Op) ||
174      (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
175    // Insert a new store to null instruction before the load to indicate that
176    // this code is not reachable.  We do this instead of inserting an
177    // unreachable instruction directly because we cannot modify the CFG.
178    new StoreInst(UndefValue::get(LI.getType()),
179                  Constant::getNullValue(Op->getType()), &LI);
180    return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
181  }
182
183  // Instcombine load (constantexpr_cast global) -> cast (load global)
184  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
185    if (CE->isCast())
186      if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
187        return Res;
188
189  if (Op->hasOneUse()) {
190    // Change select and PHI nodes to select values instead of addresses: this
191    // helps alias analysis out a lot, allows many others simplifications, and
192    // exposes redundancy in the code.
193    //
194    // Note that we cannot do the transformation unless we know that the
195    // introduced loads cannot trap!  Something like this is valid as long as
196    // the condition is always false: load (select bool %C, int* null, int* %G),
197    // but it would not be valid if we transformed it to load from null
198    // unconditionally.
199    //
200    if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
201      // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
202      if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
203          isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
204        Value *V1 = Builder->CreateLoad(SI->getOperand(1),
205                                        SI->getOperand(1)->getName()+".val");
206        Value *V2 = Builder->CreateLoad(SI->getOperand(2),
207                                        SI->getOperand(2)->getName()+".val");
208        return SelectInst::Create(SI->getCondition(), V1, V2);
209      }
210
211      // load (select (cond, null, P)) -> load P
212      if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
213        if (C->isNullValue()) {
214          LI.setOperand(0, SI->getOperand(2));
215          return &LI;
216        }
217
218      // load (select (cond, P, null)) -> load P
219      if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
220        if (C->isNullValue()) {
221          LI.setOperand(0, SI->getOperand(1));
222          return &LI;
223        }
224    }
225  }
226  return 0;
227}
228
229/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
230/// when possible.  This makes it generally easy to do alias analysis and/or
231/// SROA/mem2reg of the memory object.
232static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
233  User *CI = cast<User>(SI.getOperand(1));
234  Value *CastOp = CI->getOperand(0);
235
236  const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
237  const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType());
238  if (SrcTy == 0) return 0;
239
240  const Type *SrcPTy = SrcTy->getElementType();
241
242  if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy))
243    return 0;
244
245  /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep"
246  /// to its first element.  This allows us to handle things like:
247  ///   store i32 xxx, (bitcast {foo*, float}* %P to i32*)
248  /// on 32-bit hosts.
249  SmallVector<Value*, 4> NewGEPIndices;
250
251  // If the source is an array, the code below will not succeed.  Check to
252  // see if a trivial 'gep P, 0, 0' will help matters.  Only do this for
253  // constants.
254  if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) {
255    // Index through pointer.
256    Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext()));
257    NewGEPIndices.push_back(Zero);
258
259    while (1) {
260      if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) {
261        if (!STy->getNumElements()) /* Struct can be empty {} */
262          break;
263        NewGEPIndices.push_back(Zero);
264        SrcPTy = STy->getElementType(0);
265      } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) {
266        NewGEPIndices.push_back(Zero);
267        SrcPTy = ATy->getElementType();
268      } else {
269        break;
270      }
271    }
272
273    SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace());
274  }
275
276  if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy))
277    return 0;
278
279  // If the pointers point into different address spaces or if they point to
280  // values with different sizes, we can't do the transformation.
281  if (!IC.getTargetData() ||
282      SrcTy->getAddressSpace() !=
283        cast<PointerType>(CI->getType())->getAddressSpace() ||
284      IC.getTargetData()->getTypeSizeInBits(SrcPTy) !=
285      IC.getTargetData()->getTypeSizeInBits(DestPTy))
286    return 0;
287
288  // Okay, we are casting from one integer or pointer type to another of
289  // the same size.  Instead of casting the pointer before
290  // the store, cast the value to be stored.
291  Value *NewCast;
292  Value *SIOp0 = SI.getOperand(0);
293  Instruction::CastOps opcode = Instruction::BitCast;
294  const Type* CastSrcTy = SIOp0->getType();
295  const Type* CastDstTy = SrcPTy;
296  if (isa<PointerType>(CastDstTy)) {
297    if (CastSrcTy->isInteger())
298      opcode = Instruction::IntToPtr;
299  } else if (isa<IntegerType>(CastDstTy)) {
300    if (isa<PointerType>(SIOp0->getType()))
301      opcode = Instruction::PtrToInt;
302  }
303
304  // SIOp0 is a pointer to aggregate and this is a store to the first field,
305  // emit a GEP to index into its first field.
306  if (!NewGEPIndices.empty())
307    CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(),
308                                           NewGEPIndices.end());
309
310  NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy,
311                                   SIOp0->getName()+".c");
312  return new StoreInst(NewCast, CastOp);
313}
314
315/// equivalentAddressValues - Test if A and B will obviously have the same
316/// value. This includes recognizing that %t0 and %t1 will have the same
317/// value in code like this:
318///   %t0 = getelementptr \@a, 0, 3
319///   store i32 0, i32* %t0
320///   %t1 = getelementptr \@a, 0, 3
321///   %t2 = load i32* %t1
322///
323static bool equivalentAddressValues(Value *A, Value *B) {
324  // Test if the values are trivially equivalent.
