LICM.cpp revision 118dd0ce3d8e4b0a945afc95c9538d5005abacde
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads out of loops.  If we can determine that a
19//     load inside of a loop never aliases anything stored to, we can hoist it
20//     or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Transforms/Utils/PromoteMemToReg.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/AliasSetTracker.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Instructions.h"
42#include "llvm/DerivedTypes.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Support/CFG.h"
45#include "Support/CommandLine.h"
46#include "Support/Debug.h"
47#include "Support/Statistic.h"
48#include "llvm/Assembly/Writer.h"
49#include <algorithm>
50using namespace llvm;
51
52namespace {
53  cl::opt<bool>
54  DisablePromotion("disable-licm-promotion", cl::Hidden,
55                   cl::desc("Disable memory promotion in LICM pass"));
56
57  Statistic<> NumSunk("licm", "Number of instructions sunk out of loop");
58  Statistic<> NumHoisted("licm", "Number of instructions hoisted out of loop");
59  Statistic<> NumMovedLoads("licm", "Number of load insts hoisted or sunk");
60  Statistic<> NumMovedCalls("licm", "Number of call insts hoisted or sunk");
61  Statistic<> NumPromoted("licm",
62                          "Number of memory locations promoted to registers");
63
64  struct LICM : public FunctionPass {
65    virtual bool runOnFunction(Function &F);
66
67    /// This transformation requires natural loop information & requires that
68    /// loop preheaders be inserted into the CFG...
69    ///
70    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71      AU.setPreservesCFG();
72      AU.addRequiredID(LoopSimplifyID);
73      AU.addRequired<LoopInfo>();
74      AU.addRequired<DominatorTree>();
75      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
76      AU.addRequired<AliasAnalysis>();
77    }
78
79  private:
80    // Various analyses that we use...
81    AliasAnalysis *AA;       // Current AliasAnalysis information
82    LoopInfo      *LI;       // Current LoopInfo
83    DominatorTree *DT;       // Dominator Tree for the current Loop...
84    DominanceFrontier *DF;   // Current Dominance Frontier
85
86    // State that is updated as we process loops
87    bool Changed;            // Set to true when we change anything.
88    BasicBlock *Preheader;   // The preheader block of the current loop...
89    Loop *CurLoop;           // The current loop we are working on...
90    AliasSetTracker *CurAST; // AliasSet information for the current loop...
91
92    /// visitLoop - Hoist expressions out of the specified loop...
93    ///
94    void visitLoop(Loop *L, AliasSetTracker &AST);
95
96    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
97    /// dominated by the specified block, and that are in the current loop) in
98    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
99    /// visit uses before definitions, allowing us to sink a loop body in one
100    /// pass without iteration.
101    ///
102    void SinkRegion(DominatorTree::Node *N);
103
104    /// HoistRegion - Walk the specified region of the CFG (defined by all
105    /// blocks dominated by the specified block, and that are in the current
106    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
107    /// visit definitions before uses, allowing us to hoist a loop body in one
108    /// pass without iteration.
109    ///
110    void HoistRegion(DominatorTree::Node *N);
111
112    /// inSubLoop - Little predicate that returns true if the specified basic
113    /// block is in a subloop of the current one, not the current one itself.
114    ///
115    bool inSubLoop(BasicBlock *BB) {
116      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
117      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
118        if ((*I)->contains(BB))
119          return true;  // A subloop actually contains this block!
120      return false;
121    }
122
123    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
124    /// specified exit block of the loop is dominated by the specified block
125    /// that is in the body of the loop.  We use these constraints to
126    /// dramatically limit the amount of the dominator tree that needs to be
127    /// searched.
128    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
129                                           BasicBlock *BlockInLoop) const {
130      // If the block in the loop is the loop header, it must be dominated!
131      BasicBlock *LoopHeader = CurLoop->getHeader();
132      if (BlockInLoop == LoopHeader)
133        return true;
134
135      DominatorTree::Node *BlockInLoopNode = DT->getNode(BlockInLoop);
136      DominatorTree::Node *IDom            = DT->getNode(ExitBlock);
137
138      // Because the exit block is not in the loop, we know we have to get _at
139      // least_ it's immediate dominator.
140      do {
141        // Get next Immediate Dominator.
142        IDom = IDom->getIDom();
143
144        // If we have got to the header of the loop, then the instructions block
145        // did not dominate the exit node, so we can't hoist it.
