Reassociate.cpp revision 1e7558b65689999089f53ce40ff07564cf498c68
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Assembly/Writer.h"
32#include "llvm/Support/CFG.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/ValueHandle.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/PostOrderIterator.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/DenseMap.h"
39#include <algorithm>
40#include <map>
41using namespace llvm;
42
43STATISTIC(NumLinear , "Number of insts linearized");
44STATISTIC(NumChanged, "Number of insts reassociated");
45STATISTIC(NumAnnihil, "Number of expr tree annihilated");
46STATISTIC(NumFactor , "Number of multiplies factored");
47
48namespace {
49  struct ValueEntry {
50    unsigned Rank;
51    Value *Op;
52    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
53  };
54  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
55    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
56  }
57}
58
59#ifndef NDEBUG
60/// PrintOps - Print out the expression identified in the Ops list.
61///
62static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
63  Module *M = I->getParent()->getParent()->getParent();
64  errs() << Instruction::getOpcodeName(I->getOpcode()) << " "
65       << *Ops[0].Op->getType() << '\t';
66  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
67    errs() << "[ ";
68    WriteAsOperand(errs(), Ops[i].Op, false, M);
69    errs() << ", #" << Ops[i].Rank << "] ";
70  }
71}
72#endif
73
74namespace {
75  class Reassociate : public FunctionPass {
76    std::map<BasicBlock*, unsigned> RankMap;
77    std::map<AssertingVH<>, unsigned> ValueRankMap;
78    bool MadeChange;
79  public:
80    static char ID; // Pass identification, replacement for typeid
81    Reassociate() : FunctionPass(&ID) {}
82
83    bool runOnFunction(Function &F);
84
85    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86      AU.setPreservesCFG();
87    }
88  private:
89    void BuildRankMap(Function &F);
90    unsigned getRank(Value *V);
91    Value *ReassociateExpression(BinaryOperator *I);
92    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
93                         unsigned Idx = 0);
94    Value *OptimizeExpression(BinaryOperator *I,
95                              SmallVectorImpl<ValueEntry> &Ops);
96    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
97    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
98    void LinearizeExpr(BinaryOperator *I);
99    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
100    void ReassociateBB(BasicBlock *BB);
101
102    void RemoveDeadBinaryOp(Value *V);
103  };
104}
105
106char Reassociate::ID = 0;
107static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
108
109// Public interface to the Reassociate pass
110FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
111
112void Reassociate::RemoveDeadBinaryOp(Value *V) {
113  Instruction *Op = dyn_cast<Instruction>(V);
114  if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
115    return;
116
117  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
118
119  ValueRankMap.erase(Op);
120  Op->eraseFromParent();
121  RemoveDeadBinaryOp(LHS);
122  RemoveDeadBinaryOp(RHS);
123}
124
125
126static bool isUnmovableInstruction(Instruction *I) {
127  if (I->getOpcode() == Instruction::PHI ||
128      I->getOpcode() == Instruction::Alloca ||
129      I->getOpcode() == Instruction::Load ||
130      I->getOpcode() == Instruction::Invoke ||
131      (I->getOpcode() == Instruction::Call &&
132       !isa<DbgInfoIntrinsic>(I)) ||
133      I->getOpcode() == Instruction::UDiv ||
134      I->getOpcode() == Instruction::SDiv ||
135      I->getOpcode() == Instruction::FDiv ||
136      I->getOpcode() == Instruction::URem ||
137      I->getOpcode() == Instruction::SRem ||
138      I->getOpcode() == Instruction::FRem)
139    return true;
140  return false;
141}
142
143void Reassociate::BuildRankMap(Function &F) {
144  unsigned i = 2;
145
146  // Assign distinct ranks to function arguments
147  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
148    ValueRankMap[&*I] = ++i;
149
150  ReversePostOrderTraversal<Function*> RPOT(&F);
151  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
152         E = RPOT.end(); I != E; ++I) {
153    BasicBlock *BB = *I;
154    unsigned BBRank = RankMap[BB] = ++i << 16;
155
156    // Walk the basic block, adding precomputed ranks for any instructions that
157    // we cannot move.  This ensures that the ranks for these instructions are
158    // all different in the block.
