ObjCARC.cpp revision 1dae3e965cc0b113b437c2c836f6e3c28a5cdb53
1ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao//===- ObjCARC.cpp - ObjC ARC Optimization --------------------------------===//
2ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao//
3ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao//                     The LLVM Compiler Infrastructure
4ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao//
5ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao// This file is distributed under the University of Illinois Open Source
6ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao// License. See LICENSE.TXT for details.
7ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao//
8ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao//===----------------------------------------------------------------------===//
9ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao//
10ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao// This file defines ObjC ARC optimizations. ARC stands for
11ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao// Automatic Reference Counting and is a system for managing reference counts
12ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao// for objects in Objective C.
13ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao//
14ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao// The optimizations performed include elimination of redundant, partially
15ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao// redundant, and inconsequential reference count operations, elimination of
16ee6cdb95525abc8c7766798148302306a100b774Shih-wei Liao// redundant weak pointer operations, pattern-matching and replacement of
17a839a76142ae481e578a85218008043dc52c5cf3Logan Chien// low-level operations into higher-level operations, and numerous minor
18a839a76142ae481e578a85218008043dc52c5cf3Logan Chien// simplifications.
19a839a76142ae481e578a85218008043dc52c5cf3Logan Chien//
20a839a76142ae481e578a85218008043dc52c5cf3Logan Chien// This file also defines a simple ARC-aware AliasAnalysis.
21a839a76142ae481e578a85218008043dc52c5cf3Logan Chien//
22a839a76142ae481e578a85218008043dc52c5cf3Logan Chien// WARNING: This file knows about certain library functions. It recognizes them
23a839a76142ae481e578a85218008043dc52c5cf3Logan Chien// by name, and hardwires knowedge of their semantics.
24a839a76142ae481e578a85218008043dc52c5cf3Logan Chien//
25a839a76142ae481e578a85218008043dc52c5cf3Logan Chien// WARNING: This file knows about how certain Objective-C library functions are
26a839a76142ae481e578a85218008043dc52c5cf3Logan Chien// used. Naive LLVM IR transformations which would otherwise be
27a839a76142ae481e578a85218008043dc52c5cf3Logan Chien// behavior-preserving may break these assumptions.
28a839a76142ae481e578a85218008043dc52c5cf3Logan Chien//
29a839a76142ae481e578a85218008043dc52c5cf3Logan Chien//===----------------------------------------------------------------------===//
30a839a76142ae481e578a85218008043dc52c5cf3Logan Chien
31a839a76142ae481e578a85218008043dc52c5cf3Logan Chien#define DEBUG_TYPE "objc-arc"
32a839a76142ae481e578a85218008043dc52c5cf3Logan Chien#include "llvm/Function.h"
33a839a76142ae481e578a85218008043dc52c5cf3Logan Chien#include "llvm/Intrinsics.h"
34a839a76142ae481e578a85218008043dc52c5cf3Logan Chien#include "llvm/GlobalVariable.h"
3558611fc8193e7386698178f167a2e0cbdd6a4f6fLogan Chien#include "llvm/DerivedTypes.h"
3658611fc8193e7386698178f167a2e0cbdd6a4f6fLogan Chien#include "llvm/Module.h"
37a839a76142ae481e578a85218008043dc52c5cf3Logan Chien#include "llvm/Analysis/ValueTracking.h"
38a839a76142ae481e578a85218008043dc52c5cf3Logan Chien#include "llvm/Transforms/Utils/Local.h"
3971e5a4a2fa18ff55b1e04e73b70b2938150a143cLogan Chien#include "llvm/Support/CallSite.h"
40a839a76142ae481e578a85218008043dc52c5cf3Logan Chien#include "llvm/Support/CommandLine.h"
41a839a76142ae481e578a85218008043dc52c5cf3Logan Chien#include "llvm/ADT/StringSwitch.h"
422061b057e0922ac33b9314c1ccaa50eb7286b847Logan Chien#include "llvm/ADT/DenseMap.h"
43a839a76142ae481e578a85218008043dc52c5cf3Logan Chien#include "llvm/ADT/STLExtras.h"
44a839a76142ae481e578a85218008043dc52c5cf3Logan Chienusing namespace llvm;
45a839a76142ae481e578a85218008043dc52c5cf3Logan Chien
4658611fc8193e7386698178f167a2e0cbdd6a4f6fLogan Chien// A handy option to enable/disable all optimizations in this file.
47a839a76142ae481e578a85218008043dc52c5cf3Logan Chienstatic cl::opt<bool> EnableARCOpts("enable-objc-arc-opts", cl::init(true));
48a839a76142ae481e578a85218008043dc52c5cf3Logan Chien
4958611fc8193e7386698178f167a2e0cbdd6a4f6fLogan Chien//===----------------------------------------------------------------------===//
50a839a76142ae481e578a85218008043dc52c5cf3Logan Chien// Misc. Utilities
51a839a76142ae481e578a85218008043dc52c5cf3Logan Chien//===----------------------------------------------------------------------===//
5274f7a939f44d926babd52f59978e6b093e4bb2d0Logan Chien
53a839a76142ae481e578a85218008043dc52c5cf3Logan Chiennamespace {
54a839a76142ae481e578a85218008043dc52c5cf3Logan Chien  /// MapVector - An associative container with fast insertion-order
5558611fc8193e7386698178f167a2e0cbdd6a4f6fLogan Chien  /// (deterministic) iteration over its elements. Plus the special
56a839a76142ae481e578a85218008043dc52c5cf3Logan Chien  /// blot operation.
57a839a76142ae481e578a85218008043dc52c5cf3Logan Chien  template<class KeyT, class ValueT>
58a839a76142ae481e578a85218008043dc52c5cf3Logan Chien  class MapVector {
5958611fc8193e7386698178f167a2e0cbdd6a4f6fLogan Chien    /// Map - Map keys to indices in Vector.
60a839a76142ae481e578a85218008043dc52c5cf3Logan Chien    typedef DenseMap<KeyT, size_t> MapTy;
61a839a76142ae481e578a85218008043dc52c5cf3Logan Chien    MapTy Map;
62a839a76142ae481e578a85218008043dc52c5cf3Logan Chien
63a839a76142ae481e578a85218008043dc52c5cf3Logan Chien    /// Vector - Keys and values.
64a839a76142ae481e578a85218008043dc52c5cf3Logan Chien    typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
65a839a76142ae481e578a85218008043dc52c5cf3Logan Chien    VectorTy Vector;
66a839a76142ae481e578a85218008043dc52c5cf3Logan Chien
67a839a76142ae481e578a85218008043dc52c5cf3Logan Chien  public:
68    typedef typename VectorTy::iterator iterator;
69    typedef typename VectorTy::const_iterator const_iterator;
70    iterator begin() { return Vector.begin(); }
71    iterator end() { return Vector.end(); }
72    const_iterator begin() const { return Vector.begin(); }
73    const_iterator end() const { return Vector.end(); }
74
75#ifdef XDEBUG
76    ~MapVector() {
77      assert(Vector.size() >= Map.size()); // May differ due to blotting.
78      for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
79           I != E; ++I) {
80        assert(I->second < Vector.size());
81        assert(Vector[I->second].first == I->first);
82      }
83      for (typename VectorTy::const_iterator I = Vector.begin(),
84           E = Vector.end(); I != E; ++I)
85        assert(!I->first ||
86               (Map.count(I->first) &&
87                Map[I->first] == size_t(I - Vector.begin())));
88    }
89#endif
90
91    ValueT &operator[](KeyT Arg) {
92      std::pair<typename MapTy::iterator, bool> Pair =
93        Map.insert(std::make_pair(Arg, size_t(0)));
94      if (Pair.second) {
95        Pair.first->second = Vector.size();
96        Vector.push_back(std::make_pair(Arg, ValueT()));
97        return Vector.back().second;
98      }
99      return Vector[Pair.first->second].second;
100    }
101
102    std::pair<iterator, bool>
103    insert(const std::pair<KeyT, ValueT> &InsertPair) {
104      std::pair<typename MapTy::iterator, bool> Pair =
105        Map.insert(std::make_pair(InsertPair.first, size_t(0)));
106      if (Pair.second) {
107        Pair.first->second = Vector.size();
108        Vector.push_back(InsertPair);
109        return std::make_pair(llvm::prior(Vector.end()), true);
110      }
111      return std::make_pair(Vector.begin() + Pair.first->second, false);
112    }
113
114    const_iterator find(KeyT Key) const {
115      typename MapTy::const_iterator It = Map.find(Key);
116      if (It == Map.end()) return Vector.end();
117      return Vector.begin() + It->second;
118    }
119
120    /// blot - This is similar to erase, but instead of removing the element
121    /// from the vector, it just zeros out the key in the vector. This leaves
122    /// iterators intact, but clients must be prepared for zeroed-out keys when
123    /// iterating.
124    void blot(KeyT Key) {
125      typename MapTy::iterator It = Map.find(Key);
126      if (It == Map.end()) return;
127      Vector[It->second].first = KeyT();
128      Map.erase(It);
129    }
130
131    void clear() {
132      Map.clear();
133      Vector.clear();
134    }
135  };
136}
137
138//===----------------------------------------------------------------------===//
139// ARC Utilities.
140//===----------------------------------------------------------------------===//
141
142namespace {
143  /// InstructionClass - A simple classification for instructions.
144  enum InstructionClass {
145    IC_Retain,              ///< objc_retain
146    IC_RetainRV,            ///< objc_retainAutoreleasedReturnValue
147    IC_RetainBlock,         ///< objc_retainBlock
148    IC_Release,             ///< objc_release
149    IC_Autorelease,         ///< objc_autorelease
150    IC_AutoreleaseRV,       ///< objc_autoreleaseReturnValue
151    IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
152    IC_AutoreleasepoolPop,  ///< objc_autoreleasePoolPop
153    IC_NoopCast,            ///< objc_retainedObject, etc.
154    IC_FusedRetainAutorelease, ///< objc_retainAutorelease
155    IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
156    IC_LoadWeakRetained,    ///< objc_loadWeakRetained (primitive)
157    IC_StoreWeak,           ///< objc_storeWeak (primitive)
158    IC_InitWeak,            ///< objc_initWeak (derived)
159    IC_LoadWeak,            ///< objc_loadWeak (derived)
160    IC_MoveWeak,            ///< objc_moveWeak (derived)
161    IC_CopyWeak,            ///< objc_copyWeak (derived)
162    IC_DestroyWeak,         ///< objc_destroyWeak (derived)
163    IC_CallOrUser,          ///< could call objc_release and/or "use" pointers
164    IC_Call,                ///< could call objc_release
165    IC_User,                ///< could "use" a pointer
166    IC_None                 ///< anything else
167  };
168}
169
170/// IsPotentialUse - Test whether the given value is possible a
171/// reference-counted pointer.
172static bool IsPotentialUse(const Value *Op) {
173  // Pointers to static or stack storage are not reference-counted pointers.
174  if (isa<Constant>(Op) || isa<AllocaInst>(Op))
175    return false;
176  // Special arguments are not reference-counted.
177  if (const Argument *Arg = dyn_cast<Argument>(Op))
178    if (Arg->hasByValAttr() ||
179        Arg->hasNestAttr() ||
180        Arg->hasStructRetAttr())
181      return false;
182  // Only consider values with pointer types.
183  // It seemes intuitive to exclude function pointer types as well, since
184  // functions are never reference-counted, however clang occasionally
185  // bitcasts reference-counted pointers to function-pointer type
186  // temporarily.
187  PointerType *Ty = dyn_cast<PointerType>(Op->getType());
188  if (!Ty)
189    return false;
190  // Conservatively assume anything else is a potential use.
191  return true;
192}
193
194/// GetCallSiteClass - Helper for GetInstructionClass. Determines what kind
195/// of construct CS is.
196static InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
197  for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
198       I != E; ++I)
199    if (IsPotentialUse(*I))
200      return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
201
202  return CS.onlyReadsMemory() ? IC_None : IC_Call;
203}
204
205/// GetFunctionClass - Determine if F is one of the special known Functions.
206/// If it isn't, return IC_CallOrUser.
207static InstructionClass GetFunctionClass(const Function *F) {
208  Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
209
210  // No arguments.
211  if (AI == AE)
212    return StringSwitch<InstructionClass>(F->getName())
213      .Case("objc_autoreleasePoolPush",  IC_AutoreleasepoolPush)
214      .Default(IC_CallOrUser);
215
216  // One argument.
217  const Argument *A0 = AI++;
218  if (AI == AE)
219    // Argument is a pointer.
220    if (PointerType *PTy = dyn_cast<PointerType>(A0->getType())) {
221      Type *ETy = PTy->getElementType();
222      // Argument is i8*.
223      if (ETy->isIntegerTy(8))
224        return StringSwitch<InstructionClass>(F->getName())
225          .Case("objc_retain",                IC_Retain)
226          .Case("objc_retainAutoreleasedReturnValue", IC_RetainRV)
227          .Case("objc_retainBlock",           IC_RetainBlock)
228          .Case("objc_release",               IC_Release)
229          .Case("objc_autorelease",           IC_Autorelease)
230          .Case("objc_autoreleaseReturnValue", IC_AutoreleaseRV)
231          .Case("objc_autoreleasePoolPop",    IC_AutoreleasepoolPop)
232          .Case("objc_retainedObject",        IC_NoopCast)
233          .Case("objc_unretainedObject",      IC_NoopCast)
234          .Case("objc_unretainedPointer",     IC_NoopCast)
235          .Case("objc_retain_autorelease",    IC_FusedRetainAutorelease)
236          .Case("objc_retainAutorelease",     IC_FusedRetainAutorelease)
237          .Case("objc_retainAutoreleaseReturnValue",IC_FusedRetainAutoreleaseRV)
238          .Default(IC_CallOrUser);
239
240      // Argument is i8**
241      if (PointerType *Pte = dyn_cast<PointerType>(ETy))
242        if (Pte->getElementType()->isIntegerTy(8))
243          return StringSwitch<InstructionClass>(F->getName())
244            .Case("objc_loadWeakRetained",      IC_LoadWeakRetained)
245            .Case("objc_loadWeak",              IC_LoadWeak)
246            .Case("objc_destroyWeak",           IC_DestroyWeak)
247            .Default(IC_CallOrUser);
248    }
249
250  // Two arguments, first is i8**.
251  const Argument *A1 = AI++;
252  if (AI == AE)
253    if (PointerType *PTy = dyn_cast<PointerType>(A0->getType()))
254      if (PointerType *Pte = dyn_cast<PointerType>(PTy->getElementType()))
255        if (Pte->getElementType()->isIntegerTy(8))
256          if (PointerType *PTy1 = dyn_cast<PointerType>(A1->getType())) {
257            Type *ETy1 = PTy1->getElementType();
258            // Second argument is i8*
259            if (ETy1->isIntegerTy(8))
260              return StringSwitch<InstructionClass>(F->getName())
261                     .Case("objc_storeWeak",             IC_StoreWeak)
262                     .Case("objc_initWeak",              IC_InitWeak)
263                     .Default(IC_CallOrUser);
264            // Second argument is i8**.
265            if (PointerType *Pte1 = dyn_cast<PointerType>(ETy1))
266              if (Pte1->getElementType()->isIntegerTy(8))
267                return StringSwitch<InstructionClass>(F->getName())
268                       .Case("objc_moveWeak",              IC_MoveWeak)
269                       .Case("objc_copyWeak",              IC_CopyWeak)
270                       .Default(IC_CallOrUser);
271          }
272
273  // Anything else.
274  return IC_CallOrUser;
275}
276
277/// GetInstructionClass - Determine what kind of construct V is.
278static InstructionClass GetInstructionClass(const Value *V) {
279  if (const Instruction *I = dyn_cast<Instruction>(V)) {
280    // Any instruction other than bitcast and gep with a pointer operand have a
281    // use of an objc pointer. Bitcasts, GEPs, Selects, PHIs transfer a pointer
282    // to a subsequent use, rather than using it themselves, in this sense.
283    // As a short cut, several other opcodes are known to have no pointer
284    // operands of interest. And ret is never followed by a release, so it's
285    // not interesting to examine.
286    switch (I->getOpcode()) {
287    case Instruction::Call: {
288      const CallInst *CI = cast<CallInst>(I);
289      // Check for calls to special functions.
290      if (const Function *F = CI->getCalledFunction()) {
291        InstructionClass Class = GetFunctionClass(F);
292        if (Class != IC_CallOrUser)
293          return Class;
294
295        // None of the intrinsic functions do objc_release. For intrinsics, the
296        // only question is whether or not they may be users.
297        switch (F->getIntrinsicID()) {
298        case 0: break;
299        case Intrinsic::bswap: case Intrinsic::ctpop:
300        case Intrinsic::ctlz: case Intrinsic::cttz:
301        case Intrinsic::returnaddress: case Intrinsic::frameaddress:
302        case Intrinsic::stacksave: case Intrinsic::stackrestore:
303        case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend:
304        // Don't let dbg info affect our results.
305        case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
306          // Short cut: Some intrinsics obviously don't use ObjC pointers.
307          return IC_None;
308        default:
309          for (Function::const_arg_iterator AI = F->arg_begin(),
310               AE = F->arg_end(); AI != AE; ++AI)
311            if (IsPotentialUse(AI))
312              return IC_User;
313          return IC_None;
314        }
315      }
316      return GetCallSiteClass(CI);
317    }
318    case Instruction::Invoke:
319      return GetCallSiteClass(cast<InvokeInst>(I));
320    case Instruction::BitCast:
321    case Instruction::GetElementPtr:
322    case Instruction::Select: case Instruction::PHI:
323    case Instruction::Ret: case Instruction::Br:
324    case Instruction::Switch: case Instruction::IndirectBr:
325    case Instruction::Alloca: case Instruction::VAArg:
326    case Instruction::Add: case Instruction::FAdd:
327    case Instruction::Sub: case Instruction::FSub:
328    case Instruction::Mul: case Instruction::FMul:
329    case Instruction::SDiv: case Instruction::UDiv: case Instruction::FDiv:
330    case Instruction::SRem: case Instruction::URem: case Instruction::FRem:
331    case Instruction::Shl: case Instruction::LShr: case Instruction::AShr:
332    case Instruction::And: case Instruction::Or: case Instruction::Xor:
333    case Instruction::SExt: case Instruction::ZExt: case Instruction::Trunc:
334    case Instruction::IntToPtr: case Instruction::FCmp:
335    case Instruction::FPTrunc: case Instruction::FPExt:
336    case Instruction::FPToUI: case Instruction::FPToSI:
337    case Instruction::UIToFP: case Instruction::SIToFP:
338    case Instruction::InsertElement: case Instruction::ExtractElement:
339    case Instruction::ShuffleVector:
340    case Instruction::ExtractValue:
341      break;
342    case Instruction::ICmp:
343      // Comparing a pointer with null, or any other constant, isn't an
344      // interesting use, because we don't care what the pointer points to, or
345      // about the values of any other dynamic reference-counted pointers.
346      if (IsPotentialUse(I->getOperand(1)))
347        return IC_User;
348      break;
349    default:
350      // For anything else, check all the operands.
