LICM.cpp revision 1ff50b380e6f5549f5ddd9e6c390dcb00332e3e9
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#define DEBUG_TYPE "licm"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constants.h"
37#include "llvm/DerivedTypes.h"
38#include "llvm/Instructions.h"
39#include "llvm/LLVMContext.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Analysis/LoopInfo.h"
42#include "llvm/Analysis/LoopPass.h"
43#include "llvm/Analysis/AliasAnalysis.h"
44#include "llvm/Analysis/AliasSetTracker.h"
45#include "llvm/Analysis/Dominators.h"
46#include "llvm/Analysis/ScalarEvolution.h"
47#include "llvm/Transforms/Utils/PromoteMemToReg.h"
48#include "llvm/Support/CFG.h"
49#include "llvm/Support/Compiler.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/ADT/Statistic.h"
53#include <algorithm>
54using namespace llvm;
55
56STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
57STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
58STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
59STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
60STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
61
62static cl::opt<bool>
63DisablePromotion("disable-licm-promotion", cl::Hidden,
64                 cl::desc("Disable memory promotion in LICM pass"));
65
66// This feature is currently disabled by default because CodeGen is not yet
67// capable of rematerializing these constants in PIC mode, so it can lead to
68// degraded performance. Compile test/CodeGen/X86/remat-constant.ll with
69// -relocation-model=pic to see an example of this.
70static cl::opt<bool>
71EnableLICMConstantMotion("enable-licm-constant-variables", cl::Hidden,
72                         cl::desc("Enable hoisting/sinking of constant "
73                                  "global variables"));
74
75namespace {
76  struct VISIBILITY_HIDDEN LICM : public LoopPass {
77    static char ID; // Pass identification, replacement for typeid
78    LICM() : LoopPass(&ID) {}
79
80    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
81
82    /// This transformation requires natural loop information & requires that
83    /// loop preheaders be inserted into the CFG...
84    ///
85    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86      AU.setPreservesCFG();
87      AU.addRequiredID(LoopSimplifyID);
88      AU.addRequired<LoopInfo>();
89      AU.addRequired<DominatorTree>();
90      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
91      AU.addRequired<AliasAnalysis>();
92      AU.addPreserved<ScalarEvolution>();
93      AU.addPreserved<DominanceFrontier>();
94    }
95
96    bool doFinalization() {
97      // Free the values stored in the map
98      for (std::map<Loop *, AliasSetTracker *>::iterator
99             I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I)
100        delete I->second;
101
102      LoopToAliasMap.clear();
103      return false;
104    }
105
106  private:
107    // Various analyses that we use...
108    AliasAnalysis *AA;       // Current AliasAnalysis information
109    LoopInfo      *LI;       // Current LoopInfo
110    DominatorTree *DT;       // Dominator Tree for the current Loop...
111    DominanceFrontier *DF;   // Current Dominance Frontier
112
113    // State that is updated as we process loops
114    bool Changed;            // Set to true when we change anything.
115    BasicBlock *Preheader;   // The preheader block of the current loop...
116    Loop *CurLoop;           // The current loop we are working on...
117    AliasSetTracker *CurAST; // AliasSet information for the current loop...
118    std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
119
120    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
121    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
122
123    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
124    /// set.
125    void deleteAnalysisValue(Value *V, Loop *L);
126
127    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
128    /// dominated by the specified block, and that are in the current loop) in
129    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
130    /// visit uses before definitions, allowing us to sink a loop body in one
131    /// pass without iteration.
132    ///
133    void SinkRegion(DomTreeNode *N);
134
135    /// HoistRegion - Walk the specified region of the CFG (defined by all
136    /// blocks dominated by the specified block, and that are in the current
137    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
138    /// visit definitions before uses, allowing us to hoist a loop body in one
139    /// pass without iteration.
140    ///
141    void HoistRegion(DomTreeNode *N);
142
143    /// inSubLoop - Little predicate that returns true if the specified basic
144    /// block is in a subloop of the current one, not the current one itself.
145    ///
146    bool inSubLoop(BasicBlock *BB) {
147      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
148      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
149        if ((*I)->contains(BB))
150          return true;  // A subloop actually contains this block!
