Reassociate.cpp revision 42a75517250017a52afb03a0ade03cbd49559fe5
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/Statistic.h"
35#include <algorithm>
36using namespace llvm;
37
38STATISTIC(NumLinear , "Number of insts linearized");
39STATISTIC(NumChanged, "Number of insts reassociated");
40STATISTIC(NumAnnihil, "Number of expr tree annihilated");
41STATISTIC(NumFactor , "Number of multiplies factored");
42
43namespace {
44  struct ValueEntry {
45    unsigned Rank;
46    Value *Op;
47    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
48  };
49  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
50    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
51  }
52}
53
54/// PrintOps - Print out the expression identified in the Ops list.
55///
56static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
57  Module *M = I->getParent()->getParent()->getParent();
58  cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
59  << *Ops[0].Op->getType();
60  for (unsigned i = 0, e = Ops.size(); i != e; ++i)
61    WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M)
62      << "," << Ops[i].Rank;
63}
64
65namespace {
66  class Reassociate : public FunctionPass {
67    std::map<BasicBlock*, unsigned> RankMap;
68    std::map<Value*, unsigned> ValueRankMap;
69    bool MadeChange;
70  public:
71    bool runOnFunction(Function &F);
72
73    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
74      AU.setPreservesCFG();
75    }
76  private:
77    void BuildRankMap(Function &F);
78    unsigned getRank(Value *V);
79    void ReassociateExpression(BinaryOperator *I);
80    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
81                         unsigned Idx = 0);
82    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
83    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
84    void LinearizeExpr(BinaryOperator *I);
85    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
86    void ReassociateBB(BasicBlock *BB);
87
88    void RemoveDeadBinaryOp(Value *V);
89  };
90
91  RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
92}
93
94// Public interface to the Reassociate pass
95FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
96
97void Reassociate::RemoveDeadBinaryOp(Value *V) {
98  Instruction *Op = dyn_cast<Instruction>(V);
99  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
100    return;
101
102  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
103  RemoveDeadBinaryOp(LHS);
104  RemoveDeadBinaryOp(RHS);
105}
106
107
108static bool isUnmovableInstruction(Instruction *I) {
109  if (I->getOpcode() == Instruction::PHI ||
110      I->getOpcode() == Instruction::Alloca ||
111      I->getOpcode() == Instruction::Load ||
112      I->getOpcode() == Instruction::Malloc ||
113      I->getOpcode() == Instruction::Invoke ||
114      I->getOpcode() == Instruction::Call ||
115      I->getOpcode() == Instruction::UDiv ||
116      I->getOpcode() == Instruction::SDiv ||
117      I->getOpcode() == Instruction::FDiv ||
118      I->getOpcode() == Instruction::URem ||
119      I->getOpcode() == Instruction::SRem ||
120      I->getOpcode() == Instruction::FRem)
121    return true;
122  return false;
123}
124
125void Reassociate::BuildRankMap(Function &F) {
126  unsigned i = 2;
127
128  // Assign distinct ranks to function arguments
129  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
130    ValueRankMap[I] = ++i;
131
132  ReversePostOrderTraversal<Function*> RPOT(&F);
133  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
134         E = RPOT.end(); I != E; ++I) {
135    BasicBlock *BB = *I;
136    unsigned BBRank = RankMap[BB] = ++i << 16;
137
138    // Walk the basic block, adding precomputed ranks for any instructions that
139    // we cannot move.  This ensures that the ranks for these instructions are
140    // all different in the block.
141    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
142      if (isUnmovableInstruction(I))
143        ValueRankMap[I] = ++BBRank;
144  }
145}
146
147unsigned Reassociate::getRank(Value *V) {
148  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
149
150  Instruction *I = dyn_cast<Instruction>(V);
151  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
152
153  unsigned &CachedRank = ValueRankMap[I];
154  if (CachedRank) return CachedRank;    // Rank already known?