351      // Note that this includes both operands of a Store: while the first
352      // operand isn't actually being dereferenced, it is being stored to
353      // memory where we can no longer track who might read it and dereference
354      // it, so we have to consider it potentially used.
355      for (User::const_op_iterator OI = I->op_begin(), OE = I->op_end();
356           OI != OE; ++OI)
357        if (IsPotentialUse(*OI))
358          return IC_User;
359    }
360  }
361
362  // Otherwise, it's totally inert for ARC purposes.
363  return IC_None;
364}
365
366/// GetBasicInstructionClass - Determine what kind of construct V is. This is
367/// similar to GetInstructionClass except that it only detects objc runtine
368/// calls. This allows it to be faster.
369static InstructionClass GetBasicInstructionClass(const Value *V) {
370  if (const CallInst *CI = dyn_cast<CallInst>(V)) {
371    if (const Function *F = CI->getCalledFunction())
372      return GetFunctionClass(F);
373    // Otherwise, be conservative.
374    return IC_CallOrUser;
375  }
376
377  // Otherwise, be conservative.
378  return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
379}
380
381/// IsRetain - Test if the the given class is objc_retain or
382/// equivalent.
383static bool IsRetain(InstructionClass Class) {
384  return Class == IC_Retain ||
385         Class == IC_RetainRV;
386}
387
388/// IsAutorelease - Test if the the given class is objc_autorelease or
389/// equivalent.
390static bool IsAutorelease(InstructionClass Class) {
391  return Class == IC_Autorelease ||
392         Class == IC_AutoreleaseRV;
393}
394
395/// IsForwarding - Test if the given class represents instructions which return
396/// their argument verbatim.
397static bool IsForwarding(InstructionClass Class) {
398  // objc_retainBlock technically doesn't always return its argument
399  // verbatim, but it doesn't matter for our purposes here.
400  return Class == IC_Retain ||
401         Class == IC_RetainRV ||
402         Class == IC_Autorelease ||
403         Class == IC_AutoreleaseRV ||
404         Class == IC_RetainBlock ||
405         Class == IC_NoopCast;
406}
407
408/// IsNoopOnNull - Test if the given class represents instructions which do
409/// nothing if passed a null pointer.
410static bool IsNoopOnNull(InstructionClass Class) {
411  return Class == IC_Retain ||
412         Class == IC_RetainRV ||
413         Class == IC_Release ||
414         Class == IC_Autorelease ||
415         Class == IC_AutoreleaseRV ||
416         Class == IC_RetainBlock;
417}
418
419/// IsAlwaysTail - Test if the given class represents instructions which are
420/// always safe to mark with the "tail" keyword.
421static bool IsAlwaysTail(InstructionClass Class) {
422  // IC_RetainBlock may be given a stack argument.
423  return Class == IC_Retain ||
424         Class == IC_RetainRV ||
425         Class == IC_Autorelease ||
426         Class == IC_AutoreleaseRV;
427}
428
429/// IsNoThrow - Test if the given class represents instructions which are always
430/// safe to mark with the nounwind attribute..
431static bool IsNoThrow(InstructionClass Class) {
432  // objc_retainBlock is not nounwind because it calls user copy constructors
433  // which could theoretically throw.
434  return Class == IC_Retain ||
435         Class == IC_RetainRV ||
436         Class == IC_Release ||
437         Class == IC_Autorelease ||
438         Class == IC_AutoreleaseRV ||
439         Class == IC_AutoreleasepoolPush ||
440         Class == IC_AutoreleasepoolPop;
441}
442
443/// EraseInstruction - Erase the given instruction. ObjC calls return their
444/// argument verbatim, so if it's such a call and the return value has users,
445/// replace them with the argument value.
446static void EraseInstruction(Instruction *CI) {
447  Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
448
449  bool Unused = CI->use_empty();
450
451  if (!Unused) {
452    // Replace the return value with the argument.
453    assert(IsForwarding(GetBasicInstructionClass(CI)) &&
454           "Can't delete non-forwarding instruction with users!");
455    CI->replaceAllUsesWith(OldArg);
456  }
457
458  CI->eraseFromParent();
459
460  if (Unused)
461    RecursivelyDeleteTriviallyDeadInstructions(OldArg);
462}
463
464/// GetUnderlyingObjCPtr - This is a wrapper around getUnderlyingObject which
465/// also knows how to look through objc_retain and objc_autorelease calls, which
466/// we know to return their argument verbatim.
467static const Value *GetUnderlyingObjCPtr(const Value *V) {
468  for (;;) {
469    V = GetUnderlyingObject(V);
470    if (!IsForwarding(GetBasicInstructionClass(V)))
471      break;
472    V = cast<CallInst>(V)->getArgOperand(0);
473  }
474
475  return V;
476}
477
478/// StripPointerCastsAndObjCCalls - This is a wrapper around
479/// Value::stripPointerCasts which also knows how to look through objc_retain
480/// and objc_autorelease calls, which we know to return their argument verbatim.
481static const Value *StripPointerCastsAndObjCCalls(const Value *V) {
482  for (;;) {
483    V = V->stripPointerCasts();
484    if (!IsForwarding(GetBasicInstructionClass(V)))
485      break;
486    V = cast<CallInst>(V)->getArgOperand(0);
487  }
488  return V;
489}
490
491/// StripPointerCastsAndObjCCalls - This is a wrapper around
492/// Value::stripPointerCasts which also knows how to look through objc_retain
493/// and objc_autorelease calls, which we know to return their argument verbatim.
494static Value *StripPointerCastsAndObjCCalls(Value *V) {
495  for (;;) {
496    V = V->stripPointerCasts();
497    if (!IsForwarding(GetBasicInstructionClass(V)))
498      break;
499    V = cast<CallInst>(V)->getArgOperand(0);
500  }
501  return V;
502}
503
504/// GetObjCArg - Assuming the given instruction is one of the special calls such
505/// as objc_retain or objc_release, return the argument value, stripped of no-op
506/// casts and forwarding calls.
507static Value *GetObjCArg(Value *Inst) {
508  return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
509}
510
511/// IsObjCIdentifiedObject - This is similar to AliasAnalysis'
512/// isObjCIdentifiedObject, except that it uses special knowledge of
513/// ObjC conventions...
514static bool IsObjCIdentifiedObject(const Value *V) {
515  // Assume that call results and arguments have their own "provenance".
516  // Constants (including GlobalVariables) and Allocas are never
517  // reference-counted.
518  if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
519      isa<Argument>(V) || isa<Constant>(V) ||
520      isa<AllocaInst>(V))
521    return true;
522
523  if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
524    const Value *Pointer =
525      StripPointerCastsAndObjCCalls(LI->getPointerOperand());
526    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
527      // A constant pointer can't be pointing to an object on the heap. It may
528      // be reference-counted, but it won't be deleted.
529      if (GV->isConstant())
530        return true;
531      StringRef Name = GV->getName();
532      // These special variables are known to hold values which are not
533      // reference-counted pointers.
534      if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
535          Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
536          Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
537          Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
538          Name.startswith("\01l_objc_msgSend_fixup_"))
539        return true;
540    }
541  }
542
543  return false;
544}
545
546/// FindSingleUseIdentifiedObject - This is similar to
547/// StripPointerCastsAndObjCCalls but it stops as soon as it finds a value
548/// with multiple uses.
549static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
550  if (Arg->hasOneUse()) {
551    if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
552      return FindSingleUseIdentifiedObject(BC->getOperand(0));
553    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
554      if (GEP->hasAllZeroIndices())
555        return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
556    if (IsForwarding(GetBasicInstructionClass(Arg)))
557      return FindSingleUseIdentifiedObject(
558               cast<CallInst>(Arg)->getArgOperand(0));
559    if (!IsObjCIdentifiedObject(Arg))
560      return 0;
561    return Arg;
562  }
563
564  // If we found an identifiable object but it has multiple uses, but they
565  // are trivial uses, we can still consider this to be a single-use
566  // value.
567  if (IsObjCIdentifiedObject(Arg)) {
568    for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
569         UI != UE; ++UI) {
570      const User *U = *UI;
571      if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
572         return 0;
573    }
574
575    return Arg;
576  }
577
578  return 0;
579}
580
581/// ModuleHasARC - Test if the given module looks interesting to run ARC
582/// optimization on.
583static bool ModuleHasARC(const Module &M) {
584  return
585    M.getNamedValue("objc_retain") ||
586    M.getNamedValue("objc_release") ||
587    M.getNamedValue("objc_autorelease") ||
588    M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
589    M.getNamedValue("objc_retainBlock") ||
590    M.getNamedValue("objc_autoreleaseReturnValue") ||
591    M.getNamedValue("objc_autoreleasePoolPush") ||
592    M.getNamedValue("objc_loadWeakRetained") ||
593    M.getNamedValue("objc_loadWeak") ||
594    M.getNamedValue("objc_destroyWeak") ||
595    M.getNamedValue("objc_storeWeak") ||
596    M.getNamedValue("objc_initWeak") ||
597    M.getNamedValue("objc_moveWeak") ||
598    M.getNamedValue("objc_copyWeak") ||
599    M.getNamedValue("objc_retainedObject") ||
600    M.getNamedValue("objc_unretainedObject") ||
601    M.getNamedValue("objc_unretainedPointer");
602}
603
604/// DoesObjCBlockEscape - Test whether the given pointer, which is an
605/// Objective C block pointer, does not "escape". This differs from regular
606/// escape analysis in that a use as an argument to a call is not considered
607/// an escape.
608static bool DoesObjCBlockEscape(const Value *BlockPtr) {
609  // Walk the def-use chains.
610  SmallVector<const Value *, 4> Worklist;
611  Worklist.push_back(BlockPtr);
612  do {
613    const Value *V = Worklist.pop_back_val();
614    for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
615         UI != UE; ++UI) {
616      const User *UUser = *UI;
617      // Special - Use by a call (callee or argument) is not considered
618      // to be an escape.
619      if (isa<CallInst>(UUser) || isa<InvokeInst>(UUser))
620        continue;
621      if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) ||
622          isa<PHINode>(UUser) || isa<SelectInst>(UUser)) {
623        Worklist.push_back(UUser);
624        continue;
625      }
626      return true;
627    }
628  } while (!Worklist.empty());
629
630  // No escapes found.
631  return false;
632}
633
634//===----------------------------------------------------------------------===//
635// ARC AliasAnalysis.
636//===----------------------------------------------------------------------===//
637
638#include "llvm/Pass.h"
639#include "llvm/Analysis/AliasAnalysis.h"
640#include "llvm/Analysis/Passes.h"
641
642namespace {
643  /// ObjCARCAliasAnalysis - This is a simple alias analysis
644  /// implementation that uses knowledge of ARC constructs to answer queries.
645  ///
646  /// TODO: This class could be generalized to know about other ObjC-specific
647  /// tricks. Such as knowing that ivars in the non-fragile ABI are non-aliasing
648  /// even though their offsets are dynamic.
649  class ObjCARCAliasAnalysis : public ImmutablePass,
650                               public AliasAnalysis {
651  public:
652    static char ID; // Class identification, replacement for typeinfo
653    ObjCARCAliasAnalysis() : ImmutablePass(ID) {
654      initializeObjCARCAliasAnalysisPass(*PassRegistry::getPassRegistry());
655    }
656
657  private:
658    virtual void initializePass() {
659      InitializeAliasAnalysis(this);
660    }
661
662    /// getAdjustedAnalysisPointer - This method is used when a pass implements
663    /// an analysis interface through multiple inheritance.  If needed, it
664    /// should override this to adjust the this pointer as needed for the
665    /// specified pass info.
666    virtual void *getAdjustedAnalysisPointer(const void *PI) {
667      if (PI == &AliasAnalysis::ID)
668        return (AliasAnalysis*)this;
669      return this;
670    }
671
672    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
673    virtual AliasResult alias(const Location &LocA, const Location &LocB);
674    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
675    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
676    virtual ModRefBehavior getModRefBehavior(const Function *F);
677    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
678                                       const Location &Loc);
679    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
680                                       ImmutableCallSite CS2);
681  };
682}  // End of anonymous namespace
683
684// Register this pass...
685char ObjCARCAliasAnalysis::ID = 0;
686INITIALIZE_AG_PASS(ObjCARCAliasAnalysis, AliasAnalysis, "objc-arc-aa",
687                   "ObjC-ARC-Based Alias Analysis", false, true, false)
688
689ImmutablePass *llvm::createObjCARCAliasAnalysisPass() {
690  return new ObjCARCAliasAnalysis();
691}
692
693void
694ObjCARCAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
695  AU.setPreservesAll();
696  AliasAnalysis::getAnalysisUsage(AU);
697}
698
699AliasAnalysis::AliasResult
700ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) {
701  if (!EnableARCOpts)
702    return AliasAnalysis::alias(LocA, LocB);
703
704  // First, strip off no-ops, including ObjC-specific no-ops, and try making a
705  // precise alias query.
706  const Value *SA = StripPointerCastsAndObjCCalls(LocA.Ptr);
707  const Value *SB = StripPointerCastsAndObjCCalls(LocB.Ptr);
708  AliasResult Result =
709    AliasAnalysis::alias(Location(SA, LocA.Size, LocA.TBAATag),
710                         Location(SB, LocB.Size, LocB.TBAATag));
711  if (Result != MayAlias)
712    return Result;
713
714  // If that failed, climb to the underlying object, including climbing through
715  // ObjC-specific no-ops, and try making an imprecise alias query.
716  const Value *UA = GetUnderlyingObjCPtr(SA);
717  const Value *UB = GetUnderlyingObjCPtr(SB);
718  if (UA != SA || UB != SB) {
719    Result = AliasAnalysis::alias(Location(UA), Location(UB));
720    // We can't use MustAlias or PartialAlias results here because
721    // GetUnderlyingObjCPtr may return an offsetted pointer value.
722    if (Result == NoAlias)
723      return NoAlias;
724  }
725
726  // If that failed, fail. We don't need to chain here, since that's covered
727  // by the earlier precise query.
728  return MayAlias;
729}
730
731bool
732ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc,
733                                             bool OrLocal) {
734  if (!EnableARCOpts)
735    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
736
737  // First, strip off no-ops, including ObjC-specific no-ops, and try making
738  // a precise alias query.
739  const Value *S = StripPointerCastsAndObjCCalls(Loc.Ptr);
740  if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.TBAATag),
741                                            OrLocal))
742    return true;
743
744  // If that failed, climb to the underlying object, including climbing through
745  // ObjC-specific no-ops, and try making an imprecise alias query.
746  const Value *U = GetUnderlyingObjCPtr(S);
747  if (U != S)
748    return AliasAnalysis::pointsToConstantMemory(Location(U), OrLocal);
749
750  // If that failed, fail. We don't need to chain here, since that's covered
751  // by the earlier precise query.
752  return false;
753}
754
755AliasAnalysis::ModRefBehavior
756ObjCARCAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
757  // We have nothing to do. Just chain to the next AliasAnalysis.
758  return AliasAnalysis::getModRefBehavior(CS);
759}
760
761AliasAnalysis::ModRefBehavior
762ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) {
763  if (!EnableARCOpts)
764    return AliasAnalysis::getModRefBehavior(F);
765
766  switch (GetFunctionClass(F)) {
767  case IC_NoopCast:
768    return DoesNotAccessMemory;
769  default:
770    break;
771  }
772
773  return AliasAnalysis::getModRefBehavior(F);
774}
775
776AliasAnalysis::ModRefResult
777ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS, const Location &Loc) {
778  if (!EnableARCOpts)
779    return AliasAnalysis::getModRefInfo(CS, Loc);
780
781  switch (GetBasicInstructionClass(CS.getInstruction())) {
782  case IC_Retain:
783  case IC_RetainRV:
784  case IC_Autorelease:
785  case IC_AutoreleaseRV:
786  case IC_NoopCast:
787  case IC_AutoreleasepoolPush:
788  case IC_FusedRetainAutorelease:
789  case IC_FusedRetainAutoreleaseRV:
790    // These functions don't access any memory visible to the compiler.
791    // Note that this doesn't include objc_retainBlock, becuase it updates
792    // pointers when it copies block data.
793    return NoModRef;
794  default:
795    break;
796  }
797
798  return AliasAnalysis::getModRefInfo(CS, Loc);
799}
800
801AliasAnalysis::ModRefResult
802ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
803                                    ImmutableCallSite CS2) {
804  // TODO: Theoretically we could check for dependencies between objc_* calls
805  // and OnlyAccessesArgumentPointees calls or other well-behaved calls.
806  return AliasAnalysis::getModRefInfo(CS1, CS2);
807}
808
809//===----------------------------------------------------------------------===//
810// ARC expansion.
811//===----------------------------------------------------------------------===//
812
813#include "llvm/Support/InstIterator.h"
814#include "llvm/Transforms/Scalar.h"
815
816namespace {
817  /// ObjCARCExpand - Early ARC transformations.
818  class ObjCARCExpand : public FunctionPass {
819    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
820    virtual bool doInitialization(Module &M);
821    virtual bool runOnFunction(Function &F);
822
823    /// Run - A flag indicating whether this optimization pass should run.
824    bool Run;
825
826  public:
827    static char ID;
828    ObjCARCExpand() : FunctionPass(ID) {
829      initializeObjCARCExpandPass(*PassRegistry::getPassRegistry());
830    }
831  };
832}
833
834char ObjCARCExpand::ID = 0;
835INITIALIZE_PASS(ObjCARCExpand,
836                "objc-arc-expand", "ObjC ARC expansion", false, false)
837
838Pass *llvm::createObjCARCExpandPass() {
839  return new ObjCARCExpand();
840}
841
842void ObjCARCExpand::getAnalysisUsage(AnalysisUsage &AU) const {
843  AU.setPreservesCFG();
844}
845
846bool ObjCARCExpand::doInitialization(Module &M) {
847  Run = ModuleHasARC(M);
848  return false;
849}
850
851bool ObjCARCExpand::runOnFunction(Function &F) {
852  if (!EnableARCOpts)
853    return false;
854
855  // If nothing in the Module uses ARC, don't do anything.
856  if (!Run)
857    return false;
858
859  bool Changed = false;
860
861  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
862    Instruction *Inst = &*I;
863
864    switch (GetBasicInstructionClass(Inst)) {
865    case IC_Retain:
866    case IC_RetainRV:
867    case IC_Autorelease:
868    case IC_AutoreleaseRV:
869    case IC_FusedRetainAutorelease:
870    case IC_FusedRetainAutoreleaseRV:
871      // These calls return their argument verbatim, as a low-level
872      // optimization. However, this makes high-level optimizations
873      // harder. Undo any uses of this optimization that the front-end
874      // emitted here. We'll redo them in a later pass.
875      Changed = true;
876      Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
877      break;
878    default:
879      break;
880    }
881  }
882
883  return Changed;
884}
885
886//===----------------------------------------------------------------------===//
887// ARC autorelease pool elimination.
888//===----------------------------------------------------------------------===//
889
890#include "llvm/Constants.h"
891
892namespace {
893  /// ObjCARCAPElim - Autorelease pool elimination.
