Reassociate.cpp revision ae73dc1448d25b02cabc7c64c86c64371453dda8
1//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/Statistic.h"
36#include <algorithm>
37#include <map>
38using namespace llvm;
39
40STATISTIC(NumLinear , "Number of insts linearized");
41STATISTIC(NumChanged, "Number of insts reassociated");
42STATISTIC(NumAnnihil, "Number of expr tree annihilated");
43STATISTIC(NumFactor , "Number of multiplies factored");
44
45namespace {
46  struct VISIBILITY_HIDDEN ValueEntry {
47    unsigned Rank;
48    Value *Op;
49    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50  };
51  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
53  }
54}
55
56/// PrintOps - Print out the expression identified in the Ops list.
57///
58static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
59  Module *M = I->getParent()->getParent()->getParent();
60  cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
61       << *Ops[0].Op->getType();
62  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
63    WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
64    cerr << "," << Ops[i].Rank;
65  }
66}
67
68namespace {
69  class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
70    std::map<BasicBlock*, unsigned> RankMap;
71    std::map<Value*, unsigned> ValueRankMap;
72    bool MadeChange;
73  public:
74    static char ID; // Pass identification, replacement for typeid
75    Reassociate() : FunctionPass(&ID) {}
76
77    bool runOnFunction(Function &F);
78
79    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80      AU.setPreservesCFG();
81    }
82  private:
83    void BuildRankMap(Function &F);
84    unsigned getRank(Value *V);
85    void ReassociateExpression(BinaryOperator *I);
86    void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
87                         unsigned Idx = 0);
88    Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
89    void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
90    void LinearizeExpr(BinaryOperator *I);
91    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
92    void ReassociateBB(BasicBlock *BB);
93
94    void RemoveDeadBinaryOp(Value *V);
95  };
96}
97
98char Reassociate::ID = 0;
99static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
100
101// Public interface to the Reassociate pass
102FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
103
104void Reassociate::RemoveDeadBinaryOp(Value *V) {
105  Instruction *Op = dyn_cast<Instruction>(V);
106  if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
107    return;
108
109  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
110  RemoveDeadBinaryOp(LHS);
111  RemoveDeadBinaryOp(RHS);
112}
113
114
115static bool isUnmovableInstruction(Instruction *I) {
116  if (I->getOpcode() == Instruction::PHI ||
117      I->getOpcode() == Instruction::Alloca ||
118      I->getOpcode() == Instruction::Load ||
119      I->getOpcode() == Instruction::Malloc ||
120      I->getOpcode() == Instruction::Invoke ||
121      I->getOpcode() == Instruction::Call ||
122      I->getOpcode() == Instruction::UDiv ||
123      I->getOpcode() == Instruction::SDiv ||
124      I->getOpcode() == Instruction::FDiv ||
125      I->getOpcode() == Instruction::URem ||
126      I->getOpcode() == Instruction::SRem ||
127      I->getOpcode() == Instruction::FRem)
128    return true;
129  return false;
130}
131
132void Reassociate::BuildRankMap(Function &F) {
133  unsigned i = 2;
134
135  // Assign distinct ranks to function arguments
136  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
137    ValueRankMap[I] = ++i;
138
139  ReversePostOrderTraversal<Function*> RPOT(&F);
140  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
141         E = RPOT.end(); I != E; ++I) {
142    BasicBlock *BB = *I;
143    unsigned BBRank = RankMap[BB] = ++i << 16;
144
145    // Walk the basic block, adding precomputed ranks for any instructions that
146    // we cannot move.  This ensures that the ranks for these instructions are
147    // all different in the block.
148    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
149      if (isUnmovableInstruction(I))
150        ValueRankMap[I] = ++BBRank;
151  }
152}
153
154unsigned Reassociate::getRank(Value *V) {
155  if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument...
156
157  Instruction *I = dyn_cast<Instruction>(V);
158  if (I == 0) return 0;  // Otherwise it's a global or constant, rank 0.
