LICM.cpp revision 844731a7f1909f55935e3514c9e713a62d67662e
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#define DEBUG_TYPE "licm"
35#include "llvm/Transforms/Scalar.h"
36#include "llvm/Constants.h"
37#include "llvm/DerivedTypes.h"
38#include "llvm/Instructions.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/LoopPass.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Transforms/Utils/PromoteMemToReg.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
56STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
57STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
58STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
59STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
60
61static cl::opt<bool>
62DisablePromotion("disable-licm-promotion", cl::Hidden,
63                 cl::desc("Disable memory promotion in LICM pass"));
64
65namespace {
66  struct VISIBILITY_HIDDEN LICM : public LoopPass {
67    static char ID; // Pass identification, replacement for typeid
68    LICM() : LoopPass((intptr_t)&ID) {}
69
70    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
71
72    /// This transformation requires natural loop information & requires that
73    /// loop preheaders be inserted into the CFG...
74    ///
75    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76      AU.setPreservesCFG();
77      AU.addRequiredID(LoopSimplifyID);
78      AU.addRequired<LoopInfo>();
79      AU.addRequired<DominatorTree>();
80      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
81      AU.addRequired<AliasAnalysis>();
82      AU.addPreserved<ScalarEvolution>();
83      AU.addPreserved<DominanceFrontier>();
84    }
85
86    bool doFinalization() {
87      // Free the values stored in the map
88      for (std::map<Loop *, AliasSetTracker *>::iterator
89             I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I)
90        delete I->second;
91
92      LoopToAliasMap.clear();
93      return false;
94    }
95
96  private:
97    // Various analyses that we use...
98    AliasAnalysis *AA;       // Current AliasAnalysis information
99    LoopInfo      *LI;       // Current LoopInfo
100    DominatorTree *DT;       // Dominator Tree for the current Loop...
101    DominanceFrontier *DF;   // Current Dominance Frontier
102
103    // State that is updated as we process loops
104    bool Changed;            // Set to true when we change anything.
105    BasicBlock *Preheader;   // The preheader block of the current loop...
106    Loop *CurLoop;           // The current loop we are working on...
107    AliasSetTracker *CurAST; // AliasSet information for the current loop...
108    std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
109
110    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
111    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
112
113    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
114    /// set.
115    void deleteAnalysisValue(Value *V, Loop *L);
116
117    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
118    /// dominated by the specified block, and that are in the current loop) in
119    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
120    /// visit uses before definitions, allowing us to sink a loop body in one
121    /// pass without iteration.
122    ///
123    void SinkRegion(DomTreeNode *N);
124
125    /// HoistRegion - Walk the specified region of the CFG (defined by all
126    /// blocks dominated by the specified block, and that are in the current
127    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
128    /// visit definitions before uses, allowing us to hoist a loop body in one
129    /// pass without iteration.
130    ///
131    void HoistRegion(DomTreeNode *N);
132
133    /// inSubLoop - Little predicate that returns true if the specified basic
134    /// block is in a subloop of the current one, not the current one itself.
135    ///
136    bool inSubLoop(BasicBlock *BB) {
137      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
138      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
139        if ((*I)->contains(BB))
140          return true;  // A subloop actually contains this block!
141      return false;
142    }
143
144    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
145    /// specified exit block of the loop is dominated by the specified block
146    /// that is in the body of the loop.  We use these constraints to
147    /// dramatically limit the amount of the dominator tree that needs to be
148    /// searched.
149    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
150                                           BasicBlock *BlockInLoop) const {
151      // If the block in the loop is the loop header, it must be dominated!
152      BasicBlock *LoopHeader = CurLoop->getHeader();
153      if (BlockInLoop == LoopHeader)
154        return true;
155
156      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
157      DomTreeNode *IDom            = DT->getNode(ExitBlock);
158
159      // Because the exit block is not in the loop, we know we have to get _at
160      // least_ its immediate dominator.
161      do {
162        // Get next Immediate Dominator.
163        IDom = IDom->getIDom();
164
165        // If we have got to the header of the loop, then the instructions block
166        // did not dominate the exit node, so we can't hoist it.