146        if (IDom->getBlock() == LoopHeader)
147          return false;
148
149      } while (IDom != BlockInLoopNode);
150
151      return true;
152    }
153
154    /// sink - When an instruction is found to only be used outside of the loop,
155    /// this function moves it to the exit blocks and patches up SSA form as
156    /// needed.
157    ///
158    void sink(Instruction &I);
159
160    /// hoist - When an instruction is found to only use loop invariant operands
161    /// that is safe to hoist, this instruction is called to do the dirty work.
162    ///
163    void hoist(Instruction &I);
164
165    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
166    /// is not a trapping instruction or if it is a trapping instruction and is
167    /// guaranteed to execute.
168    ///
169    bool isSafeToExecuteUnconditionally(Instruction &I);
170
171    /// pointerInvalidatedByLoop - Return true if the body of this loop may
172    /// store into the memory location pointed to by V.
173    ///
174    bool pointerInvalidatedByLoop(Value *V) {
175      // Check to see if any of the basic blocks in CurLoop invalidate *V.
176      return CurAST->getAliasSetForPointer(V, 0).isMod();
177    }
178
179    /// isLoopInvariant - Return true if the specified value is loop invariant
180    ///
181    inline bool isLoopInvariant(Value *V) {
182      if (Instruction *I = dyn_cast<Instruction>(V))
183        return !CurLoop->contains(I->getParent());
184      return true;  // All non-instructions are loop invariant
185    }
186
187    bool canSinkOrHoistInst(Instruction &I);
188    bool isLoopInvariantInst(Instruction &I);
189    bool isNotUsedInLoop(Instruction &I);
190
191    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
192    /// to scalars as we can.
193    ///
194    void PromoteValuesInLoop();
195
196    /// findPromotableValuesInLoop - Check the current loop for stores to
197    /// definite pointers, which are not loaded and stored through may aliases.
198    /// If these are found, create an alloca for the value, add it to the
199    /// PromotedValues list, and keep track of the mapping from value to
200    /// alloca...
201    ///
202    void findPromotableValuesInLoop(
203                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
204                                    std::map<Value*, AllocaInst*> &Val2AlMap);
205  };
206
207  RegisterOpt<LICM> X("licm", "Loop Invariant Code Motion");
208}
209
210FunctionPass *llvm::createLICMPass() { return new LICM(); }
211
212/// runOnFunction - For LICM, this simply traverses the loop structure of the
213/// function, hoisting expressions out of loops if possible.
214///
215bool LICM::runOnFunction(Function &) {
216  Changed = false;
217
218  // Get our Loop and Alias Analysis information...
219  LI = &getAnalysis<LoopInfo>();
220  AA = &getAnalysis<AliasAnalysis>();
221  DF = &getAnalysis<DominanceFrontier>();
222  DT = &getAnalysis<DominatorTree>();
223
224  // Hoist expressions out of all of the top-level loops.
225  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
226    AliasSetTracker AST(*AA);
227    visitLoop(*I, AST);
228  }
229  return Changed;
230}
231
232
233/// visitLoop - Hoist expressions out of the specified loop...
234///
235void LICM::visitLoop(Loop *L, AliasSetTracker &AST) {
236  // Recurse through all subloops before we process this loop...
237  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
238    AliasSetTracker SubAST(*AA);
239    visitLoop(*I, SubAST);
240
241    // Incorporate information about the subloops into this loop...
242    AST.add(SubAST);
243  }
244  CurLoop = L;
245  CurAST = &AST;
246
247  // Get the preheader block to move instructions into...
248  Preheader = L->getLoopPreheader();
249  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
250
251  // Loop over the body of this loop, looking for calls, invokes, and stores.
252  // Because subloops have already been incorporated into AST, we skip blocks in
253  // subloops.
254  //
255  for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
256         E = L->getBlocks().end(); I != E; ++I)
257    if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
258      AST.add(**I);                     // Incorporate the specified basic block
259
260  // We want to visit all of the instructions in this loop... that are not parts
261  // of our subloops (they have already had their invariants hoisted out of
262  // their loop, into this loop, so there is no need to process the BODIES of
263  // the subloops).
