LICM.cpp revision e0e734eea052a4e8372e6f430ef41149128ba0a6
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// This pass is a simple loop invariant code motion pass.
4//
5// Note that this pass does NOT require pre-headers to exist on loops in the
6// CFG, but if there is not distinct preheader for a loop, the hoisted code will
7// be *DUPLICATED* in every basic block, outside of the loop, that preceeds the
8// loop header.  Additionally, any use of one of these hoisted expressions
9// cannot be loop invariant itself, because the expression hoisted gets a PHI
10// node that is loop variant.
11//
12// For these reasons, and many more, it makes sense to run a pass before this
13// that ensures that there are preheaders on all loops.  That said, we don't
14// REQUIRE it. :)
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/Scalar.h"
19#include "llvm/Transforms/Utils/Local.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/iOperators.h"
22#include "llvm/iPHINode.h"
23#include "llvm/Support/InstVisitor.h"
24#include "llvm/Support/CFG.h"
25#include "Support/STLExtras.h"
26#include "Support/StatisticReporter.h"
27#include <algorithm>
28
29static Statistic<> NumHoistedNPH("licm\t\t- Number of insts hoisted to multiple"
30                                 " loop preds (bad, no loop pre-header)");
31static Statistic<> NumHoistedPH("licm\t\t- Number of insts hoisted to a loop "
32                                "pre-header");
33
34namespace {
35  struct LICM : public FunctionPass, public InstVisitor<LICM> {
36    const char *getPassName() const { return "Loop Invariant Code Motion"; }
37
38    virtual bool runOnFunction(Function *F);
39
40    // This transformation requires natural loop information...
41    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
42      AU.preservesCFG();
43      AU.addRequired(LoopInfo::ID);
44    }
45
46  private:
47    // List of predecessor blocks for the current loop - These blocks are where
48    // we hoist loop invariants to for the current loop.
49    //
50    std::vector<BasicBlock*> LoopPreds, LoopBackEdges;
51
52    Loop *CurLoop;  // The current loop we are working on...
53    bool Changed;   // Set to true when we change anything.
54
55    // visitLoop - Hoist expressions out of the specified loop...
56    void visitLoop(Loop *L);
57
58    // notInCurrentLoop - Little predicate that returns true if the specified
59    // basic block is in a subloop of the current one, not the current one
60    // itself.
61    //
62    bool notInCurrentLoop(BasicBlock *BB) {
63      for (unsigned i = 0, e = CurLoop->getSubLoops().size(); i != e; ++i)
64        if (CurLoop->getSubLoops()[i]->contains(BB))
65          return true;  // A subloop actually contains this block!
66      return false;
67    }
68
69    // hoist - When an instruction is found to only use loop invariant operands
70    // that is safe to hoist, this instruction is called to do the dirty work.
71    //
72    void hoist(Instruction *I);
73
74    // isLoopInvariant - Return true if the specified value is loop invariant
75    inline bool isLoopInvariant(Value *V) {
76      if (Instruction *I = dyn_cast<Instruction>(V))
77        return !CurLoop->contains(I->getParent());
78      return true;  // All non-instructions are loop invariant
79    }
80
81    // visitBasicBlock - Run LICM on a particular block.
82    void visitBasicBlock(BasicBlock *BB);
83
84    // Instruction visitation handlers... these basically control whether or not
85    // the specified instruction types are hoisted.
86    //
87    friend class InstVisitor<LICM>;
88    void visitUnaryOperator(Instruction *I) {
89      if (isLoopInvariant(I->getOperand(0))) hoist(I);
90    }
91    void visitBinaryOperator(Instruction *I) {
92      if (isLoopInvariant(I->getOperand(0)) &&isLoopInvariant(I->getOperand(1)))
93        hoist(I);
94    }
95
96    void visitCastInst(CastInst *I) { visitUnaryOperator((Instruction*)I); }
97    void visitShiftInst(ShiftInst *I) { visitBinaryOperator((Instruction*)I); }
98
99    void visitGetElementPtrInst(GetElementPtrInst *GEPI) {
100      Instruction *I = (Instruction*)GEPI;
101      for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
102        if (!isLoopInvariant(I->getOperand(i))) return;
103      hoist(I);
104    }
105  };
106}
107
108Pass *createLICMPass() { return new LICM(); }
109
110bool LICM::runOnFunction(Function *F) {
111  // get our loop information...
112  const std::vector<Loop*> &TopLevelLoops =
113    getAnalysis<LoopInfo>().getTopLevelLoops();
114
115  // Traverse loops in postorder, hoisting expressions out of the deepest loops
116  // first.
117  //
118  Changed = false;
119  std::for_each(TopLevelLoops.begin(), TopLevelLoops.end(),
120                bind_obj(this, &LICM::visitLoop));
121  return Changed;
122}
123
124void LICM::visitLoop(Loop *L) {
125  // Recurse through all subloops before we process this loop...
126  std::for_each(L->getSubLoops().begin(), L->getSubLoops().end(),
127                bind_obj(this, &LICM::visitLoop));
128  CurLoop = L;
129
130  // Calculate the set of predecessors for this loop.  The predecessors for this
131  // loop are equal to the predecessors for the header node of the loop that are
132  // not themselves in the loop.