167        if (IDom->getBlock() == LoopHeader)
168          return false;
169
170      } while (IDom != BlockInLoopNode);
171
172      return true;
173    }
174
175    /// sink - When an instruction is found to only be used outside of the loop,
176    /// this function moves it to the exit blocks and patches up SSA form as
177    /// needed.
178    ///
179    void sink(Instruction &I);
180
181    /// hoist - When an instruction is found to only use loop invariant operands
182    /// that is safe to hoist, this instruction is called to do the dirty work.
183    ///
184    void hoist(Instruction &I);
185
186    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
187    /// is not a trapping instruction or if it is a trapping instruction and is
188    /// guaranteed to execute.
189    ///
190    bool isSafeToExecuteUnconditionally(Instruction &I);
191
192    /// pointerInvalidatedByLoop - Return true if the body of this loop may
193    /// store into the memory location pointed to by V.
194    ///
195    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
196      // Check to see if any of the basic blocks in CurLoop invalidate *V.
197      return CurAST->getAliasSetForPointer(V, Size).isMod();
198    }
199
200    bool canSinkOrHoistInst(Instruction &I);
201    bool isLoopInvariantInst(Instruction &I);
202    bool isNotUsedInLoop(Instruction &I);
203
204    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
205    /// to scalars as we can.
206    ///
207    void PromoteValuesInLoop();
208
209    /// FindPromotableValuesInLoop - Check the current loop for stores to
210    /// definite pointers, which are not loaded and stored through may aliases.
211    /// If these are found, create an alloca for the value, add it to the
212    /// PromotedValues list, and keep track of the mapping from value to
213    /// alloca...
214    ///
215    void FindPromotableValuesInLoop(
216                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
217                                    std::map<Value*, AllocaInst*> &Val2AlMap);
218  };
219}
220
221char LICM::ID = 0;
222static RegisterPass<LICM> X("licm", "Loop Invariant Code Motion");
223
224LoopPass *llvm::createLICMPass() { return new LICM(); }
225
226/// Hoist expressions out of the specified loop. Note, alias info for inner
227/// loop is not preserved so it is not a good idea to run LICM multiple
228/// times on one loop.
229///
230bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
231  Changed = false;
232
233  // Get our Loop and Alias Analysis information...
234  LI = &getAnalysis<LoopInfo>();
235  AA = &getAnalysis<AliasAnalysis>();
236  DF = &getAnalysis<DominanceFrontier>();
237  DT = &getAnalysis<DominatorTree>();
238
239  CurAST = new AliasSetTracker(*AA);
240  // Collect Alias info from subloops
241  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
242       LoopItr != LoopItrE; ++LoopItr) {
243    Loop *InnerL = *LoopItr;
244    AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
245    assert (InnerAST && "Where is my AST?");
246
247    // What if InnerLoop was modified by other passes ?
248    CurAST->add(*InnerAST);
249  }
250
251  CurLoop = L;
252
253  // Get the preheader block to move instructions into...
254  Preheader = L->getLoopPreheader();
255  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
256
257  // Loop over the body of this loop, looking for calls, invokes, and stores.
258  // Because subloops have already been incorporated into AST, we skip blocks in
259  // subloops.
260  //
261  for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
262         E = L->getBlocks().end(); I != E; ++I)
263    if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
264      CurAST->add(**I);                 // Incorporate the specified basic block
265
266  // We want to visit all of the instructions in this loop... that are not parts
267  // of our subloops (they have already had their invariants hoisted out of
268  // their loop, into this loop, so there is no need to process the BODIES of
269  // the subloops).
270  //
271  // Traverse the body of the loop in depth first order on the dominator tree so
272  // that we are guaranteed to see definitions before we see uses.  This allows
273  // us to sink instructions in one pass, without iteration.  After sinking
274  // instructions, we perform another pass to hoist them out of the loop.
275  //
276  SinkRegion(DT->getNode(L->getHeader()));
277  HoistRegion(DT->getNode(L->getHeader()));
278
279  // Now that all loop invariants have been removed from the loop, promote any
280  // memory references to scalars that we can...
