LICM.cpp revision 529429224c9334ca308e1a8563d03f52196fc342
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads out of loops.  If we can determine that a
19//     load inside of a loop never aliases anything stored to, we can hoist it
20//     or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Transforms/Utils/PromoteMemToReg.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/AliasSetTracker.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Instructions.h"
42#include "llvm/DerivedTypes.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Support/CFG.h"
45#include "Support/CommandLine.h"
46#include "Support/Debug.h"
47#include "Support/Statistic.h"
48#include "llvm/Assembly/Writer.h"
49#include <algorithm>
50using namespace llvm;
51
52namespace {
53  cl::opt<bool>
54  DisablePromotion("disable-licm-promotion", cl::Hidden,
55                   cl::desc("Disable memory promotion in LICM pass"));
56
57  Statistic<> NumSunk("licm", "Number of instructions sunk out of loop");
58  Statistic<> NumHoisted("licm", "Number of instructions hoisted out of loop");
59  Statistic<> NumMovedLoads("licm", "Number of load insts hoisted or sunk");
60  Statistic<> NumPromoted("licm",
61                          "Number of memory locations promoted to registers");
62
63  struct LICM : public FunctionPass {
64    virtual bool runOnFunction(Function &F);
65
66    /// This transformation requires natural loop information & requires that
67    /// loop preheaders be inserted into the CFG...
68    ///
69    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
70      AU.setPreservesCFG();
71      AU.addRequiredID(LoopSimplifyID);
72      AU.addRequired<LoopInfo>();
73      AU.addRequired<DominatorTree>();
74      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
75      AU.addRequired<AliasAnalysis>();
76    }
77
78  private:
79    // Various analyses that we use...
80    AliasAnalysis *AA;       // Current AliasAnalysis information
81    LoopInfo      *LI;       // Current LoopInfo
82    DominatorTree *DT;       // Dominator Tree for the current Loop...
83    DominanceFrontier *DF;   // Current Dominance Frontier
84
85    // State that is updated as we process loops
86    bool Changed;            // Set to true when we change anything.
87    BasicBlock *Preheader;   // The preheader block of the current loop...
88    Loop *CurLoop;           // The current loop we are working on...
89    AliasSetTracker *CurAST; // AliasSet information for the current loop...
90
91    /// visitLoop - Hoist expressions out of the specified loop...
92    ///
93    void visitLoop(Loop *L, AliasSetTracker &AST);
94
95    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
96    /// dominated by the specified block, and that are in the current loop) in
97    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
98    /// visit uses before definitions, allowing us to sink a loop body in one
99    /// pass without iteration.
100    ///
101    void SinkRegion(DominatorTree::Node *N);
102
103    /// HoistRegion - Walk the specified region of the CFG (defined by all
104    /// blocks dominated by the specified block, and that are in the current
105    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
106    /// visit definitions before uses, allowing us to hoist a loop body in one
107    /// pass without iteration.
108    ///
109    void HoistRegion(DominatorTree::Node *N);
110
111    /// inSubLoop - Little predicate that returns true if the specified basic
112    /// block is in a subloop of the current one, not the current one itself.
113    ///
114    bool inSubLoop(BasicBlock *BB) {
115      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
116      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
117        if ((*I)->contains(BB))
118          return true;  // A subloop actually contains this block!
119      return false;
120    }
121
122    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
123    /// specified exit block of the loop is dominated by the specified block
124    /// that is in the body of the loop.  We use these constraints to
125    /// dramatically limit the amount of the dominator tree that needs to be
126    /// searched.
127    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
128                                           BasicBlock *BlockInLoop) const {
129      // If the block in the loop is the loop header, it must be dominated!
130      BasicBlock *LoopHeader = CurLoop->getHeader();
131      if (BlockInLoop == LoopHeader)
132        return true;
133
134      DominatorTree::Node *BlockInLoopNode = DT->getNode(BlockInLoop);
135      DominatorTree::Node *IDom            = DT->getNode(ExitBlock);
136
137      // Because the exit block is not in the loop, we know we have to get _at
138      // least_ it's immediate dominator.
139      do {
140        // Get next Immediate Dominator.