155
156  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
157  // we can reassociate expressions for code motion!  Since we do not recurse
158  // for PHI nodes, we cannot have infinite recursion here, because there
159  // cannot be loops in the value graph that do not go through PHI nodes.
160  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
161  for (unsigned i = 0, e = I->getNumOperands();
162       i != e && Rank != MaxRank; ++i)
163    Rank = std::max(Rank, getRank(I->getOperand(i)));
164
165  // If this is a not or neg instruction, do not count it for rank.  This
166  // assures us that X and ~X will have the same rank.
167  if (!I->getType()->isInteger() ||
168      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
169    ++Rank;
170
171  //DOUT << "Calculated Rank[" << V->getName() << "] = "
172  //     << Rank << "\n";
173
174  return CachedRank = Rank;
175}
176
177/// isReassociableOp - Return true if V is an instruction of the specified
178/// opcode and if it only has one use.
179static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
180  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
181      cast<Instruction>(V)->getOpcode() == Opcode)
182    return cast<BinaryOperator>(V);
183  return 0;
184}
185
186/// LowerNegateToMultiply - Replace 0-X with X*-1.
187///
188static Instruction *LowerNegateToMultiply(Instruction *Neg) {
189  Constant *Cst;
190  if (Neg->getType()->isFloatingPoint())
191    Cst = ConstantFP::get(Neg->getType(), -1);
192  else
193    Cst = ConstantInt::getAllOnesValue(Neg->getType());
194
195  std::string NegName = Neg->getName(); Neg->setName("");
196  Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
197                                               Neg);
198  Neg->replaceAllUsesWith(Res);
199  Neg->eraseFromParent();
200  return Res;
201}
202
203// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
204// Note that if D is also part of the expression tree that we recurse to
205// linearize it as well.  Besides that case, this does not recurse into A,B, or
206// C.
207void Reassociate::LinearizeExpr(BinaryOperator *I) {
208  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
209  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
210  assert(isReassociableOp(LHS, I->getOpcode()) &&
211         isReassociableOp(RHS, I->getOpcode()) &&
212         "Not an expression that needs linearization?");
213
214  DOUT << "Linear" << *LHS << *RHS << *I;
215
216  // Move the RHS instruction to live immediately before I, avoiding breaking
217  // dominator properties.
218  RHS->moveBefore(I);
219
220  // Move operands around to do the linearization.
221  I->setOperand(1, RHS->getOperand(0));
222  RHS->setOperand(0, LHS);
223  I->setOperand(0, RHS);
224
225  ++NumLinear;
226  MadeChange = true;
227  DOUT << "Linearized: " << *I;
228
229  // If D is part of this expression tree, tail recurse.
230  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
231    LinearizeExpr(I);
232}
233
234
235/// LinearizeExprTree - Given an associative binary expression tree, traverse
236/// all of the uses putting it into canonical form.  This forces a left-linear
237/// form of the the expression (((a+b)+c)+d), and collects information about the
238/// rank of the non-tree operands.
239///
240/// NOTE: These intentionally destroys the expression tree operands (turning
241/// them into undef values) to reduce #uses of the values.  This means that the
242/// caller MUST use something like RewriteExprTree to put the values back in.
243///
244void Reassociate::LinearizeExprTree(BinaryOperator *I,
245                                    std::vector<ValueEntry> &Ops) {
246  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
247  unsigned Opcode = I->getOpcode();
248
249  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
250  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
251  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
252
253  // If this is a multiply expression tree and it contains internal negations,
254  // transform them into multiplies by -1 so they can be reassociated.
255  if (I->getOpcode() == Instruction::Mul) {
256    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
257      LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
258      LHSBO = isReassociableOp(LHS, Opcode);
259    }
260    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
261      RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
262      RHSBO = isReassociableOp(RHS, Opcode);
263    }
264  }
265
266  if (!LHSBO) {
267    if (!RHSBO) {
268      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
269      // such, just remember these operands and their rank.
