Reassociate.cpp revision 1997473cf72957d0e70322e2fe6fe2ab141c58a6
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/Statistic.h"
36#include <algorithm>
37using namespace llvm;
38
39STATISTIC(NumLinear , "Number of insts linearized");
40STATISTIC(NumChanged, "Number of insts reassociated");
41STATISTIC(NumAnnihil, "Number of expr tree annihilated");
42STATISTIC(NumFactor , "Number of multiplies factored");
43
44namespace {
45  struct VISIBILITY_HIDDEN ValueEntry {
46    unsigned Rank;
47    Value *Op;
48    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
49  };
50  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
51    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
52  }
53}
54
55/// PrintOps - Print out the expression identified in the Ops list.
56///
57static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
58  Module *M = I->getParent()->getParent()->getParent();
59  cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
60  << *Ops[0].Op->getType();
61  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
62    WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M)
63      << "," << Ops[i].Rank;
64}
65
66namespace {
67  class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
68    std::map<BasicBlock*, unsigned> RankMap;
69    std::map<Value*, unsigned> ValueRankMap;
70    bool MadeChange;
71  public:
72    static char ID; // Pass identifcation, replacement for typeid
73    Reassociate() : FunctionPass((intptr_t)&ID) {}
74
75    bool runOnFunction(Function &F);
76
77    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78      AU.setPreservesCFG();
79    }
80  private:
81    void BuildRankMap(Function &F);
82    unsigned getRank(Value *V);
83    void ReassociateExpression(BinaryOperator *I);
84    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
85                         unsigned Idx = 0);
86    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
87    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
88    void LinearizeExpr(BinaryOperator *I);
89    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
90    void ReassociateBB(BasicBlock *BB);
91
92    void RemoveDeadBinaryOp(Value *V);
93  };
94
95  char Reassociate::ID = 0;
96  RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
97}
98
99// Public interface to the Reassociate pass
100FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
101
102void Reassociate::RemoveDeadBinaryOp(Value *V) {
103  Instruction *Op = dyn_cast<Instruction>(V);
104  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
105    return;
106
107  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
108  RemoveDeadBinaryOp(LHS);
109  RemoveDeadBinaryOp(RHS);
110}
111
112
113static bool isUnmovableInstruction(Instruction *I) {
114  if (I->getOpcode() == Instruction::PHI ||
115      I->getOpcode() == Instruction::Alloca ||
116      I->getOpcode() == Instruction::Load ||
117      I->getOpcode() == Instruction::Malloc ||
118      I->getOpcode() == Instruction::Invoke ||
119      I->getOpcode() == Instruction::Call ||
120      I->getOpcode() == Instruction::UDiv ||
121      I->getOpcode() == Instruction::SDiv ||
122      I->getOpcode() == Instruction::FDiv ||
123      I->getOpcode() == Instruction::URem ||
124      I->getOpcode() == Instruction::SRem ||
125      I->getOpcode() == Instruction::FRem)
126    return true;
127  return false;
128}
129
130void Reassociate::BuildRankMap(Function &F) {
131  unsigned i = 2;
132
133  // Assign distinct ranks to function arguments
134  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
135    ValueRankMap[I] = ++i;
136
137  ReversePostOrderTraversal<Function*> RPOT(&F);
138  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
139         E = RPOT.end(); I != E; ++I) {
140    BasicBlock *BB = *I;
141    unsigned BBRank = RankMap[BB] = ++i << 16;
142
143    // Walk the basic block, adding precomputed ranks for any instructions that
144    // we cannot move.  This ensures that the ranks for these instructions are
145    // all different in the block.
146    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
147      if (isUnmovableInstruction(I))
148        ValueRankMap[I] = ++BBRank;
149  }
150}
151
152unsigned Reassociate::getRank(Value *V) {
153  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
154
155  Instruction *I = dyn_cast<Instruction>(V);
156  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
157
158  unsigned &CachedRank = ValueRankMap[I];
159  if (CachedRank) return CachedRank;    // Rank already known?
160
161  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
162  // we can reassociate expressions for code motion!  Since we do not recurse
163  // for PHI nodes, we cannot have infinite recursion here, because there
164  // cannot be loops in the value graph that do not go through PHI nodes.
165  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
166  for (unsigned i = 0, e = I->getNumOperands();
167       i != e && Rank != MaxRank; ++i)
168    Rank = std::max(Rank, getRank(I->getOperand(i)));
169
170  // If this is a not or neg instruction, do not count it for rank.  This
171  // assures us that X and ~X will have the same rank.