325  if (A == B) return true;
326
327  // Test if the values come form identical arithmetic instructions.
328  // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
329  // its only used to compare two uses within the same basic block, which
330  // means that they'll always either have the same value or one of them
331  // will have an undefined value.
332  if (isa<BinaryOperator>(A) ||
333      isa<CastInst>(A) ||
334      isa<PHINode>(A) ||
335      isa<GetElementPtrInst>(A))
336    if (Instruction *BI = dyn_cast<Instruction>(B))
337      if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
338        return true;
339
340  // Otherwise they may not be equivalent.
341  return false;
342}
343
344// If this instruction has two uses, one of which is a llvm.dbg.declare,
345// return the llvm.dbg.declare.
346DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) {
347  if (!V->hasNUses(2))
348    return 0;
349  for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
350       UI != E; ++UI) {
351    if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI))
352      return DI;
353    if (isa<BitCastInst>(UI) && UI->hasOneUse()) {
354      if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin()))
355        return DI;
356      }
357  }
358  return 0;
359}
360
361Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
362  Value *Val = SI.getOperand(0);
363  Value *Ptr = SI.getOperand(1);
364
365  // If the RHS is an alloca with a single use, zapify the store, making the
366  // alloca dead.
367  // If the RHS is an alloca with a two uses, the other one being a
368  // llvm.dbg.declare, zapify the store and the declare, making the
369  // alloca dead.  We must do this to prevent declares from affecting
370  // codegen.
371  if (!SI.isVolatile()) {
372    if (Ptr->hasOneUse()) {
373      if (isa<AllocaInst>(Ptr))
374        return EraseInstFromFunction(SI);
375      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
376        if (isa<AllocaInst>(GEP->getOperand(0))) {
377          if (GEP->getOperand(0)->hasOneUse())
378            return EraseInstFromFunction(SI);
379          if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) {
380            EraseInstFromFunction(*DI);
381            return EraseInstFromFunction(SI);
382          }
383        }
384      }
385    }
386    if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) {
387      EraseInstFromFunction(*DI);
388      return EraseInstFromFunction(SI);
389    }
390  }
391
392  // Attempt to improve the alignment.
393  if (TD) {
394    unsigned KnownAlign =
395      GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType()));
396    if (KnownAlign >
397        (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) :
398                                  SI.getAlignment()))
399      SI.setAlignment(KnownAlign);
400  }
401
402  // Do really simple DSE, to catch cases where there are several consecutive
403  // stores to the same location, separated by a few arithmetic operations. This
404  // situation often occurs with bitfield accesses.
405  BasicBlock::iterator BBI = &SI;
406  for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
407       --ScanInsts) {
408    --BBI;
409    // Don't count debug info directives, lest they affect codegen,
410    // and we skip pointer-to-pointer bitcasts, which are NOPs.
411    // It is necessary for correctness to skip those that feed into a
412    // llvm.dbg.declare, as these are not present when debugging is off.
413    if (isa<DbgInfoIntrinsic>(BBI) ||
414        (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
415      ScanInsts++;
416      continue;
417    }
418
419    if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
420      // Prev store isn't volatile, and stores to the same location?
421      if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1),
422                                                          SI.getOperand(1))) {
423        ++NumDeadStore;
424        ++BBI;
425        EraseInstFromFunction(*PrevSI);
426        continue;
427      }
428      break;
429    }
430
431    // If this is a load, we have to stop.  However, if the loaded value is from
432    // the pointer we're loading and is producing the pointer we're storing,
433    // then *this* store is dead (X = load P; store X -> P).
434    if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
435      if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) &&
436          !SI.isVolatile())
437        return EraseInstFromFunction(SI);
438
439      // Otherwise, this is a load from some other location.  Stores before it
440      // may not be dead.
441      break;
442    }
443
444    // Don't skip over loads or things that can modify memory.
445    if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
446      break;
447  }
448
449
450  if (SI.isVolatile()) return 0;  // Don't hack volatile stores.
451
452  // store X, null    -> turns into 'unreachable' in SimplifyCFG
453  if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
454    if (!isa<UndefValue>(Val)) {
455      SI.setOperand(0, UndefValue::get(Val->getType()));
456      if (Instruction *U = dyn_cast<Instruction>(Val))
457        Worklist.Add(U);  // Dropped a use.
458    }
459    return 0;  // Do not modify these!
460  }
461
462  // store undef, Ptr -> noop
463  if (isa<UndefValue>(Val))
464    return EraseInstFromFunction(SI);
465
466  // If the pointer destination is a cast, see if we can fold the cast into the
467  // source instead.