141        IDom = IDom->getIDom();
142
143        // If we have got to the header of the loop, then the instructions block
144        // did not dominate the exit node, so we can't hoist it.
145        if (IDom->getBlock() == LoopHeader)
146          return false;
147
148      } while (IDom != BlockInLoopNode);
149
150      return true;
151    }
152
153    /// sink - When an instruction is found to only be used outside of the loop,
154    /// this function moves it to the exit blocks and patches up SSA form as
155    /// needed.
156    ///
157    void sink(Instruction &I);
158
159    /// hoist - When an instruction is found to only use loop invariant operands
160    /// that is safe to hoist, this instruction is called to do the dirty work.
161    ///
162    void hoist(Instruction &I);
163
164    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
165    /// is not a trapping instruction or if it is a trapping instruction and is
166    /// guaranteed to execute.
167    ///
168    bool isSafeToExecuteUnconditionally(Instruction &I);
169
170    /// pointerInvalidatedByLoop - Return true if the body of this loop may
171    /// store into the memory location pointed to by V.
172    ///
173    bool pointerInvalidatedByLoop(Value *V) {
174      // Check to see if any of the basic blocks in CurLoop invalidate *V.
175      return CurAST->getAliasSetForPointer(V, 0).isMod();
176    }
177
178    /// isLoopInvariant - Return true if the specified value is loop invariant
179    ///
180    inline bool isLoopInvariant(Value *V) {
181      if (Instruction *I = dyn_cast<Instruction>(V))
182        return !CurLoop->contains(I->getParent());
183      return true;  // All non-instructions are loop invariant
184    }
185
186    bool canSinkOrHoistInst(Instruction &I);
187    bool isLoopInvariantInst(Instruction &I);
188    bool isNotUsedInLoop(Instruction &I);
189
190    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
191    /// to scalars as we can.
192    ///
193    void PromoteValuesInLoop();
194
195    /// findPromotableValuesInLoop - Check the current loop for stores to
196    /// definite pointers, which are not loaded and stored through may aliases.
197    /// If these are found, create an alloca for the value, add it to the
198    /// PromotedValues list, and keep track of the mapping from value to
199    /// alloca...
200    ///
201    void findPromotableValuesInLoop(
202                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
203                                    std::map<Value*, AllocaInst*> &Val2AlMap);
204  };
205
206  RegisterOpt<LICM> X("licm", "Loop Invariant Code Motion");
207}
208
209FunctionPass *llvm::createLICMPass() { return new LICM(); }
210
211/// runOnFunction - For LICM, this simply traverses the loop structure of the
212/// function, hoisting expressions out of loops if possible.
213///
214bool LICM::runOnFunction(Function &) {
215  Changed = false;
216
217  // Get our Loop and Alias Analysis information...
218  LI = &getAnalysis<LoopInfo>();
219  AA = &getAnalysis<AliasAnalysis>();
220  DF = &getAnalysis<DominanceFrontier>();
221  DT = &getAnalysis<DominatorTree>();
222
223  // Hoist expressions out of all of the top-level loops.
224  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
225    AliasSetTracker AST(*AA);
226    visitLoop(*I, AST);
227  }
228  return Changed;
229}
230
231
232/// visitLoop - Hoist expressions out of the specified loop...
233///
234void LICM::visitLoop(Loop *L, AliasSetTracker &AST) {
235  // Recurse through all subloops before we process this loop...
236  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
237    AliasSetTracker SubAST(*AA);
238    visitLoop(*I, SubAST);
239
240    // Incorporate information about the subloops into this loop...
241    AST.add(SubAST);
242  }
243  CurLoop = L;
244  CurAST = &AST;
245
246  // Get the preheader block to move instructions into...
247  Preheader = L->getLoopPreheader();
248  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
249
250  // Loop over the body of this loop, looking for calls, invokes, and stores.
251  // Because subloops have already been incorporated into AST, we skip blocks in
252  // subloops.
253  //
254  for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
255         E = L->getBlocks().end(); I != E; ++I)
256    if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
257      AST.add(**I);                     // Incorporate the specified basic block
258
259  // We want to visit all of the instructions in this loop... that are not parts
260  // of our subloops (they have already had their invariants hoisted out of
261  // their loop, into this loop, so there is no need to process the BODIES of
262  // the subloops).