270      Ops.push_back(ValueEntry(getRank(LHS), LHS));
271      Ops.push_back(ValueEntry(getRank(RHS), RHS));
272
273      // Clear the leaves out.
274      I->setOperand(0, UndefValue::get(I->getType()));
275      I->setOperand(1, UndefValue::get(I->getType()));
276      return;
277    } else {
278      // Turn X+(Y+Z) -> (Y+Z)+X
279      std::swap(LHSBO, RHSBO);
280      std::swap(LHS, RHS);
281      bool Success = !I->swapOperands();
282      assert(Success && "swapOperands failed");
283      MadeChange = true;
284    }
285  } else if (RHSBO) {
286    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
287    // part of the expression tree.
288    LinearizeExpr(I);
289    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
290    RHS = I->getOperand(1);
291    RHSBO = 0;
292  }
293
294  // Okay, now we know that the LHS is a nested expression and that the RHS is
295  // not.  Perform reassociation.
296  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
297
298  // Move LHS right before I to make sure that the tree expression dominates all
299  // values.
300  LHSBO->moveBefore(I);
301
302  // Linearize the expression tree on the LHS.
303  LinearizeExprTree(LHSBO, Ops);
304
305  // Remember the RHS operand and its rank.
306  Ops.push_back(ValueEntry(getRank(RHS), RHS));
307
308  // Clear the RHS leaf out.
309  I->setOperand(1, UndefValue::get(I->getType()));
310}
311
312// RewriteExprTree - Now that the operands for this expression tree are
313// linearized and optimized, emit them in-order.  This function is written to be
314// tail recursive.
315void Reassociate::RewriteExprTree(BinaryOperator *I,
316                                  std::vector<ValueEntry> &Ops,
317                                  unsigned i) {
318  if (i+2 == Ops.size()) {
319    if (I->getOperand(0) != Ops[i].Op ||
320        I->getOperand(1) != Ops[i+1].Op) {
321      Value *OldLHS = I->getOperand(0);
322      DOUT << "RA: " << *I;
323      I->setOperand(0, Ops[i].Op);
324      I->setOperand(1, Ops[i+1].Op);
325      DOUT << "TO: " << *I;
326      MadeChange = true;
327      ++NumChanged;
328
329      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
330      // delete the extra, now dead, nodes.
331      RemoveDeadBinaryOp(OldLHS);
332    }
333    return;
334  }
335  assert(i+2 < Ops.size() && "Ops index out of range!");
336
337  if (I->getOperand(1) != Ops[i].Op) {
338    DOUT << "RA: " << *I;
339    I->setOperand(1, Ops[i].Op);
340    DOUT << "TO: " << *I;
341    MadeChange = true;
342    ++NumChanged;
343  }
344
345  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
346  assert(LHS->getOpcode() == I->getOpcode() &&
347         "Improper expression tree!");
348
349  // Compactify the tree instructions together with each other to guarantee
350  // that the expression tree is dominated by all of Ops.
351  LHS->moveBefore(I);
352  RewriteExprTree(LHS, Ops, i+1);
353}
354
355
356
357// NegateValue - Insert instructions before the instruction pointed to by BI,
358// that computes the negative version of the value specified.  The negative
359// version of the value is returned, and BI is left pointing at the instruction
360// that should be processed next by the reassociation pass.
361//
362static Value *NegateValue(Value *V, Instruction *BI) {
363  // We are trying to expose opportunity for reassociation.  One of the things
364  // that we want to do to achieve this is to push a negation as deep into an
365  // expression chain as possible, to expose the add instructions.  In practice,
366  // this means that we turn this:
367  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
368  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
369  // the constants.  We assume that instcombine will clean up the mess later if
370  // we introduce tons of unnecessary negation instructions...
371  //
372  if (Instruction *I = dyn_cast<Instruction>(V))
373    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
374      // Push the negates through the add.
