LICM.cpp revision ed6dfc2856cd44a8aa608a9074eabbf42dd6cadc
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs loop invariant code motion, attempting to remove as much
11// code from the body of a loop as possible.  It does this by either hoisting
12// code into the preheader block, or by sinking code to the exit blocks if it is
13// safe.  This pass also promotes must-aliased memory locations in the loop to
14// live in registers.
15//
16// This pass uses alias analysis for two purposes:
17//
18//  1. Moving loop invariant loads out of loops.  If we can determine that a
19//     load inside of a loop never aliases anything stored to, we can hoist it
20//     or sink it like any other instruction.
21//  2. Scalar Promotion of Memory - If there is a store instruction inside of
22//     the loop, we try to move the store to happen AFTER the loop instead of
23//     inside of the loop.  This can only happen if a few conditions are true:
24//       A. The pointer stored through is loop invariant
25//       B. There are no stores or loads in the loop which _may_ alias the
26//          pointer.  There are no calls in the loop which mod/ref the pointer.
27//     If these conditions are true, we can promote the loads and stores in the
28//     loop of the pointer to use a temporary alloca'd variable.  We then use
29//     the mem2reg functionality to construct the appropriate SSA form for the
30//     variable.
31//
32//===----------------------------------------------------------------------===//
33
34#include "llvm/Transforms/Scalar.h"
35#include "llvm/Transforms/Utils/PromoteMemToReg.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/AliasSetTracker.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Instructions.h"
42#include "llvm/DerivedTypes.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Support/CFG.h"
45#include "Support/CommandLine.h"
46#include "Support/Debug.h"
47#include "Support/Statistic.h"
48#include "llvm/Assembly/Writer.h"
49#include <algorithm>
50using namespace llvm;
51
52namespace {
53  cl::opt<bool>
54  DisablePromotion("disable-licm-promotion", cl::Hidden,
55                   cl::desc("Disable memory promotion in LICM pass"));
56
57  Statistic<> NumHoisted("licm", "Number of instructions hoisted out of loop");
58  Statistic<> NumHoistedLoads("licm", "Number of load insts hoisted");
59  Statistic<> NumPromoted("licm",
60                          "Number of memory locations promoted to registers");
61
62  struct LICM : public FunctionPass {
63    virtual bool runOnFunction(Function &F);
64
65    /// This transformation requires natural loop information & requires that
66    /// loop preheaders be inserted into the CFG...
67    ///
68    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69      AU.setPreservesCFG();
70      AU.addRequiredID(LoopSimplifyID);
71      AU.addRequired<LoopInfo>();
72      AU.addRequired<DominatorTree>();
73      AU.addRequired<DominanceFrontier>();  // For scalar promotion (mem2reg)
74      AU.addRequired<AliasAnalysis>();
75    }
76
77  private:
78    // Various analyses that we use...
79    AliasAnalysis *AA;       // Current AliasAnalysis information
80    LoopInfo      *LI;       // Current LoopInfo
81    DominatorTree *DT;       // Dominator Tree for the current Loop...
82    DominanceFrontier *DF;   // Current Dominance Frontier
83
84    // State that is updated as we process loops
85    bool Changed;            // Set to true when we change anything.
86    BasicBlock *Preheader;   // The preheader block of the current loop...
87    Loop *CurLoop;           // The current loop we are working on...
88    AliasSetTracker *CurAST; // AliasSet information for the current loop...
89
90    /// visitLoop - Hoist expressions out of the specified loop...
91    ///
92    void visitLoop(Loop *L, AliasSetTracker &AST);
93
94    /// HoistRegion - Walk the specified region of the CFG (defined by all
95    /// blocks dominated by the specified block, and that are in the current
96    /// loop) in depth first order w.r.t the DominatorTree.  This allows us to
97    /// visit definitions before uses, allowing us to hoist a loop body in one
98    /// pass without iteration.
99    ///
100    void HoistRegion(DominatorTree::Node *N);
101
102    /// inSubLoop - Little predicate that returns true if the specified basic
103    /// block is in a subloop of the current one, not the current one itself.
104    ///
105    bool inSubLoop(BasicBlock *BB) {
106      assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
107      for (unsigned i = 0, e = CurLoop->getSubLoops().size(); i != e; ++i)
108        if (CurLoop->getSubLoops()[i]->contains(BB))
109          return true;  // A subloop actually contains this block!
110      return false;
111    }
112
113    /// hoist - When an instruction is found to only use loop invariant operands
114    /// that is safe to hoist, this instruction is called to do the dirty work.
115    ///
116    void hoist(Instruction &I);
117
118    /// SafeToHoist - Only hoist an instruction if it is not a trapping
119    /// instruction or if it is a trapping instruction and is guaranteed to
120    /// execute.