151      return false;
152    }
153
154    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
155    /// specified exit block of the loop is dominated by the specified block
156    /// that is in the body of the loop.  We use these constraints to
157    /// dramatically limit the amount of the dominator tree that needs to be
158    /// searched.
159    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
160                                           BasicBlock *BlockInLoop) const {
161      // If the block in the loop is the loop header, it must be dominated!
162      BasicBlock *LoopHeader = CurLoop->getHeader();
163      if (BlockInLoop == LoopHeader)
164        return true;
165
166      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
167      DomTreeNode *IDom            = DT->getNode(ExitBlock);
168
169      // Because the exit block is not in the loop, we know we have to get _at
170      // least_ its immediate dominator.
171      do {
172        // Get next Immediate Dominator.
173        IDom = IDom->getIDom();
174
175        // If we have got to the header of the loop, then the instructions block
176        // did not dominate the exit node, so we can't hoist it.
177        if (IDom->getBlock() == LoopHeader)
178          return false;
179
180      } while (IDom != BlockInLoopNode);
181
182      return true;
183    }
184
185    /// sink - When an instruction is found to only be used outside of the loop,
186    /// this function moves it to the exit blocks and patches up SSA form as
187    /// needed.
188    ///
189    void sink(Instruction &I);
190
191    /// hoist - When an instruction is found to only use loop invariant operands
192    /// that is safe to hoist, this instruction is called to do the dirty work.
193    ///
194    void hoist(Instruction &I);
195
196    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
197    /// is not a trapping instruction or if it is a trapping instruction and is
198    /// guaranteed to execute.
199    ///
200    bool isSafeToExecuteUnconditionally(Instruction &I);
201
202    /// pointerInvalidatedByLoop - Return true if the body of this loop may
203    /// store into the memory location pointed to by V.
204    ///
205    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
206      // Check to see if any of the basic blocks in CurLoop invalidate *V.
207      return CurAST->getAliasSetForPointer(V, Size).isMod();
208    }
209
210    bool canSinkOrHoistInst(Instruction &I);
211    bool isLoopInvariantInst(Instruction &I);
212    bool isNotUsedInLoop(Instruction &I);
213
214    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
215    /// to scalars as we can.
216    ///
217    void PromoteValuesInLoop();
218
219    /// FindPromotableValuesInLoop - Check the current loop for stores to
220    /// definite pointers, which are not loaded and stored through may aliases.
221    /// If these are found, create an alloca for the value, add it to the
222    /// PromotedValues list, and keep track of the mapping from value to
223    /// alloca...
224    ///
225    void FindPromotableValuesInLoop(
226                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
227                                    std::map<Value*, AllocaInst*> &Val2AlMap);
228  };
229}
230
231char LICM::ID = 0;
232static RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
233
234Pass *llvm::createLICMPass() { return new LICM(); }
235
236/// Hoist expressions out of the specified loop. Note, alias info for inner
237/// loop is not preserved so it is not a good idea to run LICM multiple
238/// times on one loop.
239///
240bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
241  Changed = false;
242
243  // Get our Loop and Alias Analysis information...
244  LI = &getAnalysis<LoopInfo>();
245  AA = &getAnalysis<AliasAnalysis>();
246  DF = &getAnalysis<DominanceFrontier>();
247  DT = &getAnalysis<DominatorTree>();
248
249  CurAST = new AliasSetTracker(*AA);
250  // Collect Alias info from subloops
251  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
252       LoopItr != LoopItrE; ++LoopItr) {
253    Loop *InnerL = *LoopItr;
254    AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
255    assert (InnerAST && "Where is my AST?");
256
257    // What if InnerLoop was modified by other passes ?
258    CurAST->add(*InnerAST);
259  }
260
261  CurLoop = L;
262
263  // Get the preheader block to move instructions into...
264  Preheader = L->getLoopPreheader();
265  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
266
267  // Loop over the body of this loop, looking for calls, invokes, and stores.
268  // Because subloops have already been incorporated into AST, we skip blocks in
269  // subloops.
270  //
271  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
272       I != E; ++I) {
273    BasicBlock *BB = *I;
274    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops...
