LICM.cpp revision e488064922f12c4cf07f3aef9a4d2d3ffd15f9c0
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers, thus hoisting and sinking "invariant" loads and stores.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads and calls out of loops.  If we can determine
19//     that a load or call inside of a loop never aliases anything stored to,
20//     we can hoist it or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the SSAUpdater to construct the appropriate SSA form for the value.
30//
31//===----------------------------------------------------------------------===//
32
33#define DEBUG_TYPE "licm"
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Constants.h"
36#include "llvm/DerivedTypes.h"
37#include "llvm/IntrinsicInst.h"
38#include "llvm/Instructions.h"
39#include "llvm/Target/TargetData.h"
40#include "llvm/Analysis/LoopInfo.h"
41#include "llvm/Analysis/LoopPass.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/Dominators.h"
45#include "llvm/Analysis/ScalarEvolution.h"
46#include "llvm/Transforms/Utils/SSAUpdater.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumSunk      , "Number of instructions sunk out of loop");
56STATISTIC(NumHoisted   , "Number of instructions hoisted out of loop");
57STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
58STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
59STATISTIC(NumPromoted  , "Number of memory locations promoted to registers");
60
61static cl::opt<bool>
62DisablePromotion("disable-licm-promotion", cl::Hidden,
63                 cl::desc("Disable memory promotion in LICM pass"));
64
65namespace {
66  struct LICM : public LoopPass {
67    static char ID; // Pass identification, replacement for typeid
68    LICM() : LoopPass(ID) {}
69
70    virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
71
72    /// This transformation requires natural loop information & requires that
73    /// loop preheaders be inserted into the CFG...
74    ///
75    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
76      AU.setPreservesCFG();
77      AU.addRequired<DominatorTree>();
78      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
79      AU.addRequired<LoopInfo>();
80      AU.addRequiredID(LoopSimplifyID);
81      AU.addRequired<AliasAnalysis>();
82      AU.addPreserved<ScalarEvolution>();
83      AU.addPreserved<DominanceFrontier>();
84      AU.addPreservedID(LoopSimplifyID);
85    }
86
87    bool doFinalization() {
88      // Free the values stored in the map
89      for (std::map<Loop *, AliasSetTracker *>::iterator
90             I = LoopToAliasMap.begin(), E = LoopToAliasMap.end(); I != E; ++I)
91        delete I->second;
92
93      LoopToAliasMap.clear();
94      return false;
95    }
96
97  private:
98    // Various analyses that we use...
99    AliasAnalysis *AA;       // Current AliasAnalysis information
100    LoopInfo      *LI;       // Current LoopInfo
101    DominatorTree *DT;       // Dominator Tree for the current Loop...
102    DominanceFrontier *DF;   // Current Dominance Frontier
103
104    // State that is updated as we process loops
105    bool Changed;            // Set to true when we change anything.
106    BasicBlock *Preheader;   // The preheader block of the current loop...
107    Loop *CurLoop;           // The current loop we are working on...
108    AliasSetTracker *CurAST; // AliasSet information for the current loop...
109    std::map<Loop *, AliasSetTracker *> LoopToAliasMap;
110
111    /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
112    void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L);
113
114    /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
115    /// set.
116    void deleteAnalysisValue(Value *V, Loop *L);
117
118    /// SinkRegion - Walk the specified region of the CFG (defined by all blocks
119    /// dominated by the specified block, and that are in the current loop) in
120    /// reverse depth first order w.r.t the DominatorTree.  This allows us to
121    /// visit uses before definitions, allowing us to sink a loop body in one
122    /// pass without iteration.
123    ///
124    void SinkRegion(DomTreeNode *N);
125
126    /// HoistRegion - Walk the specified region of the CFG (defined by all
127    /// blocks dominated by the specified block, and that are in the current
128    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
129    /// visit definitions before uses, allowing us to hoist a loop body in one
130    /// pass without iteration.