159
160  unsigned &CachedRank = ValueRankMap[I];
161  if (CachedRank) return CachedRank;    // Rank already known?
162
163  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
164  // we can reassociate expressions for code motion!  Since we do not recurse
165  // for PHI nodes, we cannot have infinite recursion here, because there
166  // cannot be loops in the value graph that do not go through PHI nodes.
167  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
168  for (unsigned i = 0, e = I->getNumOperands();
169       i != e && Rank != MaxRank; ++i)
170    Rank = std::max(Rank, getRank(I->getOperand(i)));
171
172  // If this is a not or neg instruction, do not count it for rank.  This
173  // assures us that X and ~X will have the same rank.
174  if (!I->getType()->isInteger() ||
175      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
176    ++Rank;
177
178  //DOUT << "Calculated Rank[" << V->getName() << "] = "
179  //     << Rank << "\n";
180
181  return CachedRank = Rank;
182}
183
184/// isReassociableOp - Return true if V is an instruction of the specified
185/// opcode and if it only has one use.
186static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
187  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
188      cast<Instruction>(V)->getOpcode() == Opcode)
189    return cast<BinaryOperator>(V);
190  return 0;
191}
192
193/// LowerNegateToMultiply - Replace 0-X with X*-1.
194///
195static Instruction *LowerNegateToMultiply(Instruction *Neg) {
196  Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
197
198  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
199  Res->takeName(Neg);
200  Neg->replaceAllUsesWith(Res);
201  Neg->eraseFromParent();
202  return Res;
203}
204
205// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
206// Note that if D is also part of the expression tree that we recurse to
207// linearize it as well.  Besides that case, this does not recurse into A,B, or
208// C.
209void Reassociate::LinearizeExpr(BinaryOperator *I) {
210  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
211  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
212  assert(isReassociableOp(LHS, I->getOpcode()) &&
213         isReassociableOp(RHS, I->getOpcode()) &&
214         "Not an expression that needs linearization?");
215
216  DOUT << "Linear" << *LHS << *RHS << *I;
217
218  // Move the RHS instruction to live immediately before I, avoiding breaking
219  // dominator properties.
220  RHS->moveBefore(I);
221
222  // Move operands around to do the linearization.
223  I->setOperand(1, RHS->getOperand(0));
224  RHS->setOperand(0, LHS);
225  I->setOperand(0, RHS);
226
227  ++NumLinear;
228  MadeChange = true;
229  DOUT << "Linearized: " << *I;
230
231  // If D is part of this expression tree, tail recurse.
232  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
233    LinearizeExpr(I);
234}
235
236
237/// LinearizeExprTree - Given an associative binary expression tree, traverse
238/// all of the uses putting it into canonical form.  This forces a left-linear
239/// form of the the expression (((a+b)+c)+d), and collects information about the
240/// rank of the non-tree operands.
241///
242/// NOTE: These intentionally destroys the expression tree operands (turning
243/// them into undef values) to reduce #uses of the values.  This means that the
244/// caller MUST use something like RewriteExprTree to put the values back in.
245///
246void Reassociate::LinearizeExprTree(BinaryOperator *I,
247                                    std::vector<ValueEntry> &Ops) {
248  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
249  unsigned Opcode = I->getOpcode();
250
251  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
252  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
253  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
254
255  // If this is a multiply expression tree and it contains internal negations,
256  // transform them into multiplies by -1 so they can be reassociated.
257  if (I->getOpcode() == Instruction::Mul) {
258    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
259      LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
260      LHSBO = isReassociableOp(LHS, Opcode);
261    }
262    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
263      RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
264      RHSBO = isReassociableOp(RHS, Opcode);
265    }
266  }
267
268  if (!LHSBO) {
269    if (!RHSBO) {
270      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
271      // such, just remember these operands and their rank.
272      Ops.push_back(ValueEntry(getRank(LHS), LHS));
273      Ops.push_back(ValueEntry(getRank(RHS), RHS));
274
275      // Clear the leaves out.