172  if (!I->getType()->isInteger() ||
173      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
174    ++Rank;
175
176  //DOUT << "Calculated Rank[" << V->getName() << "] = "
177  //     << Rank << "\n";
178
179  return CachedRank = Rank;
180}
181
182/// isReassociableOp - Return true if V is an instruction of the specified
183/// opcode and if it only has one use.
184static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
185  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
186      cast<Instruction>(V)->getOpcode() == Opcode)
187    return cast<BinaryOperator>(V);
188  return 0;
189}
190
191/// LowerNegateToMultiply - Replace 0-X with X*-1.
192///
193static Instruction *LowerNegateToMultiply(Instruction *Neg) {
194  Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
195
196  Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, "",Neg);
197  Res->takeName(Neg);
198  Neg->replaceAllUsesWith(Res);
199  Neg->eraseFromParent();
200  return Res;
201}
202
203// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
204// Note that if D is also part of the expression tree that we recurse to
205// linearize it as well.  Besides that case, this does not recurse into A,B, or
206// C.
207void Reassociate::LinearizeExpr(BinaryOperator *I) {
208  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
209  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
210  assert(isReassociableOp(LHS, I->getOpcode()) &&
211         isReassociableOp(RHS, I->getOpcode()) &&
212         "Not an expression that needs linearization?");
213
214  DOUT << "Linear" << *LHS << *RHS << *I;
215
216  // Move the RHS instruction to live immediately before I, avoiding breaking
217  // dominator properties.
218  RHS->moveBefore(I);
219
220  // Move operands around to do the linearization.
221  I->setOperand(1, RHS->getOperand(0));
222  RHS->setOperand(0, LHS);
223  I->setOperand(0, RHS);
224
225  ++NumLinear;
226  MadeChange = true;
227  DOUT << "Linearized: " << *I;
228
229  // If D is part of this expression tree, tail recurse.
230  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
231    LinearizeExpr(I);
232}
233
234
235/// LinearizeExprTree - Given an associative binary expression tree, traverse
236/// all of the uses putting it into canonical form.  This forces a left-linear
237/// form of the the expression (((a+b)+c)+d), and collects information about the
238/// rank of the non-tree operands.
239///
240/// NOTE: These intentionally destroys the expression tree operands (turning
241/// them into undef values) to reduce #uses of the values.  This means that the
242/// caller MUST use something like RewriteExprTree to put the values back in.
243///
244void Reassociate::LinearizeExprTree(BinaryOperator *I,
245                                    std::vector<ValueEntry> &Ops) {
246  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
247  unsigned Opcode = I->getOpcode();
248
249  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
250  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
251  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
252
253  // If this is a multiply expression tree and it contains internal negations,
254  // transform them into multiplies by -1 so they can be reassociated.
255  if (I->getOpcode() == Instruction::Mul) {
256    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
257      LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
258      LHSBO = isReassociableOp(LHS, Opcode);
259    }
260    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
261      RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
262      RHSBO = isReassociableOp(RHS, Opcode);
263    }
264  }
265
266  if (!LHSBO) {
267    if (!RHSBO) {
268      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
269      // such, just remember these operands and their rank.
270      Ops.push_back(ValueEntry(getRank(LHS), LHS));
271      Ops.push_back(ValueEntry(getRank(RHS), RHS));
272
273      // Clear the leaves out.
274      I->setOperand(0, UndefValue::get(I->getType()));
275      I->setOperand(1, UndefValue::get(I->getType()));
276      return;
277    } else {
278      // Turn X+(Y+Z) -> (Y+Z)+X
279      std::swap(LHSBO, RHSBO);
280      std::swap(LHS, RHS);
281      bool Success = !I->swapOperands();
282      assert(Success && "swapOperands failed");
283      MadeChange = true;
284    }
285  } else if (RHSBO) {
286    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
287    // part of the expression tree.
288    LinearizeExpr(I);
289    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
290    RHS = I->getOperand(1);
291    RHSBO = 0;
292  }
293
294  // Okay, now we know that the LHS is a nested expression and that the RHS is
295  // not.  Perform reassociation.
296  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
297
298  // Move LHS right before I to make sure that the tree expression dominates all
299  // values.
300  LHSBO->moveBefore(I);
301
302  // Linearize the expression tree on the LHS.
303  LinearizeExprTree(LHSBO, Ops);
304
305  // Remember the RHS operand and its rank.