159    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
160      if (isUnmovableInstruction(I))
161        ValueRankMap[&*I] = ++BBRank;
162  }
163}
164
165unsigned Reassociate::getRank(Value *V) {
166  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
167
168  Instruction *I = dyn_cast<Instruction>(V);
169  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
170
171  unsigned &CachedRank = ValueRankMap[I];
172  if (CachedRank) return CachedRank;    // Rank already known?
173
174  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
175  // we can reassociate expressions for code motion!  Since we do not recurse
176  // for PHI nodes, we cannot have infinite recursion here, because there
177  // cannot be loops in the value graph that do not go through PHI nodes.
178  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
179  for (unsigned i = 0, e = I->getNumOperands();
180       i != e && Rank != MaxRank; ++i)
181    Rank = std::max(Rank, getRank(I->getOperand(i)));
182
183  // If this is a not or neg instruction, do not count it for rank.  This
184  // assures us that X and ~X will have the same rank.
185  if (!I->getType()->isInteger() ||
186      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
187    ++Rank;
188
189  //DEBUG(errs() << "Calculated Rank[" << V->getName() << "] = "
190  //     << Rank << "\n");
191
192  return CachedRank = Rank;
193}
194
195/// isReassociableOp - Return true if V is an instruction of the specified
196/// opcode and if it only has one use.
197static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
198  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
199      cast<Instruction>(V)->getOpcode() == Opcode)
200    return cast<BinaryOperator>(V);
201  return 0;
202}
203
204/// LowerNegateToMultiply - Replace 0-X with X*-1.
205///
206static Instruction *LowerNegateToMultiply(Instruction *Neg,
207                              std::map<AssertingVH<>, unsigned> &ValueRankMap) {
208  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
209
210  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
211  ValueRankMap.erase(Neg);
212  Res->takeName(Neg);
213  Neg->replaceAllUsesWith(Res);
214  Neg->eraseFromParent();
215  return Res;
216}
217
218// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
219// Note that if D is also part of the expression tree that we recurse to
220// linearize it as well.  Besides that case, this does not recurse into A,B, or
221// C.
222void Reassociate::LinearizeExpr(BinaryOperator *I) {
223  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
224  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
225  assert(isReassociableOp(LHS, I->getOpcode()) &&
226         isReassociableOp(RHS, I->getOpcode()) &&
227         "Not an expression that needs linearization?");
228
229  DEBUG(errs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
230
231  // Move the RHS instruction to live immediately before I, avoiding breaking
232  // dominator properties.
233  RHS->moveBefore(I);
234
235  // Move operands around to do the linearization.
236  I->setOperand(1, RHS->getOperand(0));
237  RHS->setOperand(0, LHS);
238  I->setOperand(0, RHS);
239
240  ++NumLinear;
241  MadeChange = true;
242  DEBUG(errs() << "Linearized: " << *I << '\n');
243
244  // If D is part of this expression tree, tail recurse.
245  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
246    LinearizeExpr(I);
247}
248
249
250/// LinearizeExprTree - Given an associative binary expression tree, traverse
251/// all of the uses putting it into canonical form.  This forces a left-linear
252/// form of the the expression (((a+b)+c)+d), and collects information about the
253/// rank of the non-tree operands.
254///
255/// NOTE: These intentionally destroys the expression tree operands (turning
256/// them into undef values) to reduce #uses of the values.  This means that the
257/// caller MUST use something like RewriteExprTree to put the values back in.
