ObjCARC.cpp revision 8b11fdd8bb78840937ceebdfe44397dd8d2697fd
1//===- ObjCARC.cpp - ObjC ARC Optimization --------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines ObjC ARC optimizations. ARC stands for
11// Automatic Reference Counting and is a system for managing reference counts
12// for objects in Objective C.
13//
14// The optimizations performed include elimination of redundant, partially
15// redundant, and inconsequential reference count operations, elimination of
16// redundant weak pointer operations, pattern-matching and replacement of
17// low-level operations into higher-level operations, and numerous minor
18// simplifications.
19//
20// This file also defines a simple ARC-aware AliasAnalysis.
21//
22// WARNING: This file knows about certain library functions. It recognizes them
23// by name, and hardwires knowedge of their semantics.
24//
25// WARNING: This file knows about how certain Objective-C library functions are
26// used. Naive LLVM IR transformations which would otherwise be
27// behavior-preserving may break these assumptions.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "objc-arc"
32#include "llvm/Function.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/GlobalVariable.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/ADT/StringSwitch.h"
42#include "llvm/ADT/DenseMap.h"
43#include "llvm/ADT/STLExtras.h"
44using namespace llvm;
45
46// A handy option to enable/disable all optimizations in this file.
47static cl::opt<bool> EnableARCOpts("enable-objc-arc-opts", cl::init(true));
48
49//===----------------------------------------------------------------------===//
50// Misc. Utilities
51//===----------------------------------------------------------------------===//
52
53namespace {
54  /// MapVector - An associative container with fast insertion-order
55  /// (deterministic) iteration over its elements. Plus the special
56  /// blot operation.
57  template<class KeyT, class ValueT>
58  class MapVector {
59    /// Map - Map keys to indices in Vector.
60    typedef DenseMap<KeyT, size_t> MapTy;
61    MapTy Map;
62
63    /// Vector - Keys and values.
64    typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
65    VectorTy Vector;
66
67  public:
68    typedef typename VectorTy::iterator iterator;
69    typedef typename VectorTy::const_iterator const_iterator;
70    iterator begin() { return Vector.begin(); }
71    iterator end() { return Vector.end(); }
72    const_iterator begin() const { return Vector.begin(); }
73    const_iterator end() const { return Vector.end(); }
74
75#ifdef XDEBUG
76    ~MapVector() {
77      assert(Vector.size() >= Map.size()); // May differ due to blotting.
78      for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
79           I != E; ++I) {
80        assert(I->second < Vector.size());
81        assert(Vector[I->second].first == I->first);
82      }
83      for (typename VectorTy::const_iterator I = Vector.begin(),
84           E = Vector.end(); I != E; ++I)
85        assert(!I->first ||
86               (Map.count(I->first) &&
87                Map[I->first] == size_t(I - Vector.begin())));
88    }
89#endif
90
91    ValueT &operator[](const KeyT &Arg) {
92      std::pair<typename MapTy::iterator, bool> Pair =
93        Map.insert(std::make_pair(Arg, size_t(0)));
94      if (Pair.second) {
95        size_t Num = Vector.size();
96        Pair.first->second = Num;
97        Vector.push_back(std::make_pair(Arg, ValueT()));
98        return Vector[Num].second;
99      }
100      return Vector[Pair.first->second].second;
101    }
102
103    std::pair<iterator, bool>
104    insert(const std::pair<KeyT, ValueT> &InsertPair) {
105      std::pair<typename MapTy::iterator, bool> Pair =
106        Map.insert(std::make_pair(InsertPair.first, size_t(0)));
107      if (Pair.second) {
108        size_t Num = Vector.size();
109        Pair.first->second = Num;
110        Vector.push_back(InsertPair);
111        return std::make_pair(Vector.begin() + Num, true);
112      }
113      return std::make_pair(Vector.begin() + Pair.first->second, false);
114    }
115
116    const_iterator find(const KeyT &Key) const {
117      typename MapTy::const_iterator It = Map.find(Key);
118      if (It == Map.end()) return Vector.end();
119      return Vector.begin() + It->second;
120    }
121
122    /// blot - This is similar to erase, but instead of removing the element
123    /// from the vector, it just zeros out the key in the vector. This leaves
124    /// iterators intact, but clients must be prepared for zeroed-out keys when
125    /// iterating.
126    void blot(const KeyT &Key) {
127      typename MapTy::iterator It = Map.find(Key);
128      if (It == Map.end()) return;
129      Vector[It->second].first = KeyT();
130      Map.erase(It);
131    }
132
133    void clear() {
134      Map.clear();
135      Vector.clear();
136    }
137  };
138}
139
140//===----------------------------------------------------------------------===//
141// ARC Utilities.
142//===----------------------------------------------------------------------===//
143
144namespace {
145  /// InstructionClass - A simple classification for instructions.
146  enum InstructionClass {
147    IC_Retain,              ///< objc_retain
148    IC_RetainRV,            ///< objc_retainAutoreleasedReturnValue
149    IC_RetainBlock,         ///< objc_retainBlock
150    IC_Release,             ///< objc_release
151    IC_Autorelease,         ///< objc_autorelease
152    IC_AutoreleaseRV,       ///< objc_autoreleaseReturnValue
153    IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
154    IC_AutoreleasepoolPop,  ///< objc_autoreleasePoolPop
155    IC_NoopCast,            ///< objc_retainedObject, etc.
156    IC_FusedRetainAutorelease, ///< objc_retainAutorelease
157    IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
158    IC_LoadWeakRetained,    ///< objc_loadWeakRetained (primitive)
159    IC_StoreWeak,           ///< objc_storeWeak (primitive)
160    IC_InitWeak,            ///< objc_initWeak (derived)
161    IC_LoadWeak,            ///< objc_loadWeak (derived)
162    IC_MoveWeak,            ///< objc_moveWeak (derived)
163    IC_CopyWeak,            ///< objc_copyWeak (derived)
164    IC_DestroyWeak,         ///< objc_destroyWeak (derived)
165    IC_CallOrUser,          ///< could call objc_release and/or "use" pointers
166    IC_Call,                ///< could call objc_release
167    IC_User,                ///< could "use" a pointer
168    IC_None                 ///< anything else
169  };
170}
171
172/// IsPotentialUse - Test whether the given value is possible a
173/// reference-counted pointer.
174static bool IsPotentialUse(const Value *Op) {
175  // Pointers to static or stack storage are not reference-counted pointers.
176  if (isa<Constant>(Op) || isa<AllocaInst>(Op))
177    return false;
178  // Special arguments are not reference-counted.
179  if (const Argument *Arg = dyn_cast<Argument>(Op))
180    if (Arg->hasByValAttr() ||
181        Arg->hasNestAttr() ||
182        Arg->hasStructRetAttr())
183      return false;
184  // Only consider values with pointer types.
185  // It seemes intuitive to exclude function pointer types as well, since
186  // functions are never reference-counted, however clang occasionally
187  // bitcasts reference-counted pointers to function-pointer type
188  // temporarily.
189  PointerType *Ty = dyn_cast<PointerType>(Op->getType());
190  if (!Ty)
191    return false;
192  // Conservatively assume anything else is a potential use.
193  return true;
194}
195
196/// GetCallSiteClass - Helper for GetInstructionClass. Determines what kind
197/// of construct CS is.
198static InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
199  for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
200       I != E; ++I)
201    if (IsPotentialUse(*I))
202      return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
203
204  return CS.onlyReadsMemory() ? IC_None : IC_Call;
205}
206
207/// GetFunctionClass - Determine if F is one of the special known Functions.
208/// If it isn't, return IC_CallOrUser.
209static InstructionClass GetFunctionClass(const Function *F) {
210  Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
211
212  // No arguments.
213  if (AI == AE)
214    return StringSwitch<InstructionClass>(F->getName())
215      .Case("objc_autoreleasePoolPush",  IC_AutoreleasepoolPush)
216      .Default(IC_CallOrUser);
217
218  // One argument.
219  const Argument *A0 = AI++;
220  if (AI == AE)
221    // Argument is a pointer.
222    if (PointerType *PTy = dyn_cast<PointerType>(A0->getType())) {
223      Type *ETy = PTy->getElementType();
224      // Argument is i8*.
225      if (ETy->isIntegerTy(8))
226        return StringSwitch<InstructionClass>(F->getName())
227          .Case("objc_retain",                IC_Retain)
228          .Case("objc_retainAutoreleasedReturnValue", IC_RetainRV)
229          .Case("objc_retainBlock",           IC_RetainBlock)
230          .Case("objc_release",               IC_Release)
231          .Case("objc_autorelease",           IC_Autorelease)
232          .Case("objc_autoreleaseReturnValue", IC_AutoreleaseRV)
233          .Case("objc_autoreleasePoolPop",    IC_AutoreleasepoolPop)
234          .Case("objc_retainedObject",        IC_NoopCast)
235          .Case("objc_unretainedObject",      IC_NoopCast)
236          .Case("objc_unretainedPointer",     IC_NoopCast)
237          .Case("objc_retain_autorelease",    IC_FusedRetainAutorelease)
238          .Case("objc_retainAutorelease",     IC_FusedRetainAutorelease)
239          .Case("objc_retainAutoreleaseReturnValue",IC_FusedRetainAutoreleaseRV)
240          .Default(IC_CallOrUser);
241
242      // Argument is i8**
243      if (PointerType *Pte = dyn_cast<PointerType>(ETy))
244        if (Pte->getElementType()->isIntegerTy(8))
245          return StringSwitch<InstructionClass>(F->getName())
246            .Case("objc_loadWeakRetained",      IC_LoadWeakRetained)
247            .Case("objc_loadWeak",              IC_LoadWeak)
248            .Case("objc_destroyWeak",           IC_DestroyWeak)
249            .Default(IC_CallOrUser);
250    }
251
252  // Two arguments, first is i8**.
253  const Argument *A1 = AI++;
254  if (AI == AE)
255    if (PointerType *PTy = dyn_cast<PointerType>(A0->getType()))
256      if (PointerType *Pte = dyn_cast<PointerType>(PTy->getElementType()))
257        if (Pte->getElementType()->isIntegerTy(8))
258          if (PointerType *PTy1 = dyn_cast<PointerType>(A1->getType())) {
259            Type *ETy1 = PTy1->getElementType();
260            // Second argument is i8*
261            if (ETy1->isIntegerTy(8))
262              return StringSwitch<InstructionClass>(F->getName())
263                     .Case("objc_storeWeak",             IC_StoreWeak)
264                     .Case("objc_initWeak",              IC_InitWeak)
265                     .Default(IC_CallOrUser);
266            // Second argument is i8**.
267            if (PointerType *Pte1 = dyn_cast<PointerType>(ETy1))
268              if (Pte1->getElementType()->isIntegerTy(8))
269                return StringSwitch<InstructionClass>(F->getName())
270                       .Case("objc_moveWeak",              IC_MoveWeak)
271                       .Case("objc_copyWeak",              IC_CopyWeak)
272                       .Default(IC_CallOrUser);
273          }
274
275  // Anything else.
276  return IC_CallOrUser;
277}
278
279/// GetInstructionClass - Determine what kind of construct V is.
280static InstructionClass GetInstructionClass(const Value *V) {
281  if (const Instruction *I = dyn_cast<Instruction>(V)) {
282    // Any instruction other than bitcast and gep with a pointer operand have a
283    // use of an objc pointer. Bitcasts, GEPs, Selects, PHIs transfer a pointer
284    // to a subsequent use, rather than using it themselves, in this sense.
285    // As a short cut, several other opcodes are known to have no pointer
286    // operands of interest. And ret is never followed by a release, so it's
287    // not interesting to examine.
288    switch (I->getOpcode()) {
289    case Instruction::Call: {
290      const CallInst *CI = cast<CallInst>(I);
291      // Check for calls to special functions.
292      if (const Function *F = CI->getCalledFunction()) {
293        InstructionClass Class = GetFunctionClass(F);
294        if (Class != IC_CallOrUser)
295          return Class;
296
297        // None of the intrinsic functions do objc_release. For intrinsics, the
298        // only question is whether or not they may be users.
299        switch (F->getIntrinsicID()) {
300        case 0: break;
301        case Intrinsic::bswap: case Intrinsic::ctpop:
302        case Intrinsic::ctlz: case Intrinsic::cttz:
303        case Intrinsic::returnaddress: case Intrinsic::frameaddress:
304        case Intrinsic::stacksave: case Intrinsic::stackrestore:
305        case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend:
306        // Don't let dbg info affect our results.
307        case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
308          // Short cut: Some intrinsics obviously don't use ObjC pointers.
309          return IC_None;
310        default:
311          for (Function::const_arg_iterator AI = F->arg_begin(),
312               AE = F->arg_end(); AI != AE; ++AI)
313            if (IsPotentialUse(AI))
314              return IC_User;
315          return IC_None;
316        }
317      }
318      return GetCallSiteClass(CI);
319    }
320    case Instruction::Invoke:
321      return GetCallSiteClass(cast<InvokeInst>(I));
322    case Instruction::BitCast:
323    case Instruction::GetElementPtr:
324    case Instruction::Select: case Instruction::PHI:
325    case Instruction::Ret: case Instruction::Br:
326    case Instruction::Switch: case Instruction::IndirectBr:
327    case Instruction::Alloca: case Instruction::VAArg:
328    case Instruction::Add: case Instruction::FAdd:
329    case Instruction::Sub: case Instruction::FSub:
330    case Instruction::Mul: case Instruction::FMul:
331    case Instruction::SDiv: case Instruction::UDiv: case Instruction::FDiv:
332    case Instruction::SRem: case Instruction::URem: case Instruction::FRem:
333    case Instruction::Shl: case Instruction::LShr: case Instruction::AShr:
334    case Instruction::And: case Instruction::Or: case Instruction::Xor:
335    case Instruction::SExt: case Instruction::ZExt: case Instruction::Trunc:
336    case Instruction::IntToPtr: case Instruction::FCmp:
337    case Instruction::FPTrunc: case Instruction::FPExt:
338    case Instruction::FPToUI: case Instruction::FPToSI:
339    case Instruction::UIToFP: case Instruction::SIToFP:
340    case Instruction::InsertElement: case Instruction::ExtractElement:
341    case Instruction::ShuffleVector:
342    case Instruction::ExtractValue:
343      break;
344    case Instruction::ICmp:
345      // Comparing a pointer with null, or any other constant, isn't an
346      // interesting use, because we don't care what the pointer points to, or
347      // about the values of any other dynamic reference-counted pointers.
348      if (IsPotentialUse(I->getOperand(1)))
349        return IC_User;
350      break;
351    default:
352      // For anything else, check all the operands.
353      // Note that this includes both operands of a Store: while the first
354      // operand isn't actually being dereferenced, it is being stored to
355      // memory where we can no longer track who might read it and dereference
356      // it, so we have to consider it potentially used.
357      for (User::const_op_iterator OI = I->op_begin(), OE = I->op_end();
358           OI != OE; ++OI)
359        if (IsPotentialUse(*OI))
360          return IC_User;
361    }
362  }
363
364  // Otherwise, it's totally inert for ARC purposes.
365  return IC_None;
366}
367
368/// GetBasicInstructionClass - Determine what kind of construct V is. This is
369/// similar to GetInstructionClass except that it only detects objc runtine
370/// calls. This allows it to be faster.
371static InstructionClass GetBasicInstructionClass(const Value *V) {
372  if (const CallInst *CI = dyn_cast<CallInst>(V)) {
373    if (const Function *F = CI->getCalledFunction())
374      return GetFunctionClass(F);
375    // Otherwise, be conservative.
376    return IC_CallOrUser;
377  }
378
379  // Otherwise, be conservative.
380  return isa<InvokeInst>(V) ? IC_CallOrUser : IC_User;
381}
382
383/// IsRetain - Test if the the given class is objc_retain or
384/// equivalent.
385static bool IsRetain(InstructionClass Class) {
386  return Class == IC_Retain ||
387         Class == IC_RetainRV;
388}
389
390/// IsAutorelease - Test if the the given class is objc_autorelease or
391/// equivalent.
392static bool IsAutorelease(InstructionClass Class) {
393  return Class == IC_Autorelease ||
394         Class == IC_AutoreleaseRV;
395}
396
397/// IsForwarding - Test if the given class represents instructions which return
398/// their argument verbatim.
399static bool IsForwarding(InstructionClass Class) {
400  // objc_retainBlock technically doesn't always return its argument
401  // verbatim, but it doesn't matter for our purposes here.
402  return Class == IC_Retain ||
403         Class == IC_RetainRV ||
404         Class == IC_Autorelease ||
405         Class == IC_AutoreleaseRV ||
406         Class == IC_RetainBlock ||
407         Class == IC_NoopCast;
408}
409
410/// IsNoopOnNull - Test if the given class represents instructions which do
411/// nothing if passed a null pointer.
412static bool IsNoopOnNull(InstructionClass Class) {
413  return Class == IC_Retain ||
414         Class == IC_RetainRV ||
415         Class == IC_Release ||
416         Class == IC_Autorelease ||
417         Class == IC_AutoreleaseRV ||
418         Class == IC_RetainBlock;
419}
420
421/// IsAlwaysTail - Test if the given class represents instructions which are
422/// always safe to mark with the "tail" keyword.
423static bool IsAlwaysTail(InstructionClass Class) {
424  // IC_RetainBlock may be given a stack argument.
425  return Class == IC_Retain ||
426         Class == IC_RetainRV ||
427         Class == IC_Autorelease ||
428         Class == IC_AutoreleaseRV;
429}
430
431/// IsNoThrow - Test if the given class represents instructions which are always
432/// safe to mark with the nounwind attribute..
433static bool IsNoThrow(InstructionClass Class) {
434  // objc_retainBlock is not nounwind because it calls user copy constructors
435  // which could theoretically throw.
436  return Class == IC_Retain ||
437         Class == IC_RetainRV ||
438         Class == IC_Release ||
439         Class == IC_Autorelease ||
440         Class == IC_AutoreleaseRV ||
441         Class == IC_AutoreleasepoolPush ||
442         Class == IC_AutoreleasepoolPop;
443}
444
445/// EraseInstruction - Erase the given instruction. ObjC calls return their
446/// argument verbatim, so if it's such a call and the return value has users,
447/// replace them with the argument value.
448static void EraseInstruction(Instruction *CI) {
449  Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
450
451  bool Unused = CI->use_empty();
452
453  if (!Unused) {
454    // Replace the return value with the argument.
455    assert(IsForwarding(GetBasicInstructionClass(CI)) &&
456           "Can't delete non-forwarding instruction with users!");
457    CI->replaceAllUsesWith(OldArg);
458  }
459
460  CI->eraseFromParent();
461
462  if (Unused)
463    RecursivelyDeleteTriviallyDeadInstructions(OldArg);
464}
465
466/// GetUnderlyingObjCPtr - This is a wrapper around getUnderlyingObject which
467/// also knows how to look through objc_retain and objc_autorelease calls, which
468/// we know to return their argument verbatim.