263  //
264  // Traverse the body of the loop in depth first order on the dominator tree so
265  // that we are guaranteed to see definitions before we see uses.  This allows
266  // us to sink instructions in one pass, without iteration.  AFter sinking
267  // instructions, we perform another pass to hoist them out of the loop.
268  //
269  SinkRegion(DT->getNode(L->getHeader()));
270  HoistRegion(DT->getNode(L->getHeader()));
271
272  // Now that all loop invariants have been removed from the loop, promote any
273  // memory references to scalars that we can...
274  if (!DisablePromotion)
275    PromoteValuesInLoop();
276
277  // Clear out loops state information for the next iteration
278  CurLoop = 0;
279  Preheader = 0;
280}
281
282/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
283/// dominated by the specified block, and that are in the current loop) in
284/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
285/// uses before definitions, allowing us to sink a loop body in one pass without
286/// iteration.
287///
288void LICM::SinkRegion(DominatorTree::Node *N) {
289  assert(N != 0 && "Null dominator tree node?");
290  BasicBlock *BB = N->getBlock();
291
292  // If this subregion is not in the top level loop at all, exit.
293  if (!CurLoop->contains(BB)) return;
294
295  // We are processing blocks in reverse dfo, so process children first...
296  const std::vector<DominatorTree::Node*> &Children = N->getChildren();
297  for (unsigned i = 0, e = Children.size(); i != e; ++i)
298    SinkRegion(Children[i]);
299
300  // Only need to process the contents of this block if it is not part of a
301  // subloop (which would already have been processed).
302  if (inSubLoop(BB)) return;
303
304  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
305    Instruction &I = *--II;
306
307    // Check to see if we can sink this instruction to the exit blocks
308    // of the loop.  We can do this if the all users of the instruction are
309    // outside of the loop.  In this case, it doesn't even matter if the
310    // operands of the instruction are loop invariant.
311    //
312    if (canSinkOrHoistInst(I) && isNotUsedInLoop(I)) {
313      ++II;
314      sink(I);
315    }
316  }
317}
318
319
320/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
321/// dominated by the specified block, and that are in the current loop) in depth
322/// first order w.r.t the DominatorTree.  This allows us to visit definitions
323/// before uses, allowing us to hoist a loop body in one pass without iteration.
324///
325void LICM::HoistRegion(DominatorTree::Node *N) {
326  assert(N != 0 && "Null dominator tree node?");
327  BasicBlock *BB = N->getBlock();
328
329  // If this subregion is not in the top level loop at all, exit.
330  if (!CurLoop->contains(BB)) return;
331
332  // Only need to process the contents of this block if it is not part of a
333  // subloop (which would already have been processed).
334  if (!inSubLoop(BB))
335    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
336      Instruction &I = *II++;
337
338      // Try hoisting the instruction out to the preheader.  We can only do this
339      // if all of the operands of the instruction are loop invariant and if it
340      // is safe to hoist the instruction.
341      //
342      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
343          isSafeToExecuteUnconditionally(I))
344          hoist(I);
345      }
346
347  const std::vector<DominatorTree::Node*> &Children = N->getChildren();
348  for (unsigned i = 0, e = Children.size(); i != e; ++i)
349    HoistRegion(Children[i]);
350}
351
352/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
353/// instruction.
354///
355bool LICM::canSinkOrHoistInst(Instruction &I) {
356  // Loads have extra constraints we have to verify before we can hoist them.
357  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
358    if (LI->isVolatile())
359      return false;        // Don't hoist volatile loads!
360
361    // Don't hoist loads which have may-aliased stores in loop.
362    return !pointerInvalidatedByLoop(LI->getOperand(0));
363  }
364
365  return isa<BinaryOperator>(I) || isa<ShiftInst>(I) || isa<CastInst>(I) ||
366         isa<GetElementPtrInst>(I) || isa<VANextInst>(I) || isa<VAArgInst>(I);
367}
368
369/// isNotUsedInLoop - Return true if the only users of this instruction are
370/// outside of the loop.  If this is true, we can sink the instruction to the
371/// exit blocks of the loop.