276      I->setOperand(0, UndefValue::get(I->getType()));
277      I->setOperand(1, UndefValue::get(I->getType()));
278      return;
279    } else {
280      // Turn X+(Y+Z) -> (Y+Z)+X
281      std::swap(LHSBO, RHSBO);
282      std::swap(LHS, RHS);
283      bool Success = !I->swapOperands();
284      assert(Success && "swapOperands failed");
285      MadeChange = true;
286    }
287  } else if (RHSBO) {
288    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the the RHS is not
289    // part of the expression tree.
290    LinearizeExpr(I);
291    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
292    RHS = I->getOperand(1);
293    RHSBO = 0;
294  }
295
296  // Okay, now we know that the LHS is a nested expression and that the RHS is
297  // not.  Perform reassociation.
298  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
299
300  // Move LHS right before I to make sure that the tree expression dominates all
301  // values.
302  LHSBO->moveBefore(I);
303
304  // Linearize the expression tree on the LHS.
305  LinearizeExprTree(LHSBO, Ops);
306
307  // Remember the RHS operand and its rank.
308  Ops.push_back(ValueEntry(getRank(RHS), RHS));
309
310  // Clear the RHS leaf out.
311  I->setOperand(1, UndefValue::get(I->getType()));
312}
313
314// RewriteExprTree - Now that the operands for this expression tree are
315// linearized and optimized, emit them in-order.  This function is written to be
316// tail recursive.
317void Reassociate::RewriteExprTree(BinaryOperator *I,
318                                  std::vector<ValueEntry> &Ops,
319                                  unsigned i) {
320  if (i+2 == Ops.size()) {
321    if (I->getOperand(0) != Ops[i].Op ||
322        I->getOperand(1) != Ops[i+1].Op) {
323      Value *OldLHS = I->getOperand(0);
324      DOUT << "RA: " << *I;
325      I->setOperand(0, Ops[i].Op);
326      I->setOperand(1, Ops[i+1].Op);
327      DOUT << "TO: " << *I;
328      MadeChange = true;
329      ++NumChanged;
330
331      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
332      // delete the extra, now dead, nodes.
333      RemoveDeadBinaryOp(OldLHS);
334    }
335    return;
336  }
337  assert(i+2 < Ops.size() && "Ops index out of range!");
338
339  if (I->getOperand(1) != Ops[i].Op) {
340    DOUT << "RA: " << *I;
341    I->setOperand(1, Ops[i].Op);
342    DOUT << "TO: " << *I;
343    MadeChange = true;
344    ++NumChanged;
345  }
346
347  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
348  assert(LHS->getOpcode() == I->getOpcode() &&
349         "Improper expression tree!");
350
351  // Compactify the tree instructions together with each other to guarantee
352  // that the expression tree is dominated by all of Ops.
353  LHS->moveBefore(I);
354  RewriteExprTree(LHS, Ops, i+1);
355}
356
357
358
359// NegateValue - Insert instructions before the instruction pointed to by BI,
360// that computes the negative version of the value specified.  The negative
361// version of the value is returned, and BI is left pointing at the instruction
362// that should be processed next by the reassociation pass.
363//
364static Value *NegateValue(Value *V, Instruction *BI) {
365  // We are trying to expose opportunity for reassociation.  One of the things
366  // that we want to do to achieve this is to push a negation as deep into an
367  // expression chain as possible, to expose the add instructions.  In practice,
368  // this means that we turn this:
369  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
370  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
371  // the constants.  We assume that instcombine will clean up the mess later if
372  // we introduce tons of unnecessary negation instructions...
373  //
374  if (Instruction *I = dyn_cast<Instruction>(V))
375    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
376      // Push the negates through the add.
377      I->setOperand(0, NegateValue(I->getOperand(0), BI));
378      I->setOperand(1, NegateValue(I->getOperand(1), BI));
379
380      // We must move the add instruction here, because the neg instructions do
381      // not dominate the old add instruction in general.  By moving it, we are
382      // assured that the neg instructions we just inserted dominate the
383      // instruction we are about to insert after them.