469static const Value *GetUnderlyingObjCPtr(const Value *V) {
470  for (;;) {
471    V = GetUnderlyingObject(V);
472    if (!IsForwarding(GetBasicInstructionClass(V)))
473      break;
474    V = cast<CallInst>(V)->getArgOperand(0);
475  }
476
477  return V;
478}
479
480/// StripPointerCastsAndObjCCalls - This is a wrapper around
481/// Value::stripPointerCasts which also knows how to look through objc_retain
482/// and objc_autorelease calls, which we know to return their argument verbatim.
483static const Value *StripPointerCastsAndObjCCalls(const Value *V) {
484  for (;;) {
485    V = V->stripPointerCasts();
486    if (!IsForwarding(GetBasicInstructionClass(V)))
487      break;
488    V = cast<CallInst>(V)->getArgOperand(0);
489  }
490  return V;
491}
492
493/// StripPointerCastsAndObjCCalls - This is a wrapper around
494/// Value::stripPointerCasts which also knows how to look through objc_retain
495/// and objc_autorelease calls, which we know to return their argument verbatim.
496static Value *StripPointerCastsAndObjCCalls(Value *V) {
497  for (;;) {
498    V = V->stripPointerCasts();
499    if (!IsForwarding(GetBasicInstructionClass(V)))
500      break;
501    V = cast<CallInst>(V)->getArgOperand(0);
502  }
503  return V;
504}
505
506/// GetObjCArg - Assuming the given instruction is one of the special calls such
507/// as objc_retain or objc_release, return the argument value, stripped of no-op
508/// casts and forwarding calls.
509static Value *GetObjCArg(Value *Inst) {
510  return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
511}
512
513/// IsObjCIdentifiedObject - This is similar to AliasAnalysis'
514/// isObjCIdentifiedObject, except that it uses special knowledge of
515/// ObjC conventions...
516static bool IsObjCIdentifiedObject(const Value *V) {
517  // Assume that call results and arguments have their own "provenance".
518  // Constants (including GlobalVariables) and Allocas are never
519  // reference-counted.
520  if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
521      isa<Argument>(V) || isa<Constant>(V) ||
522      isa<AllocaInst>(V))
523    return true;
524
525  if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
526    const Value *Pointer =
527      StripPointerCastsAndObjCCalls(LI->getPointerOperand());
528    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
529      // A constant pointer can't be pointing to an object on the heap. It may
530      // be reference-counted, but it won't be deleted.
531      if (GV->isConstant())
532        return true;
533      StringRef Name = GV->getName();
534      // These special variables are known to hold values which are not
535      // reference-counted pointers.
536      if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
537          Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
538          Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
539          Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
540          Name.startswith("\01l_objc_msgSend_fixup_"))
541        return true;
542    }
543  }
544
545  return false;
546}
547
548/// FindSingleUseIdentifiedObject - This is similar to
549/// StripPointerCastsAndObjCCalls but it stops as soon as it finds a value
550/// with multiple uses.
551static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
552  if (Arg->hasOneUse()) {
553    if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
554      return FindSingleUseIdentifiedObject(BC->getOperand(0));
555    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
556      if (GEP->hasAllZeroIndices())
557        return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
558    if (IsForwarding(GetBasicInstructionClass(Arg)))
559      return FindSingleUseIdentifiedObject(
560               cast<CallInst>(Arg)->getArgOperand(0));
561    if (!IsObjCIdentifiedObject(Arg))
562      return 0;
563    return Arg;
564  }
565
566  // If we found an identifiable object but it has multiple uses, but they
567  // are trivial uses, we can still consider this to be a single-use
568  // value.
569  if (IsObjCIdentifiedObject(Arg)) {
570    for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
571         UI != UE; ++UI) {
572      const User *U = *UI;
573      if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
574         return 0;
575    }
576
577    return Arg;
578  }
579
580  return 0;
581}
582
583/// ModuleHasARC - Test if the given module looks interesting to run ARC
584/// optimization on.
585static bool ModuleHasARC(const Module &M) {
586  return
587    M.getNamedValue("objc_retain") ||
588    M.getNamedValue("objc_release") ||
589    M.getNamedValue("objc_autorelease") ||
590    M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
591    M.getNamedValue("objc_retainBlock") ||
592    M.getNamedValue("objc_autoreleaseReturnValue") ||
593    M.getNamedValue("objc_autoreleasePoolPush") ||
594    M.getNamedValue("objc_loadWeakRetained") ||
595    M.getNamedValue("objc_loadWeak") ||
596    M.getNamedValue("objc_destroyWeak") ||
597    M.getNamedValue("objc_storeWeak") ||
598    M.getNamedValue("objc_initWeak") ||
599    M.getNamedValue("objc_moveWeak") ||
600    M.getNamedValue("objc_copyWeak") ||
601    M.getNamedValue("objc_retainedObject") ||
602    M.getNamedValue("objc_unretainedObject") ||
603    M.getNamedValue("objc_unretainedPointer");
604}
605
606/// DoesObjCBlockEscape - Test whether the given pointer, which is an
607/// Objective C block pointer, does not "escape". This differs from regular
608/// escape analysis in that a use as an argument to a call is not considered
609/// an escape.
610static bool DoesObjCBlockEscape(const Value *BlockPtr) {
611  // Walk the def-use chains.
612  SmallVector<const Value *, 4> Worklist;
613  Worklist.push_back(BlockPtr);
614  do {
615    const Value *V = Worklist.pop_back_val();
616    for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
617         UI != UE; ++UI) {
618      const User *UUser = *UI;
619      // Special - Use by a call (callee or argument) is not considered
620      // to be an escape.
621      if (isa<CallInst>(UUser) || isa<InvokeInst>(UUser))
622        continue;
623      // Use by an instruction which copies the value is an escape if the
624      // result is an escape.
625      if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) ||
626          isa<PHINode>(UUser) || isa<SelectInst>(UUser)) {
627        Worklist.push_back(UUser);
628        continue;
629      }
630      // Use by a load is not an escape.
631      if (isa<LoadInst>(UUser))
632        continue;
633      // Use by a store is not an escape if the use is the address.
634      if (const StoreInst *SI = dyn_cast<StoreInst>(UUser))
635        if (V != SI->getValueOperand())
636          continue;
637      // Otherwise, conservatively assume an escape.
638      return true;
639    }
640  } while (!Worklist.empty());
641
642  // No escapes found.
643  return false;
644}
645
646//===----------------------------------------------------------------------===//
647// ARC AliasAnalysis.
648//===----------------------------------------------------------------------===//
649
650#include "llvm/Pass.h"
651#include "llvm/Analysis/AliasAnalysis.h"
652#include "llvm/Analysis/Passes.h"
653
654namespace {
655  /// ObjCARCAliasAnalysis - This is a simple alias analysis
656  /// implementation that uses knowledge of ARC constructs to answer queries.
657  ///
658  /// TODO: This class could be generalized to know about other ObjC-specific
659  /// tricks. Such as knowing that ivars in the non-fragile ABI are non-aliasing
660  /// even though their offsets are dynamic.
661  class ObjCARCAliasAnalysis : public ImmutablePass,
662                               public AliasAnalysis {
663  public:
664    static char ID; // Class identification, replacement for typeinfo
665    ObjCARCAliasAnalysis() : ImmutablePass(ID) {
666      initializeObjCARCAliasAnalysisPass(*PassRegistry::getPassRegistry());
667    }
668
669  private:
670    virtual void initializePass() {
671      InitializeAliasAnalysis(this);
672    }
673
674    /// getAdjustedAnalysisPointer - This method is used when a pass implements
675    /// an analysis interface through multiple inheritance.  If needed, it
676    /// should override this to adjust the this pointer as needed for the
677    /// specified pass info.
678    virtual void *getAdjustedAnalysisPointer(const void *PI) {
679      if (PI == &AliasAnalysis::ID)
680        return (AliasAnalysis*)this;
681      return this;
682    }
683
684    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
685    virtual AliasResult alias(const Location &LocA, const Location &LocB);
686    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
687    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
688    virtual ModRefBehavior getModRefBehavior(const Function *F);
689    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
690                                       const Location &Loc);
691    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
692                                       ImmutableCallSite CS2);
693  };
694}  // End of anonymous namespace
695
696// Register this pass...
697char ObjCARCAliasAnalysis::ID = 0;
698INITIALIZE_AG_PASS(ObjCARCAliasAnalysis, AliasAnalysis, "objc-arc-aa",
699                   "ObjC-ARC-Based Alias Analysis", false, true, false)
700
701ImmutablePass *llvm::createObjCARCAliasAnalysisPass() {
702  return new ObjCARCAliasAnalysis();
703}
704
705void
706ObjCARCAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
707  AU.setPreservesAll();
708  AliasAnalysis::getAnalysisUsage(AU);
709}
710
711AliasAnalysis::AliasResult
712ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) {
713  if (!EnableARCOpts)
714    return AliasAnalysis::alias(LocA, LocB);
715
716  // First, strip off no-ops, including ObjC-specific no-ops, and try making a
717  // precise alias query.
718  const Value *SA = StripPointerCastsAndObjCCalls(LocA.Ptr);
719  const Value *SB = StripPointerCastsAndObjCCalls(LocB.Ptr);
720  AliasResult Result =
721    AliasAnalysis::alias(Location(SA, LocA.Size, LocA.TBAATag),
722                         Location(SB, LocB.Size, LocB.TBAATag));
723  if (Result != MayAlias)
724    return Result;
725
726  // If that failed, climb to the underlying object, including climbing through
727  // ObjC-specific no-ops, and try making an imprecise alias query.
728  const Value *UA = GetUnderlyingObjCPtr(SA);
729  const Value *UB = GetUnderlyingObjCPtr(SB);
730  if (UA != SA || UB != SB) {
731    Result = AliasAnalysis::alias(Location(UA), Location(UB));
732    // We can't use MustAlias or PartialAlias results here because
733    // GetUnderlyingObjCPtr may return an offsetted pointer value.
734    if (Result == NoAlias)
735      return NoAlias;
736  }
737
738  // If that failed, fail. We don't need to chain here, since that's covered
739  // by the earlier precise query.
740  return MayAlias;
741}
742
743bool
744ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc,
745                                             bool OrLocal) {
746  if (!EnableARCOpts)
747    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
748
749  // First, strip off no-ops, including ObjC-specific no-ops, and try making
750  // a precise alias query.
751  const Value *S = StripPointerCastsAndObjCCalls(Loc.Ptr);
752  if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.TBAATag),
753                                            OrLocal))
754    return true;
755
756  // If that failed, climb to the underlying object, including climbing through
757  // ObjC-specific no-ops, and try making an imprecise alias query.
758  const Value *U = GetUnderlyingObjCPtr(S);
759  if (U != S)
760    return AliasAnalysis::pointsToConstantMemory(Location(U), OrLocal);
761
762  // If that failed, fail. We don't need to chain here, since that's covered
763  // by the earlier precise query.
764  return false;
765}
766
767AliasAnalysis::ModRefBehavior
768ObjCARCAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
769  // We have nothing to do. Just chain to the next AliasAnalysis.
770  return AliasAnalysis::getModRefBehavior(CS);
771}
772
773AliasAnalysis::ModRefBehavior
774ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) {
775  if (!EnableARCOpts)
776    return AliasAnalysis::getModRefBehavior(F);
777
778  switch (GetFunctionClass(F)) {
779  case IC_NoopCast:
780    return DoesNotAccessMemory;
781  default:
782    break;
783  }
784
785  return AliasAnalysis::getModRefBehavior(F);
786}
787
788AliasAnalysis::ModRefResult
789ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS, const Location &Loc) {
790  if (!EnableARCOpts)
791    return AliasAnalysis::getModRefInfo(CS, Loc);
792
793  switch (GetBasicInstructionClass(CS.getInstruction())) {
794  case IC_Retain:
795  case IC_RetainRV:
796  case IC_Autorelease:
797  case IC_AutoreleaseRV:
798  case IC_NoopCast:
799  case IC_AutoreleasepoolPush:
800  case IC_FusedRetainAutorelease:
801  case IC_FusedRetainAutoreleaseRV:
802    // These functions don't access any memory visible to the compiler.
803    // Note that this doesn't include objc_retainBlock, becuase it updates
804    // pointers when it copies block data.
805    return NoModRef;
806  default:
807    break;
808  }
809
810  return AliasAnalysis::getModRefInfo(CS, Loc);
811}
812
813AliasAnalysis::ModRefResult
814ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
815                                    ImmutableCallSite CS2) {
816  // TODO: Theoretically we could check for dependencies between objc_* calls
817  // and OnlyAccessesArgumentPointees calls or other well-behaved calls.
818  return AliasAnalysis::getModRefInfo(CS1, CS2);
819}
820
821//===----------------------------------------------------------------------===//
822// ARC expansion.
823//===----------------------------------------------------------------------===//
824
825#include "llvm/Support/InstIterator.h"
826#include "llvm/Transforms/Scalar.h"
827
828namespace {
829  /// ObjCARCExpand - Early ARC transformations.
830  class ObjCARCExpand : public FunctionPass {
831    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
832    virtual bool doInitialization(Module &M);
833    virtual bool runOnFunction(Function &F);
834
835    /// Run - A flag indicating whether this optimization pass should run.
836    bool Run;
837
838  public:
839    static char ID;
840    ObjCARCExpand() : FunctionPass(ID) {
841      initializeObjCARCExpandPass(*PassRegistry::getPassRegistry());
842    }
843  };
844}
845
846char ObjCARCExpand::ID = 0;
847INITIALIZE_PASS(ObjCARCExpand,
848                "objc-arc-expand", "ObjC ARC expansion", false, false)
849
850Pass *llvm::createObjCARCExpandPass() {
851  return new ObjCARCExpand();
852}
853
854void ObjCARCExpand::getAnalysisUsage(AnalysisUsage &AU) const {
855  AU.setPreservesCFG();
856}
857
858bool ObjCARCExpand::doInitialization(Module &M) {
859  Run = ModuleHasARC(M);
860  return false;
861}
862
863bool ObjCARCExpand::runOnFunction(Function &F) {
864  if (!EnableARCOpts)
865    return false;
866
867  // If nothing in the Module uses ARC, don't do anything.
868  if (!Run)
869    return false;
870
871  bool Changed = false;
872
873  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
874    Instruction *Inst = &*I;
875
876    switch (GetBasicInstructionClass(Inst)) {
877    case IC_Retain:
878    case IC_RetainRV:
879    case IC_Autorelease:
880    case IC_AutoreleaseRV:
881    case IC_FusedRetainAutorelease:
882    case IC_FusedRetainAutoreleaseRV:
883      // These calls return their argument verbatim, as a low-level
884      // optimization. However, this makes high-level optimizations
885      // harder. Undo any uses of this optimization that the front-end
886      // emitted here. We'll redo them in a later pass.
887      Changed = true;
888      Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
889      break;
890    default:
891      break;
892    }
893  }
894
895  return Changed;
896}
897
898//===----------------------------------------------------------------------===//
899// ARC autorelease pool elimination.
900//===----------------------------------------------------------------------===//
901
902#include "llvm/Constants.h"
903
904namespace {
905  /// ObjCARCAPElim - Autorelease pool elimination.
906  class ObjCARCAPElim : public ModulePass {
907    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
908    virtual bool runOnModule(Module &M);
909
910    bool MayAutorelease(CallSite CS, unsigned Depth = 0);
911    bool OptimizeBB(BasicBlock *BB);
912
913  public:
914    static char ID;
915    ObjCARCAPElim() : ModulePass(ID) {
916      initializeObjCARCAPElimPass(*PassRegistry::getPassRegistry());
917    }
918  };
919}
920
921char ObjCARCAPElim::ID = 0;
922INITIALIZE_PASS(ObjCARCAPElim,
923                "objc-arc-apelim",
924                "ObjC ARC autorelease pool elimination",
925                false, false)
926
927Pass *llvm::createObjCARCAPElimPass() {
928  return new ObjCARCAPElim();
929}
930
931void ObjCARCAPElim::getAnalysisUsage(AnalysisUsage &AU) const {
932  AU.setPreservesCFG();
933}
934
935/// MayAutorelease - Interprocedurally determine if calls made by the
936/// given call site can possibly produce autoreleases.
937bool ObjCARCAPElim::MayAutorelease(CallSite CS, unsigned Depth) {
938  if (Function *Callee = CS.getCalledFunction()) {
939    if (Callee->isDeclaration() || Callee->mayBeOverridden())
940      return true;
941    for (Function::iterator I = Callee->begin(), E = Callee->end();
942         I != E; ++I) {
943      BasicBlock *BB = I;
944      for (BasicBlock::iterator J = BB->begin(), F = BB->end(); J != F; ++J)
945        if (CallSite JCS = CallSite(J))
946          // This recursion depth limit is arbitrary. It's just great
947          // enough to cover known interesting testcases.
948          if (Depth < 3 &&
949              !JCS.onlyReadsMemory() &&
950              MayAutorelease(JCS, Depth + 1))
951            return true;
952    }
953    return false;
954  }
955
956  return true;
957}
958
959bool ObjCARCAPElim::OptimizeBB(BasicBlock *BB) {
960  bool Changed = false;
961
962  Instruction *Push = 0;
963  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
964    Instruction *Inst = I++;
965    switch (GetBasicInstructionClass(Inst)) {
966    case IC_AutoreleasepoolPush:
967      Push = Inst;
968      break;
969    case IC_AutoreleasepoolPop:
970      // If this pop matches a push and nothing in between can autorelease,
971      // zap the pair.
972      if (Push && cast<CallInst>(Inst)->getArgOperand(0) == Push) {
973        Changed = true;
974        Inst->eraseFromParent();
975        Push->eraseFromParent();
976      }
977      Push = 0;
978      break;
979    case IC_CallOrUser:
980      if (MayAutorelease(CallSite(Inst)))
981        Push = 0;
982      break;
983    default:
984      break;
985    }
986  }
987
988  return Changed;
989}
990
991bool ObjCARCAPElim::runOnModule(Module &M) {
992  if (!EnableARCOpts)
993    return false;
994
995  // If nothing in the Module uses ARC, don't do anything.
996  if (!ModuleHasARC(M))
997    return false;
998
999  // Find the llvm.global_ctors variable, as the first step in
1000  // identifying the global constructors.
1001  GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1002  if (!GV)
1003    return false;
1004
1005  assert(GV->hasDefinitiveInitializer() &&
1006         "llvm.global_ctors is uncooperative!");
1007
1008  bool Changed = false;
1009
1010  // Dig the constructor functions out of GV's initializer.
1011  ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
1012  for (User::op_iterator OI = Init->op_begin(), OE = Init->op_end();
1013       OI != OE; ++OI) {
1014    Value *Op = *OI;
1015    // llvm.global_ctors is an array of pairs where the second members
1016    // are constructor functions.
1017    Function *F = cast<Function>(cast<ConstantStruct>(Op)->getOperand(1));
1018    // Only look at function definitions.
1019    if (F->isDeclaration())
1020      continue;
1021    // Only look at functions with one basic block.
1022    if (llvm::next(F->begin()) != F->end())
1023      continue;
1024    // Ok, a single-block constructor function definition. Try to optimize it.
1025    Changed |= OptimizeBB(F->begin());
1026  }
1027
1028  return Changed;
1029}
1030
1031//===----------------------------------------------------------------------===//
1032// ARC optimization.
