Reassociate.cpp revision 3b237fcd385a734b49bb54893ce256ba181e36f9
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// This pass reassociates commutative expressions in an order that is designed
4// to promote better constant propagation, GCSE, LICM, PRE...
5//
6// For example: 4 + (x + 5) -> x + (4 + 5)
7//
8// Note that this pass works best if left shifts have been promoted to explicit
9// multiplies before this pass executes.
10//
11// In the implementation of this algorithm, constants are assigned rank = 0,
12// function arguments are rank = 1, and other values are assigned ranks
13// corresponding to the reverse post order traversal of current function
14// (starting at 2), which effectively gives values in deep loops higher rank
15// than values not in loops.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Function.h"
21#include "llvm/iOperators.h"
22#include "llvm/Type.h"
23#include "llvm/Pass.h"
24#include "llvm/Constant.h"
25#include "llvm/Support/CFG.h"
26#include "Support/Debug.h"
27#include "Support/PostOrderIterator.h"
28#include "Support/Statistic.h"
29
30namespace {
31  Statistic<> NumLinear ("reassociate","Number of insts linearized");
32  Statistic<> NumChanged("reassociate","Number of insts reassociated");
33  Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
34
35  class Reassociate : public FunctionPass {
36    std::map<BasicBlock*, unsigned> RankMap;
37    std::map<Value*, unsigned> ValueRankMap;
38  public:
39    bool runOnFunction(Function &F);
40
41    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
42      AU.setPreservesCFG();
43    }
44  private:
45    void BuildRankMap(Function &F);
46    unsigned getRank(Value *V);
47    bool ReassociateExpr(BinaryOperator *I);
48    bool ReassociateBB(BasicBlock *BB);
49  };
50
51  RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
52}
53
54Pass *createReassociatePass() { return new Reassociate(); }
55
56void Reassociate::BuildRankMap(Function &F) {
57  unsigned i = 2;
58
59  // Assign distinct ranks to function arguments
60  for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I)
61    ValueRankMap[I] = ++i;
62
63  ReversePostOrderTraversal<Function*> RPOT(&F);
64  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
65         E = RPOT.end(); I != E; ++I)
66    RankMap[*I] = ++i << 16;
67}
68
69unsigned Reassociate::getRank(Value *V) {
70  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
71
72  if (Instruction *I = dyn_cast<Instruction>(V)) {
73    // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
74    // we can reassociate expressions for code motion!  Since we do not recurse
75    // for PHI nodes, we cannot have infinite recursion here, because there
76    // cannot be loops in the value graph that do not go through PHI nodes.
77    //
78    if (I->getOpcode() == Instruction::PHI ||
79        I->getOpcode() == Instruction::Alloca ||
80        I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
81        I->mayWriteToMemory())  // Cannot move inst if it writes to memory!
82      return RankMap[I->getParent()];
83
84    unsigned &CachedRank = ValueRankMap[I];
85    if (CachedRank) return CachedRank;    // Rank already known?
86
87    // If not, compute it!
88    unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
89    for (unsigned i = 0, e = I->getNumOperands();
90         i != e && Rank != MaxRank; ++i)
91      Rank = std::max(Rank, getRank(I->getOperand(i)));
92
93    DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
94                    << Rank+1 << "\n");
95
96    return CachedRank = Rank+1;
97  }
98
99  // Otherwise it's a global or constant, rank 0.
100  return 0;
101}
102
103
104bool Reassociate::ReassociateExpr(BinaryOperator *I) {
105  Value *LHS = I->getOperand(0);
106  Value *RHS = I->getOperand(1);
107  unsigned LHSRank = getRank(LHS);
108  unsigned RHSRank = getRank(RHS);
109
110  bool Changed = false;
111
112  // Make sure the LHS of the operand always has the greater rank...
113  if (LHSRank < RHSRank) {
114    bool Success = !I->swapOperands();
115    assert(Success && "swapOperands failed");
116
117    std::swap(LHS, RHS);
118    std::swap(LHSRank, RHSRank);
119    Changed = true;
120    ++NumSwapped;
121    DEBUG(std::cerr << "Transposed: " << I
122          /* << " Result BB: " << I->getParent()*/);
123  }
124
125  // If the LHS is the same operator as the current one is, and if we are the
126  // only expression using it...
127  //
128  if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS))
129    if (LHSI->getOpcode() == I->getOpcode() && LHSI->hasOneUse()) {
130      // If the rank of our current RHS is less than the rank of the LHS's LHS,
131      // then we reassociate the two instructions...
132
133      unsigned TakeOp = 0;
134      if (BinaryOperator *IOp = dyn_cast<BinaryOperator>(LHSI->getOperand(0)))
135        if (IOp->getOpcode() == LHSI->getOpcode())
136          TakeOp = 1;   // Hoist out non-tree portion
137
138      if (RHSRank < getRank(LHSI->getOperand(TakeOp))) {
139        // Convert ((a + 12) + 10) into (a + (12 + 10))
140        I->setOperand(0, LHSI->getOperand(TakeOp));
141        LHSI->setOperand(TakeOp, RHS);
142        I->setOperand(1, LHSI);
143
144        // Move the LHS expression forward, to ensure that it is dominated by
145        // its operands.