275      CurAST->add(*BB);                 // Incorporate the specified basic block
276  }
277
278  // We want to visit all of the instructions in this loop... that are not parts
279  // of our subloops (they have already had their invariants hoisted out of
280  // their loop, into this loop, so there is no need to process the BODIES of
281  // the subloops).
282  //
283  // Traverse the body of the loop in depth first order on the dominator tree so
284  // that we are guaranteed to see definitions before we see uses.  This allows
285  // us to sink instructions in one pass, without iteration.  After sinking
286  // instructions, we perform another pass to hoist them out of the loop.
287  //
288  SinkRegion(DT->getNode(L->getHeader()));
289  HoistRegion(DT->getNode(L->getHeader()));
290
291  // Now that all loop invariants have been removed from the loop, promote any
292  // memory references to scalars that we can...
293  if (!DisablePromotion)
294    PromoteValuesInLoop();
295
296  // Clear out loops state information for the next iteration
297  CurLoop = 0;
298  Preheader = 0;
299
300  LoopToAliasMap[L] = CurAST;
301  return Changed;
302}
303
304/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
305/// dominated by the specified block, and that are in the current loop) in
306/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
307/// uses before definitions, allowing us to sink a loop body in one pass without
308/// iteration.
309///
310void LICM::SinkRegion(DomTreeNode *N) {
311  assert(N != 0 && "Null dominator tree node?");
312  BasicBlock *BB = N->getBlock();
313
314  // If this subregion is not in the top level loop at all, exit.
315  if (!CurLoop->contains(BB)) return;
316
317  // We are processing blocks in reverse dfo, so process children first...
318  const std::vector<DomTreeNode*> &Children = N->getChildren();
319  for (unsigned i = 0, e = Children.size(); i != e; ++i)
320    SinkRegion(Children[i]);
321
322  // Only need to process the contents of this block if it is not part of a
323  // subloop (which would already have been processed).
324  if (inSubLoop(BB)) return;
325
326  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
327    Instruction &I = *--II;
328
329    // Check to see if we can sink this instruction to the exit blocks
330    // of the loop.  We can do this if the all users of the instruction are
331    // outside of the loop.  In this case, it doesn't even matter if the
332    // operands of the instruction are loop invariant.
333    //
334    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
335      ++II;
336      sink(I);
337    }
338  }
339}
340
341
342/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
343/// dominated by the specified block, and that are in the current loop) in depth
344/// first order w.r.t the DominatorTree.  This allows us to visit definitions
345/// before uses, allowing us to hoist a loop body in one pass without iteration.
346///
347void LICM::HoistRegion(DomTreeNode *N) {
348  assert(N != 0 && "Null dominator tree node?");
349  BasicBlock *BB = N->getBlock();
350
351  // If this subregion is not in the top level loop at all, exit.
352  if (!CurLoop->contains(BB)) return;
353
354  // Only need to process the contents of this block if it is not part of a
355  // subloop (which would already have been processed).
356  if (!inSubLoop(BB))
357    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
358      Instruction &I = *II++;
359
360      // Try hoisting the instruction out to the preheader.  We can only do this
361      // if all of the operands of the instruction are loop invariant and if it
362      // is safe to hoist the instruction.
363      //
364      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
365          isSafeToExecuteUnconditionally(I))
366        hoist(I);
367      }
368
369  const std::vector<DomTreeNode*> &Children = N->getChildren();
370  for (unsigned i = 0, e = Children.size(); i != e; ++i)
371    HoistRegion(Children[i]);
372}
373
374/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
375/// instruction.
376///
377bool LICM::canSinkOrHoistInst(Instruction &I) {
378  // Loads have extra constraints we have to verify before we can hoist them.
379  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
380    if (LI->isVolatile())
381      return false;        // Don't hoist volatile loads!
382
383    // Loads from constant memory are always safe to move, even if they end up
384    // in the same alias set as something that ends up being modified.
385    if (EnableLICMConstantMotion &&
386        AA->pointsToConstantMemory(LI->getOperand(0)))
387      return true;
388
389    // Don't hoist loads which have may-aliased stores in loop.
390    unsigned Size = 0;
391    if (LI->getType()->isSized())
392      Size = AA->getTargetData().getTypeStoreSize(LI->getType());
393    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
394  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
395    // Handle obvious cases efficiently.