894  class ObjCARCAPElim : public ModulePass {
895    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
896    virtual bool runOnModule(Module &M);
897
898    bool MayAutorelease(CallSite CS);
899    bool OptimizeBB(BasicBlock *BB);
900
901  public:
902    static char ID;
903    ObjCARCAPElim() : ModulePass(ID) {
904      initializeObjCARCAPElimPass(*PassRegistry::getPassRegistry());
905    }
906  };
907}
908
909char ObjCARCAPElim::ID = 0;
910INITIALIZE_PASS(ObjCARCAPElim,
911                "objc-arc-apelim",
912                "ObjC ARC autorelease pool elimination",
913                false, false)
914
915Pass *llvm::createObjCARCAPElimPass() {
916  return new ObjCARCAPElim();
917}
918
919void ObjCARCAPElim::getAnalysisUsage(AnalysisUsage &AU) const {
920  AU.setPreservesCFG();
921}
922
923/// MayAutorelease - Interprocedurally determine if calls made by the
924/// given call site can possibly produce autoreleases.
925bool ObjCARCAPElim::MayAutorelease(CallSite CS) {
926  if (Function *Callee = CS.getCalledFunction()) {
927    if (Callee->isDeclaration() || Callee->mayBeOverridden())
928      return true;
929    for (Function::iterator I = Callee->begin(), E = Callee->end();
930         I != E; ++I) {
931      BasicBlock *BB = I;
932      for (BasicBlock::iterator J = BB->begin(), F = BB->end(); J != F; ++J)
933        if (CallSite JCS = CallSite(J))
934          if (!JCS.onlyReadsMemory() && MayAutorelease(JCS))
935            return true;
936    }
937    return false;
938  }
939
940  return true;
941}
942
943bool ObjCARCAPElim::OptimizeBB(BasicBlock *BB) {
944  bool Changed = false;
945
946  Instruction *Push = 0;
947  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
948    Instruction *Inst = I++;
949    switch (GetBasicInstructionClass(Inst)) {
950    case IC_AutoreleasepoolPush:
951      Push = Inst;
952      break;
953    case IC_AutoreleasepoolPop:
954      // If this pop matches a push and nothing in between can autorelease,
955      // zap the pair.
956      if (Push && cast<CallInst>(Inst)->getArgOperand(0) == Push) {
957        Changed = true;
958        Inst->eraseFromParent();
959        Push->eraseFromParent();
960      }
961      Push = 0;
962      break;
963    case IC_CallOrUser:
964      if (MayAutorelease(CallSite(Inst)))
965        Push = 0;
966      break;
967    default:
968      break;
969    }
970  }
971
972  return Changed;
973}
974
975bool ObjCARCAPElim::runOnModule(Module &M) {
976  if (!EnableARCOpts)
977    return false;
978
979  // If nothing in the Module uses ARC, don't do anything.
980  if (!ModuleHasARC(M))
981    return false;
982
983  // Find the llvm.global_ctors variable, as the first step in
984  // identifying the global constructors.
985  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
986  if (!GV)
987    return false;
988
989  assert(GV->hasDefinitiveInitializer() &&
990         "llvm.global_ctors is uncooperative!");
991
992  bool Changed = false;
993
994  // Dig the constructor functions out of GV's initializer.
995  ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
996  for (User::op_iterator OI = Init->op_begin(), OE = Init->op_end();
997       OI != OE; ++OI) {
998    Value *Op = *OI;
999    // llvm.global_ctors is an array of pairs where the second members
1000    // are constructor functions.
1001    Function *F = cast<Function>(cast<ConstantStruct>(Op)->getOperand(1));
1002    // Only look at function definitions.
1003    if (F->isDeclaration())
1004      continue;
1005    // Only look at functions with one basic block.
1006    if (llvm::next(F->begin()) != F->end())
1007      continue;
1008    // Ok, a single-block constructor function definition. Try to optimize it.
1009    Changed |= OptimizeBB(F->begin());
1010  }
1011
1012  return Changed;
1013}
1014
1015//===----------------------------------------------------------------------===//
1016// ARC optimization.
1017//===----------------------------------------------------------------------===//
1018
1019// TODO: On code like this:
1020//
1021// objc_retain(%x)
1022// stuff_that_cannot_release()
1023// objc_autorelease(%x)
1024// stuff_that_cannot_release()
1025// objc_retain(%x)
1026// stuff_that_cannot_release()
1027// objc_autorelease(%x)
1028//
1029// The second retain and autorelease can be deleted.
1030
1031// TODO: It should be possible to delete
1032// objc_autoreleasePoolPush and objc_autoreleasePoolPop
1033// pairs if nothing is actually autoreleased between them. Also, autorelease
1034// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
1035// after inlining) can be turned into plain release calls.
1036
1037// TODO: Critical-edge splitting. If the optimial insertion point is
1038// a critical edge, the current algorithm has to fail, because it doesn't
1039// know how to split edges. It should be possible to make the optimizer
1040// think in terms of edges, rather than blocks, and then split critical
1041// edges on demand.
1042
1043// TODO: OptimizeSequences could generalized to be Interprocedural.
1044
1045// TODO: Recognize that a bunch of other objc runtime calls have
1046// non-escaping arguments and non-releasing arguments, and may be
1047// non-autoreleasing.
1048
1049// TODO: Sink autorelease calls as far as possible. Unfortunately we
1050// usually can't sink them past other calls, which would be the main
1051// case where it would be useful.
1052
1053// TODO: The pointer returned from objc_loadWeakRetained is retained.
1054
1055// TODO: Delete release+retain pairs (rare).
1056
1057#include "llvm/GlobalAlias.h"
1058#include "llvm/Constants.h"
1059#include "llvm/LLVMContext.h"
1060#include "llvm/Support/ErrorHandling.h"
1061#include "llvm/Support/CFG.h"
1062#include "llvm/ADT/Statistic.h"
1063#include "llvm/ADT/SmallPtrSet.h"
1064#include "llvm/ADT/DenseSet.h"
1065
1066STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
1067STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
1068STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
1069STATISTIC(NumRets,        "Number of return value forwarding "
1070                          "retain+autoreleaes eliminated");
1071STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
1072STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
1073
1074namespace {
1075  /// ProvenanceAnalysis - This is similar to BasicAliasAnalysis, and it
1076  /// uses many of the same techniques, except it uses special ObjC-specific
1077  /// reasoning about pointer relationships.
1078  class ProvenanceAnalysis {
1079    AliasAnalysis *AA;
1080
1081    typedef std::pair<const Value *, const Value *> ValuePairTy;
1082    typedef DenseMap<ValuePairTy, bool> CachedResultsTy;
1083    CachedResultsTy CachedResults;
1084
1085    bool relatedCheck(const Value *A, const Value *B);
1086    bool relatedSelect(const SelectInst *A, const Value *B);
1087    bool relatedPHI(const PHINode *A, const Value *B);
1088
1089    // Do not implement.
1090    void operator=(const ProvenanceAnalysis &);
1091    ProvenanceAnalysis(const ProvenanceAnalysis &);
1092
1093  public:
1094    ProvenanceAnalysis() {}
1095
1096    void setAA(AliasAnalysis *aa) { AA = aa; }
1097
1098    AliasAnalysis *getAA() const { return AA; }
1099
1100    bool related(const Value *A, const Value *B);
1101
1102    void clear() {
1103      CachedResults.clear();
1104    }
1105  };
1106}
1107
1108bool ProvenanceAnalysis::relatedSelect(const SelectInst *A, const Value *B) {
1109  // If the values are Selects with the same condition, we can do a more precise
1110  // check: just check for relations between the values on corresponding arms.
1111  if (const SelectInst *SB = dyn_cast<SelectInst>(B))
1112    if (A->getCondition() == SB->getCondition()) {
1113      if (related(A->getTrueValue(), SB->getTrueValue()))
1114        return true;
1115      if (related(A->getFalseValue(), SB->getFalseValue()))
1116        return true;
1117      return false;
1118    }
1119
1120  // Check both arms of the Select node individually.
1121  if (related(A->getTrueValue(), B))
1122    return true;
1123  if (related(A->getFalseValue(), B))
1124    return true;
1125
1126  // The arms both checked out.
1127  return false;
1128}
1129
1130bool ProvenanceAnalysis::relatedPHI(const PHINode *A, const Value *B) {
1131  // If the values are PHIs in the same block, we can do a more precise as well
1132  // as efficient check: just check for relations between the values on
1133  // corresponding edges.
1134  if (const PHINode *PNB = dyn_cast<PHINode>(B))
1135    if (PNB->getParent() == A->getParent()) {
1136      for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i)
1137        if (related(A->getIncomingValue(i),
1138                    PNB->getIncomingValueForBlock(A->getIncomingBlock(i))))
1139          return true;
1140      return false;
1141    }
1142
1143  // Check each unique source of the PHI node against B.
1144  SmallPtrSet<const Value *, 4> UniqueSrc;
1145  for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
1146    const Value *PV1 = A->getIncomingValue(i);
1147    if (UniqueSrc.insert(PV1) && related(PV1, B))
1148      return true;
1149  }
1150
1151  // All of the arms checked out.
1152  return false;
1153}
1154
1155/// isStoredObjCPointer - Test if the value of P, or any value covered by its
1156/// provenance, is ever stored within the function (not counting callees).
1157static bool isStoredObjCPointer(const Value *P) {
1158  SmallPtrSet<const Value *, 8> Visited;
1159  SmallVector<const Value *, 8> Worklist;
1160  Worklist.push_back(P);
1161  Visited.insert(P);
1162  do {
1163    P = Worklist.pop_back_val();
1164    for (Value::const_use_iterator UI = P->use_begin(), UE = P->use_end();
1165         UI != UE; ++UI) {
1166      const User *Ur = *UI;
1167      if (isa<StoreInst>(Ur)) {
1168        if (UI.getOperandNo() == 0)
1169          // The pointer is stored.
1170          return true;
1171        // The pointed is stored through.
1172        continue;
1173      }
1174      if (isa<CallInst>(Ur))
1175        // The pointer is passed as an argument, ignore this.
1176        continue;
1177      if (isa<PtrToIntInst>(P))
1178        // Assume the worst.
1179        return true;
1180      if (Visited.insert(Ur))
1181        Worklist.push_back(Ur);
1182    }
1183  } while (!Worklist.empty());
1184
1185  // Everything checked out.
1186  return false;
1187}
1188
1189bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B) {
1190  // Skip past provenance pass-throughs.
1191  A = GetUnderlyingObjCPtr(A);
1192  B = GetUnderlyingObjCPtr(B);
1193
1194  // Quick check.
1195  if (A == B)
1196    return true;
1197
1198  // Ask regular AliasAnalysis, for a first approximation.
1199  switch (AA->alias(A, B)) {
1200  case AliasAnalysis::NoAlias:
1201    return false;
1202  case AliasAnalysis::MustAlias:
1203  case AliasAnalysis::PartialAlias:
1204    return true;
1205  case AliasAnalysis::MayAlias:
1206    break;
1207  }
1208
1209  bool AIsIdentified = IsObjCIdentifiedObject(A);
1210  bool BIsIdentified = IsObjCIdentifiedObject(B);
1211
1212  // An ObjC-Identified object can't alias a load if it is never locally stored.
1213  if (AIsIdentified) {
1214    if (BIsIdentified) {
1215      // If both pointers have provenance, they can be directly compared.
1216      if (A != B)
1217        return false;
1218    } else {
1219      if (isa<LoadInst>(B))
1220        return isStoredObjCPointer(A);
1221    }
1222  } else {
1223    if (BIsIdentified && isa<LoadInst>(A))
1224      return isStoredObjCPointer(B);
1225  }
1226
1227   // Special handling for PHI and Select.
1228  if (const PHINode *PN = dyn_cast<PHINode>(A))
1229    return relatedPHI(PN, B);
1230  if (const PHINode *PN = dyn_cast<PHINode>(B))
1231    return relatedPHI(PN, A);
1232  if (const SelectInst *S = dyn_cast<SelectInst>(A))
1233    return relatedSelect(S, B);
1234  if (const SelectInst *S = dyn_cast<SelectInst>(B))
1235    return relatedSelect(S, A);
1236
1237  // Conservative.
1238  return true;
1239}
1240
1241bool ProvenanceAnalysis::related(const Value *A, const Value *B) {
1242  // Begin by inserting a conservative value into the map. If the insertion
1243  // fails, we have the answer already. If it succeeds, leave it there until we
1244  // compute the real answer to guard against recursive queries.
1245  if (A > B) std::swap(A, B);
1246  std::pair<CachedResultsTy::iterator, bool> Pair =
1247    CachedResults.insert(std::make_pair(ValuePairTy(A, B), true));
1248  if (!Pair.second)
1249    return Pair.first->second;
1250
1251  bool Result = relatedCheck(A, B);
1252  CachedResults[ValuePairTy(A, B)] = Result;
1253  return Result;
1254}
1255
1256namespace {
1257  // Sequence - A sequence of states that a pointer may go through in which an
1258  // objc_retain and objc_release are actually needed.
1259  enum Sequence {
1260    S_None,
1261    S_Retain,         ///< objc_retain(x)
1262    S_CanRelease,     ///< foo(x) -- x could possibly see a ref count decrement
1263    S_Use,            ///< any use of x
1264    S_Stop,           ///< like S_Release, but code motion is stopped
1265    S_Release,        ///< objc_release(x)
1266    S_MovableRelease  ///< objc_release(x), !clang.imprecise_release
1267  };
1268}
1269
1270static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
1271  // The easy cases.
1272  if (A == B)
1273    return A;
1274  if (A == S_None || B == S_None)
1275    return S_None;
1276
1277  if (A > B) std::swap(A, B);
1278  if (TopDown) {
1279    // Choose the side which is further along in the sequence.
1280    if ((A == S_Retain || A == S_CanRelease) &&
1281        (B == S_CanRelease || B == S_Use))
1282      return B;
1283  } else {
1284    // Choose the side which is further along in the sequence.
1285    if ((A == S_Use || A == S_CanRelease) &&
1286        (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
1287      return A;
1288    // If both sides are releases, choose the more conservative one.
1289    if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
1290      return A;
1291    if (A == S_Release && B == S_MovableRelease)
1292      return A;
1293  }
1294
1295  return S_None;
1296}
1297
1298namespace {
1299  /// RRInfo - Unidirectional information about either a
1300  /// retain-decrement-use-release sequence or release-use-decrement-retain
1301  /// reverese sequence.
1302  struct RRInfo {
1303    /// KnownSafe - After an objc_retain, the reference count of the referenced
1304    /// object is known to be positive. Similarly, before an objc_release, the
1305    /// reference count of the referenced object is known to be positive. If
1306    /// there are retain-release pairs in code regions where the retain count
1307    /// is known to be positive, they can be eliminated, regardless of any side
1308    /// effects between them.
1309    ///
1310    /// Also, a retain+release pair nested within another retain+release
1311    /// pair all on the known same pointer value can be eliminated, regardless
1312    /// of any intervening side effects.
1313    ///
1314    /// KnownSafe is true when either of these conditions is satisfied.
1315    bool KnownSafe;
1316
1317    /// IsRetainBlock - True if the Calls are objc_retainBlock calls (as
1318    /// opposed to objc_retain calls).
1319    bool IsRetainBlock;
1320
1321    /// IsTailCallRelease - True of the objc_release calls are all marked
1322    /// with the "tail" keyword.
1323    bool IsTailCallRelease;
1324
1325    /// Partial - True of we've seen an opportunity for partial RR elimination,
1326    /// such as pushing calls into a CFG triangle or into one side of a
1327    /// CFG diamond.
1328    /// TODO: Consider moving this to PtrState.
1329    bool Partial;
1330
1331    /// ReleaseMetadata - If the Calls are objc_release calls and they all have
1332    /// a clang.imprecise_release tag, this is the metadata tag.
1333    MDNode *ReleaseMetadata;
1334
1335    /// Calls - For a top-down sequence, the set of objc_retains or
1336    /// objc_retainBlocks. For bottom-up, the set of objc_releases.
1337    SmallPtrSet<Instruction *, 2> Calls;
1338
1339    /// ReverseInsertPts - The set of optimal insert positions for
1340    /// moving calls in the opposite sequence.
1341    SmallPtrSet<Instruction *, 2> ReverseInsertPts;
1342
1343    RRInfo() :
1344      KnownSafe(false), IsRetainBlock(false),
1345      IsTailCallRelease(false), Partial(false),
1346      ReleaseMetadata(0) {}
1347
1348    void clear();
1349  };
1350}
1351
1352void RRInfo::clear() {
1353  KnownSafe = false;
1354  IsRetainBlock = false;
1355  IsTailCallRelease = false;
1356  Partial = false;
1357  ReleaseMetadata = 0;
1358  Calls.clear();
1359  ReverseInsertPts.clear();
1360}
1361
1362namespace {
1363  /// PtrState - This class summarizes several per-pointer runtime properties
1364  /// which are propogated through the flow graph.
1365  class PtrState {
1366    /// RefCount - The known minimum number of reference count increments.
1367    unsigned RefCount;
1368
1369    /// NestCount - The known minimum level of retain+release nesting.
1370    unsigned NestCount;
1371
1372    /// Seq - The current position in the sequence.
1373    Sequence Seq;
1374
1375  public:
1376    /// RRI - Unidirectional information about the current sequence.
1377    /// TODO: Encapsulate this better.
1378    RRInfo RRI;
1379
1380    PtrState() : RefCount(0), NestCount(0), Seq(S_None) {}
1381
1382    void SetAtLeastOneRefCount()  {
1383      if (RefCount == 0) RefCount = 1;
1384    }
1385
1386    void IncrementRefCount() {
1387      if (RefCount != UINT_MAX) ++RefCount;
1388    }
1389
1390    void DecrementRefCount() {
1391      if (RefCount != 0) --RefCount;
1392    }
1393
1394    bool IsKnownIncremented() const {
1395      return RefCount > 0;
1396    }
1397
1398    void IncrementNestCount() {
1399      if (NestCount != UINT_MAX) ++NestCount;
1400    }
1401
1402    void DecrementNestCount() {
1403      if (NestCount != 0) --NestCount;
1404    }
1405
1406    bool IsKnownNested() const {
1407      return NestCount > 0;
1408    }
1409
1410    void SetSeq(Sequence NewSeq) {
1411      Seq = NewSeq;
1412    }
1413
1414    Sequence GetSeq() const {
1415      return Seq;
1416    }
1417
1418    void ClearSequenceProgress() {
1419      Seq = S_None;
1420      RRI.clear();
1421    }
1422
1423    void Merge(const PtrState &Other, bool TopDown);
1424  };
1425}
1426
1427void
1428PtrState::Merge(const PtrState &Other, bool TopDown) {
1429  Seq = MergeSeqs(Seq, Other.Seq, TopDown);
1430  RefCount = std::min(RefCount, Other.RefCount);
1431  NestCount = std::min(NestCount, Other.NestCount);
1432
1433  // We can't merge a plain objc_retain with an objc_retainBlock.
1434  if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock)
1435    Seq = S_None;
1436
1437  // If we're not in a sequence (anymore), drop all associated state.
