LICM.cpp revision 44e2bd31f13da68bca451e4210560db3644b8208
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#define DEBUG_TYPE "licm"
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Constants.h"
36#include "llvm/DerivedTypes.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Instructions.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/LoopPass.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Transforms/Utils/SSAUpdater.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
56STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
57STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
58STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
59STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
60
61static cl::opt<bool>
62DisablePromotion("disable-licm-promotion", cl::Hidden,
63                 cl::desc("Disable memory promotion in LICM pass"));
64
65namespace {
66  struct LICM : public LoopPass {
67    static char ID; // Pass identification, replacement for typeid
68    LICM() : LoopPass(ID) {}
69
70    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
71
72    /// This transformation requires natural loop information & requires that
73    /// loop preheaders be inserted into the CFG...
74    ///
75    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76      AU.setPreservesCFG();
77      AU.addRequired<DominatorTree>();
78      AU.addRequired<LoopInfo>();
79      AU.addRequiredID(LoopSimplifyID);
80      AU.addRequired<AliasAnalysis>();
81      AU.addPreserved<ScalarEvolution>();
82      AU.addPreserved<DominanceFrontier>();
83      AU.addPreservedID(LoopSimplifyID);
84    }
85
86    bool doFinalization() {
87      // Free the values stored in the map
88      for (std::map<Loop *, AliasSetTracker *>::iterator
89             I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I)
90        delete I->second;
91
92      LoopToAliasMap.clear();
93      return false;
94    }
95
96  private:
97    // Various analyses that we use...
98    AliasAnalysis *AA;       // Current AliasAnalysis information
99    LoopInfo      *LI;       // Current LoopInfo
100    DominatorTree *DT;       // Dominator Tree for the current Loop.
101
102    // State that is updated as we process loops
103    bool Changed;            // Set to true when we change anything.
104    BasicBlock *Preheader;   // The preheader block of the current loop...
105    Loop *CurLoop;           // The current loop we are working on...
106    AliasSetTracker *CurAST; // AliasSet information for the current loop...
107    std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
108
109    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
110    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
111
112    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
113    /// set.
114    void deleteAnalysisValue(Value *V, Loop *L);
115
116    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
117    /// dominated by the specified block, and that are in the current loop) in
118    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
119    /// visit uses before definitions, allowing us to sink a loop body in one
120    /// pass without iteration.
121    ///
122    void SinkRegion(DomTreeNode *N);
123
124    /// HoistRegion - Walk the specified region of the CFG (defined by all
125    /// blocks dominated by the specified block, and that are in the current
126    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
127    /// visit definitions before uses, allowing us to hoist a loop body in one
128    /// pass without iteration.
129    ///
130    void HoistRegion(DomTreeNode *N);
131
132    /// inSubLoop - Little predicate that returns true if the specified basic
133    /// block is in a subloop of the current one, not the current one itself.
134    ///
135    bool inSubLoop(BasicBlock *BB) {
136      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
137      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
138        if ((*I)->contains(BB))
139          return true;  // A subloop actually contains this block!
140      return false;
141    }
142
143    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
144    /// specified exit block of the loop is dominated by the specified block
145    /// that is in the body of the loop.  We use these constraints to
146    /// dramatically limit the amount of the dominator tree that needs to be
147    /// searched.
148    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
149                                           BasicBlock *BlockInLoop) const {
150      // If the block in the loop is the loop header, it must be dominated!
151      BasicBlock *LoopHeader = CurLoop->getHeader();
152      if (BlockInLoop == LoopHeader)
153        return true;
154
155      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
156      DomTreeNode *IDom            = DT->getNode(ExitBlock);
157
158      // Because the exit block is not in the loop, we know we have to get _at
159      // least_ its immediate dominator.
160      IDom = IDom->getIDom();
161
162      while (IDom && IDom != BlockInLoopNode) {
163        // If we have got to the header of the loop, then the instructions block
164        // did not dominate the exit node, so we can't hoist it.