375      I->setOperand(0, NegateValue(I->getOperand(0), BI));
376      I->setOperand(1, NegateValue(I->getOperand(1), BI));
377
378      // We must move the add instruction here, because the neg instructions do
379      // not dominate the old add instruction in general.  By moving it, we are
380      // assured that the neg instructions we just inserted dominate the
381      // instruction we are about to insert after them.
382      //
383      I->moveBefore(BI);
384      I->setName(I->getName()+".neg");
385      return I;
386    }
387
388  // Insert a 'neg' instruction that subtracts the value from zero to get the
389  // negation.
390  //
391  return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
392}
393
394/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
395/// only used by an add, transform this into (X+(0-Y)) to promote better
396/// reassociation.
397static Instruction *BreakUpSubtract(Instruction *Sub) {
398  // Don't bother to break this up unless either the LHS is an associable add or
399  // if this is only used by one.
400  if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
401      !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
402      !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
403    return 0;
404
405  // Convert a subtract into an add and a neg instruction... so that sub
406  // instructions can be commuted with other add instructions...
407  //
408  // Calculate the negative value of Operand 1 of the sub instruction...
409  // and set it as the RHS of the add instruction we just made...
410  //
411  std::string Name = Sub->getName();
412  Sub->setName("");
413  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
414  Instruction *New =
415    BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
416
417  // Everyone now refers to the add instruction.
418  Sub->replaceAllUsesWith(New);
419  Sub->eraseFromParent();
420
421  DOUT << "Negated: " << *New;
422  return New;
423}
424
425/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
426/// by one, change this into a multiply by a constant to assist with further
427/// reassociation.
428static Instruction *ConvertShiftToMul(Instruction *Shl) {
429  // If an operand of this shift is a reassociable multiply, or if the shift
430  // is used by a reassociable multiply or add, turn into a multiply.
431  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
432      (Shl->hasOneUse() &&
433       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
434        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
435    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
436    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
437
438    std::string Name = Shl->getName();  Shl->setName("");
439    Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
440                                                 Name, Shl);
441    Shl->replaceAllUsesWith(Mul);
442    Shl->eraseFromParent();
443    return Mul;
444  }
445  return 0;
446}
447
448// Scan backwards and forwards among values with the same rank as element i to
449// see if X exists.  If X does not exist, return i.
450static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
451                                  Value *X) {
452  unsigned XRank = Ops[i].Rank;
453  unsigned e = Ops.size();
454  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
455    if (Ops[j].Op == X)
456      return j;
457  // Scan backwards
458  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
459    if (Ops[j].Op == X)
460      return j;
461  return i;
462}
463
464/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
465/// and returning the result.  Insert the tree before I.
466static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
467  if (Ops.size() == 1) return Ops.back();
468
469  Value *V1 = Ops.back();
470  Ops.pop_back();
471  Value *V2 = EmitAddTreeOfValues(I, Ops);
472  return BinaryOperator::createAdd(V2, V1, "tmp", I);
473}
474
475/// RemoveFactorFromExpression - If V is an expression tree that is a
476/// multiplication sequence, and if this sequence contains a multiply by Factor,
477/// remove Factor from the tree and return the new tree.
478Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
479  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
480  if (!BO) return 0;
481
482  std::vector<ValueEntry> Factors;
483  LinearizeExprTree(BO, Factors);
484
485  bool FoundFactor = false;
486  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
487    if (Factors[i].Op == Factor) {
488      FoundFactor = true;
489      Factors.erase(Factors.begin()+i);
490      break;
491    }
492  if (!FoundFactor) {
493    // Make sure to restore the operands to the expression tree.
494    RewriteExprTree(BO, Factors);
495    return 0;
496  }
497
498  if (Factors.size() == 1) return Factors[0].Op;
499
500  RewriteExprTree(BO, Factors);
501  return BO;
502}
503
504/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
505/// add its operands as factors, otherwise add V to the list of factors.