258///
259void Reassociate::LinearizeExprTree(BinaryOperator *I,
260                                    SmallVectorImpl<ValueEntry> &Ops) {
261  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
262  unsigned Opcode = I->getOpcode();
263
264  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
265  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
266  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
267
268  // If this is a multiply expression tree and it contains internal negations,
269  // transform them into multiplies by -1 so they can be reassociated.
270  if (I->getOpcode() == Instruction::Mul) {
271    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
272      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
273      LHSBO = isReassociableOp(LHS, Opcode);
274    }
275    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
276      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
277      RHSBO = isReassociableOp(RHS, Opcode);
278    }
279  }
280
281  if (!LHSBO) {
282    if (!RHSBO) {
283      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
284      // such, just remember these operands and their rank.
285      Ops.push_back(ValueEntry(getRank(LHS), LHS));
286      Ops.push_back(ValueEntry(getRank(RHS), RHS));
287
288      // Clear the leaves out.
289      I->setOperand(0, UndefValue::get(I->getType()));
290      I->setOperand(1, UndefValue::get(I->getType()));
291      return;
292    }
293
294    // Turn X+(Y+Z) -> (Y+Z)+X
295    std::swap(LHSBO, RHSBO);
296    std::swap(LHS, RHS);
297    bool Success = !I->swapOperands();
298    assert(Success && "swapOperands failed");
299    Success = false;
300    MadeChange = true;
301  } else if (RHSBO) {
302    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
303    // part of the expression tree.
304    LinearizeExpr(I);
305    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
306    RHS = I->getOperand(1);
307    RHSBO = 0;
308  }
309
310  // Okay, now we know that the LHS is a nested expression and that the RHS is
311  // not.  Perform reassociation.
312  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
313
314  // Move LHS right before I to make sure that the tree expression dominates all
315  // values.
316  LHSBO->moveBefore(I);
317
318  // Linearize the expression tree on the LHS.
319  LinearizeExprTree(LHSBO, Ops);
320
321  // Remember the RHS operand and its rank.
322  Ops.push_back(ValueEntry(getRank(RHS), RHS));
323
324  // Clear the RHS leaf out.
325  I->setOperand(1, UndefValue::get(I->getType()));
326}
327
328// RewriteExprTree - Now that the operands for this expression tree are
329// linearized and optimized, emit them in-order.  This function is written to be
330// tail recursive.
331void Reassociate::RewriteExprTree(BinaryOperator *I,
332                                  SmallVectorImpl<ValueEntry> &Ops,
333                                  unsigned i) {
334  if (i+2 == Ops.size()) {
335    if (I->getOperand(0) != Ops[i].Op ||
336        I->getOperand(1) != Ops[i+1].Op) {
337      Value *OldLHS = I->getOperand(0);
338      DEBUG(errs() << "RA: " << *I << '\n');
339      I->setOperand(0, Ops[i].Op);
340      I->setOperand(1, Ops[i+1].Op);
341      DEBUG(errs() << "TO: " << *I << '\n');
342      MadeChange = true;
343      ++NumChanged;
344
345      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
346      // delete the extra, now dead, nodes.
347      RemoveDeadBinaryOp(OldLHS);
348    }
349    return;
350  }
351  assert(i+2 < Ops.size() && "Ops index out of range!");
352
353  if (I->getOperand(1) != Ops[i].Op) {
354    DEBUG(errs() << "RA: " << *I << '\n');
355    I->setOperand(1, Ops[i].Op);
356    DEBUG(errs() << "TO: " << *I << '\n');
357    MadeChange = true;
358    ++NumChanged;
359  }
360
361  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
362  assert(LHS->getOpcode() == I->getOpcode() &&
363         "Improper expression tree!");
364
365  // Compactify the tree instructions together with each other to guarantee
366  // that the expression tree is dominated by all of Ops.