264  //
265  // Traverse the body of the loop in depth first order on the dominator tree so
266  // that we are guaranteed to see definitions before we see uses.  This allows
267  // us to sink instructions in one pass, without iteration.  AFter sinking
268  // instructions, we perform another pass to hoist them out of the loop.
269  //
270  SinkRegion(DT->getNode(L->getHeader()));
271  HoistRegion(DT->getNode(L->getHeader()));
272
273  // Now that all loop invariants have been removed from the loop, promote any
274  // memory references to scalars that we can...
275  if (!DisablePromotion)
276    PromoteValuesInLoop();
277
278  // Clear out loops state information for the next iteration
279  CurLoop = 0;
280  Preheader = 0;
281}
282
283/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
284/// dominated by the specified block, and that are in the current loop) in
285/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
286/// uses before definitions, allowing us to sink a loop body in one pass without
287/// iteration.
288///
289void LICM::SinkRegion(DominatorTree::Node *N) {
290  assert(N != 0 && "Null dominator tree node?");
291  BasicBlock *BB = N->getBlock();
292
293  // If this subregion is not in the top level loop at all, exit.
294  if (!CurLoop->contains(BB)) return;
295
296  // We are processing blocks in reverse dfo, so process children first...
297  const std::vector<DominatorTree::Node*> &Children = N->getChildren();
298  for (unsigned i = 0, e = Children.size(); i != e; ++i)
299    SinkRegion(Children[i]);
300
301  // Only need to process the contents of this block if it is not part of a
302  // subloop (which would already have been processed).
303  if (inSubLoop(BB)) return;
304
305  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
306    Instruction &I = *--II;
307
308    // Check to see if we can sink this instruction to the exit blocks
309    // of the loop.  We can do this if the all users of the instruction are
310    // outside of the loop.  In this case, it doesn't even matter if the
311    // operands of the instruction are loop invariant.
312    //
313    if (canSinkOrHoistInst(I) && isNotUsedInLoop(I)) {
314      ++II;
315      sink(I);
316    }
317  }
318}
319
320
321/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
322/// dominated by the specified block, and that are in the current loop) in depth
323/// first order w.r.t the DominatorTree.  This allows us to visit definitions
324/// before uses, allowing us to hoist a loop body in one pass without iteration.
325///
326void LICM::HoistRegion(DominatorTree::Node *N) {
327  assert(N != 0 && "Null dominator tree node?");
328  BasicBlock *BB = N->getBlock();
329
330  // If this subregion is not in the top level loop at all, exit.
331  if (!CurLoop->contains(BB)) return;
332
333  // Only need to process the contents of this block if it is not part of a
334  // subloop (which would already have been processed).
335  if (!inSubLoop(BB))
336    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
337      Instruction &I = *II++;
338
339      // Try hoisting the instruction out to the preheader.  We can only do this
340      // if all of the operands of the instruction are loop invariant and if it
341      // is safe to hoist the instruction.
342      //
343      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
344          isSafeToExecuteUnconditionally(I))
345          hoist(I);
346      }
347
348  const std::vector<DominatorTree::Node*> &Children = N->getChildren();
349  for (unsigned i = 0, e = Children.size(); i != e; ++i)
350    HoistRegion(Children[i]);
351}
352
353/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
354/// instruction.
355///
356bool LICM::canSinkOrHoistInst(Instruction &I) {
357  // Loads have extra constraints we have to verify before we can hoist them.
358  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
359    if (LI->isVolatile())
360      return false;        // Don't hoist volatile loads!
361
362    // Don't hoist loads which have may-aliased stores in loop.
363    return !pointerInvalidatedByLoop(LI->getOperand(0));
364  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
365    // Handle obvious cases efficiently.
366    if (Function *Callee = CI->getCalledFunction()) {
367      if (AA->doesNotAccessMemory(Callee))
368        return true;
369      else if (AA->onlyReadsMemory(Callee)) {
370        // If this call only reads from memory and there are no writes to memory
371        // in the loop, we can hoist or sink the call as appropriate.
372        bool FoundMod = false;
373        for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
374             I != E; ++I) {
375          AliasSet &AS = *I;
376          if (!AS.isForwardingAliasSet() && AS.isMod()) {
377            FoundMod = true;
378            break;
379          }
380        }
381        if (!FoundMod) return true;
382      }
383    }
384
385    // FIXME: This should use mod/ref information to see if we can hoist or sink
386    // the call.