121    ///
122    bool SafeToHoist(Instruction &I);
123
124    /// pointerInvalidatedByLoop - Return true if the body of this loop may
125    /// store into the memory location pointed to by V.
126    ///
127    bool pointerInvalidatedByLoop(Value *V) {
128      // Check to see if any of the basic blocks in CurLoop invalidate *V.
129      return CurAST->getAliasSetForPointer(V, 0).isMod();
130    }
131
132    /// isLoopInvariant - Return true if the specified value is loop invariant
133    ///
134    inline bool isLoopInvariant(Value *V) {
135      if (Instruction *I = dyn_cast<Instruction>(V))
136        return !CurLoop->contains(I->getParent());
137      return true;  // All non-instructions are loop invariant
138    }
139    bool isLoopInvariantInst(Instruction &Inst);
140
141    /// PromoteValuesInLoop - Look at the stores in the loop and promote as many
142    /// to scalars as we can.
143    ///
144    void PromoteValuesInLoop();
145
146    /// findPromotableValuesInLoop - Check the current loop for stores to
147    /// definite pointers, which are not loaded and stored through may aliases.
148    /// If these are found, create an alloca for the value, add it to the
149    /// PromotedValues list, and keep track of the mapping from value to
150    /// alloca...
151    ///
152    void findPromotableValuesInLoop(
153                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
154                                    std::map<Value*, AllocaInst*> &Val2AlMap);
155  };
156
157  RegisterOpt<LICM> X("licm", "Loop Invariant Code Motion");
158}
159
160FunctionPass *llvm::createLICMPass() { return new LICM(); }
161
162/// runOnFunction - For LICM, this simply traverses the loop structure of the
163/// function, hoisting expressions out of loops if possible.
164///
165bool LICM::runOnFunction(Function &) {
166  Changed = false;
167
168  // Get our Loop and Alias Analysis information...
169  LI = &getAnalysis<LoopInfo>();
170  AA = &getAnalysis<AliasAnalysis>();
171  DF = &getAnalysis<DominanceFrontier>();
172  DT = &getAnalysis<DominatorTree>();
173
174  // Hoist expressions out of all of the top-level loops.
175  const std::vector<Loop*> &TopLevelLoops = LI->getTopLevelLoops();
176  for (std::vector<Loop*>::const_iterator I = TopLevelLoops.begin(),
177         E = TopLevelLoops.end(); I != E; ++I) {
178    AliasSetTracker AST(*AA);
179    visitLoop(*I, AST);
180  }
181  return Changed;
182}
183
184
185/// visitLoop - Hoist expressions out of the specified loop...
186///
187void LICM::visitLoop(Loop *L, AliasSetTracker &AST) {
188  // Recurse through all subloops before we process this loop...
189  for (std::vector<Loop*>::const_iterator I = L->getSubLoops().begin(),
190         E = L->getSubLoops().end(); I != E; ++I) {
191    AliasSetTracker SubAST(*AA);
192    visitLoop(*I, SubAST);
193
194    // Incorporate information about the subloops into this loop...
195    AST.add(SubAST);
196  }
197  CurLoop = L;
198  CurAST = &AST;
199
200  // Get the preheader block to move instructions into...
201  Preheader = L->getLoopPreheader();
202  assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
203
204  // Loop over the body of this loop, looking for calls, invokes, and stores.
205  // Because subloops have already been incorporated into AST, we skip blocks in
206  // subloops.
207  //
208  const std::vector<BasicBlock*> &LoopBBs = L->getBlocks();
209  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
210         E = LoopBBs.end(); I != E; ++I)
211    if (LI->getLoopFor(*I) == L)        // Ignore blocks in subloops...
212      AST.add(**I);                     // Incorporate the specified basic block
213
214  // We want to visit all of the instructions in this loop... that are not parts
215  // of our subloops (they have already had their invariants hoisted out of
216  // their loop, into this loop, so there is no need to process the BODIES of
217  // the subloops).
218  //
219  // Traverse the body of the loop in depth first order on the dominator tree so
220  // that we are guaranteed to see definitions before we see uses.  This allows
221  // us to perform the LICM transformation in one pass, without iteration.
222  //
223  HoistRegion(DT->getNode(L->getHeader()));
224
225  // Now that all loop invariants have been removed from the loop, promote any
226  // memory references to scalars that we can...
227  if (!DisablePromotion)
228    PromoteValuesInLoop();
229
230  // Clear out loops state information for the next iteration
231  CurLoop = 0;
232  Preheader = 0;
233}
234
235/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
236/// dominated by the specified block, and that are in the current loop) in depth
237/// first order w.r.t the DominatorTree.  This allows us to visit definitions
238/// before uses, allowing us to hoist a loop body in one pass without iteration.