396    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
397    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
398      return true;
399    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
400      // If this call only reads from memory and there are no writes to memory
401      // in the loop, we can hoist or sink the call as appropriate.
402      bool FoundMod = false;
403      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
404           I != E; ++I) {
405        AliasSet &AS = *I;
406        if (!AS.isForwardingAliasSet() && AS.isMod()) {
407          FoundMod = true;
408          break;
409        }
410      }
411      if (!FoundMod) return true;
412    }
413
414    // FIXME: This should use mod/ref information to see if we can hoist or sink
415    // the call.
416
417    return false;
418  }
419
420  // Otherwise these instructions are hoistable/sinkable
421  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
422         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
423         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
424         isa<ShuffleVectorInst>(I);
425}
426
427/// isNotUsedInLoop - Return true if the only users of this instruction are
428/// outside of the loop.  If this is true, we can sink the instruction to the
429/// exit blocks of the loop.
430///
431bool LICM::isNotUsedInLoop(Instruction &I) {
432  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
433    Instruction *User = cast<Instruction>(*UI);
434    if (PHINode *PN = dyn_cast<PHINode>(User)) {
435      // PHI node uses occur in predecessor blocks!
436      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
437        if (PN->getIncomingValue(i) == &I)
438          if (CurLoop->contains(PN->getIncomingBlock(i)))
439            return false;
440    } else if (CurLoop->contains(User->getParent())) {
441      return false;
442    }
443  }
444  return true;
445}
446
447
448/// isLoopInvariantInst - Return true if all operands of this instruction are
449/// loop invariant.  We also filter out non-hoistable instructions here just for
450/// efficiency.
451///
452bool LICM::isLoopInvariantInst(Instruction &I) {
453  // The instruction is loop invariant if all of its operands are loop-invariant
454  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
455    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
456      return false;
457
458  // If we got this far, the instruction is loop invariant!
459  return true;
460}
461
462/// sink - When an instruction is found to only be used outside of the loop,
463/// this function moves it to the exit blocks and patches up SSA form as needed.
464/// This method is guaranteed to remove the original instruction from its
465/// position, and may either delete it or move it to outside of the loop.
466///
467void LICM::sink(Instruction &I) {
468  DOUT << "LICM sinking instruction: " << I;
469
470  SmallVector<BasicBlock*, 8> ExitBlocks;
471  CurLoop->getExitBlocks(ExitBlocks);
472
473  if (isa<LoadInst>(I)) ++NumMovedLoads;
474  else if (isa<CallInst>(I)) ++NumMovedCalls;
475  ++NumSunk;
476  Changed = true;
477
478  // The case where there is only a single exit node of this loop is common
479  // enough that we handle it as a special (more efficient) case.  It is more
480  // efficient to handle because there are no PHI nodes that need to be placed.
481  if (ExitBlocks.size() == 1) {
482    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
483      // Instruction is not used, just delete it.
484      CurAST->deleteValue(&I);
485      if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
486        I.replaceAllUsesWith(Context->getUndef(I.getType()));
487      I.eraseFromParent();
488    } else {
489      // Move the instruction to the start of the exit block, after any PHI
490      // nodes in it.
491      I.removeFromParent();
492
493      BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
494      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
495    }
496  } else if (ExitBlocks.empty()) {
497    // The instruction is actually dead if there ARE NO exit blocks.
498    CurAST->deleteValue(&I);
499    if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
500      I.replaceAllUsesWith(Context->getUndef(I.getType()));
501    I.eraseFromParent();
502  } else {
503    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
504    // do all of the hard work of inserting PHI nodes as necessary.  We convert
505    // the value into a stack object to get it to do this.
506
507    // Firstly, we create a stack object to hold the value...
508    AllocaInst *AI = 0;
509
510    if (I.getType() != Type::VoidTy) {
511      AI = new AllocaInst(I.getType(), 0, I.getName(),
512                          I.getParent()->getParent()->getEntryBlock().begin());
513      CurAST->add(AI);
514    }
515
516    // Secondly, insert load instructions for each use of the instruction
517    // outside of the loop.
518    while (!I.use_empty()) {
519      Instruction *U = cast<Instruction>(I.use_back());
520
521      // If the user is a PHI Node, we actually have to insert load instructions
522      // in all predecessor blocks, not in the PHI block itself!