367  LHS->moveBefore(I);
368  RewriteExprTree(LHS, Ops, i+1);
369}
370
371
372
373// NegateValue - Insert instructions before the instruction pointed to by BI,
374// that computes the negative version of the value specified.  The negative
375// version of the value is returned, and BI is left pointing at the instruction
376// that should be processed next by the reassociation pass.
377//
378static Value *NegateValue(Value *V, Instruction *BI) {
379  // We are trying to expose opportunity for reassociation.  One of the things
380  // that we want to do to achieve this is to push a negation as deep into an
381  // expression chain as possible, to expose the add instructions.  In practice,
382  // this means that we turn this:
383  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
384  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
385  // the constants.  We assume that instcombine will clean up the mess later if
386  // we introduce tons of unnecessary negation instructions...
387  //
388  if (Instruction *I = dyn_cast<Instruction>(V))
389    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
390      // Push the negates through the add.
391      I->setOperand(0, NegateValue(I->getOperand(0), BI));
392      I->setOperand(1, NegateValue(I->getOperand(1), BI));
393
394      // We must move the add instruction here, because the neg instructions do
395      // not dominate the old add instruction in general.  By moving it, we are
396      // assured that the neg instructions we just inserted dominate the
397      // instruction we are about to insert after them.
398      //
399      I->moveBefore(BI);
400      I->setName(I->getName()+".neg");
401      return I;
402    }
403
404  // Insert a 'neg' instruction that subtracts the value from zero to get the
405  // negation.
406  //
407  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
408}
409
410/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
411/// X-Y into (X + -Y).
412static bool ShouldBreakUpSubtract(Instruction *Sub) {
413  // If this is a negation, we can't split it up!
414  if (BinaryOperator::isNeg(Sub))
415    return false;
416
417  // Don't bother to break this up unless either the LHS is an associable add or
418  // subtract or if this is only used by one.
419  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
420      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
421    return true;
422  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
423      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
424    return true;
425  if (Sub->hasOneUse() &&
426      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
427       isReassociableOp(Sub->use_back(), Instruction::Sub)))
428    return true;
429
430  return false;
431}
432
433/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
434/// only used by an add, transform this into (X+(0-Y)) to promote better
435/// reassociation.
436static Instruction *BreakUpSubtract(Instruction *Sub,
437                              std::map<AssertingVH<>, unsigned> &ValueRankMap) {
438  // Convert a subtract into an add and a neg instruction... so that sub
439  // instructions can be commuted with other add instructions...
440  //
441  // Calculate the negative value of Operand 1 of the sub instruction...
442  // and set it as the RHS of the add instruction we just made...
443  //
444  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
445  Instruction *New =
446    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
447  New->takeName(Sub);
448
449  // Everyone now refers to the add instruction.
450  ValueRankMap.erase(Sub);
451  Sub->replaceAllUsesWith(New);
452  Sub->eraseFromParent();
453
454  DEBUG(errs() << "Negated: " << *New << '\n');
455  return New;
456}
457
458/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
459/// by one, change this into a multiply by a constant to assist with further
460/// reassociation.
461static Instruction *ConvertShiftToMul(Instruction *Shl,
462                              std::map<AssertingVH<>, unsigned> &ValueRankMap) {
463  // If an operand of this shift is a reassociable multiply, or if the shift
464  // is used by a reassociable multiply or add, turn into a multiply.
465  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
466      (Shl->hasOneUse() &&
467       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
468        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
469    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
470    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
471
472    Instruction *Mul =
473      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
474    ValueRankMap.erase(Shl);
475    Mul->takeName(Shl);
476    Shl->replaceAllUsesWith(Mul);
477    Shl->eraseFromParent();
478    return Mul;
479  }
480  return 0;
481}
482
483// Scan backwards and forwards among values with the same rank as element i to
484// see if X exists.  If X does not exist, return i.