1033//===----------------------------------------------------------------------===//
1034
1035// TODO: On code like this:
1036//
1037// objc_retain(%x)
1038// stuff_that_cannot_release()
1039// objc_autorelease(%x)
1040// stuff_that_cannot_release()
1041// objc_retain(%x)
1042// stuff_that_cannot_release()
1043// objc_autorelease(%x)
1044//
1045// The second retain and autorelease can be deleted.
1046
1047// TODO: It should be possible to delete
1048// objc_autoreleasePoolPush and objc_autoreleasePoolPop
1049// pairs if nothing is actually autoreleased between them. Also, autorelease
1050// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
1051// after inlining) can be turned into plain release calls.
1052
1053// TODO: Critical-edge splitting. If the optimial insertion point is
1054// a critical edge, the current algorithm has to fail, because it doesn't
1055// know how to split edges. It should be possible to make the optimizer
1056// think in terms of edges, rather than blocks, and then split critical
1057// edges on demand.
1058
1059// TODO: OptimizeSequences could generalized to be Interprocedural.
1060
1061// TODO: Recognize that a bunch of other objc runtime calls have
1062// non-escaping arguments and non-releasing arguments, and may be
1063// non-autoreleasing.
1064
1065// TODO: Sink autorelease calls as far as possible. Unfortunately we
1066// usually can't sink them past other calls, which would be the main
1067// case where it would be useful.
1068
1069// TODO: The pointer returned from objc_loadWeakRetained is retained.
1070
1071// TODO: Delete release+retain pairs (rare).
1072
1073#include "llvm/GlobalAlias.h"
1074#include "llvm/Constants.h"
1075#include "llvm/LLVMContext.h"
1076#include "llvm/Support/ErrorHandling.h"
1077#include "llvm/Support/CFG.h"
1078#include "llvm/ADT/Statistic.h"
1079#include "llvm/ADT/SmallPtrSet.h"
1080#include "llvm/ADT/DenseSet.h"
1081
1082STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
1083STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
1084STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
1085STATISTIC(NumRets,        "Number of return value forwarding "
1086                          "retain+autoreleaes eliminated");
1087STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
1088STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
1089
1090namespace {
1091  /// ProvenanceAnalysis - This is similar to BasicAliasAnalysis, and it
1092  /// uses many of the same techniques, except it uses special ObjC-specific
1093  /// reasoning about pointer relationships.
1094  class ProvenanceAnalysis {
1095    AliasAnalysis *AA;
1096
1097    typedef std::pair<const Value *, const Value *> ValuePairTy;
1098    typedef DenseMap<ValuePairTy, bool> CachedResultsTy;
1099    CachedResultsTy CachedResults;
1100
1101    bool relatedCheck(const Value *A, const Value *B);
1102    bool relatedSelect(const SelectInst *A, const Value *B);
1103    bool relatedPHI(const PHINode *A, const Value *B);
1104
1105    // Do not implement.
1106    void operator=(const ProvenanceAnalysis &);
1107    ProvenanceAnalysis(const ProvenanceAnalysis &);
1108
1109  public:
1110    ProvenanceAnalysis() {}
1111
1112    void setAA(AliasAnalysis *aa) { AA = aa; }
1113
1114    AliasAnalysis *getAA() const { return AA; }
1115
1116    bool related(const Value *A, const Value *B);
1117
1118    void clear() {
1119      CachedResults.clear();
1120    }
1121  };
1122}
1123
1124bool ProvenanceAnalysis::relatedSelect(const SelectInst *A, const Value *B) {
1125  // If the values are Selects with the same condition, we can do a more precise
1126  // check: just check for relations between the values on corresponding arms.
1127  if (const SelectInst *SB = dyn_cast<SelectInst>(B))
1128    if (A->getCondition() == SB->getCondition()) {
1129      if (related(A->getTrueValue(), SB->getTrueValue()))
1130        return true;
1131      if (related(A->getFalseValue(), SB->getFalseValue()))
1132        return true;
1133      return false;
1134    }
1135
1136  // Check both arms of the Select node individually.
1137  if (related(A->getTrueValue(), B))
1138    return true;
1139  if (related(A->getFalseValue(), B))
1140    return true;
1141
1142  // The arms both checked out.
1143  return false;
1144}
1145
1146bool ProvenanceAnalysis::relatedPHI(const PHINode *A, const Value *B) {
1147  // If the values are PHIs in the same block, we can do a more precise as well
1148  // as efficient check: just check for relations between the values on
1149  // corresponding edges.
1150  if (const PHINode *PNB = dyn_cast<PHINode>(B))
1151    if (PNB->getParent() == A->getParent()) {
1152      for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i)
1153        if (related(A->getIncomingValue(i),
1154                    PNB->getIncomingValueForBlock(A->getIncomingBlock(i))))
1155          return true;
1156      return false;
1157    }
1158
1159  // Check each unique source of the PHI node against B.
1160  SmallPtrSet<const Value *, 4> UniqueSrc;
1161  for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
1162    const Value *PV1 = A->getIncomingValue(i);
1163    if (UniqueSrc.insert(PV1) && related(PV1, B))
1164      return true;
1165  }
1166
1167  // All of the arms checked out.
1168  return false;
1169}
1170
1171/// isStoredObjCPointer - Test if the value of P, or any value covered by its
1172/// provenance, is ever stored within the function (not counting callees).
1173static bool isStoredObjCPointer(const Value *P) {
1174  SmallPtrSet<const Value *, 8> Visited;
1175  SmallVector<const Value *, 8> Worklist;
1176  Worklist.push_back(P);
1177  Visited.insert(P);
1178  do {
1179    P = Worklist.pop_back_val();
1180    for (Value::const_use_iterator UI = P->use_begin(), UE = P->use_end();
1181         UI != UE; ++UI) {
1182      const User *Ur = *UI;
1183      if (isa<StoreInst>(Ur)) {
1184        if (UI.getOperandNo() == 0)
1185          // The pointer is stored.
1186          return true;
1187        // The pointed is stored through.
1188        continue;
1189      }
1190      if (isa<CallInst>(Ur))
1191        // The pointer is passed as an argument, ignore this.
1192        continue;
1193      if (isa<PtrToIntInst>(P))
1194        // Assume the worst.
1195        return true;
1196      if (Visited.insert(Ur))
1197        Worklist.push_back(Ur);
1198    }
1199  } while (!Worklist.empty());
1200
1201  // Everything checked out.
1202  return false;
1203}
1204
1205bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B) {
1206  // Skip past provenance pass-throughs.
1207  A = GetUnderlyingObjCPtr(A);
1208  B = GetUnderlyingObjCPtr(B);
1209
1210  // Quick check.
1211  if (A == B)
1212    return true;
1213
1214  // Ask regular AliasAnalysis, for a first approximation.
1215  switch (AA->alias(A, B)) {
1216  case AliasAnalysis::NoAlias:
1217    return false;
1218  case AliasAnalysis::MustAlias:
1219  case AliasAnalysis::PartialAlias:
1220    return true;
1221  case AliasAnalysis::MayAlias:
1222    break;
1223  }
1224
1225  bool AIsIdentified = IsObjCIdentifiedObject(A);
1226  bool BIsIdentified = IsObjCIdentifiedObject(B);
1227
1228  // An ObjC-Identified object can't alias a load if it is never locally stored.
1229  if (AIsIdentified) {
1230    if (BIsIdentified) {
1231      // If both pointers have provenance, they can be directly compared.
1232      if (A != B)
1233        return false;
1234    } else {
1235      if (isa<LoadInst>(B))
1236        return isStoredObjCPointer(A);
1237    }
1238  } else {
1239    if (BIsIdentified && isa<LoadInst>(A))
1240      return isStoredObjCPointer(B);
1241  }
1242
1243   // Special handling for PHI and Select.
1244  if (const PHINode *PN = dyn_cast<PHINode>(A))
1245    return relatedPHI(PN, B);
1246  if (const PHINode *PN = dyn_cast<PHINode>(B))
1247    return relatedPHI(PN, A);
1248  if (const SelectInst *S = dyn_cast<SelectInst>(A))
1249    return relatedSelect(S, B);
1250  if (const SelectInst *S = dyn_cast<SelectInst>(B))
1251    return relatedSelect(S, A);
1252
1253  // Conservative.
1254  return true;
1255}
1256
1257bool ProvenanceAnalysis::related(const Value *A, const Value *B) {
1258  // Begin by inserting a conservative value into the map. If the insertion
1259  // fails, we have the answer already. If it succeeds, leave it there until we
1260  // compute the real answer to guard against recursive queries.
1261  if (A > B) std::swap(A, B);
1262  std::pair<CachedResultsTy::iterator, bool> Pair =
1263    CachedResults.insert(std::make_pair(ValuePairTy(A, B), true));
1264  if (!Pair.second)
1265    return Pair.first->second;
1266
1267  bool Result = relatedCheck(A, B);
1268  CachedResults[ValuePairTy(A, B)] = Result;
1269  return Result;
1270}
1271
1272namespace {
1273  // Sequence - A sequence of states that a pointer may go through in which an
1274  // objc_retain and objc_release are actually needed.
1275  enum Sequence {
1276    S_None,
1277    S_Retain,         ///< objc_retain(x)
1278    S_CanRelease,     ///< foo(x) -- x could possibly see a ref count decrement
1279    S_Use,            ///< any use of x
1280    S_Stop,           ///< like S_Release, but code motion is stopped
1281    S_Release,        ///< objc_release(x)
1282    S_MovableRelease  ///< objc_release(x), !clang.imprecise_release
1283  };
1284}
1285
1286static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
1287  // The easy cases.
1288  if (A == B)
1289    return A;
1290  if (A == S_None || B == S_None)
1291    return S_None;
1292
1293  if (A > B) std::swap(A, B);
1294  if (TopDown) {
1295    // Choose the side which is further along in the sequence.
1296    if ((A == S_Retain || A == S_CanRelease) &&
1297        (B == S_CanRelease || B == S_Use))
1298      return B;
1299  } else {
1300    // Choose the side which is further along in the sequence.
1301    if ((A == S_Use || A == S_CanRelease) &&
1302        (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
1303      return A;
1304    // If both sides are releases, choose the more conservative one.
1305    if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
1306      return A;
1307    if (A == S_Release && B == S_MovableRelease)
1308      return A;
1309  }
1310
1311  return S_None;
1312}
1313
1314namespace {
1315  /// RRInfo - Unidirectional information about either a
1316  /// retain-decrement-use-release sequence or release-use-decrement-retain
1317  /// reverese sequence.
1318  struct RRInfo {
1319    /// KnownSafe - After an objc_retain, the reference count of the referenced
1320    /// object is known to be positive. Similarly, before an objc_release, the
1321    /// reference count of the referenced object is known to be positive. If
1322    /// there are retain-release pairs in code regions where the retain count
1323    /// is known to be positive, they can be eliminated, regardless of any side
1324    /// effects between them.
1325    ///
1326    /// Also, a retain+release pair nested within another retain+release
1327    /// pair all on the known same pointer value can be eliminated, regardless
1328    /// of any intervening side effects.
1329    ///
1330    /// KnownSafe is true when either of these conditions is satisfied.
1331    bool KnownSafe;
1332
1333    /// IsRetainBlock - True if the Calls are objc_retainBlock calls (as
1334    /// opposed to objc_retain calls).
1335    bool IsRetainBlock;
1336
1337    /// IsTailCallRelease - True of the objc_release calls are all marked
1338    /// with the "tail" keyword.
1339    bool IsTailCallRelease;
1340
1341    /// Partial - True of we've seen an opportunity for partial RR elimination,
1342    /// such as pushing calls into a CFG triangle or into one side of a
1343    /// CFG diamond.
1344    /// TODO: Consider moving this to PtrState.
1345    bool Partial;
1346
1347    /// ReleaseMetadata - If the Calls are objc_release calls and they all have
1348    /// a clang.imprecise_release tag, this is the metadata tag.
1349    MDNode *ReleaseMetadata;
1350
1351    /// Calls - For a top-down sequence, the set of objc_retains or
1352    /// objc_retainBlocks. For bottom-up, the set of objc_releases.
1353    SmallPtrSet<Instruction *, 2> Calls;
1354
1355    /// ReverseInsertPts - The set of optimal insert positions for
1356    /// moving calls in the opposite sequence.
1357    SmallPtrSet<Instruction *, 2> ReverseInsertPts;
1358
1359    RRInfo() :
1360      KnownSafe(false), IsRetainBlock(false),
1361      IsTailCallRelease(false), Partial(false),
1362      ReleaseMetadata(0) {}
1363
1364    void clear();
1365  };
1366}
1367
1368void RRInfo::clear() {
1369  KnownSafe = false;
1370  IsRetainBlock = false;
1371  IsTailCallRelease = false;
1372  Partial = false;
1373  ReleaseMetadata = 0;
1374  Calls.clear();
1375  ReverseInsertPts.clear();
1376}
1377
1378namespace {
1379  /// PtrState - This class summarizes several per-pointer runtime properties
1380  /// which are propogated through the flow graph.
1381  class PtrState {
1382    /// RefCount - The known minimum number of reference count increments.
1383    unsigned RefCount;
1384
1385    /// NestCount - The known minimum level of retain+release nesting.
1386    unsigned NestCount;
1387
1388    /// Seq - The current position in the sequence.
1389    Sequence Seq;
1390
1391  public:
1392    /// RRI - Unidirectional information about the current sequence.
1393    /// TODO: Encapsulate this better.
1394    RRInfo RRI;
1395
1396    PtrState() : RefCount(0), NestCount(0), Seq(S_None) {}
1397
1398    void SetAtLeastOneRefCount()  {
1399      if (RefCount == 0) RefCount = 1;
1400    }
1401
1402    void IncrementRefCount() {
1403      if (RefCount != UINT_MAX) ++RefCount;
1404    }
1405
1406    void DecrementRefCount() {
1407      if (RefCount != 0) --RefCount;
1408    }
1409
1410    bool IsKnownIncremented() const {
1411      return RefCount > 0;
1412    }
1413
1414    void IncrementNestCount() {
1415      if (NestCount != UINT_MAX) ++NestCount;
1416    }
1417
1418    void DecrementNestCount() {
1419      if (NestCount != 0) --NestCount;
1420    }
1421
1422    bool IsKnownNested() const {
1423      return NestCount > 0;
1424    }
1425
1426    void SetSeq(Sequence NewSeq) {
1427      Seq = NewSeq;
1428    }
1429
1430    Sequence GetSeq() const {
1431      return Seq;
1432    }
1433
1434    void ClearSequenceProgress() {
1435      Seq = S_None;
1436      RRI.clear();
1437    }
1438
1439    void Merge(const PtrState &Other, bool TopDown);
1440  };
1441}
1442
1443void
1444PtrState::Merge(const PtrState &Other, bool TopDown) {
1445  Seq = MergeSeqs(Seq, Other.Seq, TopDown);
1446  RefCount = std::min(RefCount, Other.RefCount);
1447  NestCount = std::min(NestCount, Other.NestCount);
1448
1449  // We can't merge a plain objc_retain with an objc_retainBlock.
1450  if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock)
1451    Seq = S_None;
1452
1453  // If we're not in a sequence (anymore), drop all associated state.
1454  if (Seq == S_None) {
1455    RRI.clear();
1456  } else if (RRI.Partial || Other.RRI.Partial) {
1457    // If we're doing a merge on a path that's previously seen a partial
1458    // merge, conservatively drop the sequence, to avoid doing partial
1459    // RR elimination. If the branch predicates for the two merge differ,
1460    // mixing them is unsafe.
1461    Seq = S_None;
1462    RRI.clear();
1463  } else {
1464    // Conservatively merge the ReleaseMetadata information.
1465    if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata)
1466      RRI.ReleaseMetadata = 0;
1467
1468    RRI.KnownSafe = RRI.KnownSafe && Other.RRI.KnownSafe;
1469    RRI.IsTailCallRelease = RRI.IsTailCallRelease && Other.RRI.IsTailCallRelease;
1470    RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end());
1471
1472    // Merge the insert point sets. If there are any differences,
1473    // that makes this a partial merge.
1474    RRI.Partial = RRI.ReverseInsertPts.size() !=
1475                  Other.RRI.ReverseInsertPts.size();
1476    for (SmallPtrSet<Instruction *, 2>::const_iterator
1477         I = Other.RRI.ReverseInsertPts.begin(),
1478         E = Other.RRI.ReverseInsertPts.end(); I != E; ++I)
1479      RRI.Partial |= RRI.ReverseInsertPts.insert(*I);
1480  }
1481}
1482
1483namespace {
1484  /// BBState - Per-BasicBlock state.
1485  class BBState {
1486    /// TopDownPathCount - The number of unique control paths from the entry
1487    /// which can reach this block.
1488    unsigned TopDownPathCount;
1489
1490    /// BottomUpPathCount - The number of unique control paths to exits
1491    /// from this block.
1492    unsigned BottomUpPathCount;
1493
1494    /// MapTy - A type for PerPtrTopDown and PerPtrBottomUp.
1495    typedef MapVector<const Value *, PtrState> MapTy;
1496
1497    /// PerPtrTopDown - The top-down traversal uses this to record information
1498    /// known about a pointer at the bottom of each block.
1499    MapTy PerPtrTopDown;
1500
1501    /// PerPtrBottomUp - The bottom-up traversal uses this to record information
1502    /// known about a pointer at the top of each block.
1503    MapTy PerPtrBottomUp;
1504
1505  public:
1506    BBState() : TopDownPathCount(0), BottomUpPathCount(0) {}
1507
1508    typedef MapTy::iterator ptr_iterator;
1509    typedef MapTy::const_iterator ptr_const_iterator;
1510
1511    ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
1512    ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
1513    ptr_const_iterator top_down_ptr_begin() const {
1514      return PerPtrTopDown.begin();
1515    }
1516    ptr_const_iterator top_down_ptr_end() const {
1517      return PerPtrTopDown.end();
1518    }
1519
1520    ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
1521    ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
1522    ptr_const_iterator bottom_up_ptr_begin() const {
1523      return PerPtrBottomUp.begin();
1524    }
1525    ptr_const_iterator bottom_up_ptr_end() const {
1526      return PerPtrBottomUp.end();
1527    }
1528
1529    /// SetAsEntry - Mark this block as being an entry block, which has one
1530    /// path from the entry by definition.
1531    void SetAsEntry() { TopDownPathCount = 1; }
1532
1533    /// SetAsExit - Mark this block as being an exit block, which has one
1534    /// path to an exit by definition.
1535    void SetAsExit()  { BottomUpPathCount = 1; }
1536
1537    PtrState &getPtrTopDownState(const Value *Arg) {
1538      return PerPtrTopDown[Arg];
1539    }
1540
1541    PtrState &getPtrBottomUpState(const Value *Arg) {
1542      return PerPtrBottomUp[Arg];
1543    }
1544
1545    void clearBottomUpPointers() {
1546      PerPtrBottomUp.clear();
1547    }
1548
1549    void clearTopDownPointers() {
1550      PerPtrTopDown.clear();
1551    }
1552
1553    void InitFromPred(const BBState &Other);
1554    void InitFromSucc(const BBState &Other);
1555    void MergePred(const BBState &Other);
1556    void MergeSucc(const BBState &Other);
1557
1558    /// GetAllPathCount - Return the number of possible unique paths from an
1559    /// entry to an exit which pass through this block. This is only valid
1560    /// after both the top-down and bottom-up traversals are complete.