165        if (IDom->getBlock() == LoopHeader)
166          return false;
167
168        // Get next Immediate Dominator.
169        IDom = IDom->getIDom();
170      };
171
172      return true;
173    }
174
175    /// sink - When an instruction is found to only be used outside of the loop,
176    /// this function moves it to the exit blocks and patches up SSA form as
177    /// needed.
178    ///
179    void sink(Instruction &I);
180
181    /// hoist - When an instruction is found to only use loop invariant operands
182    /// that is safe to hoist, this instruction is called to do the dirty work.
183    ///
184    void hoist(Instruction &I);
185
186    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
187    /// is not a trapping instruction or if it is a trapping instruction and is
188    /// guaranteed to execute.
189    ///
190    bool isSafeToExecuteUnconditionally(Instruction &I);
191
192    /// pointerInvalidatedByLoop - Return true if the body of this loop may
193    /// store into the memory location pointed to by V.
194    ///
195    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
196      // Check to see if any of the basic blocks in CurLoop invalidate *V.
197      return CurAST->getAliasSetForPointer(V, Size).isMod();
198    }
199
200    bool canSinkOrHoistInst(Instruction &I);
201    bool isLoopInvariantInst(Instruction &I);
202    bool isNotUsedInLoop(Instruction &I);
203
204    void PromoteAliasSet(AliasSet &AS);
205  };
206}
207
208char LICM::ID = 0;
209INITIALIZE_PASS(LICM, "licm", "Loop Invariant Code Motion", false, false);
210
211Pass *llvm::createLICMPass() { return new LICM(); }
212
213/// Hoist expressions out of the specified loop. Note, alias info for inner
214/// loop is not preserved so it is not a good idea to run LICM multiple
215/// times on one loop.
216///
217bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
218  Changed = false;
219
220  // Get our Loop and Alias Analysis information...
221  LI = &getAnalysis<LoopInfo>();
222  AA = &getAnalysis<AliasAnalysis>();
223  DT = &getAnalysis<DominatorTree>();
224
225  CurAST = new AliasSetTracker(*AA);
226  // Collect Alias info from subloops
227  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
228       LoopItr != LoopItrE; ++LoopItr) {
229    Loop *InnerL = *LoopItr;
230    AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
231    assert (InnerAST && "Where is my AST?");
232
233    // What if InnerLoop was modified by other passes ?
234    CurAST->add(*InnerAST);
235  }
236
237  CurLoop = L;
238
239  // Get the preheader block to move instructions into...
240  Preheader = L->getLoopPreheader();
241
242  // Loop over the body of this loop, looking for calls, invokes, and stores.
243  // Because subloops have already been incorporated into AST, we skip blocks in
244  // subloops.
245  //
246  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
247       I != E; ++I) {
248    BasicBlock *BB = *I;
249    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops...
250      CurAST->add(*BB);                 // Incorporate the specified basic block
251  }
252
253  // We want to visit all of the instructions in this loop... that are not parts
254  // of our subloops (they have already had their invariants hoisted out of
255  // their loop, into this loop, so there is no need to process the BODIES of
256  // the subloops).
257  //
258  // Traverse the body of the loop in depth first order on the dominator tree so
259  // that we are guaranteed to see definitions before we see uses.  This allows
260  // us to sink instructions in one pass, without iteration.  After sinking
261  // instructions, we perform another pass to hoist them out of the loop.
262  //
263  if (L->hasDedicatedExits())
264    SinkRegion(DT->getNode(L->getHeader()));
265  if (Preheader)
266    HoistRegion(DT->getNode(L->getHeader()));
267
268  // Now that all loop invariants have been removed from the loop, promote any
269  // memory references to scalars that we can.
270  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
271    // Loop over all of the alias sets in the tracker object.
272    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
273         I != E; ++I)
274      PromoteAliasSet(*I);
275  }
276
277  // Clear out loops state information for the next iteration
278  CurLoop = 0;
279  Preheader = 0;
280
281  LoopToAliasMap[L] = CurAST;
282  return Changed;
283}
284
285/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
286/// dominated by the specified block, and that are in the current loop) in
287/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
288/// uses before definitions, allowing us to sink a loop body in one pass without
289/// iteration.