485static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
486                                  Value *X) {
487  unsigned XRank = Ops[i].Rank;
488  unsigned e = Ops.size();
489  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
490    if (Ops[j].Op == X)
491      return j;
492  // Scan backwards
493  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
494    if (Ops[j].Op == X)
495      return j;
496  return i;
497}
498
499/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
500/// and returning the result.  Insert the tree before I.
501static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
502  if (Ops.size() == 1) return Ops.back();
503
504  Value *V1 = Ops.back();
505  Ops.pop_back();
506  Value *V2 = EmitAddTreeOfValues(I, Ops);
507  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
508}
509
510/// RemoveFactorFromExpression - If V is an expression tree that is a
511/// multiplication sequence, and if this sequence contains a multiply by Factor,
512/// remove Factor from the tree and return the new tree.
513Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
514  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
515  if (!BO) return 0;
516
517  SmallVector<ValueEntry, 8> Factors;
518  LinearizeExprTree(BO, Factors);
519
520  bool FoundFactor = false;
521  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
522    if (Factors[i].Op == Factor) {
523      FoundFactor = true;
524      Factors.erase(Factors.begin()+i);
525      break;
526    }
527  if (!FoundFactor) {
528    // Make sure to restore the operands to the expression tree.
529    RewriteExprTree(BO, Factors);
530    return 0;
531  }
532
533  // If this was just a single multiply, remove the multiply and return the only
534  // remaining operand.
535  if (Factors.size() == 1) {
536    ValueRankMap.erase(BO);
537    BO->eraseFromParent();
538    return Factors[0].Op;
539  }
540
541  RewriteExprTree(BO, Factors);
542  return BO;
543}
544
545/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
546/// add its operands as factors, otherwise add V to the list of factors.
547static void FindSingleUseMultiplyFactors(Value *V,
548                                         SmallVectorImpl<Value*> &Factors) {
549  BinaryOperator *BO;
550  if ((!V->hasOneUse() && !V->use_empty()) ||
551      !(BO = dyn_cast<BinaryOperator>(V)) ||
552      BO->getOpcode() != Instruction::Mul) {
553    Factors.push_back(V);
554    return;
555  }
556
557  // Otherwise, add the LHS and RHS to the list of factors.
558  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
559  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
560}
561
562/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
563/// instruction.  This optimizes based on identities.  If it can be reduced to
564/// a single Value, it is returned, otherwise the Ops list is mutated as
565/// necessary.
566static Value *OptimizeAndOrXor(unsigned Opcode,
567                               SmallVectorImpl<ValueEntry> &Ops) {
568  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
569  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
570  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
571    // First, check for X and ~X in the operand list.
572    assert(i < Ops.size());
573    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
574      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
575      unsigned FoundX = FindInOperandList(Ops, i, X);
576      if (FoundX != i) {
577        if (Opcode == Instruction::And)   // ...&X&~X = 0
578          return Constant::getNullValue(X->getType());
579
580        if (Opcode == Instruction::Or)    // ...|X|~X = -1
581          return Constant::getAllOnesValue(X->getType());
582      }
583    }
584
585    // Next, check for duplicate pairs of values, which we assume are next to
586    // each other, due to our sorting criteria.
587    assert(i < Ops.size());
588    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
589      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
590        // Drop duplicate values.
591        Ops.erase(Ops.begin()+i);
592        --i; --e;
593        ++NumAnnihil;
594      } else {
595        assert(Opcode == Instruction::Xor);
596        if (e == 2)
597          return Constant::getNullValue(Ops[0].Op->getType());
598
599        // ... X^X -> ...
600        Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
601        i -= 1; e -= 2;
602        ++NumAnnihil;
603      }
604    }
605  }
606  return 0;
607}
608
609/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
610/// optimizes based on identities.  If it can be reduced to a single Value, it
611/// is returned, otherwise the Ops list is mutated as necessary.