1561    unsigned GetAllPathCount() const {
1562      return TopDownPathCount * BottomUpPathCount;
1563    }
1564
1565    /// IsVisitedTopDown - Test whether the block for this BBState has been
1566    /// visited by the top-down portion of the algorithm.
1567    bool isVisitedTopDown() const {
1568      return TopDownPathCount != 0;
1569    }
1570  };
1571}
1572
1573void BBState::InitFromPred(const BBState &Other) {
1574  PerPtrTopDown = Other.PerPtrTopDown;
1575  TopDownPathCount = Other.TopDownPathCount;
1576}
1577
1578void BBState::InitFromSucc(const BBState &Other) {
1579  PerPtrBottomUp = Other.PerPtrBottomUp;
1580  BottomUpPathCount = Other.BottomUpPathCount;
1581}
1582
1583/// MergePred - The top-down traversal uses this to merge information about
1584/// predecessors to form the initial state for a new block.
1585void BBState::MergePred(const BBState &Other) {
1586  // Other.TopDownPathCount can be 0, in which case it is either dead or a
1587  // loop backedge. Loop backedges are special.
1588  TopDownPathCount += Other.TopDownPathCount;
1589
1590  // For each entry in the other set, if our set has an entry with the same key,
1591  // merge the entries. Otherwise, copy the entry and merge it with an empty
1592  // entry.
1593  for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
1594       ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
1595    std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
1596    Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
1597                             /*TopDown=*/true);
1598  }
1599
1600  // For each entry in our set, if the other set doesn't have an entry with the
1601  // same key, force it to merge with an empty entry.
1602  for (ptr_iterator MI = top_down_ptr_begin(),
1603       ME = top_down_ptr_end(); MI != ME; ++MI)
1604    if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
1605      MI->second.Merge(PtrState(), /*TopDown=*/true);
1606}
1607
1608/// MergeSucc - The bottom-up traversal uses this to merge information about
1609/// successors to form the initial state for a new block.
1610void BBState::MergeSucc(const BBState &Other) {
1611  // Other.BottomUpPathCount can be 0, in which case it is either dead or a
1612  // loop backedge. Loop backedges are special.
1613  BottomUpPathCount += Other.BottomUpPathCount;
1614
1615  // For each entry in the other set, if our set has an entry with the
1616  // same key, merge the entries. Otherwise, copy the entry and merge
1617  // it with an empty entry.
1618  for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
1619       ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
1620    std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
1621    Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
1622                             /*TopDown=*/false);
1623  }
1624
1625  // For each entry in our set, if the other set doesn't have an entry
1626  // with the same key, force it to merge with an empty entry.
1627  for (ptr_iterator MI = bottom_up_ptr_begin(),
1628       ME = bottom_up_ptr_end(); MI != ME; ++MI)
1629    if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
1630      MI->second.Merge(PtrState(), /*TopDown=*/false);
1631}
1632
1633namespace {
1634  /// ObjCARCOpt - The main ARC optimization pass.
1635  class ObjCARCOpt : public FunctionPass {
1636    bool Changed;
1637    ProvenanceAnalysis PA;
1638
1639    /// Run - A flag indicating whether this optimization pass should run.
1640    bool Run;
1641
1642    /// RetainRVCallee, etc. - Declarations for ObjC runtime
1643    /// functions, for use in creating calls to them. These are initialized
1644    /// lazily to avoid cluttering up the Module with unused declarations.
1645    Constant *RetainRVCallee, *AutoreleaseRVCallee, *ReleaseCallee,
1646             *RetainCallee, *RetainBlockCallee, *AutoreleaseCallee;
1647
1648    /// UsedInThisFunciton - Flags which determine whether each of the
1649    /// interesting runtine functions is in fact used in the current function.
1650    unsigned UsedInThisFunction;
1651
1652    /// ImpreciseReleaseMDKind - The Metadata Kind for clang.imprecise_release
1653    /// metadata.
1654    unsigned ImpreciseReleaseMDKind;
1655
1656    /// CopyOnEscapeMDKind - The Metadata Kind for clang.arc.copy_on_escape
1657    /// metadata.
1658    unsigned CopyOnEscapeMDKind;
1659
1660    /// NoObjCARCExceptionsMDKind - The Metadata Kind for
1661    /// clang.arc.no_objc_arc_exceptions metadata.
1662    unsigned NoObjCARCExceptionsMDKind;
1663
1664    Constant *getRetainRVCallee(Module *M);
1665    Constant *getAutoreleaseRVCallee(Module *M);
1666    Constant *getReleaseCallee(Module *M);
1667    Constant *getRetainCallee(Module *M);
1668    Constant *getRetainBlockCallee(Module *M);
1669    Constant *getAutoreleaseCallee(Module *M);
1670
1671    bool IsRetainBlockOptimizable(const Instruction *Inst);
1672
1673    void OptimizeRetainCall(Function &F, Instruction *Retain);
1674    bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
1675    void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV);
1676    void OptimizeIndividualCalls(Function &F);
1677
1678    void CheckForCFGHazards(const BasicBlock *BB,
1679                            DenseMap<const BasicBlock *, BBState> &BBStates,
1680                            BBState &MyStates) const;
1681    bool VisitBottomUp(BasicBlock *BB,
1682                       DenseMap<const BasicBlock *, BBState> &BBStates,
1683                       MapVector<Value *, RRInfo> &Retains);
1684    bool VisitTopDown(BasicBlock *BB,
1685                      DenseMap<const BasicBlock *, BBState> &BBStates,
1686                      DenseMap<Value *, RRInfo> &Releases);
1687    bool Visit(Function &F,
1688               DenseMap<const BasicBlock *, BBState> &BBStates,
1689               MapVector<Value *, RRInfo> &Retains,
1690               DenseMap<Value *, RRInfo> &Releases);
1691
1692    void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
1693                   MapVector<Value *, RRInfo> &Retains,
1694                   DenseMap<Value *, RRInfo> &Releases,
1695                   SmallVectorImpl<Instruction *> &DeadInsts,
1696                   Module *M);
1697
1698    bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
1699                              MapVector<Value *, RRInfo> &Retains,
1700                              DenseMap<Value *, RRInfo> &Releases,
1701                              Module *M);
1702
1703    void OptimizeWeakCalls(Function &F);
1704
1705    bool OptimizeSequences(Function &F);
1706
1707    void OptimizeReturns(Function &F);
1708
1709    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
1710    virtual bool doInitialization(Module &M);
1711    virtual bool runOnFunction(Function &F);
1712    virtual void releaseMemory();
1713
1714  public:
1715    static char ID;
1716    ObjCARCOpt() : FunctionPass(ID) {
1717      initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
1718    }
1719  };
1720}
1721
1722char ObjCARCOpt::ID = 0;
1723INITIALIZE_PASS_BEGIN(ObjCARCOpt,
1724                      "objc-arc", "ObjC ARC optimization", false, false)
1725INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
1726INITIALIZE_PASS_END(ObjCARCOpt,
1727                    "objc-arc", "ObjC ARC optimization", false, false)
1728
1729Pass *llvm::createObjCARCOptPass() {
1730  return new ObjCARCOpt();
1731}
1732
1733void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
1734  AU.addRequired<ObjCARCAliasAnalysis>();
1735  AU.addRequired<AliasAnalysis>();
1736  // ARC optimization doesn't currently split critical edges.
1737  AU.setPreservesCFG();
1738}
1739
1740bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) {
1741  // Without the magic metadata tag, we have to assume this might be an
1742  // objc_retainBlock call inserted to convert a block pointer to an id,
1743  // in which case it really is needed.
1744  if (!Inst->getMetadata(CopyOnEscapeMDKind))
1745    return false;
1746
1747  // If the pointer "escapes" (not including being used in a call),
1748  // the copy may be needed.
1749  if (DoesObjCBlockEscape(Inst))
1750    return false;
1751
1752  // Otherwise, it's not needed.
1753  return true;
1754}
1755
1756Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
1757  if (!RetainRVCallee) {
1758    LLVMContext &C = M->getContext();
1759    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
1760    std::vector<Type *> Params;
1761    Params.push_back(I8X);
1762    FunctionType *FTy =
1763      FunctionType::get(I8X, Params, /*isVarArg=*/false);
1764    AttrListPtr Attributes;
1765    Attributes.addAttr(~0u, Attribute::NoUnwind);
1766    RetainRVCallee =
1767      M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
1768                             Attributes);
1769  }
1770  return RetainRVCallee;
1771}
1772
1773Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
1774  if (!AutoreleaseRVCallee) {
1775    LLVMContext &C = M->getContext();
1776    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
1777    std::vector<Type *> Params;
1778    Params.push_back(I8X);
1779    FunctionType *FTy =
1780      FunctionType::get(I8X, Params, /*isVarArg=*/false);
1781    AttrListPtr Attributes;
1782    Attributes.addAttr(~0u, Attribute::NoUnwind);
1783    AutoreleaseRVCallee =
1784      M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
1785                             Attributes);
1786  }
1787  return AutoreleaseRVCallee;
1788}
1789
1790Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
1791  if (!ReleaseCallee) {
1792    LLVMContext &C = M->getContext();
1793    std::vector<Type *> Params;
1794    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1795    AttrListPtr Attributes;
1796    Attributes.addAttr(~0u, Attribute::NoUnwind);
1797    ReleaseCallee =
1798      M->getOrInsertFunction(
1799        "objc_release",
1800        FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
1801        Attributes);
1802  }
1803  return ReleaseCallee;
1804}
1805
1806Constant *ObjCARCOpt::getRetainCallee(Module *M) {
1807  if (!RetainCallee) {
1808    LLVMContext &C = M->getContext();
1809    std::vector<Type *> Params;
1810    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1811    AttrListPtr Attributes;
1812    Attributes.addAttr(~0u, Attribute::NoUnwind);
1813    RetainCallee =
1814      M->getOrInsertFunction(
1815        "objc_retain",
1816        FunctionType::get(Params[0], Params, /*isVarArg=*/false),
1817        Attributes);
1818  }
1819  return RetainCallee;
1820}
1821
1822Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) {
1823  if (!RetainBlockCallee) {
1824    LLVMContext &C = M->getContext();
1825    std::vector<Type *> Params;
1826    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1827    AttrListPtr Attributes;
1828    // objc_retainBlock is not nounwind because it calls user copy constructors
1829    // which could theoretically throw.
1830    RetainBlockCallee =
1831      M->getOrInsertFunction(
1832        "objc_retainBlock",
1833        FunctionType::get(Params[0], Params, /*isVarArg=*/false),
1834        Attributes);
1835  }
1836  return RetainBlockCallee;
1837}
1838
1839Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
1840  if (!AutoreleaseCallee) {
1841    LLVMContext &C = M->getContext();
1842    std::vector<Type *> Params;
1843    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1844    AttrListPtr Attributes;
1845    Attributes.addAttr(~0u, Attribute::NoUnwind);
1846    AutoreleaseCallee =
1847      M->getOrInsertFunction(
1848        "objc_autorelease",
1849        FunctionType::get(Params[0], Params, /*isVarArg=*/false),
1850        Attributes);
1851  }
1852  return AutoreleaseCallee;
1853}
1854
1855/// CanAlterRefCount - Test whether the given instruction can result in a
1856/// reference count modification (positive or negative) for the pointer's
1857/// object.
1858static bool
1859CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
1860                 ProvenanceAnalysis &PA, InstructionClass Class) {
1861  switch (Class) {
1862  case IC_Autorelease:
1863  case IC_AutoreleaseRV:
1864  case IC_User:
1865    // These operations never directly modify a reference count.
1866    return false;
1867  default: break;
1868  }
1869
1870  ImmutableCallSite CS = static_cast<const Value *>(Inst);
1871  assert(CS && "Only calls can alter reference counts!");
1872
1873  // See if AliasAnalysis can help us with the call.
1874  AliasAnalysis::ModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
1875  if (AliasAnalysis::onlyReadsMemory(MRB))
1876    return false;
1877  if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
1878    for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1879         I != E; ++I) {
1880      const Value *Op = *I;
1881      if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1882        return true;
1883    }
1884    return false;
1885  }
1886
1887  // Assume the worst.
1888  return true;
1889}
1890
1891/// CanUse - Test whether the given instruction can "use" the given pointer's
1892/// object in a way that requires the reference count to be positive.
1893static bool
1894CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA,
1895       InstructionClass Class) {
1896  // IC_Call operations (as opposed to IC_CallOrUser) never "use" objc pointers.
1897  if (Class == IC_Call)
1898    return false;
1899
1900  // Consider various instructions which may have pointer arguments which are
1901  // not "uses".
1902  if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
1903    // Comparing a pointer with null, or any other constant, isn't really a use,
1904    // because we don't care what the pointer points to, or about the values
1905    // of any other dynamic reference-counted pointers.
1906    if (!IsPotentialUse(ICI->getOperand(1)))
1907      return false;
1908  } else if (ImmutableCallSite CS = static_cast<const Value *>(Inst)) {
1909    // For calls, just check the arguments (and not the callee operand).
1910    for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(),
1911         OE = CS.arg_end(); OI != OE; ++OI) {
1912      const Value *Op = *OI;
1913      if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1914        return true;
1915    }
1916    return false;
1917  } else if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1918    // Special-case stores, because we don't care about the stored value, just
1919    // the store address.
1920    const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand());
1921    // If we can't tell what the underlying object was, assume there is a
1922    // dependence.
1923    return IsPotentialUse(Op) && PA.related(Op, Ptr);
1924  }
1925
1926  // Check each operand for a match.
1927  for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
1928       OI != OE; ++OI) {
1929    const Value *Op = *OI;
1930    if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1931      return true;
1932  }
1933  return false;
1934}
1935
1936/// CanInterruptRV - Test whether the given instruction can autorelease
1937/// any pointer or cause an autoreleasepool pop.
1938static bool
1939CanInterruptRV(InstructionClass Class) {
1940  switch (Class) {
1941  case IC_AutoreleasepoolPop:
1942  case IC_CallOrUser:
1943  case IC_Call:
1944  case IC_Autorelease:
1945  case IC_AutoreleaseRV:
1946  case IC_FusedRetainAutorelease:
1947  case IC_FusedRetainAutoreleaseRV:
1948    return true;
1949  default:
1950    return false;
1951  }
1952}
1953
1954namespace {
1955  /// DependenceKind - There are several kinds of dependence-like concepts in
1956  /// use here.
1957  enum DependenceKind {
1958    NeedsPositiveRetainCount,
1959    CanChangeRetainCount,
1960    RetainAutoreleaseDep,       ///< Blocks objc_retainAutorelease.
1961    RetainAutoreleaseRVDep,     ///< Blocks objc_retainAutoreleaseReturnValue.
1962    RetainRVDep                 ///< Blocks objc_retainAutoreleasedReturnValue.
1963  };
1964}
1965
1966/// Depends - Test if there can be dependencies on Inst through Arg. This
1967/// function only tests dependencies relevant for removing pairs of calls.
1968static bool
1969Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg,
1970        ProvenanceAnalysis &PA) {
1971  // If we've reached the definition of Arg, stop.
1972  if (Inst == Arg)
1973    return true;
1974
1975  switch (Flavor) {
1976  case NeedsPositiveRetainCount: {
1977    InstructionClass Class = GetInstructionClass(Inst);
1978    switch (Class) {
1979    case IC_AutoreleasepoolPop:
1980    case IC_AutoreleasepoolPush:
1981    case IC_None:
1982      return false;
1983    default:
1984      return CanUse(Inst, Arg, PA, Class);
1985    }
1986  }
1987
1988  case CanChangeRetainCount: {
1989    InstructionClass Class = GetInstructionClass(Inst);
1990    switch (Class) {
1991    case IC_AutoreleasepoolPop:
1992      // Conservatively assume this can decrement any count.
1993      return true;
1994    case IC_AutoreleasepoolPush:
1995    case IC_None:
1996      return false;
1997    default:
1998      return CanAlterRefCount(Inst, Arg, PA, Class);
1999    }
2000  }
2001
2002  case RetainAutoreleaseDep:
2003    switch (GetBasicInstructionClass(Inst)) {
2004    case IC_AutoreleasepoolPop:
2005      // Don't merge an objc_autorelease with an objc_retain inside a different
2006      // autoreleasepool scope.
2007      return true;
2008    case IC_Retain:
2009    case IC_RetainRV:
2010      // Check for a retain of the same pointer for merging.
2011      return GetObjCArg(Inst) == Arg;
2012    default:
2013      // Nothing else matters for objc_retainAutorelease formation.
2014      return false;
2015    }
2016
2017  case RetainAutoreleaseRVDep: {
2018    InstructionClass Class = GetBasicInstructionClass(Inst);
2019    switch (Class) {
2020    case IC_Retain:
2021    case IC_RetainRV:
2022      // Check for a retain of the same pointer for merging.
2023      return GetObjCArg(Inst) == Arg;
2024    default:
2025      // Anything that can autorelease interrupts
2026      // retainAutoreleaseReturnValue formation.
2027      return CanInterruptRV(Class);
2028    }
2029  }
2030
2031  case RetainRVDep:
2032    return CanInterruptRV(GetBasicInstructionClass(Inst));
2033  }
2034
2035  llvm_unreachable("Invalid dependence flavor");
2036}
2037
2038/// FindDependencies - Walk up the CFG from StartPos (which is in StartBB) and
2039/// find local and non-local dependencies on Arg.
2040/// TODO: Cache results?
2041static void
2042FindDependencies(DependenceKind Flavor,
2043                 const Value *Arg,
2044                 BasicBlock *StartBB, Instruction *StartInst,
2045                 SmallPtrSet<Instruction *, 4> &DependingInstructions,
2046                 SmallPtrSet<const BasicBlock *, 4> &Visited,
2047                 ProvenanceAnalysis &PA) {
2048  BasicBlock::iterator StartPos = StartInst;
2049
2050  SmallVector<std::pair<BasicBlock *, BasicBlock::iterator>, 4> Worklist;
2051  Worklist.push_back(std::make_pair(StartBB, StartPos));
2052  do {
2053    std::pair<BasicBlock *, BasicBlock::iterator> Pair =
2054      Worklist.pop_back_val();
2055    BasicBlock *LocalStartBB = Pair.first;
2056    BasicBlock::iterator LocalStartPos = Pair.second;
2057    BasicBlock::iterator StartBBBegin = LocalStartBB->begin();
2058    for (;;) {
2059      if (LocalStartPos == StartBBBegin) {
2060        pred_iterator PI(LocalStartBB), PE(LocalStartBB, false);
2061        if (PI == PE)
2062          // If we've reached the function entry, produce a null dependence.
2063          DependingInstructions.insert(0);
2064        else
2065          // Add the predecessors to the worklist.
2066          do {
2067            BasicBlock *PredBB = *PI;
2068            if (Visited.insert(PredBB))
2069              Worklist.push_back(std::make_pair(PredBB, PredBB->end()));
2070          } while (++PI != PE);
2071        break;
2072      }
2073
2074      Instruction *Inst = --LocalStartPos;
2075      if (Depends(Flavor, Inst, Arg, PA)) {
2076        DependingInstructions.insert(Inst);
2077        break;
2078      }
2079    }
2080  } while (!Worklist.empty());
2081
2082  // Determine whether the original StartBB post-dominates all of the blocks we
2083  // visited. If not, insert a sentinal indicating that most optimizations are
2084  // not safe.