239///
240void LICM::HoistRegion(DominatorTree::Node *N) {
241  assert(N != 0 && "Null dominator tree node?");
242  BasicBlock *BB = N->getBlock();
243
244  // If this subregion is not in the top level loop at all, exit.
245  if (!CurLoop->contains(BB)) return;
246
247  // Only need to hoist the contents of this block if it is not part of a
248  // subloop (which would already have been hoisted)
249  if (!inSubLoop(BB))
250    for (BasicBlock::iterator I = BB->begin(), E = --BB->end(); I != E; ) {
251      Instruction &Inst = *I++;
252      if (isLoopInvariantInst(Inst) && SafeToHoist(Inst))
253        hoist(Inst);
254    }
255
256  const std::vector<DominatorTree::Node*> &Children = N->getChildren();
257  for (unsigned i = 0, e = Children.size(); i != e; ++i)
258    HoistRegion(Children[i]);
259}
260
261bool LICM::isLoopInvariantInst(Instruction &I) {
262  assert(!isa<TerminatorInst>(I) && "Can't hoist terminator instructions!");
263
264  // We can only hoist simple expressions...
265  if (!isa<BinaryOperator>(I) && !isa<ShiftInst>(I) && !isa<LoadInst>(I) &&
266      !isa<GetElementPtrInst>(I) && !isa<CastInst>(I) && !isa<VANextInst>(I) &&
267      !isa<VAArgInst>(I))
268    return false;
269
270  // The instruction is loop invariant if all of its operands are loop-invariant
271  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
272    if (!isLoopInvariant(I.getOperand(i)))
273      return false;
274
275  // Loads have extra constraints we have to verify before we can hoist them.
276  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
277    if (LI->isVolatile())
278      return false;        // Don't hoist volatile loads!
279
280    // Don't hoist loads which have may-aliased stores in loop.
281    if (pointerInvalidatedByLoop(I.getOperand(0)))
282      return false;
283  }
284
285  // If we got this far, the instruction is loop invariant!
286  return true;
287}
288
289
290/// hoist - When an instruction is found to only use loop invariant operands
291/// that is safe to hoist, this instruction is called to do the dirty work.
292///
293void LICM::hoist(Instruction &Inst) {
294  DEBUG(std::cerr << "LICM hoisting to";
295        WriteAsOperand(std::cerr, Preheader, false);
296        std::cerr << ": " << Inst);
297
298  if (isa<LoadInst>(Inst))
299    ++NumHoistedLoads;
300
301  // Remove the instruction from its current basic block... but don't delete the
302  // instruction.
303  Inst.getParent()->getInstList().remove(&Inst);
304
305  // Insert the new node in Preheader, before the terminator.
306  Preheader->getInstList().insert(Preheader->getTerminator(), &Inst);
307
308  ++NumHoisted;
309  Changed = true;
310}
311
312/// SafeToHoist - Only hoist an instruction if it is not a trapping instruction
313/// or if it is a trapping instruction and is guaranteed to execute
314///
315bool LICM::SafeToHoist(Instruction &Inst) {
316  // If it is not a trapping instruction, it is always safe to hoist.
317  if (!Inst.isTrapping()) return true;
318
319  // Otherwise we have to check to make sure that the instruction dominates all
320  // of the exit blocks.  If it doesn't, then there is a path out of the loop
321  // which does not execute this instruction, so we can't hoist it.
322
323  // If the instruction is in the header block for the loop (which is very
324  // common), it is always guaranteed to dominate the exit blocks.  Since this
325  // is a common case, and can save some work, check it now.
326  BasicBlock *LoopHeader = CurLoop->getHeader();
327  if (Inst.getParent() == LoopHeader)
328    return true;
329
330  // Get the Dominator Tree Node for the instruction's basic block.
331  DominatorTree::Node *InstDTNode = DT->getNode(Inst.getParent());
332
333  // Get the exit blocks for the current loop.
334  const std::vector<BasicBlock* > &ExitBlocks = CurLoop->getExitBlocks();
335
336  // For each exit block, get the DT node and walk up the DT until the
337  // instruction's basic block is found or we exit the loop.
338  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
339    DominatorTree::Node *IDom = DT->getNode(ExitBlocks[i]);
340
341    do {
342      // Get next Immediate Dominator.
343      IDom = IDom->getIDom();
344
345      // If we have got to the header of the loop, then the instructions block
346      // did not dominate the exit node, so we can't hoist it.