612Value *Reassociate::OptimizeAdd(Instruction *I,
613                                SmallVectorImpl<ValueEntry> &Ops) {
614  SmallPtrSet<Value*, 8> OperandsSeen;
615
616Restart:
617  OperandsSeen.clear();
618
619  // Scan the operand lists looking for X and -X pairs.  If we find any, we
620  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
621  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
622  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
623    Value *TheOp = Ops[i].Op;
624    // Check to see if we've seen this operand before.  If so, we factor all
625    // instances of the operand together.
626    if (!OperandsSeen.insert(TheOp)) {
627      // Rescan the list, removing all instances of this operand from the expr.
628      unsigned NumFound = 0;
629      for (unsigned j = 0, je = Ops.size(); j != je; ++j) {
630        if (Ops[j].Op != TheOp) continue;
631        ++NumFound;
632        Ops.erase(Ops.begin()+j);
633        --j; --je;
634      }
635
636      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
637      ++NumFactor;
638
639
640      // Insert a new multiply.
641      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
642      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
643
644      // Now that we have inserted a multiply, optimize it. This allows us to
645      // handle cases that require multiple factoring steps, such as this:
646      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
647      Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
648
649      // If every add operand was a duplicate, return the multiply.
650      if (Ops.empty())
651        return Mul;
652
653      // Otherwise, we had some input that didn't have the dupe, such as
654      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
655      // things being added by this operation.
656      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
657      goto Restart;
658    }
659
660    // Check for X and -X in the operand list.
661    if (!BinaryOperator::isNeg(TheOp))
662      continue;
663
664    Value *X = BinaryOperator::getNegArgument(TheOp);
665    unsigned FoundX = FindInOperandList(Ops, i, X);
666    if (FoundX == i)
667      continue;
668
669    // Remove X and -X from the operand list.
670    if (Ops.size() == 2)
671      return Constant::getNullValue(X->getType());
672
673    Ops.erase(Ops.begin()+i);
674    if (i < FoundX)
675      --FoundX;
676    else
677      --i;   // Need to back up an extra one.
678    Ops.erase(Ops.begin()+FoundX);
679    ++NumAnnihil;
680    --i;     // Revisit element.
681    e -= 2;  // Removed two elements.
682  }
683
684  // Scan the operand list, checking to see if there are any common factors
685  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
686  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
687  // To efficiently find this, we count the number of times a factor occurs
688  // for any ADD operands that are MULs.
689  DenseMap<Value*, unsigned> FactorOccurrences;
690
691  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
692  // where they are actually the same multiply.
693  unsigned MaxOcc = 0;
694  Value *MaxOccVal = 0;
695  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
696    BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
697    if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
698      continue;
699
700    // Compute all of the factors of this added value.
701    SmallVector<Value*, 8> Factors;
702    FindSingleUseMultiplyFactors(BOp, Factors);
703    assert(Factors.size() > 1 && "Bad linearize!");
704
705    // Add one to FactorOccurrences for each unique factor in this op.
706    if (Factors.size() == 2) {
707      unsigned Occ = ++FactorOccurrences[Factors[0]];
708      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
709      if (Factors[0] != Factors[1]) {   // Don't double count A*A.
710        Occ = ++FactorOccurrences[Factors[1]];
711        if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
712      }
713    } else {
714      SmallPtrSet<Value*, 4> Duplicates;
715      for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
716        if (!Duplicates.insert(Factors[i])) continue;
717
718        unsigned Occ = ++FactorOccurrences[Factors[i]];
719        if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
720      }
721    }
722  }
723
724  // If any factor occurred more than one time, we can pull it out.
725  if (MaxOcc > 1) {
726    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
727    ++NumFactor;
728
729    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
730    // this, we could otherwise run into situations where removing a factor
731    // from an expression will drop a use of maxocc, and this can cause
732    // RemoveFactorFromExpression on successive values to behave differently.
733    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
734    SmallVector<Value*, 4> NewMulOps;
735    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
736      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
737        NewMulOps.push_back(V);
738        Ops.erase(Ops.begin()+i);
739        --i; --e;
740      }
741    }
742
743    // No need for extra uses anymore.