523      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
524        // Only insert into each predecessor once, so that we don't have
525        // different incoming values from the same block!
526        std::map<BasicBlock*, Value*> InsertedBlocks;
527        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
528          if (UPN->getIncomingValue(i) == &I) {
529            BasicBlock *Pred = UPN->getIncomingBlock(i);
530            Value *&PredVal = InsertedBlocks[Pred];
531            if (!PredVal) {
532              // Insert a new load instruction right before the terminator in
533              // the predecessor block.
534              PredVal = new LoadInst(AI, "", Pred->getTerminator());
535              CurAST->add(cast<LoadInst>(PredVal));
536            }
537
538            UPN->setIncomingValue(i, PredVal);
539          }
540
541      } else {
542        LoadInst *L = new LoadInst(AI, "", U);
543        U->replaceUsesOfWith(&I, L);
544        CurAST->add(L);
545      }
546    }
547
548    // Thirdly, insert a copy of the instruction in each exit block of the loop
549    // that is dominated by the instruction, storing the result into the memory
550    // location.  Be careful not to insert the instruction into any particular
551    // basic block more than once.
552    std::set<BasicBlock*> InsertedBlocks;
553    BasicBlock *InstOrigBB = I.getParent();
554
555    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
556      BasicBlock *ExitBlock = ExitBlocks[i];
557
558      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
559        // If we haven't already processed this exit block, do so now.
560        if (InsertedBlocks.insert(ExitBlock).second) {
561          // Insert the code after the last PHI node...
562          BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
563
564          // If this is the first exit block processed, just move the original
565          // instruction, otherwise clone the original instruction and insert
566          // the copy.
567          Instruction *New;
568          if (InsertedBlocks.size() == 1) {
569            I.removeFromParent();
570            ExitBlock->getInstList().insert(InsertPt, &I);
571            New = &I;
572          } else {
573            New = I.clone();
574            CurAST->copyValue(&I, New);
575            if (!I.getName().empty())
576              New->setName(I.getName()+".le");
577            ExitBlock->getInstList().insert(InsertPt, New);
578          }
579
580          // Now that we have inserted the instruction, store it into the alloca
581          if (AI) new StoreInst(New, AI, InsertPt);
582        }
583      }
584    }
585
586    // If the instruction doesn't dominate any exit blocks, it must be dead.
587    if (InsertedBlocks.empty()) {
588      CurAST->deleteValue(&I);
589      I.eraseFromParent();
590    }
591
592    // Finally, promote the fine value to SSA form.
593    if (AI) {
594      std::vector<AllocaInst*> Allocas;
595      Allocas.push_back(AI);
596      PromoteMemToReg(Allocas, *DT, *DF, CurAST);
597    }
598  }
599}
600
601/// hoist - When an instruction is found to only use loop invariant operands
602/// that is safe to hoist, this instruction is called to do the dirty work.
603///
604void LICM::hoist(Instruction &I) {
605  DOUT << "LICM hoisting to " << Preheader->getName() << ": " << I;
606
607  // Remove the instruction from its current basic block... but don't delete the
608  // instruction.
609  I.removeFromParent();
610
611  // Insert the new node in Preheader, before the terminator.
612  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
613
614  if (isa<LoadInst>(I)) ++NumMovedLoads;
615  else if (isa<CallInst>(I)) ++NumMovedCalls;
616  ++NumHoisted;
617  Changed = true;
618}
619
620/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
621/// not a trapping instruction or if it is a trapping instruction and is
622/// guaranteed to execute.
623///
624bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
625  // If it is not a trapping instruction, it is always safe to hoist.
626  if (!Inst.isTrapping()) return true;
627
628  // Otherwise we have to check to make sure that the instruction dominates all
629  // of the exit blocks.  If it doesn't, then there is a path out of the loop
630  // which does not execute this instruction, so we can't hoist it.
631
632  // If the instruction is in the header block for the loop (which is very
633  // common), it is always guaranteed to dominate the exit blocks.  Since this
634  // is a common case, and can save some work, check it now.
635  if (Inst.getParent() == CurLoop->getHeader())
636    return true;
637
638  // It's always safe to load from a global or alloca.
