ObjCARC.cpp revision d8e48c48215c8aaa87b19245efac8a490c693d17
1//===- ObjCARC.cpp - ObjC ARC Optimization --------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines ObjC ARC optimizations. ARC stands for
11// Automatic Reference Counting and is a system for managing reference counts
12// for objects in Objective C.
13//
14// The optimizations performed include elimination of redundant, partially
15// redundant, and inconsequential reference count operations, elimination of
16// redundant weak pointer operations, pattern-matching and replacement of
17// low-level operations into higher-level operations, and numerous minor
18// simplifications.
19//
20// This file also defines a simple ARC-aware AliasAnalysis.
21//
22// WARNING: This file knows about certain library functions. It recognizes them
23// by name, and hardwires knowedge of their semantics.
24//
25// WARNING: This file knows about how certain Objective-C library functions are
26// used. Naive LLVM IR transformations which would otherwise be
27// behavior-preserving may break these assumptions.
28//
29//===----------------------------------------------------------------------===//
30
31#define DEBUG_TYPE "objc-arc"
32#include "llvm/Function.h"
33#include "llvm/Intrinsics.h"
34#include "llvm/GlobalVariable.h"
35#include "llvm/DerivedTypes.h"
36#include "llvm/Module.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/ADT/StringSwitch.h"
42#include "llvm/ADT/DenseMap.h"
43#include "llvm/ADT/STLExtras.h"
44using namespace llvm;
45
46// A handy option to enable/disable all optimizations in this file.
47static cl::opt<bool> EnableARCOpts("enable-objc-arc-opts", cl::init(true));
48
49//===----------------------------------------------------------------------===//
50// Misc. Utilities
51//===----------------------------------------------------------------------===//
52
53namespace {
54  /// MapVector - An associative container with fast insertion-order
55  /// (deterministic) iteration over its elements. Plus the special
56  /// blot operation.
57  template<class KeyT, class ValueT>
58  class MapVector {
59    /// Map - Map keys to indices in Vector.
60    typedef DenseMap<KeyT, size_t> MapTy;
61    MapTy Map;
62
63    /// Vector - Keys and values.
64    typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
65    VectorTy Vector;
66
67  public:
68    typedef typename VectorTy::iterator iterator;
69    typedef typename VectorTy::const_iterator const_iterator;
70    iterator begin() { return Vector.begin(); }
71    iterator end() { return Vector.end(); }
72    const_iterator begin() const { return Vector.begin(); }
73    const_iterator end() const { return Vector.end(); }
74
75#ifdef XDEBUG
76    ~MapVector() {
77      assert(Vector.size() >= Map.size()); // May differ due to blotting.
78      for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
79           I != E; ++I) {
80        assert(I->second < Vector.size());
81        assert(Vector[I->second].first == I->first);
82      }
83      for (typename VectorTy::const_iterator I = Vector.begin(),
84           E = Vector.end(); I != E; ++I)
85        assert(!I->first ||
86               (Map.count(I->first) &&
87                Map[I->first] == size_t(I - Vector.begin())));
88    }
89#endif
90
91    ValueT &operator[](KeyT Arg) {
92      std::pair<typename MapTy::iterator, bool> Pair =
93        Map.insert(std::make_pair(Arg, size_t(0)));
94      if (Pair.second) {
95        Pair.first->second = Vector.size();
96        Vector.push_back(std::make_pair(Arg, ValueT()));
97        return Vector.back().second;
98      }
99      return Vector[Pair.first->second].second;
100    }
101
102    std::pair<iterator, bool>
103    insert(const std::pair<KeyT, ValueT> &InsertPair) {
104      std::pair<typename MapTy::iterator, bool> Pair =
105        Map.insert(std::make_pair(InsertPair.first, size_t(0)));
106      if (Pair.second) {
107        Pair.first->second = Vector.size();
108        Vector.push_back(InsertPair);
109        return std::make_pair(llvm::prior(Vector.end()), true);
110      }
111      return std::make_pair(Vector.begin() + Pair.first->second, false);
112    }
113
114    const_iterator find(KeyT Key) const {
115      typename MapTy::const_iterator It = Map.find(Key);
116      if (It == Map.end()) return Vector.end();
117      return Vector.begin() + It->second;
118    }
119
120    /// blot - This is similar to erase, but instead of removing the element
121    /// from the vector, it just zeros out the key in the vector. This leaves
122    /// iterators intact, but clients must be prepared for zeroed-out keys when
123    /// iterating.
124    void blot(KeyT Key) {
125      typename MapTy::iterator It = Map.find(Key);
126      if (It == Map.end()) return;
127      Vector[It->second].first = KeyT();
128      Map.erase(It);
129    }
130
131    void clear() {
132      Map.clear();
133      Vector.clear();
134    }
135  };
136}
137
138//===----------------------------------------------------------------------===//
139// ARC Utilities.
140//===----------------------------------------------------------------------===//
141
142namespace {
143  /// InstructionClass - A simple classification for instructions.
144  enum InstructionClass {
145    IC_Retain,              ///< objc_retain
146    IC_RetainRV,            ///< objc_retainAutoreleasedReturnValue
147    IC_RetainBlock,         ///< objc_retainBlock
148    IC_Release,             ///< objc_release
149    IC_Autorelease,         ///< objc_autorelease
150    IC_AutoreleaseRV,       ///< objc_autoreleaseReturnValue
151    IC_AutoreleasepoolPush, ///< objc_autoreleasePoolPush
152    IC_AutoreleasepoolPop,  ///< objc_autoreleasePoolPop
153    IC_NoopCast,            ///< objc_retainedObject, etc.
154    IC_FusedRetainAutorelease, ///< objc_retainAutorelease
155    IC_FusedRetainAutoreleaseRV, ///< objc_retainAutoreleaseReturnValue
156    IC_LoadWeakRetained,    ///< objc_loadWeakRetained (primitive)
157    IC_StoreWeak,           ///< objc_storeWeak (primitive)
158    IC_InitWeak,            ///< objc_initWeak (derived)
159    IC_LoadWeak,            ///< objc_loadWeak (derived)
160    IC_MoveWeak,            ///< objc_moveWeak (derived)
161    IC_CopyWeak,            ///< objc_copyWeak (derived)
162    IC_DestroyWeak,         ///< objc_destroyWeak (derived)
163    IC_CallOrUser,          ///< could call objc_release and/or "use" pointers
164    IC_Call,                ///< could call objc_release
165    IC_User,                ///< could "use" a pointer
166    IC_None                 ///< anything else
167  };
168}
169
170/// IsPotentialUse - Test whether the given value is possible a
171/// reference-counted pointer.
172static bool IsPotentialUse(const Value *Op) {
173  // Pointers to static or stack storage are not reference-counted pointers.
174  if (isa<Constant>(Op) || isa<AllocaInst>(Op))
175    return false;
176  // Special arguments are not reference-counted.
177  if (const Argument *Arg = dyn_cast<Argument>(Op))
178    if (Arg->hasByValAttr() ||
179        Arg->hasNestAttr() ||
180        Arg->hasStructRetAttr())
181      return false;
182  // Only consider values with pointer types, and not function pointers.
183  PointerType *Ty = dyn_cast<PointerType>(Op->getType());
184  if (!Ty || isa<FunctionType>(Ty->getElementType()))
185    return false;
186  // Conservatively assume anything else is a potential use.
187  return true;
188}
189
190/// GetCallSiteClass - Helper for GetInstructionClass. Determines what kind
191/// of construct CS is.
192static InstructionClass GetCallSiteClass(ImmutableCallSite CS) {
193  for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
194       I != E; ++I)
195    if (IsPotentialUse(*I))
196      return CS.onlyReadsMemory() ? IC_User : IC_CallOrUser;
197
198  return CS.onlyReadsMemory() ? IC_None : IC_Call;
199}
200
201/// GetFunctionClass - Determine if F is one of the special known Functions.
202/// If it isn't, return IC_CallOrUser.
203static InstructionClass GetFunctionClass(const Function *F) {
204  Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
205
206  // No arguments.
207  if (AI == AE)
208    return StringSwitch<InstructionClass>(F->getName())
209      .Case("objc_autoreleasePoolPush",  IC_AutoreleasepoolPush)
210      .Default(IC_CallOrUser);
211
212  // One argument.
213  const Argument *A0 = AI++;
214  if (AI == AE)
215    // Argument is a pointer.
216    if (PointerType *PTy = dyn_cast<PointerType>(A0->getType())) {
217      Type *ETy = PTy->getElementType();
218      // Argument is i8*.
219      if (ETy->isIntegerTy(8))
220        return StringSwitch<InstructionClass>(F->getName())
221          .Case("objc_retain",                IC_Retain)
222          .Case("objc_retainAutoreleasedReturnValue", IC_RetainRV)
223          .Case("objc_retainBlock",           IC_RetainBlock)
224          .Case("objc_release",               IC_Release)
225          .Case("objc_autorelease",           IC_Autorelease)
226          .Case("objc_autoreleaseReturnValue", IC_AutoreleaseRV)
227          .Case("objc_autoreleasePoolPop",    IC_AutoreleasepoolPop)
228          .Case("objc_retainedObject",        IC_NoopCast)
229          .Case("objc_unretainedObject",      IC_NoopCast)
230          .Case("objc_unretainedPointer",     IC_NoopCast)
231          .Case("objc_retain_autorelease",    IC_FusedRetainAutorelease)
232          .Case("objc_retainAutorelease",     IC_FusedRetainAutorelease)
233          .Case("objc_retainAutoreleaseReturnValue",IC_FusedRetainAutoreleaseRV)
234          .Default(IC_CallOrUser);
235
236      // Argument is i8**
237      if (PointerType *Pte = dyn_cast<PointerType>(ETy))
238        if (Pte->getElementType()->isIntegerTy(8))
239          return StringSwitch<InstructionClass>(F->getName())
240            .Case("objc_loadWeakRetained",      IC_LoadWeakRetained)
241            .Case("objc_loadWeak",              IC_LoadWeak)
242            .Case("objc_destroyWeak",           IC_DestroyWeak)
243            .Default(IC_CallOrUser);
244    }
245
246  // Two arguments, first is i8**.
247  const Argument *A1 = AI++;
248  if (AI == AE)
249    if (PointerType *PTy = dyn_cast<PointerType>(A0->getType()))
250      if (PointerType *Pte = dyn_cast<PointerType>(PTy->getElementType()))
251        if (Pte->getElementType()->isIntegerTy(8))
252          if (PointerType *PTy1 = dyn_cast<PointerType>(A1->getType())) {
253            Type *ETy1 = PTy1->getElementType();
254            // Second argument is i8*
255            if (ETy1->isIntegerTy(8))
256              return StringSwitch<InstructionClass>(F->getName())
257                     .Case("objc_storeWeak",             IC_StoreWeak)
258                     .Case("objc_initWeak",              IC_InitWeak)
259                     .Default(IC_CallOrUser);
260            // Second argument is i8**.
261            if (PointerType *Pte1 = dyn_cast<PointerType>(ETy1))
262              if (Pte1->getElementType()->isIntegerTy(8))
263                return StringSwitch<InstructionClass>(F->getName())
264                       .Case("objc_moveWeak",              IC_MoveWeak)
265                       .Case("objc_copyWeak",              IC_CopyWeak)
266                       .Default(IC_CallOrUser);
267          }
268
269  // Anything else.
270  return IC_CallOrUser;
271}
272
273/// GetInstructionClass - Determine what kind of construct V is.
274static InstructionClass GetInstructionClass(const Value *V) {
275  if (const Instruction *I = dyn_cast<Instruction>(V)) {
276    // Any instruction other than bitcast and gep with a pointer operand have a
277    // use of an objc pointer. Bitcasts, GEPs, Selects, PHIs transfer a pointer
278    // to a subsequent use, rather than using it themselves, in this sense.
279    // As a short cut, several other opcodes are known to have no pointer
280    // operands of interest. And ret is never followed by a release, so it's
281    // not interesting to examine.
282    switch (I->getOpcode()) {
283    case Instruction::Call: {
284      const CallInst *CI = cast<CallInst>(I);
285      // Check for calls to special functions.
286      if (const Function *F = CI->getCalledFunction()) {
287        InstructionClass Class = GetFunctionClass(F);
288        if (Class != IC_CallOrUser)
289          return Class;
290
291        // None of the intrinsic functions do objc_release. For intrinsics, the
292        // only question is whether or not they may be users.
293        switch (F->getIntrinsicID()) {
294        case 0: break;
295        case Intrinsic::bswap: case Intrinsic::ctpop:
296        case Intrinsic::ctlz: case Intrinsic::cttz:
297        case Intrinsic::returnaddress: case Intrinsic::frameaddress:
298        case Intrinsic::stacksave: case Intrinsic::stackrestore:
299        case Intrinsic::vastart: case Intrinsic::vacopy: case Intrinsic::vaend:
300        // Don't let dbg info affect our results.
301        case Intrinsic::dbg_declare: case Intrinsic::dbg_value:
302          // Short cut: Some intrinsics obviously don't use ObjC pointers.
303          return IC_None;
304        default:
305          for (Function::const_arg_iterator AI = F->arg_begin(),
306               AE = F->arg_end(); AI != AE; ++AI)
307            if (IsPotentialUse(AI))
308              return IC_User;
309          return IC_None;
310        }
311      }
312      return GetCallSiteClass(CI);
313    }
314    case Instruction::Invoke:
315      return GetCallSiteClass(cast<InvokeInst>(I));
316    case Instruction::BitCast:
317    case Instruction::GetElementPtr:
318    case Instruction::Select: case Instruction::PHI:
319    case Instruction::Ret: case Instruction::Br:
320    case Instruction::Switch: case Instruction::IndirectBr:
321    case Instruction::Alloca: case Instruction::VAArg:
322    case Instruction::Add: case Instruction::FAdd:
323    case Instruction::Sub: case Instruction::FSub:
324    case Instruction::Mul: case Instruction::FMul:
325    case Instruction::SDiv: case Instruction::UDiv: case Instruction::FDiv:
326    case Instruction::SRem: case Instruction::URem: case Instruction::FRem:
327    case Instruction::Shl: case Instruction::LShr: case Instruction::AShr:
328    case Instruction::And: case Instruction::Or: case Instruction::Xor:
329    case Instruction::SExt: case Instruction::ZExt: case Instruction::Trunc:
330    case Instruction::IntToPtr: case Instruction::FCmp:
331    case Instruction::FPTrunc: case Instruction::FPExt:
332    case Instruction::FPToUI: case Instruction::FPToSI:
333    case Instruction::UIToFP: case Instruction::SIToFP:
334    case Instruction::InsertElement: case Instruction::ExtractElement:
335    case Instruction::ShuffleVector:
336    case Instruction::ExtractValue:
337      break;
338    case Instruction::ICmp:
339      // Comparing a pointer with null, or any other constant, isn't an
340      // interesting use, because we don't care what the pointer points to, or
341      // about the values of any other dynamic reference-counted pointers.
342      if (IsPotentialUse(I->getOperand(1)))
343        return IC_User;
344      break;
345    default:
346      // For anything else, check all the operands.
347      for (User::const_op_iterator OI = I->op_begin(), OE = I->op_end();
348           OI != OE; ++OI)
349        if (IsPotentialUse(*OI))
350          return IC_User;
351    }
352  }
353
354  // Otherwise, it's totally inert for ARC purposes.
355  return IC_None;
356}
357
358/// GetBasicInstructionClass - Determine what kind of construct V is. This is
359/// similar to GetInstructionClass except that it only detects objc runtine
360/// calls. This allows it to be faster.
361static InstructionClass GetBasicInstructionClass(const Value *V) {
362  if (const CallInst *CI = dyn_cast<CallInst>(V)) {
363    if (const Function *F = CI->getCalledFunction())
364      return GetFunctionClass(F);
365    // Otherwise, be conservative.
366    return IC_CallOrUser;
367  }
368
369  // Otherwise, be conservative.
370  return IC_User;
371}
372
373/// IsRetain - Test if the the given class is objc_retain or
374/// equivalent.
375static bool IsRetain(InstructionClass Class) {
376  return Class == IC_Retain ||
377         Class == IC_RetainRV;
378}
379
380/// IsAutorelease - Test if the the given class is objc_autorelease or
381/// equivalent.
382static bool IsAutorelease(InstructionClass Class) {
383  return Class == IC_Autorelease ||
384         Class == IC_AutoreleaseRV;
385}
386
387/// IsForwarding - Test if the given class represents instructions which return
388/// their argument verbatim.
389static bool IsForwarding(InstructionClass Class) {
390  // objc_retainBlock technically doesn't always return its argument
391  // verbatim, but it doesn't matter for our purposes here.
392  return Class == IC_Retain ||
393         Class == IC_RetainRV ||
394         Class == IC_Autorelease ||
395         Class == IC_AutoreleaseRV ||
396         Class == IC_RetainBlock ||
397         Class == IC_NoopCast;
398}
399
400/// IsNoopOnNull - Test if the given class represents instructions which do
401/// nothing if passed a null pointer.
402static bool IsNoopOnNull(InstructionClass Class) {
403  return Class == IC_Retain ||
404         Class == IC_RetainRV ||
405         Class == IC_Release ||
406         Class == IC_Autorelease ||
407         Class == IC_AutoreleaseRV ||
408         Class == IC_RetainBlock;
409}
410
411/// IsAlwaysTail - Test if the given class represents instructions which are
412/// always safe to mark with the "tail" keyword.
413static bool IsAlwaysTail(InstructionClass Class) {
414  // IC_RetainBlock may be given a stack argument.