131    ///
132    void HoistRegion(DomTreeNode *N);
133
134    /// inSubLoop - Little predicate that returns true if the specified basic
135    /// block is in a subloop of the current one, not the current one itself.
136    ///
137    bool inSubLoop(BasicBlock *BB) {
138      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
139      for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
140        if ((*I)->contains(BB))
141          return true;  // A subloop actually contains this block!
142      return false;
143    }
144
145    /// isExitBlockDominatedByBlockInLoop - This method checks to see if the
146    /// specified exit block of the loop is dominated by the specified block
147    /// that is in the body of the loop.  We use these constraints to
148    /// dramatically limit the amount of the dominator tree that needs to be
149    /// searched.
150    bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
151                                           BasicBlock *BlockInLoop) const {
152      // If the block in the loop is the loop header, it must be dominated!
153      BasicBlock *LoopHeader = CurLoop->getHeader();
154      if (BlockInLoop == LoopHeader)
155        return true;
156
157      DomTreeNode *BlockInLoopNode = DT->getNode(BlockInLoop);
158      DomTreeNode *IDom            = DT->getNode(ExitBlock);
159
160      // Because the exit block is not in the loop, we know we have to get _at
161      // least_ its immediate dominator.
162      IDom = IDom->getIDom();
163
164      while (IDom && IDom != BlockInLoopNode) {
165        // If we have got to the header of the loop, then the instructions block
166        // did not dominate the exit node, so we can't hoist it.
167        if (IDom->getBlock() == LoopHeader)
168          return false;
169
170        // Get next Immediate Dominator.
171        IDom = IDom->getIDom();
172      };
173
174      return true;
175    }
176
177    /// sink - When an instruction is found to only be used outside of the loop,
178    /// this function moves it to the exit blocks and patches up SSA form as
179    /// needed.
180    ///
181    void sink(Instruction &I);
182
183    /// hoist - When an instruction is found to only use loop invariant operands
184    /// that is safe to hoist, this instruction is called to do the dirty work.
185    ///
186    void hoist(Instruction &I);
187
188    /// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
189    /// is not a trapping instruction or if it is a trapping instruction and is
190    /// guaranteed to execute.
191    ///
192    bool isSafeToExecuteUnconditionally(Instruction &I);
193
194    /// pointerInvalidatedByLoop - Return true if the body of this loop may
195    /// store into the memory location pointed to by V.
196    ///
197    bool pointerInvalidatedByLoop(Value *V, unsigned Size) {
198      // Check to see if any of the basic blocks in CurLoop invalidate *V.
199      return CurAST->getAliasSetForPointer(V, Size).isMod();
200    }
201
202    bool canSinkOrHoistInst(Instruction &I);
203    bool isLoopInvariantInst(Instruction &I);
204    bool isNotUsedInLoop(Instruction &I);
205
206    void PromoteAliasSet(AliasSet &AS);
207  };
208}
209
210char LICM::ID = 0;
211INITIALIZE_PASS(LICM, "licm", "Loop Invariant Code Motion", false, false);
212
213Pass *llvm::createLICMPass() { return new LICM(); }
214
215/// Hoist expressions out of the specified loop. Note, alias info for inner
216/// loop is not preserved so it is not a good idea to run LICM multiple
217/// times on one loop.
218///
219bool LICM::runOnLoop(Loop *L, LPPassManager &LPM) {
220  Changed = false;
221
222  // Get our Loop and Alias Analysis information...
223  LI = &getAnalysis<LoopInfo>();
224  AA = &getAnalysis<AliasAnalysis>();
225  DF = &getAnalysis<DominanceFrontier>();
226  DT = &getAnalysis<DominatorTree>();
227
228  CurAST = new AliasSetTracker(*AA);
229  // Collect Alias info from subloops
230  for (Loop::iterator LoopItr = L->begin(), LoopItrE = L->end();
231       LoopItr != LoopItrE; ++LoopItr) {
232    Loop *InnerL = *LoopItr;
233    AliasSetTracker *InnerAST = LoopToAliasMap[InnerL];
234    assert (InnerAST && "Where is my AST?");
235
236    // What if InnerLoop was modified by other passes ?