744    delete DummyInst;
745
746    unsigned NumAddedValues = NewMulOps.size();
747    Value *V = EmitAddTreeOfValues(I, NewMulOps);
748
749    // Now that we have inserted the add tree, optimize it. This allows us to
750    // handle cases that require multiple factoring steps, such as this:
751    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
752    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
753    V = ReassociateExpression(cast<BinaryOperator>(V));
754
755    // Create the multiply.
756    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
757
758    // FIXME: Should rerun 'ReassociateExpression' on the mul too??
759
760    // If every add operand included the factor (e.g. "A*B + A*C"), then the
761    // entire result expression is just the multiply "A*(B+C)".
762    if (Ops.empty())
763      return V2;
764
765    // Otherwise, we had some input that didn't have the factor, such as
766    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
767    // things being added by this operation.
768    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
769  }
770
771  return 0;
772}
773
774Value *Reassociate::OptimizeExpression(BinaryOperator *I,
775                                       SmallVectorImpl<ValueEntry> &Ops) {
776  // Now that we have the linearized expression tree, try to optimize it.
777  // Start by folding any constants that we found.
778  bool IterateOptimization = false;
779  if (Ops.size() == 1) return Ops[0].Op;
780
781  unsigned Opcode = I->getOpcode();
782
783  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
784    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
785      Ops.pop_back();
786      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
787      return OptimizeExpression(I, Ops);
788    }
789
790  // Check for destructive annihilation due to a constant being used.
791  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
792    switch (Opcode) {
793    default: break;
794    case Instruction::And:
795      if (CstVal->isZero())                  // ... & 0 -> 0
796        return CstVal;
797      if (CstVal->isAllOnesValue())          // ... & -1 -> ...
798        Ops.pop_back();
799      break;
800    case Instruction::Mul:
801      if (CstVal->isZero()) {                // ... * 0 -> 0
802        ++NumAnnihil;
803        return CstVal;
804      }
805
806      if (cast<ConstantInt>(CstVal)->isOne())
807        Ops.pop_back();                      // ... * 1 -> ...
808      break;
809    case Instruction::Or:
810      if (CstVal->isAllOnesValue())          // ... | -1 -> -1
811        return CstVal;
812      // FALLTHROUGH!
813    case Instruction::Add:
814    case Instruction::Xor:
815      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
816        Ops.pop_back();
817      break;
818    }
819  if (Ops.size() == 1) return Ops[0].Op;
820
821  // Handle destructive annihilation due to identities between elements in the
822  // argument list here.
823  switch (Opcode) {
824  default: break;
825  case Instruction::And:
826  case Instruction::Or:
827  case Instruction::Xor: {
828    unsigned NumOps = Ops.size();
829    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
830      return Result;
831    IterateOptimization |= Ops.size() != NumOps;
832    break;
833  }
834
835  case Instruction::Add: {
836    unsigned NumOps = Ops.size();
837    if (Value *Result = OptimizeAdd(I, Ops))
838      return Result;
839    IterateOptimization |= Ops.size() != NumOps;
840  }
841
842    break;
843  //case Instruction::Mul:
844  }
845
846  if (IterateOptimization)
847    return OptimizeExpression(I, Ops);
848  return 0;
849}
850
851
852/// ReassociateBB - Inspect all of the instructions in this basic block,
853/// reassociating them as we go.
854void Reassociate::ReassociateBB(BasicBlock *BB) {
855  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
856    Instruction *BI = BBI++;
857    if (BI->getOpcode() == Instruction::Shl &&
858        isa<ConstantInt>(BI->getOperand(1)))
859      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
860        MadeChange = true;
861        BI = NI;
862      }
863
864    // Reject cases where it is pointless to do this.
865    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
866        isa<VectorType>(BI->getType()))
867      continue;  // Floating point ops are not associative.