1438  if (Seq == S_None) {
1439    RRI.clear();
1440  } else if (RRI.Partial || Other.RRI.Partial) {
1441    // If we're doing a merge on a path that's previously seen a partial
1442    // merge, conservatively drop the sequence, to avoid doing partial
1443    // RR elimination. If the branch predicates for the two merge differ,
1444    // mixing them is unsafe.
1445    Seq = S_None;
1446    RRI.clear();
1447  } else {
1448    // Conservatively merge the ReleaseMetadata information.
1449    if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata)
1450      RRI.ReleaseMetadata = 0;
1451
1452    RRI.KnownSafe = RRI.KnownSafe && Other.RRI.KnownSafe;
1453    RRI.IsTailCallRelease = RRI.IsTailCallRelease && Other.RRI.IsTailCallRelease;
1454    RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end());
1455
1456    // Merge the insert point sets. If there are any differences,
1457    // that makes this a partial merge.
1458    RRI.Partial = RRI.ReverseInsertPts.size() !=
1459                  Other.RRI.ReverseInsertPts.size();
1460    for (SmallPtrSet<Instruction *, 2>::const_iterator
1461         I = Other.RRI.ReverseInsertPts.begin(),
1462         E = Other.RRI.ReverseInsertPts.end(); I != E; ++I)
1463      RRI.Partial |= RRI.ReverseInsertPts.insert(*I);
1464  }
1465}
1466
1467namespace {
1468  /// BBState - Per-BasicBlock state.
1469  class BBState {
1470    /// TopDownPathCount - The number of unique control paths from the entry
1471    /// which can reach this block.
1472    unsigned TopDownPathCount;
1473
1474    /// BottomUpPathCount - The number of unique control paths to exits
1475    /// from this block.
1476    unsigned BottomUpPathCount;
1477
1478    /// MapTy - A type for PerPtrTopDown and PerPtrBottomUp.
1479    typedef MapVector<const Value *, PtrState> MapTy;
1480
1481    /// PerPtrTopDown - The top-down traversal uses this to record information
1482    /// known about a pointer at the bottom of each block.
1483    MapTy PerPtrTopDown;
1484
1485    /// PerPtrBottomUp - The bottom-up traversal uses this to record information
1486    /// known about a pointer at the top of each block.
1487    MapTy PerPtrBottomUp;
1488
1489  public:
1490    BBState() : TopDownPathCount(0), BottomUpPathCount(0) {}
1491
1492    typedef MapTy::iterator ptr_iterator;
1493    typedef MapTy::const_iterator ptr_const_iterator;
1494
1495    ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
1496    ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
1497    ptr_const_iterator top_down_ptr_begin() const {
1498      return PerPtrTopDown.begin();
1499    }
1500    ptr_const_iterator top_down_ptr_end() const {
1501      return PerPtrTopDown.end();
1502    }
1503
1504    ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
1505    ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
1506    ptr_const_iterator bottom_up_ptr_begin() const {
1507      return PerPtrBottomUp.begin();
1508    }
1509    ptr_const_iterator bottom_up_ptr_end() const {
1510      return PerPtrBottomUp.end();
1511    }
1512
1513    /// SetAsEntry - Mark this block as being an entry block, which has one
1514    /// path from the entry by definition.
1515    void SetAsEntry() { TopDownPathCount = 1; }
1516
1517    /// SetAsExit - Mark this block as being an exit block, which has one
1518    /// path to an exit by definition.
1519    void SetAsExit()  { BottomUpPathCount = 1; }
1520
1521    PtrState &getPtrTopDownState(const Value *Arg) {
1522      return PerPtrTopDown[Arg];
1523    }
1524
1525    PtrState &getPtrBottomUpState(const Value *Arg) {
1526      return PerPtrBottomUp[Arg];
1527    }
1528
1529    void clearBottomUpPointers() {
1530      PerPtrBottomUp.clear();
1531    }
1532
1533    void clearTopDownPointers() {
1534      PerPtrTopDown.clear();
1535    }
1536
1537    void InitFromPred(const BBState &Other);
1538    void InitFromSucc(const BBState &Other);
1539    void MergePred(const BBState &Other);
1540    void MergeSucc(const BBState &Other);
1541
1542    /// GetAllPathCount - Return the number of possible unique paths from an
1543    /// entry to an exit which pass through this block. This is only valid
1544    /// after both the top-down and bottom-up traversals are complete.
1545    unsigned GetAllPathCount() const {
1546      return TopDownPathCount * BottomUpPathCount;
1547    }
1548
1549    /// IsVisitedTopDown - Test whether the block for this BBState has been
1550    /// visited by the top-down portion of the algorithm.
1551    bool isVisitedTopDown() const {
1552      return TopDownPathCount != 0;
1553    }
1554  };
1555}
1556
1557void BBState::InitFromPred(const BBState &Other) {
1558  PerPtrTopDown = Other.PerPtrTopDown;
1559  TopDownPathCount = Other.TopDownPathCount;
1560}
1561
1562void BBState::InitFromSucc(const BBState &Other) {
1563  PerPtrBottomUp = Other.PerPtrBottomUp;
1564  BottomUpPathCount = Other.BottomUpPathCount;
1565}
1566
1567/// MergePred - The top-down traversal uses this to merge information about
1568/// predecessors to form the initial state for a new block.
1569void BBState::MergePred(const BBState &Other) {
1570  // Other.TopDownPathCount can be 0, in which case it is either dead or a
1571  // loop backedge. Loop backedges are special.
1572  TopDownPathCount += Other.TopDownPathCount;
1573
1574  // For each entry in the other set, if our set has an entry with the same key,
1575  // merge the entries. Otherwise, copy the entry and merge it with an empty
1576  // entry.
1577  for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
1578       ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
1579    std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
1580    Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
1581                             /*TopDown=*/true);
1582  }
1583
1584  // For each entry in our set, if the other set doesn't have an entry with the
1585  // same key, force it to merge with an empty entry.
1586  for (ptr_iterator MI = top_down_ptr_begin(),
1587       ME = top_down_ptr_end(); MI != ME; ++MI)
1588    if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
1589      MI->second.Merge(PtrState(), /*TopDown=*/true);
1590}
1591
1592/// MergeSucc - The bottom-up traversal uses this to merge information about
1593/// successors to form the initial state for a new block.
1594void BBState::MergeSucc(const BBState &Other) {
1595  // Other.BottomUpPathCount can be 0, in which case it is either dead or a
1596  // loop backedge. Loop backedges are special.
1597  BottomUpPathCount += Other.BottomUpPathCount;
1598
1599  // For each entry in the other set, if our set has an entry with the
1600  // same key, merge the entries. Otherwise, copy the entry and merge
1601  // it with an empty entry.
1602  for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
1603       ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
1604    std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
1605    Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
1606                             /*TopDown=*/false);
1607  }
1608
1609  // For each entry in our set, if the other set doesn't have an entry
1610  // with the same key, force it to merge with an empty entry.
1611  for (ptr_iterator MI = bottom_up_ptr_begin(),
1612       ME = bottom_up_ptr_end(); MI != ME; ++MI)
1613    if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
1614      MI->second.Merge(PtrState(), /*TopDown=*/false);
1615}
1616
1617namespace {
1618  /// ObjCARCOpt - The main ARC optimization pass.
1619  class ObjCARCOpt : public FunctionPass {
1620    bool Changed;
1621    ProvenanceAnalysis PA;
1622
1623    /// Run - A flag indicating whether this optimization pass should run.
1624    bool Run;
1625
1626    /// RetainRVCallee, etc. - Declarations for ObjC runtime
1627    /// functions, for use in creating calls to them. These are initialized
1628    /// lazily to avoid cluttering up the Module with unused declarations.
1629    Constant *RetainRVCallee, *AutoreleaseRVCallee, *ReleaseCallee,
1630             *RetainCallee, *RetainBlockCallee, *AutoreleaseCallee;
1631
1632    /// UsedInThisFunciton - Flags which determine whether each of the
1633    /// interesting runtine functions is in fact used in the current function.
1634    unsigned UsedInThisFunction;
1635
1636    /// ImpreciseReleaseMDKind - The Metadata Kind for clang.imprecise_release
1637    /// metadata.
1638    unsigned ImpreciseReleaseMDKind;
1639
1640    /// CopyOnEscapeMDKind - The Metadata Kind for clang.arc.copy_on_escape
1641    /// metadata.
1642    unsigned CopyOnEscapeMDKind;
1643
1644    Constant *getRetainRVCallee(Module *M);
1645    Constant *getAutoreleaseRVCallee(Module *M);
1646    Constant *getReleaseCallee(Module *M);
1647    Constant *getRetainCallee(Module *M);
1648    Constant *getRetainBlockCallee(Module *M);
1649    Constant *getAutoreleaseCallee(Module *M);
1650
1651    bool IsRetainBlockOptimizable(const Instruction *Inst);
1652
1653    void OptimizeRetainCall(Function &F, Instruction *Retain);
1654    bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
1655    void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV);
1656    void OptimizeIndividualCalls(Function &F);
1657
1658    void CheckForCFGHazards(const BasicBlock *BB,
1659                            DenseMap<const BasicBlock *, BBState> &BBStates,
1660                            BBState &MyStates) const;
1661    bool VisitBottomUp(BasicBlock *BB,
1662                       DenseMap<const BasicBlock *, BBState> &BBStates,
1663                       MapVector<Value *, RRInfo> &Retains);
1664    bool VisitTopDown(BasicBlock *BB,
1665                      DenseMap<const BasicBlock *, BBState> &BBStates,
1666                      DenseMap<Value *, RRInfo> &Releases);
1667    bool Visit(Function &F,
1668               DenseMap<const BasicBlock *, BBState> &BBStates,
1669               MapVector<Value *, RRInfo> &Retains,
1670               DenseMap<Value *, RRInfo> &Releases);
1671
1672    void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
1673                   MapVector<Value *, RRInfo> &Retains,
1674                   DenseMap<Value *, RRInfo> &Releases,
1675                   SmallVectorImpl<Instruction *> &DeadInsts,
1676                   Module *M);
1677
1678    bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
1679                              MapVector<Value *, RRInfo> &Retains,
1680                              DenseMap<Value *, RRInfo> &Releases,
1681                              Module *M);
1682
1683    void OptimizeWeakCalls(Function &F);
1684
1685    bool OptimizeSequences(Function &F);
1686
1687    void OptimizeReturns(Function &F);
1688
1689    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
1690    virtual bool doInitialization(Module &M);
1691    virtual bool runOnFunction(Function &F);
1692    virtual void releaseMemory();
1693
1694  public:
1695    static char ID;
1696    ObjCARCOpt() : FunctionPass(ID) {
1697      initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
1698    }
1699  };
1700}
1701
1702char ObjCARCOpt::ID = 0;
1703INITIALIZE_PASS_BEGIN(ObjCARCOpt,
1704                      "objc-arc", "ObjC ARC optimization", false, false)
1705INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
1706INITIALIZE_PASS_END(ObjCARCOpt,
1707                    "objc-arc", "ObjC ARC optimization", false, false)
1708
1709Pass *llvm::createObjCARCOptPass() {
1710  return new ObjCARCOpt();
1711}
1712
1713void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
1714  AU.addRequired<ObjCARCAliasAnalysis>();
1715  AU.addRequired<AliasAnalysis>();
1716  // ARC optimization doesn't currently split critical edges.
1717  AU.setPreservesCFG();
1718}
1719
1720bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) {
1721  // Without the magic metadata tag, we have to assume this might be an
1722  // objc_retainBlock call inserted to convert a block pointer to an id,
1723  // in which case it really is needed.
1724  if (!Inst->getMetadata(CopyOnEscapeMDKind))
1725    return false;
1726
1727  // If the pointer "escapes" (not including being used in a call),
1728  // the copy may be needed.
1729  if (DoesObjCBlockEscape(Inst))
1730    return false;
1731
1732  // Otherwise, it's not needed.
1733  return true;
1734}
1735
1736Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
1737  if (!RetainRVCallee) {
1738    LLVMContext &C = M->getContext();
1739    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
1740    std::vector<Type *> Params;
1741    Params.push_back(I8X);
1742    FunctionType *FTy =
1743      FunctionType::get(I8X, Params, /*isVarArg=*/false);
1744    AttrListPtr Attributes;
1745    Attributes.addAttr(~0u, Attribute::NoUnwind);
1746    RetainRVCallee =
1747      M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
1748                             Attributes);
1749  }
1750  return RetainRVCallee;
1751}
1752
1753Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
1754  if (!AutoreleaseRVCallee) {
1755    LLVMContext &C = M->getContext();
1756    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
1757    std::vector<Type *> Params;
1758    Params.push_back(I8X);
1759    FunctionType *FTy =
1760      FunctionType::get(I8X, Params, /*isVarArg=*/false);
1761    AttrListPtr Attributes;
1762    Attributes.addAttr(~0u, Attribute::NoUnwind);
1763    AutoreleaseRVCallee =
1764      M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
1765                             Attributes);
1766  }
1767  return AutoreleaseRVCallee;
1768}
1769
1770Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
1771  if (!ReleaseCallee) {
1772    LLVMContext &C = M->getContext();
1773    std::vector<Type *> Params;
1774    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1775    AttrListPtr Attributes;
1776    Attributes.addAttr(~0u, Attribute::NoUnwind);
1777    ReleaseCallee =
1778      M->getOrInsertFunction(
1779        "objc_release",
1780        FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
1781        Attributes);
1782  }
1783  return ReleaseCallee;
1784}
1785
1786Constant *ObjCARCOpt::getRetainCallee(Module *M) {
1787  if (!RetainCallee) {
1788    LLVMContext &C = M->getContext();
1789    std::vector<Type *> Params;
1790    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1791    AttrListPtr Attributes;
1792    Attributes.addAttr(~0u, Attribute::NoUnwind);
1793    RetainCallee =
1794      M->getOrInsertFunction(
1795        "objc_retain",
1796        FunctionType::get(Params[0], Params, /*isVarArg=*/false),
1797        Attributes);
1798  }
1799  return RetainCallee;
1800}
1801
1802Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) {
1803  if (!RetainBlockCallee) {
1804    LLVMContext &C = M->getContext();
1805    std::vector<Type *> Params;
1806    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1807    AttrListPtr Attributes;
1808    // objc_retainBlock is not nounwind because it calls user copy constructors
1809    // which could theoretically throw.
1810    RetainBlockCallee =
1811      M->getOrInsertFunction(
1812        "objc_retainBlock",
1813        FunctionType::get(Params[0], Params, /*isVarArg=*/false),
1814        Attributes);
1815  }
1816  return RetainBlockCallee;
1817}
1818
1819Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
1820  if (!AutoreleaseCallee) {
1821    LLVMContext &C = M->getContext();
1822    std::vector<Type *> Params;
1823    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1824    AttrListPtr Attributes;
1825    Attributes.addAttr(~0u, Attribute::NoUnwind);
1826    AutoreleaseCallee =
1827      M->getOrInsertFunction(
1828        "objc_autorelease",
1829        FunctionType::get(Params[0], Params, /*isVarArg=*/false),
1830        Attributes);
1831  }
1832  return AutoreleaseCallee;
1833}
1834
1835/// CanAlterRefCount - Test whether the given instruction can result in a
1836/// reference count modification (positive or negative) for the pointer's
1837/// object.
1838static bool
1839CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
1840                 ProvenanceAnalysis &PA, InstructionClass Class) {
1841  switch (Class) {
1842  case IC_Autorelease:
1843  case IC_AutoreleaseRV:
1844  case IC_User:
1845    // These operations never directly modify a reference count.
1846    return false;
1847  default: break;
1848  }
1849
1850  ImmutableCallSite CS = static_cast<const Value *>(Inst);
1851  assert(CS && "Only calls can alter reference counts!");
1852
1853  // See if AliasAnalysis can help us with the call.
1854  AliasAnalysis::ModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
1855  if (AliasAnalysis::onlyReadsMemory(MRB))
1856    return false;
1857  if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
1858    for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1859         I != E; ++I) {
1860      const Value *Op = *I;
1861      if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1862        return true;
1863    }
1864    return false;
1865  }
1866
1867  // Assume the worst.
1868  return true;
1869}
1870
1871/// CanUse - Test whether the given instruction can "use" the given pointer's
1872/// object in a way that requires the reference count to be positive.
1873static bool
1874CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA,
1875       InstructionClass Class) {
1876  // IC_Call operations (as opposed to IC_CallOrUser) never "use" objc pointers.
1877  if (Class == IC_Call)
1878    return false;
1879
1880  // Consider various instructions which may have pointer arguments which are
1881  // not "uses".
1882  if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
1883    // Comparing a pointer with null, or any other constant, isn't really a use,
1884    // because we don't care what the pointer points to, or about the values
1885    // of any other dynamic reference-counted pointers.
1886    if (!IsPotentialUse(ICI->getOperand(1)))
1887      return false;
1888  } else if (ImmutableCallSite CS = static_cast<const Value *>(Inst)) {
1889    // For calls, just check the arguments (and not the callee operand).
1890    for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(),
1891         OE = CS.arg_end(); OI != OE; ++OI) {
1892      const Value *Op = *OI;
1893      if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1894        return true;
1895    }
1896    return false;
1897  } else if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1898    // Special-case stores, because we don't care about the stored value, just
1899    // the store address.
1900    const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand());
1901    // If we can't tell what the underlying object was, assume there is a
1902    // dependence.
1903    return IsPotentialUse(Op) && PA.related(Op, Ptr);
1904  }
1905
1906  // Check each operand for a match.
1907  for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
1908       OI != OE; ++OI) {
1909    const Value *Op = *OI;
1910    if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1911      return true;
1912  }
1913  return false;
1914}
1915
1916/// CanInterruptRV - Test whether the given instruction can autorelease
1917/// any pointer or cause an autoreleasepool pop.
1918static bool
1919CanInterruptRV(InstructionClass Class) {
1920  switch (Class) {
1921  case IC_AutoreleasepoolPop:
1922  case IC_CallOrUser:
1923  case IC_Call:
1924  case IC_Autorelease:
1925  case IC_AutoreleaseRV:
1926  case IC_FusedRetainAutorelease:
1927  case IC_FusedRetainAutoreleaseRV:
1928    return true;
1929  default:
1930    return false;
1931  }
1932}
1933
1934namespace {
1935  /// DependenceKind - There are several kinds of dependence-like concepts in
1936  /// use here.
1937  enum DependenceKind {
1938    NeedsPositiveRetainCount,
1939    CanChangeRetainCount,
1940    RetainAutoreleaseDep,       ///< Blocks objc_retainAutorelease.
1941    RetainAutoreleaseRVDep,     ///< Blocks objc_retainAutoreleaseReturnValue.
1942    RetainRVDep                 ///< Blocks objc_retainAutoreleasedReturnValue.
1943  };
1944}
1945
1946/// Depends - Test if there can be dependencies on Inst through Arg. This
1947/// function only tests dependencies relevant for removing pairs of calls.
1948static bool
1949Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg,
1950        ProvenanceAnalysis &PA) {
1951  // If we've reached the definition of Arg, stop.