506static void FindSingleUseMultiplyFactors(Value *V,
507                                         std::vector<Value*> &Factors) {
508  BinaryOperator *BO;
509  if ((!V->hasOneUse() && !V->use_empty()) ||
510      !(BO = dyn_cast<BinaryOperator>(V)) ||
511      BO->getOpcode() != Instruction::Mul) {
512    Factors.push_back(V);
513    return;
514  }
515
516  // Otherwise, add the LHS and RHS to the list of factors.
517  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
518  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
519}
520
521
522
523Value *Reassociate::OptimizeExpression(BinaryOperator *I,
524                                       std::vector<ValueEntry> &Ops) {
525  // Now that we have the linearized expression tree, try to optimize it.
526  // Start by folding any constants that we found.
527  bool IterateOptimization = false;
528  if (Ops.size() == 1) return Ops[0].Op;
529
530  unsigned Opcode = I->getOpcode();
531
532  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
533    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
534      Ops.pop_back();
535      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
536      return OptimizeExpression(I, Ops);
537    }
538
539  // Check for destructive annihilation due to a constant being used.
540  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
541    switch (Opcode) {
542    default: break;
543    case Instruction::And:
544      if (CstVal->isNullValue()) {           // ... & 0 -> 0
545        ++NumAnnihil;
546        return CstVal;
547      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
548        Ops.pop_back();
549      }
550      break;
551    case Instruction::Mul:
552      if (CstVal->isNullValue()) {           // ... * 0 -> 0
553        ++NumAnnihil;
554        return CstVal;
555      } else if (cast<ConstantInt>(CstVal)->getZExtValue() == 1) {
556        Ops.pop_back();                      // ... * 1 -> ...
557      }
558      break;
559    case Instruction::Or:
560      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
561        ++NumAnnihil;
562        return CstVal;
563      }
564      // FALLTHROUGH!
565    case Instruction::Add:
566    case Instruction::Xor:
567      if (CstVal->isNullValue())             // ... [|^+] 0 -> ...
568        Ops.pop_back();
569      break;
570    }
571  if (Ops.size() == 1) return Ops[0].Op;
572
573  // Handle destructive annihilation do to identities between elements in the
574  // argument list here.
575  switch (Opcode) {
576  default: break;
577  case Instruction::And:
578  case Instruction::Or:
579  case Instruction::Xor:
580    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
581    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
582    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
583      // First, check for X and ~X in the operand list.
584      assert(i < Ops.size());
585      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
586        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
587        unsigned FoundX = FindInOperandList(Ops, i, X);
588        if (FoundX != i) {
589          if (Opcode == Instruction::And) {   // ...&X&~X = 0
590            ++NumAnnihil;
591            return Constant::getNullValue(X->getType());
592          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
593            ++NumAnnihil;
594            return ConstantInt::getAllOnesValue(X->getType());
595          }
596        }
597      }
598
599      // Next, check for duplicate pairs of values, which we assume are next to
600      // each other, due to our sorting criteria.
601      assert(i < Ops.size());
602      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
603        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
604          // Drop duplicate values.
605          Ops.erase(Ops.begin()+i);
606          --i; --e;
607          IterateOptimization = true;
608          ++NumAnnihil;
609        } else {
610          assert(Opcode == Instruction::Xor);
611          if (e == 2) {
612            ++NumAnnihil;
613            return Constant::getNullValue(Ops[0].Op->getType());
614          }
615          // ... X^X -> ...
616          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
617          i -= 1; e -= 2;
618          IterateOptimization = true;
619          ++NumAnnihil;
620        }
621      }
622    }
623    break;
624
625  case Instruction::Add:
626    // Scan the operand lists looking for X and -X pairs.  If we find any, we
627    // can simplify the expression. X+-X == 0.
628    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
629      assert(i < Ops.size());
630      // Check for X and -X in the operand list.