237    CurAST->add(*InnerAST);
238  }
239
240  CurLoop = L;
241
242  // Get the preheader block to move instructions into...
243  Preheader = L->getLoopPreheader();
244
245  // Loop over the body of this loop, looking for calls, invokes, and stores.
246  // Because subloops have already been incorporated into AST, we skip blocks in
247  // subloops.
248  //
249  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
250       I != E; ++I) {
251    BasicBlock *BB = *I;
252    if (LI->getLoopFor(BB) == L)        // Ignore blocks in subloops...
253      CurAST->add(*BB);                 // Incorporate the specified basic block
254  }
255
256  // We want to visit all of the instructions in this loop... that are not parts
257  // of our subloops (they have already had their invariants hoisted out of
258  // their loop, into this loop, so there is no need to process the BODIES of
259  // the subloops).
260  //
261  // Traverse the body of the loop in depth first order on the dominator tree so
262  // that we are guaranteed to see definitions before we see uses.  This allows
263  // us to sink instructions in one pass, without iteration.  After sinking
264  // instructions, we perform another pass to hoist them out of the loop.
265  //
266  if (L->hasDedicatedExits())
267    SinkRegion(DT->getNode(L->getHeader()));
268  if (Preheader)
269    HoistRegion(DT->getNode(L->getHeader()));
270
271  // Now that all loop invariants have been removed from the loop, promote any
272  // memory references to scalars that we can.
273  if (!DisablePromotion && Preheader && L->hasDedicatedExits()) {
274    // Loop over all of the alias sets in the tracker object.
275    for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
276         I != E; ++I)
277      PromoteAliasSet(*I);
278  }
279
280  // Clear out loops state information for the next iteration
281  CurLoop = 0;
282  Preheader = 0;
283
284  LoopToAliasMap[L] = CurAST;
285  return Changed;
286}
287
288/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
289/// dominated by the specified block, and that are in the current loop) in
290/// reverse depth first order w.r.t the DominatorTree.  This allows us to visit
291/// uses before definitions, allowing us to sink a loop body in one pass without
292/// iteration.
293///
294void LICM::SinkRegion(DomTreeNode *N) {
295  assert(N != 0 && "Null dominator tree node?");
296  BasicBlock *BB = N->getBlock();
297
298  // If this subregion is not in the top level loop at all, exit.
299  if (!CurLoop->contains(BB)) return;
300
301  // We are processing blocks in reverse dfo, so process children first...
302  const std::vector<DomTreeNode*> &Children = N->getChildren();
303  for (unsigned i = 0, e = Children.size(); i != e; ++i)
304    SinkRegion(Children[i]);
305
306  // Only need to process the contents of this block if it is not part of a
307  // subloop (which would already have been processed).
308  if (inSubLoop(BB)) return;
309
310  for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
311    Instruction &I = *--II;
312
313    // Check to see if we can sink this instruction to the exit blocks
314    // of the loop.  We can do this if the all users of the instruction are
315    // outside of the loop.  In this case, it doesn't even matter if the
316    // operands of the instruction are loop invariant.
317    //
318    if (isNotUsedInLoop(I) && canSinkOrHoistInst(I)) {
319      ++II;
320      sink(I);
321    }
322  }
323}
324
325/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
326/// dominated by the specified block, and that are in the current loop) in depth
327/// first order w.r.t the DominatorTree.  This allows us to visit definitions
328/// before uses, allowing us to hoist a loop body in one pass without iteration.
329///
330void LICM::HoistRegion(DomTreeNode *N) {
331  assert(N != 0 && "Null dominator tree node?");
332  BasicBlock *BB = N->getBlock();
333
334  // If this subregion is not in the top level loop at all, exit.