372///
373bool LICM::isNotUsedInLoop(Instruction &I) {
374  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
375    Instruction *User = cast<Instruction>(*UI);
376    if (PHINode *PN = dyn_cast<PHINode>(User)) {
377      // PHI node uses occur in predecessor blocks!
378      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
379        if (PN->getIncomingValue(i) == &I)
380          if (CurLoop->contains(PN->getIncomingBlock(i)))
381            return false;
382    } else if (CurLoop->contains(User->getParent())) {
383      return false;
384    }
385  }
386  return true;
387}
388
389
390/// isLoopInvariantInst - Return true if all operands of this instruction are
391/// loop invariant.  We also filter out non-hoistable instructions here just for
392/// efficiency.
393///
394bool LICM::isLoopInvariantInst(Instruction &I) {
395  // The instruction is loop invariant if all of its operands are loop-invariant
396  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
397    if (!isLoopInvariant(I.getOperand(i)))
398      return false;
399
400  // If we got this far, the instruction is loop invariant!
401  return true;
402}
403
404/// sink - When an instruction is found to only be used outside of the loop,
405/// this function moves it to the exit blocks and patches up SSA form as needed.
406/// This method is guaranteed to remove the original instruction from its
407/// position, and may either delete it or move it to outside of the loop.
408///
409void LICM::sink(Instruction &I) {
410  DEBUG(std::cerr << "LICM sinking instruction: " << I);
411
412  const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
413
414  if (isa<LoadInst>(I)) ++NumMovedLoads;
415  ++NumSunk;
416  Changed = true;
417
418  // The case where there is only a single exit node of this loop is common
419  // enough that we handle it as a special (more efficient) case.  It is more
420  // efficient to handle because there are no PHI nodes that need to be placed.
421  if (ExitBlocks.size() == 1) {
422    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
423      // Instruction is not used, just delete it.
424      CurAST->remove(&I);
425      I.getParent()->getInstList().erase(&I);
426    } else {
427      // Move the instruction to the start of the exit block, after any PHI
428      // nodes in it.
429      I.getParent()->getInstList().remove(&I);
430
431      BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
432      while (isa<PHINode>(InsertPt)) ++InsertPt;
433      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
434    }
435  } else if (ExitBlocks.size() == 0) {
436    // The instruction is actually dead if there ARE NO exit blocks.
437    CurAST->remove(&I);
438    I.getParent()->getInstList().erase(&I);
439  } else {
440    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
441    // do all of the hard work of inserting PHI nodes as necessary.  We convert
442    // the value into a stack object to get it to do this.
443
444    // Firstly, we create a stack object to hold the value...
445    AllocaInst *AI = new AllocaInst(I.getType(), 0, I.getName(),
446                                   I.getParent()->getParent()->front().begin());
447
448    // Secondly, insert load instructions for each use of the instruction
449    // outside of the loop.
450    while (!I.use_empty()) {
451      Instruction *U = cast<Instruction>(I.use_back());
452
453      // If the user is a PHI Node, we actually have to insert load instructions
454      // in all predecessor blocks, not in the PHI block itself!
455      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
456        // Only insert into each predecessor once, so that we don't have
457        // different incoming values from the same block!
458        std::map<BasicBlock*, Value*> InsertedBlocks;
459        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
460          if (UPN->getIncomingValue(i) == &I) {
461            BasicBlock *Pred = UPN->getIncomingBlock(i);
462            Value *&PredVal = InsertedBlocks[Pred];
463            if (!PredVal) {
464              // Insert a new load instruction right before the terminator in
465              // the predecessor block.
466              PredVal = new LoadInst(AI, "", Pred->getTerminator());
467            }
468
469            UPN->setIncomingValue(i, PredVal);
470          }
471
472      } else {
473        LoadInst *L = new LoadInst(AI, "", U);
474        U->replaceUsesOfWith(&I, L);
475      }
476    }
477
478    // Thirdly, insert a copy of the instruction in each exit block of the loop
479    // that is dominated by the instruction, storing the result into the memory
480    // location.  Be careful not to insert the instruction into any particular
481    // basic block more than once.