1952  if (Inst == Arg)
1953    return true;
1954
1955  switch (Flavor) {
1956  case NeedsPositiveRetainCount: {
1957    InstructionClass Class = GetInstructionClass(Inst);
1958    switch (Class) {
1959    case IC_AutoreleasepoolPop:
1960    case IC_AutoreleasepoolPush:
1961    case IC_None:
1962      return false;
1963    default:
1964      return CanUse(Inst, Arg, PA, Class);
1965    }
1966  }
1967
1968  case CanChangeRetainCount: {
1969    InstructionClass Class = GetInstructionClass(Inst);
1970    switch (Class) {
1971    case IC_AutoreleasepoolPop:
1972      // Conservatively assume this can decrement any count.
1973      return true;
1974    case IC_AutoreleasepoolPush:
1975    case IC_None:
1976      return false;
1977    default:
1978      return CanAlterRefCount(Inst, Arg, PA, Class);
1979    }
1980  }
1981
1982  case RetainAutoreleaseDep:
1983    switch (GetBasicInstructionClass(Inst)) {
1984    case IC_AutoreleasepoolPop:
1985      // Don't merge an objc_autorelease with an objc_retain inside a different
1986      // autoreleasepool scope.
1987      return true;
1988    case IC_Retain:
1989    case IC_RetainRV:
1990      // Check for a retain of the same pointer for merging.
1991      return GetObjCArg(Inst) == Arg;
1992    default:
1993      // Nothing else matters for objc_retainAutorelease formation.
1994      return false;
1995    }
1996    break;
1997
1998  case RetainAutoreleaseRVDep: {
1999    InstructionClass Class = GetBasicInstructionClass(Inst);
2000    switch (Class) {
2001    case IC_Retain:
2002    case IC_RetainRV:
2003      // Check for a retain of the same pointer for merging.
2004      return GetObjCArg(Inst) == Arg;
2005    default:
2006      // Anything that can autorelease interrupts
2007      // retainAutoreleaseReturnValue formation.
2008      return CanInterruptRV(Class);
2009    }
2010    break;
2011  }
2012
2013  case RetainRVDep:
2014    return CanInterruptRV(GetBasicInstructionClass(Inst));
2015  }
2016
2017  llvm_unreachable("Invalid dependence flavor");
2018}
2019
2020/// FindDependencies - Walk up the CFG from StartPos (which is in StartBB) and
2021/// find local and non-local dependencies on Arg.
2022/// TODO: Cache results?
2023static void
2024FindDependencies(DependenceKind Flavor,
2025                 const Value *Arg,
2026                 BasicBlock *StartBB, Instruction *StartInst,
2027                 SmallPtrSet<Instruction *, 4> &DependingInstructions,
2028                 SmallPtrSet<const BasicBlock *, 4> &Visited,
2029                 ProvenanceAnalysis &PA) {
2030  BasicBlock::iterator StartPos = StartInst;
2031
2032  SmallVector<std::pair<BasicBlock *, BasicBlock::iterator>, 4> Worklist;
2033  Worklist.push_back(std::make_pair(StartBB, StartPos));
2034  do {
2035    std::pair<BasicBlock *, BasicBlock::iterator> Pair =
2036      Worklist.pop_back_val();
2037    BasicBlock *LocalStartBB = Pair.first;
2038    BasicBlock::iterator LocalStartPos = Pair.second;
2039    BasicBlock::iterator StartBBBegin = LocalStartBB->begin();
2040    for (;;) {
2041      if (LocalStartPos == StartBBBegin) {
2042        pred_iterator PI(LocalStartBB), PE(LocalStartBB, false);
2043        if (PI == PE)
2044          // If we've reached the function entry, produce a null dependence.
2045          DependingInstructions.insert(0);
2046        else
2047          // Add the predecessors to the worklist.
2048          do {
2049            BasicBlock *PredBB = *PI;
2050            if (Visited.insert(PredBB))
2051              Worklist.push_back(std::make_pair(PredBB, PredBB->end()));
2052          } while (++PI != PE);
2053        break;
2054      }
2055
2056      Instruction *Inst = --LocalStartPos;
2057      if (Depends(Flavor, Inst, Arg, PA)) {
2058        DependingInstructions.insert(Inst);
2059        break;
2060      }
2061    }
2062  } while (!Worklist.empty());
2063
2064  // Determine whether the original StartBB post-dominates all of the blocks we
2065  // visited. If not, insert a sentinal indicating that most optimizations are
2066  // not safe.
2067  for (SmallPtrSet<const BasicBlock *, 4>::const_iterator I = Visited.begin(),
2068       E = Visited.end(); I != E; ++I) {
2069    const BasicBlock *BB = *I;
2070    if (BB == StartBB)
2071      continue;
2072    const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2073    for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
2074      const BasicBlock *Succ = *SI;
2075      if (Succ != StartBB && !Visited.count(Succ)) {
2076        DependingInstructions.insert(reinterpret_cast<Instruction *>(-1));
2077        return;
2078      }
2079    }
2080  }
2081}
2082
2083static bool isNullOrUndef(const Value *V) {
2084  return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
2085}
2086
2087static bool isNoopInstruction(const Instruction *I) {
2088  return isa<BitCastInst>(I) ||
2089         (isa<GetElementPtrInst>(I) &&
2090          cast<GetElementPtrInst>(I)->hasAllZeroIndices());
2091}
2092
2093/// OptimizeRetainCall - Turn objc_retain into
2094/// objc_retainAutoreleasedReturnValue if the operand is a return value.
2095void
2096ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
2097  CallSite CS(GetObjCArg(Retain));
2098  Instruction *Call = CS.getInstruction();
2099  if (!Call) return;
2100  if (Call->getParent() != Retain->getParent()) return;
2101
2102  // Check that the call is next to the retain.
2103  BasicBlock::iterator I = Call;
2104  ++I;
2105  while (isNoopInstruction(I)) ++I;
2106  if (&*I != Retain)
2107    return;
2108
2109  // Turn it to an objc_retainAutoreleasedReturnValue..
2110  Changed = true;
2111  ++NumPeeps;
2112  cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
2113}
2114
2115/// OptimizeRetainRVCall - Turn objc_retainAutoreleasedReturnValue into
2116/// objc_retain if the operand is not a return value.  Or, if it can be
2117/// paired with an objc_autoreleaseReturnValue, delete the pair and
2118/// return true.
2119bool
2120ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
2121  // Check for the argument being from an immediately preceding call.
2122  Value *Arg = GetObjCArg(RetainRV);
2123  CallSite CS(Arg);
2124  if (Instruction *Call = CS.getInstruction())
2125    if (Call->getParent() == RetainRV->getParent()) {
2126      BasicBlock::iterator I = Call;
2127      ++I;
2128      while (isNoopInstruction(I)) ++I;
2129      if (&*I == RetainRV)
2130        return false;
2131    }
2132
2133  // Check for being preceded by an objc_autoreleaseReturnValue on the same
2134  // pointer. In this case, we can delete the pair.
2135  BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
2136  if (I != Begin) {
2137    do --I; while (I != Begin && isNoopInstruction(I));
2138    if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
2139        GetObjCArg(I) == Arg) {
2140      Changed = true;
2141      ++NumPeeps;
2142      EraseInstruction(I);
2143      EraseInstruction(RetainRV);
2144      return true;
2145    }
2146  }
2147
2148  // Turn it to a plain objc_retain.
2149  Changed = true;
2150  ++NumPeeps;
2151  cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
2152  return false;
2153}
2154
2155/// OptimizeAutoreleaseRVCall - Turn objc_autoreleaseReturnValue into
2156/// objc_autorelease if the result is not used as a return value.
2157void
2158ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) {
2159  // Check for a return of the pointer value.
2160  const Value *Ptr = GetObjCArg(AutoreleaseRV);
2161  SmallVector<const Value *, 2> Users;
2162  Users.push_back(Ptr);
2163  do {
2164    Ptr = Users.pop_back_val();
2165    for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
2166         UI != UE; ++UI) {
2167      const User *I = *UI;
2168      if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
2169        return;
2170      if (isa<BitCastInst>(I))
2171        Users.push_back(I);
2172    }
2173  } while (!Users.empty());
2174
2175  Changed = true;
2176  ++NumPeeps;
2177  cast<CallInst>(AutoreleaseRV)->
2178    setCalledFunction(getAutoreleaseCallee(F.getParent()));
2179}
2180
2181/// OptimizeIndividualCalls - Visit each call, one at a time, and make
2182/// simplifications without doing any additional analysis.
2183void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
2184  // Reset all the flags in preparation for recomputing them.
2185  UsedInThisFunction = 0;
2186
2187  // Visit all objc_* calls in F.
2188  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2189    Instruction *Inst = &*I++;
2190    InstructionClass Class = GetBasicInstructionClass(Inst);
2191
2192    switch (Class) {
2193    default: break;
2194
2195    // Delete no-op casts. These function calls have special semantics, but
2196    // the semantics are entirely implemented via lowering in the front-end,
2197    // so by the time they reach the optimizer, they are just no-op calls
2198    // which return their argument.
2199    //
2200    // There are gray areas here, as the ability to cast reference-counted
2201    // pointers to raw void* and back allows code to break ARC assumptions,
2202    // however these are currently considered to be unimportant.
2203    case IC_NoopCast:
2204      Changed = true;
2205      ++NumNoops;
2206      EraseInstruction(Inst);
2207      continue;
2208
2209    // If the pointer-to-weak-pointer is null, it's undefined behavior.
2210    case IC_StoreWeak:
2211    case IC_LoadWeak:
2212    case IC_LoadWeakRetained:
2213    case IC_InitWeak:
2214    case IC_DestroyWeak: {
2215      CallInst *CI = cast<CallInst>(Inst);
2216      if (isNullOrUndef(CI->getArgOperand(0))) {
2217        Type *Ty = CI->getArgOperand(0)->getType();
2218        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
2219                      Constant::getNullValue(Ty),
2220                      CI);
2221        CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
2222        CI->eraseFromParent();
2223        continue;
2224      }
2225      break;
2226    }
2227    case IC_CopyWeak:
2228    case IC_MoveWeak: {
2229      CallInst *CI = cast<CallInst>(Inst);
2230      if (isNullOrUndef(CI->getArgOperand(0)) ||
2231          isNullOrUndef(CI->getArgOperand(1))) {
2232        Type *Ty = CI->getArgOperand(0)->getType();
2233        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
2234                      Constant::getNullValue(Ty),
2235                      CI);
2236        CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
2237        CI->eraseFromParent();
2238        continue;
2239      }
2240      break;
2241    }
2242    case IC_Retain:
2243      OptimizeRetainCall(F, Inst);
2244      break;
2245    case IC_RetainRV:
2246      if (OptimizeRetainRVCall(F, Inst))
2247        continue;
2248      break;
2249    case IC_AutoreleaseRV:
2250      OptimizeAutoreleaseRVCall(F, Inst);
2251      break;
2252    }
2253
2254    // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
2255    if (IsAutorelease(Class) && Inst->use_empty()) {
2256      CallInst *Call = cast<CallInst>(Inst);
2257      const Value *Arg = Call->getArgOperand(0);
2258      Arg = FindSingleUseIdentifiedObject(Arg);
2259      if (Arg) {
2260        Changed = true;
2261        ++NumAutoreleases;
2262
2263        // Create the declaration lazily.
2264        LLVMContext &C = Inst->getContext();
2265        CallInst *NewCall =
2266          CallInst::Create(getReleaseCallee(F.getParent()),
2267                           Call->getArgOperand(0), "", Call);
2268        NewCall->setMetadata(ImpreciseReleaseMDKind,
2269                             MDNode::get(C, ArrayRef<Value *>()));
2270        EraseInstruction(Call);
2271        Inst = NewCall;
2272        Class = IC_Release;
2273      }
2274    }
2275
2276    // For functions which can never be passed stack arguments, add
2277    // a tail keyword.
2278    if (IsAlwaysTail(Class)) {
2279      Changed = true;
2280      cast<CallInst>(Inst)->setTailCall();
2281    }
2282
2283    // Set nounwind as needed.
2284    if (IsNoThrow(Class)) {
2285      Changed = true;
2286      cast<CallInst>(Inst)->setDoesNotThrow();
2287    }
2288
2289    if (!IsNoopOnNull(Class)) {
2290      UsedInThisFunction |= 1 << Class;
2291      continue;
2292    }
2293
2294    const Value *Arg = GetObjCArg(Inst);
2295
2296    // ARC calls with null are no-ops. Delete them.
2297    if (isNullOrUndef(Arg)) {
2298      Changed = true;
2299      ++NumNoops;
2300      EraseInstruction(Inst);
2301      continue;
2302    }
2303
2304    // Keep track of which of retain, release, autorelease, and retain_block
2305    // are actually present in this function.
2306    UsedInThisFunction |= 1 << Class;
2307
2308    // If Arg is a PHI, and one or more incoming values to the
2309    // PHI are null, and the call is control-equivalent to the PHI, and there
2310    // are no relevant side effects between the PHI and the call, the call
2311    // could be pushed up to just those paths with non-null incoming values.
2312    // For now, don't bother splitting critical edges for this.
2313    SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
2314    Worklist.push_back(std::make_pair(Inst, Arg));
2315    do {
2316      std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
2317      Inst = Pair.first;
2318      Arg = Pair.second;
2319
2320      const PHINode *PN = dyn_cast<PHINode>(Arg);
2321      if (!PN) continue;
2322
2323      // Determine if the PHI has any null operands, or any incoming
2324      // critical edges.
2325      bool HasNull = false;
2326      bool HasCriticalEdges = false;
2327      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2328        Value *Incoming =
2329          StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
2330        if (isNullOrUndef(Incoming))
2331          HasNull = true;
2332        else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
2333                   .getNumSuccessors() != 1) {
2334          HasCriticalEdges = true;
2335          break;
2336        }
2337      }
2338      // If we have null operands and no critical edges, optimize.
2339      if (!HasCriticalEdges && HasNull) {
2340        SmallPtrSet<Instruction *, 4> DependingInstructions;
2341        SmallPtrSet<const BasicBlock *, 4> Visited;
2342
2343        // Check that there is nothing that cares about the reference
2344        // count between the call and the phi.
2345        FindDependencies(NeedsPositiveRetainCount, Arg,
2346                         Inst->getParent(), Inst,
2347                         DependingInstructions, Visited, PA);
2348        if (DependingInstructions.size() == 1 &&
2349            *DependingInstructions.begin() == PN) {
2350          Changed = true;
2351          ++NumPartialNoops;
2352          // Clone the call into each predecessor that has a non-null value.
2353          CallInst *CInst = cast<CallInst>(Inst);
2354          Type *ParamTy = CInst->getArgOperand(0)->getType();
2355          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2356            Value *Incoming =
2357              StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
2358            if (!isNullOrUndef(Incoming)) {
2359              CallInst *Clone = cast<CallInst>(CInst->clone());
2360              Value *Op = PN->getIncomingValue(i);
2361              Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
2362              if (Op->getType() != ParamTy)
2363                Op = new BitCastInst(Op, ParamTy, "", InsertPos);
2364              Clone->setArgOperand(0, Op);
2365              Clone->insertBefore(InsertPos);
2366              Worklist.push_back(std::make_pair(Clone, Incoming));
2367            }
2368          }
2369          // Erase the original call.
2370          EraseInstruction(CInst);
2371          continue;
2372        }
2373      }
2374    } while (!Worklist.empty());
2375  }
2376}
2377
2378/// CheckForCFGHazards - Check for critical edges, loop boundaries, irreducible
2379/// control flow, or other CFG structures where moving code across the edge
2380/// would result in it being executed more.
2381void
2382ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
2383                               DenseMap<const BasicBlock *, BBState> &BBStates,
2384                               BBState &MyStates) const {
2385  // If any top-down local-use or possible-dec has a succ which is earlier in
2386  // the sequence, forget it.
2387  for (BBState::ptr_const_iterator I = MyStates.top_down_ptr_begin(),
2388       E = MyStates.top_down_ptr_end(); I != E; ++I)
2389    switch (I->second.GetSeq()) {
2390    default: break;
2391    case S_Use: {
2392      const Value *Arg = I->first;
2393      const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2394      bool SomeSuccHasSame = false;
2395      bool AllSuccsHaveSame = true;
2396      PtrState &S = MyStates.getPtrTopDownState(Arg);
2397      for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
2398        PtrState &SuccS = BBStates[*SI].getPtrBottomUpState(Arg);
2399        switch (SuccS.GetSeq()) {
2400        case S_None:
2401        case S_CanRelease: {
2402          if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe)
2403            S.ClearSequenceProgress();
2404          continue;
2405        }
2406        case S_Use:
2407          SomeSuccHasSame = true;
2408          break;
2409        case S_Stop:
2410        case S_Release:
2411        case S_MovableRelease:
2412          if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe)
2413            AllSuccsHaveSame = false;
2414          break;
2415        case S_Retain:
2416          llvm_unreachable("bottom-up pointer in retain state!");
2417        }
2418      }
2419      // If the state at the other end of any of the successor edges
2420      // matches the current state, require all edges to match. This
2421      // guards against loops in the middle of a sequence.
2422      if (SomeSuccHasSame && !AllSuccsHaveSame)
2423        S.ClearSequenceProgress();
2424      break;
2425    }
2426    case S_CanRelease: {
2427      const Value *Arg = I->first;
2428      const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2429      bool SomeSuccHasSame = false;
2430      bool AllSuccsHaveSame = true;
2431      PtrState &S = MyStates.getPtrTopDownState(Arg);
2432      for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
2433        PtrState &SuccS = BBStates[*SI].getPtrBottomUpState(Arg);
2434        switch (SuccS.GetSeq()) {
2435        case S_None: {
2436          if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe)
2437            S.ClearSequenceProgress();
2438          continue;
2439        }
2440        case S_CanRelease:
2441          SomeSuccHasSame = true;
2442          break;
2443        case S_Stop:
2444        case S_Release:
2445        case S_MovableRelease:
2446        case S_Use:
2447          if (!S.RRI.KnownSafe && !SuccS.RRI.KnownSafe)
2448            AllSuccsHaveSame = false;
2449          break;
2450        case S_Retain:
2451          llvm_unreachable("bottom-up pointer in retain state!");
2452        }
2453      }
2454      // If the state at the other end of any of the successor edges
2455      // matches the current state, require all edges to match. This
2456      // guards against loops in the middle of a sequence.
2457      if (SomeSuccHasSame && !AllSuccsHaveSame)
2458        S.ClearSequenceProgress();
2459      break;
2460    }
2461    }
2462}
2463
2464bool
2465ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
2466                          DenseMap<const BasicBlock *, BBState> &BBStates,
2467                          MapVector<Value *, RRInfo> &Retains) {
2468  bool NestingDetected = false;
2469  BBState &MyStates = BBStates[BB];
2470
2471  // Merge the states from each successor to compute the initial state
2472  // for the current block.
2473  const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2474  succ_const_iterator SI(TI), SE(TI, false);
2475  if (SI == SE)
2476    MyStates.SetAsExit();
2477  else
2478    do {
2479      const BasicBlock *Succ = *SI++;
2480      if (Succ == BB)
2481        continue;
2482      DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
2483      // If we haven't seen this node yet, then we've found a CFG cycle.
2484      // Be optimistic here; it's CheckForCFGHazards' job detect trouble.