146        LHSI->getParent()->getInstList().remove(LHSI);
147        I->getParent()->getInstList().insert(I, LHSI);
148
149        ++NumChanged;
150        DEBUG(std::cerr << "Reassociated: " << I/* << " Result BB: "
151                                                   << I->getParent()*/);
152
153        // Since we modified the RHS instruction, make sure that we recheck it.
154        ReassociateExpr(LHSI);
155        ReassociateExpr(I);
156        return true;
157      }
158    }
159
160  return Changed;
161}
162
163
164// NegateValue - Insert instructions before the instruction pointed to by BI,
165// that computes the negative version of the value specified.  The negative
166// version of the value is returned, and BI is left pointing at the instruction
167// that should be processed next by the reassociation pass.
168//
169static Value *NegateValue(Value *V, BasicBlock::iterator &BI) {
170  // We are trying to expose opportunity for reassociation.  One of the things
171  // that we want to do to achieve this is to push a negation as deep into an
172  // expression chain as possible, to expose the add instructions.  In practice,
173  // this means that we turn this:
174  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
175  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
176  // the constants.  We assume that instcombine will clean up the mess later if
177  // we introduce tons of unnecessary negation instructions...
178  //
179  if (Instruction *I = dyn_cast<Instruction>(V))
180    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
181      Value *RHS = NegateValue(I->getOperand(1), BI);
182      Value *LHS = NegateValue(I->getOperand(0), BI);
183
184      // We must actually insert a new add instruction here, because the neg
185      // instructions do not dominate the old add instruction in general.  By
186      // adding it now, we are assured that the neg instructions we just
187      // inserted dominate the instruction we are about to insert after them.
188      //
189      return BinaryOperator::create(Instruction::Add, LHS, RHS,
190                                    I->getName()+".neg",
191                                    cast<Instruction>(RHS)->getNext());
192    }
193
194  // Insert a 'neg' instruction that subtracts the value from zero to get the
195  // negation.
196  //
197  return BI = BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
198}
199
200
201bool Reassociate::ReassociateBB(BasicBlock *BB) {
202  bool Changed = false;
203  for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
204
205    DEBUG(std::cerr << "Processing: " << *BI);
206    if (BI->getOpcode() == Instruction::Sub && !BinaryOperator::isNeg(BI)) {
207      // Convert a subtract into an add and a neg instruction... so that sub
208      // instructions can be commuted with other add instructions...
209      //
210      // Calculate the negative value of Operand 1 of the sub instruction...
211      // and set it as the RHS of the add instruction we just made...
212      //
213      std::string Name = BI->getName();
214      BI->setName("");
215      Instruction *New =
216        BinaryOperator::create(Instruction::Add, BI->getOperand(0),
217                               BI->getOperand(1), Name, BI);
218
219      // Everyone now refers to the add instruction...
220      BI->replaceAllUsesWith(New);
221
222      // Put the new add in the place of the subtract... deleting the subtract
223      BB->getInstList().erase(BI);
224
225      BI = New;
226      New->setOperand(1, NegateValue(New->getOperand(1), BI));
227
228      Changed = true;
229      DEBUG(std::cerr << "Negated: " << New /*<< " Result BB: " << BB*/);
230    }
231
232    // If this instruction is a commutative binary operator, and the ranks of
233    // the two operands are sorted incorrectly, fix it now.
234    //
235    if (BI->isAssociative()) {
236      BinaryOperator *I = cast<BinaryOperator>(BI);
237      if (!I->use_empty()) {
238        // Make sure that we don't have a tree-shaped computation.  If we do,
239        // linearize it.  Convert (A+B)+(C+D) into ((A+B)+C)+D
240        //
241        Instruction *LHSI = dyn_cast<Instruction>(I->getOperand(0));
242        Instruction *RHSI = dyn_cast<Instruction>(I->getOperand(1));
243        if (LHSI && (int)LHSI->getOpcode() == I->getOpcode() &&
244            RHSI && (int)RHSI->getOpcode() == I->getOpcode() &&
245            RHSI->hasOneUse()) {
246          // Insert a new temporary instruction... (A+B)+C
247          BinaryOperator *Tmp = BinaryOperator::create(I->getOpcode(), LHSI,
248                                                       RHSI->getOperand(0),
249                                                       RHSI->getName()+".ra",
250                                                       BI);
251          BI = Tmp;
252          I->setOperand(0, Tmp);
253          I->setOperand(1, RHSI->getOperand(1));
254
255          // Process the temporary instruction for reassociation now.
256          I = Tmp;
257          ++NumLinear;
258          Changed = true;
259          DEBUG(std::cerr << "Linearized: " << I/* << " Result BB: " << BB*/);
260        }
261
262        // Make sure that this expression is correctly reassociated with respect
263        // to it's used values...
264        //
265        Changed |= ReassociateExpr(I);
266      }
267    }
268  }
269
270  return Changed;
271}
272
273
274bool Reassociate::runOnFunction(Function &F) {
275  // Recalculate the rank map for F
276  BuildRankMap(F);
277
278  bool Changed = false;
279  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
280    Changed |= ReassociateBB(FI);
281
282  // We are done with the rank map...
283  RankMap.clear();
284  ValueRankMap.clear();
285  return Changed;
286}
287