384      //
385      I->moveBefore(BI);
386      I->setName(I->getName()+".neg");
387      return I;
388    }
389
390  // Insert a 'neg' instruction that subtracts the value from zero to get the
391  // negation.
392  //
393  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
394}
395
396/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
397/// X-Y into (X + -Y).
398static bool ShouldBreakUpSubtract(Instruction *Sub) {
399  // If this is a negation, we can't split it up!
400  if (BinaryOperator::isNeg(Sub))
401    return false;
402
403  // Don't bother to break this up unless either the LHS is an associable add or
404  // subtract or if this is only used by one.
405  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
406      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
407    return true;
408  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
409      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
410    return true;
411  if (Sub->hasOneUse() &&
412      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
413       isReassociableOp(Sub->use_back(), Instruction::Sub)))
414    return true;
415
416  return false;
417}
418
419/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
420/// only used by an add, transform this into (X+(0-Y)) to promote better
421/// reassociation.
422static Instruction *BreakUpSubtract(Instruction *Sub) {
423  // Convert a subtract into an add and a neg instruction... so that sub
424  // instructions can be commuted with other add instructions...
425  //
426  // Calculate the negative value of Operand 1 of the sub instruction...
427  // and set it as the RHS of the add instruction we just made...
428  //
429  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
430  Instruction *New =
431    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
432  New->takeName(Sub);
433
434  // Everyone now refers to the add instruction.
435  Sub->replaceAllUsesWith(New);
436  Sub->eraseFromParent();
437
438  DOUT << "Negated: " << *New;
439  return New;
440}
441
442/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
443/// by one, change this into a multiply by a constant to assist with further
444/// reassociation.
445static Instruction *ConvertShiftToMul(Instruction *Shl) {
446  // If an operand of this shift is a reassociable multiply, or if the shift
447  // is used by a reassociable multiply or add, turn into a multiply.
448  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
449      (Shl->hasOneUse() &&
450       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
451        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
452    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
453    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
454
455    Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
456                                                 "", Shl);
457    Mul->takeName(Shl);
458    Shl->replaceAllUsesWith(Mul);
459    Shl->eraseFromParent();
460    return Mul;
461  }
462  return 0;
463}
464
465// Scan backwards and forwards among values with the same rank as element i to
466// see if X exists.  If X does not exist, return i.
467static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
468                                  Value *X) {
469  unsigned XRank = Ops[i].Rank;
470  unsigned e = Ops.size();
471  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
472    if (Ops[j].Op == X)
473      return j;
474  // Scan backwards
475  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
476    if (Ops[j].Op == X)
477      return j;
478  return i;
479}
480
481/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
482/// and returning the result.  Insert the tree before I.
483static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
484  if (Ops.size() == 1) return Ops.back();
485
486  Value *V1 = Ops.back();
487  Ops.pop_back();
488  Value *V2 = EmitAddTreeOfValues(I, Ops);
489  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
490}
491
492/// RemoveFactorFromExpression - If V is an expression tree that is a
493/// multiplication sequence, and if this sequence contains a multiply by Factor,
494/// remove Factor from the tree and return the new tree.
495Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
496  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
497  if (!BO) return 0;
498
499  std::vector<ValueEntry> Factors;
500  LinearizeExprTree(BO, Factors);
501
502  bool FoundFactor = false;
503  for (unsigned i = 0, e = Factors.size(); i != e; ++i)
504    if (Factors[i].Op == Factor) {
505      FoundFactor = true;
506      Factors.erase(Factors.begin()+i);
507      break;
508    }
509  if (!FoundFactor) {
510    // Make sure to restore the operands to the expression tree.