415  return Class == IC_Retain ||
416         Class == IC_RetainRV ||
417         Class == IC_Autorelease ||
418         Class == IC_AutoreleaseRV;
419}
420
421/// IsNoThrow - Test if the given class represents instructions which are always
422/// safe to mark with the nounwind attribute..
423static bool IsNoThrow(InstructionClass Class) {
424  return Class == IC_Retain ||
425         Class == IC_RetainRV ||
426         Class == IC_RetainBlock ||
427         Class == IC_Release ||
428         Class == IC_Autorelease ||
429         Class == IC_AutoreleaseRV ||
430         Class == IC_AutoreleasepoolPush ||
431         Class == IC_AutoreleasepoolPop;
432}
433
434/// EraseInstruction - Erase the given instruction. ObjC calls return their
435/// argument verbatim, so if it's such a call and the return value has users,
436/// replace them with the argument value.
437static void EraseInstruction(Instruction *CI) {
438  Value *OldArg = cast<CallInst>(CI)->getArgOperand(0);
439
440  bool Unused = CI->use_empty();
441
442  if (!Unused) {
443    // Replace the return value with the argument.
444    assert(IsForwarding(GetBasicInstructionClass(CI)) &&
445           "Can't delete non-forwarding instruction with users!");
446    CI->replaceAllUsesWith(OldArg);
447  }
448
449  CI->eraseFromParent();
450
451  if (Unused)
452    RecursivelyDeleteTriviallyDeadInstructions(OldArg);
453}
454
455/// GetUnderlyingObjCPtr - This is a wrapper around getUnderlyingObject which
456/// also knows how to look through objc_retain and objc_autorelease calls, which
457/// we know to return their argument verbatim.
458static const Value *GetUnderlyingObjCPtr(const Value *V) {
459  for (;;) {
460    V = GetUnderlyingObject(V);
461    if (!IsForwarding(GetBasicInstructionClass(V)))
462      break;
463    V = cast<CallInst>(V)->getArgOperand(0);
464  }
465
466  return V;
467}
468
469/// StripPointerCastsAndObjCCalls - This is a wrapper around
470/// Value::stripPointerCasts which also knows how to look through objc_retain
471/// and objc_autorelease calls, which we know to return their argument verbatim.
472static const Value *StripPointerCastsAndObjCCalls(const Value *V) {
473  for (;;) {
474    V = V->stripPointerCasts();
475    if (!IsForwarding(GetBasicInstructionClass(V)))
476      break;
477    V = cast<CallInst>(V)->getArgOperand(0);
478  }
479  return V;
480}
481
482/// StripPointerCastsAndObjCCalls - This is a wrapper around
483/// Value::stripPointerCasts which also knows how to look through objc_retain
484/// and objc_autorelease calls, which we know to return their argument verbatim.
485static Value *StripPointerCastsAndObjCCalls(Value *V) {
486  for (;;) {
487    V = V->stripPointerCasts();
488    if (!IsForwarding(GetBasicInstructionClass(V)))
489      break;
490    V = cast<CallInst>(V)->getArgOperand(0);
491  }
492  return V;
493}
494
495/// GetObjCArg - Assuming the given instruction is one of the special calls such
496/// as objc_retain or objc_release, return the argument value, stripped of no-op
497/// casts and forwarding calls.
498static Value *GetObjCArg(Value *Inst) {
499  return StripPointerCastsAndObjCCalls(cast<CallInst>(Inst)->getArgOperand(0));
500}
501
502/// IsObjCIdentifiedObject - This is similar to AliasAnalysis'
503/// isObjCIdentifiedObject, except that it uses special knowledge of
504/// ObjC conventions...
505static bool IsObjCIdentifiedObject(const Value *V) {
506  // Assume that call results and arguments have their own "provenance".
507  // Constants (including GlobalVariables) and Allocas are never
508  // reference-counted.
509  if (isa<CallInst>(V) || isa<InvokeInst>(V) ||
510      isa<Argument>(V) || isa<Constant>(V) ||
511      isa<AllocaInst>(V))
512    return true;
513
514  if (const LoadInst *LI = dyn_cast<LoadInst>(V)) {
515    const Value *Pointer =
516      StripPointerCastsAndObjCCalls(LI->getPointerOperand());
517    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Pointer)) {
518      StringRef Name = GV->getName();
519      // These special variables are known to hold values which are not
520      // reference-counted pointers.
521      if (Name.startswith("\01L_OBJC_SELECTOR_REFERENCES_") ||
522          Name.startswith("\01L_OBJC_CLASSLIST_REFERENCES_") ||
523          Name.startswith("\01L_OBJC_CLASSLIST_SUP_REFS_$_") ||
524          Name.startswith("\01L_OBJC_METH_VAR_NAME_") ||
525          Name.startswith("\01l_objc_msgSend_fixup_"))
526        return true;
527    }
528  }
529
530  return false;
531}
532
533/// FindSingleUseIdentifiedObject - This is similar to
534/// StripPointerCastsAndObjCCalls but it stops as soon as it finds a value
535/// with multiple uses.
536static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
537  if (Arg->hasOneUse()) {
538    if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
539      return FindSingleUseIdentifiedObject(BC->getOperand(0));
540    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
541      if (GEP->hasAllZeroIndices())
542        return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
543    if (IsForwarding(GetBasicInstructionClass(Arg)))
544      return FindSingleUseIdentifiedObject(
545               cast<CallInst>(Arg)->getArgOperand(0));
546    if (!IsObjCIdentifiedObject(Arg))
547      return 0;
548    return Arg;
549  }
550
551  // If we found an identifiable object but it has multiple uses, but they
552  // are trivial uses, we can still consider this to be a single-use
553  // value.
554  if (IsObjCIdentifiedObject(Arg)) {
555    for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
556         UI != UE; ++UI) {
557      const User *U = *UI;
558      if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
559         return 0;
560    }
561
562    return Arg;
563  }
564
565  return 0;
566}
567
568/// ModuleHasARC - Test if the given module looks interesting to run ARC
569/// optimization on.
570static bool ModuleHasARC(const Module &M) {
571  return
572    M.getNamedValue("objc_retain") ||
573    M.getNamedValue("objc_release") ||
574    M.getNamedValue("objc_autorelease") ||
575    M.getNamedValue("objc_retainAutoreleasedReturnValue") ||
576    M.getNamedValue("objc_retainBlock") ||
577    M.getNamedValue("objc_autoreleaseReturnValue") ||
578    M.getNamedValue("objc_autoreleasePoolPush") ||
579    M.getNamedValue("objc_loadWeakRetained") ||
580    M.getNamedValue("objc_loadWeak") ||
581    M.getNamedValue("objc_destroyWeak") ||
582    M.getNamedValue("objc_storeWeak") ||
583    M.getNamedValue("objc_initWeak") ||
584    M.getNamedValue("objc_moveWeak") ||
585    M.getNamedValue("objc_copyWeak") ||
586    M.getNamedValue("objc_retainedObject") ||
587    M.getNamedValue("objc_unretainedObject") ||
588    M.getNamedValue("objc_unretainedPointer");
589}
590
591//===----------------------------------------------------------------------===//
592// ARC AliasAnalysis.
593//===----------------------------------------------------------------------===//
594
595#include "llvm/Pass.h"
596#include "llvm/Analysis/AliasAnalysis.h"
597#include "llvm/Analysis/Passes.h"
598
599namespace {
600  /// ObjCARCAliasAnalysis - This is a simple alias analysis
601  /// implementation that uses knowledge of ARC constructs to answer queries.
602  ///
603  /// TODO: This class could be generalized to know about other ObjC-specific
604  /// tricks. Such as knowing that ivars in the non-fragile ABI are non-aliasing
605  /// even though their offsets are dynamic.
606  class ObjCARCAliasAnalysis : public ImmutablePass,
607                               public AliasAnalysis {
608  public:
609    static char ID; // Class identification, replacement for typeinfo
610    ObjCARCAliasAnalysis() : ImmutablePass(ID) {
611      initializeObjCARCAliasAnalysisPass(*PassRegistry::getPassRegistry());
612    }
613
614  private:
615    virtual void initializePass() {
616      InitializeAliasAnalysis(this);
617    }
618
619    /// getAdjustedAnalysisPointer - This method is used when a pass implements
620    /// an analysis interface through multiple inheritance.  If needed, it
621    /// should override this to adjust the this pointer as needed for the
622    /// specified pass info.
623    virtual void *getAdjustedAnalysisPointer(const void *PI) {
624      if (PI == &AliasAnalysis::ID)
625        return (AliasAnalysis*)this;
626      return this;
627    }
628
629    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
630    virtual AliasResult alias(const Location &LocA, const Location &LocB);
631    virtual bool pointsToConstantMemory(const Location &Loc, bool OrLocal);
632    virtual ModRefBehavior getModRefBehavior(ImmutableCallSite CS);
633    virtual ModRefBehavior getModRefBehavior(const Function *F);
634    virtual ModRefResult getModRefInfo(ImmutableCallSite CS,
635                                       const Location &Loc);
636    virtual ModRefResult getModRefInfo(ImmutableCallSite CS1,
637                                       ImmutableCallSite CS2);
638  };
639}  // End of anonymous namespace
640
641// Register this pass...
642char ObjCARCAliasAnalysis::ID = 0;
643INITIALIZE_AG_PASS(ObjCARCAliasAnalysis, AliasAnalysis, "objc-arc-aa",
644                   "ObjC-ARC-Based Alias Analysis", false, true, false)
645
646ImmutablePass *llvm::createObjCARCAliasAnalysisPass() {
647  return new ObjCARCAliasAnalysis();
648}
649
650void
651ObjCARCAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
652  AU.setPreservesAll();
653  AliasAnalysis::getAnalysisUsage(AU);
654}
655
656AliasAnalysis::AliasResult
657ObjCARCAliasAnalysis::alias(const Location &LocA, const Location &LocB) {
658  if (!EnableARCOpts)
659    return AliasAnalysis::alias(LocA, LocB);
660
661  // First, strip off no-ops, including ObjC-specific no-ops, and try making a
662  // precise alias query.
663  const Value *SA = StripPointerCastsAndObjCCalls(LocA.Ptr);
664  const Value *SB = StripPointerCastsAndObjCCalls(LocB.Ptr);
665  AliasResult Result =
666    AliasAnalysis::alias(Location(SA, LocA.Size, LocA.TBAATag),
667                         Location(SB, LocB.Size, LocB.TBAATag));
668  if (Result != MayAlias)
669    return Result;
670
671  // If that failed, climb to the underlying object, including climbing through
672  // ObjC-specific no-ops, and try making an imprecise alias query.
673  const Value *UA = GetUnderlyingObjCPtr(SA);
674  const Value *UB = GetUnderlyingObjCPtr(SB);
675  if (UA != SA || UB != SB) {
676    Result = AliasAnalysis::alias(Location(UA), Location(UB));
677    // We can't use MustAlias or PartialAlias results here because
678    // GetUnderlyingObjCPtr may return an offsetted pointer value.
679    if (Result == NoAlias)
680      return NoAlias;
681  }
682
683  // If that failed, fail. We don't need to chain here, since that's covered
684  // by the earlier precise query.
685  return MayAlias;
686}
687
688bool
689ObjCARCAliasAnalysis::pointsToConstantMemory(const Location &Loc,
690                                             bool OrLocal) {
691  if (!EnableARCOpts)
692    return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
693
694  // First, strip off no-ops, including ObjC-specific no-ops, and try making
695  // a precise alias query.
696  const Value *S = StripPointerCastsAndObjCCalls(Loc.Ptr);
697  if (AliasAnalysis::pointsToConstantMemory(Location(S, Loc.Size, Loc.TBAATag),
698                                            OrLocal))
699    return true;
700
701  // If that failed, climb to the underlying object, including climbing through
702  // ObjC-specific no-ops, and try making an imprecise alias query.
703  const Value *U = GetUnderlyingObjCPtr(S);
704  if (U != S)
705    return AliasAnalysis::pointsToConstantMemory(Location(U), OrLocal);
706
707  // If that failed, fail. We don't need to chain here, since that's covered
708  // by the earlier precise query.
709  return false;
710}
711
712AliasAnalysis::ModRefBehavior
713ObjCARCAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
714  // We have nothing to do. Just chain to the next AliasAnalysis.
715  return AliasAnalysis::getModRefBehavior(CS);
716}
717
718AliasAnalysis::ModRefBehavior
719ObjCARCAliasAnalysis::getModRefBehavior(const Function *F) {
720  if (!EnableARCOpts)
721    return AliasAnalysis::getModRefBehavior(F);
722
723  switch (GetFunctionClass(F)) {
724  case IC_NoopCast:
725    return DoesNotAccessMemory;
726  default:
727    break;
728  }
729
730  return AliasAnalysis::getModRefBehavior(F);
731}
732
733AliasAnalysis::ModRefResult
734ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS, const Location &Loc) {
735  if (!EnableARCOpts)
736    return AliasAnalysis::getModRefInfo(CS, Loc);
737
738  switch (GetBasicInstructionClass(CS.getInstruction())) {
739  case IC_Retain:
740  case IC_RetainRV:
741  case IC_RetainBlock:
742  case IC_Autorelease:
743  case IC_AutoreleaseRV:
744  case IC_NoopCast:
745  case IC_AutoreleasepoolPush:
746  case IC_FusedRetainAutorelease:
747  case IC_FusedRetainAutoreleaseRV:
748    // These functions don't access any memory visible to the compiler.
749    return NoModRef;
750  default:
751    break;
752  }
753
754  return AliasAnalysis::getModRefInfo(CS, Loc);
755}
756
757AliasAnalysis::ModRefResult
758ObjCARCAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
759                                    ImmutableCallSite CS2) {
760  // TODO: Theoretically we could check for dependencies between objc_* calls
761  // and OnlyAccessesArgumentPointees calls or other well-behaved calls.
762  return AliasAnalysis::getModRefInfo(CS1, CS2);
763}
764
765//===----------------------------------------------------------------------===//
766// ARC expansion.
767//===----------------------------------------------------------------------===//
768
769#include "llvm/Support/InstIterator.h"
770#include "llvm/Transforms/Scalar.h"
771
772namespace {
773  /// ObjCARCExpand - Early ARC transformations.
774  class ObjCARCExpand : public FunctionPass {
775    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
776    virtual bool doInitialization(Module &M);
777    virtual bool runOnFunction(Function &F);
778
779    /// Run - A flag indicating whether this optimization pass should run.
780    bool Run;
781
782  public:
783    static char ID;
784    ObjCARCExpand() : FunctionPass(ID) {
785      initializeObjCARCExpandPass(*PassRegistry::getPassRegistry());
786    }
787  };
788}
789
790char ObjCARCExpand::ID = 0;
791INITIALIZE_PASS(ObjCARCExpand,
792                "objc-arc-expand", "ObjC ARC expansion", false, false)
793
794Pass *llvm::createObjCARCExpandPass() {
795  return new ObjCARCExpand();
796}
797
798void ObjCARCExpand::getAnalysisUsage(AnalysisUsage &AU) const {
799  AU.setPreservesCFG();
800}
801
802bool ObjCARCExpand::doInitialization(Module &M) {
803  Run = ModuleHasARC(M);
804  return false;
805}
806
807bool ObjCARCExpand::runOnFunction(Function &F) {
808  if (!EnableARCOpts)
809    return false;
810
811  // If nothing in the Module uses ARC, don't do anything.
812  if (!Run)
813    return false;
814
815  bool Changed = false;
816
817  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
818    Instruction *Inst = &*I;
819
820    switch (GetBasicInstructionClass(Inst)) {
821    case IC_Retain:
822    case IC_RetainRV:
823    case IC_Autorelease:
824    case IC_AutoreleaseRV:
825    case IC_FusedRetainAutorelease:
826    case IC_FusedRetainAutoreleaseRV:
827      // These calls return their argument verbatim, as a low-level
828      // optimization. However, this makes high-level optimizations
829      // harder. Undo any uses of this optimization that the front-end
830      // emitted here. We'll redo them in a later pass.
831      Changed = true;
832      Inst->replaceAllUsesWith(cast<CallInst>(Inst)->getArgOperand(0));
833      break;
834    default:
835      break;
836    }
837  }
838
839  return Changed;
840}
841
842//===----------------------------------------------------------------------===//
843// ARC optimization.
844//===----------------------------------------------------------------------===//
845
846// TODO: On code like this:
847//
848// objc_retain(%x)
849// stuff_that_cannot_release()
850// objc_autorelease(%x)
851// stuff_that_cannot_release()
852// objc_retain(%x)
853// stuff_that_cannot_release()
854// objc_autorelease(%x)
855//
856// The second retain and autorelease can be deleted.
857
858// TODO: It should be possible to delete
859// objc_autoreleasePoolPush and objc_autoreleasePoolPop
860// pairs if nothing is actually autoreleased between them. Also, autorelease
861// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
862// after inlining) can be turned into plain release calls.
863
864// TODO: Critical-edge splitting. If the optimial insertion point is
865// a critical edge, the current algorithm has to fail, because it doesn't
866// know how to split edges. It should be possible to make the optimizer
867// think in terms of edges, rather than blocks, and then split critical
868// edges on demand.
869
870// TODO: OptimizeSequences could generalized to be Interprocedural.
871
872// TODO: Recognize that a bunch of other objc runtime calls have
873// non-escaping arguments and non-releasing arguments, and may be
874// non-autoreleasing.
875
876// TODO: Sink autorelease calls as far as possible. Unfortunately we
877// usually can't sink them past other calls, which would be the main
878// case where it would be useful.
879
880/// TODO: The pointer returned from objc_loadWeakRetained is retained.
