LICM.cpp revision 0de5cad74d8d2987b92b8d76af3f1eab988b3c7b
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#define DEBUG_TYPE "licm"
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Constants.h"
36#include "llvm/DerivedTypes.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Instructions.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/LoopPass.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Transforms/Utils/SSAUpdater.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/ADT/Statistic.h"
53#include <algorithm>
54using namespace llvm;
55
56STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
57STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
58STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
59STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
60STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
61
62static cl::opt<bool>
63DisablePromotion("disable-licm-promotion", cl::Hidden,
64                 cl::desc("Disable memory promotion in LICM pass"));
65
66namespace {
67  struct LICM : public LoopPass {
68    static char ID; // Pass identification, replacement for typeid
69    LICM() : LoopPass(ID) {}
70
71    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
72
73    /// This transformation requires natural loop information & requires that
74    /// loop preheaders be inserted into the CFG...
75    ///
76    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
77      AU.setPreservesCFG();
78      AU.addRequired<DominatorTree>();
79      AU.addRequired<LoopInfo>();
80      AU.addRequiredID(LoopSimplifyID);
81      AU.addRequired<AliasAnalysis>();
82      AU.addPreserved<AliasAnalysis>();
83      AU.addPreserved<ScalarEvolution>();
84      AU.addPreservedID(LoopSimplifyID);
85    }
86
87    bool doFinalization() {
88      assert(LoopToAliasSetMap.empty() && "Didn't free loop alias sets");
89      return false;
90    }
91
92  private:
93    AliasAnalysis *AA;       // Current AliasAnalysis information
94    LoopInfo      *LI;       // Current LoopInfo
95    DominatorTree *DT;       // Dominator Tree for the current Loop.
96
97    // State that is updated as we process loops.
98    bool Changed;            // Set to true when we change anything.
99    BasicBlock *Preheader;   // The preheader block of the current loop...
100    Loop *CurLoop;           // The current loop we are working on...
101    AliasSetTracker *CurAST; // AliasSet information for the current loop...
102    DenseMap<Loop*, AliasSetTracker*> LoopToAliasSetMap;
103
104    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
105    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
106
107    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
108    /// set.
109    void deleteAnalysisValue(Value *V, Loop *L);
110
111    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
112    /// dominated by the specified block, and that are in the current loop) in
113    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
114    /// visit uses before definitions, allowing us to sink a loop body in one
115    /// pass without iteration.
116    ///
117    void SinkRegion(DomTreeNode *N);
118
119    /// HoistRegion - Walk the specified region of the CFG (defined by all
120    /// blocks dominated by the specified block, and that are in the current
121    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
122    /// visit definitions before uses, allowing us to hoist a loop body in one
123    /// pass without iteration.
124    ///
125    void HoistRegion(DomTreeNode *N);
126
127    /// inSubLoop - Little predicate that returns true if the specified basic
128    /// block is in a subloop of the current one, not the current one itself.
129    ///
130    bool inSubLoop(BasicBlock *BB) {
131      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
132      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
133        if ((*I)->contains(BB))
134          return true;  // A subloop actually contains this block!
135      return false;
136    }
137
138    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
139    /// specified exit block of the loop is dominated by the specified block
140    /// that is in the body of the loop.  We use these constraints to
141    /// dramatically limit the amount of the dominator tree that needs to be
142    /// searched.
143    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
144                                           BasicBlock *BlockInLoop) const {
145      // If the block in the loop is the loop header, it must be dominated!
146      BasicBlock *LoopHeader = CurLoop->getHeader();
147      if (BlockInLoop == LoopHeader)
148        return true;
149
150      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
151      DomTreeNode *IDom            = DT->getNode(ExitBlock);
152
153      // Because the exit block is not in the loop, we know we have to get _at
154      // least_ its immediate dominator.
155      IDom = IDom->getIDom();
156
157      while (IDom && IDom != BlockInLoopNode) {
158        // If we have got to the header of the loop, then the instructions block
159        // did not dominate the exit node, so we can't hoist it.
160        if (IDom->getBlock() == LoopHeader)
161          return false;
162
163        // Get next Immediate Dominator.