387
388    return false;
389  }
390
391  return isa<BinaryOperator>(I) || isa<ShiftInst>(I) || isa<CastInst>(I) ||
392         isa<SelectInst>(I) ||
393         isa<GetElementPtrInst>(I) || isa<VANextInst>(I) || isa<VAArgInst>(I);
394}
395
396/// isNotUsedInLoop - Return true if the only users of this instruction are
397/// outside of the loop.  If this is true, we can sink the instruction to the
398/// exit blocks of the loop.
399///
400bool LICM::isNotUsedInLoop(Instruction &I) {
401  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
402    Instruction *User = cast<Instruction>(*UI);
403    if (PHINode *PN = dyn_cast<PHINode>(User)) {
404      // PHI node uses occur in predecessor blocks!
405      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
406        if (PN->getIncomingValue(i) == &I)
407          if (CurLoop->contains(PN->getIncomingBlock(i)))
408            return false;
409    } else if (CurLoop->contains(User->getParent())) {
410      return false;
411    }
412  }
413  return true;
414}
415
416
417/// isLoopInvariantInst - Return true if all operands of this instruction are
418/// loop invariant.  We also filter out non-hoistable instructions here just for
419/// efficiency.
420///
421bool LICM::isLoopInvariantInst(Instruction &I) {
422  // The instruction is loop invariant if all of its operands are loop-invariant
423  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
424    if (!isLoopInvariant(I.getOperand(i)))
425      return false;
426
427  // If we got this far, the instruction is loop invariant!
428  return true;
429}
430
431/// sink - When an instruction is found to only be used outside of the loop,
432/// this function moves it to the exit blocks and patches up SSA form as needed.
433/// This method is guaranteed to remove the original instruction from its
434/// position, and may either delete it or move it to outside of the loop.
435///
436void LICM::sink(Instruction &I) {
437  DEBUG(std::cerr << "LICM sinking instruction: " << I);
438
439  const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
440
441  if (isa<LoadInst>(I)) ++NumMovedLoads;
442  else if (isa<CallInst>(I)) ++NumMovedCalls;
443  ++NumSunk;
444  Changed = true;
445
446  // The case where there is only a single exit node of this loop is common
447  // enough that we handle it as a special (more efficient) case.  It is more
448  // efficient to handle because there are no PHI nodes that need to be placed.
449  if (ExitBlocks.size() == 1) {
450    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
451      // Instruction is not used, just delete it.
452      CurAST->remove(&I);
453      I.getParent()->getInstList().erase(&I);
454    } else {
455      // Move the instruction to the start of the exit block, after any PHI
456      // nodes in it.
457      I.getParent()->getInstList().remove(&I);
458
459      BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
460      while (isa<PHINode>(InsertPt)) ++InsertPt;
461      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
462    }
463  } else if (ExitBlocks.size() == 0) {
464    // The instruction is actually dead if there ARE NO exit blocks.
465    CurAST->remove(&I);
466    I.getParent()->getInstList().erase(&I);
467  } else {
468    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
469    // do all of the hard work of inserting PHI nodes as necessary.  We convert
470    // the value into a stack object to get it to do this.
471
472    // Firstly, we create a stack object to hold the value...
473    AllocaInst *AI = new AllocaInst(I.getType(), 0, I.getName(),
474                                   I.getParent()->getParent()->front().begin());
475
476    // Secondly, insert load instructions for each use of the instruction
477    // outside of the loop.
478    while (!I.use_empty()) {
479      Instruction *U = cast<Instruction>(I.use_back());
480
481      // If the user is a PHI Node, we actually have to insert load instructions
482      // in all predecessor blocks, not in the PHI block itself!
483      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
484        // Only insert into each predecessor once, so that we don't have
485        // different incoming values from the same block!
486        std::map<BasicBlock*, Value*> InsertedBlocks;
487        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
488          if (UPN->getIncomingValue(i) == &I) {
489            BasicBlock *Pred = UPN->getIncomingBlock(i);
490            Value *&PredVal = InsertedBlocks[Pred];
491            if (!PredVal) {
492              // Insert a new load instruction right before the terminator in
493              // the predecessor block.