347      if (IDom->getBlock() == LoopHeader)
348        return false;
349
350    } while(IDom != InstDTNode);
351  }
352
353  return true;
354}
355
356
357/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
358/// stores out of the loop and moving loads to before the loop.  We do this by
359/// looping over the stores in the loop, looking for stores to Must pointers
360/// which are loop invariant.  We promote these memory locations to use allocas
361/// instead.  These allocas can easily be raised to register values by the
362/// PromoteMem2Reg functionality.
363///
364void LICM::PromoteValuesInLoop() {
365  // PromotedValues - List of values that are promoted out of the loop.  Each
366  // value has an alloca instruction for it, and a canonical version of the
367  // pointer.
368  std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
369  std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
370
371  findPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
372  if (ValueToAllocaMap.empty()) return;   // If there are values to promote...
373
374  Changed = true;
375  NumPromoted += PromotedValues.size();
376
377  // Emit a copy from the value into the alloca'd value in the loop preheader
378  TerminatorInst *LoopPredInst = Preheader->getTerminator();
379  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
380    // Load from the memory we are promoting...
381    LoadInst *LI = new LoadInst(PromotedValues[i].second,
382                                PromotedValues[i].second->getName()+".promoted",
383                                LoopPredInst);
384    // Store into the temporary alloca...
385    new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
386  }
387
388  // Scan the basic blocks in the loop, replacing uses of our pointers with
389  // uses of the allocas in question.  If we find a branch that exits the
390  // loop, make sure to put reload code into all of the successors of the
391  // loop.
392  //
393  const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
394  for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
395         E = LoopBBs.end(); I != E; ++I) {
396    // Rewrite all loads and stores in the block of the pointer...
397    for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
398         II != E; ++II) {
399      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
400        std::map<Value*, AllocaInst*>::iterator
401          I = ValueToAllocaMap.find(L->getOperand(0));
402        if (I != ValueToAllocaMap.end())
403          L->setOperand(0, I->second);    // Rewrite load instruction...
404      } else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
405        std::map<Value*, AllocaInst*>::iterator
406          I = ValueToAllocaMap.find(S->getOperand(1));
407        if (I != ValueToAllocaMap.end())
408          S->setOperand(1, I->second);    // Rewrite store instruction...
409      }
410    }
411
412    // Check to see if any successors of this block are outside of the loop.
413    // If so, we need to copy the value from the alloca back into the memory
414    // location...
415    //
416    for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
417      if (!CurLoop->contains(*SI)) {
418        // Copy all of the allocas into their memory locations...
419        BasicBlock::iterator BI = (*SI)->begin();
420        while (isa<PHINode>(*BI))
421          ++BI;             // Skip over all of the phi nodes in the block...
422        Instruction *InsertPos = BI;
423        for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
424          // Load from the alloca...
425          LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
426          // Store into the memory we promoted...
427          new StoreInst(LI, PromotedValues[i].second, InsertPos);
428        }
429      }
430  }
431
432  // Now that we have done the deed, use the mem2reg functionality to promote
433  // all of the new allocas we just created into real SSA registers...
434  //
435  std::vector<AllocaInst*> PromotedAllocas;
436  PromotedAllocas.reserve(PromotedValues.size());
437  for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
438    PromotedAllocas.push_back(PromotedValues[i].first);
439  PromoteMemToReg(PromotedAllocas, *DT, *DF, AA->getTargetData());
440}
441
442/// findPromotableValuesInLoop - Check the current loop for stores to definite
443/// pointers, which are not loaded and stored through may aliases.  If these are
444/// found, create an alloca for the value, add it to the PromotedValues list,
445/// and keep track of the mapping from value to alloca...
446///
447void LICM::findPromotableValuesInLoop(
448                   std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
449                             std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
450  Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
451
452  // Loop over all of the alias sets in the tracker object...
453  for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
454       I != E; ++I) {
455    AliasSet &AS = *I;
456    // We can promote this alias set if it has a store, if it is a "Must" alias
457    // set, and if the pointer is loop invariant.
458    if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
459        isLoopInvariant(AS.begin()->first)) {
460      assert(AS.begin() != AS.end() &&
461             "Must alias set should have at least one pointer element in it!");
462      Value *V = AS.begin()->first;
463
464      // Check that all of the pointers in the alias set have the same type.  We
465      // cannot (yet) promote a memory location that is loaded and stored in
466      // different sizes.
467      bool PointerOk = true;
468      for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
469        if (V->getType() != I->first->getType()) {
470          PointerOk = false;
471          break;
472        }
473
474      if (PointerOk) {
475        const Type *Ty = cast<PointerType>(V->getType())->getElementType();
476        AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
477        PromotedValues.push_back(std::make_pair(AI, V));
478
479        for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
480          ValueToAllocaMap.insert(std::make_pair(I->first, AI));
481
482        DEBUG(std::cerr << "LICM: Promoting value: " << *V << "\n");
483      }
484    }
485  }
486}
487