2485      if (I == BBStates.end())
2486        continue;
2487      MyStates.InitFromSucc(I->second);
2488      while (SI != SE) {
2489        Succ = *SI++;
2490        if (Succ != BB) {
2491          I = BBStates.find(Succ);
2492          if (I != BBStates.end())
2493            MyStates.MergeSucc(I->second);
2494        }
2495      }
2496      break;
2497    } while (SI != SE);
2498
2499  // Visit all the instructions, bottom-up.
2500  for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
2501    Instruction *Inst = llvm::prior(I);
2502    InstructionClass Class = GetInstructionClass(Inst);
2503    const Value *Arg = 0;
2504
2505    switch (Class) {
2506    case IC_Release: {
2507      Arg = GetObjCArg(Inst);
2508
2509      PtrState &S = MyStates.getPtrBottomUpState(Arg);
2510
2511      // If we see two releases in a row on the same pointer. If so, make
2512      // a note, and we'll cicle back to revisit it after we've
2513      // hopefully eliminated the second release, which may allow us to
2514      // eliminate the first release too.
2515      // Theoretically we could implement removal of nested retain+release
2516      // pairs by making PtrState hold a stack of states, but this is
2517      // simple and avoids adding overhead for the non-nested case.
2518      if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease)
2519        NestingDetected = true;
2520
2521      S.RRI.clear();
2522
2523      MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
2524      S.SetSeq(ReleaseMetadata ? S_MovableRelease : S_Release);
2525      S.RRI.ReleaseMetadata = ReleaseMetadata;
2526      S.RRI.KnownSafe = S.IsKnownNested() || S.IsKnownIncremented();
2527      S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
2528      S.RRI.Calls.insert(Inst);
2529
2530      S.IncrementRefCount();
2531      S.IncrementNestCount();
2532      break;
2533    }
2534    case IC_RetainBlock:
2535      // An objc_retainBlock call with just a use may need to be kept,
2536      // because it may be copying a block from the stack to the heap.
2537      if (!IsRetainBlockOptimizable(Inst))
2538        break;
2539      // FALLTHROUGH
2540    case IC_Retain:
2541    case IC_RetainRV: {
2542      Arg = GetObjCArg(Inst);
2543
2544      PtrState &S = MyStates.getPtrBottomUpState(Arg);
2545      S.DecrementRefCount();
2546      S.SetAtLeastOneRefCount();
2547      S.DecrementNestCount();
2548
2549      switch (S.GetSeq()) {
2550      case S_Stop:
2551      case S_Release:
2552      case S_MovableRelease:
2553      case S_Use:
2554        S.RRI.ReverseInsertPts.clear();
2555        // FALL THROUGH
2556      case S_CanRelease:
2557        // Don't do retain+release tracking for IC_RetainRV, because it's
2558        // better to let it remain as the first instruction after a call.
2559        if (Class != IC_RetainRV) {
2560          S.RRI.IsRetainBlock = Class == IC_RetainBlock;
2561          Retains[Inst] = S.RRI;
2562        }
2563        S.ClearSequenceProgress();
2564        break;
2565      case S_None:
2566        break;
2567      case S_Retain:
2568        llvm_unreachable("bottom-up pointer in retain state!");
2569      }
2570      continue;
2571    }
2572    case IC_AutoreleasepoolPop:
2573      // Conservatively, clear MyStates for all known pointers.
2574      MyStates.clearBottomUpPointers();
2575      continue;
2576    case IC_AutoreleasepoolPush:
2577    case IC_None:
2578      // These are irrelevant.
2579      continue;
2580    default:
2581      break;
2582    }
2583
2584    // Consider any other possible effects of this instruction on each
2585    // pointer being tracked.
2586    for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
2587         ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
2588      const Value *Ptr = MI->first;
2589      if (Ptr == Arg)
2590        continue; // Handled above.
2591      PtrState &S = MI->second;
2592      Sequence Seq = S.GetSeq();
2593
2594      // Check for possible releases.
2595      if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
2596        S.DecrementRefCount();
2597        switch (Seq) {
2598        case S_Use:
2599          S.SetSeq(S_CanRelease);
2600          continue;
2601        case S_CanRelease:
2602        case S_Release:
2603        case S_MovableRelease:
2604        case S_Stop:
2605        case S_None:
2606          break;
2607        case S_Retain:
2608          llvm_unreachable("bottom-up pointer in retain state!");
2609        }
2610      }
2611
2612      // Check for possible direct uses.
2613      switch (Seq) {
2614      case S_Release:
2615      case S_MovableRelease:
2616        if (CanUse(Inst, Ptr, PA, Class)) {
2617          assert(S.RRI.ReverseInsertPts.empty());
2618          S.RRI.ReverseInsertPts.insert(Inst);
2619          S.SetSeq(S_Use);
2620        } else if (Seq == S_Release &&
2621                   (Class == IC_User || Class == IC_CallOrUser)) {
2622          // Non-movable releases depend on any possible objc pointer use.
2623          S.SetSeq(S_Stop);
2624          assert(S.RRI.ReverseInsertPts.empty());
2625          S.RRI.ReverseInsertPts.insert(Inst);
2626        }
2627        break;
2628      case S_Stop:
2629        if (CanUse(Inst, Ptr, PA, Class))
2630          S.SetSeq(S_Use);
2631        break;
2632      case S_CanRelease:
2633      case S_Use:
2634      case S_None:
2635        break;
2636      case S_Retain:
2637        llvm_unreachable("bottom-up pointer in retain state!");
2638      }
2639    }
2640  }
2641
2642  return NestingDetected;
2643}
2644
2645bool
2646ObjCARCOpt::VisitTopDown(BasicBlock *BB,
2647                         DenseMap<const BasicBlock *, BBState> &BBStates,
2648                         DenseMap<Value *, RRInfo> &Releases) {
2649  bool NestingDetected = false;
2650  BBState &MyStates = BBStates[BB];
2651
2652  // Merge the states from each predecessor to compute the initial state
2653  // for the current block.
2654  const_pred_iterator PI(BB), PE(BB, false);
2655  if (PI == PE)
2656    MyStates.SetAsEntry();
2657  else
2658    do {
2659      const BasicBlock *Pred = *PI++;
2660      if (Pred == BB)
2661        continue;
2662      DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
2663      // If we haven't seen this node yet, then we've found a CFG cycle.
2664      // Be optimistic here; it's CheckForCFGHazards' job detect trouble.
2665      if (I == BBStates.end() || !I->second.isVisitedTopDown())
2666        continue;
2667      MyStates.InitFromPred(I->second);
2668      while (PI != PE) {
2669        Pred = *PI++;
2670        if (Pred != BB) {
2671          I = BBStates.find(Pred);
2672          if (I != BBStates.end() && I->second.isVisitedTopDown())
2673            MyStates.MergePred(I->second);
2674        }
2675      }
2676      break;
2677    } while (PI != PE);
2678
2679  // Visit all the instructions, top-down.
2680  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2681    Instruction *Inst = I;
2682    InstructionClass Class = GetInstructionClass(Inst);
2683    const Value *Arg = 0;
2684
2685    switch (Class) {
2686    case IC_RetainBlock:
2687      // An objc_retainBlock call with just a use may need to be kept,
2688      // because it may be copying a block from the stack to the heap.
2689      if (!IsRetainBlockOptimizable(Inst))
2690        break;
2691      // FALLTHROUGH
2692    case IC_Retain:
2693    case IC_RetainRV: {
2694      Arg = GetObjCArg(Inst);
2695
2696      PtrState &S = MyStates.getPtrTopDownState(Arg);
2697
2698      // Don't do retain+release tracking for IC_RetainRV, because it's
2699      // better to let it remain as the first instruction after a call.
2700      if (Class != IC_RetainRV) {
2701        // If we see two retains in a row on the same pointer. If so, make
2702        // a note, and we'll cicle back to revisit it after we've
2703        // hopefully eliminated the second retain, which may allow us to
2704        // eliminate the first retain too.
2705        // Theoretically we could implement removal of nested retain+release
2706        // pairs by making PtrState hold a stack of states, but this is
2707        // simple and avoids adding overhead for the non-nested case.
2708        if (S.GetSeq() == S_Retain)
2709          NestingDetected = true;
2710
2711        S.SetSeq(S_Retain);
2712        S.RRI.clear();
2713        S.RRI.IsRetainBlock = Class == IC_RetainBlock;
2714        // Don't check S.IsKnownIncremented() here because it's not
2715        // sufficient.
2716        S.RRI.KnownSafe = S.IsKnownNested();
2717        S.RRI.Calls.insert(Inst);
2718      }
2719
2720      S.SetAtLeastOneRefCount();
2721      S.IncrementRefCount();
2722      S.IncrementNestCount();
2723      continue;
2724    }
2725    case IC_Release: {
2726      Arg = GetObjCArg(Inst);
2727
2728      PtrState &S = MyStates.getPtrTopDownState(Arg);
2729      S.DecrementRefCount();
2730      S.DecrementNestCount();
2731
2732      switch (S.GetSeq()) {
2733      case S_Retain:
2734      case S_CanRelease:
2735        S.RRI.ReverseInsertPts.clear();
2736        // FALL THROUGH
2737      case S_Use:
2738        S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
2739        S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
2740        Releases[Inst] = S.RRI;
2741        S.ClearSequenceProgress();
2742        break;
2743      case S_None:
2744        break;
2745      case S_Stop:
2746      case S_Release:
2747      case S_MovableRelease:
2748        llvm_unreachable("top-down pointer in release state!");
2749      }
2750      break;
2751    }
2752    case IC_AutoreleasepoolPop:
2753      // Conservatively, clear MyStates for all known pointers.
2754      MyStates.clearTopDownPointers();
2755      continue;
2756    case IC_AutoreleasepoolPush:
2757    case IC_None:
2758      // These are irrelevant.
2759      continue;
2760    default:
2761      break;
2762    }
2763
2764    // Consider any other possible effects of this instruction on each
2765    // pointer being tracked.
2766    for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
2767         ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
2768      const Value *Ptr = MI->first;
2769      if (Ptr == Arg)
2770        continue; // Handled above.
2771      PtrState &S = MI->second;
2772      Sequence Seq = S.GetSeq();
2773
2774      // Check for possible releases.
2775      if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
2776        S.DecrementRefCount();
2777        switch (Seq) {
2778        case S_Retain:
2779          S.SetSeq(S_CanRelease);
2780          assert(S.RRI.ReverseInsertPts.empty());
2781          S.RRI.ReverseInsertPts.insert(Inst);
2782
2783          // One call can't cause a transition from S_Retain to S_CanRelease
2784          // and S_CanRelease to S_Use. If we've made the first transition,
2785          // we're done.
2786          continue;
2787        case S_Use:
2788        case S_CanRelease:
2789        case S_None:
2790          break;
2791        case S_Stop:
2792        case S_Release:
2793        case S_MovableRelease:
2794          llvm_unreachable("top-down pointer in release state!");
2795        }
2796      }
2797
2798      // Check for possible direct uses.
2799      switch (Seq) {
2800      case S_CanRelease:
2801        if (CanUse(Inst, Ptr, PA, Class))
2802          S.SetSeq(S_Use);
2803        break;
2804      case S_Retain:
2805      case S_Use:
2806      case S_None:
2807        break;
2808      case S_Stop:
2809      case S_Release:
2810      case S_MovableRelease:
2811        llvm_unreachable("top-down pointer in release state!");
2812      }
2813    }
2814  }
2815
2816  CheckForCFGHazards(BB, BBStates, MyStates);
2817  return NestingDetected;
2818}
2819
2820static void
2821ComputePostOrders(Function &F,
2822                  SmallVectorImpl<BasicBlock *> &PostOrder,
2823                  SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder) {
2824  /// Backedges - Backedges detected in the DFS. These edges will be
2825  /// ignored in the reverse-CFG DFS, so that loops with multiple exits will be
2826  /// traversed in the desired order.
2827  DenseSet<std::pair<BasicBlock *, BasicBlock *> > Backedges;
2828
2829  /// Visited - The visited set, for doing DFS walks.
2830  SmallPtrSet<BasicBlock *, 16> Visited;
2831
2832  // Do DFS, computing the PostOrder.
2833  SmallPtrSet<BasicBlock *, 16> OnStack;
2834  SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
2835  BasicBlock *EntryBB = &F.getEntryBlock();
2836  SuccStack.push_back(std::make_pair(EntryBB, succ_begin(EntryBB)));
2837  Visited.insert(EntryBB);
2838  OnStack.insert(EntryBB);
2839  do {
2840  dfs_next_succ:
2841    succ_iterator End = succ_end(SuccStack.back().first);
2842    while (SuccStack.back().second != End) {
2843      BasicBlock *BB = *SuccStack.back().second++;
2844      if (Visited.insert(BB)) {
2845        SuccStack.push_back(std::make_pair(BB, succ_begin(BB)));
2846        OnStack.insert(BB);
2847        goto dfs_next_succ;
2848      }
2849      if (OnStack.count(BB))
2850        Backedges.insert(std::make_pair(SuccStack.back().first, BB));
2851    }
2852    OnStack.erase(SuccStack.back().first);
2853    PostOrder.push_back(SuccStack.pop_back_val().first);
2854  } while (!SuccStack.empty());
2855
2856  Visited.clear();
2857
2858  // Compute the exits, which are the starting points for reverse-CFG DFS.
2859  SmallVector<BasicBlock *, 4> Exits;
2860  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
2861    BasicBlock *BB = I;
2862    if (BB->getTerminator()->getNumSuccessors() == 0)
2863      Exits.push_back(BB);
2864  }
2865
2866  // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
2867  SmallVector<std::pair<BasicBlock *, pred_iterator>, 16> PredStack;
2868  for (SmallVectorImpl<BasicBlock *>::iterator I = Exits.begin(), E = Exits.end();
2869       I != E; ++I) {
2870    BasicBlock *ExitBB = *I;
2871    PredStack.push_back(std::make_pair(ExitBB, pred_begin(ExitBB)));
2872    Visited.insert(ExitBB);
2873    while (!PredStack.empty()) {
2874    reverse_dfs_next_succ:
2875      pred_iterator End = pred_end(PredStack.back().first);
2876      while (PredStack.back().second != End) {
2877        BasicBlock *BB = *PredStack.back().second++;
2878        // Skip backedges detected in the forward-CFG DFS.
2879        if (Backedges.count(std::make_pair(BB, PredStack.back().first)))
2880          continue;
2881        if (Visited.insert(BB)) {
2882          PredStack.push_back(std::make_pair(BB, pred_begin(BB)));
2883          goto reverse_dfs_next_succ;
2884        }
2885      }
2886      ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
2887    }
2888  }
2889}
2890
2891// Visit - Visit the function both top-down and bottom-up.
2892bool
2893ObjCARCOpt::Visit(Function &F,
2894                  DenseMap<const BasicBlock *, BBState> &BBStates,
2895                  MapVector<Value *, RRInfo> &Retains,
2896                  DenseMap<Value *, RRInfo> &Releases) {
2897
2898  // Use reverse-postorder traversals, because we magically know that loops
2899  // will be well behaved, i.e. they won't repeatedly call retain on a single
2900  // pointer without doing a release. We can't use the ReversePostOrderTraversal
2901  // class here because we want the reverse-CFG postorder to consider each
2902  // function exit point, and we want to ignore selected cycle edges.
2903  SmallVector<BasicBlock *, 16> PostOrder;
2904  SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
2905  ComputePostOrders(F, PostOrder, ReverseCFGPostOrder);
2906
2907  // Use reverse-postorder on the reverse CFG for bottom-up.
2908  bool BottomUpNestingDetected = false;
2909  for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
2910       ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
2911       I != E; ++I)
2912    BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
2913
2914  // Use reverse-postorder for top-down.
2915  bool TopDownNestingDetected = false;
2916  for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
2917       PostOrder.rbegin(), E = PostOrder.rend();
2918       I != E; ++I)
2919    TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
2920
2921  return TopDownNestingDetected && BottomUpNestingDetected;
2922}
2923
2924/// MoveCalls - Move the calls in RetainsToMove and ReleasesToMove.
2925void ObjCARCOpt::MoveCalls(Value *Arg,
2926                           RRInfo &RetainsToMove,
2927                           RRInfo &ReleasesToMove,
2928                           MapVector<Value *, RRInfo> &Retains,
2929                           DenseMap<Value *, RRInfo> &Releases,
2930                           SmallVectorImpl<Instruction *> &DeadInsts,
2931                           Module *M) {
2932  Type *ArgTy = Arg->getType();
2933  Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
2934
2935  // Insert the new retain and release calls.
2936  for (SmallPtrSet<Instruction *, 2>::const_iterator
2937       PI = ReleasesToMove.ReverseInsertPts.begin(),
2938       PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
2939    Instruction *InsertPt = *PI;
2940    Value *MyArg = ArgTy == ParamTy ? Arg :
2941                   new BitCastInst(Arg, ParamTy, "", InsertPt);
2942    CallInst *Call =
2943      CallInst::Create(RetainsToMove.IsRetainBlock ?
2944                         getRetainBlockCallee(M) : getRetainCallee(M),
2945                       MyArg, "", InsertPt);
2946    Call->setDoesNotThrow();
2947    if (RetainsToMove.IsRetainBlock)
2948      Call->setMetadata(CopyOnEscapeMDKind,
2949                        MDNode::get(M->getContext(), ArrayRef<Value *>()));
2950    else
2951      Call->setTailCall();
2952  }
2953  for (SmallPtrSet<Instruction *, 2>::const_iterator
2954       PI = RetainsToMove.ReverseInsertPts.begin(),
2955       PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
2956    Instruction *LastUse = *PI;
2957    Instruction *InsertPts[] = { 0, 0, 0 };
2958    if (InvokeInst *II = dyn_cast<InvokeInst>(LastUse)) {
2959      // We can't insert code immediately after an invoke instruction, so
2960      // insert code at the beginning of both successor blocks instead.
2961      // The invoke's return value isn't available in the unwind block,
2962      // but our releases will never depend on it, because they must be
2963      // paired with retains from before the invoke.
2964      InsertPts[0] = II->getNormalDest()->getFirstInsertionPt();
2965      InsertPts[1] = II->getUnwindDest()->getFirstInsertionPt();
2966    } else {
2967      // Insert code immediately after the last use.
2968      InsertPts[0] = llvm::next(BasicBlock::iterator(LastUse));
2969    }
2970
2971    for (Instruction **I = InsertPts; *I; ++I) {
2972      Instruction *InsertPt = *I;
2973      Value *MyArg = ArgTy == ParamTy ? Arg :
2974                     new BitCastInst(Arg, ParamTy, "", InsertPt);
2975      CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg,
2976                                        "", InsertPt);
2977      // Attach a clang.imprecise_release metadata tag, if appropriate.
2978      if (MDNode *M = ReleasesToMove.ReleaseMetadata)
2979        Call->setMetadata(ImpreciseReleaseMDKind, M);
2980      Call->setDoesNotThrow();
2981      if (ReleasesToMove.IsTailCallRelease)
2982        Call->setTailCall();
2983    }
2984  }
2985
2986  // Delete the original retain and release calls.