881
882#include "llvm/GlobalAlias.h"
883#include "llvm/Constants.h"
884#include "llvm/LLVMContext.h"
885#include "llvm/Support/ErrorHandling.h"
886#include "llvm/Support/CFG.h"
887#include "llvm/ADT/PostOrderIterator.h"
888#include "llvm/ADT/Statistic.h"
889
890STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
891STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
892STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
893STATISTIC(NumRets,        "Number of return value forwarding "
894                          "retain+autoreleaes eliminated");
895STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
896STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
897
898namespace {
899  /// ProvenanceAnalysis - This is similar to BasicAliasAnalysis, and it
900  /// uses many of the same techniques, except it uses special ObjC-specific
901  /// reasoning about pointer relationships.
902  class ProvenanceAnalysis {
903    AliasAnalysis *AA;
904
905    typedef std::pair<const Value *, const Value *> ValuePairTy;
906    typedef DenseMap<ValuePairTy, bool> CachedResultsTy;
907    CachedResultsTy CachedResults;
908
909    bool relatedCheck(const Value *A, const Value *B);
910    bool relatedSelect(const SelectInst *A, const Value *B);
911    bool relatedPHI(const PHINode *A, const Value *B);
912
913    // Do not implement.
914    void operator=(const ProvenanceAnalysis &);
915    ProvenanceAnalysis(const ProvenanceAnalysis &);
916
917  public:
918    ProvenanceAnalysis() {}
919
920    void setAA(AliasAnalysis *aa) { AA = aa; }
921
922    AliasAnalysis *getAA() const { return AA; }
923
924    bool related(const Value *A, const Value *B);
925
926    void clear() {
927      CachedResults.clear();
928    }
929  };
930}
931
932bool ProvenanceAnalysis::relatedSelect(const SelectInst *A, const Value *B) {
933  // If the values are Selects with the same condition, we can do a more precise
934  // check: just check for relations between the values on corresponding arms.
935  if (const SelectInst *SB = dyn_cast<SelectInst>(B))
936    if (A->getCondition() == SB->getCondition()) {
937      if (related(A->getTrueValue(), SB->getTrueValue()))
938        return true;
939      if (related(A->getFalseValue(), SB->getFalseValue()))
940        return true;
941      return false;
942    }
943
944  // Check both arms of the Select node individually.
945  if (related(A->getTrueValue(), B))
946    return true;
947  if (related(A->getFalseValue(), B))
948    return true;
949
950  // The arms both checked out.
951  return false;
952}
953
954bool ProvenanceAnalysis::relatedPHI(const PHINode *A, const Value *B) {
955  // If the values are PHIs in the same block, we can do a more precise as well
956  // as efficient check: just check for relations between the values on
957  // corresponding edges.
958  if (const PHINode *PNB = dyn_cast<PHINode>(B))
959    if (PNB->getParent() == A->getParent()) {
960      for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i)
961        if (related(A->getIncomingValue(i),
962                    PNB->getIncomingValueForBlock(A->getIncomingBlock(i))))
963          return true;
964      return false;
965    }
966
967  // Check each unique source of the PHI node against B.
968  SmallPtrSet<const Value *, 4> UniqueSrc;
969  for (unsigned i = 0, e = A->getNumIncomingValues(); i != e; ++i) {
970    const Value *PV1 = A->getIncomingValue(i);
971    if (UniqueSrc.insert(PV1) && related(PV1, B))
972      return true;
973  }
974
975  // All of the arms checked out.
976  return false;
977}
978
979/// isStoredObjCPointer - Test if the value of P, or any value covered by its
980/// provenance, is ever stored within the function (not counting callees).
981static bool isStoredObjCPointer(const Value *P) {
982  SmallPtrSet<const Value *, 8> Visited;
983  SmallVector<const Value *, 8> Worklist;
984  Worklist.push_back(P);
985  Visited.insert(P);
986  do {
987    P = Worklist.pop_back_val();
988    for (Value::const_use_iterator UI = P->use_begin(), UE = P->use_end();
989         UI != UE; ++UI) {
990      const User *Ur = *UI;
991      if (isa<StoreInst>(Ur)) {
992        if (UI.getOperandNo() == 0)
993          // The pointer is stored.
994          return true;
995        // The pointed is stored through.
996        continue;
997      }
998      if (isa<CallInst>(Ur))
999        // The pointer is passed as an argument, ignore this.
1000        continue;
1001      if (isa<PtrToIntInst>(P))
1002        // Assume the worst.
1003        return true;
1004      if (Visited.insert(Ur))
1005        Worklist.push_back(Ur);
1006    }
1007  } while (!Worklist.empty());
1008
1009  // Everything checked out.
1010  return false;
1011}
1012
1013bool ProvenanceAnalysis::relatedCheck(const Value *A, const Value *B) {
1014  // Skip past provenance pass-throughs.
1015  A = GetUnderlyingObjCPtr(A);
1016  B = GetUnderlyingObjCPtr(B);
1017
1018  // Quick check.
1019  if (A == B)
1020    return true;
1021
1022  // Ask regular AliasAnalysis, for a first approximation.
1023  switch (AA->alias(A, B)) {
1024  case AliasAnalysis::NoAlias:
1025    return false;
1026  case AliasAnalysis::MustAlias:
1027  case AliasAnalysis::PartialAlias:
1028    return true;
1029  case AliasAnalysis::MayAlias:
1030    break;
1031  }
1032
1033  bool AIsIdentified = IsObjCIdentifiedObject(A);
1034  bool BIsIdentified = IsObjCIdentifiedObject(B);
1035
1036  // An ObjC-Identified object can't alias a load if it is never locally stored.
1037  if (AIsIdentified) {
1038    if (BIsIdentified) {
1039      // If both pointers have provenance, they can be directly compared.
1040      if (A != B)
1041        return false;
1042    } else {
1043      if (isa<LoadInst>(B))
1044        return isStoredObjCPointer(A);
1045    }
1046  } else {
1047    if (BIsIdentified && isa<LoadInst>(A))
1048      return isStoredObjCPointer(B);
1049  }
1050
1051   // Special handling for PHI and Select.
1052  if (const PHINode *PN = dyn_cast<PHINode>(A))
1053    return relatedPHI(PN, B);
1054  if (const PHINode *PN = dyn_cast<PHINode>(B))
1055    return relatedPHI(PN, A);
1056  if (const SelectInst *S = dyn_cast<SelectInst>(A))
1057    return relatedSelect(S, B);
1058  if (const SelectInst *S = dyn_cast<SelectInst>(B))
1059    return relatedSelect(S, A);
1060
1061  // Conservative.
1062  return true;
1063}
1064
1065bool ProvenanceAnalysis::related(const Value *A, const Value *B) {
1066  // Begin by inserting a conservative value into the map. If the insertion
1067  // fails, we have the answer already. If it succeeds, leave it there until we
1068  // compute the real answer to guard against recursive queries.
1069  if (A > B) std::swap(A, B);
1070  std::pair<CachedResultsTy::iterator, bool> Pair =
1071    CachedResults.insert(std::make_pair(ValuePairTy(A, B), true));
1072  if (!Pair.second)
1073    return Pair.first->second;
1074
1075  bool Result = relatedCheck(A, B);
1076  CachedResults[ValuePairTy(A, B)] = Result;
1077  return Result;
1078}
1079
1080namespace {
1081  // Sequence - A sequence of states that a pointer may go through in which an
1082  // objc_retain and objc_release are actually needed.
1083  enum Sequence {
1084    S_None,
1085    S_Retain,         ///< objc_retain(x)
1086    S_CanRelease,     ///< foo(x) -- x could possibly see a ref count decrement
1087    S_Use,            ///< any use of x
1088    S_Stop,           ///< like S_Release, but code motion is stopped
1089    S_Release,        ///< objc_release(x)
1090    S_MovableRelease  ///< objc_release(x), !clang.imprecise_release
1091  };
1092}
1093
1094static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
1095  // The easy cases.
1096  if (A == B)
1097    return A;
1098  if (A == S_None || B == S_None)
1099    return S_None;
1100
1101  // Note that we can't merge S_CanRelease and S_Use.
1102  if (A > B) std::swap(A, B);
1103  if (TopDown) {
1104    // Choose the side which is further along in the sequence.
1105    if (A == S_Retain && (B == S_CanRelease || B == S_Use))
1106      return B;
1107  } else {
1108    // Choose the side which is further along in the sequence.
1109    if ((A == S_Use || A == S_CanRelease) &&
1110        (B == S_Release || B == S_Stop || B == S_MovableRelease))
1111      return A;
1112    // If both sides are releases, choose the more conservative one.
1113    if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
1114      return A;
1115    if (A == S_Release && B == S_MovableRelease)
1116      return A;
1117  }
1118
1119  return S_None;
1120}
1121
1122namespace {
1123  /// RRInfo - Unidirectional information about either a
1124  /// retain-decrement-use-release sequence or release-use-decrement-retain
1125  /// reverese sequence.
1126  struct RRInfo {
1127    /// KnownIncremented - After an objc_retain, the reference count of the
1128    /// referenced object is known to be positive. Similarly, before an
1129    /// objc_release, the reference count of the referenced object is known to
1130    /// be positive. If there are retain-release pairs in code regions where the
1131    /// retain count is known to be positive, they can be eliminated, regardless
1132    /// of any side effects between them.
1133    bool KnownIncremented;
1134
1135    /// IsRetainBlock - True if the Calls are objc_retainBlock calls (as
1136    /// opposed to objc_retain calls).
1137    bool IsRetainBlock;
1138
1139    /// IsTailCallRelease - True of the objc_release calls are all marked
1140    /// with the "tail" keyword.
1141    bool IsTailCallRelease;
1142
1143    /// ReleaseMetadata - If the Calls are objc_release calls and they all have
1144    /// a clang.imprecise_release tag, this is the metadata tag.
1145    MDNode *ReleaseMetadata;
1146
1147    /// Calls - For a top-down sequence, the set of objc_retains or
1148    /// objc_retainBlocks. For bottom-up, the set of objc_releases.
1149    SmallPtrSet<Instruction *, 2> Calls;
1150
1151    /// ReverseInsertPts - The set of optimal insert positions for
1152    /// moving calls in the opposite sequence.
1153    SmallPtrSet<Instruction *, 2> ReverseInsertPts;
1154
1155    RRInfo() :
1156      KnownIncremented(false), IsRetainBlock(false), IsTailCallRelease(false),
1157      ReleaseMetadata(0) {}
1158
1159    void clear();
1160  };
1161}
1162
1163void RRInfo::clear() {
1164  KnownIncremented = false;
1165  IsRetainBlock = false;
1166  IsTailCallRelease = false;
1167  ReleaseMetadata = 0;
1168  Calls.clear();
1169  ReverseInsertPts.clear();
1170}
1171
1172namespace {
1173  /// PtrState - This class summarizes several per-pointer runtime properties
1174  /// which are propogated through the flow graph.
1175  class PtrState {
1176    /// RefCount - The known minimum number of reference count increments.
1177    unsigned RefCount;
1178
1179    /// Seq - The current position in the sequence.
1180    Sequence Seq;
1181
1182  public:
1183    /// RRI - Unidirectional information about the current sequence.
1184    /// TODO: Encapsulate this better.
1185    RRInfo RRI;
1186
1187    PtrState() : RefCount(0), Seq(S_None) {}
1188
1189    void IncrementRefCount() {
1190      if (RefCount != UINT_MAX) ++RefCount;
1191    }
1192
1193    void DecrementRefCount() {
1194      if (RefCount != 0) --RefCount;
1195    }
1196
1197    bool IsKnownIncremented() const {
1198      return RefCount > 0;
1199    }
1200
1201    void SetSeq(Sequence NewSeq) {
1202      Seq = NewSeq;
1203    }
1204
1205    void SetSeqToRelease(MDNode *M) {
1206      if (Seq == S_None || Seq == S_Use) {
1207        Seq = M ? S_MovableRelease : S_Release;
1208        RRI.ReleaseMetadata = M;
1209      } else if (Seq != S_MovableRelease || RRI.ReleaseMetadata != M) {
1210        Seq = S_Release;
1211        RRI.ReleaseMetadata = 0;
1212      }
1213    }
1214
1215    Sequence GetSeq() const {
1216      return Seq;
1217    }
1218
1219    void ClearSequenceProgress() {
1220      Seq = S_None;
1221      RRI.clear();
1222    }
1223
1224    void Merge(const PtrState &Other, bool TopDown);
1225  };
1226}
1227
1228void
1229PtrState::Merge(const PtrState &Other, bool TopDown) {
1230  Seq = MergeSeqs(Seq, Other.Seq, TopDown);
1231  RefCount = std::min(RefCount, Other.RefCount);
1232
1233  // We can't merge a plain objc_retain with an objc_retainBlock.
1234  if (RRI.IsRetainBlock != Other.RRI.IsRetainBlock)
1235    Seq = S_None;
1236
1237  if (Seq == S_None) {
1238    RRI.clear();
1239  } else {
1240    // Conservatively merge the ReleaseMetadata information.
1241    if (RRI.ReleaseMetadata != Other.RRI.ReleaseMetadata)
1242      RRI.ReleaseMetadata = 0;
1243
1244    RRI.KnownIncremented = RRI.KnownIncremented && Other.RRI.KnownIncremented;
1245    RRI.IsTailCallRelease = RRI.IsTailCallRelease && Other.RRI.IsTailCallRelease;
1246    RRI.Calls.insert(Other.RRI.Calls.begin(), Other.RRI.Calls.end());
1247    RRI.ReverseInsertPts.insert(Other.RRI.ReverseInsertPts.begin(),
1248                                Other.RRI.ReverseInsertPts.end());
1249  }
1250}
1251
1252namespace {
1253  /// BBState - Per-BasicBlock state.
1254  class BBState {
1255    /// TopDownPathCount - The number of unique control paths from the entry
1256    /// which can reach this block.
1257    unsigned TopDownPathCount;
1258
1259    /// BottomUpPathCount - The number of unique control paths to exits
1260    /// from this block.
1261    unsigned BottomUpPathCount;
1262
1263    /// MapTy - A type for PerPtrTopDown and PerPtrBottomUp.
1264    typedef MapVector<const Value *, PtrState> MapTy;
1265
1266    /// PerPtrTopDown - The top-down traversal uses this to record information
1267    /// known about a pointer at the bottom of each block.
1268    MapTy PerPtrTopDown;
1269
1270    /// PerPtrBottomUp - The bottom-up traversal uses this to record information
1271    /// known about a pointer at the top of each block.
1272    MapTy PerPtrBottomUp;
1273
1274  public:
1275    BBState() : TopDownPathCount(0), BottomUpPathCount(0) {}
1276
1277    typedef MapTy::iterator ptr_iterator;
1278    typedef MapTy::const_iterator ptr_const_iterator;
1279
1280    ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
1281    ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
1282    ptr_const_iterator top_down_ptr_begin() const {
1283      return PerPtrTopDown.begin();
1284    }
1285    ptr_const_iterator top_down_ptr_end() const {
1286      return PerPtrTopDown.end();
1287    }
1288
1289    ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
1290    ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
1291    ptr_const_iterator bottom_up_ptr_begin() const {
1292      return PerPtrBottomUp.begin();
1293    }
1294    ptr_const_iterator bottom_up_ptr_end() const {
1295      return PerPtrBottomUp.end();
1296    }
1297
1298    /// SetAsEntry - Mark this block as being an entry block, which has one
1299    /// path from the entry by definition.
1300    void SetAsEntry() { TopDownPathCount = 1; }
1301
1302    /// SetAsExit - Mark this block as being an exit block, which has one
1303    /// path to an exit by definition.
1304    void SetAsExit()  { BottomUpPathCount = 1; }
1305
1306    PtrState &getPtrTopDownState(const Value *Arg) {
1307      return PerPtrTopDown[Arg];
1308    }
1309
1310    PtrState &getPtrBottomUpState(const Value *Arg) {
1311      return PerPtrBottomUp[Arg];
1312    }
1313
1314    void clearBottomUpPointers() {
1315      PerPtrBottomUp.clear();
1316    }
1317
1318    void clearTopDownPointers() {
1319      PerPtrTopDown.clear();
1320    }
1321
1322    void InitFromPred(const BBState &Other);
1323    void InitFromSucc(const BBState &Other);
1324    void MergePred(const BBState &Other);
1325    void MergeSucc(const BBState &Other);
1326
1327    /// GetAllPathCount - Return the number of possible unique paths from an
1328    /// entry to an exit which pass through this block. This is only valid
1329    /// after both the top-down and bottom-up traversals are complete.
1330    unsigned GetAllPathCount() const {
1331      return TopDownPathCount * BottomUpPathCount;
1332    }
1333  };
1334}
1335
1336void BBState::InitFromPred(const BBState &Other) {
1337  PerPtrTopDown = Other.PerPtrTopDown;
1338  TopDownPathCount = Other.TopDownPathCount;
1339}
1340
1341void BBState::InitFromSucc(const BBState &Other) {
1342  PerPtrBottomUp = Other.PerPtrBottomUp;
1343  BottomUpPathCount = Other.BottomUpPathCount;
1344}
1345
1346/// MergePred - The top-down traversal uses this to merge information about
1347/// predecessors to form the initial state for a new block.
1348void BBState::MergePred(const BBState &Other) {
1349  // Other.TopDownPathCount can be 0, in which case it is either dead or a
1350  // loop backedge. Loop backedges are special.
1351  TopDownPathCount += Other.TopDownPathCount;
1352
1353  // For each entry in the other set, if our set has an entry with the same key,
1354  // merge the entries. Otherwise, copy the entry and merge it with an empty
1355  // entry.