281  if (!DisablePromotion)
282    PromoteValuesInLoop();
283
284  // Clear out loops state information for the next iteration
285  CurLoop = 0;
286  Preheader = 0;
287
288  LoopToAliasMap[L] = CurAST;
289  return Changed;
290}
291
292/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
293/// dominated by the specified block, and that are in the current loop) in
294/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
295/// uses before definitions, allowing us to sink a loop body in one pass without
296/// iteration.
297///
298void LICM::SinkRegion(DomTreeNode *N) {
299  assert(N != 0 && "Null dominator tree node?");
300  BasicBlock *BB = N->getBlock();
301
302  // If this subregion is not in the top level loop at all, exit.
303  if (!CurLoop->contains(BB)) return;
304
305  // We are processing blocks in reverse dfo, so process children first...
306  const std::vector<DomTreeNode*> &Children = N->getChildren();
307  for (unsigned i = 0, e = Children.size(); i != e; ++i)
308    SinkRegion(Children[i]);
309
310  // Only need to process the contents of this block if it is not part of a
311  // subloop (which would already have been processed).
312  if (inSubLoop(BB)) return;
313
314  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
315    Instruction &I = *--II;
316
317    // Check to see if we can sink this instruction to the exit blocks
318    // of the loop.  We can do this if the all users of the instruction are
319    // outside of the loop.  In this case, it doesn't even matter if the
320    // operands of the instruction are loop invariant.
321    //
322    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
323      ++II;
324      sink(I);
325    }
326  }
327}
328
329
330/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
331/// dominated by the specified block, and that are in the current loop) in depth
332/// first order w.r.t the DominatorTree.  This allows us to visit definitions
333/// before uses, allowing us to hoist a loop body in one pass without iteration.
334///
335void LICM::HoistRegion(DomTreeNode *N) {
336  assert(N != 0 && "Null dominator tree node?");
337  BasicBlock *BB = N->getBlock();
338
339  // If this subregion is not in the top level loop at all, exit.
340  if (!CurLoop->contains(BB)) return;
341
342  // Only need to process the contents of this block if it is not part of a
343  // subloop (which would already have been processed).
344  if (!inSubLoop(BB))
345    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
346      Instruction &I = *II++;
347
348      // Try hoisting the instruction out to the preheader.  We can only do this
349      // if all of the operands of the instruction are loop invariant and if it
350      // is safe to hoist the instruction.
351      //
352      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
353          isSafeToExecuteUnconditionally(I))
354        hoist(I);
355      }
356
357  const std::vector<DomTreeNode*> &Children = N->getChildren();
358  for (unsigned i = 0, e = Children.size(); i != e; ++i)
359    HoistRegion(Children[i]);
360}
361
362/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
363/// instruction.
364///
365bool LICM::canSinkOrHoistInst(Instruction &I) {
366  // Loads have extra constraints we have to verify before we can hoist them.
367  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
368    if (LI->isVolatile())
369      return false;        // Don't hoist volatile loads!
370
371    // Don't hoist loads which have may-aliased stores in loop.
372    unsigned Size = 0;
373    if (LI->getType()->isSized())
374      Size = AA->getTargetData().getTypeStoreSize(LI->getType());
375    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
376  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
377    // Handle obvious cases efficiently.
378    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
379    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
380      return true;
381    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
382      // If this call only reads from memory and there are no writes to memory
383      // in the loop, we can hoist or sink the call as appropriate.
384      bool FoundMod = false;
385      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
386           I != E; ++I) {
387        AliasSet &AS = *I;
388        if (!AS.isForwardingAliasSet() && AS.isMod()) {
389          FoundMod = true;
390          break;
391        }
392      }
393      if (!FoundMod) return true;
394    }
395
396    // FIXME: This should use mod/ref information to see if we can hoist or sink
397    // the call.
398
399    return false;
400  }
401
402  // Otherwise these instructions are hoistable/sinkable
403  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
404         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
405         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
406         isa<ShuffleVectorInst>(I);
407}
408
409/// isNotUsedInLoop - Return true if the only users of this instruction are
410/// outside of the loop.  If this is true, we can sink the instruction to the
411/// exit blocks of the loop.
412///
413bool LICM::isNotUsedInLoop(Instruction &I) {
414  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
415    Instruction *User = cast<Instruction>(*UI);
416    if (PHINode *PN = dyn_cast<PHINode>(User)) {
417      // PHI node uses occur in predecessor blocks!