639  if (isa<LoadInst>(Inst))
640    if (isa<AllocationInst>(Inst.getOperand(0)) ||
641        isa<GlobalVariable>(Inst.getOperand(0)))
642      return true;
643
644  // Get the exit blocks for the current loop.
645  SmallVector<BasicBlock*, 8> ExitBlocks;
646  CurLoop->getExitBlocks(ExitBlocks);
647
648  // For each exit block, get the DT node and walk up the DT until the
649  // instruction's basic block is found or we exit the loop.
650  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
651    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
652      return false;
653
654  return true;
655}
656
657
658/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
659/// stores out of the loop and moving loads to before the loop.  We do this by
660/// looping over the stores in the loop, looking for stores to Must pointers
661/// which are loop invariant.  We promote these memory locations to use allocas
662/// instead.  These allocas can easily be raised to register values by the
663/// PromoteMem2Reg functionality.
664///
665void LICM::PromoteValuesInLoop() {
666  // PromotedValues - List of values that are promoted out of the loop.  Each
667  // value has an alloca instruction for it, and a canonical version of the
668  // pointer.
669  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
670  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
671
672  FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
673  if (ValueToAllocaMap.empty()) return;   // If there are values to promote.
674
675  Changed = true;
676  NumPromoted += PromotedValues.size();
677
678  std::vector<Value*> PointerValueNumbers;
679
680  // Emit a copy from the value into the alloca'd value in the loop preheader
681  TerminatorInst *LoopPredInst = Preheader->getTerminator();
682  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
683    Value *Ptr = PromotedValues[i].second;
684
685    // If we are promoting a pointer value, update alias information for the
686    // inserted load.
687    Value *LoadValue = 0;
688    if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
689      // Locate a load or store through the pointer, and assign the same value
690      // to LI as we are loading or storing.  Since we know that the value is
691      // stored in this loop, this will always succeed.
692      for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
693           UI != E; ++UI)
694        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
695          LoadValue = LI;
696          break;
697        } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
698          if (SI->getOperand(1) == Ptr) {
699            LoadValue = SI->getOperand(0);
700            break;
701          }
702        }
703      assert(LoadValue && "No store through the pointer found!");
704      PointerValueNumbers.push_back(LoadValue);  // Remember this for later.
705    }
706
707    // Load from the memory we are promoting.
708    LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
709
710    if (LoadValue) CurAST->copyValue(LoadValue, LI);
711
712    // Store into the temporary alloca.
713    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
714  }
715
716  // Scan the basic blocks in the loop, replacing uses of our pointers with
717  // uses of the allocas in question.
718  //
719  for (Loop::block_iterator I = CurLoop->block_begin(),
720         E = CurLoop->block_end(); I != E; ++I) {
721    BasicBlock *BB = *I;
722    // Rewrite all loads and stores in the block of the pointer...
723    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
724      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
725        std::map<Value*, AllocaInst*>::iterator
726          I = ValueToAllocaMap.find(L->getOperand(0));
727        if (I != ValueToAllocaMap.end())
728          L->setOperand(0, I->second);    // Rewrite load instruction...
729      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
730        std::map<Value*, AllocaInst*>::iterator
731          I = ValueToAllocaMap.find(S->getOperand(1));
732        if (I != ValueToAllocaMap.end())
733          S->setOperand(1, I->second);    // Rewrite store instruction...
734      }
735    }
736  }
737
738  // Now that the body of the loop uses the allocas instead of the original
739  // memory locations, insert code to copy the alloca value back into the
740  // original memory location on all exits from the loop.  Note that we only
741  // want to insert one copy of the code in each exit block, though the loop may
742  // exit to the same block more than once.
743  //
744  SmallPtrSet<BasicBlock*, 16> ProcessedBlocks;
745
746  SmallVector<BasicBlock*, 8> ExitBlocks;
747  CurLoop->getExitBlocks(ExitBlocks);
748  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
749    if (!ProcessedBlocks.insert(ExitBlocks[i]))
750      continue;
751
752    // Copy all of the allocas into their memory locations.
753    BasicBlock::iterator BI = ExitBlocks[i]->getFirstNonPHI();
754    Instruction *InsertPos = BI;
755    unsigned PVN = 0;
756    for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
757      // Load from the alloca.