1356  for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
1357       ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
1358    std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
1359    Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
1360                             /*TopDown=*/true);
1361  }
1362
1363  // For each entry in our set, if the other set doesn't have an entry with the
1364  // same key, force it to merge with an empty entry.
1365  for (ptr_iterator MI = top_down_ptr_begin(),
1366       ME = top_down_ptr_end(); MI != ME; ++MI)
1367    if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
1368      MI->second.Merge(PtrState(), /*TopDown=*/true);
1369}
1370
1371/// MergeSucc - The bottom-up traversal uses this to merge information about
1372/// successors to form the initial state for a new block.
1373void BBState::MergeSucc(const BBState &Other) {
1374  // Other.BottomUpPathCount can be 0, in which case it is either dead or a
1375  // loop backedge. Loop backedges are special.
1376  BottomUpPathCount += Other.BottomUpPathCount;
1377
1378  // For each entry in the other set, if our set has an entry with the
1379  // same key, merge the entries. Otherwise, copy the entry and merge
1380  // it with an empty entry.
1381  for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
1382       ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
1383    std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
1384    Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
1385                             /*TopDown=*/false);
1386  }
1387
1388  // For each entry in our set, if the other set doesn't have an entry
1389  // with the same key, force it to merge with an empty entry.
1390  for (ptr_iterator MI = bottom_up_ptr_begin(),
1391       ME = bottom_up_ptr_end(); MI != ME; ++MI)
1392    if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
1393      MI->second.Merge(PtrState(), /*TopDown=*/false);
1394}
1395
1396namespace {
1397  /// ObjCARCOpt - The main ARC optimization pass.
1398  class ObjCARCOpt : public FunctionPass {
1399    bool Changed;
1400    ProvenanceAnalysis PA;
1401
1402    /// Run - A flag indicating whether this optimization pass should run.
1403    bool Run;
1404
1405    /// RetainRVCallee, etc. - Declarations for ObjC runtime
1406    /// functions, for use in creating calls to them. These are initialized
1407    /// lazily to avoid cluttering up the Module with unused declarations.
1408    Constant *RetainRVCallee, *AutoreleaseRVCallee, *ReleaseCallee,
1409             *RetainCallee, *RetainBlockCallee, *AutoreleaseCallee;
1410
1411    /// UsedInThisFunciton - Flags which determine whether each of the
1412    /// interesting runtine functions is in fact used in the current function.
1413    unsigned UsedInThisFunction;
1414
1415    /// ImpreciseReleaseMDKind - The Metadata Kind for clang.imprecise_release
1416    /// metadata.
1417    unsigned ImpreciseReleaseMDKind;
1418
1419    Constant *getRetainRVCallee(Module *M);
1420    Constant *getAutoreleaseRVCallee(Module *M);
1421    Constant *getReleaseCallee(Module *M);
1422    Constant *getRetainCallee(Module *M);
1423    Constant *getRetainBlockCallee(Module *M);
1424    Constant *getAutoreleaseCallee(Module *M);
1425
1426    void OptimizeRetainCall(Function &F, Instruction *Retain);
1427    bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
1428    void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV);
1429    void OptimizeIndividualCalls(Function &F);
1430
1431    void CheckForCFGHazards(const BasicBlock *BB,
1432                            DenseMap<const BasicBlock *, BBState> &BBStates,
1433                            BBState &MyStates) const;
1434    bool VisitBottomUp(BasicBlock *BB,
1435                       DenseMap<const BasicBlock *, BBState> &BBStates,
1436                       MapVector<Value *, RRInfo> &Retains);
1437    bool VisitTopDown(BasicBlock *BB,
1438                      DenseMap<const BasicBlock *, BBState> &BBStates,
1439                      DenseMap<Value *, RRInfo> &Releases);
1440    bool Visit(Function &F,
1441               DenseMap<const BasicBlock *, BBState> &BBStates,
1442               MapVector<Value *, RRInfo> &Retains,
1443               DenseMap<Value *, RRInfo> &Releases);
1444
1445    void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
1446                   MapVector<Value *, RRInfo> &Retains,
1447                   DenseMap<Value *, RRInfo> &Releases,
1448                   SmallVectorImpl<Instruction *> &DeadInsts,
1449                   Module *M);
1450
1451    bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
1452                              MapVector<Value *, RRInfo> &Retains,
1453                              DenseMap<Value *, RRInfo> &Releases,
1454                              Module *M);
1455
1456    void OptimizeWeakCalls(Function &F);
1457
1458    bool OptimizeSequences(Function &F);
1459
1460    void OptimizeReturns(Function &F);
1461
1462    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
1463    virtual bool doInitialization(Module &M);
1464    virtual bool runOnFunction(Function &F);
1465    virtual void releaseMemory();
1466
1467  public:
1468    static char ID;
1469    ObjCARCOpt() : FunctionPass(ID) {
1470      initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
1471    }
1472  };
1473}
1474
1475char ObjCARCOpt::ID = 0;
1476INITIALIZE_PASS_BEGIN(ObjCARCOpt,
1477                      "objc-arc", "ObjC ARC optimization", false, false)
1478INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
1479INITIALIZE_PASS_END(ObjCARCOpt,
1480                    "objc-arc", "ObjC ARC optimization", false, false)
1481
1482Pass *llvm::createObjCARCOptPass() {
1483  return new ObjCARCOpt();
1484}
1485
1486void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
1487  AU.addRequired<ObjCARCAliasAnalysis>();
1488  AU.addRequired<AliasAnalysis>();
1489  // ARC optimization doesn't currently split critical edges.
1490  AU.setPreservesCFG();
1491}
1492
1493Constant *ObjCARCOpt::getRetainRVCallee(Module *M) {
1494  if (!RetainRVCallee) {
1495    LLVMContext &C = M->getContext();
1496    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
1497    std::vector<Type *> Params;
1498    Params.push_back(I8X);
1499    FunctionType *FTy =
1500      FunctionType::get(I8X, Params, /*isVarArg=*/false);
1501    AttrListPtr Attributes;
1502    Attributes.addAttr(~0u, Attribute::NoUnwind);
1503    RetainRVCallee =
1504      M->getOrInsertFunction("objc_retainAutoreleasedReturnValue", FTy,
1505                             Attributes);
1506  }
1507  return RetainRVCallee;
1508}
1509
1510Constant *ObjCARCOpt::getAutoreleaseRVCallee(Module *M) {
1511  if (!AutoreleaseRVCallee) {
1512    LLVMContext &C = M->getContext();
1513    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
1514    std::vector<Type *> Params;
1515    Params.push_back(I8X);
1516    FunctionType *FTy =
1517      FunctionType::get(I8X, Params, /*isVarArg=*/false);
1518    AttrListPtr Attributes;
1519    Attributes.addAttr(~0u, Attribute::NoUnwind);
1520    AutoreleaseRVCallee =
1521      M->getOrInsertFunction("objc_autoreleaseReturnValue", FTy,
1522                             Attributes);
1523  }
1524  return AutoreleaseRVCallee;
1525}
1526
1527Constant *ObjCARCOpt::getReleaseCallee(Module *M) {
1528  if (!ReleaseCallee) {
1529    LLVMContext &C = M->getContext();
1530    std::vector<Type *> Params;
1531    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1532    AttrListPtr Attributes;
1533    Attributes.addAttr(~0u, Attribute::NoUnwind);
1534    ReleaseCallee =
1535      M->getOrInsertFunction(
1536        "objc_release",
1537        FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
1538        Attributes);
1539  }
1540  return ReleaseCallee;
1541}
1542
1543Constant *ObjCARCOpt::getRetainCallee(Module *M) {
1544  if (!RetainCallee) {
1545    LLVMContext &C = M->getContext();
1546    std::vector<Type *> Params;
1547    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1548    AttrListPtr Attributes;
1549    Attributes.addAttr(~0u, Attribute::NoUnwind);
1550    RetainCallee =
1551      M->getOrInsertFunction(
1552        "objc_retain",
1553        FunctionType::get(Params[0], Params, /*isVarArg=*/false),
1554        Attributes);
1555  }
1556  return RetainCallee;
1557}
1558
1559Constant *ObjCARCOpt::getRetainBlockCallee(Module *M) {
1560  if (!RetainBlockCallee) {
1561    LLVMContext &C = M->getContext();
1562    std::vector<Type *> Params;
1563    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1564    AttrListPtr Attributes;
1565    Attributes.addAttr(~0u, Attribute::NoUnwind);
1566    RetainBlockCallee =
1567      M->getOrInsertFunction(
1568        "objc_retainBlock",
1569        FunctionType::get(Params[0], Params, /*isVarArg=*/false),
1570        Attributes);
1571  }
1572  return RetainBlockCallee;
1573}
1574
1575Constant *ObjCARCOpt::getAutoreleaseCallee(Module *M) {
1576  if (!AutoreleaseCallee) {
1577    LLVMContext &C = M->getContext();
1578    std::vector<Type *> Params;
1579    Params.push_back(PointerType::getUnqual(Type::getInt8Ty(C)));
1580    AttrListPtr Attributes;
1581    Attributes.addAttr(~0u, Attribute::NoUnwind);
1582    AutoreleaseCallee =
1583      M->getOrInsertFunction(
1584        "objc_autorelease",
1585        FunctionType::get(Params[0], Params, /*isVarArg=*/false),
1586        Attributes);
1587  }
1588  return AutoreleaseCallee;
1589}
1590
1591/// CanAlterRefCount - Test whether the given instruction can result in a
1592/// reference count modification (positive or negative) for the pointer's
1593/// object.
1594static bool
1595CanAlterRefCount(const Instruction *Inst, const Value *Ptr,
1596                 ProvenanceAnalysis &PA, InstructionClass Class) {
1597  switch (Class) {
1598  case IC_Autorelease:
1599  case IC_AutoreleaseRV:
1600  case IC_User:
1601    // These operations never directly modify a reference count.
1602    return false;
1603  default: break;
1604  }
1605
1606  ImmutableCallSite CS = static_cast<const Value *>(Inst);
1607  assert(CS && "Only calls can alter reference counts!");
1608
1609  // See if AliasAnalysis can help us with the call.
1610  AliasAnalysis::ModRefBehavior MRB = PA.getAA()->getModRefBehavior(CS);
1611  if (AliasAnalysis::onlyReadsMemory(MRB))
1612    return false;
1613  if (AliasAnalysis::onlyAccessesArgPointees(MRB)) {
1614    for (ImmutableCallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
1615         I != E; ++I) {
1616      const Value *Op = *I;
1617      if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1618        return true;
1619    }
1620    return false;
1621  }
1622
1623  // Assume the worst.
1624  return true;
1625}
1626
1627/// CanUse - Test whether the given instruction can "use" the given pointer's
1628/// object in a way that requires the reference count to be positive.
1629static bool
1630CanUse(const Instruction *Inst, const Value *Ptr, ProvenanceAnalysis &PA,
1631       InstructionClass Class) {
1632  // IC_Call operations (as opposed to IC_CallOrUser) never "use" objc pointers.
1633  if (Class == IC_Call)
1634    return false;
1635
1636  // Consider various instructions which may have pointer arguments which are
1637  // not "uses".
1638  if (const ICmpInst *ICI = dyn_cast<ICmpInst>(Inst)) {
1639    // Comparing a pointer with null, or any other constant, isn't really a use,
1640    // because we don't care what the pointer points to, or about the values
1641    // of any other dynamic reference-counted pointers.
1642    if (!IsPotentialUse(ICI->getOperand(1)))
1643      return false;
1644  } else if (ImmutableCallSite CS = static_cast<const Value *>(Inst)) {
1645    // For calls, just check the arguments (and not the callee operand).
1646    for (ImmutableCallSite::arg_iterator OI = CS.arg_begin(),
1647         OE = CS.arg_end(); OI != OE; ++OI) {
1648      const Value *Op = *OI;
1649      if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1650        return true;
1651    }
1652    return false;
1653  } else if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1654    // Special-case stores, because we don't care about the stored value, just
1655    // the store address.
1656    const Value *Op = GetUnderlyingObjCPtr(SI->getPointerOperand());
1657    // If we can't tell what the underlying object was, assume there is a
1658    // dependence.
1659    return IsPotentialUse(Op) && PA.related(Op, Ptr);
1660  }
1661
1662  // Check each operand for a match.
1663  for (User::const_op_iterator OI = Inst->op_begin(), OE = Inst->op_end();
1664       OI != OE; ++OI) {
1665    const Value *Op = *OI;
1666    if (IsPotentialUse(Op) && PA.related(Ptr, Op))
1667      return true;
1668  }
1669  return false;
1670}
1671
1672/// CanInterruptRV - Test whether the given instruction can autorelease
1673/// any pointer or cause an autoreleasepool pop.
1674static bool
1675CanInterruptRV(InstructionClass Class) {
1676  switch (Class) {
1677  case IC_AutoreleasepoolPop:
1678  case IC_CallOrUser:
1679  case IC_Call:
1680  case IC_Autorelease:
1681  case IC_AutoreleaseRV:
1682  case IC_FusedRetainAutorelease:
1683  case IC_FusedRetainAutoreleaseRV:
1684    return true;
1685  default:
1686    return false;
1687  }
1688}
1689
1690namespace {
1691  /// DependenceKind - There are several kinds of dependence-like concepts in
1692  /// use here.
1693  enum DependenceKind {
1694    NeedsPositiveRetainCount,
1695    CanChangeRetainCount,
1696    RetainAutoreleaseDep,       ///< Blocks objc_retainAutorelease.
1697    RetainAutoreleaseRVDep,     ///< Blocks objc_retainAutoreleaseReturnValue.
1698    RetainRVDep                 ///< Blocks objc_retainAutoreleasedReturnValue.
1699  };
1700}
1701
1702/// Depends - Test if there can be dependencies on Inst through Arg. This
1703/// function only tests dependencies relevant for removing pairs of calls.
1704static bool
1705Depends(DependenceKind Flavor, Instruction *Inst, const Value *Arg,
1706        ProvenanceAnalysis &PA) {
1707  // If we've reached the definition of Arg, stop.
1708  if (Inst == Arg)
1709    return true;
1710
1711  switch (Flavor) {
1712  case NeedsPositiveRetainCount: {
1713    InstructionClass Class = GetInstructionClass(Inst);
1714    switch (Class) {
1715    case IC_AutoreleasepoolPop:
1716    case IC_AutoreleasepoolPush:
1717    case IC_None:
1718      return false;
1719    default:
1720      return CanUse(Inst, Arg, PA, Class);
1721    }
1722  }
1723
1724  case CanChangeRetainCount: {
1725    InstructionClass Class = GetInstructionClass(Inst);
1726    switch (Class) {
1727    case IC_AutoreleasepoolPop:
1728      // Conservatively assume this can decrement any count.
1729      return true;
1730    case IC_AutoreleasepoolPush:
1731    case IC_None:
1732      return false;
1733    default:
1734      return CanAlterRefCount(Inst, Arg, PA, Class);
1735    }
1736  }
1737
1738  case RetainAutoreleaseDep:
1739    switch (GetBasicInstructionClass(Inst)) {
1740    case IC_AutoreleasepoolPop:
1741      // Don't merge an objc_autorelease with an objc_retain inside a different
1742      // autoreleasepool scope.
1743      return true;
1744    case IC_Retain:
1745    case IC_RetainRV:
1746      // Check for a retain of the same pointer for merging.
1747      return GetObjCArg(Inst) == Arg;
1748    default:
1749      // Nothing else matters for objc_retainAutorelease formation.
1750      return false;
1751    }
1752    break;
1753
1754  case RetainAutoreleaseRVDep: {
1755    InstructionClass Class = GetBasicInstructionClass(Inst);
1756    switch (Class) {
1757    case IC_Retain:
1758    case IC_RetainRV:
1759      // Check for a retain of the same pointer for merging.
1760      return GetObjCArg(Inst) == Arg;
1761    default:
1762      // Anything that can autorelease interrupts
1763      // retainAutoreleaseReturnValue formation.
1764      return CanInterruptRV(Class);
1765    }
1766    break;
1767  }
1768
1769  case RetainRVDep:
1770    return CanInterruptRV(GetBasicInstructionClass(Inst));
1771  }
1772
1773  llvm_unreachable("Invalid dependence flavor");
1774  return true;
1775}
1776
1777/// FindDependencies - Walk up the CFG from StartPos (which is in StartBB) and
1778/// find local and non-local dependencies on Arg.
1779/// TODO: Cache results?
1780static void
1781FindDependencies(DependenceKind Flavor,
1782                 const Value *Arg,
1783                 BasicBlock *StartBB, Instruction *StartInst,
1784                 SmallPtrSet<Instruction *, 4> &DependingInstructions,
1785                 SmallPtrSet<const BasicBlock *, 4> &Visited,
1786                 ProvenanceAnalysis &PA) {
1787  BasicBlock::iterator StartPos = StartInst;
1788
1789  SmallVector<std::pair<BasicBlock *, BasicBlock::iterator>, 4> Worklist;
1790  Worklist.push_back(std::make_pair(StartBB, StartPos));
1791  do {
1792    std::pair<BasicBlock *, BasicBlock::iterator> Pair =
1793      Worklist.pop_back_val();
1794    BasicBlock *LocalStartBB = Pair.first;
1795    BasicBlock::iterator LocalStartPos = Pair.second;
1796    BasicBlock::iterator StartBBBegin = LocalStartBB->begin();
1797    for (;;) {
1798      if (LocalStartPos == StartBBBegin) {
1799        pred_iterator PI(LocalStartBB), PE(LocalStartBB, false);
1800        if (PI == PE)
1801          // If we've reached the function entry, produce a null dependence.
1802          DependingInstructions.insert(0);
1803        else
1804          // Add the predecessors to the worklist.