133  //
134  BasicBlock *Header = L->getHeader();
135
136  // Calculate the sets of predecessors and backedges of the loop...
137  LoopBackEdges.insert(LoopBackEdges.end(),pred_begin(Header),pred_end(Header));
138
139  std::vector<BasicBlock*>::iterator LPI =
140    std::partition(LoopBackEdges.begin(), LoopBackEdges.end(),
141                   bind_obj(CurLoop, &Loop::contains));
142
143  // Move all predecessors to the LoopPreds vector...
144  LoopPreds.insert(LoopPreds.end(), LPI, LoopBackEdges.end());
145
146  // Remove predecessors from backedges list...
147  LoopBackEdges.erase(LPI, LoopBackEdges.end());
148
149
150  // The only way that there could be no predecessors to a loop is if the loop
151  // is not reachable.  Since we don't care about optimizing dead loops,
152  // summarily ignore them.
153  //
154  if (LoopPreds.empty()) return;
155
156  // We want to visit all of the instructions in this loop... that are not parts
157  // of our subloops (they have already had their invariants hoisted out of
158  // their loop, into this loop, so there is no need to process the BODIES of
159  // the subloops).
160  //
161  std::vector<BasicBlock*> BBs(L->getBlocks().begin(), L->getBlocks().end());
162
163  // Remove blocks that are actually in subloops...
164  BBs.erase(std::remove_if(BBs.begin(), BBs.end(),
165                           bind_obj(this, &LICM::notInCurrentLoop)), BBs.end());
166
167  // Visit all of the basic blocks we have chosen, hoisting out the instructions
168  // as neccesary.  This leaves dead copies of the instruction in the loop
169  // unfortunately...
170  //
171  for_each(BBs.begin(), BBs.end(), bind_obj(this, &LICM::visitBasicBlock));
172
173  // Clear out loops state information for the next iteration
174  CurLoop = 0;
175  LoopPreds.clear();
176  LoopBackEdges.clear();
177}
178
179void LICM::visitBasicBlock(BasicBlock *BB) {
180  // This cannot use an iterator, because it might get invalidated when PHI
181  // nodes are inserted!
182  //
183  for (unsigned i = 0; i < BB->size(); ) {
184    visit(BB->begin()[i]);
185
186    BasicBlock::iterator It = BB->begin()+i;
187    if (dceInstruction(BB->getInstList(), It))
188      Changed = true;
189    else
190      ++i;
191  }
192}
193
194
195void LICM::hoist(Instruction *Inst) {
196  if (Inst->use_empty()) return;  // Don't (re) hoist dead instructions!
197  //cerr << "Hoisting " << Inst;
198
199  BasicBlock *Header = CurLoop->getHeader();
200
201  // Old instruction will be removed, so take it's name...
202  string InstName = Inst->getName();
203  Inst->setName("");
204
205  // The common case is that we have a pre-header.  Generate special case code
206  // that is faster if that is the case.
207  //
208  if (LoopPreds.size() == 1) {
209    BasicBlock *Pred = LoopPreds[0];
210
211    // Create a new copy of the instruction, for insertion into Pred.
212    Instruction *New = Inst->clone();
213    New->setName(InstName);
214
215    // Insert the new node in Pred, before the terminator.
216    Pred->getInstList().insert(Pred->end()-1, New);
217
218    // Kill the old instruction.
219    Inst->replaceAllUsesWith(New);
220    ++NumHoistedPH;
221
222  } else {
223    // No loop pre-header, insert a PHI node into header to capture all of the
224    // incoming versions of the value.
225    //
226    PHINode *LoopVal = new PHINode(Inst->getType(), InstName+".phi");
227
228    // Insert the new PHI node into the loop header...
229    Header->getInstList().push_front(LoopVal);
230
231    // Insert cloned versions of the instruction into all of the loop preds.
232    for (unsigned i = 0, e = LoopPreds.size(); i != e; ++i) {
233      BasicBlock *Pred = LoopPreds[i];
234
235      // Create a new copy of the instruction, for insertion into Pred.
236      Instruction *New = Inst->clone();
237      New->setName(InstName);
238
239      // Insert the new node in Pred, before the terminator.
240      Pred->getInstList().insert(Pred->end()-1, New);
241
242      // Add the incoming value to the PHI node.
243      LoopVal->addIncoming(New, Pred);
244    }
245
246    // Add incoming values to the PHI node for all backedges in the loop...
247    for (unsigned i = 0, e = LoopBackEdges.size(); i != e; ++i)
248      LoopVal->addIncoming(LoopVal, LoopBackEdges[i]);
249
250    // Replace all uses of the old version of the instruction in the loop with
251    // the new version that is out of the loop.  We know that this is ok,
252    // because the new definition is in the loop header, which dominates the
253    // entire loop body.  The old definition was defined _inside_ of the loop,
254    // so the scope cannot extend outside of the loop, so we're ok.
255    //
256    Inst->replaceAllUsesWith(LoopVal);
257    ++NumHoistedNPH;
258  }
259
260  Changed = true;
261}
262
263