335  if (!CurLoop->contains(BB)) return;
336
337  // Only need to process the contents of this block if it is not part of a
338  // subloop (which would already have been processed).
339  if (!inSubLoop(BB))
340    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
341      Instruction &I = *II++;
342
343      // Try hoisting the instruction out to the preheader.  We can only do this
344      // if all of the operands of the instruction are loop invariant and if it
345      // is safe to hoist the instruction.
346      //
347      if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
348          isSafeToExecuteUnconditionally(I))
349        hoist(I);
350      }
351
352  const std::vector<DomTreeNode*> &Children = N->getChildren();
353  for (unsigned i = 0, e = Children.size(); i != e; ++i)
354    HoistRegion(Children[i]);
355}
356
357/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
358/// instruction.
359///
360bool LICM::canSinkOrHoistInst(Instruction &I) {
361  // Loads have extra constraints we have to verify before we can hoist them.
362  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
363    if (LI->isVolatile())
364      return false;        // Don't hoist volatile loads!
365
366    // Loads from constant memory are always safe to move, even if they end up
367    // in the same alias set as something that ends up being modified.
368    if (AA->pointsToConstantMemory(LI->getOperand(0)))
369      return true;
370
371    // Don't hoist loads which have may-aliased stores in loop.
372    unsigned Size = 0;
373    if (LI->getType()->isSized())
374      Size = AA->getTypeStoreSize(LI->getType());
375    return !pointerInvalidatedByLoop(LI->getOperand(0), Size);
376  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
377    // Handle obvious cases efficiently.
378    AliasAnalysis::ModRefBehavior Behavior = AA->getModRefBehavior(CI);
379    if (Behavior == AliasAnalysis::DoesNotAccessMemory)
380      return true;
381    else if (Behavior == AliasAnalysis::OnlyReadsMemory) {
382      // If this call only reads from memory and there are no writes to memory
383      // in the loop, we can hoist or sink the call as appropriate.
384      bool FoundMod = false;
385      for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
386           I != E; ++I) {
387        AliasSet &AS = *I;
388        if (!AS.isForwardingAliasSet() && AS.isMod()) {
389          FoundMod = true;
390          break;
391        }
392      }
393      if (!FoundMod) return true;
394    }
395
396    // FIXME: This should use mod/ref information to see if we can hoist or sink
397    // the call.
398
399    return false;
400  }
401
402  // Otherwise these instructions are hoistable/sinkable
403  return isa<BinaryOperator>(I) || isa<CastInst>(I) ||
404         isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
405         isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
406         isa<ShuffleVectorInst>(I);
407}
408
409/// isNotUsedInLoop - Return true if the only users of this instruction are
410/// outside of the loop.  If this is true, we can sink the instruction to the
411/// exit blocks of the loop.
412///
413bool LICM::isNotUsedInLoop(Instruction &I) {
414  for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
415    Instruction *User = cast<Instruction>(*UI);
416    if (PHINode *PN = dyn_cast<PHINode>(User)) {
417      // PHI node uses occur in predecessor blocks!
418      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
419        if (PN->getIncomingValue(i) == &I)
420          if (CurLoop->contains(PN->getIncomingBlock(i)))
421            return false;
422    } else if (CurLoop->contains(User)) {
423      return false;
424    }
425  }
426  return true;
427}
428
429
430/// isLoopInvariantInst - Return true if all operands of this instruction are
431/// loop invariant.  We also filter out non-hoistable instructions here just for
432/// efficiency.
433///
434bool LICM::isLoopInvariantInst(Instruction &I) {
435  // The instruction is loop invariant if all of its operands are loop-invariant
436  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
437    if (!CurLoop->isLoopInvariant(I.getOperand(i)))
438      return false;
439
440  // If we got this far, the instruction is loop invariant!