1805          do {
1806            BasicBlock *PredBB = *PI;
1807            if (Visited.insert(PredBB))
1808              Worklist.push_back(std::make_pair(PredBB, PredBB->end()));
1809          } while (++PI != PE);
1810        break;
1811      }
1812
1813      Instruction *Inst = --LocalStartPos;
1814      if (Depends(Flavor, Inst, Arg, PA)) {
1815        DependingInstructions.insert(Inst);
1816        break;
1817      }
1818    }
1819  } while (!Worklist.empty());
1820
1821  // Determine whether the original StartBB post-dominates all of the blocks we
1822  // visited. If not, insert a sentinal indicating that most optimizations are
1823  // not safe.
1824  for (SmallPtrSet<const BasicBlock *, 4>::const_iterator I = Visited.begin(),
1825       E = Visited.end(); I != E; ++I) {
1826    const BasicBlock *BB = *I;
1827    if (BB == StartBB)
1828      continue;
1829    const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
1830    for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI) {
1831      const BasicBlock *Succ = *SI;
1832      if (Succ != StartBB && !Visited.count(Succ)) {
1833        DependingInstructions.insert(reinterpret_cast<Instruction *>(-1));
1834        return;
1835      }
1836    }
1837  }
1838}
1839
1840static bool isNullOrUndef(const Value *V) {
1841  return isa<ConstantPointerNull>(V) || isa<UndefValue>(V);
1842}
1843
1844static bool isNoopInstruction(const Instruction *I) {
1845  return isa<BitCastInst>(I) ||
1846         (isa<GetElementPtrInst>(I) &&
1847          cast<GetElementPtrInst>(I)->hasAllZeroIndices());
1848}
1849
1850/// OptimizeRetainCall - Turn objc_retain into
1851/// objc_retainAutoreleasedReturnValue if the operand is a return value.
1852void
1853ObjCARCOpt::OptimizeRetainCall(Function &F, Instruction *Retain) {
1854  CallSite CS(GetObjCArg(Retain));
1855  Instruction *Call = CS.getInstruction();
1856  if (!Call) return;
1857  if (Call->getParent() != Retain->getParent()) return;
1858
1859  // Check that the call is next to the retain.
1860  BasicBlock::iterator I = Call;
1861  ++I;
1862  while (isNoopInstruction(I)) ++I;
1863  if (&*I != Retain)
1864    return;
1865
1866  // Turn it to an objc_retainAutoreleasedReturnValue..
1867  Changed = true;
1868  ++NumPeeps;
1869  cast<CallInst>(Retain)->setCalledFunction(getRetainRVCallee(F.getParent()));
1870}
1871
1872/// OptimizeRetainRVCall - Turn objc_retainAutoreleasedReturnValue into
1873/// objc_retain if the operand is not a return value.  Or, if it can be
1874/// paired with an objc_autoreleaseReturnValue, delete the pair and
1875/// return true.
1876bool
1877ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
1878  // Check for the argument being from an immediately preceding call.
1879  Value *Arg = GetObjCArg(RetainRV);
1880  CallSite CS(Arg);
1881  if (Instruction *Call = CS.getInstruction())
1882    if (Call->getParent() == RetainRV->getParent()) {
1883      BasicBlock::iterator I = Call;
1884      ++I;
1885      while (isNoopInstruction(I)) ++I;
1886      if (&*I == RetainRV)
1887        return false;
1888    }
1889
1890  // Check for being preceded by an objc_autoreleaseReturnValue on the same
1891  // pointer. In this case, we can delete the pair.
1892  BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
1893  if (I != Begin) {
1894    do --I; while (I != Begin && isNoopInstruction(I));
1895    if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
1896        GetObjCArg(I) == Arg) {
1897      Changed = true;
1898      ++NumPeeps;
1899      EraseInstruction(I);
1900      EraseInstruction(RetainRV);
1901      return true;
1902    }
1903  }
1904
1905  // Turn it to a plain objc_retain.
1906  Changed = true;
1907  ++NumPeeps;
1908  cast<CallInst>(RetainRV)->setCalledFunction(getRetainCallee(F.getParent()));
1909  return false;
1910}
1911
1912/// OptimizeAutoreleaseRVCall - Turn objc_autoreleaseReturnValue into
1913/// objc_autorelease if the result is not used as a return value.
1914void
1915ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV) {
1916  // Check for a return of the pointer value.
1917  const Value *Ptr = GetObjCArg(AutoreleaseRV);
1918  for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
1919       UI != UE; ++UI) {
1920    const User *I = *UI;
1921    if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
1922      return;
1923  }
1924
1925  Changed = true;
1926  ++NumPeeps;
1927  cast<CallInst>(AutoreleaseRV)->
1928    setCalledFunction(getAutoreleaseCallee(F.getParent()));
1929}
1930
1931/// OptimizeIndividualCalls - Visit each call, one at a time, and make
1932/// simplifications without doing any additional analysis.
1933void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
1934  // Reset all the flags in preparation for recomputing them.
1935  UsedInThisFunction = 0;
1936
1937  // Visit all objc_* calls in F.
1938  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
1939    Instruction *Inst = &*I++;
1940    InstructionClass Class = GetBasicInstructionClass(Inst);
1941
1942    switch (Class) {
1943    default: break;
1944
1945    // Delete no-op casts. These function calls have special semantics, but
1946    // the semantics are entirely implemented via lowering in the front-end,
1947    // so by the time they reach the optimizer, they are just no-op calls
1948    // which return their argument.
1949    //
1950    // There are gray areas here, as the ability to cast reference-counted
1951    // pointers to raw void* and back allows code to break ARC assumptions,
1952    // however these are currently considered to be unimportant.
1953    case IC_NoopCast:
1954      Changed = true;
1955      ++NumNoops;
1956      EraseInstruction(Inst);
1957      continue;
1958
1959    // If the pointer-to-weak-pointer is null, it's undefined behavior.
1960    case IC_StoreWeak:
1961    case IC_LoadWeak:
1962    case IC_LoadWeakRetained:
1963    case IC_InitWeak:
1964    case IC_DestroyWeak: {
1965      CallInst *CI = cast<CallInst>(Inst);
1966      if (isNullOrUndef(CI->getArgOperand(0))) {
1967        Type *Ty = CI->getArgOperand(0)->getType();
1968        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
1969                      Constant::getNullValue(Ty),
1970                      CI);
1971        CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
1972        CI->eraseFromParent();
1973        continue;
1974      }
1975      break;
1976    }
1977    case IC_CopyWeak:
1978    case IC_MoveWeak: {
1979      CallInst *CI = cast<CallInst>(Inst);
1980      if (isNullOrUndef(CI->getArgOperand(0)) ||
1981          isNullOrUndef(CI->getArgOperand(1))) {
1982        Type *Ty = CI->getArgOperand(0)->getType();
1983        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
1984                      Constant::getNullValue(Ty),
1985                      CI);
1986        CI->replaceAllUsesWith(UndefValue::get(CI->getType()));
1987        CI->eraseFromParent();
1988        continue;
1989      }
1990      break;
1991    }
1992    case IC_Retain:
1993      OptimizeRetainCall(F, Inst);
1994      break;
1995    case IC_RetainRV:
1996      if (OptimizeRetainRVCall(F, Inst))
1997        continue;
1998      break;
1999    case IC_AutoreleaseRV:
2000      OptimizeAutoreleaseRVCall(F, Inst);
2001      break;
2002    }
2003
2004    // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
2005    if (IsAutorelease(Class) && Inst->use_empty()) {
2006      CallInst *Call = cast<CallInst>(Inst);
2007      const Value *Arg = Call->getArgOperand(0);
2008      Arg = FindSingleUseIdentifiedObject(Arg);
2009      if (Arg) {
2010        Changed = true;
2011        ++NumAutoreleases;
2012
2013        // Create the declaration lazily.
2014        LLVMContext &C = Inst->getContext();
2015        CallInst *NewCall =
2016          CallInst::Create(getReleaseCallee(F.getParent()),
2017                           Call->getArgOperand(0), "", Call);
2018        NewCall->setMetadata(ImpreciseReleaseMDKind,
2019                             MDNode::get(C, ArrayRef<Value *>()));
2020        EraseInstruction(Call);
2021        Inst = NewCall;
2022        Class = IC_Release;
2023      }
2024    }
2025
2026    // For functions which can never be passed stack arguments, add
2027    // a tail keyword.
2028    if (IsAlwaysTail(Class)) {
2029      Changed = true;
2030      cast<CallInst>(Inst)->setTailCall();
2031    }
2032
2033    // Set nounwind as needed.
2034    if (IsNoThrow(Class)) {
2035      Changed = true;
2036      cast<CallInst>(Inst)->setDoesNotThrow();
2037    }
2038
2039    if (!IsNoopOnNull(Class)) {
2040      UsedInThisFunction |= 1 << Class;
2041      continue;
2042    }
2043
2044    const Value *Arg = GetObjCArg(Inst);
2045
2046    // ARC calls with null are no-ops. Delete them.
2047    if (isNullOrUndef(Arg)) {
2048      Changed = true;
2049      ++NumNoops;
2050      EraseInstruction(Inst);
2051      continue;
2052    }
2053
2054    // Keep track of which of retain, release, autorelease, and retain_block
2055    // are actually present in this function.
2056    UsedInThisFunction |= 1 << Class;
2057
2058    // If Arg is a PHI, and one or more incoming values to the
2059    // PHI are null, and the call is control-equivalent to the PHI, and there
2060    // are no relevant side effects between the PHI and the call, the call
2061    // could be pushed up to just those paths with non-null incoming values.
2062    // For now, don't bother splitting critical edges for this.
2063    SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
2064    Worklist.push_back(std::make_pair(Inst, Arg));
2065    do {
2066      std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
2067      Inst = Pair.first;
2068      Arg = Pair.second;
2069
2070      const PHINode *PN = dyn_cast<PHINode>(Arg);
2071      if (!PN) continue;
2072
2073      // Determine if the PHI has any null operands, or any incoming
2074      // critical edges.
2075      bool HasNull = false;
2076      bool HasCriticalEdges = false;
2077      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2078        Value *Incoming =
2079          StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
2080        if (isNullOrUndef(Incoming))
2081          HasNull = true;
2082        else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
2083                   .getNumSuccessors() != 1) {
2084          HasCriticalEdges = true;
2085          break;
2086        }
2087      }
2088      // If we have null operands and no critical edges, optimize.
2089      if (!HasCriticalEdges && HasNull) {
2090        SmallPtrSet<Instruction *, 4> DependingInstructions;
2091        SmallPtrSet<const BasicBlock *, 4> Visited;
2092
2093        // Check that there is nothing that cares about the reference
2094        // count between the call and the phi.
2095        FindDependencies(NeedsPositiveRetainCount, Arg,
2096                         Inst->getParent(), Inst,
2097                         DependingInstructions, Visited, PA);
2098        if (DependingInstructions.size() == 1 &&
2099            *DependingInstructions.begin() == PN) {
2100          Changed = true;
2101          ++NumPartialNoops;
2102          // Clone the call into each predecessor that has a non-null value.
2103          CallInst *CInst = cast<CallInst>(Inst);
2104          Type *ParamTy = CInst->getArgOperand(0)->getType();
2105          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2106            Value *Incoming =
2107              StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
2108            if (!isNullOrUndef(Incoming)) {
2109              CallInst *Clone = cast<CallInst>(CInst->clone());
2110              Value *Op = PN->getIncomingValue(i);
2111              Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
2112              if (Op->getType() != ParamTy)
2113                Op = new BitCastInst(Op, ParamTy, "", InsertPos);
2114              Clone->setArgOperand(0, Op);
2115              Clone->insertBefore(InsertPos);
2116              Worklist.push_back(std::make_pair(Clone, Incoming));
2117            }
2118          }
2119          // Erase the original call.
2120          EraseInstruction(CInst);
2121          continue;
2122        }
2123      }
2124    } while (!Worklist.empty());
2125  }
2126}
2127
2128/// CheckForCFGHazards - Check for critical edges, loop boundaries, irreducible
2129/// control flow, or other CFG structures where moving code across the edge
2130/// would result in it being executed more.
2131void
2132ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
2133                               DenseMap<const BasicBlock *, BBState> &BBStates,
2134                               BBState &MyStates) const {
2135  // If any top-down local-use or possible-dec has a succ which is earlier in
2136  // the sequence, forget it.
2137  for (BBState::ptr_const_iterator I = MyStates.top_down_ptr_begin(),
2138       E = MyStates.top_down_ptr_end(); I != E; ++I)
2139    switch (I->second.GetSeq()) {
2140    default: break;
2141    case S_Use: {
2142      const Value *Arg = I->first;
2143      const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2144      bool SomeSuccHasSame = false;
2145      bool AllSuccsHaveSame = true;
2146      for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI)
2147        switch (BBStates[*SI].getPtrBottomUpState(Arg).GetSeq()) {
2148        case S_None:
2149        case S_CanRelease:
2150          MyStates.getPtrTopDownState(Arg).ClearSequenceProgress();
2151          SomeSuccHasSame = false;
2152          break;
2153        case S_Use:
2154          SomeSuccHasSame = true;
2155          break;
2156        case S_Stop:
2157        case S_Release:
2158        case S_MovableRelease:
2159          AllSuccsHaveSame = false;
2160          break;
2161        case S_Retain:
2162          llvm_unreachable("bottom-up pointer in retain state!");
2163        }
2164      // If the state at the other end of any of the successor edges
2165      // matches the current state, require all edges to match. This
2166      // guards against loops in the middle of a sequence.
2167      if (SomeSuccHasSame && !AllSuccsHaveSame)
2168        MyStates.getPtrTopDownState(Arg).ClearSequenceProgress();
2169    }
2170    case S_CanRelease: {
2171      const Value *Arg = I->first;
2172      const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2173      bool SomeSuccHasSame = false;
2174      bool AllSuccsHaveSame = true;
2175      for (succ_const_iterator SI(TI), SE(TI, false); SI != SE; ++SI)
2176        switch (BBStates[*SI].getPtrBottomUpState(Arg).GetSeq()) {
2177        case S_None:
2178          MyStates.getPtrTopDownState(Arg).ClearSequenceProgress();
2179          SomeSuccHasSame = false;
2180          break;
2181        case S_CanRelease:
2182          SomeSuccHasSame = true;
2183          break;
2184        case S_Stop:
2185        case S_Release:
2186        case S_MovableRelease:
2187        case S_Use:
2188          AllSuccsHaveSame = false;
2189          break;
2190        case S_Retain:
2191          llvm_unreachable("bottom-up pointer in retain state!");
2192        }
2193      // If the state at the other end of any of the successor edges
2194      // matches the current state, require all edges to match. This
2195      // guards against loops in the middle of a sequence.
2196      if (SomeSuccHasSame && !AllSuccsHaveSame)
2197        MyStates.getPtrTopDownState(Arg).ClearSequenceProgress();
2198    }
2199    }
2200}
2201
2202bool
2203ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
2204                          DenseMap<const BasicBlock *, BBState> &BBStates,
2205                          MapVector<Value *, RRInfo> &Retains) {
2206  bool NestingDetected = false;
2207  BBState &MyStates = BBStates[BB];
2208
2209  // Merge the states from each successor to compute the initial state
2210  // for the current block.
2211  const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
2212  succ_const_iterator SI(TI), SE(TI, false);
2213  if (SI == SE)
2214    MyStates.SetAsExit();
2215  else
2216    do {
2217      const BasicBlock *Succ = *SI++;
2218      if (Succ == BB)
2219        continue;
2220      DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
2221      if (I == BBStates.end())
2222        continue;
2223      MyStates.InitFromSucc(I->second);
2224      while (SI != SE) {
2225        Succ = *SI++;
2226        if (Succ != BB) {
2227          I = BBStates.find(Succ);
2228          if (I != BBStates.end())
2229            MyStates.MergeSucc(I->second);
2230        }
2231      }
2232      break;
2233    } while (SI != SE);
2234
2235  // Visit all the instructions, bottom-up.
2236  for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
2237    Instruction *Inst = llvm::prior(I);
2238    InstructionClass Class = GetInstructionClass(Inst);
2239    const Value *Arg = 0;
2240
2241    switch (Class) {
2242    case IC_Release: {
2243      Arg = GetObjCArg(Inst);
2244
2245      PtrState &S = MyStates.getPtrBottomUpState(Arg);
2246
2247      // If we see two releases in a row on the same pointer. If so, make
2248      // a note, and we'll cicle back to revisit it after we've
2249      // hopefully eliminated the second release, which may allow us to
2250      // eliminate the first release too.
2251      // Theoretically we could implement removal of nested retain+release
2252      // pairs by making PtrState hold a stack of states, but this is
2253      // simple and avoids adding overhead for the non-nested case.
2254      if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease)
2255        NestingDetected = true;
2256
2257      S.SetSeqToRelease(Inst->getMetadata(ImpreciseReleaseMDKind));
2258      S.RRI.clear();
2259      S.RRI.KnownIncremented = S.IsKnownIncremented();
2260      S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
2261      S.RRI.Calls.insert(Inst);
2262
2263      S.IncrementRefCount();
2264      break;
2265    }
2266    case IC_RetainBlock:
2267    case IC_Retain:
2268    case IC_RetainRV: {
2269      Arg = GetObjCArg(Inst);
2270
2271      PtrState &S = MyStates.getPtrBottomUpState(Arg);
2272      S.DecrementRefCount();
2273
2274      switch (S.GetSeq()) {
2275      case S_Stop:
2276      case S_Release:
2277      case S_MovableRelease:
2278      case S_Use:
2279        S.RRI.ReverseInsertPts.clear();
2280        // FALL THROUGH
2281      case S_CanRelease:
2282        // Don't do retain+release tracking for IC_RetainRV, because it's
2283        // better to let it remain as the first instruction after a call.