164        IDom = IDom->getIDom();
165      };
166
167      return true;
168    }
169
170    /// sink - When an instruction is found to only be used outside of the loop,
171    /// this function moves it to the exit blocks and patches up SSA form as
172    /// needed.
173    ///
174    void sink(Instruction &I);
175
176    /// hoist - When an instruction is found to only use loop invariant operands
177    /// that is safe to hoist, this instruction is called to do the dirty work.
178    ///
179    void hoist(Instruction &I);
180
181    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
182    /// is not a trapping instruction or if it is a trapping instruction and is
183    /// guaranteed to execute.
184    ///
185    bool isSafeToExecuteUnconditionally(Instruction &I);
186
187    /// pointerInvalidatedByLoop - Return true if the body of this loop may
188    /// store into the memory location pointed to by V.
189    ///
190    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
191      // Check to see if any of the basic blocks in CurLoop invalidate *V.
192      return CurAST->getAliasSetForPointer(V, Size).isMod();
193    }
194
195    bool canSinkOrHoistInst(Instruction &I);
196    bool isLoopInvariantInst(Instruction &I);
197    bool isNotUsedInLoop(Instruction &I);
198
199    void PromoteAliasSet(AliasSet &AS);
200  };
201}
202
203char LICM::ID = 0;
204INITIALIZE_PASS(LICM, "licm", "Loop Invariant Code Motion", false, false);
205
206Pass *llvm::createLICMPass() { return new LICM(); }
207
208/// Hoist expressions out of the specified loop. Note, alias info for inner
209/// loop is not preserved so it is not a good idea to run LICM multiple
210/// times on one loop.
211///
212bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
213  Changed = false;
214
215  // Get our Loop and Alias Analysis information...
216  LI = &getAnalysis<LoopInfo>();
217  AA = &getAnalysis<AliasAnalysis>();
218  DT = &getAnalysis<DominatorTree>();
219
220  CurAST = new AliasSetTracker(*AA);
221  // Collect Alias info from subloops.
222  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
223       LoopItr != LoopItrE; ++LoopItr) {
224    Loop *InnerL = *LoopItr;
225    AliasSetTracker *InnerAST = LoopToAliasSetMap[InnerL];
226    assert(InnerAST && "Where is my AST?");
227
228    // What if InnerLoop was modified by other passes ?
229    CurAST->add(*InnerAST);
230
231    // Once we've incorporated the inner loop's AST into ours, we don't need the
232    // subloop's anymore.
233    delete InnerAST;
234    LoopToAliasSetMap.erase(InnerL);
235  }
236
237  CurLoop = L;
238
239  // Get the preheader block to move instructions into...
240  Preheader = L->getLoopPreheader();
241
242  // Loop over the body of this loop, looking for calls, invokes, and stores.
243  // Because subloops have already been incorporated into AST, we skip blocks in
244  // subloops.
245  //
246  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
247       I != E; ++I) {
248    BasicBlock *BB = *I;
249    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops.
250      CurAST->add(*BB);                 // Incorporate the specified basic block
251  }
252
253  // We want to visit all of the instructions in this loop... that are not parts
254  // of our subloops (they have already had their invariants hoisted out of
255  // their loop, into this loop, so there is no need to process the BODIES of
256  // the subloops).
257  //
258  // Traverse the body of the loop in depth first order on the dominator tree so
259  // that we are guaranteed to see definitions before we see uses.  This allows
260  // us to sink instructions in one pass, without iteration.  After sinking
261  // instructions, we perform another pass to hoist them out of the loop.
262  //
263  if (L->hasDedicatedExits())
264    SinkRegion(DT->getNode(L->getHeader()));
265  if (Preheader)
266    HoistRegion(DT->getNode(L->getHeader()));
267
268  // Now that all loop invariants have been removed from the loop, promote any
269  // memory references to scalars that we can.
270  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
271    // Loop over all of the alias sets in the tracker object.
272    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
273         I != E; ++I)
274      PromoteAliasSet(*I);
275  }
276
277  // Clear out loops state information for the next iteration
278  CurLoop = 0;
279  Preheader = 0;
280
281  // If this loop is nested inside of another one, save the alias information
282  // for when we process the outer loop.