441  return true;
442}
443
444/// sink - When an instruction is found to only be used outside of the loop,
445/// this function moves it to the exit blocks and patches up SSA form as needed.
446/// This method is guaranteed to remove the original instruction from its
447/// position, and may either delete it or move it to outside of the loop.
448///
449void LICM::sink(Instruction &I) {
450  DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
451
452  SmallVector<BasicBlock*, 8> ExitBlocks;
453  CurLoop->getUniqueExitBlocks(ExitBlocks);
454
455  if (isa<LoadInst>(I)) ++NumMovedLoads;
456  else if (isa<CallInst>(I)) ++NumMovedCalls;
457  ++NumSunk;
458  Changed = true;
459
460  // The case where there is only a single exit node of this loop is common
461  // enough that we handle it as a special (more efficient) case.  It is more
462  // efficient to handle because there are no PHI nodes that need to be placed.
463  if (ExitBlocks.size() == 1) {
464    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
465      // Instruction is not used, just delete it.
466      CurAST->deleteValue(&I);
467      // If I has users in unreachable blocks, eliminate.
468      // If I is not void type then replaceAllUsesWith undef.
469      // This allows ValueHandlers and custom metadata to adjust itself.
470      if (!I.use_empty())
471        I.replaceAllUsesWith(UndefValue::get(I.getType()));
472      I.eraseFromParent();
473    } else {
474      // Move the instruction to the start of the exit block, after any PHI
475      // nodes in it.
476      I.removeFromParent();
477      BasicBlock::iterator InsertPt = ExitBlocks[0]->getFirstNonPHI();
478      ExitBlocks[0]->getInstList().insert(InsertPt, &I);
479    }
480    return;
481  }
482
483  if (ExitBlocks.empty()) {
484    // The instruction is actually dead if there ARE NO exit blocks.
485    CurAST->deleteValue(&I);
486    // If I has users in unreachable blocks, eliminate.
487    // If I is not void type then replaceAllUsesWith undef.
488    // This allows ValueHandlers and custom metadata to adjust itself.
489    if (!I.use_empty())
490      I.replaceAllUsesWith(UndefValue::get(I.getType()));
491    I.eraseFromParent();
492    return;
493  }
494
495  // Otherwise, if we have multiple exits, use the SSAUpdater to do all of the
496  // hard work of inserting PHI nodes as necessary.
497  SmallVector<PHINode*, 8> NewPHIs;
498  SSAUpdater SSA(&NewPHIs);
499
500  if (!I.use_empty())
501    SSA.Initialize(&I);
502
503  // Insert a copy of the instruction in each exit block of the loop that is
504  // dominated by the instruction.  Each exit block is known to only be in the
505  // ExitBlocks list once.
506  BasicBlock *InstOrigBB = I.getParent();
507  unsigned NumInserted = 0;
508
509  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
510    BasicBlock *ExitBlock = ExitBlocks[i];
511
512    if (!isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB))
513      continue;
514
515    // Insert the code after the last PHI node.
516    BasicBlock::iterator InsertPt = ExitBlock->getFirstNonPHI();
517
518    // If this is the first exit block processed, just move the original
519    // instruction, otherwise clone the original instruction and insert
520    // the copy.
521    Instruction *New;
522    if (NumInserted++ == 0) {
523      I.moveBefore(InsertPt);
524      New = &I;
525    } else {
526      New = I.clone();
527      CurAST->copyValue(&I, New);
528      if (!I.getName().empty())
529        New->setName(I.getName()+".le");
530      ExitBlock->getInstList().insert(InsertPt, New);
531    }
532
533    // Now that we have inserted the instruction, inform SSAUpdater.
534    if (!I.use_empty())
535      SSA.AddAvailableValue(ExitBlock, New);
536  }
537
538  // If the instruction doesn't dominate any exit blocks, it must be dead.