306  Ops.push_back(ValueEntry(getRank(RHS), RHS));
307
308  // Clear the RHS leaf out.
309  I->setOperand(1, UndefValue::get(I->getType()));
310}
311
312// RewriteExprTree - Now that the operands for this expression tree are
313// linearized and optimized, emit them in-order.  This function is written to be
314// tail recursive.
315void Reassociate::RewriteExprTree(BinaryOperator *I,
316                                  std::vector<ValueEntry> &Ops,
317                                  unsigned i) {
318  if (i+2 == Ops.size()) {
319    if (I->getOperand(0) != Ops[i].Op ||
320        I->getOperand(1) != Ops[i+1].Op) {
321      Value *OldLHS = I->getOperand(0);
322      DOUT << "RA: " << *I;
323      I->setOperand(0, Ops[i].Op);
324      I->setOperand(1, Ops[i+1].Op);
325      DOUT << "TO: " << *I;
326      MadeChange = true;
327      ++NumChanged;
328
329      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
330      // delete the extra, now dead, nodes.
331      RemoveDeadBinaryOp(OldLHS);
332    }
333    return;
334  }
335  assert(i+2 < Ops.size() && "Ops index out of range!");
336
337  if (I->getOperand(1) != Ops[i].Op) {
338    DOUT << "RA: " << *I;
339    I->setOperand(1, Ops[i].Op);
340    DOUT << "TO: " << *I;
341    MadeChange = true;
342    ++NumChanged;
343  }
344
345  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
346  assert(LHS->getOpcode() == I->getOpcode() &&
347         "Improper expression tree!");
348
349  // Compactify the tree instructions together with each other to guarantee
350  // that the expression tree is dominated by all of Ops.
351  LHS->moveBefore(I);
352  RewriteExprTree(LHS, Ops, i+1);
353}
354
355
356
357// NegateValue - Insert instructions before the instruction pointed to by BI,
358// that computes the negative version of the value specified.  The negative
359// version of the value is returned, and BI is left pointing at the instruction
360// that should be processed next by the reassociation pass.
361//
362static Value *NegateValue(Value *V, Instruction *BI) {
363  // We are trying to expose opportunity for reassociation.  One of the things
364  // that we want to do to achieve this is to push a negation as deep into an
365  // expression chain as possible, to expose the add instructions.  In practice,
366  // this means that we turn this:
367  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
368  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
369  // the constants.  We assume that instcombine will clean up the mess later if
370  // we introduce tons of unnecessary negation instructions...
371  //
372  if (Instruction *I = dyn_cast<Instruction>(V))
373    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
374      // Push the negates through the add.
375      I->setOperand(0, NegateValue(I->getOperand(0), BI));
376      I->setOperand(1, NegateValue(I->getOperand(1), BI));
377
378      // We must move the add instruction here, because the neg instructions do
379      // not dominate the old add instruction in general.  By moving it, we are
380      // assured that the neg instructions we just inserted dominate the
381      // instruction we are about to insert after them.
382      //
383      I->moveBefore(BI);
384      I->setName(I->getName()+".neg");
385      return I;
386    }
387
388  // Insert a 'neg' instruction that subtracts the value from zero to get the
389  // negation.
390  //
391  return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
392}
393
394/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
395/// only used by an add, transform this into (X+(0-Y)) to promote better
396/// reassociation.
397static Instruction *BreakUpSubtract(Instruction *Sub) {
398  // Don't bother to break this up unless either the LHS is an associable add or
399  // if this is only used by one.
400  if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
401      !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
402      !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
403    return 0;
404
405  // Convert a subtract into an add and a neg instruction... so that sub
406  // instructions can be commuted with other add instructions...
407  //
408  // Calculate the negative value of Operand 1 of the sub instruction...
409  // and set it as the RHS of the add instruction we just made...
410  //
411  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
412  Instruction *New =
413    BinaryOperator::createAdd(Sub->getOperand(0), NegVal, "", Sub);
414  New->takeName(Sub);
415
416  // Everyone now refers to the add instruction.
417  Sub->replaceAllUsesWith(New);
418  Sub->eraseFromParent();
419
420  DOUT << "Negated: " << *New;
421  return New;
422}
423
424/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
425/// by one, change this into a multiply by a constant to assist with further
426/// reassociation.
427static Instruction *ConvertShiftToMul(Instruction *Shl) {
428  // If an operand of this shift is a reassociable multiply, or if the shift
429  // is used by a reassociable multiply or add, turn into a multiply.