283  if (L->getParentLoop())
284    LoopToAliasSetMap[L] = CurAST;
285  else
286    delete CurAST;
287  return Changed;
288}
289
290/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
291/// dominated by the specified block, and that are in the current loop) in
292/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
293/// uses before definitions, allowing us to sink a loop body in one pass without
294/// iteration.
295///
296void LICM::SinkRegion(DomTreeNode *N) {
297  assert(N != 0 && "Null dominator tree node?");
298  BasicBlock *BB = N->getBlock();
299
300  // If this subregion is not in the top level loop at all, exit.
301  if (!CurLoop->contains(BB)) return;
302
303  // We are processing blocks in reverse dfo, so process children first.
304  const std::vector<DomTreeNode*> &Children = N->getChildren();
305  for (unsigned i = 0, e = Children.size(); i != e; ++i)
306    SinkRegion(Children[i]);
307
308  // Only need to process the contents of this block if it is not part of a
309  // subloop (which would already have been processed).
310  if (inSubLoop(BB)) return;
311
312  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
313    Instruction &I = *--II;
314
315    // If the instruction is dead, we would try to sink it because it isn't used
316    // in the loop, instead, just delete it.
317    if (isInstructionTriviallyDead(&I)) {
318      ++II;
319      CurAST->deleteValue(&I);
320      I.eraseFromParent();
321      Changed = true;
322      continue;
323    }
324
325    // Check to see if we can sink this instruction to the exit blocks
326    // of the loop.  We can do this if the all users of the instruction are
327    // outside of the loop.  In this case, it doesn't even matter if the
328    // operands of the instruction are loop invariant.
329    //
330    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
331      ++II;
332      sink(I);
333    }
334  }
335}
336
337/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
338/// dominated by the specified block, and that are in the current loop) in depth
339/// first order w.r.t the DominatorTree.  This allows us to visit definitions
340/// before uses, allowing us to hoist a loop body in one pass without iteration.
341///
342void LICM::HoistRegion(DomTreeNode *N) {
343  assert(N != 0 && "Null dominator tree node?");
344  BasicBlock *BB = N->getBlock();
345
346  // If this subregion is not in the top level loop at all, exit.
347  if (!CurLoop->contains(BB)) return;
348
349  // Only need to process the contents of this block if it is not part of a
350  // subloop (which would already have been processed).
351  if (!inSubLoop(BB))
352    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
353      Instruction &I = *II++;
354
355      // Try hoisting the instruction out to the preheader.  We can only do this
356      // if all of the operands of the instruction are loop invariant and if it
357      // is safe to hoist the instruction.
358      //
359      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
360          isSafeToExecuteUnconditionally(I))
361        hoist(I);
362      }
363
364  const std::vector<DomTreeNode*> &Children = N->getChildren();
365  for (unsigned i = 0, e = Children.size(); i != e; ++i)
366    HoistRegion(Children[i]);
367}
368
369/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
370/// instruction.
371///
372bool LICM::canSinkOrHoistInst(Instruction &I) {
373  // Loads have extra constraints we have to verify before we can hoist them.
374  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
375    if (LI->isVolatile())
376      return false;        // Don't hoist volatile loads!
377
378    // Loads from constant memory are always safe to move, even if they end up
379    // in the same alias set as something that ends up being modified.
380    if (AA->pointsToConstantMemory(LI->getOperand(0)))
381      return true;
382
383    // Don't hoist loads which have may-aliased stores in loop.
384    unsigned Size = 0;
385    if (LI->getType()->isSized())
386      Size = AA->getTypeStoreSize(LI->getType());
387    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
388  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
389    // Handle obvious cases efficiently.
390    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
391    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
392      return true;
393    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
394      // If this call only reads from memory and there are no writes to memory
395      // in the loop, we can hoist or sink the call as appropriate.
396      bool FoundMod = false;
397      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
398           I != E; ++I) {
399        AliasSet &AS = *I;
400        if (!AS.isForwardingAliasSet() && AS.isMod()) {
401          FoundMod = true;
402          break;
403        }
404      }
405      if (!FoundMod) return true;
406    }
407
408    // FIXME: This should use mod/ref information to see if we can hoist or sink
409    // the call.