539  if (NumInserted == 0) {
540    CurAST->deleteValue(&I);
541    if (!I.use_empty())
542      I.replaceAllUsesWith(UndefValue::get(I.getType()));
543    I.eraseFromParent();
544    return;
545  }
546
547  // Next, rewrite uses of the instruction, inserting PHI nodes as needed.
548  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; ) {
549    // Grab the use before incrementing the iterator.
550    Use &U = UI.getUse();
551    // Increment the iterator before removing the use from the list.
552    ++UI;
553    SSA.RewriteUseAfterInsertions(U);
554  }
555
556  // Update CurAST for NewPHIs if I had pointer type.
557  if (I.getType()->isPointerTy())
558    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
559      CurAST->copyValue(NewPHIs[i], &I);
560}
561
562/// hoist - When an instruction is found to only use loop invariant operands
563/// that is safe to hoist, this instruction is called to do the dirty work.
564///
565void LICM::hoist(Instruction &I) {
566  DEBUG(dbgs() << "LICM hoisting to " << Preheader->getName() << ": "
567        << I << "\n");
568
569  // Remove the instruction from its current basic block... but don't delete the
570  // instruction.
571  I.removeFromParent();
572
573  // Insert the new node in Preheader, before the terminator.
574  Preheader->getInstList().insert(Preheader->getTerminator(), &I);
575
576  if (isa<LoadInst>(I)) ++NumMovedLoads;
577  else if (isa<CallInst>(I)) ++NumMovedCalls;
578  ++NumHoisted;
579  Changed = true;
580}
581
582/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
583/// not a trapping instruction or if it is a trapping instruction and is
584/// guaranteed to execute.
585///
586bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
587  // If it is not a trapping instruction, it is always safe to hoist.
588  if (Inst.isSafeToSpeculativelyExecute())
589    return true;
590
591  // Otherwise we have to check to make sure that the instruction dominates all
592  // of the exit blocks.  If it doesn't, then there is a path out of the loop
593  // which does not execute this instruction, so we can't hoist it.
594
595  // If the instruction is in the header block for the loop (which is very
596  // common), it is always guaranteed to dominate the exit blocks.  Since this
597  // is a common case, and can save some work, check it now.
598  if (Inst.getParent() == CurLoop->getHeader())
599    return true;
600
601  // Get the exit blocks for the current loop.
602  SmallVector<BasicBlock*, 8> ExitBlocks;
603  CurLoop->getExitBlocks(ExitBlocks);
604
605  // For each exit block, get the DT node and walk up the DT until the
606  // instruction's basic block is found or we exit the loop.
607  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
608    if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
609      return false;
610
611  return true;
612}
613
614/// PromoteAliasSet - Try to promote memory values to scalars by sinking
615/// stores out of the loop and moving loads to before the loop.  We do this by
616/// looping over the stores in the loop, looking for stores to Must pointers
617/// which are loop invariant.
618///
619void LICM::PromoteAliasSet(AliasSet &AS) {
620  // We can promote this alias set if it has a store, if it is a "Must" alias
621  // set, if the pointer is loop invariant, and if we are not eliminating any
622  // volatile loads or stores.
623  if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
624      AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
625    return;
626
627  assert(!AS.empty() &&
628         "Must alias set should have at least one pointer element in it!");
629  Value *SomePtr = AS.begin()->getValue();
630
631  // It isn't safe to promote a load/store from the loop if the load/store is
632  // conditional.  For example, turning:
633  //
634  //    for () { if (c) *P += 1; }
635  //
636  // into:
637  //
638  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
639  //
640  // is not safe, because *P may only be valid to access if 'c' is true.
641  //
642  // It is safe to promote P if all uses are direct load/stores and if at
643  // least one is guaranteed to be executed.
644  bool GuaranteedToExecute = false;
645
646  SmallVector<Instruction*, 64> LoopUses;
647  SmallPtrSet<Value*, 4> PointerMustAliases;
648
649  // Check that all of the pointers in the alias set have the same type.  We
650  // cannot (yet) promote a memory location that is loaded and stored in
651  // different sizes.