511    RewriteExprTree(BO, Factors);
512    return 0;
513  }
514
515  if (Factors.size() == 1) return Factors[0].Op;
516
517  RewriteExprTree(BO, Factors);
518  return BO;
519}
520
521/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
522/// add its operands as factors, otherwise add V to the list of factors.
523static void FindSingleUseMultiplyFactors(Value *V,
524                                         std::vector<Value*> &Factors) {
525  BinaryOperator *BO;
526  if ((!V->hasOneUse() && !V->use_empty()) ||
527      !(BO = dyn_cast<BinaryOperator>(V)) ||
528      BO->getOpcode() != Instruction::Mul) {
529    Factors.push_back(V);
530    return;
531  }
532
533  // Otherwise, add the LHS and RHS to the list of factors.
534  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
535  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
536}
537
538
539
540Value *Reassociate::OptimizeExpression(BinaryOperator *I,
541                                       std::vector<ValueEntry> &Ops) {
542  // Now that we have the linearized expression tree, try to optimize it.
543  // Start by folding any constants that we found.
544  bool IterateOptimization = false;
545  if (Ops.size() == 1) return Ops[0].Op;
546
547  unsigned Opcode = I->getOpcode();
548
549  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
550    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
551      Ops.pop_back();
552      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
553      return OptimizeExpression(I, Ops);
554    }
555
556  // Check for destructive annihilation due to a constant being used.
557  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
558    switch (Opcode) {
559    default: break;
560    case Instruction::And:
561      if (CstVal->isZero()) {                // ... & 0 -> 0
562        ++NumAnnihil;
563        return CstVal;
564      } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
565        Ops.pop_back();
566      }
567      break;
568    case Instruction::Mul:
569      if (CstVal->isZero()) {                // ... * 0 -> 0
570        ++NumAnnihil;
571        return CstVal;
572      } else if (cast<ConstantInt>(CstVal)->isOne()) {
573        Ops.pop_back();                      // ... * 1 -> ...
574      }
575      break;
576    case Instruction::Or:
577      if (CstVal->isAllOnesValue()) {        // ... | -1 -> -1
578        ++NumAnnihil;
579        return CstVal;
580      }
581      // FALLTHROUGH!
582    case Instruction::Add:
583    case Instruction::Xor:
584      if (CstVal->isZero())                  // ... [|^+] 0 -> ...
585        Ops.pop_back();
586      break;
587    }
588  if (Ops.size() == 1) return Ops[0].Op;
589
590  // Handle destructive annihilation do to identities between elements in the
591  // argument list here.
592  switch (Opcode) {
593  default: break;
594  case Instruction::And:
595  case Instruction::Or:
596  case Instruction::Xor:
597    // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
598    // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
599    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
600      // First, check for X and ~X in the operand list.
601      assert(i < Ops.size());
602      if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
603        Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
604        unsigned FoundX = FindInOperandList(Ops, i, X);
605        if (FoundX != i) {
606          if (Opcode == Instruction::And) {   // ...&X&~X = 0
607            ++NumAnnihil;
608            return Constant::getNullValue(X->getType());
609          } else if (Opcode == Instruction::Or) {   // ...|X|~X = -1
610            ++NumAnnihil;
611            return ConstantInt::getAllOnesValue(X->getType());
612          }
613        }
614      }
615
616      // Next, check for duplicate pairs of values, which we assume are next to
617      // each other, due to our sorting criteria.
618      assert(i < Ops.size());
619      if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
620        if (Opcode == Instruction::And || Opcode == Instruction::Or) {
621          // Drop duplicate values.
622          Ops.erase(Ops.begin()+i);
623          --i; --e;
624          IterateOptimization = true;
625          ++NumAnnihil;
626        } else {
627          assert(Opcode == Instruction::Xor);
628          if (e == 2) {
629            ++NumAnnihil;
630            return Constant::getNullValue(Ops[0].Op->getType());
631          }
632          // ... X^X -> ...