410
411    return false;
412  }
413
414  // Otherwise these instructions are hoistable/sinkable
415  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
416         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
417         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
418         isa<ShuffleVectorInst>(I);
419}
420
421/// isNotUsedInLoop - Return true if the only users of this instruction are
422/// outside of the loop.  If this is true, we can sink the instruction to the
423/// exit blocks of the loop.
424///
425bool LICM::isNotUsedInLoop(Instruction &I) {
426  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
427    Instruction *User = cast<Instruction>(*UI);
428    if (PHINode *PN = dyn_cast<PHINode>(User)) {
429      // PHI node uses occur in predecessor blocks!
430      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
431        if (PN->getIncomingValue(i) == &I)
432          if (CurLoop->contains(PN->getIncomingBlock(i)))
433            return false;
434    } else if (CurLoop->contains(User)) {
435      return false;
436    }
437  }
438  return true;
439}
440
441
442/// isLoopInvariantInst - Return true if all operands of this instruction are
443/// loop invariant.  We also filter out non-hoistable instructions here just for
444/// efficiency.
445///
446bool LICM::isLoopInvariantInst(Instruction &I) {
447  // The instruction is loop invariant if all of its operands are loop-invariant
448  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
449    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
450      return false;
451
452  // If we got this far, the instruction is loop invariant!
453  return true;
454}
455
456/// sink - When an instruction is found to only be used outside of the loop,
457/// this function moves it to the exit blocks and patches up SSA form as needed.
458/// This method is guaranteed to remove the original instruction from its
459/// position, and may either delete it or move it to outside of the loop.
460///
461void LICM::sink(Instruction &I) {
462  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
463
464  SmallVector<BasicBlock*, 8> ExitBlocks;
465  CurLoop->getUniqueExitBlocks(ExitBlocks);
466
467  if (isa<LoadInst>(I)) ++NumMovedLoads;
468  else if (isa<CallInst>(I)) ++NumMovedCalls;
469  ++NumSunk;
470  Changed = true;
471
472  // The case where there is only a single exit node of this loop is common
473  // enough that we handle it as a special (more efficient) case.  It is more
474  // efficient to handle because there are no PHI nodes that need to be placed.
475  if (ExitBlocks.size() == 1) {
476    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
477      // Instruction is not used, just delete it.
478      CurAST->deleteValue(&I);
479      // If I has users in unreachable blocks, eliminate.
480      // If I is not void type then replaceAllUsesWith undef.
481      // This allows ValueHandlers and custom metadata to adjust itself.
482      if (!I.use_empty())
483        I.replaceAllUsesWith(UndefValue::get(I.getType()));
484      I.eraseFromParent();
485    } else {
486      // Move the instruction to the start of the exit block, after any PHI
487      // nodes in it.
488      I.moveBefore(ExitBlocks[0]->getFirstNonPHI());
489
490      // This instruction is no longer in the AST for the current loop, because
491      // we just sunk it out of the loop.  If we just sunk it into an outer
492      // loop, we will rediscover the operation when we process it.
493      CurAST->deleteValue(&I);
494    }
495    return;
496  }
497
498  if (ExitBlocks.empty()) {
499    // The instruction is actually dead if there ARE NO exit blocks.
500    CurAST->deleteValue(&I);
501    // If I has users in unreachable blocks, eliminate.
502    // If I is not void type then replaceAllUsesWith undef.
503    // This allows ValueHandlers and custom metadata to adjust itself.
504    if (!I.use_empty())
505      I.replaceAllUsesWith(UndefValue::get(I.getType()));
506    I.eraseFromParent();
507    return;
508  }
509
510  // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
511  // hard work of inserting PHI nodes as necessary.
512  SmallVector<PHINode*, 8> NewPHIs;
513  SSAUpdater SSA(&NewPHIs);
514
515  if (!I.use_empty())
516    SSA.Initialize(&I);
517
518  // Insert a copy of the instruction in each exit block of the loop that is
519  // dominated by the instruction.  Each exit block is known to only be in the
520  // ExitBlocks list once.