290///
291void LICM::SinkRegion(DomTreeNode *N) {
292  assert(N != 0 && "Null dominator tree node?");
293  BasicBlock *BB = N->getBlock();
294
295  // If this subregion is not in the top level loop at all, exit.
296  if (!CurLoop->contains(BB)) return;
297
298  // We are processing blocks in reverse dfo, so process children first...
299  const std::vector<DomTreeNode*> &Children = N->getChildren();
300  for (unsigned i = 0, e = Children.size(); i != e; ++i)
301    SinkRegion(Children[i]);
302
303  // Only need to process the contents of this block if it is not part of a
304  // subloop (which would already have been processed).
305  if (inSubLoop(BB)) return;
306
307  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
308    Instruction &I = *--II;
309
310    // Check to see if we can sink this instruction to the exit blocks
311    // of the loop.  We can do this if the all users of the instruction are
312    // outside of the loop.  In this case, it doesn't even matter if the
313    // operands of the instruction are loop invariant.
314    //
315    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
316      ++II;
317      sink(I);
318    }
319  }
320}
321
322/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
323/// dominated by the specified block, and that are in the current loop) in depth
324/// first order w.r.t the DominatorTree.  This allows us to visit definitions
325/// before uses, allowing us to hoist a loop body in one pass without iteration.
326///
327void LICM::HoistRegion(DomTreeNode *N) {
328  assert(N != 0 && "Null dominator tree node?");
329  BasicBlock *BB = N->getBlock();
330
331  // If this subregion is not in the top level loop at all, exit.
332  if (!CurLoop->contains(BB)) return;
333
334  // Only need to process the contents of this block if it is not part of a
335  // subloop (which would already have been processed).
336  if (!inSubLoop(BB))
337    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
338      Instruction &I = *II++;
339
340      // Try hoisting the instruction out to the preheader.  We can only do this
341      // if all of the operands of the instruction are loop invariant and if it
342      // is safe to hoist the instruction.
343      //
344      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
345          isSafeToExecuteUnconditionally(I))
346        hoist(I);
347      }
348
349  const std::vector<DomTreeNode*> &Children = N->getChildren();
350  for (unsigned i = 0, e = Children.size(); i != e; ++i)
351    HoistRegion(Children[i]);
352}
353
354/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
355/// instruction.
356///
357bool LICM::canSinkOrHoistInst(Instruction &I) {
358  // Loads have extra constraints we have to verify before we can hoist them.
359  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
360    if (LI->isVolatile())
361      return false;        // Don't hoist volatile loads!
362
363    // Loads from constant memory are always safe to move, even if they end up
364    // in the same alias set as something that ends up being modified.
365    if (AA->pointsToConstantMemory(LI->getOperand(0)))
366      return true;
367
368    // Don't hoist loads which have may-aliased stores in loop.
369    unsigned Size = 0;
370    if (LI->getType()->isSized())
371      Size = AA->getTypeStoreSize(LI->getType());
372    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
373  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
374    // Handle obvious cases efficiently.
375    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
376    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
377      return true;
378    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
379      // If this call only reads from memory and there are no writes to memory
380      // in the loop, we can hoist or sink the call as appropriate.
381      bool FoundMod = false;
382      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
383           I != E; ++I) {
384        AliasSet &AS = *I;
385        if (!AS.isForwardingAliasSet() && AS.isMod()) {
386          FoundMod = true;
387          break;
388        }
389      }
390      if (!FoundMod) return true;
391    }
392
393    // FIXME: This should use mod/ref information to see if we can hoist or sink
394    // the call.
395
396    return false;
397  }
398
399  // Otherwise these instructions are hoistable/sinkable
400  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
401         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
402         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
403         isa<ShuffleVectorInst>(I);
404}
405
406/// isNotUsedInLoop - Return true if the only users of this instruction are
407/// outside of the loop.  If this is true, we can sink the instruction to the
408/// exit blocks of the loop.