418      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
419        if (PN->getIncomingValue(i) == &I)
420          if (CurLoop->contains(PN->getIncomingBlock(i)))
421            return false;
422    } else if (CurLoop->contains(User->getParent())) {
423      return false;
424    }
425  }
426  return true;
427}
428
429
430/// isLoopInvariantInst - Return true if all operands of this instruction are
431/// loop invariant.  We also filter out non-hoistable instructions here just for
432/// efficiency.
433///
434bool LICM::isLoopInvariantInst(Instruction &I) {
435  // The instruction is loop invariant if all of its operands are loop-invariant
436  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
437    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
438      return false;
439
440  // If we got this far, the instruction is loop invariant!
441  return true;
442}
443
444/// sink - When an instruction is found to only be used outside of the loop,
445/// this function moves it to the exit blocks and patches up SSA form as needed.
446/// This method is guaranteed to remove the original instruction from its
447/// position, and may either delete it or move it to outside of the loop.
448///
449void LICM::sink(Instruction &I) {
450  DOUT << "LICM sinking instruction: " << I;
451
452  SmallVector<BasicBlock*, 8> ExitBlocks;
453  CurLoop->getExitBlocks(ExitBlocks);
454
455  if (isa<LoadInst>(I)) ++NumMovedLoads;
456  else if (isa<CallInst>(I)) ++NumMovedCalls;
457  ++NumSunk;
458  Changed = true;
459
460  // The case where there is only a single exit node of this loop is common
461  // enough that we handle it as a special (more efficient) case.  It is more
462  // efficient to handle because there are no PHI nodes that need to be placed.
463  if (ExitBlocks.size() == 1) {
464    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
465      // Instruction is not used, just delete it.
466      CurAST->deleteValue(&I);
467      if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
468        I.replaceAllUsesWith(UndefValue::get(I.getType()));
469      I.eraseFromParent();
470    } else {
471      // Move the instruction to the start of the exit block, after any PHI
472      // nodes in it.
473      I.removeFromParent();
474
475      BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
476      while (isa<PHINode>(InsertPt)) ++InsertPt;
477      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
478    }
479  } else if (ExitBlocks.empty()) {
480    // The instruction is actually dead if there ARE NO exit blocks.
481    CurAST->deleteValue(&I);
482    if (!I.use_empty())  // If I has users in unreachable blocks, eliminate.
483      I.replaceAllUsesWith(UndefValue::get(I.getType()));
484    I.eraseFromParent();
485  } else {
486    // Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
487    // do all of the hard work of inserting PHI nodes as necessary.  We convert
488    // the value into a stack object to get it to do this.
489
490    // Firstly, we create a stack object to hold the value...
491    AllocaInst *AI = 0;
492
493    if (I.getType() != Type::VoidTy) {
494      AI = new AllocaInst(I.getType(), 0, I.getName(),
495                          I.getParent()->getParent()->getEntryBlock().begin());
496      CurAST->add(AI);
497    }
498
499    // Secondly, insert load instructions for each use of the instruction
500    // outside of the loop.
501    while (!I.use_empty()) {
502      Instruction *U = cast<Instruction>(I.use_back());
503
504      // If the user is a PHI Node, we actually have to insert load instructions
505      // in all predecessor blocks, not in the PHI block itself!
506      if (PHINode *UPN = dyn_cast<PHINode>(U)) {
507        // Only insert into each predecessor once, so that we don't have
508        // different incoming values from the same block!
509        std::map<BasicBlock*, Value*> InsertedBlocks;
510        for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
511          if (UPN->getIncomingValue(i) == &I) {
512            BasicBlock *Pred = UPN->getIncomingBlock(i);
513            Value *&PredVal = InsertedBlocks[Pred];
514            if (!PredVal) {
515              // Insert a new load instruction right before the terminator in
516              // the predecessor block.
517              PredVal = new LoadInst(AI, "", Pred->getTerminator());
518              CurAST->add(cast<LoadInst>(PredVal));
519            }
520
521            UPN->setIncomingValue(i, PredVal);
522          }
523
524      } else {
525        LoadInst *L = new LoadInst(AI, "", U);
526        U->replaceUsesOfWith(&I, L);
527        CurAST->add(L);
528      }
529    }
530
531    // Thirdly, insert a copy of the instruction in each exit block of the loop
532    // that is dominated by the instruction, storing the result into the memory
533    // location.  Be careful not to insert the instruction into any particular
534    // basic block more than once.