2085  for (SmallPtrSet<const BasicBlock *, 4>::const_iterator I = Visited.begin(),
2086       E = Visited.end(); I != E; ++I) {
2087    const BasicBlock *BB = *I;
2088    if (BB == StartBB)
2089      continue;
2090    const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2091    for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
2092      const BasicBlock *Succ = *SI;
2093      if (Succ != StartBB && !Visited.count(Succ)) {
2094        DependingInstructions.insert(reinterpret_cast<Instruction *>(-1));
2095        return;
2096      }
2097    }
2098  }
2099}
2100
2101static bool isNullOrUndef(const Value *V) {
2102  return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
2103}
2104
2105static bool isNoopInstruction(const Instruction *I) {
2106  return isa<BitCastInst>(I) ||
2107         (isa<GetElementPtrInst>(I) &&
2108          cast<GetElementPtrInst>(I)->hasAllZeroIndices());
2109}
2110
2111/// OptimizeRetainCall - Turn objc_retain into
2112/// objc_retainAutoreleasedReturnValue if the operand is a return value.
2113void
2114ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
2115  CallSite CS(GetObjCArg(Retain));
2116  Instruction *Call = CS.getInstruction();
2117  if (!Call) return;
2118  if (Call->getParent() != Retain->getParent()) return;
2119
2120  // Check that the call is next to the retain.
2121  BasicBlock::iterator I = Call;
2122  ++I;
2123  while (isNoopInstruction(I)) ++I;
2124  if (&*I != Retain)
2125    return;
2126
2127  // Turn it to an objc_retainAutoreleasedReturnValue..
2128  Changed = true;
2129  ++NumPeeps;
2130  cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
2131}
2132
2133/// OptimizeRetainRVCall - Turn objc_retainAutoreleasedReturnValue into
2134/// objc_retain if the operand is not a return value.  Or, if it can be
2135/// paired with an objc_autoreleaseReturnValue, delete the pair and
2136/// return true.
2137bool
2138ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
2139  // Check for the argument being from an immediately preceding call.
2140  Value *Arg = GetObjCArg(RetainRV);
2141  CallSite CS(Arg);
2142  if (Instruction *Call = CS.getInstruction())
2143    if (Call->getParent() == RetainRV->getParent()) {
2144      BasicBlock::iterator I = Call;
2145      ++I;
2146      while (isNoopInstruction(I)) ++I;
2147      if (&*I == RetainRV)
2148        return false;
2149    }
2150
2151  // Check for being preceded by an objc_autoreleaseReturnValue on the same
2152  // pointer. In this case, we can delete the pair.
2153  BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
2154  if (I != Begin) {
2155    do --I; while (I != Begin && isNoopInstruction(I));
2156    if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
2157        GetObjCArg(I) == Arg) {
2158      Changed = true;
2159      ++NumPeeps;
2160      EraseInstruction(I);
2161      EraseInstruction(RetainRV);
2162      return true;
2163    }
2164  }
2165
2166  // Turn it to a plain objc_retain.
2167  Changed = true;
2168  ++NumPeeps;
2169  cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
2170  return false;
2171}
2172
2173/// OptimizeAutoreleaseRVCall - Turn objc_autoreleaseReturnValue into
2174/// objc_autorelease if the result is not used as a return value.
2175void
2176ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) {
2177  // Check for a return of the pointer value.
2178  const Value *Ptr = GetObjCArg(AutoreleaseRV);
2179  SmallVector<const Value *, 2> Users;
2180  Users.push_back(Ptr);
2181  do {
2182    Ptr = Users.pop_back_val();
2183    for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
2184         UI != UE; ++UI) {
2185      const User *I = *UI;
2186      if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
2187        return;
2188      if (isa<BitCastInst>(I))
2189        Users.push_back(I);
2190    }
2191  } while (!Users.empty());
2192
2193  Changed = true;
2194  ++NumPeeps;
2195  cast<CallInst>(AutoreleaseRV)->
2196    setCalledFunction(getAutoreleaseCallee(F.getParent()));
2197}
2198
2199/// OptimizeIndividualCalls - Visit each call, one at a time, and make
2200/// simplifications without doing any additional analysis.
2201void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
2202  // Reset all the flags in preparation for recomputing them.
2203  UsedInThisFunction = 0;
2204
2205  // Visit all objc_* calls in F.
2206  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2207    Instruction *Inst = &*I++;
2208    InstructionClass Class = GetBasicInstructionClass(Inst);
2209
2210    switch (Class) {
2211    default: break;
2212
2213    // Delete no-op casts. These function calls have special semantics, but
2214    // the semantics are entirely implemented via lowering in the front-end,
2215    // so by the time they reach the optimizer, they are just no-op calls
2216    // which return their argument.
2217    //
2218    // There are gray areas here, as the ability to cast reference-counted
2219    // pointers to raw void* and back allows code to break ARC assumptions,
2220    // however these are currently considered to be unimportant.
2221    case IC_NoopCast:
2222      Changed = true;
2223      ++NumNoops;
2224      EraseInstruction(Inst);
2225      continue;
2226
2227    // If the pointer-to-weak-pointer is null, it's undefined behavior.
2228    case IC_StoreWeak:
2229    case IC_LoadWeak:
2230    case IC_LoadWeakRetained:
2231    case IC_InitWeak:
2232    case IC_DestroyWeak: {
2233      CallInst *CI = cast<CallInst>(Inst);
2234      if (isNullOrUndef(CI->getArgOperand(0))) {
2235        Type *Ty = CI->getArgOperand(0)->getType();
2236        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
2237                      Constant::getNullValue(Ty),
2238                      CI);
2239        CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
2240        CI->eraseFromParent();
2241        continue;
2242      }
2243      break;
2244    }
2245    case IC_CopyWeak:
2246    case IC_MoveWeak: {
2247      CallInst *CI = cast<CallInst>(Inst);
2248      if (isNullOrUndef(CI->getArgOperand(0)) ||
2249          isNullOrUndef(CI->getArgOperand(1))) {
2250        Type *Ty = CI->getArgOperand(0)->getType();
2251        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
2252                      Constant::getNullValue(Ty),
2253                      CI);
2254        CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
2255        CI->eraseFromParent();
2256        continue;
2257      }
2258      break;
2259    }
2260    case IC_Retain:
2261      OptimizeRetainCall(F, Inst);
2262      break;
2263    case IC_RetainRV:
2264      if (OptimizeRetainRVCall(F, Inst))
2265        continue;
2266      break;
2267    case IC_AutoreleaseRV:
2268      OptimizeAutoreleaseRVCall(F, Inst);
2269      break;
2270    }
2271
2272    // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
2273    if (IsAutorelease(Class) && Inst->use_empty()) {
2274      CallInst *Call = cast<CallInst>(Inst);
2275      const Value *Arg = Call->getArgOperand(0);
2276      Arg = FindSingleUseIdentifiedObject(Arg);
2277      if (Arg) {
2278        Changed = true;
2279        ++NumAutoreleases;
2280
2281        // Create the declaration lazily.
2282        LLVMContext &C = Inst->getContext();
2283        CallInst *NewCall =
2284          CallInst::Create(getReleaseCallee(F.getParent()),
2285                           Call->getArgOperand(0), "", Call);
2286        NewCall->setMetadata(ImpreciseReleaseMDKind,
2287                             MDNode::get(C, ArrayRef<Value *>()));
2288        EraseInstruction(Call);
2289        Inst = NewCall;
2290        Class = IC_Release;
2291      }
2292    }
2293
2294    // For functions which can never be passed stack arguments, add
2295    // a tail keyword.
2296    if (IsAlwaysTail(Class)) {
2297      Changed = true;
2298      cast<CallInst>(Inst)->setTailCall();
2299    }
2300
2301    // Set nounwind as needed.
2302    if (IsNoThrow(Class)) {
2303      Changed = true;
2304      cast<CallInst>(Inst)->setDoesNotThrow();
2305    }
2306
2307    if (!IsNoopOnNull(Class)) {
2308      UsedInThisFunction |= 1 << Class;
2309      continue;
2310    }
2311
2312    const Value *Arg = GetObjCArg(Inst);
2313
2314    // ARC calls with null are no-ops. Delete them.
2315    if (isNullOrUndef(Arg)) {
2316      Changed = true;
2317      ++NumNoops;
2318      EraseInstruction(Inst);
2319      continue;
2320    }
2321
2322    // Keep track of which of retain, release, autorelease, and retain_block
2323    // are actually present in this function.
2324    UsedInThisFunction |= 1 << Class;
2325
2326    // If Arg is a PHI, and one or more incoming values to the
2327    // PHI are null, and the call is control-equivalent to the PHI, and there
2328    // are no relevant side effects between the PHI and the call, the call
2329    // could be pushed up to just those paths with non-null incoming values.
2330    // For now, don't bother splitting critical edges for this.
2331    SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
2332    Worklist.push_back(std::make_pair(Inst, Arg));
2333    do {
2334      std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
2335      Inst = Pair.first;
2336      Arg = Pair.second;
2337
2338      const PHINode *PN = dyn_cast<PHINode>(Arg);
2339      if (!PN) continue;
2340
2341      // Determine if the PHI has any null operands, or any incoming
2342      // critical edges.
2343      bool HasNull = false;
2344      bool HasCriticalEdges = false;
2345      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2346        Value *Incoming =
2347          StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
2348        if (isNullOrUndef(Incoming))
2349          HasNull = true;
2350        else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
2351                   .getNumSuccessors() != 1) {
2352          HasCriticalEdges = true;
2353          break;
2354        }
2355      }
2356      // If we have null operands and no critical edges, optimize.
2357      if (!HasCriticalEdges && HasNull) {
2358        SmallPtrSet<Instruction *, 4> DependingInstructions;
2359        SmallPtrSet<const BasicBlock *, 4> Visited;
2360
2361        // Check that there is nothing that cares about the reference
2362        // count between the call and the phi.
2363        FindDependencies(NeedsPositiveRetainCount, Arg,
2364                         Inst->getParent(), Inst,
2365                         DependingInstructions, Visited, PA);
2366        if (DependingInstructions.size() == 1 &&
2367            *DependingInstructions.begin() == PN) {
2368          Changed = true;
2369          ++NumPartialNoops;
2370          // Clone the call into each predecessor that has a non-null value.
2371          CallInst *CInst = cast<CallInst>(Inst);
2372          Type *ParamTy = CInst->getArgOperand(0)->getType();
2373          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2374            Value *Incoming =
2375              StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
2376            if (!isNullOrUndef(Incoming)) {
2377              CallInst *Clone = cast<CallInst>(CInst->clone());
2378              Value *Op = PN->getIncomingValue(i);
2379              Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
2380              if (Op->getType() != ParamTy)
2381                Op = new BitCastInst(Op, ParamTy, "", InsertPos);
2382              Clone->setArgOperand(0, Op);
2383              Clone->insertBefore(InsertPos);
2384              Worklist.push_back(std::make_pair(Clone, Incoming));
2385            }
2386          }
2387          // Erase the original call.
2388          EraseInstruction(CInst);
2389          continue;
2390        }
2391      }
2392    } while (!Worklist.empty());
2393  }
2394}
2395
2396/// CheckForCFGHazards - Check for critical edges, loop boundaries, irreducible
2397/// control flow, or other CFG structures where moving code across the edge
2398/// would result in it being executed more.
2399void
2400ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
2401                               DenseMap<const BasicBlock *, BBState> &BBStates,
2402                               BBState &MyStates) const {
2403  // If any top-down local-use or possible-dec has a succ which is earlier in
2404  // the sequence, forget it.
2405  for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(),
2406       E = MyStates.top_down_ptr_end(); I != E; ++I)
2407    switch (I->second.GetSeq()) {
2408    default: break;
2409    case S_Use: {
2410      const Value *Arg = I->first;
2411      const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2412      bool SomeSuccHasSame = false;
2413      bool AllSuccsHaveSame = true;
2414      PtrState &S = I->second;
2415      succ_const_iterator SI(TI), SE(TI, false);
2416
2417      // If the terminator is an invoke marked with the
2418      // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
2419      // ignored, for ARC purposes.
2420      if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
2421        --SE;
2422
2423      for (; SI != SE; ++SI) {
2424        Sequence SuccSSeq = S_None;
2425        bool SuccSRRIKnownSafe = false;
2426        // If VisitBottomUp has visited this successor, take what we know about it.
2427        DenseMap<const BasicBlock *, BBState>::iterator BBI = BBStates.find(*SI);
2428        if (BBI != BBStates.end()) {
2429          const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
2430          SuccSSeq = SuccS.GetSeq();
2431          SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
2432        }
2433        switch (SuccSSeq) {
2434        case S_None:
2435        case S_CanRelease: {
2436          if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
2437            S.ClearSequenceProgress();
2438            break;
2439          }
2440          continue;
2441        }
2442        case S_Use:
2443          SomeSuccHasSame = true;
2444          break;
2445        case S_Stop:
2446        case S_Release:
2447        case S_MovableRelease:
2448          if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
2449            AllSuccsHaveSame = false;
2450          break;
2451        case S_Retain:
2452          llvm_unreachable("bottom-up pointer in retain state!");
2453        }
2454      }
2455      // If the state at the other end of any of the successor edges
2456      // matches the current state, require all edges to match. This
2457      // guards against loops in the middle of a sequence.
2458      if (SomeSuccHasSame && !AllSuccsHaveSame)
2459        S.ClearSequenceProgress();
2460      break;
2461    }
2462    case S_CanRelease: {
2463      const Value *Arg = I->first;
2464      const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2465      bool SomeSuccHasSame = false;
2466      bool AllSuccsHaveSame = true;
2467      PtrState &S = I->second;
2468      succ_const_iterator SI(TI), SE(TI, false);
2469
2470      // If the terminator is an invoke marked with the
2471      // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
2472      // ignored, for ARC purposes.
2473      if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
2474        --SE;
2475
2476      for (; SI != SE; ++SI) {
2477        Sequence SuccSSeq = S_None;
2478        bool SuccSRRIKnownSafe = false;
2479        // If VisitBottomUp has visited this successor, take what we know about it.
2480        DenseMap<const BasicBlock *, BBState>::iterator BBI = BBStates.find(*SI);
2481        if (BBI != BBStates.end()) {
2482          const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
2483          SuccSSeq = SuccS.GetSeq();
2484          SuccSRRIKnownSafe = SuccS.RRI.KnownSafe;
2485        }
2486        switch (SuccSSeq) {
2487        case S_None: {
2488          if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe) {
2489            S.ClearSequenceProgress();
2490            break;
2491          }
2492          continue;
2493        }
2494        case S_CanRelease:
2495          SomeSuccHasSame = true;
2496          break;
2497        case S_Stop:
2498        case S_Release:
2499        case S_MovableRelease:
2500        case S_Use:
2501          if (!S.RRI.KnownSafe && !SuccSRRIKnownSafe)
2502            AllSuccsHaveSame = false;
2503          break;
2504        case S_Retain:
2505          llvm_unreachable("bottom-up pointer in retain state!");
2506        }
2507      }
2508      // If the state at the other end of any of the successor edges
2509      // matches the current state, require all edges to match. This
2510      // guards against loops in the middle of a sequence.
2511      if (SomeSuccHasSame && !AllSuccsHaveSame)
2512        S.ClearSequenceProgress();
2513      break;
2514    }
2515    }
2516}
2517
2518bool
2519ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
2520                          DenseMap<const BasicBlock *, BBState> &BBStates,
2521                          MapVector<Value *, RRInfo> &Retains) {
2522  bool NestingDetected = false;
2523  BBState &MyStates = BBStates[BB];
2524
2525  // Merge the states from each successor to compute the initial state
2526  // for the current block.
2527  const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2528  succ_const_iterator SI(TI), SE(TI, false);
2529  if (SI == SE)
2530    MyStates.SetAsExit();
2531  else {
2532    // If the terminator is an invoke marked with the
2533    // clang.arc.no_objc_arc_exceptions metadata, the unwind edge can be
2534    // ignored, for ARC purposes.
2535    if (isa<InvokeInst>(TI) && TI->getMetadata(NoObjCARCExceptionsMDKind))
2536      --SE;
2537
2538    do {
2539      const BasicBlock *Succ = *SI++;
2540      if (Succ == BB)
2541        continue;
2542      DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
2543      // If we haven't seen this node yet, then we've found a CFG cycle.
2544      // Be optimistic here; it's CheckForCFGHazards' job detect trouble.
2545      if (I == BBStates.end())
2546        continue;
2547      MyStates.InitFromSucc(I->second);
2548      while (SI != SE) {
2549        Succ = *SI++;
2550        if (Succ != BB) {
2551          I = BBStates.find(Succ);
2552          if (I != BBStates.end())
2553            MyStates.MergeSucc(I->second);
2554        }
2555      }
2556      break;
2557    } while (SI != SE);
2558  }
2559
2560  // Visit all the instructions, bottom-up.
2561  for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
2562    Instruction *Inst = llvm::prior(I);
2563    InstructionClass Class = GetInstructionClass(Inst);
2564    const Value *Arg = 0;
2565
2566    switch (Class) {
2567    case IC_Release: {
2568      Arg = GetObjCArg(Inst);
2569
2570      PtrState &S = MyStates.getPtrBottomUpState(Arg);
2571
2572      // If we see two releases in a row on the same pointer. If so, make
2573      // a note, and we'll cicle back to revisit it after we've
2574      // hopefully eliminated the second release, which may allow us to
2575      // eliminate the first release too.
2576      // Theoretically we could implement removal of nested retain+release
2577      // pairs by making PtrState hold a stack of states, but this is
2578      // simple and avoids adding overhead for the non-nested case.
2579      if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease)
2580        NestingDetected = true;
2581
2582      S.RRI.clear();
2583
2584      MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
2585      S.SetSeq(ReleaseMetadata ? S_MovableRelease : S_Release);
2586      S.RRI.ReleaseMetadata = ReleaseMetadata;
2587      S.RRI.KnownSafe = S.IsKnownNested() || S.IsKnownIncremented();
2588      S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
2589      S.RRI.Calls.insert(Inst);
2590
2591      S.IncrementRefCount();
2592      S.IncrementNestCount();
2593      break;
2594    }
2595    case IC_RetainBlock:
2596      // An objc_retainBlock call with just a use may need to be kept,
2597      // because it may be copying a block from the stack to the heap.
2598      if (!IsRetainBlockOptimizable(Inst))
2599        break;
2600      // FALLTHROUGH
2601    case IC_Retain:
2602    case IC_RetainRV: {
2603      Arg = GetObjCArg(Inst);
2604
2605      PtrState &S = MyStates.getPtrBottomUpState(Arg);
2606      S.DecrementRefCount();
2607      S.SetAtLeastOneRefCount();
2608      S.DecrementNestCount();
2609
2610      switch (S.GetSeq()) {
2611      case S_Stop:
2612      case S_Release:
2613      case S_MovableRelease:
2614      case S_Use:
2615        S.RRI.ReverseInsertPts.clear();
2616        // FALL THROUGH
2617      case S_CanRelease:
2618        // Don't do retain+release tracking for IC_RetainRV, because it's
2619        // better to let it remain as the first instruction after a call.