409///
410bool LICM::isNotUsedInLoop(Instruction &I) {
411  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
412    Instruction *User = cast<Instruction>(*UI);
413    if (PHINode *PN = dyn_cast<PHINode>(User)) {
414      // PHI node uses occur in predecessor blocks!
415      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
416        if (PN->getIncomingValue(i) == &I)
417          if (CurLoop->contains(PN->getIncomingBlock(i)))
418            return false;
419    } else if (CurLoop->contains(User)) {
420      return false;
421    }
422  }
423  return true;
424}
425
426
427/// isLoopInvariantInst - Return true if all operands of this instruction are
428/// loop invariant.  We also filter out non-hoistable instructions here just for
429/// efficiency.
430///
431bool LICM::isLoopInvariantInst(Instruction &I) {
432  // The instruction is loop invariant if all of its operands are loop-invariant
433  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
434    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
435      return false;
436
437  // If we got this far, the instruction is loop invariant!
438  return true;
439}
440
441/// sink - When an instruction is found to only be used outside of the loop,
442/// this function moves it to the exit blocks and patches up SSA form as needed.
443/// This method is guaranteed to remove the original instruction from its
444/// position, and may either delete it or move it to outside of the loop.
445///
446void LICM::sink(Instruction &I) {
447  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
448
449  SmallVector<BasicBlock*, 8> ExitBlocks;
450  CurLoop->getUniqueExitBlocks(ExitBlocks);
451
452  if (isa<LoadInst>(I)) ++NumMovedLoads;
453  else if (isa<CallInst>(I)) ++NumMovedCalls;
454  ++NumSunk;
455  Changed = true;
456
457  // The case where there is only a single exit node of this loop is common
458  // enough that we handle it as a special (more efficient) case.  It is more
459  // efficient to handle because there are no PHI nodes that need to be placed.
460  if (ExitBlocks.size() == 1) {
461    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
462      // Instruction is not used, just delete it.
463      CurAST->deleteValue(&I);
464      // If I has users in unreachable blocks, eliminate.
465      // If I is not void type then replaceAllUsesWith undef.
466      // This allows ValueHandlers and custom metadata to adjust itself.
467      if (!I.use_empty())
468        I.replaceAllUsesWith(UndefValue::get(I.getType()));
469      I.eraseFromParent();
470    } else {
471      // Move the instruction to the start of the exit block, after any PHI
472      // nodes in it.
473      I.removeFromParent();
474      BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
475      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
476    }
477    return;
478  }
479
480  if (ExitBlocks.empty()) {
481    // The instruction is actually dead if there ARE NO exit blocks.
482    CurAST->deleteValue(&I);
483    // If I has users in unreachable blocks, eliminate.
484    // If I is not void type then replaceAllUsesWith undef.
485    // This allows ValueHandlers and custom metadata to adjust itself.
486    if (!I.use_empty())
487      I.replaceAllUsesWith(UndefValue::get(I.getType()));
488    I.eraseFromParent();
489    return;
490  }
491
492  // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
493  // hard work of inserting PHI nodes as necessary.
494  SmallVector<PHINode*, 8> NewPHIs;
495  SSAUpdater SSA(&NewPHIs);
496
497  if (!I.use_empty())
498    SSA.Initialize(&I);
499
500  // Insert a copy of the instruction in each exit block of the loop that is
501  // dominated by the instruction.  Each exit block is known to only be in the
502  // ExitBlocks list once.
503  BasicBlock *InstOrigBB = I.getParent();
504  unsigned NumInserted = 0;
505
506  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
507    BasicBlock *ExitBlock = ExitBlocks[i];
508
509    if (!isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB))
510      continue;
511
512    // Insert the code after the last PHI node.
513    BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
514
515    // If this is the first exit block processed, just move the original
516    // instruction, otherwise clone the original instruction and insert
517    // the copy.