430  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
431      (Shl->hasOneUse() &&
432       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
433        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
434    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
435    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
436
437    Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
438                                                 "", Shl);
439    Mul->takeName(Shl);
440    Shl->replaceAllUsesWith(Mul);
441    Shl->eraseFromParent();
442    return Mul;
443  }
444  return 0;
445}
446
447// Scan backwards and forwards among values with the same rank as element i to
448// see if X exists.  If X does not exist, return i.
449static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
450                                  Value *X) {
451  unsigned XRank = Ops[i].Rank;
452  unsigned e = Ops.size();
453  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
454    if (Ops[j].Op == X)
455      return j;
456  // Scan backwards
457  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
458    if (Ops[j].Op == X)
459      return j;
460  return i;
461}
462
463/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
464/// and returning the result.  Insert the tree before I.
465static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
466  if (Ops.size() == 1) return Ops.back();
467
468  Value *V1 = Ops.back();
469  Ops.pop_back();
470  Value *V2 = EmitAddTreeOfValues(I, Ops);
471  return BinaryOperator::createAdd(V2, V1, "tmp", I);
472}
473
474/// RemoveFactorFromExpression - If V is an expression tree that is a
475/// multiplication sequence, and if this sequence contains a multiply by Factor,
476/// remove Factor from the tree and return the new tree.
477Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
478  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
479  if (!BO) return 0;
480
481  std::vector<ValueEntry> Factors;
482  LinearizeExprTree(BO, Factors);
483
484  bool FoundFactor = false;
485  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
486    if (Factors[i].Op == Factor) {
487      FoundFactor = true;
488      Factors.erase(Factors.begin()+i);
489      break;
490    }
491  if (!FoundFactor) {
492    // Make sure to restore the operands to the expression tree.
493    RewriteExprTree(BO, Factors);
494    return 0;
495  }
496
497  if (Factors.size() == 1) return Factors[0].Op;
498
499  RewriteExprTree(BO, Factors);
500  return BO;
501}
502
503/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
504/// add its operands as factors, otherwise add V to the list of factors.
505static void FindSingleUseMultiplyFactors(Value *V,
506                                         std::vector<Value*> &Factors) {
507  BinaryOperator *BO;
508  if ((!V->hasOneUse() && !V->use_empty()) ||
509      !(BO = dyn_cast<BinaryOperator>(V)) ||
510      BO->getOpcode() != Instruction::Mul) {
511    Factors.push_back(V);
512    return;
513  }
514
515  // Otherwise, add the LHS and RHS to the list of factors.
516  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
517  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
518}
519
520
521
522Value *Reassociate::OptimizeExpression(BinaryOperator *I,
523                                       std::vector<ValueEntry> &Ops) {
524  // Now that we have the linearized expression tree, try to optimize it.
525  // Start by folding any constants that we found.
526  bool IterateOptimization = false;
527  if (Ops.size() == 1) return Ops[0].Op;
528
529  unsigned Opcode = I->getOpcode();
530
531  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
532    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
533      Ops.pop_back();
534      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
535      return OptimizeExpression(I, Ops);
536    }
537
538  // Check for destructive annihilation due to a constant being used.
539  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
540    switch (Opcode) {
541    default: break;
542    case Instruction::And:
543      if (CstVal->isZero()) {                // ... & 0 -> 0
544        ++NumAnnihil;
545        return CstVal;
546      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
547        Ops.pop_back();
548      }
549      break;
550    case Instruction::Mul:
551      if (CstVal->isZero()) {                // ... * 0 -> 0
552        ++NumAnnihil;
553        return CstVal;
554      } else if (cast<ConstantInt>(CstVal)->isOne()) {
555        Ops.pop_back();                      // ... * 1 -> ...
556      }
557      break;
558    case Instruction::Or:
559      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
560        ++NumAnnihil;
561        return CstVal;
562      }
563      // FALLTHROUGH!
564    case Instruction::Add:
565    case Instruction::Xor:
566      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
567        Ops.pop_back();
568      break;
569    }
570  if (Ops.size() == 1) return Ops[0].Op;
571
572  // Handle destructive annihilation do to identities between elements in the
573  // argument list here.
574  switch (Opcode) {
575  default: break;
576  case Instruction::And:
577  case Instruction::Or:
578  case Instruction::Xor:
579    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
580    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
581    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
582      // First, check for X and ~X in the operand list.