2620        if (Class != IC_RetainRV) {
2621          S.RRI.IsRetainBlock = Class == IC_RetainBlock;
2622          Retains[Inst] = S.RRI;
2623        }
2624        S.ClearSequenceProgress();
2625        break;
2626      case S_None:
2627        break;
2628      case S_Retain:
2629        llvm_unreachable("bottom-up pointer in retain state!");
2630      }
2631      continue;
2632    }
2633    case IC_AutoreleasepoolPop:
2634      // Conservatively, clear MyStates for all known pointers.
2635      MyStates.clearBottomUpPointers();
2636      continue;
2637    case IC_AutoreleasepoolPush:
2638    case IC_None:
2639      // These are irrelevant.
2640      continue;
2641    default:
2642      break;
2643    }
2644
2645    // Consider any other possible effects of this instruction on each
2646    // pointer being tracked.
2647    for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
2648         ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
2649      const Value *Ptr = MI->first;
2650      if (Ptr == Arg)
2651        continue; // Handled above.
2652      PtrState &S = MI->second;
2653      Sequence Seq = S.GetSeq();
2654
2655      // Check for possible releases.
2656      if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
2657        S.DecrementRefCount();
2658        switch (Seq) {
2659        case S_Use:
2660          S.SetSeq(S_CanRelease);
2661          continue;
2662        case S_CanRelease:
2663        case S_Release:
2664        case S_MovableRelease:
2665        case S_Stop:
2666        case S_None:
2667          break;
2668        case S_Retain:
2669          llvm_unreachable("bottom-up pointer in retain state!");
2670        }
2671      }
2672
2673      // Check for possible direct uses.
2674      switch (Seq) {
2675      case S_Release:
2676      case S_MovableRelease:
2677        if (CanUse(Inst, Ptr, PA, Class)) {
2678          assert(S.RRI.ReverseInsertPts.empty());
2679          S.RRI.ReverseInsertPts.insert(Inst);
2680          S.SetSeq(S_Use);
2681        } else if (Seq == S_Release &&
2682                   (Class == IC_User || Class == IC_CallOrUser)) {
2683          // Non-movable releases depend on any possible objc pointer use.
2684          S.SetSeq(S_Stop);
2685          assert(S.RRI.ReverseInsertPts.empty());
2686          S.RRI.ReverseInsertPts.insert(Inst);
2687        }
2688        break;
2689      case S_Stop:
2690        if (CanUse(Inst, Ptr, PA, Class))
2691          S.SetSeq(S_Use);
2692        break;
2693      case S_CanRelease:
2694      case S_Use:
2695      case S_None:
2696        break;
2697      case S_Retain:
2698        llvm_unreachable("bottom-up pointer in retain state!");
2699      }
2700    }
2701  }
2702
2703  return NestingDetected;
2704}
2705
2706bool
2707ObjCARCOpt::VisitTopDown(BasicBlock *BB,
2708                         DenseMap<const BasicBlock *, BBState> &BBStates,
2709                         DenseMap<Value *, RRInfo> &Releases) {
2710  bool NestingDetected = false;
2711  BBState &MyStates = BBStates[BB];
2712
2713  // Merge the states from each predecessor to compute the initial state
2714  // for the current block.
2715  const_pred_iterator PI(BB), PE(BB, false);
2716  if (PI == PE)
2717    MyStates.SetAsEntry();
2718  else
2719    do {
2720      unsigned OperandNo = PI.getOperandNo();
2721      const Use &Us = PI.getUse();
2722      ++PI;
2723
2724      // Skip invoke unwind edges on invoke instructions marked with
2725      // clang.arc.no_objc_arc_exceptions.
2726      if (const InvokeInst *II = dyn_cast<InvokeInst>(Us.getUser()))
2727        if (OperandNo == II->getNumArgOperands() + 2 &&
2728            II->getMetadata(NoObjCARCExceptionsMDKind))
2729          continue;
2730
2731      const BasicBlock *Pred = cast<TerminatorInst>(Us.getUser())->getParent();
2732      if (Pred == BB)
2733        continue;
2734      DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
2735      // If we haven't seen this node yet, then we've found a CFG cycle.
2736      // Be optimistic here; it's CheckForCFGHazards' job detect trouble.
2737      if (I == BBStates.end() || !I->second.isVisitedTopDown())
2738        continue;
2739      MyStates.InitFromPred(I->second);
2740      while (PI != PE) {
2741        Pred = *PI++;
2742        if (Pred != BB) {
2743          I = BBStates.find(Pred);
2744          if (I != BBStates.end() && I->second.isVisitedTopDown())
2745            MyStates.MergePred(I->second);
2746        }
2747      }
2748      break;
2749    } while (PI != PE);
2750
2751  // Visit all the instructions, top-down.
2752  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2753    Instruction *Inst = I;
2754    InstructionClass Class = GetInstructionClass(Inst);
2755    const Value *Arg = 0;
2756
2757    switch (Class) {
2758    case IC_RetainBlock:
2759      // An objc_retainBlock call with just a use may need to be kept,
2760      // because it may be copying a block from the stack to the heap.
2761      if (!IsRetainBlockOptimizable(Inst))
2762        break;
2763      // FALLTHROUGH
2764    case IC_Retain:
2765    case IC_RetainRV: {
2766      Arg = GetObjCArg(Inst);
2767
2768      PtrState &S = MyStates.getPtrTopDownState(Arg);
2769
2770      // Don't do retain+release tracking for IC_RetainRV, because it's
2771      // better to let it remain as the first instruction after a call.
2772      if (Class != IC_RetainRV) {
2773        // If we see two retains in a row on the same pointer. If so, make
2774        // a note, and we'll cicle back to revisit it after we've
2775        // hopefully eliminated the second retain, which may allow us to
2776        // eliminate the first retain too.
2777        // Theoretically we could implement removal of nested retain+release
2778        // pairs by making PtrState hold a stack of states, but this is
2779        // simple and avoids adding overhead for the non-nested case.
2780        if (S.GetSeq() == S_Retain)
2781          NestingDetected = true;
2782
2783        S.SetSeq(S_Retain);
2784        S.RRI.clear();
2785        S.RRI.IsRetainBlock = Class == IC_RetainBlock;
2786        // Don't check S.IsKnownIncremented() here because it's not
2787        // sufficient.
2788        S.RRI.KnownSafe = S.IsKnownNested();
2789        S.RRI.Calls.insert(Inst);
2790      }
2791
2792      S.SetAtLeastOneRefCount();
2793      S.IncrementRefCount();
2794      S.IncrementNestCount();
2795      continue;
2796    }
2797    case IC_Release: {
2798      Arg = GetObjCArg(Inst);
2799
2800      PtrState &S = MyStates.getPtrTopDownState(Arg);
2801      S.DecrementRefCount();
2802      S.DecrementNestCount();
2803
2804      switch (S.GetSeq()) {
2805      case S_Retain:
2806      case S_CanRelease:
2807        S.RRI.ReverseInsertPts.clear();
2808        // FALL THROUGH
2809      case S_Use:
2810        S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
2811        S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
2812        Releases[Inst] = S.RRI;
2813        S.ClearSequenceProgress();
2814        break;
2815      case S_None:
2816        break;
2817      case S_Stop:
2818      case S_Release:
2819      case S_MovableRelease:
2820        llvm_unreachable("top-down pointer in release state!");
2821      }
2822      break;
2823    }
2824    case IC_AutoreleasepoolPop:
2825      // Conservatively, clear MyStates for all known pointers.
2826      MyStates.clearTopDownPointers();
2827      continue;
2828    case IC_AutoreleasepoolPush:
2829    case IC_None:
2830      // These are irrelevant.
2831      continue;
2832    default:
2833      break;
2834    }
2835
2836    // Consider any other possible effects of this instruction on each
2837    // pointer being tracked.
2838    for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
2839         ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
2840      const Value *Ptr = MI->first;
2841      if (Ptr == Arg)
2842        continue; // Handled above.
2843      PtrState &S = MI->second;
2844      Sequence Seq = S.GetSeq();
2845
2846      // Check for possible releases.
2847      if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
2848        S.DecrementRefCount();
2849        switch (Seq) {
2850        case S_Retain:
2851          S.SetSeq(S_CanRelease);
2852          assert(S.RRI.ReverseInsertPts.empty());
2853          S.RRI.ReverseInsertPts.insert(Inst);
2854
2855          // One call can't cause a transition from S_Retain to S_CanRelease
2856          // and S_CanRelease to S_Use. If we've made the first transition,
2857          // we're done.
2858          continue;
2859        case S_Use:
2860        case S_CanRelease:
2861        case S_None:
2862          break;
2863        case S_Stop:
2864        case S_Release:
2865        case S_MovableRelease:
2866          llvm_unreachable("top-down pointer in release state!");
2867        }
2868      }
2869
2870      // Check for possible direct uses.
2871      switch (Seq) {
2872      case S_CanRelease:
2873        if (CanUse(Inst, Ptr, PA, Class))
2874          S.SetSeq(S_Use);
2875        break;
2876      case S_Retain:
2877      case S_Use:
2878      case S_None:
2879        break;
2880      case S_Stop:
2881      case S_Release:
2882      case S_MovableRelease:
2883        llvm_unreachable("top-down pointer in release state!");
2884      }
2885    }
2886  }
2887
2888  CheckForCFGHazards(BB, BBStates, MyStates);
2889  return NestingDetected;
2890}
2891
2892static void
2893ComputePostOrders(Function &F,
2894                  SmallVectorImpl<BasicBlock *> &PostOrder,
2895                  SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder) {
2896  /// Backedges - Backedges detected in the DFS. These edges will be
2897  /// ignored in the reverse-CFG DFS, so that loops with multiple exits will be
2898  /// traversed in the desired order.
2899  DenseSet<std::pair<BasicBlock *, BasicBlock *> > Backedges;
2900
2901  /// Visited - The visited set, for doing DFS walks.
2902  SmallPtrSet<BasicBlock *, 16> Visited;
2903
2904  // Do DFS, computing the PostOrder.
2905  SmallPtrSet<BasicBlock *, 16> OnStack;
2906  SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
2907  BasicBlock *EntryBB = &F.getEntryBlock();
2908  SuccStack.push_back(std::make_pair(EntryBB, succ_begin(EntryBB)));
2909  Visited.insert(EntryBB);
2910  OnStack.insert(EntryBB);
2911  do {
2912  dfs_next_succ:
2913    TerminatorInst *TI = cast<TerminatorInst>(&SuccStack.back().first->back());
2914    succ_iterator End = succ_iterator(TI, true);
2915    while (SuccStack.back().second != End) {
2916      BasicBlock *BB = *SuccStack.back().second++;
2917      if (Visited.insert(BB)) {
2918        SuccStack.push_back(std::make_pair(BB, succ_begin(BB)));
2919        OnStack.insert(BB);
2920        goto dfs_next_succ;
2921      }
2922      if (OnStack.count(BB))
2923        Backedges.insert(std::make_pair(SuccStack.back().first, BB));
2924    }
2925    OnStack.erase(SuccStack.back().first);
2926    PostOrder.push_back(SuccStack.pop_back_val().first);
2927  } while (!SuccStack.empty());
2928
2929  Visited.clear();
2930
2931  // Compute the exits, which are the starting points for reverse-CFG DFS.
2932  // This includes blocks where all the successors are backedges that
2933  // we're skipping.
2934  SmallVector<BasicBlock *, 4> Exits;
2935  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
2936    BasicBlock *BB = I;
2937    TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2938    for (succ_iterator SI(TI), SE(TI, true); SI != SE; ++SI)
2939      if (!Backedges.count(std::make_pair(BB, *SI)))
2940        goto HasNonBackedgeSucc;
2941    Exits.push_back(BB);
2942  HasNonBackedgeSucc:;
2943  }
2944
2945  // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
2946  SmallVector<std::pair<BasicBlock *, pred_iterator>, 16> PredStack;
2947  for (SmallVectorImpl<BasicBlock *>::iterator I = Exits.begin(), E = Exits.end();
2948       I != E; ++I) {
2949    BasicBlock *ExitBB = *I;
2950    PredStack.push_back(std::make_pair(ExitBB, pred_begin(ExitBB)));
2951    Visited.insert(ExitBB);
2952    while (!PredStack.empty()) {
2953    reverse_dfs_next_succ:
2954      pred_iterator End = pred_end(PredStack.back().first);
2955      while (PredStack.back().second != End) {
2956        BasicBlock *BB = *PredStack.back().second++;
2957        // Skip backedges detected in the forward-CFG DFS.
2958        if (Backedges.count(std::make_pair(BB, PredStack.back().first)))
2959          continue;
2960        if (Visited.insert(BB)) {
2961          PredStack.push_back(std::make_pair(BB, pred_begin(BB)));
2962          goto reverse_dfs_next_succ;
2963        }
2964      }
2965      ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
2966    }
2967  }
2968}
2969
2970// Visit - Visit the function both top-down and bottom-up.
2971bool
2972ObjCARCOpt::Visit(Function &F,
2973                  DenseMap<const BasicBlock *, BBState> &BBStates,
2974                  MapVector<Value *, RRInfo> &Retains,
2975                  DenseMap<Value *, RRInfo> &Releases) {
2976
2977  // Use reverse-postorder traversals, because we magically know that loops
2978  // will be well behaved, i.e. they won't repeatedly call retain on a single
2979  // pointer without doing a release. We can't use the ReversePostOrderTraversal
2980  // class here because we want the reverse-CFG postorder to consider each
2981  // function exit point, and we want to ignore selected cycle edges.
2982  SmallVector<BasicBlock *, 16> PostOrder;
2983  SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
2984  ComputePostOrders(F, PostOrder, ReverseCFGPostOrder);
2985
2986  // Use reverse-postorder on the reverse CFG for bottom-up.
2987  bool BottomUpNestingDetected = false;
2988  for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
2989       ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
2990       I != E; ++I)
2991    BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
2992
2993  // Use reverse-postorder for top-down.
2994  bool TopDownNestingDetected = false;
2995  for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
2996       PostOrder.rbegin(), E = PostOrder.rend();
2997       I != E; ++I)
2998    TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
2999
3000  return TopDownNestingDetected && BottomUpNestingDetected;
3001}
3002
3003/// MoveCalls - Move the calls in RetainsToMove and ReleasesToMove.
3004void ObjCARCOpt::MoveCalls(Value *Arg,
3005                           RRInfo &RetainsToMove,
3006                           RRInfo &ReleasesToMove,
3007                           MapVector<Value *, RRInfo> &Retains,
3008                           DenseMap<Value *, RRInfo> &Releases,
3009                           SmallVectorImpl<Instruction *> &DeadInsts,
3010                           Module *M) {
3011  Type *ArgTy = Arg->getType();
3012  Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
3013
3014  // Insert the new retain and release calls.
3015  for (SmallPtrSet<Instruction *, 2>::const_iterator
3016       PI = ReleasesToMove.ReverseInsertPts.begin(),
3017       PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
3018    Instruction *InsertPt = *PI;
3019    Value *MyArg = ArgTy == ParamTy ? Arg :
3020                   new BitCastInst(Arg, ParamTy, "", InsertPt);
3021    CallInst *Call =
3022      CallInst::Create(RetainsToMove.IsRetainBlock ?
3023                         getRetainBlockCallee(M) : getRetainCallee(M),
3024                       MyArg, "", InsertPt);
3025    Call->setDoesNotThrow();
3026    if (RetainsToMove.IsRetainBlock)
3027      Call->setMetadata(CopyOnEscapeMDKind,
3028                        MDNode::get(M->getContext(), ArrayRef<Value *>()));
3029    else
3030      Call->setTailCall();
3031  }
3032  for (SmallPtrSet<Instruction *, 2>::const_iterator
3033       PI = RetainsToMove.ReverseInsertPts.begin(),
3034       PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
3035    Instruction *LastUse = *PI;
3036    Instruction *InsertPts[] = { 0, 0, 0 };
3037    if (InvokeInst *II = dyn_cast<InvokeInst>(LastUse)) {
3038      // We can't insert code immediately after an invoke instruction, so
3039      // insert code at the beginning of both successor blocks instead.
3040      // The invoke's return value isn't available in the unwind block,
3041      // but our releases will never depend on it, because they must be
3042      // paired with retains from before the invoke.
3043      InsertPts[0] = II->getNormalDest()->getFirstInsertionPt();
3044      if (!II->getMetadata(NoObjCARCExceptionsMDKind))
3045        InsertPts[1] = II->getUnwindDest()->getFirstInsertionPt();
3046    } else {
3047      // Insert code immediately after the last use.
3048      InsertPts[0] = llvm::next(BasicBlock::iterator(LastUse));
3049    }
3050
3051    for (Instruction **I = InsertPts; *I; ++I) {
3052      Instruction *InsertPt = *I;
3053      Value *MyArg = ArgTy == ParamTy ? Arg :
3054                     new BitCastInst(Arg, ParamTy, "", InsertPt);
3055      CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg,
3056                                        "", InsertPt);
3057      // Attach a clang.imprecise_release metadata tag, if appropriate.
3058      if (MDNode *M = ReleasesToMove.ReleaseMetadata)
3059        Call->setMetadata(ImpreciseReleaseMDKind, M);
3060      Call->setDoesNotThrow();
3061      if (ReleasesToMove.IsTailCallRelease)
3062        Call->setTailCall();
3063    }
3064  }
3065
3066  // Delete the original retain and release calls.
3067  for (SmallPtrSet<Instruction *, 2>::const_iterator
3068       AI = RetainsToMove.Calls.begin(),
3069       AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
3070    Instruction *OrigRetain = *AI;
3071    Retains.blot(OrigRetain);
3072    DeadInsts.push_back(OrigRetain);
3073  }
3074  for (SmallPtrSet<Instruction *, 2>::const_iterator
3075       AI = ReleasesToMove.Calls.begin(),
3076       AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
3077    Instruction *OrigRelease = *AI;
3078    Releases.erase(OrigRelease);
3079    DeadInsts.push_back(OrigRelease);
3080  }
3081}
3082
3083bool
3084ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
3085                                   &BBStates,
3086                                 MapVector<Value *, RRInfo> &Retains,
3087                                 DenseMap<Value *, RRInfo> &Releases,
3088                                 Module *M) {
3089  bool AnyPairsCompletelyEliminated = false;
3090  RRInfo RetainsToMove;
3091  RRInfo ReleasesToMove;
3092  SmallVector<Instruction *, 4> NewRetains;
3093  SmallVector<Instruction *, 4> NewReleases;
3094  SmallVector<Instruction *, 8> DeadInsts;
3095
3096  for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
3097       E = Retains.end(); I != E; ++I) {
3098    Value *V = I->first;
3099    if (!V) continue; // blotted
3100
3101    Instruction *Retain = cast<Instruction>(V);
3102    Value *Arg = GetObjCArg(Retain);
3103
3104    // If the object being released is in static or stack storage, we know it's
3105    // not being managed by ObjC reference counting, so we can delete pairs
3106    // regardless of what possible decrements or uses lie between them.