518    Instruction *New;
519    if (NumInserted++ == 0) {
520      I.moveBefore(InsertPt);
521      New = &I;
522    } else {
523      New = I.clone();
524      CurAST->copyValue(&I, New);
525      if (!I.getName().empty())
526        New->setName(I.getName()+".le");
527      ExitBlock->getInstList().insert(InsertPt, New);
528    }
529
530    // Now that we have inserted the instruction, inform SSAUpdater.
531    if (!I.use_empty())
532      SSA.AddAvailableValue(ExitBlock, New);
533  }
534
535  // If the instruction doesn't dominate any exit blocks, it must be dead.
536  if (NumInserted == 0) {
537    CurAST->deleteValue(&I);
538    if (!I.use_empty())
539      I.replaceAllUsesWith(UndefValue::get(I.getType()));
540    I.eraseFromParent();
541    return;
542  }
543
544  // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
545  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
546    // Grab the use before incrementing the iterator.
547    Use &U = UI.getUse();
548    // Increment the iterator before removing the use from the list.
549    ++UI;
550    SSA.RewriteUseAfterInsertions(U);
551  }
552
553  // Update CurAST for NewPHIs if I had pointer type.
554  if (I.getType()->isPointerTy())
555    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
556      CurAST->copyValue(NewPHIs[i], &I);
557}
558
559/// hoist - When an instruction is found to only use loop invariant operands
560/// that is safe to hoist, this instruction is called to do the dirty work.
561///
562void LICM::hoist(Instruction &I) {
563  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
564        << I << "\n");
565
566  // Remove the instruction from its current basic block... but don't delete the
567  // instruction.
568  I.removeFromParent();
569
570  // Insert the new node in Preheader, before the terminator.
571  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
572
573  if (isa<LoadInst>(I)) ++NumMovedLoads;
574  else if (isa<CallInst>(I)) ++NumMovedCalls;
575  ++NumHoisted;
576  Changed = true;
577}
578
579/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
580/// not a trapping instruction or if it is a trapping instruction and is
581/// guaranteed to execute.
582///
583bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
584  // If it is not a trapping instruction, it is always safe to hoist.
585  if (Inst.isSafeToSpeculativelyExecute())
586    return true;
587
588  // Otherwise we have to check to make sure that the instruction dominates all
589  // of the exit blocks.  If it doesn't, then there is a path out of the loop
590  // which does not execute this instruction, so we can't hoist it.
591
592  // If the instruction is in the header block for the loop (which is very
593  // common), it is always guaranteed to dominate the exit blocks.  Since this
594  // is a common case, and can save some work, check it now.
595  if (Inst.getParent() == CurLoop->getHeader())
596    return true;
597
598  // Get the exit blocks for the current loop.
599  SmallVector<BasicBlock*, 8> ExitBlocks;
600  CurLoop->getExitBlocks(ExitBlocks);
601
602  // For each exit block, get the DT node and walk up the DT until the
603  // instruction's basic block is found or we exit the loop.
604  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
605    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
606      return false;
607
608  return true;
609}
610
611/// PromoteAliasSet - Try to promote memory values to scalars by sinking
612/// stores out of the loop and moving loads to before the loop.  We do this by
613/// looping over the stores in the loop, looking for stores to Must pointers
614/// which are loop invariant.
615///
616void LICM::PromoteAliasSet(AliasSet &AS) {
617  // We can promote this alias set if it has a store, if it is a "Must" alias
618  // set, if the pointer is loop invariant, and if we are not eliminating any
619  // volatile loads or stores.
620  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
621      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
622    return;
623
624  assert(!AS.empty() &&
625         "Must alias set should have at least one pointer element in it!");
626  Value *SomePtr = AS.begin()->getValue();
627
628  // It isn't safe to promote a load/store from the loop if the load/store is
629  // conditional.  For example, turning:
630  //
631  //    for () { if (c) *P += 1; }
632  //
633  // into:
634  //
635  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
636  //
637  // is not safe, because *P may only be valid to access if 'c' is true.