652  for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
653    Value *ASIV = ASI->getValue();
654    PointerMustAliases.insert(ASIV);
655
656    // Check that all of the pointers in the alias set have the same type.  We
657    // cannot (yet) promote a memory location that is loaded and stored in
658    // different sizes.
659    if (SomePtr->getType() != ASIV->getType())
660      return;
661
662    for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
663         UI != UE; ++UI) {
664      // Ignore instructions that are outside the loop.
665      Instruction *Use = dyn_cast<Instruction>(*UI);
666      if (!Use || !CurLoop->contains(Use))
667        continue;
668
669      // If there is an non-load/store instruction in the loop, we can't promote
670      // it.
671      if (isa<LoadInst>(Use))
672        assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken");
673      else if (isa<StoreInst>(Use))
674        assert(!cast<StoreInst>(Use)->isVolatile() &&
675               Use->getOperand(0) != ASIV && "AST broken");
676      else
677        return; // Not a load or store.
678
679      if (!GuaranteedToExecute)
680        GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
681
682      LoopUses.push_back(Use);
683    }
684  }
685
686  // If there isn't a guaranteed-to-execute instruction, we can't promote.
687  if (!GuaranteedToExecute)
688    return;
689
690  // Otherwise, this is safe to promote, lets do it!
691  DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
692  Changed = true;
693  ++NumPromoted;
694
695  // We use the SSAUpdater interface to insert phi nodes as required.
696  SmallVector<PHINode*, 16> NewPHIs;
697  SSAUpdater SSA(&NewPHIs);
698
699  // It wants to know some value of the same type as what we'll be inserting.
700  Value *SomeValue;
701  if (isa<LoadInst>(LoopUses[0]))
702    SomeValue = LoopUses[0];
703  else
704    SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0);
705  SSA.Initialize(SomeValue);
706
707  // First step: bucket up uses of the pointers by the block they occur in.
708  // This is important because we have to handle multiple defs/uses in a block
709  // ourselves: SSAUpdater is purely for cross-block references.
710  // FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
711  DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
712  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
713    Instruction *User = LoopUses[i];
714    UsesByBlock[User->getParent()].push_back(User);
715  }
716
717  // Okay, now we can iterate over all the blocks in the loop with uses,
718  // processing them.  Keep track of which loads are loading a live-in value.
719  SmallVector<LoadInst*, 32> LiveInLoads;
720
721  for (unsigned LoopUse = 0, e = LoopUses.size(); LoopUse != e; ++LoopUse) {
722    Instruction *User = LoopUses[LoopUse];
723    std::vector<Instruction*> &BlockUses = UsesByBlock[User->getParent()];
724
725    // If this block has already been processed, ignore this repeat use.
726    if (BlockUses.empty()) continue;
727
728    // Okay, this is the first use in the block.  If this block just has a
729    // single user in it, we can rewrite it trivially.
730    if (BlockUses.size() == 1) {
731      // If it is a store, it is a trivial def of the value in the block.
732      if (isa<StoreInst>(User)) {
733        SSA.AddAvailableValue(User->getParent(),
734                              cast<StoreInst>(User)->getOperand(0));
735      } else {
736        // Otherwise it is a load, queue it to rewrite as a live-in load.
737        LiveInLoads.push_back(cast<LoadInst>(User));
738      }
739      BlockUses.clear();
740      continue;
741    }
742
743    // Otherwise, check to see if this block is all loads.  If so, we can queue
744    // them all as live in loads.
745    bool HasStore = false;
746    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
747      if (isa<StoreInst>(BlockUses[i])) {
748        HasStore = true;
749        break;
750      }
751    }
752
753    if (!HasStore) {
754      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
755        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
756      BlockUses.clear();
757      continue;
758    }
759
760    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
761    // Since SSAUpdater is purely for cross-block values, we need to determine
762    // the order of these instructions in the block.  If the first use in the
763    // block is a load, then it uses the live in value.  The last store defines
764    // the live out value.  We handle this by doing a linear scan of the block.