535    std::set<BasicBlock*> InsertedBlocks;
536    BasicBlock *InstOrigBB = I.getParent();
537
538    for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
539      BasicBlock *ExitBlock = ExitBlocks[i];
540
541      if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
542        // If we haven't already processed this exit block, do so now.
543        if (InsertedBlocks.insert(ExitBlock).second) {
544          // Insert the code after the last PHI node...
545          BasicBlock::iterator InsertPt = ExitBlock->begin();
546          while (isa<PHINode>(InsertPt)) ++InsertPt;
547
548          // If this is the first exit block processed, just move the original
549          // instruction, otherwise clone the original instruction and insert
550          // the copy.
551          Instruction *New;
552          if (InsertedBlocks.size() == 1) {
553            I.removeFromParent();
554            ExitBlock->getInstList().insert(InsertPt, &I);
555            New = &I;
556          } else {
557            New = I.clone();
558            CurAST->copyValue(&I, New);
559            if (!I.getName().empty())
560              New->setName(I.getName()+".le");
561            ExitBlock->getInstList().insert(InsertPt, New);
562          }
563
564          // Now that we have inserted the instruction, store it into the alloca
565          if (AI) new StoreInst(New, AI, InsertPt);
566        }
567      }
568    }
569
570    // If the instruction doesn't dominate any exit blocks, it must be dead.
571    if (InsertedBlocks.empty()) {
572      CurAST->deleteValue(&I);
573      I.eraseFromParent();
574    }
575
576    // Finally, promote the fine value to SSA form.
577    if (AI) {
578      std::vector<AllocaInst*> Allocas;
579      Allocas.push_back(AI);
580      PromoteMemToReg(Allocas, *DT, *DF, CurAST);
581    }
582  }
583}
584
585/// hoist - When an instruction is found to only use loop invariant operands
586/// that is safe to hoist, this instruction is called to do the dirty work.
587///
588void LICM::hoist(Instruction &I) {
589  DOUT << "LICM hoisting to " << Preheader->getName() << ": " << I;
590
591  // Remove the instruction from its current basic block... but don't delete the
592  // instruction.
593  I.removeFromParent();
594
595  // Insert the new node in Preheader, before the terminator.
596  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
597
598  if (isa<LoadInst>(I)) ++NumMovedLoads;
599  else if (isa<CallInst>(I)) ++NumMovedCalls;
600  ++NumHoisted;
601  Changed = true;
602}
603
604/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
605/// not a trapping instruction or if it is a trapping instruction and is
606/// guaranteed to execute.
607///
608bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
609  // If it is not a trapping instruction, it is always safe to hoist.
610  if (!Inst.isTrapping()) return true;
611
612  // Otherwise we have to check to make sure that the instruction dominates all
613  // of the exit blocks.  If it doesn't, then there is a path out of the loop
614  // which does not execute this instruction, so we can't hoist it.
615
616  // If the instruction is in the header block for the loop (which is very
617  // common), it is always guaranteed to dominate the exit blocks.  Since this
618  // is a common case, and can save some work, check it now.
619  if (Inst.getParent() == CurLoop->getHeader())
620    return true;
621
622  // It's always safe to load from a global or alloca.
623  if (isa<LoadInst>(Inst))
624    if (isa<AllocationInst>(Inst.getOperand(0)) ||
625        isa<GlobalVariable>(Inst.getOperand(0)))
626      return true;
627
628  // Get the exit blocks for the current loop.
629  SmallVector<BasicBlock*, 8> ExitBlocks;
630  CurLoop->getExitBlocks(ExitBlocks);
631
632  // For each exit block, get the DT node and walk up the DT until the
633  // instruction's basic block is found or we exit the loop.
634  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
635    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
636      return false;
637
638  return true;
639}
640
641
642/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
643/// stores out of the loop and moving loads to before the loop.  We do this by
644/// looping over the stores in the loop, looking for stores to Must pointers
645/// which are loop invariant.  We promote these memory locations to use allocas
646/// instead.  These allocas can easily be raised to register values by the
647/// PromoteMem2Reg functionality.