521  BasicBlock *InstOrigBB = I.getParent();
522  unsigned NumInserted = 0;
523
524  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
525    BasicBlock *ExitBlock = ExitBlocks[i];
526
527    if (!isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB))
528      continue;
529
530    // Insert the code after the last PHI node.
531    BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
532
533    // If this is the first exit block processed, just move the original
534    // instruction, otherwise clone the original instruction and insert
535    // the copy.
536    Instruction *New;
537    if (NumInserted++ == 0) {
538      I.moveBefore(InsertPt);
539      New = &I;
540    } else {
541      New = I.clone();
542      if (!I.getName().empty())
543        New->setName(I.getName()+".le");
544      ExitBlock->getInstList().insert(InsertPt, New);
545    }
546
547    // Now that we have inserted the instruction, inform SSAUpdater.
548    if (!I.use_empty())
549      SSA.AddAvailableValue(ExitBlock, New);
550  }
551
552  // If the instruction doesn't dominate any exit blocks, it must be dead.
553  if (NumInserted == 0) {
554    CurAST->deleteValue(&I);
555    if (!I.use_empty())
556      I.replaceAllUsesWith(UndefValue::get(I.getType()));
557    I.eraseFromParent();
558    return;
559  }
560
561  // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
562  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
563    // Grab the use before incrementing the iterator.
564    Use &U = UI.getUse();
565    // Increment the iterator before removing the use from the list.
566    ++UI;
567    SSA.RewriteUseAfterInsertions(U);
568  }
569
570  // Update CurAST for NewPHIs if I had pointer type.
571  if (I.getType()->isPointerTy())
572    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
573      CurAST->copyValue(NewPHIs[i], &I);
574
575  // Finally, remove the instruction from CurAST.  It is no longer in the loop.
576  CurAST->deleteValue(&I);
577}
578
579/// hoist - When an instruction is found to only use loop invariant operands
580/// that is safe to hoist, this instruction is called to do the dirty work.
581///
582void LICM::hoist(Instruction &I) {
583  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
584        << I << "\n");
585
586  // Move the new node to the Preheader, before its terminator.
587  I.moveBefore(Preheader->getTerminator());
588
589  if (isa<LoadInst>(I)) ++NumMovedLoads;
590  else if (isa<CallInst>(I)) ++NumMovedCalls;
591  ++NumHoisted;
592  Changed = true;
593}
594
595/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
596/// not a trapping instruction or if it is a trapping instruction and is
597/// guaranteed to execute.
598///
599bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
600  // If it is not a trapping instruction, it is always safe to hoist.
601  if (Inst.isSafeToSpeculativelyExecute())
602    return true;
603
604  // Otherwise we have to check to make sure that the instruction dominates all
605  // of the exit blocks.  If it doesn't, then there is a path out of the loop
606  // which does not execute this instruction, so we can't hoist it.
607
608  // If the instruction is in the header block for the loop (which is very
609  // common), it is always guaranteed to dominate the exit blocks.  Since this
610  // is a common case, and can save some work, check it now.
611  if (Inst.getParent() == CurLoop->getHeader())
612    return true;
613
614  // Get the exit blocks for the current loop.
615  SmallVector<BasicBlock*, 8> ExitBlocks;
616  CurLoop->getExitBlocks(ExitBlocks);
617
618  // For each exit block, get the DT node and walk up the DT until the
619  // instruction's basic block is found or we exit the loop.
620  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
621    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
622      return false;
623
624  return true;
625}
626
627/// PromoteAliasSet - Try to promote memory values to scalars by sinking
628/// stores out of the loop and moving loads to before the loop.  We do this by
629/// looping over the stores in the loop, looking for stores to Must pointers
630/// which are loop invariant.
631///
632void LICM::PromoteAliasSet(AliasSet &AS) {
633  // We can promote this alias set if it has a store, if it is a "Must" alias
634  // set, if the pointer is loop invariant, and if we are not eliminating any
635  // volatile loads or stores.