2987  for (SmallPtrSet<Instruction *, 2>::const_iterator
2988       AI = RetainsToMove.Calls.begin(),
2989       AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
2990    Instruction *OrigRetain = *AI;
2991    Retains.blot(OrigRetain);
2992    DeadInsts.push_back(OrigRetain);
2993  }
2994  for (SmallPtrSet<Instruction *, 2>::const_iterator
2995       AI = ReleasesToMove.Calls.begin(),
2996       AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
2997    Instruction *OrigRelease = *AI;
2998    Releases.erase(OrigRelease);
2999    DeadInsts.push_back(OrigRelease);
3000  }
3001}
3002
3003bool
3004ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
3005                                   &BBStates,
3006                                 MapVector<Value *, RRInfo> &Retains,
3007                                 DenseMap<Value *, RRInfo> &Releases,
3008                                 Module *M) {
3009  bool AnyPairsCompletelyEliminated = false;
3010  RRInfo RetainsToMove;
3011  RRInfo ReleasesToMove;
3012  SmallVector<Instruction *, 4> NewRetains;
3013  SmallVector<Instruction *, 4> NewReleases;
3014  SmallVector<Instruction *, 8> DeadInsts;
3015
3016  for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
3017       E = Retains.end(); I != E; ++I) {
3018    Value *V = I->first;
3019    if (!V) continue; // blotted
3020
3021    Instruction *Retain = cast<Instruction>(V);
3022    Value *Arg = GetObjCArg(Retain);
3023
3024    // If the object being released is in static or stack storage, we know it's
3025    // not being managed by ObjC reference counting, so we can delete pairs
3026    // regardless of what possible decrements or uses lie between them.
3027    bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
3028
3029    // A constant pointer can't be pointing to an object on the heap. It may
3030    // be reference-counted, but it won't be deleted.
3031    if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
3032      if (const GlobalVariable *GV =
3033            dyn_cast<GlobalVariable>(
3034              StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
3035        if (GV->isConstant())
3036          KnownSafe = true;
3037
3038    // If a pair happens in a region where it is known that the reference count
3039    // is already incremented, we can similarly ignore possible decrements.
3040    bool KnownSafeTD = true, KnownSafeBU = true;
3041
3042    // Connect the dots between the top-down-collected RetainsToMove and
3043    // bottom-up-collected ReleasesToMove to form sets of related calls.
3044    // This is an iterative process so that we connect multiple releases
3045    // to multiple retains if needed.
3046    unsigned OldDelta = 0;
3047    unsigned NewDelta = 0;
3048    unsigned OldCount = 0;
3049    unsigned NewCount = 0;
3050    bool FirstRelease = true;
3051    bool FirstRetain = true;
3052    NewRetains.push_back(Retain);
3053    for (;;) {
3054      for (SmallVectorImpl<Instruction *>::const_iterator
3055           NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
3056        Instruction *NewRetain = *NI;
3057        MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
3058        assert(It != Retains.end());
3059        const RRInfo &NewRetainRRI = It->second;
3060        KnownSafeTD &= NewRetainRRI.KnownSafe;
3061        for (SmallPtrSet<Instruction *, 2>::const_iterator
3062             LI = NewRetainRRI.Calls.begin(),
3063             LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
3064          Instruction *NewRetainRelease = *LI;
3065          DenseMap<Value *, RRInfo>::const_iterator Jt =
3066            Releases.find(NewRetainRelease);
3067          if (Jt == Releases.end())
3068            goto next_retain;
3069          const RRInfo &NewRetainReleaseRRI = Jt->second;
3070          assert(NewRetainReleaseRRI.Calls.count(NewRetain));
3071          if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
3072            OldDelta -=
3073              BBStates[NewRetainRelease->getParent()].GetAllPathCount();
3074
3075            // Merge the ReleaseMetadata and IsTailCallRelease values.
3076            if (FirstRelease) {
3077              ReleasesToMove.ReleaseMetadata =
3078                NewRetainReleaseRRI.ReleaseMetadata;
3079              ReleasesToMove.IsTailCallRelease =
3080                NewRetainReleaseRRI.IsTailCallRelease;
3081              FirstRelease = false;
3082            } else {
3083              if (ReleasesToMove.ReleaseMetadata !=
3084                    NewRetainReleaseRRI.ReleaseMetadata)
3085                ReleasesToMove.ReleaseMetadata = 0;
3086              if (ReleasesToMove.IsTailCallRelease !=
3087                    NewRetainReleaseRRI.IsTailCallRelease)
3088                ReleasesToMove.IsTailCallRelease = false;
3089            }
3090
3091            // Collect the optimal insertion points.
3092            if (!KnownSafe)
3093              for (SmallPtrSet<Instruction *, 2>::const_iterator
3094                   RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
3095                   RE = NewRetainReleaseRRI.ReverseInsertPts.end();
3096                   RI != RE; ++RI) {
3097                Instruction *RIP = *RI;
3098                if (ReleasesToMove.ReverseInsertPts.insert(RIP))
3099                  NewDelta -= BBStates[RIP->getParent()].GetAllPathCount();
3100              }
3101            NewReleases.push_back(NewRetainRelease);
3102          }
3103        }
3104      }
3105      NewRetains.clear();
3106      if (NewReleases.empty()) break;
3107
3108      // Back the other way.
3109      for (SmallVectorImpl<Instruction *>::const_iterator
3110           NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
3111        Instruction *NewRelease = *NI;
3112        DenseMap<Value *, RRInfo>::const_iterator It =
3113          Releases.find(NewRelease);
3114        assert(It != Releases.end());
3115        const RRInfo &NewReleaseRRI = It->second;
3116        KnownSafeBU &= NewReleaseRRI.KnownSafe;
3117        for (SmallPtrSet<Instruction *, 2>::const_iterator
3118             LI = NewReleaseRRI.Calls.begin(),
3119             LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
3120          Instruction *NewReleaseRetain = *LI;
3121          MapVector<Value *, RRInfo>::const_iterator Jt =
3122            Retains.find(NewReleaseRetain);
3123          if (Jt == Retains.end())
3124            goto next_retain;
3125          const RRInfo &NewReleaseRetainRRI = Jt->second;
3126          assert(NewReleaseRetainRRI.Calls.count(NewRelease));
3127          if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
3128            unsigned PathCount =
3129              BBStates[NewReleaseRetain->getParent()].GetAllPathCount();
3130            OldDelta += PathCount;
3131            OldCount += PathCount;
3132
3133            // Merge the IsRetainBlock values.
3134            if (FirstRetain) {
3135              RetainsToMove.IsRetainBlock = NewReleaseRetainRRI.IsRetainBlock;
3136              FirstRetain = false;
3137            } else if (ReleasesToMove.IsRetainBlock !=
3138                       NewReleaseRetainRRI.IsRetainBlock)
3139              // It's not possible to merge the sequences if one uses
3140              // objc_retain and the other uses objc_retainBlock.
3141              goto next_retain;
3142
3143            // Collect the optimal insertion points.
3144            if (!KnownSafe)
3145              for (SmallPtrSet<Instruction *, 2>::const_iterator
3146                   RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
3147                   RE = NewReleaseRetainRRI.ReverseInsertPts.end();
3148                   RI != RE; ++RI) {
3149                Instruction *RIP = *RI;
3150                if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
3151                  PathCount = BBStates[RIP->getParent()].GetAllPathCount();
3152                  NewDelta += PathCount;
3153                  NewCount += PathCount;
3154                }
3155              }
3156            NewRetains.push_back(NewReleaseRetain);
3157          }
3158        }
3159      }
3160      NewReleases.clear();
3161      if (NewRetains.empty()) break;
3162    }
3163
3164    // If the pointer is known incremented or nested, we can safely delete the
3165    // pair regardless of what's between them.
3166    if (KnownSafeTD || KnownSafeBU) {
3167      RetainsToMove.ReverseInsertPts.clear();
3168      ReleasesToMove.ReverseInsertPts.clear();
3169      NewCount = 0;
3170    } else {
3171      // Determine whether the new insertion points we computed preserve the
3172      // balance of retain and release calls through the program.
3173      // TODO: If the fully aggressive solution isn't valid, try to find a
3174      // less aggressive solution which is.
3175      if (NewDelta != 0)
3176        goto next_retain;
3177    }
3178
3179    // Determine whether the original call points are balanced in the retain and
3180    // release calls through the program. If not, conservatively don't touch
3181    // them.
3182    // TODO: It's theoretically possible to do code motion in this case, as
3183    // long as the existing imbalances are maintained.
3184    if (OldDelta != 0)
3185      goto next_retain;
3186
3187    // Ok, everything checks out and we're all set. Let's move some code!
3188    Changed = true;
3189    AnyPairsCompletelyEliminated = NewCount == 0;
3190    NumRRs += OldCount - NewCount;
3191    MoveCalls(Arg, RetainsToMove, ReleasesToMove,
3192              Retains, Releases, DeadInsts, M);
3193
3194  next_retain:
3195    NewReleases.clear();
3196    NewRetains.clear();
3197    RetainsToMove.clear();
3198    ReleasesToMove.clear();
3199  }
3200
3201  // Now that we're done moving everything, we can delete the newly dead
3202  // instructions, as we no longer need them as insert points.
3203  while (!DeadInsts.empty())
3204    EraseInstruction(DeadInsts.pop_back_val());
3205
3206  return AnyPairsCompletelyEliminated;
3207}
3208
3209/// OptimizeWeakCalls - Weak pointer optimizations.
3210void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
3211  // First, do memdep-style RLE and S2L optimizations. We can't use memdep
3212  // itself because it uses AliasAnalysis and we need to do provenance
3213  // queries instead.
3214  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
3215    Instruction *Inst = &*I++;
3216    InstructionClass Class = GetBasicInstructionClass(Inst);
3217    if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
3218      continue;
3219
3220    // Delete objc_loadWeak calls with no users.
3221    if (Class == IC_LoadWeak && Inst->use_empty()) {
3222      Inst->eraseFromParent();
3223      continue;
3224    }
3225
3226    // TODO: For now, just look for an earlier available version of this value
3227    // within the same block. Theoretically, we could do memdep-style non-local
3228    // analysis too, but that would want caching. A better approach would be to
3229    // use the technique that EarlyCSE uses.
3230    inst_iterator Current = llvm::prior(I);
3231    BasicBlock *CurrentBB = Current.getBasicBlockIterator();
3232    for (BasicBlock::iterator B = CurrentBB->begin(),
3233                              J = Current.getInstructionIterator();
3234         J != B; --J) {
3235      Instruction *EarlierInst = &*llvm::prior(J);
3236      InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
3237      switch (EarlierClass) {
3238      case IC_LoadWeak:
3239      case IC_LoadWeakRetained: {
3240        // If this is loading from the same pointer, replace this load's value
3241        // with that one.
3242        CallInst *Call = cast<CallInst>(Inst);
3243        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
3244        Value *Arg = Call->getArgOperand(0);
3245        Value *EarlierArg = EarlierCall->getArgOperand(0);
3246        switch (PA.getAA()->alias(Arg, EarlierArg)) {
3247        case AliasAnalysis::MustAlias:
3248          Changed = true;
3249          // If the load has a builtin retain, insert a plain retain for it.
3250          if (Class == IC_LoadWeakRetained) {
3251            CallInst *CI =
3252              CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
3253                               "", Call);
3254            CI->setTailCall();
3255          }
3256          // Zap the fully redundant load.
3257          Call->replaceAllUsesWith(EarlierCall);
3258          Call->eraseFromParent();
3259          goto clobbered;
3260        case AliasAnalysis::MayAlias:
3261        case AliasAnalysis::PartialAlias:
3262          goto clobbered;
3263        case AliasAnalysis::NoAlias:
3264          break;
3265        }
3266        break;
3267      }
3268      case IC_StoreWeak:
3269      case IC_InitWeak: {
3270        // If this is storing to the same pointer and has the same size etc.
3271        // replace this load's value with the stored value.
3272        CallInst *Call = cast<CallInst>(Inst);
3273        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
3274        Value *Arg = Call->getArgOperand(0);
3275        Value *EarlierArg = EarlierCall->getArgOperand(0);
3276        switch (PA.getAA()->alias(Arg, EarlierArg)) {
3277        case AliasAnalysis::MustAlias:
3278          Changed = true;
3279          // If the load has a builtin retain, insert a plain retain for it.
3280          if (Class == IC_LoadWeakRetained) {
3281            CallInst *CI =
3282              CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
3283                               "", Call);
3284            CI->setTailCall();
3285          }
3286          // Zap the fully redundant load.
3287          Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
3288          Call->eraseFromParent();
3289          goto clobbered;
3290        case AliasAnalysis::MayAlias:
3291        case AliasAnalysis::PartialAlias:
3292          goto clobbered;
3293        case AliasAnalysis::NoAlias:
3294          break;
3295        }
3296        break;
3297      }
3298      case IC_MoveWeak:
3299      case IC_CopyWeak:
3300        // TOOD: Grab the copied value.
3301        goto clobbered;
3302      case IC_AutoreleasepoolPush:
3303      case IC_None:
3304      case IC_User:
3305        // Weak pointers are only modified through the weak entry points
3306        // (and arbitrary calls, which could call the weak entry points).
3307        break;
3308      default:
3309        // Anything else could modify the weak pointer.
3310        goto clobbered;
3311      }
3312    }
3313  clobbered:;
3314  }
3315
3316  // Then, for each destroyWeak with an alloca operand, check to see if
3317  // the alloca and all its users can be zapped.
3318  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
3319    Instruction *Inst = &*I++;
3320    InstructionClass Class = GetBasicInstructionClass(Inst);
3321    if (Class != IC_DestroyWeak)
3322      continue;
3323
3324    CallInst *Call = cast<CallInst>(Inst);
3325    Value *Arg = Call->getArgOperand(0);
3326    if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
3327      for (Value::use_iterator UI = Alloca->use_begin(),
3328           UE = Alloca->use_end(); UI != UE; ++UI) {
3329        Instruction *UserInst = cast<Instruction>(*UI);
3330        switch (GetBasicInstructionClass(UserInst)) {
3331        case IC_InitWeak:
3332        case IC_StoreWeak:
3333        case IC_DestroyWeak:
3334          continue;
3335        default:
3336          goto done;
3337        }
3338      }
3339      Changed = true;
3340      for (Value::use_iterator UI = Alloca->use_begin(),
3341           UE = Alloca->use_end(); UI != UE; ) {
3342        CallInst *UserInst = cast<CallInst>(*UI++);
3343        if (!UserInst->use_empty())
3344          UserInst->replaceAllUsesWith(UserInst->getArgOperand(0));
3345        UserInst->eraseFromParent();
3346      }
3347      Alloca->eraseFromParent();
3348    done:;
3349    }
3350  }
3351}
3352
3353/// OptimizeSequences - Identify program paths which execute sequences of
3354/// retains and releases which can be eliminated.
3355bool ObjCARCOpt::OptimizeSequences(Function &F) {
3356  /// Releases, Retains - These are used to store the results of the main flow
3357  /// analysis. These use Value* as the key instead of Instruction* so that the
3358  /// map stays valid when we get around to rewriting code and calls get
3359  /// replaced by arguments.
3360  DenseMap<Value *, RRInfo> Releases;
3361  MapVector<Value *, RRInfo> Retains;
3362
3363  /// BBStates, This is used during the traversal of the function to track the
3364  /// states for each identified object at each block.
3365  DenseMap<const BasicBlock *, BBState> BBStates;
3366
3367  // Analyze the CFG of the function, and all instructions.
3368  bool NestingDetected = Visit(F, BBStates, Retains, Releases);
3369
3370  // Transform.
3371  return PerformCodePlacement(BBStates, Retains, Releases, F.getParent()) &&
3372         NestingDetected;
3373}
3374
3375/// OptimizeReturns - Look for this pattern:
3376///
3377///    %call = call i8* @something(...)
3378///    %2 = call i8* @objc_retain(i8* %call)
3379///    %3 = call i8* @objc_autorelease(i8* %2)
3380///    ret i8* %3
3381///
3382/// And delete the retain and autorelease.
3383///
3384/// Otherwise if it's just this:
3385///
3386///    %3 = call i8* @objc_autorelease(i8* %2)
3387///    ret i8* %3
3388///
3389/// convert the autorelease to autoreleaseRV.
3390void ObjCARCOpt::OptimizeReturns(Function &F) {
3391  if (!F.getReturnType()->isPointerTy())
3392    return;
3393
3394  SmallPtrSet<Instruction *, 4> DependingInstructions;
3395  SmallPtrSet<const BasicBlock *, 4> Visited;
3396  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
3397    BasicBlock *BB = FI;
3398    ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
3399    if (!Ret) continue;
3400
3401    const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
3402    FindDependencies(NeedsPositiveRetainCount, Arg,
3403                     BB, Ret, DependingInstructions, Visited, PA);
3404    if (DependingInstructions.size() != 1)
3405      goto next_block;
3406
3407    {
3408      CallInst *Autorelease =
3409        dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3410      if (!Autorelease)
3411        goto next_block;
3412      InstructionClass AutoreleaseClass =
3413        GetBasicInstructionClass(Autorelease);
3414      if (!IsAutorelease(AutoreleaseClass))
3415        goto next_block;
3416      if (GetObjCArg(Autorelease) != Arg)
3417        goto next_block;
3418
3419      DependingInstructions.clear();
3420      Visited.clear();
3421
3422      // Check that there is nothing that can affect the reference
3423      // count between the autorelease and the retain.
3424      FindDependencies(CanChangeRetainCount, Arg,
3425                       BB, Autorelease, DependingInstructions, Visited, PA);
3426      if (DependingInstructions.size() != 1)
3427        goto next_block;
3428
3429      {
3430        CallInst *Retain =
3431          dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3432
3433        // Check that we found a retain with the same argument.
3434        if (!Retain ||
3435            !IsRetain(GetBasicInstructionClass(Retain)) ||
3436            GetObjCArg(Retain) != Arg)
3437          goto next_block;
3438
3439        DependingInstructions.clear();
3440        Visited.clear();
3441
3442        // Convert the autorelease to an autoreleaseRV, since it's
3443        // returning the value.
3444        if (AutoreleaseClass == IC_Autorelease) {
3445          Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent()));
3446          AutoreleaseClass = IC_AutoreleaseRV;
3447        }
3448
3449        // Check that there is nothing that can affect the reference
3450        // count between the retain and the call.
3451        // Note that Retain need not be in BB.
3452        FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
3453                         DependingInstructions, Visited, PA);
3454        if (DependingInstructions.size() != 1)
3455          goto next_block;
3456
3457        {
3458          CallInst *Call =
3459            dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3460
3461          // Check that the pointer is the return value of the call.
3462          if (!Call || Arg != Call)
3463            goto next_block;
3464
3465          // Check that the call is a regular call.
3466          InstructionClass Class = GetBasicInstructionClass(Call);
3467          if (Class != IC_CallOrUser && Class != IC_Call)
3468            goto next_block;
3469
3470          // If so, we can zap the retain and autorelease.