2284        if (Class != IC_RetainRV) {
2285          S.RRI.IsRetainBlock = Class == IC_RetainBlock;
2286          Retains[Inst] = S.RRI;
2287        }
2288        S.ClearSequenceProgress();
2289        break;
2290      case S_None:
2291        break;
2292      case S_Retain:
2293        llvm_unreachable("bottom-up pointer in retain state!");
2294      }
2295      break;
2296    }
2297    case IC_AutoreleasepoolPop:
2298      // Conservatively, clear MyStates for all known pointers.
2299      MyStates.clearBottomUpPointers();
2300      continue;
2301    case IC_AutoreleasepoolPush:
2302    case IC_None:
2303      // These are irrelevant.
2304      continue;
2305    default:
2306      break;
2307    }
2308
2309    // Consider any other possible effects of this instruction on each
2310    // pointer being tracked.
2311    for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
2312         ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
2313      const Value *Ptr = MI->first;
2314      if (Ptr == Arg)
2315        continue; // Handled above.
2316      PtrState &S = MI->second;
2317      Sequence Seq = S.GetSeq();
2318
2319      // Check for possible retains and releases.
2320      if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
2321        // Check for a retain (we're going bottom-up here).
2322        S.DecrementRefCount();
2323
2324        // Check for a release.
2325        if (!IsRetain(Class) && Class != IC_RetainBlock)
2326          switch (Seq) {
2327          case S_Use:
2328            S.SetSeq(S_CanRelease);
2329            continue;
2330          case S_CanRelease:
2331          case S_Release:
2332          case S_MovableRelease:
2333          case S_Stop:
2334          case S_None:
2335            break;
2336          case S_Retain:
2337            llvm_unreachable("bottom-up pointer in retain state!");
2338          }
2339      }
2340
2341      // Check for possible direct uses.
2342      switch (Seq) {
2343      case S_Release:
2344      case S_MovableRelease:
2345        if (CanUse(Inst, Ptr, PA, Class)) {
2346          S.RRI.ReverseInsertPts.clear();
2347          S.RRI.ReverseInsertPts.insert(Inst);
2348          S.SetSeq(S_Use);
2349        } else if (Seq == S_Release &&
2350                   (Class == IC_User || Class == IC_CallOrUser)) {
2351          // Non-movable releases depend on any possible objc pointer use.
2352          S.SetSeq(S_Stop);
2353          S.RRI.ReverseInsertPts.clear();
2354          S.RRI.ReverseInsertPts.insert(Inst);
2355        }
2356        break;
2357      case S_Stop:
2358        if (CanUse(Inst, Ptr, PA, Class))
2359          S.SetSeq(S_Use);
2360        break;
2361      case S_CanRelease:
2362      case S_Use:
2363      case S_None:
2364        break;
2365      case S_Retain:
2366        llvm_unreachable("bottom-up pointer in retain state!");
2367      }
2368    }
2369  }
2370
2371  return NestingDetected;
2372}
2373
2374bool
2375ObjCARCOpt::VisitTopDown(BasicBlock *BB,
2376                         DenseMap<const BasicBlock *, BBState> &BBStates,
2377                         DenseMap<Value *, RRInfo> &Releases) {
2378  bool NestingDetected = false;
2379  BBState &MyStates = BBStates[BB];
2380
2381  // Merge the states from each predecessor to compute the initial state
2382  // for the current block.
2383  const_pred_iterator PI(BB), PE(BB, false);
2384  if (PI == PE)
2385    MyStates.SetAsEntry();
2386  else
2387    do {
2388      const BasicBlock *Pred = *PI++;
2389      if (Pred == BB)
2390        continue;
2391      DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
2392      if (I == BBStates.end())
2393        continue;
2394      MyStates.InitFromPred(I->second);
2395      while (PI != PE) {
2396        Pred = *PI++;
2397        if (Pred != BB) {
2398          I = BBStates.find(Pred);
2399          if (I != BBStates.end())
2400            MyStates.MergePred(I->second);
2401        }
2402      }
2403      break;
2404    } while (PI != PE);
2405
2406  // Visit all the instructions, top-down.
2407  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2408    Instruction *Inst = I;
2409    InstructionClass Class = GetInstructionClass(Inst);
2410    const Value *Arg = 0;
2411
2412    switch (Class) {
2413    case IC_RetainBlock:
2414    case IC_Retain:
2415    case IC_RetainRV: {
2416      Arg = GetObjCArg(Inst);
2417
2418      PtrState &S = MyStates.getPtrTopDownState(Arg);
2419
2420      // Don't do retain+release tracking for IC_RetainRV, because it's
2421      // better to let it remain as the first instruction after a call.
2422      if (Class != IC_RetainRV) {
2423        // If we see two retains in a row on the same pointer. If so, make
2424        // a note, and we'll cicle back to revisit it after we've
2425        // hopefully eliminated the second retain, which may allow us to
2426        // eliminate the first retain too.
2427        // Theoretically we could implement removal of nested retain+release
2428        // pairs by making PtrState hold a stack of states, but this is
2429        // simple and avoids adding overhead for the non-nested case.
2430        if (S.GetSeq() == S_Retain)
2431          NestingDetected = true;
2432
2433        S.SetSeq(S_Retain);
2434        S.RRI.clear();
2435        S.RRI.IsRetainBlock = Class == IC_RetainBlock;
2436        S.RRI.KnownIncremented = S.IsKnownIncremented();
2437        S.RRI.Calls.insert(Inst);
2438      }
2439
2440      S.IncrementRefCount();
2441      break;
2442    }
2443    case IC_Release: {
2444      Arg = GetObjCArg(Inst);
2445
2446      PtrState &S = MyStates.getPtrTopDownState(Arg);
2447      S.DecrementRefCount();
2448
2449      switch (S.GetSeq()) {
2450      case S_Retain:
2451      case S_CanRelease:
2452        S.RRI.ReverseInsertPts.clear();
2453        // FALL THROUGH
2454      case S_Use:
2455        S.RRI.ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
2456        S.RRI.IsTailCallRelease = cast<CallInst>(Inst)->isTailCall();
2457        Releases[Inst] = S.RRI;
2458        S.ClearSequenceProgress();
2459        break;
2460      case S_None:
2461        break;
2462      case S_Stop:
2463      case S_Release:
2464      case S_MovableRelease:
2465        llvm_unreachable("top-down pointer in release state!");
2466      }
2467      break;
2468    }
2469    case IC_AutoreleasepoolPop:
2470      // Conservatively, clear MyStates for all known pointers.
2471      MyStates.clearTopDownPointers();
2472      continue;
2473    case IC_AutoreleasepoolPush:
2474    case IC_None:
2475      // These are irrelevant.
2476      continue;
2477    default:
2478      break;
2479    }
2480
2481    // Consider any other possible effects of this instruction on each
2482    // pointer being tracked.
2483    for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
2484         ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
2485      const Value *Ptr = MI->first;
2486      if (Ptr == Arg)
2487        continue; // Handled above.
2488      PtrState &S = MI->second;
2489      Sequence Seq = S.GetSeq();
2490
2491      // Check for possible releases.
2492      if (!IsRetain(Class) && Class != IC_RetainBlock &&
2493          CanAlterRefCount(Inst, Ptr, PA, Class)) {
2494        // Check for a release.
2495        S.DecrementRefCount();
2496
2497        // Check for a release.
2498        switch (Seq) {
2499        case S_Retain:
2500          S.SetSeq(S_CanRelease);
2501          S.RRI.ReverseInsertPts.clear();
2502          S.RRI.ReverseInsertPts.insert(Inst);
2503
2504          // One call can't cause a transition from S_Retain to S_CanRelease
2505          // and S_CanRelease to S_Use. If we've made the first transition,
2506          // we're done.
2507          continue;
2508        case S_Use:
2509        case S_CanRelease:
2510        case S_None:
2511          break;
2512        case S_Stop:
2513        case S_Release:
2514        case S_MovableRelease:
2515          llvm_unreachable("top-down pointer in release state!");
2516        }
2517      }
2518
2519      // Check for possible direct uses.
2520      switch (Seq) {
2521      case S_CanRelease:
2522        if (CanUse(Inst, Ptr, PA, Class))
2523          S.SetSeq(S_Use);
2524        break;
2525      case S_Use:
2526      case S_Retain:
2527      case S_None:
2528        break;
2529      case S_Stop:
2530      case S_Release:
2531      case S_MovableRelease:
2532        llvm_unreachable("top-down pointer in release state!");
2533      }
2534    }
2535  }
2536
2537  CheckForCFGHazards(BB, BBStates, MyStates);
2538  return NestingDetected;
2539}
2540
2541// Visit - Visit the function both top-down and bottom-up.
2542bool
2543ObjCARCOpt::Visit(Function &F,
2544                  DenseMap<const BasicBlock *, BBState> &BBStates,
2545                  MapVector<Value *, RRInfo> &Retains,
2546                  DenseMap<Value *, RRInfo> &Releases) {
2547  // Use reverse-postorder on the reverse CFG for bottom-up, because we
2548  // magically know that loops will be well behaved, i.e. they won't repeatedly
2549  // call retain on a single pointer without doing a release. We can't use
2550  // ReversePostOrderTraversal here because we want to walk up from each
2551  // function exit point.
2552  SmallPtrSet<BasicBlock *, 16> Visited;
2553  SmallVector<std::pair<BasicBlock *, pred_iterator>, 16> Stack;
2554  SmallVector<BasicBlock *, 16> Order;
2555  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
2556    BasicBlock *BB = I;
2557    if (BB->getTerminator()->getNumSuccessors() == 0)
2558      Stack.push_back(std::make_pair(BB, pred_begin(BB)));
2559  }
2560  while (!Stack.empty()) {
2561    pred_iterator End = pred_end(Stack.back().first);
2562    while (Stack.back().second != End) {
2563      BasicBlock *BB = *Stack.back().second++;
2564      if (Visited.insert(BB))
2565        Stack.push_back(std::make_pair(BB, pred_begin(BB)));
2566    }
2567    Order.push_back(Stack.pop_back_val().first);
2568  }
2569  bool BottomUpNestingDetected = false;
2570  while (!Order.empty()) {
2571    BasicBlock *BB = Order.pop_back_val();
2572    BottomUpNestingDetected |= VisitBottomUp(BB, BBStates, Retains);
2573  }
2574
2575  // Use regular reverse-postorder for top-down.
2576  bool TopDownNestingDetected = false;
2577  typedef ReversePostOrderTraversal<Function *> RPOTType;
2578  RPOTType RPOT(&F);
2579  for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
2580    BasicBlock *BB = *I;
2581    TopDownNestingDetected |= VisitTopDown(BB, BBStates, Releases);
2582  }
2583
2584  return TopDownNestingDetected && BottomUpNestingDetected;
2585}
2586
2587/// MoveCalls - Move the calls in RetainsToMove and ReleasesToMove.
2588void ObjCARCOpt::MoveCalls(Value *Arg,
2589                           RRInfo &RetainsToMove,
2590                           RRInfo &ReleasesToMove,
2591                           MapVector<Value *, RRInfo> &Retains,
2592                           DenseMap<Value *, RRInfo> &Releases,
2593                           SmallVectorImpl<Instruction *> &DeadInsts,
2594                           Module *M) {
2595  Type *ArgTy = Arg->getType();
2596  Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
2597
2598  // Insert the new retain and release calls.
2599  for (SmallPtrSet<Instruction *, 2>::const_iterator
2600       PI = ReleasesToMove.ReverseInsertPts.begin(),
2601       PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
2602    Instruction *InsertPt = *PI;
2603    Value *MyArg = ArgTy == ParamTy ? Arg :
2604                   new BitCastInst(Arg, ParamTy, "", InsertPt);
2605    CallInst *Call =
2606      CallInst::Create(RetainsToMove.IsRetainBlock ?
2607                         getRetainBlockCallee(M) : getRetainCallee(M),
2608                       MyArg, "", InsertPt);
2609    Call->setDoesNotThrow();
2610    if (!RetainsToMove.IsRetainBlock)
2611      Call->setTailCall();
2612  }
2613  for (SmallPtrSet<Instruction *, 2>::const_iterator
2614       PI = RetainsToMove.ReverseInsertPts.begin(),
2615       PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
2616    Instruction *LastUse = *PI;
2617    Instruction *InsertPts[] = { 0, 0, 0 };
2618    if (InvokeInst *II = dyn_cast<InvokeInst>(LastUse)) {
2619      // We can't insert code immediately after an invoke instruction, so
2620      // insert code at the beginning of both successor blocks instead.
2621      // The invoke's return value isn't available in the unwind block,
2622      // but our releases will never depend on it, because they must be
2623      // paired with retains from before the invoke.
2624      InsertPts[0] = II->getNormalDest()->getFirstNonPHI();
2625      InsertPts[1] = II->getUnwindDest()->getFirstNonPHI();
2626    } else {
2627      // Insert code immediately after the last use.
2628      InsertPts[0] = llvm::next(BasicBlock::iterator(LastUse));
2629    }
2630
2631    for (Instruction **I = InsertPts; *I; ++I) {
2632      Instruction *InsertPt = *I;
2633      Value *MyArg = ArgTy == ParamTy ? Arg :
2634                     new BitCastInst(Arg, ParamTy, "", InsertPt);
2635      CallInst *Call = CallInst::Create(getReleaseCallee(M), MyArg,
2636                                        "", InsertPt);
2637      // Attach a clang.imprecise_release metadata tag, if appropriate.
2638      if (MDNode *M = ReleasesToMove.ReleaseMetadata)
2639        Call->setMetadata(ImpreciseReleaseMDKind, M);
2640      Call->setDoesNotThrow();
2641      if (ReleasesToMove.IsTailCallRelease)
2642        Call->setTailCall();
2643    }
2644  }
2645
2646  // Delete the original retain and release calls.
2647  for (SmallPtrSet<Instruction *, 2>::const_iterator
2648       AI = RetainsToMove.Calls.begin(),
2649       AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
2650    Instruction *OrigRetain = *AI;
2651    Retains.blot(OrigRetain);
2652    DeadInsts.push_back(OrigRetain);
2653  }
2654  for (SmallPtrSet<Instruction *, 2>::const_iterator
2655       AI = ReleasesToMove.Calls.begin(),
2656       AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
2657    Instruction *OrigRelease = *AI;
2658    Releases.erase(OrigRelease);
2659    DeadInsts.push_back(OrigRelease);
2660  }
2661}
2662
2663bool
2664ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
2665                                   &BBStates,
2666                                 MapVector<Value *, RRInfo> &Retains,
2667                                 DenseMap<Value *, RRInfo> &Releases,
2668                                 Module *M) {
2669  bool AnyPairsCompletelyEliminated = false;
2670  RRInfo RetainsToMove;
2671  RRInfo ReleasesToMove;
2672  SmallVector<Instruction *, 4> NewRetains;
2673  SmallVector<Instruction *, 4> NewReleases;
2674  SmallVector<Instruction *, 8> DeadInsts;
2675
2676  for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
2677       E = Retains.end(); I != E; ) {
2678    Value *V = (I++)->first;
2679    if (!V) continue; // blotted
2680
2681    Instruction *Retain = cast<Instruction>(V);
2682    Value *Arg = GetObjCArg(Retain);
2683
2684    // If the object being released is in static or stack storage, we know it's
2685    // not being managed by ObjC reference counting, so we can delete pairs
2686    // regardless of what possible decrements or uses lie between them.
2687    bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
2688
2689    // If a pair happens in a region where it is known that the reference count
2690    // is already incremented, we can similarly ignore possible decrements.
2691    bool KnownIncrementedTD = true, KnownIncrementedBU = true;
2692
2693    // Connect the dots between the top-down-collected RetainsToMove and
2694    // bottom-up-collected ReleasesToMove to form sets of related calls.
2695    // This is an iterative process so that we connect multiple releases
2696    // to multiple retains if needed.
2697    unsigned OldDelta = 0;
2698    unsigned NewDelta = 0;
2699    unsigned OldCount = 0;
2700    unsigned NewCount = 0;
2701    bool FirstRelease = true;
2702    bool FirstRetain = true;
2703    NewRetains.push_back(Retain);
2704    for (;;) {
2705      for (SmallVectorImpl<Instruction *>::const_iterator
2706           NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
2707        Instruction *NewRetain = *NI;
2708        MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
2709        assert(It != Retains.end());
2710        const RRInfo &NewRetainRRI = It->second;
2711        KnownIncrementedTD &= NewRetainRRI.KnownIncremented;
2712        for (SmallPtrSet<Instruction *, 2>::const_iterator
2713             LI = NewRetainRRI.Calls.begin(),
2714             LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
2715          Instruction *NewRetainRelease = *LI;
2716          DenseMap<Value *, RRInfo>::const_iterator Jt =
2717            Releases.find(NewRetainRelease);
2718          if (Jt == Releases.end())
2719            goto next_retain;
2720          const RRInfo &NewRetainReleaseRRI = Jt->second;
2721          assert(NewRetainReleaseRRI.Calls.count(NewRetain));
2722          if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
2723            OldDelta -=
2724              BBStates[NewRetainRelease->getParent()].GetAllPathCount();
2725
2726            // Merge the ReleaseMetadata and IsTailCallRelease values.