648///
649void LICM::PromoteValuesInLoop() {
650  // PromotedValues - List of values that are promoted out of the loop.  Each
651  // value has an alloca instruction for it, and a canonical version of the
652  // pointer.
653  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
654  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
655
656  FindPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
657  if (ValueToAllocaMap.empty()) return;   // If there are values to promote.
658
659  Changed = true;
660  NumPromoted += PromotedValues.size();
661
662  std::vector<Value*> PointerValueNumbers;
663
664  // Emit a copy from the value into the alloca'd value in the loop preheader
665  TerminatorInst *LoopPredInst = Preheader->getTerminator();
666  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
667    Value *Ptr = PromotedValues[i].second;
668
669    // If we are promoting a pointer value, update alias information for the
670    // inserted load.
671    Value *LoadValue = 0;
672    if (isa<PointerType>(cast<PointerType>(Ptr->getType())->getElementType())) {
673      // Locate a load or store through the pointer, and assign the same value
674      // to LI as we are loading or storing.  Since we know that the value is
675      // stored in this loop, this will always succeed.
676      for (Value::use_iterator UI = Ptr->use_begin(), E = Ptr->use_end();
677           UI != E; ++UI)
678        if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
679          LoadValue = LI;
680          break;
681        } else if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
682          if (SI->getOperand(1) == Ptr) {
683            LoadValue = SI->getOperand(0);
684            break;
685          }
686        }
687      assert(LoadValue && "No store through the pointer found!");
688      PointerValueNumbers.push_back(LoadValue);  // Remember this for later.
689    }
690
691    // Load from the memory we are promoting.
692    LoadInst *LI = new LoadInst(Ptr, Ptr->getName()+".promoted", LoopPredInst);
693
694    if (LoadValue) CurAST->copyValue(LoadValue, LI);
695
696    // Store into the temporary alloca.
697    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
698  }
699
700  // Scan the basic blocks in the loop, replacing uses of our pointers with
701  // uses of the allocas in question.
702  //
703  const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
704  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
705         E = LoopBBs.end(); I != E; ++I) {
706    // Rewrite all loads and stores in the block of the pointer...
707    for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
708         II != E; ++II) {
709      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
710        std::map<Value*, AllocaInst*>::iterator
711          I = ValueToAllocaMap.find(L->getOperand(0));
712        if (I != ValueToAllocaMap.end())
713          L->setOperand(0, I->second);    // Rewrite load instruction...
714      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
715        std::map<Value*, AllocaInst*>::iterator
716          I = ValueToAllocaMap.find(S->getOperand(1));
717        if (I != ValueToAllocaMap.end())
718          S->setOperand(1, I->second);    // Rewrite store instruction...
719      }
720    }
721  }
722
723  // Now that the body of the loop uses the allocas instead of the original
724  // memory locations, insert code to copy the alloca value back into the
725  // original memory location on all exits from the loop.  Note that we only
726  // want to insert one copy of the code in each exit block, though the loop may
727  // exit to the same block more than once.
728  //
729  std::set<BasicBlock*> ProcessedBlocks;
730
731  SmallVector<BasicBlock*, 8> ExitBlocks;
732  CurLoop->getExitBlocks(ExitBlocks);
733  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
734    if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
735      // Copy all of the allocas into their memory locations.
736      BasicBlock::iterator BI = ExitBlocks[i]->begin();
737      while (isa<PHINode>(*BI))
738        ++BI;             // Skip over all of the phi nodes in the block.
739      Instruction *InsertPos = BI;
740      unsigned PVN = 0;
741      for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
742        // Load from the alloca.
743        LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
744
745        // If this is a pointer type, update alias info appropriately.
746        if (isa<PointerType>(LI->getType()))
747          CurAST->copyValue(PointerValueNumbers[PVN++], LI);
748
749        // Store into the memory we promoted.
750        new StoreInst(LI, PromotedValues[i].second, InsertPos);
751      }
752    }
753
754  // Now that we have done the deed, use the mem2reg functionality to promote
755  // all of the new allocas we just created into real SSA registers.