3107    bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
3108
3109    // A constant pointer can't be pointing to an object on the heap. It may
3110    // be reference-counted, but it won't be deleted.
3111    if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
3112      if (const GlobalVariable *GV =
3113            dyn_cast<GlobalVariable>(
3114              StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
3115        if (GV->isConstant())
3116          KnownSafe = true;
3117
3118    // If a pair happens in a region where it is known that the reference count
3119    // is already incremented, we can similarly ignore possible decrements.
3120    bool KnownSafeTD = true, KnownSafeBU = true;
3121
3122    // Connect the dots between the top-down-collected RetainsToMove and
3123    // bottom-up-collected ReleasesToMove to form sets of related calls.
3124    // This is an iterative process so that we connect multiple releases
3125    // to multiple retains if needed.
3126    unsigned OldDelta = 0;
3127    unsigned NewDelta = 0;
3128    unsigned OldCount = 0;
3129    unsigned NewCount = 0;
3130    bool FirstRelease = true;
3131    bool FirstRetain = true;
3132    NewRetains.push_back(Retain);
3133    for (;;) {
3134      for (SmallVectorImpl<Instruction *>::const_iterator
3135           NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
3136        Instruction *NewRetain = *NI;
3137        MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
3138        assert(It != Retains.end());
3139        const RRInfo &NewRetainRRI = It->second;
3140        KnownSafeTD &= NewRetainRRI.KnownSafe;
3141        for (SmallPtrSet<Instruction *, 2>::const_iterator
3142             LI = NewRetainRRI.Calls.begin(),
3143             LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
3144          Instruction *NewRetainRelease = *LI;
3145          DenseMap<Value *, RRInfo>::const_iterator Jt =
3146            Releases.find(NewRetainRelease);
3147          if (Jt == Releases.end())
3148            goto next_retain;
3149          const RRInfo &NewRetainReleaseRRI = Jt->second;
3150          assert(NewRetainReleaseRRI.Calls.count(NewRetain));
3151          if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
3152            OldDelta -=
3153              BBStates[NewRetainRelease->getParent()].GetAllPathCount();
3154
3155            // Merge the ReleaseMetadata and IsTailCallRelease values.
3156            if (FirstRelease) {
3157              ReleasesToMove.ReleaseMetadata =
3158                NewRetainReleaseRRI.ReleaseMetadata;
3159              ReleasesToMove.IsTailCallRelease =
3160                NewRetainReleaseRRI.IsTailCallRelease;
3161              FirstRelease = false;
3162            } else {
3163              if (ReleasesToMove.ReleaseMetadata !=
3164                    NewRetainReleaseRRI.ReleaseMetadata)
3165                ReleasesToMove.ReleaseMetadata = 0;
3166              if (ReleasesToMove.IsTailCallRelease !=
3167                    NewRetainReleaseRRI.IsTailCallRelease)
3168                ReleasesToMove.IsTailCallRelease = false;
3169            }
3170
3171            // Collect the optimal insertion points.
3172            if (!KnownSafe)
3173              for (SmallPtrSet<Instruction *, 2>::const_iterator
3174                   RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
3175                   RE = NewRetainReleaseRRI.ReverseInsertPts.end();
3176                   RI != RE; ++RI) {
3177                Instruction *RIP = *RI;
3178                if (ReleasesToMove.ReverseInsertPts.insert(RIP))
3179                  NewDelta -= BBStates[RIP->getParent()].GetAllPathCount();
3180              }
3181            NewReleases.push_back(NewRetainRelease);
3182          }
3183        }
3184      }
3185      NewRetains.clear();
3186      if (NewReleases.empty()) break;
3187
3188      // Back the other way.
3189      for (SmallVectorImpl<Instruction *>::const_iterator
3190           NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
3191        Instruction *NewRelease = *NI;
3192        DenseMap<Value *, RRInfo>::const_iterator It =
3193          Releases.find(NewRelease);
3194        assert(It != Releases.end());
3195        const RRInfo &NewReleaseRRI = It->second;
3196        KnownSafeBU &= NewReleaseRRI.KnownSafe;
3197        for (SmallPtrSet<Instruction *, 2>::const_iterator
3198             LI = NewReleaseRRI.Calls.begin(),
3199             LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
3200          Instruction *NewReleaseRetain = *LI;
3201          MapVector<Value *, RRInfo>::const_iterator Jt =
3202            Retains.find(NewReleaseRetain);
3203          if (Jt == Retains.end())
3204            goto next_retain;
3205          const RRInfo &NewReleaseRetainRRI = Jt->second;
3206          assert(NewReleaseRetainRRI.Calls.count(NewRelease));
3207          if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
3208            unsigned PathCount =
3209              BBStates[NewReleaseRetain->getParent()].GetAllPathCount();
3210            OldDelta += PathCount;
3211            OldCount += PathCount;
3212
3213            // Merge the IsRetainBlock values.
3214            if (FirstRetain) {
3215              RetainsToMove.IsRetainBlock = NewReleaseRetainRRI.IsRetainBlock;
3216              FirstRetain = false;
3217            } else if (ReleasesToMove.IsRetainBlock !=
3218                       NewReleaseRetainRRI.IsRetainBlock)
3219              // It's not possible to merge the sequences if one uses
3220              // objc_retain and the other uses objc_retainBlock.
3221              goto next_retain;
3222
3223            // Collect the optimal insertion points.
3224            if (!KnownSafe)
3225              for (SmallPtrSet<Instruction *, 2>::const_iterator
3226                   RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
3227                   RE = NewReleaseRetainRRI.ReverseInsertPts.end();
3228                   RI != RE; ++RI) {
3229                Instruction *RIP = *RI;
3230                if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
3231                  PathCount = BBStates[RIP->getParent()].GetAllPathCount();
3232                  NewDelta += PathCount;
3233                  NewCount += PathCount;
3234                }
3235              }
3236            NewRetains.push_back(NewReleaseRetain);
3237          }
3238        }
3239      }
3240      NewReleases.clear();
3241      if (NewRetains.empty()) break;
3242    }
3243
3244    // If the pointer is known incremented or nested, we can safely delete the
3245    // pair regardless of what's between them.
3246    if (KnownSafeTD || KnownSafeBU) {
3247      RetainsToMove.ReverseInsertPts.clear();
3248      ReleasesToMove.ReverseInsertPts.clear();
3249      NewCount = 0;
3250    } else {
3251      // Determine whether the new insertion points we computed preserve the
3252      // balance of retain and release calls through the program.
3253      // TODO: If the fully aggressive solution isn't valid, try to find a
3254      // less aggressive solution which is.
3255      if (NewDelta != 0)
3256        goto next_retain;
3257    }
3258
3259    // Determine whether the original call points are balanced in the retain and
3260    // release calls through the program. If not, conservatively don't touch
3261    // them.
3262    // TODO: It's theoretically possible to do code motion in this case, as
3263    // long as the existing imbalances are maintained.
3264    if (OldDelta != 0)
3265      goto next_retain;
3266
3267    // Ok, everything checks out and we're all set. Let's move some code!
3268    Changed = true;
3269    AnyPairsCompletelyEliminated = NewCount == 0;
3270    NumRRs += OldCount - NewCount;
3271    MoveCalls(Arg, RetainsToMove, ReleasesToMove,
3272              Retains, Releases, DeadInsts, M);
3273
3274  next_retain:
3275    NewReleases.clear();
3276    NewRetains.clear();
3277    RetainsToMove.clear();
3278    ReleasesToMove.clear();
3279  }
3280
3281  // Now that we're done moving everything, we can delete the newly dead
3282  // instructions, as we no longer need them as insert points.
3283  while (!DeadInsts.empty())
3284    EraseInstruction(DeadInsts.pop_back_val());
3285
3286  return AnyPairsCompletelyEliminated;
3287}
3288
3289/// OptimizeWeakCalls - Weak pointer optimizations.
3290void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
3291  // First, do memdep-style RLE and S2L optimizations. We can't use memdep
3292  // itself because it uses AliasAnalysis and we need to do provenance
3293  // queries instead.
3294  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
3295    Instruction *Inst = &*I++;
3296    InstructionClass Class = GetBasicInstructionClass(Inst);
3297    if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
3298      continue;
3299
3300    // Delete objc_loadWeak calls with no users.
3301    if (Class == IC_LoadWeak && Inst->use_empty()) {
3302      Inst->eraseFromParent();
3303      continue;
3304    }
3305
3306    // TODO: For now, just look for an earlier available version of this value
3307    // within the same block. Theoretically, we could do memdep-style non-local
3308    // analysis too, but that would want caching. A better approach would be to
3309    // use the technique that EarlyCSE uses.
3310    inst_iterator Current = llvm::prior(I);
3311    BasicBlock *CurrentBB = Current.getBasicBlockIterator();
3312    for (BasicBlock::iterator B = CurrentBB->begin(),
3313                              J = Current.getInstructionIterator();
3314         J != B; --J) {
3315      Instruction *EarlierInst = &*llvm::prior(J);
3316      InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
3317      switch (EarlierClass) {
3318      case IC_LoadWeak:
3319      case IC_LoadWeakRetained: {
3320        // If this is loading from the same pointer, replace this load's value
3321        // with that one.
3322        CallInst *Call = cast<CallInst>(Inst);
3323        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
3324        Value *Arg = Call->getArgOperand(0);
3325        Value *EarlierArg = EarlierCall->getArgOperand(0);
3326        switch (PA.getAA()->alias(Arg, EarlierArg)) {
3327        case AliasAnalysis::MustAlias:
3328          Changed = true;
3329          // If the load has a builtin retain, insert a plain retain for it.
3330          if (Class == IC_LoadWeakRetained) {
3331            CallInst *CI =
3332              CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
3333                               "", Call);
3334            CI->setTailCall();
3335          }
3336          // Zap the fully redundant load.
3337          Call->replaceAllUsesWith(EarlierCall);
3338          Call->eraseFromParent();
3339          goto clobbered;
3340        case AliasAnalysis::MayAlias:
3341        case AliasAnalysis::PartialAlias:
3342          goto clobbered;
3343        case AliasAnalysis::NoAlias:
3344          break;
3345        }
3346        break;
3347      }
3348      case IC_StoreWeak:
3349      case IC_InitWeak: {
3350        // If this is storing to the same pointer and has the same size etc.
3351        // replace this load's value with the stored value.
3352        CallInst *Call = cast<CallInst>(Inst);
3353        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
3354        Value *Arg = Call->getArgOperand(0);
3355        Value *EarlierArg = EarlierCall->getArgOperand(0);
3356        switch (PA.getAA()->alias(Arg, EarlierArg)) {
3357        case AliasAnalysis::MustAlias:
3358          Changed = true;
3359          // If the load has a builtin retain, insert a plain retain for it.
3360          if (Class == IC_LoadWeakRetained) {
3361            CallInst *CI =
3362              CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
3363                               "", Call);
3364            CI->setTailCall();
3365          }
3366          // Zap the fully redundant load.
3367          Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
3368          Call->eraseFromParent();
3369          goto clobbered;
3370        case AliasAnalysis::MayAlias:
3371        case AliasAnalysis::PartialAlias:
3372          goto clobbered;
3373        case AliasAnalysis::NoAlias:
3374          break;
3375        }
3376        break;
3377      }
3378      case IC_MoveWeak:
3379      case IC_CopyWeak:
3380        // TOOD: Grab the copied value.
3381        goto clobbered;
3382      case IC_AutoreleasepoolPush:
3383      case IC_None:
3384      case IC_User:
3385        // Weak pointers are only modified through the weak entry points
3386        // (and arbitrary calls, which could call the weak entry points).
3387        break;
3388      default:
3389        // Anything else could modify the weak pointer.
3390        goto clobbered;
3391      }
3392    }
3393  clobbered:;
3394  }
3395
3396  // Then, for each destroyWeak with an alloca operand, check to see if
3397  // the alloca and all its users can be zapped.
3398  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
3399    Instruction *Inst = &*I++;
3400    InstructionClass Class = GetBasicInstructionClass(Inst);
3401    if (Class != IC_DestroyWeak)
3402      continue;
3403
3404    CallInst *Call = cast<CallInst>(Inst);
3405    Value *Arg = Call->getArgOperand(0);
3406    if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
3407      for (Value::use_iterator UI = Alloca->use_begin(),
3408           UE = Alloca->use_end(); UI != UE; ++UI) {
3409        Instruction *UserInst = cast<Instruction>(*UI);
3410        switch (GetBasicInstructionClass(UserInst)) {
3411        case IC_InitWeak:
3412        case IC_StoreWeak:
3413        case IC_DestroyWeak:
3414          continue;
3415        default:
3416          goto done;
3417        }
3418      }
3419      Changed = true;
3420      for (Value::use_iterator UI = Alloca->use_begin(),
3421           UE = Alloca->use_end(); UI != UE; ) {
3422        CallInst *UserInst = cast<CallInst>(*UI++);
3423        if (!UserInst->use_empty())
3424          UserInst->replaceAllUsesWith(UserInst->getArgOperand(0));
3425        UserInst->eraseFromParent();
3426      }
3427      Alloca->eraseFromParent();
3428    done:;
3429    }
3430  }
3431}
3432
3433/// OptimizeSequences - Identify program paths which execute sequences of
3434/// retains and releases which can be eliminated.
3435bool ObjCARCOpt::OptimizeSequences(Function &F) {
3436  /// Releases, Retains - These are used to store the results of the main flow
3437  /// analysis. These use Value* as the key instead of Instruction* so that the
3438  /// map stays valid when we get around to rewriting code and calls get
3439  /// replaced by arguments.
3440  DenseMap<Value *, RRInfo> Releases;
3441  MapVector<Value *, RRInfo> Retains;
3442
3443  /// BBStates, This is used during the traversal of the function to track the
3444  /// states for each identified object at each block.
3445  DenseMap<const BasicBlock *, BBState> BBStates;
3446
3447  // Analyze the CFG of the function, and all instructions.
3448  bool NestingDetected = Visit(F, BBStates, Retains, Releases);
3449
3450  // Transform.
3451  return PerformCodePlacement(BBStates, Retains, Releases, F.getParent()) &&
3452         NestingDetected;
3453}
3454
3455/// OptimizeReturns - Look for this pattern:
3456///
3457///    %call = call i8* @something(...)
3458///    %2 = call i8* @objc_retain(i8* %call)
3459///    %3 = call i8* @objc_autorelease(i8* %2)
3460///    ret i8* %3
3461///
3462/// And delete the retain and autorelease.
3463///
3464/// Otherwise if it's just this:
3465///
3466///    %3 = call i8* @objc_autorelease(i8* %2)
3467///    ret i8* %3
3468///
3469/// convert the autorelease to autoreleaseRV.
3470void ObjCARCOpt::OptimizeReturns(Function &F) {
3471  if (!F.getReturnType()->isPointerTy())
3472    return;
3473
3474  SmallPtrSet<Instruction *, 4> DependingInstructions;
3475  SmallPtrSet<const BasicBlock *, 4> Visited;
3476  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
3477    BasicBlock *BB = FI;
3478    ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
3479    if (!Ret) continue;
3480
3481    const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
3482    FindDependencies(NeedsPositiveRetainCount, Arg,
3483                     BB, Ret, DependingInstructions, Visited, PA);
3484    if (DependingInstructions.size() != 1)
3485      goto next_block;
3486
3487    {
3488      CallInst *Autorelease =
3489        dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3490      if (!Autorelease)
3491        goto next_block;
3492      InstructionClass AutoreleaseClass =
3493        GetBasicInstructionClass(Autorelease);
3494      if (!IsAutorelease(AutoreleaseClass))
3495        goto next_block;
3496      if (GetObjCArg(Autorelease) != Arg)
3497        goto next_block;
3498
3499      DependingInstructions.clear();
3500      Visited.clear();
3501
3502      // Check that there is nothing that can affect the reference
3503      // count between the autorelease and the retain.
3504      FindDependencies(CanChangeRetainCount, Arg,
3505                       BB, Autorelease, DependingInstructions, Visited, PA);
3506      if (DependingInstructions.size() != 1)
3507        goto next_block;
3508
3509      {
3510        CallInst *Retain =
3511          dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3512
3513        // Check that we found a retain with the same argument.
3514        if (!Retain ||
3515            !IsRetain(GetBasicInstructionClass(Retain)) ||
3516            GetObjCArg(Retain) != Arg)
3517          goto next_block;
3518
3519        DependingInstructions.clear();
3520        Visited.clear();
3521
3522        // Convert the autorelease to an autoreleaseRV, since it's
3523        // returning the value.
3524        if (AutoreleaseClass == IC_Autorelease) {
3525          Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent()));
3526          AutoreleaseClass = IC_AutoreleaseRV;
3527        }
3528
3529        // Check that there is nothing that can affect the reference
3530        // count between the retain and the call.
3531        // Note that Retain need not be in BB.
3532        FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
3533                         DependingInstructions, Visited, PA);
3534        if (DependingInstructions.size() != 1)
3535          goto next_block;
3536
3537        {
3538          CallInst *Call =
3539            dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3540
3541          // Check that the pointer is the return value of the call.
3542          if (!Call || Arg != Call)
3543            goto next_block;
3544
3545          // Check that the call is a regular call.
3546          InstructionClass Class = GetBasicInstructionClass(Call);
3547          if (Class != IC_CallOrUser && Class != IC_Call)
3548            goto next_block;
3549
3550          // If so, we can zap the retain and autorelease.
3551          Changed = true;
3552          ++NumRets;
3553          EraseInstruction(Retain);
3554          EraseInstruction(Autorelease);
3555        }
3556      }
3557    }
3558
3559  next_block:
3560    DependingInstructions.clear();
3561    Visited.clear();
3562  }
3563}
3564
3565bool ObjCARCOpt::doInitialization(Module &M) {
3566  if (!EnableARCOpts)
3567    return false;
3568
3569  Run = ModuleHasARC(M);
3570  if (!Run)
3571    return false;
3572
3573  // Identify the imprecise release metadata kind.
3574  ImpreciseReleaseMDKind =
3575    M.getContext().getMDKindID("clang.imprecise_release");
3576  CopyOnEscapeMDKind =
3577    M.getContext().getMDKindID("clang.arc.copy_on_escape");
3578  NoObjCARCExceptionsMDKind =
3579    M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions");
3580
3581  // Intuitively, objc_retain and others are nocapture, however in practice
3582  // they are not, because they return their argument value. And objc_release
3583  // calls finalizers.
3584
3585  // These are initialized lazily.
3586  RetainRVCallee = 0;
3587  AutoreleaseRVCallee = 0;
3588  ReleaseCallee = 0;
3589  RetainCallee = 0;
3590  RetainBlockCallee = 0;
3591  AutoreleaseCallee = 0;
3592
3593  return false;
3594}
3595
3596bool ObjCARCOpt::runOnFunction(Function &F) {
3597  if (!EnableARCOpts)
3598    return false;
3599
3600  // If nothing in the Module uses ARC, don't do anything.
3601  if (!Run)
3602    return false;
3603
3604  Changed = false;
3605
3606  PA.setAA(&getAnalysis<AliasAnalysis>());
3607
3608  // This pass performs several distinct transformations. As a compile-time aid
3609  // when compiling code that isn't ObjC, skip these if the relevant ObjC
3610  // library functions aren't declared.