2727            if (FirstRelease) {
2728              ReleasesToMove.ReleaseMetadata =
2729                NewRetainReleaseRRI.ReleaseMetadata;
2730              ReleasesToMove.IsTailCallRelease =
2731                NewRetainReleaseRRI.IsTailCallRelease;
2732              FirstRelease = false;
2733            } else {
2734              if (ReleasesToMove.ReleaseMetadata !=
2735                    NewRetainReleaseRRI.ReleaseMetadata)
2736                ReleasesToMove.ReleaseMetadata = 0;
2737              if (ReleasesToMove.IsTailCallRelease !=
2738                    NewRetainReleaseRRI.IsTailCallRelease)
2739                ReleasesToMove.IsTailCallRelease = false;
2740            }
2741
2742            // Collect the optimal insertion points.
2743            if (!KnownSafe)
2744              for (SmallPtrSet<Instruction *, 2>::const_iterator
2745                   RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
2746                   RE = NewRetainReleaseRRI.ReverseInsertPts.end();
2747                   RI != RE; ++RI) {
2748                Instruction *RIP = *RI;
2749                if (ReleasesToMove.ReverseInsertPts.insert(RIP))
2750                  NewDelta -= BBStates[RIP->getParent()].GetAllPathCount();
2751              }
2752            NewReleases.push_back(NewRetainRelease);
2753          }
2754        }
2755      }
2756      NewRetains.clear();
2757      if (NewReleases.empty()) break;
2758
2759      // Back the other way.
2760      for (SmallVectorImpl<Instruction *>::const_iterator
2761           NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
2762        Instruction *NewRelease = *NI;
2763        DenseMap<Value *, RRInfo>::const_iterator It =
2764          Releases.find(NewRelease);
2765        assert(It != Releases.end());
2766        const RRInfo &NewReleaseRRI = It->second;
2767        KnownIncrementedBU &= NewReleaseRRI.KnownIncremented;
2768        for (SmallPtrSet<Instruction *, 2>::const_iterator
2769             LI = NewReleaseRRI.Calls.begin(),
2770             LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
2771          Instruction *NewReleaseRetain = *LI;
2772          MapVector<Value *, RRInfo>::const_iterator Jt =
2773            Retains.find(NewReleaseRetain);
2774          if (Jt == Retains.end())
2775            goto next_retain;
2776          const RRInfo &NewReleaseRetainRRI = Jt->second;
2777          assert(NewReleaseRetainRRI.Calls.count(NewRelease));
2778          if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
2779            unsigned PathCount =
2780              BBStates[NewReleaseRetain->getParent()].GetAllPathCount();
2781            OldDelta += PathCount;
2782            OldCount += PathCount;
2783
2784            // Merge the IsRetainBlock values.
2785            if (FirstRetain) {
2786              RetainsToMove.IsRetainBlock = NewReleaseRetainRRI.IsRetainBlock;
2787              FirstRetain = false;
2788            } else if (ReleasesToMove.IsRetainBlock !=
2789                       NewReleaseRetainRRI.IsRetainBlock)
2790              // It's not possible to merge the sequences if one uses
2791              // objc_retain and the other uses objc_retainBlock.
2792              goto next_retain;
2793
2794            // Collect the optimal insertion points.
2795            if (!KnownSafe)
2796              for (SmallPtrSet<Instruction *, 2>::const_iterator
2797                   RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
2798                   RE = NewReleaseRetainRRI.ReverseInsertPts.end();
2799                   RI != RE; ++RI) {
2800                Instruction *RIP = *RI;
2801                if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
2802                  PathCount = BBStates[RIP->getParent()].GetAllPathCount();
2803                  NewDelta += PathCount;
2804                  NewCount += PathCount;
2805                }
2806              }
2807            NewRetains.push_back(NewReleaseRetain);
2808          }
2809        }
2810      }
2811      NewReleases.clear();
2812      if (NewRetains.empty()) break;
2813    }
2814
2815    // If the pointer is known incremented, we can safely delete the pair
2816    // regardless of what's between them.
2817    if (KnownIncrementedTD || KnownIncrementedBU) {
2818      RetainsToMove.ReverseInsertPts.clear();
2819      ReleasesToMove.ReverseInsertPts.clear();
2820      NewCount = 0;
2821    }
2822
2823    // Determine whether the original call points are balanced in the retain and
2824    // release calls through the program. If not, conservatively don't touch
2825    // them.
2826    // TODO: It's theoretically possible to do code motion in this case, as
2827    // long as the existing imbalances are maintained.
2828    if (OldDelta != 0)
2829      goto next_retain;
2830
2831    // Determine whether the new insertion points we computed preserve the
2832    // balance of retain and release calls through the program.
2833    // TODO: If the fully aggressive solution isn't valid, try to find a
2834    // less aggressive solution which is.
2835    if (NewDelta != 0)
2836      goto next_retain;
2837
2838    // Ok, everything checks out and we're all set. Let's move some code!
2839    Changed = true;
2840    AnyPairsCompletelyEliminated = NewCount == 0;
2841    NumRRs += OldCount - NewCount;
2842    MoveCalls(Arg, RetainsToMove, ReleasesToMove,
2843              Retains, Releases, DeadInsts, M);
2844
2845  next_retain:
2846    NewReleases.clear();
2847    NewRetains.clear();
2848    RetainsToMove.clear();
2849    ReleasesToMove.clear();
2850  }
2851
2852  // Now that we're done moving everything, we can delete the newly dead
2853  // instructions, as we no longer need them as insert points.
2854  while (!DeadInsts.empty())
2855    EraseInstruction(DeadInsts.pop_back_val());
2856
2857  return AnyPairsCompletelyEliminated;
2858}
2859
2860/// OptimizeWeakCalls - Weak pointer optimizations.
2861void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
2862  // First, do memdep-style RLE and S2L optimizations. We can't use memdep
2863  // itself because it uses AliasAnalysis and we need to do provenance
2864  // queries instead.
2865  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2866    Instruction *Inst = &*I++;
2867    InstructionClass Class = GetBasicInstructionClass(Inst);
2868    if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
2869      continue;
2870
2871    // Delete objc_loadWeak calls with no users.
2872    if (Class == IC_LoadWeak && Inst->use_empty()) {
2873      Inst->eraseFromParent();
2874      continue;
2875    }
2876
2877    // TODO: For now, just look for an earlier available version of this value
2878    // within the same block. Theoretically, we could do memdep-style non-local
2879    // analysis too, but that would want caching. A better approach would be to
2880    // use the technique that EarlyCSE uses.
2881    inst_iterator Current = llvm::prior(I);
2882    BasicBlock *CurrentBB = Current.getBasicBlockIterator();
2883    for (BasicBlock::iterator B = CurrentBB->begin(),
2884                              J = Current.getInstructionIterator();
2885         J != B; --J) {
2886      Instruction *EarlierInst = &*llvm::prior(J);
2887      InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
2888      switch (EarlierClass) {
2889      case IC_LoadWeak:
2890      case IC_LoadWeakRetained: {
2891        // If this is loading from the same pointer, replace this load's value
2892        // with that one.
2893        CallInst *Call = cast<CallInst>(Inst);
2894        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2895        Value *Arg = Call->getArgOperand(0);
2896        Value *EarlierArg = EarlierCall->getArgOperand(0);
2897        switch (PA.getAA()->alias(Arg, EarlierArg)) {
2898        case AliasAnalysis::MustAlias:
2899          Changed = true;
2900          // If the load has a builtin retain, insert a plain retain for it.
2901          if (Class == IC_LoadWeakRetained) {
2902            CallInst *CI =
2903              CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
2904                               "", Call);
2905            CI->setTailCall();
2906          }
2907          // Zap the fully redundant load.
2908          Call->replaceAllUsesWith(EarlierCall);
2909          Call->eraseFromParent();
2910          goto clobbered;
2911        case AliasAnalysis::MayAlias:
2912        case AliasAnalysis::PartialAlias:
2913          goto clobbered;
2914        case AliasAnalysis::NoAlias:
2915          break;
2916        }
2917        break;
2918      }
2919      case IC_StoreWeak:
2920      case IC_InitWeak: {
2921        // If this is storing to the same pointer and has the same size etc.
2922        // replace this load's value with the stored value.
2923        CallInst *Call = cast<CallInst>(Inst);
2924        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
2925        Value *Arg = Call->getArgOperand(0);
2926        Value *EarlierArg = EarlierCall->getArgOperand(0);
2927        switch (PA.getAA()->alias(Arg, EarlierArg)) {
2928        case AliasAnalysis::MustAlias:
2929          Changed = true;
2930          // If the load has a builtin retain, insert a plain retain for it.
2931          if (Class == IC_LoadWeakRetained) {
2932            CallInst *CI =
2933              CallInst::Create(getRetainCallee(F.getParent()), EarlierCall,
2934                               "", Call);
2935            CI->setTailCall();
2936          }
2937          // Zap the fully redundant load.
2938          Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
2939          Call->eraseFromParent();
2940          goto clobbered;
2941        case AliasAnalysis::MayAlias:
2942        case AliasAnalysis::PartialAlias:
2943          goto clobbered;
2944        case AliasAnalysis::NoAlias:
2945          break;
2946        }
2947        break;
2948      }
2949      case IC_MoveWeak:
2950      case IC_CopyWeak:
2951        // TOOD: Grab the copied value.
2952        goto clobbered;
2953      case IC_AutoreleasepoolPush:
2954      case IC_None:
2955      case IC_User:
2956        // Weak pointers are only modified through the weak entry points
2957        // (and arbitrary calls, which could call the weak entry points).
2958        break;
2959      default:
2960        // Anything else could modify the weak pointer.
2961        goto clobbered;
2962      }
2963    }
2964  clobbered:;
2965  }
2966
2967  // Then, for each destroyWeak with an alloca operand, check to see if
2968  // the alloca and all its users can be zapped.
2969  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
2970    Instruction *Inst = &*I++;
2971    InstructionClass Class = GetBasicInstructionClass(Inst);
2972    if (Class != IC_DestroyWeak)
2973      continue;
2974
2975    CallInst *Call = cast<CallInst>(Inst);
2976    Value *Arg = Call->getArgOperand(0);
2977    if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
2978      for (Value::use_iterator UI = Alloca->use_begin(),
2979           UE = Alloca->use_end(); UI != UE; ++UI) {
2980        Instruction *UserInst = cast<Instruction>(*UI);
2981        switch (GetBasicInstructionClass(UserInst)) {
2982        case IC_InitWeak:
2983        case IC_StoreWeak:
2984        case IC_DestroyWeak:
2985          continue;
2986        default:
2987          goto done;
2988        }
2989      }
2990      Changed = true;
2991      for (Value::use_iterator UI = Alloca->use_begin(),
2992           UE = Alloca->use_end(); UI != UE; ) {
2993        CallInst *UserInst = cast<CallInst>(*UI++);
2994        if (!UserInst->use_empty())
2995          UserInst->replaceAllUsesWith(UserInst->getOperand(1));
2996        UserInst->eraseFromParent();
2997      }
2998      Alloca->eraseFromParent();
2999    done:;
3000    }
3001  }
3002}
3003
3004/// OptimizeSequences - Identify program paths which execute sequences of
3005/// retains and releases which can be eliminated.
3006bool ObjCARCOpt::OptimizeSequences(Function &F) {
3007  /// Releases, Retains - These are used to store the results of the main flow
3008  /// analysis. These use Value* as the key instead of Instruction* so that the
3009  /// map stays valid when we get around to rewriting code and calls get
3010  /// replaced by arguments.
3011  DenseMap<Value *, RRInfo> Releases;
3012  MapVector<Value *, RRInfo> Retains;
3013
3014  /// BBStates, This is used during the traversal of the function to track the
3015  /// states for each identified object at each block.
3016  DenseMap<const BasicBlock *, BBState> BBStates;
3017
3018  // Analyze the CFG of the function, and all instructions.
3019  bool NestingDetected = Visit(F, BBStates, Retains, Releases);
3020
3021  // Transform.
3022  return PerformCodePlacement(BBStates, Retains, Releases, F.getParent()) &&
3023         NestingDetected;
3024}
3025
3026/// OptimizeReturns - Look for this pattern:
3027///
3028///    %call = call i8* @something(...)
3029///    %2 = call i8* @objc_retain(i8* %call)
3030///    %3 = call i8* @objc_autorelease(i8* %2)
3031///    ret i8* %3
3032///
3033/// And delete the retain and autorelease.
3034///
3035/// Otherwise if it's just this:
3036///
3037///    %3 = call i8* @objc_autorelease(i8* %2)
3038///    ret i8* %3
3039///
3040/// convert the autorelease to autoreleaseRV.
3041void ObjCARCOpt::OptimizeReturns(Function &F) {
3042  if (!F.getReturnType()->isPointerTy())
3043    return;
3044
3045  SmallPtrSet<Instruction *, 4> DependingInstructions;
3046  SmallPtrSet<const BasicBlock *, 4> Visited;
3047  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
3048    BasicBlock *BB = FI;
3049    ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
3050    if (!Ret) continue;
3051
3052    const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
3053    FindDependencies(NeedsPositiveRetainCount, Arg,
3054                     BB, Ret, DependingInstructions, Visited, PA);
3055    if (DependingInstructions.size() != 1)
3056      goto next_block;
3057
3058    {
3059      CallInst *Autorelease =
3060        dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3061      if (!Autorelease)
3062        goto next_block;
3063      InstructionClass AutoreleaseClass =
3064        GetBasicInstructionClass(Autorelease);
3065      if (!IsAutorelease(AutoreleaseClass))
3066        goto next_block;
3067      if (GetObjCArg(Autorelease) != Arg)
3068        goto next_block;
3069
3070      DependingInstructions.clear();
3071      Visited.clear();
3072
3073      // Check that there is nothing that can affect the reference
3074      // count between the autorelease and the retain.
3075      FindDependencies(CanChangeRetainCount, Arg,
3076                       BB, Autorelease, DependingInstructions, Visited, PA);
3077      if (DependingInstructions.size() != 1)
3078        goto next_block;
3079
3080      {
3081        CallInst *Retain =
3082          dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3083
3084        // Check that we found a retain with the same argument.
3085        if (!Retain ||
3086            !IsRetain(GetBasicInstructionClass(Retain)) ||
3087            GetObjCArg(Retain) != Arg)
3088          goto next_block;
3089
3090        DependingInstructions.clear();
3091        Visited.clear();
3092
3093        // Convert the autorelease to an autoreleaseRV, since it's
3094        // returning the value.
3095        if (AutoreleaseClass == IC_Autorelease) {
3096          Autorelease->setCalledFunction(getAutoreleaseRVCallee(F.getParent()));
3097          AutoreleaseClass = IC_AutoreleaseRV;
3098        }
3099
3100        // Check that there is nothing that can affect the reference
3101        // count between the retain and the call.
3102        FindDependencies(CanChangeRetainCount, Arg, BB, Retain,
3103                         DependingInstructions, Visited, PA);
3104        if (DependingInstructions.size() != 1)
3105          goto next_block;
3106
3107        {
3108          CallInst *Call =
3109            dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3110
3111          // Check that the pointer is the return value of the call.
3112          if (!Call || Arg != Call)
3113            goto next_block;
3114
3115          // Check that the call is a regular call.
3116          InstructionClass Class = GetBasicInstructionClass(Call);
3117          if (Class != IC_CallOrUser && Class != IC_Call)
3118            goto next_block;
3119
3120          // If so, we can zap the retain and autorelease.
3121          Changed = true;
3122          ++NumRets;
3123          EraseInstruction(Retain);
3124          EraseInstruction(Autorelease);
3125        }
3126      }
3127    }
3128
3129  next_block:
3130    DependingInstructions.clear();
3131    Visited.clear();
3132  }
3133}
3134
3135bool ObjCARCOpt::doInitialization(Module &M) {
3136  if (!EnableARCOpts)
3137    return false;
3138
3139  Run = ModuleHasARC(M);
3140  if (!Run)
3141    return false;
3142
3143  // Identify the imprecise release metadata kind.
3144  ImpreciseReleaseMDKind =
3145    M.getContext().getMDKindID("clang.imprecise_release");
3146
3147  // Intuitively, objc_retain and others are nocapture, however in practice
3148  // they are not, because they return their argument value. And objc_release
3149  // calls finalizers.
3150
3151  // These are initialized lazily.
3152  RetainRVCallee = 0;
3153  AutoreleaseRVCallee = 0;
3154  ReleaseCallee = 0;
3155  RetainCallee = 0;
3156  RetainBlockCallee = 0;
3157  AutoreleaseCallee = 0;
3158
3159  return false;
3160}
3161
3162bool ObjCARCOpt::runOnFunction(Function &F) {
3163  if (!EnableARCOpts)
3164    return false;
3165
3166  // If nothing in the Module uses ARC, don't do anything.
3167  if (!Run)
3168    return false;
3169
3170  Changed = false;
3171
3172  PA.setAA(&getAnalysis<AliasAnalysis>());
3173
3174  // This pass performs several distinct transformations. As a compile-time aid
3175  // when compiling code that isn't ObjC, skip these if the relevant ObjC
3176  // library functions aren't declared.
3177
3178  // Preliminary optimizations. This also computs UsedInThisFunction.
3179  OptimizeIndividualCalls(F);
3180
3181  // Optimizations for weak pointers.
3182  if (UsedInThisFunction & ((1 << IC_LoadWeak) |
3183                            (1 << IC_LoadWeakRetained) |
3184                            (1 << IC_StoreWeak) |
3185                            (1 << IC_InitWeak) |
3186                            (1 << IC_CopyWeak) |
3187                            (1 << IC_MoveWeak) |
3188                            (1 << IC_DestroyWeak)))
3189    OptimizeWeakCalls(F);
3190
3191  // Optimizations for retain+release pairs.