631      if (BinaryOperator::isNeg(Ops[i].Op)) {
632        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
633        unsigned FoundX = FindInOperandList(Ops, i, X);
634        if (FoundX != i) {
635          // Remove X and -X from the operand list.
636          if (Ops.size() == 2) {
637            ++NumAnnihil;
638            return Constant::getNullValue(X->getType());
639          } else {
640            Ops.erase(Ops.begin()+i);
641            if (i < FoundX)
642              --FoundX;
643            else
644              --i;   // Need to back up an extra one.
645            Ops.erase(Ops.begin()+FoundX);
646            IterateOptimization = true;
647            ++NumAnnihil;
648            --i;     // Revisit element.
649            e -= 2;  // Removed two elements.
650          }
651        }
652      }
653    }
654
655
656    // Scan the operand list, checking to see if there are any common factors
657    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
658    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
659    // To efficiently find this, we count the number of times a factor occurs
660    // for any ADD operands that are MULs.
661    std::map<Value*, unsigned> FactorOccurrences;
662    unsigned MaxOcc = 0;
663    Value *MaxOccVal = 0;
664    if (!I->getType()->isFloatingPoint()) {
665      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
666        if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
667          if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
668            // Compute all of the factors of this added value.
669            std::vector<Value*> Factors;
670            FindSingleUseMultiplyFactors(BOp, Factors);
671            assert(Factors.size() > 1 && "Bad linearize!");
672
673            // Add one to FactorOccurrences for each unique factor in this op.
674            if (Factors.size() == 2) {
675              unsigned Occ = ++FactorOccurrences[Factors[0]];
676              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
677              if (Factors[0] != Factors[1]) {   // Don't double count A*A.
678                Occ = ++FactorOccurrences[Factors[1]];
679                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
680              }
681            } else {
682              std::set<Value*> Duplicates;
683              for (unsigned i = 0, e = Factors.size(); i != e; ++i)
684                if (Duplicates.insert(Factors[i]).second) {
685                  unsigned Occ = ++FactorOccurrences[Factors[i]];
686                  if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
687                }
688            }
689          }
690      }
691    }
692
693    // If any factor occurred more than one time, we can pull it out.
694    if (MaxOcc > 1) {
695      DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
696
697      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
698      // this, we could otherwise run into situations where removing a factor
699      // from an expression will drop a use of maxocc, and this can cause
700      // RemoveFactorFromExpression on successive values to behave differently.
701      Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
702      std::vector<Value*> NewMulOps;
703      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
704        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
705          NewMulOps.push_back(V);
706          Ops.erase(Ops.begin()+i);
707          --i; --e;
708        }
709      }
710
711      // No need for extra uses anymore.
712      delete DummyInst;
713
714      unsigned NumAddedValues = NewMulOps.size();
715      Value *V = EmitAddTreeOfValues(I, NewMulOps);
716      Value *V2 = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
717
718      // Now that we have inserted V and its sole use, optimize it. This allows
719      // us to handle cases that require multiple factoring steps, such as this:
720      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
721      if (NumAddedValues > 1)
722        ReassociateExpression(cast<BinaryOperator>(V));
723
724      ++NumFactor;
725
726      if (Ops.size() == 0)
727        return V2;
728
729      // Add the new value to the list of things being added.
730      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
731
732      // Rewrite the tree so that there is now a use of V.
733      RewriteExprTree(I, Ops);
734      return OptimizeExpression(I, Ops);
735    }
736    break;
737  //case Instruction::Mul:
738  }
739
740  if (IterateOptimization)
741    return OptimizeExpression(I, Ops);
742  return 0;
743}
744
745
746/// ReassociateBB - Inspect all of the instructions in this basic block,
747/// reassociating them as we go.