3611
3612  // Preliminary optimizations. This also computs UsedInThisFunction.
3613  OptimizeIndividualCalls(F);
3614
3615  // Optimizations for weak pointers.
3616  if (UsedInThisFunction & ((1 << IC_LoadWeak) |
3617                            (1 << IC_LoadWeakRetained) |
3618                            (1 << IC_StoreWeak) |
3619                            (1 << IC_InitWeak) |
3620                            (1 << IC_CopyWeak) |
3621                            (1 << IC_MoveWeak) |
3622                            (1 << IC_DestroyWeak)))
3623    OptimizeWeakCalls(F);
3624
3625  // Optimizations for retain+release pairs.
3626  if (UsedInThisFunction & ((1 << IC_Retain) |
3627                            (1 << IC_RetainRV) |
3628                            (1 << IC_RetainBlock)))
3629    if (UsedInThisFunction & (1 << IC_Release))
3630      // Run OptimizeSequences until it either stops making changes or
3631      // no retain+release pair nesting is detected.
3632      while (OptimizeSequences(F)) {}
3633
3634  // Optimizations if objc_autorelease is used.
3635  if (UsedInThisFunction &
3636      ((1 << IC_Autorelease) | (1 << IC_AutoreleaseRV)))
3637    OptimizeReturns(F);
3638
3639  return Changed;
3640}
3641
3642void ObjCARCOpt::releaseMemory() {
3643  PA.clear();
3644}
3645
3646//===----------------------------------------------------------------------===//
3647// ARC contraction.
3648//===----------------------------------------------------------------------===//
3649
3650// TODO: ObjCARCContract could insert PHI nodes when uses aren't
3651// dominated by single calls.
3652
3653#include "llvm/Operator.h"
3654#include "llvm/InlineAsm.h"
3655#include "llvm/Analysis/Dominators.h"
3656
3657STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed");
3658
3659namespace {
3660  /// ObjCARCContract - Late ARC optimizations.  These change the IR in a way
3661  /// that makes it difficult to be analyzed by ObjCARCOpt, so it's run late.
3662  class ObjCARCContract : public FunctionPass {
3663    bool Changed;
3664    AliasAnalysis *AA;
3665    DominatorTree *DT;
3666    ProvenanceAnalysis PA;
3667
3668    /// Run - A flag indicating whether this optimization pass should run.
3669    bool Run;
3670
3671    /// StoreStrongCallee, etc. - Declarations for ObjC runtime
3672    /// functions, for use in creating calls to them. These are initialized
3673    /// lazily to avoid cluttering up the Module with unused declarations.
3674    Constant *StoreStrongCallee,
3675             *RetainAutoreleaseCallee, *RetainAutoreleaseRVCallee;
3676
3677    /// RetainRVMarker - The inline asm string to insert between calls and
3678    /// RetainRV calls to make the optimization work on targets which need it.
3679    const MDString *RetainRVMarker;
3680
3681    /// StoreStrongCalls - The set of inserted objc_storeStrong calls. If
3682    /// at the end of walking the function we have found no alloca
3683    /// instructions, these calls can be marked "tail".
3684    DenseSet<CallInst *> StoreStrongCalls;
3685
3686    Constant *getStoreStrongCallee(Module *M);
3687    Constant *getRetainAutoreleaseCallee(Module *M);
3688    Constant *getRetainAutoreleaseRVCallee(Module *M);
3689
3690    bool ContractAutorelease(Function &F, Instruction *Autorelease,
3691                             InstructionClass Class,
3692                             SmallPtrSet<Instruction *, 4>
3693                               &DependingInstructions,
3694                             SmallPtrSet<const BasicBlock *, 4>
3695                               &Visited);
3696
3697    void ContractRelease(Instruction *Release,
3698                         inst_iterator &Iter);
3699
3700    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
3701    virtual bool doInitialization(Module &M);
3702    virtual bool runOnFunction(Function &F);
3703
3704  public:
3705    static char ID;
3706    ObjCARCContract() : FunctionPass(ID) {
3707      initializeObjCARCContractPass(*PassRegistry::getPassRegistry());
3708    }
3709  };
3710}
3711
3712char ObjCARCContract::ID = 0;
3713INITIALIZE_PASS_BEGIN(ObjCARCContract,
3714                      "objc-arc-contract", "ObjC ARC contraction", false, false)
3715INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3716INITIALIZE_PASS_DEPENDENCY(DominatorTree)
3717INITIALIZE_PASS_END(ObjCARCContract,
3718                    "objc-arc-contract", "ObjC ARC contraction", false, false)
3719
3720Pass *llvm::createObjCARCContractPass() {
3721  return new ObjCARCContract();
3722}
3723
3724void ObjCARCContract::getAnalysisUsage(AnalysisUsage &AU) const {
3725  AU.addRequired<AliasAnalysis>();
3726  AU.addRequired<DominatorTree>();
3727  AU.setPreservesCFG();
3728}
3729
3730Constant *ObjCARCContract::getStoreStrongCallee(Module *M) {
3731  if (!StoreStrongCallee) {
3732    LLVMContext &C = M->getContext();
3733    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3734    Type *I8XX = PointerType::getUnqual(I8X);
3735    std::vector<Type *> Params;
3736    Params.push_back(I8XX);
3737    Params.push_back(I8X);
3738
3739    AttrListPtr Attributes;
3740    Attributes.addAttr(~0u, Attribute::NoUnwind);
3741    Attributes.addAttr(1, Attribute::NoCapture);
3742
3743    StoreStrongCallee =
3744      M->getOrInsertFunction(
3745        "objc_storeStrong",
3746        FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
3747        Attributes);
3748  }
3749  return StoreStrongCallee;
3750}
3751
3752Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
3753  if (!RetainAutoreleaseCallee) {
3754    LLVMContext &C = M->getContext();
3755    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3756    std::vector<Type *> Params;
3757    Params.push_back(I8X);
3758    FunctionType *FTy =
3759      FunctionType::get(I8X, Params, /*isVarArg=*/false);
3760    AttrListPtr Attributes;
3761    Attributes.addAttr(~0u, Attribute::NoUnwind);
3762    RetainAutoreleaseCallee =
3763      M->getOrInsertFunction("objc_retainAutorelease", FTy, Attributes);
3764  }
3765  return RetainAutoreleaseCallee;
3766}
3767
3768Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
3769  if (!RetainAutoreleaseRVCallee) {
3770    LLVMContext &C = M->getContext();
3771    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3772    std::vector<Type *> Params;
3773    Params.push_back(I8X);
3774    FunctionType *FTy =
3775      FunctionType::get(I8X, Params, /*isVarArg=*/false);
3776    AttrListPtr Attributes;
3777    Attributes.addAttr(~0u, Attribute::NoUnwind);
3778    RetainAutoreleaseRVCallee =
3779      M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy,
3780                             Attributes);
3781  }
3782  return RetainAutoreleaseRVCallee;
3783}
3784
3785/// ContractAutorelease - Merge an autorelease with a retain into a fused
3786/// call.
3787bool
3788ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
3789                                     InstructionClass Class,
3790                                     SmallPtrSet<Instruction *, 4>
3791                                       &DependingInstructions,
3792                                     SmallPtrSet<const BasicBlock *, 4>
3793                                       &Visited) {
3794  const Value *Arg = GetObjCArg(Autorelease);
3795
3796  // Check that there are no instructions between the retain and the autorelease
3797  // (such as an autorelease_pop) which may change the count.
3798  CallInst *Retain = 0;
3799  if (Class == IC_AutoreleaseRV)
3800    FindDependencies(RetainAutoreleaseRVDep, Arg,
3801                     Autorelease->getParent(), Autorelease,
3802                     DependingInstructions, Visited, PA);
3803  else
3804    FindDependencies(RetainAutoreleaseDep, Arg,
3805                     Autorelease->getParent(), Autorelease,
3806                     DependingInstructions, Visited, PA);
3807
3808  Visited.clear();
3809  if (DependingInstructions.size() != 1) {
3810    DependingInstructions.clear();
3811    return false;
3812  }
3813
3814  Retain = dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3815  DependingInstructions.clear();
3816
3817  if (!Retain ||
3818      GetBasicInstructionClass(Retain) != IC_Retain ||
3819      GetObjCArg(Retain) != Arg)
3820    return false;
3821
3822  Changed = true;
3823  ++NumPeeps;
3824
3825  if (Class == IC_AutoreleaseRV)
3826    Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent()));
3827  else
3828    Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent()));
3829
3830  EraseInstruction(Autorelease);
3831  return true;
3832}
3833
3834/// ContractRelease - Attempt to merge an objc_release with a store, load, and
3835/// objc_retain to form an objc_storeStrong. This can be a little tricky because
3836/// the instructions don't always appear in order, and there may be unrelated
3837/// intervening instructions.
3838void ObjCARCContract::ContractRelease(Instruction *Release,
3839                                      inst_iterator &Iter) {
3840  LoadInst *Load = dyn_cast<LoadInst>(GetObjCArg(Release));
3841  if (!Load || !Load->isSimple()) return;
3842
3843  // For now, require everything to be in one basic block.
3844  BasicBlock *BB = Release->getParent();
3845  if (Load->getParent() != BB) return;
3846
3847  // Walk down to find the store.
3848  BasicBlock::iterator I = Load, End = BB->end();
3849  ++I;
3850  AliasAnalysis::Location Loc = AA->getLocation(Load);
3851  while (I != End &&
3852         (&*I == Release ||
3853          IsRetain(GetBasicInstructionClass(I)) ||
3854          !(AA->getModRefInfo(I, Loc) & AliasAnalysis::Mod)))
3855    ++I;
3856  StoreInst *Store = dyn_cast<StoreInst>(I);
3857  if (!Store || !Store->isSimple()) return;
3858  if (Store->getPointerOperand() != Loc.Ptr) return;
3859
3860  Value *New = StripPointerCastsAndObjCCalls(Store->getValueOperand());
3861
3862  // Walk up to find the retain.
3863  I = Store;
3864  BasicBlock::iterator Begin = BB->begin();
3865  while (I != Begin && GetBasicInstructionClass(I) != IC_Retain)
3866    --I;
3867  Instruction *Retain = I;
3868  if (GetBasicInstructionClass(Retain) != IC_Retain) return;
3869  if (GetObjCArg(Retain) != New) return;
3870
3871  Changed = true;
3872  ++NumStoreStrongs;
3873
3874  LLVMContext &C = Release->getContext();
3875  Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3876  Type *I8XX = PointerType::getUnqual(I8X);
3877
3878  Value *Args[] = { Load->getPointerOperand(), New };
3879  if (Args[0]->getType() != I8XX)
3880    Args[0] = new BitCastInst(Args[0], I8XX, "", Store);
3881  if (Args[1]->getType() != I8X)
3882    Args[1] = new BitCastInst(Args[1], I8X, "", Store);
3883  CallInst *StoreStrong =
3884    CallInst::Create(getStoreStrongCallee(BB->getParent()->getParent()),
3885                     Args, "", Store);
3886  StoreStrong->setDoesNotThrow();
3887  StoreStrong->setDebugLoc(Store->getDebugLoc());
3888
3889  // We can't set the tail flag yet, because we haven't yet determined
3890  // whether there are any escaping allocas. Remember this call, so that
3891  // we can set the tail flag once we know it's safe.
3892  StoreStrongCalls.insert(StoreStrong);
3893
3894  if (&*Iter == Store) ++Iter;
3895  Store->eraseFromParent();
3896  Release->eraseFromParent();
3897  EraseInstruction(Retain);
3898  if (Load->use_empty())
3899    Load->eraseFromParent();
3900}
3901
3902bool ObjCARCContract::doInitialization(Module &M) {
3903  Run = ModuleHasARC(M);
3904  if (!Run)
3905    return false;
3906
3907  // These are initialized lazily.
3908  StoreStrongCallee = 0;
3909  RetainAutoreleaseCallee = 0;
3910  RetainAutoreleaseRVCallee = 0;
3911
3912  // Initialize RetainRVMarker.
3913  RetainRVMarker = 0;
3914  if (NamedMDNode *NMD =
3915        M.getNamedMetadata("clang.arc.retainAutoreleasedReturnValueMarker"))
3916    if (NMD->getNumOperands() == 1) {
3917      const MDNode *N = NMD->getOperand(0);
3918      if (N->getNumOperands() == 1)
3919        if (const MDString *S = dyn_cast<MDString>(N->getOperand(0)))
3920          RetainRVMarker = S;
3921    }
3922
3923  return false;
3924}
3925
3926bool ObjCARCContract::runOnFunction(Function &F) {
3927  if (!EnableARCOpts)
3928    return false;
3929
3930  // If nothing in the Module uses ARC, don't do anything.
3931  if (!Run)
3932    return false;
3933
3934  Changed = false;
3935  AA = &getAnalysis<AliasAnalysis>();
3936  DT = &getAnalysis<DominatorTree>();
3937
3938  PA.setAA(&getAnalysis<AliasAnalysis>());
3939
3940  // Track whether it's ok to mark objc_storeStrong calls with the "tail"
3941  // keyword. Be conservative if the function has variadic arguments.
3942  // It seems that functions which "return twice" are also unsafe for the
3943  // "tail" argument, because they are setjmp, which could need to
3944  // return to an earlier stack state.
3945  bool TailOkForStoreStrongs = !F.isVarArg() && !F.callsFunctionThatReturnsTwice();
3946
3947  // For ObjC library calls which return their argument, replace uses of the
3948  // argument with uses of the call return value, if it dominates the use. This
3949  // reduces register pressure.
3950  SmallPtrSet<Instruction *, 4> DependingInstructions;
3951  SmallPtrSet<const BasicBlock *, 4> Visited;
3952  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
3953    Instruction *Inst = &*I++;
3954
3955    // Only these library routines return their argument. In particular,
3956    // objc_retainBlock does not necessarily return its argument.
3957    InstructionClass Class = GetBasicInstructionClass(Inst);
3958    switch (Class) {
3959    case IC_Retain:
3960    case IC_FusedRetainAutorelease:
3961    case IC_FusedRetainAutoreleaseRV:
3962      break;
3963    case IC_Autorelease:
3964    case IC_AutoreleaseRV:
3965      if (ContractAutorelease(F, Inst, Class, DependingInstructions, Visited))
3966        continue;
3967      break;
3968    case IC_RetainRV: {
3969      // If we're compiling for a target which needs a special inline-asm
3970      // marker to do the retainAutoreleasedReturnValue optimization,
3971      // insert it now.
3972      if (!RetainRVMarker)
3973        break;
3974      BasicBlock::iterator BBI = Inst;
3975      --BBI;
3976      while (isNoopInstruction(BBI)) --BBI;
3977      if (&*BBI == GetObjCArg(Inst)) {
3978        InlineAsm *IA =
3979          InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()),
3980                                           /*isVarArg=*/false),
3981                         RetainRVMarker->getString(),
3982                         /*Constraints=*/"", /*hasSideEffects=*/true);
3983        CallInst::Create(IA, "", Inst);
3984      }
3985      break;
3986    }
3987    case IC_InitWeak: {
3988      // objc_initWeak(p, null) => *p = null
3989      CallInst *CI = cast<CallInst>(Inst);
3990      if (isNullOrUndef(CI->getArgOperand(1))) {
3991        Value *Null =
3992          ConstantPointerNull::get(cast<PointerType>(CI->getType()));
3993        Changed = true;
3994        new StoreInst(Null, CI->getArgOperand(0), CI);
3995        CI->replaceAllUsesWith(Null);
3996        CI->eraseFromParent();
3997      }
3998      continue;
3999    }
4000    case IC_Release:
4001      ContractRelease(Inst, I);
4002      continue;
4003    case IC_User:
4004      // Be conservative if the function has any alloca instructions.
4005      // Technically we only care about escaping alloca instructions,
4006      // but this is sufficient to handle some interesting cases.
4007      if (isa<AllocaInst>(Inst))
4008        TailOkForStoreStrongs = false;
4009      continue;
4010    default:
4011      continue;
4012    }
4013
4014    // Don't use GetObjCArg because we don't want to look through bitcasts
4015    // and such; to do the replacement, the argument must have type i8*.
4016    const Value *Arg = cast<CallInst>(Inst)->getArgOperand(0);
4017    for (;;) {
4018      // If we're compiling bugpointed code, don't get in trouble.
4019      if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
4020        break;
4021      // Look through the uses of the pointer.
4022      for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
4023           UI != UE; ) {
4024        Use &U = UI.getUse();
4025        unsigned OperandNo = UI.getOperandNo();
4026        ++UI; // Increment UI now, because we may unlink its element.
4027        if (Instruction *UserInst = dyn_cast<Instruction>(U.getUser()))
4028          if (Inst != UserInst && DT->dominates(Inst, UserInst)) {
4029            Changed = true;
4030            Instruction *Replacement = Inst;
4031            Type *UseTy = U.get()->getType();
4032            if (PHINode *PHI = dyn_cast<PHINode>(UserInst)) {
4033              // For PHI nodes, insert the bitcast in the predecessor block.
4034              unsigned ValNo =
4035                PHINode::getIncomingValueNumForOperand(OperandNo);
4036              BasicBlock *BB =
4037                PHI->getIncomingBlock(ValNo);
4038              if (Replacement->getType() != UseTy)
4039                Replacement = new BitCastInst(Replacement, UseTy, "",
4040                                              &BB->back());
4041              for (unsigned i = 0, e = PHI->getNumIncomingValues();
4042                   i != e; ++i)
4043                if (PHI->getIncomingBlock(i) == BB) {
4044                  // Keep the UI iterator valid.
4045                  if (&PHI->getOperandUse(
4046                        PHINode::getOperandNumForIncomingValue(i)) ==
4047                        &UI.getUse())
4048                    ++UI;
4049                  PHI->setIncomingValue(i, Replacement);
4050                }
4051            } else {
4052              if (Replacement->getType() != UseTy)
4053                Replacement = new BitCastInst(Replacement, UseTy, "", UserInst);
4054              U.set(Replacement);
4055            }
4056          }
4057      }
4058
4059      // If Arg is a no-op casted pointer, strip one level of casts and
4060      // iterate.
4061      if (const BitCastInst *BI = dyn_cast<BitCastInst>(Arg))
4062        Arg = BI->getOperand(0);
4063      else if (isa<GEPOperator>(Arg) &&
4064               cast<GEPOperator>(Arg)->hasAllZeroIndices())
4065        Arg = cast<GEPOperator>(Arg)->getPointerOperand();
4066      else if (isa<GlobalAlias>(Arg) &&
4067               !cast<GlobalAlias>(Arg)->mayBeOverridden())
4068        Arg = cast<GlobalAlias>(Arg)->getAliasee();
4069      else
4070        break;
4071    }
4072  }
4073
4074  // If this function has no escaping allocas or suspicious vararg usage,
4075  // objc_storeStrong calls can be marked with the "tail" keyword.
4076  if (TailOkForStoreStrongs)
4077    for (DenseSet<CallInst *>::iterator I = StoreStrongCalls.begin(),
4078         E = StoreStrongCalls.end(); I != E; ++I)
4079      (*I)->setTailCall();
4080  StoreStrongCalls.clear();
4081
4082  return Changed;
4083}
4084