583      assert(i < Ops.size());
584      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
585        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
586        unsigned FoundX = FindInOperandList(Ops, i, X);
587        if (FoundX != i) {
588          if (Opcode == Instruction::And) {   // ...&X&~X = 0
589            ++NumAnnihil;
590            return Constant::getNullValue(X->getType());
591          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
592            ++NumAnnihil;
593            return ConstantInt::getAllOnesValue(X->getType());
594          }
595        }
596      }
597
598      // Next, check for duplicate pairs of values, which we assume are next to
599      // each other, due to our sorting criteria.
600      assert(i < Ops.size());
601      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
602        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
603          // Drop duplicate values.
604          Ops.erase(Ops.begin()+i);
605          --i; --e;
606          IterateOptimization = true;
607          ++NumAnnihil;
608        } else {
609          assert(Opcode == Instruction::Xor);
610          if (e == 2) {
611            ++NumAnnihil;
612            return Constant::getNullValue(Ops[0].Op->getType());
613          }
614          // ... X^X -> ...
615          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
616          i -= 1; e -= 2;
617          IterateOptimization = true;
618          ++NumAnnihil;
619        }
620      }
621    }
622    break;
623
624  case Instruction::Add:
625    // Scan the operand lists looking for X and -X pairs.  If we find any, we
626    // can simplify the expression. X+-X == 0.
627    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
628      assert(i < Ops.size());
629      // Check for X and -X in the operand list.
630      if (BinaryOperator::isNeg(Ops[i].Op)) {
631        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
632        unsigned FoundX = FindInOperandList(Ops, i, X);
633        if (FoundX != i) {
634          // Remove X and -X from the operand list.
635          if (Ops.size() == 2) {
636            ++NumAnnihil;
637            return Constant::getNullValue(X->getType());
638          } else {
639            Ops.erase(Ops.begin()+i);
640            if (i < FoundX)
641              --FoundX;
642            else
643              --i;   // Need to back up an extra one.
644            Ops.erase(Ops.begin()+FoundX);
645            IterateOptimization = true;
646            ++NumAnnihil;
647            --i;     // Revisit element.
648            e -= 2;  // Removed two elements.
649          }
650        }
651      }
652    }
653
654
655    // Scan the operand list, checking to see if there are any common factors
656    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
657    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
658    // To efficiently find this, we count the number of times a factor occurs
659    // for any ADD operands that are MULs.
660    std::map<Value*, unsigned> FactorOccurrences;
661    unsigned MaxOcc = 0;
662    Value *MaxOccVal = 0;
663    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
664      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
665        if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
666          // Compute all of the factors of this added value.
667          std::vector<Value*> Factors;
668          FindSingleUseMultiplyFactors(BOp, Factors);
669          assert(Factors.size() > 1 && "Bad linearize!");
670
671          // Add one to FactorOccurrences for each unique factor in this op.
672          if (Factors.size() == 2) {
673            unsigned Occ = ++FactorOccurrences[Factors[0]];
674            if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
675            if (Factors[0] != Factors[1]) {   // Don't double count A*A.
676              Occ = ++FactorOccurrences[Factors[1]];
677              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
678            }
679          } else {
680            std::set<Value*> Duplicates;
681            for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
682              if (Duplicates.insert(Factors[i]).second) {
683                unsigned Occ = ++FactorOccurrences[Factors[i]];
684                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
685              }
686            }
687          }
688        }
689      }
690    }
691
692    // If any factor occurred more than one time, we can pull it out.
693    if (MaxOcc > 1) {
694      DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
695
696      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
697      // this, we could otherwise run into situations where removing a factor
698      // from an expression will drop a use of maxocc, and this can cause
699      // RemoveFactorFromExpression on successive values to behave differently.
700      Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
701      std::vector<Value*> NewMulOps;
702      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
703        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
704          NewMulOps.push_back(V);
705          Ops.erase(Ops.begin()+i);
706          --i; --e;
707        }
708      }
709
710      // No need for extra uses anymore.
711      delete DummyInst;
712
713      unsigned NumAddedValues = NewMulOps.size();
714      Value *V = EmitAddTreeOfValues(I, NewMulOps);
715      Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
716
717      // Now that we have inserted V and its sole use, optimize it. This allows
718      // us to handle cases that require multiple factoring steps, such as this:
719      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
720      if (NumAddedValues > 1)
721        ReassociateExpression(cast<BinaryOperator>(V));
722
723      ++NumFactor;
724
725      if (Ops.size() == 0)
726        return V2;
727
728      // Add the new value to the list of things being added.
729      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
730
731      // Rewrite the tree so that there is now a use of V.