748void Reassociate::ReassociateBB(BasicBlock *BB) {
749  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
750    Instruction *BI = BBI++;
751    if (BI->getOpcode() == Instruction::Shl &&
752        isa<ConstantInt>(BI->getOperand(1)))
753      if (Instruction *NI = ConvertShiftToMul(BI)) {
754        MadeChange = true;
755        BI = NI;
756      }
757
758    // Reject cases where it is pointless to do this.
759    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
760        isa<PackedType>(BI->getType()))
761      continue;  // Floating point ops are not associative.
762
763    // If this is a subtract instruction which is not already in negate form,
764    // see if we can convert it to X+-Y.
765    if (BI->getOpcode() == Instruction::Sub) {
766      if (!BinaryOperator::isNeg(BI)) {
767        if (Instruction *NI = BreakUpSubtract(BI)) {
768          MadeChange = true;
769          BI = NI;
770        }
771      } else {
772        // Otherwise, this is a negation.  See if the operand is a multiply tree
773        // and if this is not an inner node of a multiply tree.
774        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
775            (!BI->hasOneUse() ||
776             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
777          BI = LowerNegateToMultiply(BI);
778          MadeChange = true;
779        }
780      }
781    }
782
783    // If this instruction is a commutative binary operator, process it.
784    if (!BI->isAssociative()) continue;
785    BinaryOperator *I = cast<BinaryOperator>(BI);
786
787    // If this is an interior node of a reassociable tree, ignore it until we
788    // get to the root of the tree, to avoid N^2 analysis.
789    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
790      continue;
791
792    // If this is an add tree that is used by a sub instruction, ignore it
793    // until we process the subtract.
794    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
795        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
796      continue;
797
798    ReassociateExpression(I);
799  }
800}
801
802void Reassociate::ReassociateExpression(BinaryOperator *I) {
803
804  // First, walk the expression tree, linearizing the tree, collecting
805  std::vector<ValueEntry> Ops;
806  LinearizeExprTree(I, Ops);
807
808  DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
809
810  // Now that we have linearized the tree to a list and have gathered all of
811  // the operands and their ranks, sort the operands by their rank.  Use a
812  // stable_sort so that values with equal ranks will have their relative
813  // positions maintained (and so the compiler is deterministic).  Note that
814  // this sorts so that the highest ranking values end up at the beginning of
815  // the vector.
816  std::stable_sort(Ops.begin(), Ops.end());
817
818  // OptimizeExpression - Now that we have the expression tree in a convenient
819  // sorted form, optimize it globally if possible.
820  if (Value *V = OptimizeExpression(I, Ops)) {
821    // This expression tree simplified to something that isn't a tree,
822    // eliminate it.
823    DOUT << "Reassoc to scalar: " << *V << "\n";
824    I->replaceAllUsesWith(V);
825    RemoveDeadBinaryOp(I);
826    return;
827  }
828
829  // We want to sink immediates as deeply as possible except in the case where
830  // this is a multiply tree used only by an add, and the immediate is a -1.
831  // In this case we reassociate to put the negation on the outside so that we
832  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
833  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
834      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
835      isa<ConstantInt>(Ops.back().Op) &&
836      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
837    Ops.insert(Ops.begin(), Ops.back());
838    Ops.pop_back();
839  }
840
841  DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
842
843  if (Ops.size() == 1) {
844    // This expression tree simplified to something that isn't a tree,
845    // eliminate it.
846    I->replaceAllUsesWith(Ops[0].Op);
847    RemoveDeadBinaryOp(I);
848  } else {
849    // Now that we ordered and optimized the expressions, splat them back into
850    // the expression tree, removing any unneeded nodes.
851    RewriteExprTree(I, Ops);
852  }
853}
854
855
856bool Reassociate::runOnFunction(Function &F) {
857  // Recalculate the rank map for F
858  BuildRankMap(F);
859
860  MadeChange = false;
861  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
862    ReassociateBB(FI);
863
864  // We are done with the rank map...
865  RankMap.clear();
866  ValueRankMap.clear();
867  return MadeChange;
868}
869
870