468  if (isa<CastInst>(Ptr))
469    if (Instruction *Res = InstCombineStoreToCast(*this, SI))
470      return Res;
471  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
472    if (CE->isCast())
473      if (Instruction *Res = InstCombineStoreToCast(*this, SI))
474        return Res;
475
476
477  // If this store is the last instruction in the basic block (possibly
478  // excepting debug info instructions and the pointer bitcasts that feed
479  // into them), and if the block ends with an unconditional branch, try
480  // to move it to the successor block.
481  BBI = &SI;
482  do {
483    ++BBI;
484  } while (isa<DbgInfoIntrinsic>(BBI) ||
485           (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType())));
486  if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
487    if (BI->isUnconditional())
488      if (SimplifyStoreAtEndOfBlock(SI))
489        return 0;  // xform done!
490
491  return 0;
492}
493
494/// SimplifyStoreAtEndOfBlock - Turn things like:
495///   if () { *P = v1; } else { *P = v2 }
496/// into a phi node with a store in the successor.
497///
498/// Simplify things like:
499///   *P = v1; if () { *P = v2; }
500/// into a phi node with a store in the successor.
501///
502bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
503  BasicBlock *StoreBB = SI.getParent();
504
505  // Check to see if the successor block has exactly two incoming edges.  If
506  // so, see if the other predecessor contains a store to the same location.
507  // if so, insert a PHI node (if needed) and move the stores down.
508  BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
509
510  // Determine whether Dest has exactly two predecessors and, if so, compute
511  // the other predecessor.
512  pred_iterator PI = pred_begin(DestBB);
513  BasicBlock *OtherBB = 0;
514  if (*PI != StoreBB)
515    OtherBB = *PI;
516  ++PI;
517  if (PI == pred_end(DestBB))
518    return false;
519
520  if (*PI != StoreBB) {
521    if (OtherBB)
522      return false;
523    OtherBB = *PI;
524  }
525  if (++PI != pred_end(DestBB))
526    return false;
527
528  // Bail out if all the relevant blocks aren't distinct (this can happen,
529  // for example, if SI is in an infinite loop)
530  if (StoreBB == DestBB || OtherBB == DestBB)
531    return false;
532
533  // Verify that the other block ends in a branch and is not otherwise empty.
534  BasicBlock::iterator BBI = OtherBB->getTerminator();
535  BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
536  if (!OtherBr || BBI == OtherBB->begin())
537    return false;
538
539  // If the other block ends in an unconditional branch, check for the 'if then
540  // else' case.  there is an instruction before the branch.
541  StoreInst *OtherStore = 0;
542  if (OtherBr->isUnconditional()) {
543    --BBI;
544    // Skip over debugging info.
545    while (isa<DbgInfoIntrinsic>(BBI) ||
546           (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) {
547      if (BBI==OtherBB->begin())
548        return false;
549      --BBI;
550    }
551    // If this isn't a store, isn't a store to the same location, or if the
552    // alignments differ, bail out.
553    OtherStore = dyn_cast<StoreInst>(BBI);
554    if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
555        OtherStore->getAlignment() != SI.getAlignment())
556      return false;
557  } else {
558    // Otherwise, the other block ended with a conditional branch. If one of the
559    // destinations is StoreBB, then we have the if/then case.
560    if (OtherBr->getSuccessor(0) != StoreBB &&
561        OtherBr->getSuccessor(1) != StoreBB)
562      return false;
563
564    // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
565    // if/then triangle.  See if there is a store to the same ptr as SI that
566    // lives in OtherBB.
567    for (;; --BBI) {
568      // Check to see if we find the matching store.
569      if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
570        if (OtherStore->getOperand(1) != SI.getOperand(1) ||
571            OtherStore->getAlignment() != SI.getAlignment())
572          return false;
573        break;
574      }
575      // If we find something that may be using or overwriting the stored
576      // value, or if we run out of instructions, we can't do the xform.
577      if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
578          BBI == OtherBB->begin())
579        return false;
580    }
581
582    // In order to eliminate the store in OtherBr, we have to
583    // make sure nothing reads or overwrites the stored value in
584    // StoreBB.
585    for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
586      // FIXME: This should really be AA driven.
587      if (I->mayReadFromMemory() || I->mayWriteToMemory())
588        return false;
589    }
590  }
591
592  // Insert a PHI node now if we need it.
593  Value *MergedVal = OtherStore->getOperand(0);
594  if (MergedVal != SI.getOperand(0)) {
595    PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge");
596    PN->reserveOperandSpace(2);
597    PN->addIncoming(SI.getOperand(0), SI.getParent());
598    PN->addIncoming(OtherStore->getOperand(0), OtherBB);
599    MergedVal = InsertNewInstBefore(PN, DestBB->front());
600  }
601
602  // Advance to a place where it is safe to insert the new store and
603  // insert it.
604  BBI = DestBB->getFirstNonPHI();
605  InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
606                                    OtherStore->isVolatile(),
607                                    SI.getAlignment()), *BBI);
608
609  // Nuke the old stores.
610  EraseInstFromFunction(SI);
611  EraseInstFromFunction(*OtherStore);
612  return true;
613}
614