868
869    // If this is a subtract instruction which is not already in negate form,
870    // see if we can convert it to X+-Y.
871    if (BI->getOpcode() == Instruction::Sub) {
872      if (ShouldBreakUpSubtract(BI)) {
873        BI = BreakUpSubtract(BI, ValueRankMap);
874        MadeChange = true;
875      } else if (BinaryOperator::isNeg(BI)) {
876        // Otherwise, this is a negation.  See if the operand is a multiply tree
877        // and if this is not an inner node of a multiply tree.
878        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
879            (!BI->hasOneUse() ||
880             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
881          BI = LowerNegateToMultiply(BI, ValueRankMap);
882          MadeChange = true;
883        }
884      }
885    }
886
887    // If this instruction is a commutative binary operator, process it.
888    if (!BI->isAssociative()) continue;
889    BinaryOperator *I = cast<BinaryOperator>(BI);
890
891    // If this is an interior node of a reassociable tree, ignore it until we
892    // get to the root of the tree, to avoid N^2 analysis.
893    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
894      continue;
895
896    // If this is an add tree that is used by a sub instruction, ignore it
897    // until we process the subtract.
898    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
899        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
900      continue;
901
902    ReassociateExpression(I);
903  }
904}
905
906Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
907
908  // First, walk the expression tree, linearizing the tree, collecting the
909  // operand information.
910  SmallVector<ValueEntry, 8> Ops;
911  LinearizeExprTree(I, Ops);
912
913  DEBUG(errs() << "RAIn:\t"; PrintOps(I, Ops); errs() << '\n');
914
915  // Now that we have linearized the tree to a list and have gathered all of
916  // the operands and their ranks, sort the operands by their rank.  Use a
917  // stable_sort so that values with equal ranks will have their relative
918  // positions maintained (and so the compiler is deterministic).  Note that
919  // this sorts so that the highest ranking values end up at the beginning of
920  // the vector.
921  std::stable_sort(Ops.begin(), Ops.end());
922
923  // OptimizeExpression - Now that we have the expression tree in a convenient
924  // sorted form, optimize it globally if possible.
925  if (Value *V = OptimizeExpression(I, Ops)) {
926    // This expression tree simplified to something that isn't a tree,
927    // eliminate it.
928    DEBUG(errs() << "Reassoc to scalar: " << *V << '\n');
929    I->replaceAllUsesWith(V);
930    RemoveDeadBinaryOp(I);
931    ++NumAnnihil;
932    return V;
933  }
934
935  // We want to sink immediates as deeply as possible except in the case where
936  // this is a multiply tree used only by an add, and the immediate is a -1.
937  // In this case we reassociate to put the negation on the outside so that we
938  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
939  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
940      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
941      isa<ConstantInt>(Ops.back().Op) &&
942      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
943    ValueEntry Tmp = Ops.pop_back_val();
944    Ops.insert(Ops.begin(), Tmp);
945  }
946
947  DEBUG(errs() << "RAOut:\t"; PrintOps(I, Ops); errs() << '\n');
948
949  if (Ops.size() == 1) {
950    // This expression tree simplified to something that isn't a tree,
951    // eliminate it.
952    I->replaceAllUsesWith(Ops[0].Op);
953    RemoveDeadBinaryOp(I);
954    return Ops[0].Op;
955  }
956
957  // Now that we ordered and optimized the expressions, splat them back into
958  // the expression tree, removing any unneeded nodes.
959  RewriteExprTree(I, Ops);
960  return I;
961}
962
963
964bool Reassociate::runOnFunction(Function &F) {
965  // Recalculate the rank map for F
966  BuildRankMap(F);
967
968  MadeChange = false;
969  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
970    ReassociateBB(FI);
971
972  // We are done with the rank map...
973  RankMap.clear();
974  ValueRankMap.clear();
975  return MadeChange;
976}
977
978