765    BasicBlock *BB = User->getParent();
766    Value *StoredValue = 0;
767    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
768      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
769        // If this is a load to an unrelated pointer, ignore it.
770        if (!PointerMustAliases.count(L->getOperand(0))) continue;
771
772        // If we haven't seen a store yet, this is a live in use, otherwise
773        // use the stored value.
774        if (StoredValue)
775          L->replaceAllUsesWith(StoredValue);
776        else
777          LiveInLoads.push_back(L);
778        continue;
779      }
780
781      if (StoreInst *S = dyn_cast<StoreInst>(II)) {
782        // If this is a load to an unrelated pointer, ignore it.
783        if (!PointerMustAliases.count(S->getOperand(1))) continue;
784
785        // Remember that this is the active value in the block.
786        StoredValue = S->getOperand(0);
787      }
788    }
789
790    // The last stored value that happened is the live-out for the block.
791    assert(StoredValue && "Already checked that there is a store in block");
792    SSA.AddAvailableValue(BB, StoredValue);
793    BlockUses.clear();
794  }
795
796  // Now that all the intra-loop values are classified, set up the preheader.
797  // It gets a load of the pointer we're promoting, and it is the live-out value
798  // from the preheader.
799  LoadInst *PreheaderLoad = new LoadInst(SomePtr,SomePtr->getName()+".promoted",
800                                         Preheader->getTerminator());
801  SSA.AddAvailableValue(Preheader, PreheaderLoad);
802
803  // Now that the preheader is good to go, set up the exit blocks.  Each exit
804  // block gets a store of the live-out values that feed them.  Since we've
805  // already told the SSA updater about the defs in the loop and the preheader
806  // definition, it is all set and we can start using it.
807  SmallVector<BasicBlock*, 8> ExitBlocks;
808  CurLoop->getUniqueExitBlocks(ExitBlocks);
809  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
810    BasicBlock *ExitBlock = ExitBlocks[i];
811    Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
812    Instruction *InsertPos = ExitBlock->getFirstNonPHI();
813    new StoreInst(LiveInValue, SomePtr, InsertPos);
814  }
815
816  // Okay, now we rewrite all loads that use live-in values in the loop,
817  // inserting PHI nodes as necessary.
818  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
819    LoadInst *ALoad = LiveInLoads[i];
820    ALoad->replaceAllUsesWith(SSA.GetValueInMiddleOfBlock(ALoad->getParent()));
821  }
822
823  // Now that everything is rewritten, delete the old instructions from the body
824  // of the loop.  They should all be dead now.
825  for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
826    Instruction *User = LoopUses[i];
827    CurAST->deleteValue(User);
828    User->eraseFromParent();
829  }
830
831  // If the preheader load is itself a pointer, we need to tell alias analysis
832  // about the new pointer we created in the preheader block and about any PHI
833  // nodes that just got inserted.
834  if (PreheaderLoad->getType()->isPointerTy()) {
835    // Copy any value stored to or loaded from a must-alias of the pointer.
836    CurAST->copyValue(SomeValue, PreheaderLoad);
837
838    for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
839      CurAST->copyValue(SomeValue, NewPHIs[i]);
840  }
841
842  // fwew, we're done!
843}
844
845
846/// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
847void LICM::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, Loop *L) {
848  AliasSetTracker *AST = LoopToAliasMap[L];
849  if (!AST)
850    return;
851
852  AST->copyValue(From, To);
853}
854
855/// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
856/// set.
857void LICM::deleteAnalysisValue(Value *V, Loop *L) {
858  AliasSetTracker *AST = LoopToAliasMap[L];
859  if (!AST)
860    return;
861
862  AST->deleteValue(V);
863}
864