732      RewriteExprTree(I, Ops);
733      return OptimizeExpression(I, Ops);
734    }
735    break;
736  //case Instruction::Mul:
737  }
738
739  if (IterateOptimization)
740    return OptimizeExpression(I, Ops);
741  return 0;
742}
743
744
745/// ReassociateBB - Inspect all of the instructions in this basic block,
746/// reassociating them as we go.
747void Reassociate::ReassociateBB(BasicBlock *BB) {
748  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
749    Instruction *BI = BBI++;
750    if (BI->getOpcode() == Instruction::Shl &&
751        isa<ConstantInt>(BI->getOperand(1)))
752      if (Instruction *NI = ConvertShiftToMul(BI)) {
753        MadeChange = true;
754        BI = NI;
755      }
756
757    // Reject cases where it is pointless to do this.
758    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
759        isa<VectorType>(BI->getType()))
760      continue;  // Floating point ops are not associative.
761
762    // If this is a subtract instruction which is not already in negate form,
763    // see if we can convert it to X+-Y.
764    if (BI->getOpcode() == Instruction::Sub) {
765      if (!BinaryOperator::isNeg(BI)) {
766        if (Instruction *NI = BreakUpSubtract(BI)) {
767          MadeChange = true;
768          BI = NI;
769        }
770      } else {
771        // Otherwise, this is a negation.  See if the operand is a multiply tree
772        // and if this is not an inner node of a multiply tree.
773        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
774            (!BI->hasOneUse() ||
775             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
776          BI = LowerNegateToMultiply(BI);
777          MadeChange = true;
778        }
779      }
780    }
781
782    // If this instruction is a commutative binary operator, process it.
783    if (!BI->isAssociative()) continue;
784    BinaryOperator *I = cast<BinaryOperator>(BI);
785
786    // If this is an interior node of a reassociable tree, ignore it until we
787    // get to the root of the tree, to avoid N^2 analysis.
788    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
789      continue;
790
791    // If this is an add tree that is used by a sub instruction, ignore it
792    // until we process the subtract.
793    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
794        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
795      continue;
796
797    ReassociateExpression(I);
798  }
799}
800
801void Reassociate::ReassociateExpression(BinaryOperator *I) {
802
803  // First, walk the expression tree, linearizing the tree, collecting
804  std::vector<ValueEntry> Ops;
805  LinearizeExprTree(I, Ops);
806
807  DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
808
809  // Now that we have linearized the tree to a list and have gathered all of
810  // the operands and their ranks, sort the operands by their rank.  Use a
811  // stable_sort so that values with equal ranks will have their relative
812  // positions maintained (and so the compiler is deterministic).  Note that
813  // this sorts so that the highest ranking values end up at the beginning of
814  // the vector.
815  std::stable_sort(Ops.begin(), Ops.end());
816
817  // OptimizeExpression - Now that we have the expression tree in a convenient
818  // sorted form, optimize it globally if possible.
819  if (Value *V = OptimizeExpression(I, Ops)) {
820    // This expression tree simplified to something that isn't a tree,
821    // eliminate it.
822    DOUT << "Reassoc to scalar: " << *V << "\n";
823    I->replaceAllUsesWith(V);
824    RemoveDeadBinaryOp(I);
825    return;
826  }
827
828  // We want to sink immediates as deeply as possible except in the case where
829  // this is a multiply tree used only by an add, and the immediate is a -1.
830  // In this case we reassociate to put the negation on the outside so that we
831  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
832  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
833      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
834      isa<ConstantInt>(Ops.back().Op) &&
835      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
836    Ops.insert(Ops.begin(), Ops.back());
837    Ops.pop_back();
838  }
839
840  DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
841
842  if (Ops.size() == 1) {
843    // This expression tree simplified to something that isn't a tree,
844    // eliminate it.
845    I->replaceAllUsesWith(Ops[0].Op);
846    RemoveDeadBinaryOp(I);
847  } else {
848    // Now that we ordered and optimized the expressions, splat them back into
849    // the expression tree, removing any unneeded nodes.
850    RewriteExprTree(I, Ops);
851  }
852}
853
854
855bool Reassociate::runOnFunction(Function &F) {
856  // Recalculate the rank map for F
857  BuildRankMap(F);
858
859  MadeChange = false;
860  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
861    ReassociateBB(FI);
862
863  // We are done with the rank map...
864  RankMap.clear();
865  ValueRankMap.clear();
866  return MadeChange;
867}
868
869