482    std::set<BasicBlock*> InsertedBlocks;
483    BasicBlock *InstOrigBB = I.getParent();
484
485    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
486      BasicBlock *ExitBlock = ExitBlocks[i];
487
488      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
489        // If we haven't already processed this exit block, do so now.
490        if (InsertedBlocks.insert(ExitBlock).second) {
491          // Insert the code after the last PHI node...
492          BasicBlock::iterator InsertPt = ExitBlock->begin();
493          while (isa<PHINode>(InsertPt)) ++InsertPt;
494
495          // If this is the first exit block processed, just move the original
496          // instruction, otherwise clone the original instruction and insert
497          // the copy.
498          Instruction *New;
499          if (InsertedBlocks.size() == 1) {
500            I.getParent()->getInstList().remove(&I);
501            ExitBlock->getInstList().insert(InsertPt, &I);
502            New = &I;
503          } else {
504            New = I.clone();
505            New->setName(I.getName()+".le");
506            ExitBlock->getInstList().insert(InsertPt, New);
507          }
508
509          // Now that we have inserted the instruction, store it into the alloca
510          new StoreInst(New, AI, InsertPt);
511        }
512      }
513    }
514
515    // If the instruction doesn't dominate any exit blocks, it must be dead.
516    if (InsertedBlocks.empty()) {
517      CurAST->remove(&I);
518      I.getParent()->getInstList().erase(&I);
519    }
520
521    // Finally, promote the fine value to SSA form.
522    std::vector<AllocaInst*> Allocas;
523    Allocas.push_back(AI);
524    PromoteMemToReg(Allocas, *DT, *DF, AA->getTargetData());
525  }
526}
527
528/// hoist - When an instruction is found to only use loop invariant operands
529/// that is safe to hoist, this instruction is called to do the dirty work.
530///
531void LICM::hoist(Instruction &I) {
532  DEBUG(std::cerr << "LICM hoisting to";
533        WriteAsOperand(std::cerr, Preheader, false);
534        std::cerr << ": " << I);
535
536  // Remove the instruction from its current basic block... but don't delete the
537  // instruction.
538  I.getParent()->getInstList().remove(&I);
539
540  // Insert the new node in Preheader, before the terminator.
541  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
542
543  if (isa<LoadInst>(I)) ++NumMovedLoads;
544  ++NumHoisted;
545  Changed = true;
546}
547
548/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
549/// not a trapping instruction or if it is a trapping instruction and is
550/// guaranteed to execute.
551///
552bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
553  // If it is not a trapping instruction, it is always safe to hoist.
554  if (!Inst.isTrapping()) return true;
555
556  // Otherwise we have to check to make sure that the instruction dominates all
557  // of the exit blocks.  If it doesn't, then there is a path out of the loop
558  // which does not execute this instruction, so we can't hoist it.
559
560  // If the instruction is in the header block for the loop (which is very
561  // common), it is always guaranteed to dominate the exit blocks.  Since this
562  // is a common case, and can save some work, check it now.
563  if (Inst.getParent() == CurLoop->getHeader())
564    return true;
565
566  // Get the exit blocks for the current loop.
567  const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
568
569  // For each exit block, get the DT node and walk up the DT until the
570  // instruction's basic block is found or we exit the loop.
571  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
572    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
573      return false;
574
575  return true;
576}
577
578
579/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
580/// stores out of the loop and moving loads to before the loop.  We do this by
581/// looping over the stores in the loop, looking for stores to Must pointers
582/// which are loop invariant.  We promote these memory locations to use allocas
583/// instead.  These allocas can easily be raised to register values by the
584/// PromoteMem2Reg functionality.
585///
586void LICM::PromoteValuesInLoop() {
587  // PromotedValues - List of values that are promoted out of the loop.  Each
588  // value has an alloca instruction for it, and a canonical version of the
589  // pointer.
590  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
591  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
592
593  findPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
594  if (ValueToAllocaMap.empty()) return;   // If there are values to promote...