3192  if (UsedInThisFunction & ((1 << IC_Retain) |
3193                            (1 << IC_RetainRV) |
3194                            (1 << IC_RetainBlock)))
3195    if (UsedInThisFunction & (1 << IC_Release))
3196      // Run OptimizeSequences until it either stops making changes or
3197      // no retain+release pair nesting is detected.
3198      while (OptimizeSequences(F)) {}
3199
3200  // Optimizations if objc_autorelease is used.
3201  if (UsedInThisFunction &
3202      ((1 << IC_Autorelease) | (1 << IC_AutoreleaseRV)))
3203    OptimizeReturns(F);
3204
3205  return Changed;
3206}
3207
3208void ObjCARCOpt::releaseMemory() {
3209  PA.clear();
3210}
3211
3212//===----------------------------------------------------------------------===//
3213// ARC contraction.
3214//===----------------------------------------------------------------------===//
3215
3216// TODO: ObjCARCContract could insert PHI nodes when uses aren't
3217// dominated by single calls.
3218
3219#include "llvm/Operator.h"
3220#include "llvm/InlineAsm.h"
3221#include "llvm/Analysis/Dominators.h"
3222
3223STATISTIC(NumStoreStrongs, "Number objc_storeStrong calls formed");
3224
3225namespace {
3226  /// ObjCARCContract - Late ARC optimizations.  These change the IR in a way
3227  /// that makes it difficult to be analyzed by ObjCARCOpt, so it's run late.
3228  class ObjCARCContract : public FunctionPass {
3229    bool Changed;
3230    AliasAnalysis *AA;
3231    DominatorTree *DT;
3232    ProvenanceAnalysis PA;
3233
3234    /// Run - A flag indicating whether this optimization pass should run.
3235    bool Run;
3236
3237    /// StoreStrongCallee, etc. - Declarations for ObjC runtime
3238    /// functions, for use in creating calls to them. These are initialized
3239    /// lazily to avoid cluttering up the Module with unused declarations.
3240    Constant *StoreStrongCallee,
3241             *RetainAutoreleaseCallee, *RetainAutoreleaseRVCallee;
3242
3243    /// RetainRVMarker - The inline asm string to insert between calls and
3244    /// RetainRV calls to make the optimization work on targets which need it.
3245    const MDString *RetainRVMarker;
3246
3247    Constant *getStoreStrongCallee(Module *M);
3248    Constant *getRetainAutoreleaseCallee(Module *M);
3249    Constant *getRetainAutoreleaseRVCallee(Module *M);
3250
3251    bool ContractAutorelease(Function &F, Instruction *Autorelease,
3252                             InstructionClass Class,
3253                             SmallPtrSet<Instruction *, 4>
3254                               &DependingInstructions,
3255                             SmallPtrSet<const BasicBlock *, 4>
3256                               &Visited);
3257
3258    void ContractRelease(Instruction *Release,
3259                         inst_iterator &Iter);
3260
3261    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
3262    virtual bool doInitialization(Module &M);
3263    virtual bool runOnFunction(Function &F);
3264
3265  public:
3266    static char ID;
3267    ObjCARCContract() : FunctionPass(ID) {
3268      initializeObjCARCContractPass(*PassRegistry::getPassRegistry());
3269    }
3270  };
3271}
3272
3273char ObjCARCContract::ID = 0;
3274INITIALIZE_PASS_BEGIN(ObjCARCContract,
3275                      "objc-arc-contract", "ObjC ARC contraction", false, false)
3276INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3277INITIALIZE_PASS_DEPENDENCY(DominatorTree)
3278INITIALIZE_PASS_END(ObjCARCContract,
3279                    "objc-arc-contract", "ObjC ARC contraction", false, false)
3280
3281Pass *llvm::createObjCARCContractPass() {
3282  return new ObjCARCContract();
3283}
3284
3285void ObjCARCContract::getAnalysisUsage(AnalysisUsage &AU) const {
3286  AU.addRequired<AliasAnalysis>();
3287  AU.addRequired<DominatorTree>();
3288  AU.setPreservesCFG();
3289}
3290
3291Constant *ObjCARCContract::getStoreStrongCallee(Module *M) {
3292  if (!StoreStrongCallee) {
3293    LLVMContext &C = M->getContext();
3294    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3295    Type *I8XX = PointerType::getUnqual(I8X);
3296    std::vector<Type *> Params;
3297    Params.push_back(I8XX);
3298    Params.push_back(I8X);
3299
3300    AttrListPtr Attributes;
3301    Attributes.addAttr(~0u, Attribute::NoUnwind);
3302    Attributes.addAttr(1, Attribute::NoCapture);
3303
3304    StoreStrongCallee =
3305      M->getOrInsertFunction(
3306        "objc_storeStrong",
3307        FunctionType::get(Type::getVoidTy(C), Params, /*isVarArg=*/false),
3308        Attributes);
3309  }
3310  return StoreStrongCallee;
3311}
3312
3313Constant *ObjCARCContract::getRetainAutoreleaseCallee(Module *M) {
3314  if (!RetainAutoreleaseCallee) {
3315    LLVMContext &C = M->getContext();
3316    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3317    std::vector<Type *> Params;
3318    Params.push_back(I8X);
3319    FunctionType *FTy =
3320      FunctionType::get(I8X, Params, /*isVarArg=*/false);
3321    AttrListPtr Attributes;
3322    Attributes.addAttr(~0u, Attribute::NoUnwind);
3323    RetainAutoreleaseCallee =
3324      M->getOrInsertFunction("objc_retainAutorelease", FTy, Attributes);
3325  }
3326  return RetainAutoreleaseCallee;
3327}
3328
3329Constant *ObjCARCContract::getRetainAutoreleaseRVCallee(Module *M) {
3330  if (!RetainAutoreleaseRVCallee) {
3331    LLVMContext &C = M->getContext();
3332    Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3333    std::vector<Type *> Params;
3334    Params.push_back(I8X);
3335    FunctionType *FTy =
3336      FunctionType::get(I8X, Params, /*isVarArg=*/false);
3337    AttrListPtr Attributes;
3338    Attributes.addAttr(~0u, Attribute::NoUnwind);
3339    RetainAutoreleaseRVCallee =
3340      M->getOrInsertFunction("objc_retainAutoreleaseReturnValue", FTy,
3341                             Attributes);
3342  }
3343  return RetainAutoreleaseRVCallee;
3344}
3345
3346/// ContractAutorelease - Merge an autorelease with a retain into a fused
3347/// call.
3348bool
3349ObjCARCContract::ContractAutorelease(Function &F, Instruction *Autorelease,
3350                                     InstructionClass Class,
3351                                     SmallPtrSet<Instruction *, 4>
3352                                       &DependingInstructions,
3353                                     SmallPtrSet<const BasicBlock *, 4>
3354                                       &Visited) {
3355  const Value *Arg = GetObjCArg(Autorelease);
3356
3357  // Check that there are no instructions between the retain and the autorelease
3358  // (such as an autorelease_pop) which may change the count.
3359  CallInst *Retain = 0;
3360  if (Class == IC_AutoreleaseRV)
3361    FindDependencies(RetainAutoreleaseRVDep, Arg,
3362                     Autorelease->getParent(), Autorelease,
3363                     DependingInstructions, Visited, PA);
3364  else
3365    FindDependencies(RetainAutoreleaseDep, Arg,
3366                     Autorelease->getParent(), Autorelease,
3367                     DependingInstructions, Visited, PA);
3368
3369  Visited.clear();
3370  if (DependingInstructions.size() != 1) {
3371    DependingInstructions.clear();
3372    return false;
3373  }
3374
3375  Retain = dyn_cast_or_null<CallInst>(*DependingInstructions.begin());
3376  DependingInstructions.clear();
3377
3378  if (!Retain ||
3379      GetBasicInstructionClass(Retain) != IC_Retain ||
3380      GetObjCArg(Retain) != Arg)
3381    return false;
3382
3383  Changed = true;
3384  ++NumPeeps;
3385
3386  if (Class == IC_AutoreleaseRV)
3387    Retain->setCalledFunction(getRetainAutoreleaseRVCallee(F.getParent()));
3388  else
3389    Retain->setCalledFunction(getRetainAutoreleaseCallee(F.getParent()));
3390
3391  EraseInstruction(Autorelease);
3392  return true;
3393}
3394
3395/// ContractRelease - Attempt to merge an objc_release with a store, load, and
3396/// objc_retain to form an objc_storeStrong. This can be a little tricky because
3397/// the instructions don't always appear in order, and there may be unrelated
3398/// intervening instructions.
3399void ObjCARCContract::ContractRelease(Instruction *Release,
3400                                      inst_iterator &Iter) {
3401  LoadInst *Load = dyn_cast<LoadInst>(GetObjCArg(Release));
3402  if (!Load || Load->isVolatile()) return;
3403
3404  // For now, require everything to be in one basic block.
3405  BasicBlock *BB = Release->getParent();
3406  if (Load->getParent() != BB) return;
3407
3408  // Walk down to find the store.
3409  BasicBlock::iterator I = Load, End = BB->end();
3410  ++I;
3411  AliasAnalysis::Location Loc = AA->getLocation(Load);
3412  while (I != End &&
3413         (&*I == Release ||
3414          IsRetain(GetBasicInstructionClass(I)) ||
3415          !(AA->getModRefInfo(I, Loc) & AliasAnalysis::Mod)))
3416    ++I;
3417  StoreInst *Store = dyn_cast<StoreInst>(I);
3418  if (!Store || Store->isVolatile()) return;
3419  if (Store->getPointerOperand() != Loc.Ptr) return;
3420
3421  Value *New = StripPointerCastsAndObjCCalls(Store->getValueOperand());
3422
3423  // Walk up to find the retain.
3424  I = Store;
3425  BasicBlock::iterator Begin = BB->begin();
3426  while (I != Begin && GetBasicInstructionClass(I) != IC_Retain)
3427    --I;
3428  Instruction *Retain = I;
3429  if (GetBasicInstructionClass(Retain) != IC_Retain) return;
3430  if (GetObjCArg(Retain) != New) return;
3431
3432  Changed = true;
3433  ++NumStoreStrongs;
3434
3435  LLVMContext &C = Release->getContext();
3436  Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
3437  Type *I8XX = PointerType::getUnqual(I8X);
3438
3439  Value *Args[] = { Load->getPointerOperand(), New };
3440  if (Args[0]->getType() != I8XX)
3441    Args[0] = new BitCastInst(Args[0], I8XX, "", Store);
3442  if (Args[1]->getType() != I8X)
3443    Args[1] = new BitCastInst(Args[1], I8X, "", Store);
3444  CallInst *StoreStrong =
3445    CallInst::Create(getStoreStrongCallee(BB->getParent()->getParent()),
3446                     Args, "", Store);
3447  StoreStrong->setDoesNotThrow();
3448  StoreStrong->setDebugLoc(Store->getDebugLoc());
3449
3450  if (&*Iter == Store) ++Iter;
3451  Store->eraseFromParent();
3452  Release->eraseFromParent();
3453  EraseInstruction(Retain);
3454  if (Load->use_empty())
3455    Load->eraseFromParent();
3456}
3457
3458bool ObjCARCContract::doInitialization(Module &M) {
3459  Run = ModuleHasARC(M);
3460  if (!Run)
3461    return false;
3462
3463  // These are initialized lazily.
3464  StoreStrongCallee = 0;
3465  RetainAutoreleaseCallee = 0;
3466  RetainAutoreleaseRVCallee = 0;
3467
3468  // Initialize RetainRVMarker.
3469  RetainRVMarker = 0;
3470  if (NamedMDNode *NMD =
3471        M.getNamedMetadata("clang.arc.retainAutoreleasedReturnValueMarker"))
3472    if (NMD->getNumOperands() == 1) {
3473      const MDNode *N = NMD->getOperand(0);
3474      if (N->getNumOperands() == 1)
3475        if (const MDString *S = dyn_cast<MDString>(N->getOperand(0)))
3476          RetainRVMarker = S;
3477    }
3478
3479  return false;
3480}
3481
3482bool ObjCARCContract::runOnFunction(Function &F) {
3483  if (!EnableARCOpts)
3484    return false;
3485
3486  // If nothing in the Module uses ARC, don't do anything.
3487  if (!Run)
3488    return false;
3489
3490  Changed = false;
3491  AA = &getAnalysis<AliasAnalysis>();
3492  DT = &getAnalysis<DominatorTree>();
3493
3494  PA.setAA(&getAnalysis<AliasAnalysis>());
3495
3496  // For ObjC library calls which return their argument, replace uses of the
3497  // argument with uses of the call return value, if it dominates the use. This
3498  // reduces register pressure.
3499  SmallPtrSet<Instruction *, 4> DependingInstructions;
3500  SmallPtrSet<const BasicBlock *, 4> Visited;
3501  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
3502    Instruction *Inst = &*I++;
3503
3504    // Only these library routines return their argument. In particular,
3505    // objc_retainBlock does not necessarily return its argument.
3506    InstructionClass Class = GetBasicInstructionClass(Inst);
3507    switch (Class) {
3508    case IC_Retain:
3509    case IC_FusedRetainAutorelease:
3510    case IC_FusedRetainAutoreleaseRV:
3511      break;
3512    case IC_Autorelease:
3513    case IC_AutoreleaseRV:
3514      if (ContractAutorelease(F, Inst, Class, DependingInstructions, Visited))
3515        continue;
3516      break;
3517    case IC_RetainRV: {
3518      // If we're compiling for a target which needs a special inline-asm
3519      // marker to do the retainAutoreleasedReturnValue optimization,
3520      // insert it now.
3521      if (!RetainRVMarker)
3522        break;
3523      BasicBlock::iterator BBI = Inst;
3524      --BBI;
3525      while (isNoopInstruction(BBI)) --BBI;
3526      if (&*BBI == GetObjCArg(Inst)) {
3527        InlineAsm *IA =
3528          InlineAsm::get(FunctionType::get(Type::getVoidTy(Inst->getContext()),
3529                                           /*isVarArg=*/false),
3530                         RetainRVMarker->getString(),
3531                         /*Constraints=*/"", /*hasSideEffects=*/true);
3532        CallInst::Create(IA, "", Inst);
3533      }
3534      break;
3535    }
3536    case IC_InitWeak: {
3537      // objc_initWeak(p, null) => *p = null
3538      CallInst *CI = cast<CallInst>(Inst);
3539      if (isNullOrUndef(CI->getArgOperand(1))) {
3540        Value *Null =
3541          ConstantPointerNull::get(cast<PointerType>(CI->getType()));
3542        Changed = true;
3543        new StoreInst(Null, CI->getArgOperand(0), CI);
3544        CI->replaceAllUsesWith(Null);
3545        CI->eraseFromParent();
3546      }
3547      continue;
3548    }
3549    case IC_Release:
3550      ContractRelease(Inst, I);
3551      continue;
3552    default:
3553      continue;
3554    }
3555
3556    // Don't use GetObjCArg because we don't want to look through bitcasts
3557    // and such; to do the replacement, the argument must have type i8*.
3558    const Value *Arg = cast<CallInst>(Inst)->getArgOperand(0);
3559    for (;;) {
3560      // If we're compiling bugpointed code, don't get in trouble.
3561      if (!isa<Instruction>(Arg) && !isa<Argument>(Arg))
3562        break;
3563      // Look through the uses of the pointer.
3564      for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
3565           UI != UE; ) {
3566        Use &U = UI.getUse();
3567        unsigned OperandNo = UI.getOperandNo();
3568        ++UI; // Increment UI now, because we may unlink its element.
3569        if (Instruction *UserInst = dyn_cast<Instruction>(U.getUser()))
3570          if (Inst != UserInst && DT->dominates(Inst, UserInst)) {
3571            Changed = true;
3572            Instruction *Replacement = Inst;
3573            Type *UseTy = U.get()->getType();
3574            if (PHINode *PHI = dyn_cast<PHINode>(UserInst)) {
3575              // For PHI nodes, insert the bitcast in the predecessor block.
3576              unsigned ValNo =
3577                PHINode::getIncomingValueNumForOperand(OperandNo);
3578              BasicBlock *BB =
3579                PHI->getIncomingBlock(ValNo);
3580              if (Replacement->getType() != UseTy)
3581                Replacement = new BitCastInst(Replacement, UseTy, "",
3582                                              &BB->back());
3583              for (unsigned i = 0, e = PHI->getNumIncomingValues();
3584                   i != e; ++i)
3585                if (PHI->getIncomingBlock(i) == BB) {
3586                  // Keep the UI iterator valid.
3587                  if (&PHI->getOperandUse(
3588                        PHINode::getOperandNumForIncomingValue(i)) ==
3589                        &UI.getUse())
3590                    ++UI;
3591                  PHI->setIncomingValue(i, Replacement);
3592                }
3593            } else {
3594              if (Replacement->getType() != UseTy)
3595                Replacement = new BitCastInst(Replacement, UseTy, "", UserInst);
3596              U.set(Replacement);
3597            }
3598          }
3599      }
3600
3601      // If Arg is a no-op casted pointer, strip one level of casts and
3602      // iterate.
3603      if (const BitCastInst *BI = dyn_cast<BitCastInst>(Arg))
3604        Arg = BI->getOperand(0);
3605      else if (isa<GEPOperator>(Arg) &&
3606               cast<GEPOperator>(Arg)->hasAllZeroIndices())
3607        Arg = cast<GEPOperator>(Arg)->getPointerOperand();
3608      else if (isa<GlobalAlias>(Arg) &&
3609               !cast<GlobalAlias>(Arg)->mayBeOverridden())
3610        Arg = cast<GlobalAlias>(Arg)->getAliasee();
3611      else
3612        break;
3613    }
3614  }
3615
3616  return Changed;
3617}
3618