494              PredVal = new LoadInst(AI, "", Pred->getTerminator());
495            }
496
497            UPN->setIncomingValue(i, PredVal);
498          }
499
500      } else {
501        LoadInst *L = new LoadInst(AI, "", U);
502        U->replaceUsesOfWith(&I, L);
503      }
504    }
505
506    // Thirdly, insert a copy of the instruction in each exit block of the loop
507    // that is dominated by the instruction, storing the result into the memory
508    // location.  Be careful not to insert the instruction into any particular
509    // basic block more than once.
510    std::set<BasicBlock*> InsertedBlocks;
511    BasicBlock *InstOrigBB = I.getParent();
512
513    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
514      BasicBlock *ExitBlock = ExitBlocks[i];
515
516      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
517        // If we haven't already processed this exit block, do so now.
518        if (InsertedBlocks.insert(ExitBlock).second) {
519          // Insert the code after the last PHI node...
520          BasicBlock::iterator InsertPt = ExitBlock->begin();
521          while (isa<PHINode>(InsertPt)) ++InsertPt;
522
523          // If this is the first exit block processed, just move the original
524          // instruction, otherwise clone the original instruction and insert
525          // the copy.
526          Instruction *New;
527          if (InsertedBlocks.size() == 1) {
528            I.getParent()->getInstList().remove(&I);
529            ExitBlock->getInstList().insert(InsertPt, &I);
530            New = &I;
531          } else {
532            New = I.clone();
533            New->setName(I.getName()+".le");
534            ExitBlock->getInstList().insert(InsertPt, New);
535          }
536
537          // Now that we have inserted the instruction, store it into the alloca
538          new StoreInst(New, AI, InsertPt);
539        }
540      }
541    }
542
543    // If the instruction doesn't dominate any exit blocks, it must be dead.
544    if (InsertedBlocks.empty()) {
545      CurAST->remove(&I);
546      I.getParent()->getInstList().erase(&I);
547    }
548
549    // Finally, promote the fine value to SSA form.
550    std::vector<AllocaInst*> Allocas;
551    Allocas.push_back(AI);
552    PromoteMemToReg(Allocas, *DT, *DF, AA->getTargetData());
553  }
554}
555
556/// hoist - When an instruction is found to only use loop invariant operands
557/// that is safe to hoist, this instruction is called to do the dirty work.
558///
559void LICM::hoist(Instruction &I) {
560  DEBUG(std::cerr << "LICM hoisting to";
561        WriteAsOperand(std::cerr, Preheader, false);
562        std::cerr << ": " << I);
563
564  // Remove the instruction from its current basic block... but don't delete the
565  // instruction.
566  I.getParent()->getInstList().remove(&I);
567
568  // Insert the new node in Preheader, before the terminator.
569  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
570
571  if (isa<LoadInst>(I)) ++NumMovedLoads;
572  else if (isa<CallInst>(I)) ++NumMovedCalls;
573  ++NumHoisted;
574  Changed = true;
575}
576
577/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
578/// not a trapping instruction or if it is a trapping instruction and is
579/// guaranteed to execute.
580///
581bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
582  // If it is not a trapping instruction, it is always safe to hoist.
583  if (!Inst.isTrapping()) return true;
584
585  // Otherwise we have to check to make sure that the instruction dominates all
586  // of the exit blocks.  If it doesn't, then there is a path out of the loop
587  // which does not execute this instruction, so we can't hoist it.
588
589  // If the instruction is in the header block for the loop (which is very
590  // common), it is always guaranteed to dominate the exit blocks.  Since this
591  // is a common case, and can save some work, check it now.
592  if (Inst.getParent() == CurLoop->getHeader())
593    return true;
594
595  // Get the exit blocks for the current loop.
596  const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
597
598  // For each exit block, get the DT node and walk up the DT until the
599  // instruction's basic block is found or we exit the loop.
600  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
601    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
602      return false;
603
604  return true;
605}
606
607
608/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
609/// stores out of the loop and moving loads to before the loop.  We do this by
610/// looping over the stores in the loop, looking for stores to Must pointers
611/// which are loop invariant.  We promote these memory locations to use allocas
612/// instead.  These allocas can easily be raised to register values by the
613/// PromoteMem2Reg functionality.
614///
615void LICM::PromoteValuesInLoop() {
616  // PromotedValues - List of values that are promoted out of the loop.  Each
617  // value has an alloca instruction for it, and a canonical version of the
618  // pointer.
619  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
620  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
621
622  findPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
623  if (ValueToAllocaMap.empty()) return;   // If there are values to promote...