3471          Changed = true;
3472          ++NumRets;
3473          EraseInstruction(Retain);
3474          EraseInstruction(Autorelease);
3475        }
3476      }
3477    }
3478
3479  next_block:
3480    DependingInstructions.clear();
3481    Visited.clear();
3482  }
3483}
3484
3485bool ObjCARCOpt::doInitialization(Module &M) {
3486  if (!EnableARCOpts)
3487    return false;
3488
3489  Run = ModuleHasARC(M);
3490  if (!Run)
3491    return false;
3492
3493  // Identify the imprecise release metadata kind.
3494  ImpreciseReleaseMDKind =
3495    M.getContext().getMDKindID("clang.imprecise_release");
3496  CopyOnEscapeMDKind =
3497    M.getContext().getMDKindID("clang.arc.copy_on_escape");
3498
3499  // Intuitively, objc_retain and others are nocapture, however in practice
3500  // they are not, because they return their argument value. And objc_release
3501  // calls finalizers.
3502
3503  // These are initialized lazily.
3504  RetainRVCallee = 0;
3505  AutoreleaseRVCallee = 0;
3506  ReleaseCallee = 0;
3507  RetainCallee = 0;
3508  RetainBlockCallee = 0;
3509  AutoreleaseCallee = 0;
3510
3511  return false;
3512}
3513
3514bool ObjCARCOpt::runOnFunction(Function &F) {
3515  if (!EnableARCOpts)
3516    return false;
3517
3518  // If nothing in the Module uses ARC, don't do anything.
3519  if (!Run)
3520    return false;
3521
3522  Changed = false;
3523
3524  PA.setAA(&getAnalysis<AliasAnalysis>());
3525
3526  // This pass performs several distinct transformations. As a compile-time aid
3527  // when compiling code that isn't ObjC, skip these if the relevant ObjC
3528  // library functions aren't declared.
3529
3530  // Preliminary optimizations. This also computs UsedInThisFunction.
3531  OptimizeIndividualCalls(F);
3532
3533  // Optimizations for weak pointers.
3534  if (UsedInThisFunction & ((1 << IC_LoadWeak) |
3535                            (1 << IC_LoadWeakRetained) |
3536                            (1 << IC_StoreWeak) |
3537                            (1 << IC_InitWeak) |
3538                            (1 << IC_CopyWeak) |
3539                            (1 << IC_MoveWeak) |
3540                            (1 << IC_DestroyWeak)))
3541    OptimizeWeakCalls(F);
3542
3543  // Optimizations for retain+release pairs.
3544  if (UsedInThisFunction & ((1 << IC_Retain) |
3545                            (1 << IC_RetainRV) |
3546                            (1 << IC_RetainBlock)))
3547    if (UsedInThisFunction & (1 << IC_Release))
3548      // Run OptimizeSequences until it either stops making changes or
3549      // no retain+release pair nesting is detected.
3550      while (OptimizeSequences(F)) {}
3551
3552  // Optimizations if objc_autorelease is used.
3553  if (UsedInThisFunction &
3554      ((1 << IC_Autorelease) | (1 << IC_AutoreleaseRV)))
3555    OptimizeReturns(F);
3556
3557  return Changed;
3558}
3559
3560void ObjCARCOpt::releaseMemory() {
3561  PA.clear();
3562}
3563
3564//===----------------------------------------------------------------------===//
3565// ARC contraction.
3566//===----------------------------------------------------------------------===//
3567
3568// TODO: ObjCARCContract could insert PHI nodes when uses aren't
3569// dominated by single calls.
3570
3571#include "llvm/Operator.h"
3572#include "llvm/InlineAsm.h"
3573#include "llvm/Analysis/Dominators.h"
3574
3575STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed");
3576
3577namespace {
3578  /// ObjCARCContract - Late ARC optimizations.  These change the IR in a way
3579  /// that makes it difficult to be analyzed by ObjCARCOpt, so it's run late.
3580  class ObjCARCContract : public FunctionPass {
3581    bool Changed;
3582    AliasAnalysis *AA;
3583    DominatorTree *DT;
3584    ProvenanceAnalysis PA;
3585
3586    /// Run - A flag indicating whether this optimization pass should run.
3587    bool Run;
3588
3589    /// StoreStrongCallee, etc. - Declarations for ObjC runtime
3590    /// functions, for use in creating calls to them. These are initialized
3591    /// lazily to avoid cluttering up the Module with unused declarations.
3592    Constant *StoreStrongCallee,
3593             *RetainAutoreleaseCallee, *RetainAutoreleaseRVCallee;
3594
3595    /// RetainRVMarker - The inline asm string to insert between calls and
3596    /// RetainRV calls to make the optimization work on targets which need it.
3597    const MDString *RetainRVMarker;
3598
3599    Constant *getStoreStrongCallee(Module *M);
3600    Constant *getRetainAutoreleaseCallee(Module *M);
3601    Constant *getRetainAutoreleaseRVCallee(Module *M);
3602
3603    bool ContractAutorelease(Function &F, Instruction *Autorelease,
3604                             InstructionClass Class,
3605                             SmallPtrSet<Instruction *, 4>
3606                               &DependingInstructions,
3607                             SmallPtrSet<const BasicBlock *, 4>
3608                               &Visited);
3609
3610    void ContractRelease(Instruction *Release,
3611                         inst_iterator &Iter);
3612
3613    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
3614    virtual bool doInitialization(Module &M);
3615    virtual bool runOnFunction(Function &F);
3616
3617  public:
3618    static char ID;
3619    ObjCARCContract() : FunctionPass(ID) {
3620      initializeObjCARCContractPass(*PassRegistry::getPassRegistry());
3621    }
3622  };
3623}
3624
3625char ObjCARCContract::ID = 0;
3626INITIALIZE_PASS_BEGIN(ObjCARCContract,
3627                      "objc-arc-contract", "ObjC ARC contraction", false, false)
3628INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3629INITIALIZE_PASS_DEPENDENCY(DominatorTree)
3630INITIALIZE_PASS_END(ObjCARCContract,
3631                    "objc-arc-contract", "ObjC ARC contraction", false, false)
3632
3633Pass *llvm::createObjCARCContractPass() {
3634  return new ObjCARCContract();
3635}
3636
3637void ObjCARCContract::getAnalysisUsage(AnalysisUsage &AU) const {
3638  AU.addRequired<AliasAnalysis>();
3639  AU.addRequired<DominatorTree>();
3640  AU.setPreservesCFG();
3641}
3642
3643Constant *ObjCARCContract::getStoreStrongCallee(Module *M) {
3644  if (!StoreStrongCallee) {
3645    LLVMContext &C = M->getContext();
3646    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3647    Type *I8XX = PointerType::getUnqual(I8X);
3648    std::vector<Type *> Params;
3649    Params.push_back(I8XX);
3650    Params.push_back(I8X);
3651
3652    AttrListPtr Attributes;
3653    Attributes.addAttr(~0u, Attribute::NoUnwind);
3654    Attributes.addAttr(1, Attribute::NoCapture);
3655
3656    StoreStrongCallee =
3657      M->getOrInsertFunction(
3658        "objc_storeStrong",
3659        FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
3660        Attributes);
3661  }
3662  return StoreStrongCallee;
3663}
3664
3665Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
3666  if (!RetainAutoreleaseCallee) {
3667    LLVMContext &C = M->getContext();
3668    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3669    std::vector<Type *> Params;
3670    Params.push_back(I8X);
3671    FunctionType *FTy =
3672      FunctionType::get(I8X, Params, /*isVarArg=*/false);
3673    AttrListPtr Attributes;
3674    Attributes.addAttr(~0u, Attribute::NoUnwind);
3675    RetainAutoreleaseCallee =
3676      M->getOrInsertFunction("objc_retainAutorelease", FTy, Attributes);
3677  }
3678  return RetainAutoreleaseCallee;
3679}
3680
3681Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
3682  if (!RetainAutoreleaseRVCallee) {
3683    LLVMContext &C = M->getContext();
3684    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3685    std::vector<Type *> Params;
3686    Params.push_back(I8X);
3687    FunctionType *FTy =
3688      FunctionType::get(I8X, Params, /*isVarArg=*/false);
3689    AttrListPtr Attributes;
3690    Attributes.addAttr(~0u, Attribute::NoUnwind);
3691    RetainAutoreleaseRVCallee =
3692      M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy,
3693                             Attributes);
3694  }
3695  return RetainAutoreleaseRVCallee;
3696}
3697
3698/// ContractAutorelease - Merge an autorelease with a retain into a fused
3699/// call.
3700bool
3701ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
3702                                     InstructionClass Class,
3703                                     SmallPtrSet<Instruction *, 4>
3704                                       &DependingInstructions,
3705                                     SmallPtrSet<const BasicBlock *, 4>
3706                                       &Visited) {
3707  const Value *Arg = GetObjCArg(Autorelease);
3708
3709  // Check that there are no instructions between the retain and the autorelease
3710  // (such as an autorelease_pop) which may change the count.
3711  CallInst *Retain = 0;
3712  if (Class == IC_AutoreleaseRV)
3713    FindDependencies(RetainAutoreleaseRVDep, Arg,
3714                     Autorelease->getParent(), Autorelease,
3715                     DependingInstructions, Visited, PA);
3716  else
3717    FindDependencies(RetainAutoreleaseDep, Arg,
3718                     Autorelease->getParent(), Autorelease,
3719                     DependingInstructions, Visited, PA);
3720
3721  Visited.clear();
3722  if (DependingInstructions.size() != 1) {
3723    DependingInstructions.clear();
3724    return false;
3725  }
3726
3727  Retain = dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3728  DependingInstructions.clear();
3729
3730  if (!Retain ||
3731      GetBasicInstructionClass(Retain) != IC_Retain ||
3732      GetObjCArg(Retain) != Arg)
3733    return false;
3734
3735  Changed = true;
3736  ++NumPeeps;
3737
3738  if (Class == IC_AutoreleaseRV)
3739    Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent()));
3740  else
3741    Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent()));
3742
3743  EraseInstruction(Autorelease);
3744  return true;
3745}
3746
3747/// ContractRelease - Attempt to merge an objc_release with a store, load, and
3748/// objc_retain to form an objc_storeStrong. This can be a little tricky because
3749/// the instructions don't always appear in order, and there may be unrelated
3750/// intervening instructions.
3751void ObjCARCContract::ContractRelease(Instruction *Release,
3752                                      inst_iterator &Iter) {
3753  LoadInst *Load = dyn_cast<LoadInst>(GetObjCArg(Release));
3754  if (!Load || !Load->isSimple()) return;
3755
3756  // For now, require everything to be in one basic block.
3757  BasicBlock *BB = Release->getParent();
3758  if (Load->getParent() != BB) return;
3759
3760  // Walk down to find the store.
3761  BasicBlock::iterator I = Load, End = BB->end();
3762  ++I;
3763  AliasAnalysis::Location Loc = AA->getLocation(Load);
3764  while (I != End &&
3765         (&*I == Release ||
3766          IsRetain(GetBasicInstructionClass(I)) ||
3767          !(AA->getModRefInfo(I, Loc) & AliasAnalysis::Mod)))
3768    ++I;
3769  StoreInst *Store = dyn_cast<StoreInst>(I);
3770  if (!Store || !Store->isSimple()) return;
3771  if (Store->getPointerOperand() != Loc.Ptr) return;
3772
3773  Value *New = StripPointerCastsAndObjCCalls(Store->getValueOperand());
3774
3775  // Walk up to find the retain.
3776  I = Store;
3777  BasicBlock::iterator Begin = BB->begin();
3778  while (I != Begin && GetBasicInstructionClass(I) != IC_Retain)
3779    --I;
3780  Instruction *Retain = I;
3781  if (GetBasicInstructionClass(Retain) != IC_Retain) return;
3782  if (GetObjCArg(Retain) != New) return;
3783
3784  Changed = true;
3785  ++NumStoreStrongs;
3786
3787  LLVMContext &C = Release->getContext();
3788  Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3789  Type *I8XX = PointerType::getUnqual(I8X);
3790
3791  Value *Args[] = { Load->getPointerOperand(), New };
3792  if (Args[0]->getType() != I8XX)
3793    Args[0] = new BitCastInst(Args[0], I8XX, "", Store);
3794  if (Args[1]->getType() != I8X)
3795    Args[1] = new BitCastInst(Args[1], I8X, "", Store);
3796  CallInst *StoreStrong =
3797    CallInst::Create(getStoreStrongCallee(BB->getParent()->getParent()),
3798                     Args, "", Store);
3799  StoreStrong->setDoesNotThrow();
3800  StoreStrong->setDebugLoc(Store->getDebugLoc());
3801
3802  if (&*Iter == Store) ++Iter;
3803  Store->eraseFromParent();
3804  Release->eraseFromParent();
3805  EraseInstruction(Retain);
3806  if (Load->use_empty())
3807    Load->eraseFromParent();
3808}
3809
3810bool ObjCARCContract::doInitialization(Module &M) {
3811  Run = ModuleHasARC(M);
3812  if (!Run)
3813    return false;
3814
3815  // These are initialized lazily.
3816  StoreStrongCallee = 0;
3817  RetainAutoreleaseCallee = 0;
3818  RetainAutoreleaseRVCallee = 0;
3819
3820  // Initialize RetainRVMarker.
3821  RetainRVMarker = 0;
3822  if (NamedMDNode *NMD =
3823        M.getNamedMetadata("clang.arc.retainAutoreleasedReturnValueMarker"))
3824    if (NMD->getNumOperands() == 1) {
3825      const MDNode *N = NMD->getOperand(0);
3826      if (N->getNumOperands() == 1)
3827        if (const MDString *S = dyn_cast<MDString>(N->getOperand(0)))
3828          RetainRVMarker = S;
3829    }
3830
3831  return false;
3832}
3833
3834bool ObjCARCContract::runOnFunction(Function &F) {
3835  if (!EnableARCOpts)
3836    return false;
3837
3838  // If nothing in the Module uses ARC, don't do anything.
3839  if (!Run)
3840    return false;
3841
3842  Changed = false;
3843  AA = &getAnalysis<AliasAnalysis>();
3844  DT = &getAnalysis<DominatorTree>();
3845
3846  PA.setAA(&getAnalysis<AliasAnalysis>());
3847
3848  // For ObjC library calls which return their argument, replace uses of the
3849  // argument with uses of the call return value, if it dominates the use. This
3850  // reduces register pressure.
3851  SmallPtrSet<Instruction *, 4> DependingInstructions;
3852  SmallPtrSet<const BasicBlock *, 4> Visited;
3853  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
3854    Instruction *Inst = &*I++;
3855
3856    // Only these library routines return their argument. In particular,
3857    // objc_retainBlock does not necessarily return its argument.
3858    InstructionClass Class = GetBasicInstructionClass(Inst);
3859    switch (Class) {
3860    case IC_Retain:
3861    case IC_FusedRetainAutorelease:
3862    case IC_FusedRetainAutoreleaseRV:
3863      break;
3864    case IC_Autorelease:
3865    case IC_AutoreleaseRV:
3866      if (ContractAutorelease(F, Inst, Class, DependingInstructions, Visited))
3867        continue;
3868      break;
3869    case IC_RetainRV: {
3870      // If we're compiling for a target which needs a special inline-asm
3871      // marker to do the retainAutoreleasedReturnValue optimization,
3872      // insert it now.
3873      if (!RetainRVMarker)
3874        break;
3875      BasicBlock::iterator BBI = Inst;
3876      --BBI;
3877      while (isNoopInstruction(BBI)) --BBI;
3878      if (&*BBI == GetObjCArg(Inst)) {
3879        InlineAsm *IA =
3880          InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()),
3881                                           /*isVarArg=*/false),
3882                         RetainRVMarker->getString(),
3883                         /*Constraints=*/"", /*hasSideEffects=*/true);
3884        CallInst::Create(IA, "", Inst);
3885      }
3886      break;
3887    }
3888    case IC_InitWeak: {
3889      // objc_initWeak(p, null) => *p = null
3890      CallInst *CI = cast<CallInst>(Inst);
3891      if (isNullOrUndef(CI->getArgOperand(1))) {
3892        Value *Null =
3893          ConstantPointerNull::get(cast<PointerType>(CI->getType()));
3894        Changed = true;
3895        new StoreInst(Null, CI->getArgOperand(0), CI);
3896        CI->replaceAllUsesWith(Null);
3897        CI->eraseFromParent();
3898      }
3899      continue;
3900    }
3901    case IC_Release:
3902      ContractRelease(Inst, I);
3903      continue;
3904    default:
3905      continue;
3906    }
3907
3908    // Don't use GetObjCArg because we don't want to look through bitcasts
3909    // and such; to do the replacement, the argument must have type i8*.
3910    const Value *Arg = cast<CallInst>(Inst)->getArgOperand(0);
3911    for (;;) {
3912      // If we're compiling bugpointed code, don't get in trouble.
3913      if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
3914        break;
3915      // Look through the uses of the pointer.
3916      for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
3917           UI != UE; ) {
3918        Use &U = UI.getUse();
3919        unsigned OperandNo = UI.getOperandNo();
3920        ++UI; // Increment UI now, because we may unlink its element.
3921        if (Instruction *UserInst = dyn_cast<Instruction>(U.getUser()))
3922          if (Inst != UserInst && DT->dominates(Inst, UserInst)) {
3923            Changed = true;
3924            Instruction *Replacement = Inst;
3925            Type *UseTy = U.get()->getType();
3926            if (PHINode *PHI = dyn_cast<PHINode>(UserInst)) {
3927              // For PHI nodes, insert the bitcast in the predecessor block.
3928              unsigned ValNo =
3929                PHINode::getIncomingValueNumForOperand(OperandNo);
3930              BasicBlock *BB =
3931                PHI->getIncomingBlock(ValNo);
3932              if (Replacement->getType() != UseTy)
3933                Replacement = new BitCastInst(Replacement, UseTy, "",
3934                                              &BB->back());
3935              for (unsigned i = 0, e = PHI->getNumIncomingValues();
3936                   i != e; ++i)
3937                if (PHI->getIncomingBlock(i) == BB) {
3938                  // Keep the UI iterator valid.
3939                  if (&PHI->getOperandUse(
3940                        PHINode::getOperandNumForIncomingValue(i)) ==
3941                        &UI.getUse())
3942                    ++UI;
3943                  PHI->setIncomingValue(i, Replacement);
3944                }
3945            } else {
3946              if (Replacement->getType() != UseTy)
3947                Replacement = new BitCastInst(Replacement, UseTy, "", UserInst);
3948              U.set(Replacement);
3949            }
3950          }
3951      }
3952
3953      // If Arg is a no-op casted pointer, strip one level of casts and
3954      // iterate.
3955      if (const BitCastInst *BI = dyn_cast<BitCastInst>(Arg))
3956        Arg = BI->getOperand(0);
3957      else if (isa<GEPOperator>(Arg) &&
3958               cast<GEPOperator>(Arg)->hasAllZeroIndices())
3959        Arg = cast<GEPOperator>(Arg)->getPointerOperand();
3960      else if (isa<GlobalAlias>(Arg) &&
3961               !cast<GlobalAlias>(Arg)->mayBeOverridden())
3962        Arg = cast<GlobalAlias>(Arg)->getAliasee();
3963      else
3964        break;
3965    }
3966  }
3967
3968  return Changed;
3969}
3970