758      LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
759
760      // If this is a pointer type, update alias info appropriately.
761      if (isa<PointerType>(LI->getType()))
762        CurAST->copyValue(PointerValueNumbers[PVN++], LI);
763
764      // Store into the memory we promoted.
765      new StoreInst(LI, PromotedValues[i].second, InsertPos);
766    }
767  }
768
769  // Now that we have done the deed, use the mem2reg functionality to promote
770  // all of the new allocas we just created into real SSA registers.
771  //
772  std::vector<AllocaInst*> PromotedAllocas;
773  PromotedAllocas.reserve(PromotedValues.size());
774  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
775    PromotedAllocas.push_back(PromotedValues[i].first);
776  PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
777}
778
779/// FindPromotableValuesInLoop - Check the current loop for stores to definite
780/// pointers, which are not loaded and stored through may aliases and are safe
781/// for promotion.  If these are found, create an alloca for the value, add it
782/// to the PromotedValues list, and keep track of the mapping from value to
783/// alloca.
784void LICM::FindPromotableValuesInLoop(
785                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
786                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
787  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
788
789  // Loop over all of the alias sets in the tracker object.
790  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
791       I != E; ++I) {
792    AliasSet &AS = *I;
793    // We can promote this alias set if it has a store, if it is a "Must" alias
794    // set, if the pointer is loop invariant, and if we are not eliminating any
795    // volatile loads or stores.
796    if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
797        AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
798      continue;
799
800    assert(!AS.empty() &&
801           "Must alias set should have at least one pointer element in it!");
802    Value *V = AS.begin()->getValue();
803
804    // Check that all of the pointers in the alias set have the same type.  We
805    // cannot (yet) promote a memory location that is loaded and stored in
806    // different sizes.
807    {
808      bool PointerOk = true;
809      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
810        if (V->getType() != I->getValue()->getType()) {
811          PointerOk = false;
812          break;
813        }
814      if (!PointerOk)
815        continue;
816    }
817
818    // It isn't safe to promote a load/store from the loop if the load/store is
819    // conditional.  For example, turning:
820    //
821    //    for () { if (c) *P += 1; }
822    //
823    // into:
824    //
825    //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
826    //
827    // is not safe, because *P may only be valid to access if 'c' is true.
828    //
829    // It is safe to promote P if all uses are direct load/stores and if at
830    // least one is guaranteed to be executed.
831    bool GuaranteedToExecute = false;
832    bool InvalidInst = false;
833    for (Value::use_iterator UI = V->use_begin(), UE = V->use_end();
834         UI != UE; ++UI) {
835      // Ignore instructions not in this loop.
836      Instruction *Use = dyn_cast<Instruction>(*UI);
837      if (!Use || !CurLoop->contains(Use->getParent()))
838        continue;
839
840      if (!isa<LoadInst>(Use) && !isa<StoreInst>(Use)) {
841        InvalidInst = true;
842        break;
843      }
844
845      if (!GuaranteedToExecute)
846        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
847    }
848
849    // If there is an non-load/store instruction in the loop, we can't promote
850    // it.  If there isn't a guaranteed-to-execute instruction, we can't
851    // promote.
852    if (InvalidInst || !GuaranteedToExecute)
853      continue;
854
855    const Type *Ty = cast<PointerType>(V->getType())->getElementType();
856    AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
857    PromotedValues.push_back(std::make_pair(AI, V));
858
859    // Update the AST and alias analysis.
860    CurAST->copyValue(V, AI);
861
862    for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
863      ValueToAllocaMap.insert(std::make_pair(I->getValue(), AI));
864
865    DOUT << "LICM: Promoting value: " << *V << "\n";
866  }
867}
868
869/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
870void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
871  AliasSetTracker *AST = LoopToAliasMap[L];
872  if (!AST)
873    return;
874
875  AST->copyValue(From, To);
876}
877
878/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
879/// set.
880void LICM::deleteAnalysisValue(Value *V, Loop *L) {
881  AliasSetTracker *AST = LoopToAliasMap[L];
882  if (!AST)
883    return;
884
885  AST->deleteValue(V);
886}
887