636  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
637      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
638    return;
639
640  assert(!AS.empty() &&
641         "Must alias set should have at least one pointer element in it!");
642  Value *SomePtr = AS.begin()->getValue();
643
644  // It isn't safe to promote a load/store from the loop if the load/store is
645  // conditional.  For example, turning:
646  //
647  //    for () { if (c) *P += 1; }
648  //
649  // into:
650  //
651  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
652  //
653  // is not safe, because *P may only be valid to access if 'c' is true.
654  //
655  // It is safe to promote P if all uses are direct load/stores and if at
656  // least one is guaranteed to be executed.
657  bool GuaranteedToExecute = false;
658
659  SmallVector<Instruction*, 64> LoopUses;
660  SmallPtrSet<Value*, 4> PointerMustAliases;
661
662  // Check that all of the pointers in the alias set have the same type.  We
663  // cannot (yet) promote a memory location that is loaded and stored in
664  // different sizes.
665  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
666    Value *ASIV = ASI->getValue();
667    PointerMustAliases.insert(ASIV);
668
669    // Check that all of the pointers in the alias set have the same type.  We
670    // cannot (yet) promote a memory location that is loaded and stored in
671    // different sizes.
672    if (SomePtr->getType() != ASIV->getType())
673      return;
674
675    for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
676         UI != UE; ++UI) {
677      // Ignore instructions that are outside the loop.
678      Instruction *Use = dyn_cast<Instruction>(*UI);
679      if (!Use || !CurLoop->contains(Use))
680        continue;
681
682      // If there is an non-load/store instruction in the loop, we can't promote
683      // it.
684      if (isa<LoadInst>(Use))
685        assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken");
686      else if (isa<StoreInst>(Use))
687        assert(!cast<StoreInst>(Use)->isVolatile() &&
688               Use->getOperand(0) != ASIV && "AST broken");
689      else
690        return; // Not a load or store.
691
692      if (!GuaranteedToExecute)
693        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
694
695      LoopUses.push_back(Use);
696    }
697  }
698
699  // If there isn't a guaranteed-to-execute instruction, we can't promote.
700  if (!GuaranteedToExecute)
701    return;
702
703  // Otherwise, this is safe to promote, lets do it!
704  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
705  Changed = true;
706  ++NumPromoted;
707
708  // We use the SSAUpdater interface to insert phi nodes as required.
709  SmallVector<PHINode*, 16> NewPHIs;
710  SSAUpdater SSA(&NewPHIs);
711
712  // It wants to know some value of the same type as what we'll be inserting.
713  Value *SomeValue;
714  if (isa<LoadInst>(LoopUses[0]))
715    SomeValue = LoopUses[0];
716  else
717    SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0);
718  SSA.Initialize(SomeValue);
719
720  // First step: bucket up uses of the pointers by the block they occur in.
721  // This is important because we have to handle multiple defs/uses in a block
722  // ourselves: SSAUpdater is purely for cross-block references.
723  // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
724  DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
725  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
726    Instruction *User = LoopUses[i];
727    UsesByBlock[User->getParent()].push_back(User);
728  }
729
730  // Okay, now we can iterate over all the blocks in the loop with uses,
731  // processing them.  Keep track of which loads are loading a live-in value.
732  SmallVector<LoadInst*, 32> LiveInLoads;
733
734  for (unsigned LoopUse = 0, e = LoopUses.size(); LoopUse != e; ++LoopUse) {
735    Instruction *User = LoopUses[LoopUse];
736    std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()];
737
738    // If this block has already been processed, ignore this repeat use.
739    if (BlockUses.empty()) continue;
740
741    // Okay, this is the first use in the block.  If this block just has a
742    // single user in it, we can rewrite it trivially.
743    if (BlockUses.size() == 1) {
744      // If it is a store, it is a trivial def of the value in the block.
745      if (isa<StoreInst>(User)) {
746        SSA.AddAvailableValue(User->getParent(),
747                              cast<StoreInst>(User)->getOperand(0));
748      } else {
749        // Otherwise it is a load, queue it to rewrite as a live-in load.
750        LiveInLoads.push_back(cast<LoadInst>(User));
751      }
752      BlockUses.clear();
753      continue;
754    }
755
756    // Otherwise, check to see if this block is all loads.  If so, we can queue
757    // them all as live in loads.