638  //
639  // It is safe to promote P if all uses are direct load/stores and if at
640  // least one is guaranteed to be executed.
641  bool GuaranteedToExecute = false;
642
643  SmallVector<Instruction*, 64> LoopUses;
644  SmallPtrSet<Value*, 4> PointerMustAliases;
645
646  // Check that all of the pointers in the alias set have the same type.  We
647  // cannot (yet) promote a memory location that is loaded and stored in
648  // different sizes.
649  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
650    Value *ASIV = ASI->getValue();
651    PointerMustAliases.insert(ASIV);
652
653    // Check that all of the pointers in the alias set have the same type.  We
654    // cannot (yet) promote a memory location that is loaded and stored in
655    // different sizes.
656    if (SomePtr->getType() != ASIV->getType())
657      return;
658
659    for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
660         UI != UE; ++UI) {
661      // Ignore instructions that are outside the loop.
662      Instruction *Use = dyn_cast<Instruction>(*UI);
663      if (!Use || !CurLoop->contains(Use))
664        continue;
665
666      // If there is an non-load/store instruction in the loop, we can't promote
667      // it.
668      if (isa<LoadInst>(Use))
669        assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken");
670      else if (isa<StoreInst>(Use))
671        assert(!cast<StoreInst>(Use)->isVolatile() &&
672               Use->getOperand(0) != ASIV && "AST broken");
673      else
674        return; // Not a load or store.
675
676      if (!GuaranteedToExecute)
677        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
678
679      LoopUses.push_back(Use);
680    }
681  }
682
683  // If there isn't a guaranteed-to-execute instruction, we can't promote.
684  if (!GuaranteedToExecute)
685    return;
686
687  // Otherwise, this is safe to promote, lets do it!
688  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
689  Changed = true;
690  ++NumPromoted;
691
692  // We use the SSAUpdater interface to insert phi nodes as required.
693  SmallVector<PHINode*, 16> NewPHIs;
694  SSAUpdater SSA(&NewPHIs);
695
696  // It wants to know some value of the same type as what we'll be inserting.
697  Value *SomeValue;
698  if (isa<LoadInst>(LoopUses[0]))
699    SomeValue = LoopUses[0];
700  else
701    SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0);
702  SSA.Initialize(SomeValue);
703
704  // First step: bucket up uses of the pointers by the block they occur in.
705  // This is important because we have to handle multiple defs/uses in a block
706  // ourselves: SSAUpdater is purely for cross-block references.
707  // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
708  DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
709  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
710    Instruction *User = LoopUses[i];
711    UsesByBlock[User->getParent()].push_back(User);
712  }
713
714  // Okay, now we can iterate over all the blocks in the loop with uses,
715  // processing them.  Keep track of which loads are loading a live-in value.
716  SmallVector<LoadInst*, 32> LiveInLoads;
717
718  for (unsigned LoopUse = 0, e = LoopUses.size(); LoopUse != e; ++LoopUse) {
719    Instruction *User = LoopUses[LoopUse];
720    std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()];
721
722    // If this block has already been processed, ignore this repeat use.
723    if (BlockUses.empty()) continue;
724
725    // Okay, this is the first use in the block.  If this block just has a
726    // single user in it, we can rewrite it trivially.
727    if (BlockUses.size() == 1) {
728      // If it is a store, it is a trivial def of the value in the block.
729      if (isa<StoreInst>(User)) {
730        SSA.AddAvailableValue(User->getParent(),
731                              cast<StoreInst>(User)->getOperand(0));
732      } else {
733        // Otherwise it is a load, queue it to rewrite as a live-in load.
734        LiveInLoads.push_back(cast<LoadInst>(User));
735      }
736      BlockUses.clear();
737      continue;
738    }
739
740    // Otherwise, check to see if this block is all loads.  If so, we can queue
741    // them all as live in loads.