624
625  Changed = true;
626  NumPromoted += PromotedValues.size();
627
628  // Emit a copy from the value into the alloca'd value in the loop preheader
629  TerminatorInst *LoopPredInst = Preheader->getTerminator();
630  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
631    // Load from the memory we are promoting...
632    LoadInst *LI = new LoadInst(PromotedValues[i].second,
633                                PromotedValues[i].second->getName()+".promoted",
634                                LoopPredInst);
635    // Store into the temporary alloca...
636    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
637  }
638
639  // Scan the basic blocks in the loop, replacing uses of our pointers with
640  // uses of the allocas in question.
641  //
642  const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
643  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
644         E = LoopBBs.end(); I != E; ++I) {
645    // Rewrite all loads and stores in the block of the pointer...
646    for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
647         II != E; ++II) {
648      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
649        std::map<Value*, AllocaInst*>::iterator
650          I = ValueToAllocaMap.find(L->getOperand(0));
651        if (I != ValueToAllocaMap.end())
652          L->setOperand(0, I->second);    // Rewrite load instruction...
653      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
654        std::map<Value*, AllocaInst*>::iterator
655          I = ValueToAllocaMap.find(S->getOperand(1));
656        if (I != ValueToAllocaMap.end())
657          S->setOperand(1, I->second);    // Rewrite store instruction...
658      }
659    }
660  }
661
662  // Now that the body of the loop uses the allocas instead of the original
663  // memory locations, insert code to copy the alloca value back into the
664  // original memory location on all exits from the loop.  Note that we only
665  // want to insert one copy of the code in each exit block, though the loop may
666  // exit to the same block more than once.
667  //
668  std::set<BasicBlock*> ProcessedBlocks;
669
670  const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
671  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
672    if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
673      // Copy all of the allocas into their memory locations...
674      BasicBlock::iterator BI = ExitBlocks[i]->begin();
675      while (isa<PHINode>(*BI))
676        ++BI;             // Skip over all of the phi nodes in the block...
677      Instruction *InsertPos = BI;
678      for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
679        // Load from the alloca...
680        LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
681        // Store into the memory we promoted...
682        new StoreInst(LI, PromotedValues[i].second, InsertPos);
683      }
684    }
685
686  // Now that we have done the deed, use the mem2reg functionality to promote
687  // all of the new allocas we just created into real SSA registers...
688  //
689  std::vector<AllocaInst*> PromotedAllocas;
690  PromotedAllocas.reserve(PromotedValues.size());
691  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
692    PromotedAllocas.push_back(PromotedValues[i].first);
693  PromoteMemToReg(PromotedAllocas, *DT, *DF, AA->getTargetData());
694}
695
696/// findPromotableValuesInLoop - Check the current loop for stores to definite
697/// pointers, which are not loaded and stored through may aliases.  If these are
698/// found, create an alloca for the value, add it to the PromotedValues list,
699/// and keep track of the mapping from value to alloca...
700///
701void LICM::findPromotableValuesInLoop(
702                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
703                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
704  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
705
706  // Loop over all of the alias sets in the tracker object...
707  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
708       I != E; ++I) {
709    AliasSet &AS = *I;
710    // We can promote this alias set if it has a store, if it is a "Must" alias
711    // set, if the pointer is loop invariant, if if we are not eliminating any
712    // volatile loads or stores.
713    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
714        !AS.isVolatile() && isLoopInvariant(AS.begin()->first)) {
715      assert(AS.begin() != AS.end() &&
716             "Must alias set should have at least one pointer element in it!");
717      Value *V = AS.begin()->first;
718
719      // Check that all of the pointers in the alias set have the same type.  We
720      // cannot (yet) promote a memory location that is loaded and stored in
721      // different sizes.
722      bool PointerOk = true;
723      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
724        if (V->getType() != I->first->getType()) {
725          PointerOk = false;
726          break;
727        }
728
729      if (PointerOk) {
730        const Type *Ty = cast<PointerType>(V->getType())->getElementType();
731        AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
732        PromotedValues.push_back(std::make_pair(AI, V));
733
734        for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
735          ValueToAllocaMap.insert(std::make_pair(I->first, AI));
736
737        DEBUG(std::cerr << "LICM: Promoting value: " << *V << "\n");
738      }
739    }
740  }
741}
742