758    bool HasStore = false;
759    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
760      if (isa<StoreInst>(BlockUses[i])) {
761        HasStore = true;
762        break;
763      }
764    }
765
766    if (!HasStore) {
767      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
768        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
769      BlockUses.clear();
770      continue;
771    }
772
773    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
774    // Since SSAUpdater is purely for cross-block values, we need to determine
775    // the order of these instructions in the block.  If the first use in the
776    // block is a load, then it uses the live in value.  The last store defines
777    // the live out value.  We handle this by doing a linear scan of the block.
778    BasicBlock *BB = User->getParent();
779    Value *StoredValue = 0;
780    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
781      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
782        // If this is a load to an unrelated pointer, ignore it.
783        if (!PointerMustAliases.count(L->getOperand(0))) continue;
784
785        // If we haven't seen a store yet, this is a live in use, otherwise
786        // use the stored value.
787        if (StoredValue)
788          L->replaceAllUsesWith(StoredValue);
789        else
790          LiveInLoads.push_back(L);
791        continue;
792      }
793
794      if (StoreInst *S = dyn_cast<StoreInst>(II)) {
795        // If this is a load to an unrelated pointer, ignore it.
796        if (!PointerMustAliases.count(S->getOperand(1))) continue;
797
798        // Remember that this is the active value in the block.
799        StoredValue = S->getOperand(0);
800      }
801    }
802
803    // The last stored value that happened is the live-out for the block.
804    assert(StoredValue && "Already checked that there is a store in block");
805    SSA.AddAvailableValue(BB, StoredValue);
806    BlockUses.clear();
807  }
808
809  // Now that all the intra-loop values are classified, set up the preheader.
810  // It gets a load of the pointer we're promoting, and it is the live-out value
811  // from the preheader.
812  LoadInst *PreheaderLoad = new LoadInst(SomePtr,SomePtr->getName()+".promoted",
813                                         Preheader->getTerminator());
814  SSA.AddAvailableValue(Preheader, PreheaderLoad);
815
816  // Now that the preheader is good to go, set up the exit blocks.  Each exit
817  // block gets a store of the live-out values that feed them.  Since we've
818  // already told the SSA updater about the defs in the loop and the preheader
819  // definition, it is all set and we can start using it.
820  SmallVector<BasicBlock*, 8> ExitBlocks;
821  CurLoop->getUniqueExitBlocks(ExitBlocks);
822  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
823    BasicBlock *ExitBlock = ExitBlocks[i];
824    Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
825    Instruction *InsertPos = ExitBlock->getFirstNonPHI();
826    new StoreInst(LiveInValue, SomePtr, InsertPos);
827  }
828
829  // Okay, now we rewrite all loads that use live-in values in the loop,
830  // inserting PHI nodes as necessary.
831  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
832    LoadInst *ALoad = LiveInLoads[i];
833    ALoad->replaceAllUsesWith(SSA.GetValueInMiddleOfBlock(ALoad->getParent()));
834  }
835
836  // Now that everything is rewritten, delete the old instructions from the body
837  // of the loop.  They should all be dead now.
838  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
839    Instruction *User = LoopUses[i];
840    CurAST->deleteValue(User);
841    User->eraseFromParent();
842  }
843
844  // If the preheader load is itself a pointer, we need to tell alias analysis
845  // about the new pointer we created in the preheader block and about any PHI
846  // nodes that just got inserted.
847  if (PreheaderLoad->getType()->isPointerTy()) {
848    // Copy any value stored to or loaded from a must-alias of the pointer.
849    CurAST->copyValue(SomeValue, PreheaderLoad);
850
851    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
852      CurAST->copyValue(SomeValue, NewPHIs[i]);
853  }
854
855  // fwew, we're done!
856}
857
858
859/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
860void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
861  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
862  if (!AST)
863    return;
864
865  AST->copyValue(From, To);
866}
867
868/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
869/// set.
870void LICM::deleteAnalysisValue(Value *V, Loop *L) {
871  AliasSetTracker *AST = LoopToAliasSetMap.lookup(L);
872  if (!AST)
873    return;
874
875  AST->deleteValue(V);
876}
877