742    bool HasStore = false;
743    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
744      if (isa<StoreInst>(BlockUses[i])) {
745        HasStore = true;
746        break;
747      }
748    }
749
750    if (!HasStore) {
751      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
752        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
753      BlockUses.clear();
754      continue;
755    }
756
757    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
758    // Since SSAUpdater is purely for cross-block values, we need to determine
759    // the order of these instructions in the block.  If the first use in the
760    // block is a load, then it uses the live in value.  The last store defines
761    // the live out value.  We handle this by doing a linear scan of the block.
762    BasicBlock *BB = User->getParent();
763    Value *StoredValue = 0;
764    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
765      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
766        // If this is a load to an unrelated pointer, ignore it.
767        if (!PointerMustAliases.count(L->getOperand(0))) continue;
768
769        // If we haven't seen a store yet, this is a live in use, otherwise
770        // use the stored value.
771        if (StoredValue)
772          L->replaceAllUsesWith(StoredValue);
773        else
774          LiveInLoads.push_back(L);
775        continue;
776      }
777
778      if (StoreInst *S = dyn_cast<StoreInst>(II)) {
779        // If this is a load to an unrelated pointer, ignore it.
780        if (!PointerMustAliases.count(S->getOperand(1))) continue;
781
782        // Remember that this is the active value in the block.
783        StoredValue = S->getOperand(0);
784      }
785    }
786
787    // The last stored value that happened is the live-out for the block.
788    assert(StoredValue && "Already checked that there is a store in block");
789    SSA.AddAvailableValue(BB, StoredValue);
790    BlockUses.clear();
791  }
792
793  // Now that all the intra-loop values are classified, set up the preheader.
794  // It gets a load of the pointer we're promoting, and it is the live-out value
795  // from the preheader.
796  LoadInst *PreheaderLoad = new LoadInst(SomePtr,SomePtr->getName()+".promoted",
797                                         Preheader->getTerminator());
798  SSA.AddAvailableValue(Preheader, PreheaderLoad);
799
800  // Now that the preheader is good to go, set up the exit blocks.  Each exit
801  // block gets a store of the live-out values that feed them.  Since we've
802  // already told the SSA updater about the defs in the loop and the preheader
803  // definition, it is all set and we can start using it.
804  SmallVector<BasicBlock*, 8> ExitBlocks;
805  CurLoop->getUniqueExitBlocks(ExitBlocks);
806  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
807    BasicBlock *ExitBlock = ExitBlocks[i];
808    Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
809    Instruction *InsertPos = ExitBlock->getFirstNonPHI();
810    new StoreInst(LiveInValue, SomePtr, InsertPos);
811  }
812
813  // Okay, now we rewrite all loads that use live-in values in the loop,
814  // inserting PHI nodes as necessary.
815  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
816    LoadInst *ALoad = LiveInLoads[i];
817    ALoad->replaceAllUsesWith(SSA.GetValueInMiddleOfBlock(ALoad->getParent()));
818  }
819
820  // Now that everything is rewritten, delete the old instructions from the body
821  // of the loop.  They should all be dead now.
822  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
823    Instruction *User = LoopUses[i];
824    CurAST->deleteValue(User);
825    User->eraseFromParent();
826  }
827
828  // If the preheader load is itself a pointer, we need to tell alias analysis
829  // about the new pointer we created in the preheader block and about any PHI
830  // nodes that just got inserted.
831  if (PreheaderLoad->getType()->isPointerTy()) {
832    // Copy any value stored to or loaded from a must-alias of the pointer.
833    CurAST->copyValue(SomeValue, PreheaderLoad);
834
835    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
836      CurAST->copyValue(SomeValue, NewPHIs[i]);
837  }
838
839  // fwew, we're done!
840}
841
842
843/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
844void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
845  AliasSetTracker *AST = LoopToAliasMap[L];
846  if (!AST)
847    return;
848
849  AST->copyValue(From, To);
850}
851
852/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
853/// set.
854void LICM::deleteAnalysisValue(Value *V, Loop *L) {
855  AliasSetTracker *AST = LoopToAliasMap[L];
856  if (!AST)
857    return;
858
859  AST->deleteValue(V);
860}
861