756  //
757  std::vector<AllocaInst*> PromotedAllocas;
758  PromotedAllocas.reserve(PromotedValues.size());
759  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
760    PromotedAllocas.push_back(PromotedValues[i].first);
761  PromoteMemToReg(PromotedAllocas, *DT, *DF, CurAST);
762}
763
764/// FindPromotableValuesInLoop - Check the current loop for stores to definite
765/// pointers, which are not loaded and stored through may aliases and are safe
766/// for promotion.  If these are found, create an alloca for the value, add it
767/// to the PromotedValues list, and keep track of the mapping from value to
768/// alloca.
769void LICM::FindPromotableValuesInLoop(
770                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
771                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
772  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
773
774  SmallVector<Instruction *, 4> LoopExits;
775  SmallVector<BasicBlock *, 4> Blocks;
776  CurLoop->getExitingBlocks(Blocks);
777  for (SmallVector<BasicBlock *, 4>::iterator BI = Blocks.begin(),
778         BE = Blocks.end(); BI != BE; ++BI) {
779    BasicBlock *BB = *BI;
780    LoopExits.push_back(BB->getTerminator());
781  }
782
783  // Loop over all of the alias sets in the tracker object.
784  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
785       I != E; ++I) {
786    AliasSet &AS = *I;
787    // We can promote this alias set if it has a store, if it is a "Must" alias
788    // set, if the pointer is loop invariant, and if we are not eliminating any
789    // volatile loads or stores.
790    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
791        !AS.isVolatile() && CurLoop->isLoopInvariant(AS.begin()->first)) {
792      assert(!AS.empty() &&
793             "Must alias set should have at least one pointer element in it!");
794      Value *V = AS.begin()->first;
795
796      // Check that all of the pointers in the alias set have the same type.  We
797      // cannot (yet) promote a memory location that is loaded and stored in
798      // different sizes.
799      bool PointerOk = true;
800      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
801        if (V->getType() != I->first->getType()) {
802          PointerOk = false;
803          break;
804        }
805
806      // If one use of value V inside the loop is safe then it is OK to promote
807      // this value. On the otherside if there is not any unsafe use inside the
808      // loop then also it is OK to promote this value. Otherwise it is
809      // unsafe to promote this value.
810      if (PointerOk) {
811        bool oneSafeUse = false;
812        bool oneUnsafeUse = false;
813        for(Value::use_iterator UI = V->use_begin(), UE = V->use_end();
814            UI != UE; ++UI) {
815          Instruction *Use = dyn_cast<Instruction>(*UI);
816          if (!Use || !CurLoop->contains(Use->getParent()))
817            continue;
818          for (SmallVector<Instruction *, 4>::iterator
819                 ExitI = LoopExits.begin(), ExitE = LoopExits.end();
820               ExitI != ExitE; ++ExitI) {
821            Instruction *Ex = *ExitI;
822            if (!isa<PHINode>(Use) && DT->dominates(Use, Ex)) {
823              oneSafeUse = true;
824              break;
825            }
826            else
827              oneUnsafeUse = true;
828          }
829
830          if (oneSafeUse)
831            break;
832        }
833
834        if (oneSafeUse)
835          PointerOk = true;
836        else if (!oneUnsafeUse)
837          PointerOk = true;
838        else
839          PointerOk = false;
840      }
841
842      if (PointerOk) {
843        const Type *Ty = cast<PointerType>(V->getType())->getElementType();
844        AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
845        PromotedValues.push_back(std::make_pair(AI, V));
846
847        // Update the AST and alias analysis.
848        CurAST->copyValue(V, AI);
849
850        for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
851          ValueToAllocaMap.insert(std::make_pair(I->first, AI));
852
853        DOUT << "LICM: Promoting value: " << *V << "\n";
854      }
855    }
856  }
857}
858
859/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
860void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
861  AliasSetTracker *AST = LoopToAliasMap[L];
862  if (!AST)
863    return;
864
865  AST->copyValue(From, To);
866}
867
868/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
869/// set.
870void LICM::deleteAnalysisValue(Value *V, Loop *L) {
871  AliasSetTracker *AST = LoopToAliasMap[L];
872  if (!AST)
873    return;
874
875  AST->deleteValue(V);
876}
877