595
596  Changed = true;
597  NumPromoted += PromotedValues.size();
598
599  // Emit a copy from the value into the alloca'd value in the loop preheader
600  TerminatorInst *LoopPredInst = Preheader->getTerminator();
601  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
602    // Load from the memory we are promoting...
603    LoadInst *LI = new LoadInst(PromotedValues[i].second,
604                                PromotedValues[i].second->getName()+".promoted",
605                                LoopPredInst);
606    // Store into the temporary alloca...
607    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
608  }
609
610  // Scan the basic blocks in the loop, replacing uses of our pointers with
611  // uses of the allocas in question.
612  //
613  const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
614  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
615         E = LoopBBs.end(); I != E; ++I) {
616    // Rewrite all loads and stores in the block of the pointer...
617    for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
618         II != E; ++II) {
619      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
620        std::map<Value*, AllocaInst*>::iterator
621          I = ValueToAllocaMap.find(L->getOperand(0));
622        if (I != ValueToAllocaMap.end())
623          L->setOperand(0, I->second);    // Rewrite load instruction...
624      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
625        std::map<Value*, AllocaInst*>::iterator
626          I = ValueToAllocaMap.find(S->getOperand(1));
627        if (I != ValueToAllocaMap.end())
628          S->setOperand(1, I->second);    // Rewrite store instruction...
629      }
630    }
631  }
632
633  // Now that the body of the loop uses the allocas instead of the original
634  // memory locations, insert code to copy the alloca value back into the
635  // original memory location on all exits from the loop.  Note that we only
636  // want to insert one copy of the code in each exit block, though the loop may
637  // exit to the same block more than once.
638  //
639  std::set<BasicBlock*> ProcessedBlocks;
640
641  const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
642  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
643    if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
644      // Copy all of the allocas into their memory locations...
645      BasicBlock::iterator BI = ExitBlocks[i]->begin();
646      while (isa<PHINode>(*BI))
647        ++BI;             // Skip over all of the phi nodes in the block...
648      Instruction *InsertPos = BI;
649      for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
650        // Load from the alloca...
651        LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
652        // Store into the memory we promoted...
653        new StoreInst(LI, PromotedValues[i].second, InsertPos);
654      }
655    }
656
657  // Now that we have done the deed, use the mem2reg functionality to promote
658  // all of the new allocas we just created into real SSA registers...
659  //
660  std::vector<AllocaInst*> PromotedAllocas;
661  PromotedAllocas.reserve(PromotedValues.size());
662  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
663    PromotedAllocas.push_back(PromotedValues[i].first);
664  PromoteMemToReg(PromotedAllocas, *DT, *DF, AA->getTargetData());
665}
666
667/// findPromotableValuesInLoop - Check the current loop for stores to definite
668/// pointers, which are not loaded and stored through may aliases.  If these are
669/// found, create an alloca for the value, add it to the PromotedValues list,
670/// and keep track of the mapping from value to alloca...
671///
672void LICM::findPromotableValuesInLoop(
673                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
674                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
675  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
676
677  // Loop over all of the alias sets in the tracker object...
678  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
679       I != E; ++I) {
680    AliasSet &AS = *I;
681    // We can promote this alias set if it has a store, if it is a "Must" alias
682    // set, if the pointer is loop invariant, if if we are not eliminating any volatile loads or stores.
683    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
684        !AS.isVolatile() && isLoopInvariant(AS.begin()->first)) {
685      assert(AS.begin() != AS.end() &&
686             "Must alias set should have at least one pointer element in it!");
687      Value *V = AS.begin()->first;
688
689      // Check that all of the pointers in the alias set have the same type.  We
690      // cannot (yet) promote a memory location that is loaded and stored in
691      // different sizes.
692      bool PointerOk = true;
693      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
694        if (V->getType() != I->first->getType()) {
695          PointerOk = false;
696          break;
697        }
698
699      if (PointerOk) {
700        const Type *Ty = cast<PointerType>(V->getType())->getElementType();
701        AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
702        PromotedValues.push_back(std::make_pair(AI, V));
703
704        for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
705          ValueToAllocaMap.insert(std::make_pair(I->first, AI));
706
707        DEBUG(std::cerr << "LICM: Promoting value: " << *V << "\n");
708      }
709    }
710  }
711}
712