633          Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
634          i -= 1; e -= 2;
635          IterateOptimization = true;
636          ++NumAnnihil;
637        }
638      }
639    }
640    break;
641
642  case Instruction::Add:
643    // Scan the operand lists looking for X and -X pairs.  If we find any, we
644    // can simplify the expression. X+-X == 0.
645    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
646      assert(i < Ops.size());
647      // Check for X and -X in the operand list.
648      if (BinaryOperator::isNeg(Ops[i].Op)) {
649        Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
650        unsigned FoundX = FindInOperandList(Ops, i, X);
651        if (FoundX != i) {
652          // Remove X and -X from the operand list.
653          if (Ops.size() == 2) {
654            ++NumAnnihil;
655            return Constant::getNullValue(X->getType());
656          } else {
657            Ops.erase(Ops.begin()+i);
658            if (i < FoundX)
659              --FoundX;
660            else
661              --i;   // Need to back up an extra one.
662            Ops.erase(Ops.begin()+FoundX);
663            IterateOptimization = true;
664            ++NumAnnihil;
665            --i;     // Revisit element.
666            e -= 2;  // Removed two elements.
667          }
668        }
669      }
670    }
671
672
673    // Scan the operand list, checking to see if there are any common factors
674    // between operands.  Consider something like A*A+A*B*C+D.  We would like to
675    // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
676    // To efficiently find this, we count the number of times a factor occurs
677    // for any ADD operands that are MULs.
678    std::map<Value*, unsigned> FactorOccurrences;
679    unsigned MaxOcc = 0;
680    Value *MaxOccVal = 0;
681    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
682      if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
683        if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
684          // Compute all of the factors of this added value.
685          std::vector<Value*> Factors;
686          FindSingleUseMultiplyFactors(BOp, Factors);
687          assert(Factors.size() > 1 && "Bad linearize!");
688
689          // Add one to FactorOccurrences for each unique factor in this op.
690          if (Factors.size() == 2) {
691            unsigned Occ = ++FactorOccurrences[Factors[0]];
692            if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
693            if (Factors[0] != Factors[1]) {   // Don't double count A*A.
694              Occ = ++FactorOccurrences[Factors[1]];
695              if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
696            }
697          } else {
698            std::set<Value*> Duplicates;
699            for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
700              if (Duplicates.insert(Factors[i]).second) {
701                unsigned Occ = ++FactorOccurrences[Factors[i]];
702                if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
703              }
704            }
705          }
706        }
707      }
708    }
709
710    // If any factor occurred more than one time, we can pull it out.
711    if (MaxOcc > 1) {
712      DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
713
714      // Create a new instruction that uses the MaxOccVal twice.  If we don't do
715      // this, we could otherwise run into situations where removing a factor
716      // from an expression will drop a use of maxocc, and this can cause
717      // RemoveFactorFromExpression on successive values to behave differently.
718      Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
719      std::vector<Value*> NewMulOps;
720      for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
721        if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
722          NewMulOps.push_back(V);
723          Ops.erase(Ops.begin()+i);
724          --i; --e;
725        }
726      }
727
728      // No need for extra uses anymore.
729      delete DummyInst;
730
731      unsigned NumAddedValues = NewMulOps.size();
732      Value *V = EmitAddTreeOfValues(I, NewMulOps);
733      Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
734
735      // Now that we have inserted V and its sole use, optimize it. This allows
736      // us to handle cases that require multiple factoring steps, such as this:
737      // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
738      if (NumAddedValues > 1)
739        ReassociateExpression(cast<BinaryOperator>(V));
740
741      ++NumFactor;
742
743      if (Ops.empty())
744        return V2;
745
746      // Add the new value to the list of things being added.
747      Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
748
749      // Rewrite the tree so that there is now a use of V.
750      RewriteExprTree(I, Ops);
751      return OptimizeExpression(I, Ops);
752    }
753    break;
754  //case Instruction::Mul:
755  }
756
757  if (IterateOptimization)
758    return OptimizeExpression(I, Ops);
759  return 0;
760}
761
762
763/// ReassociateBB - Inspect all of the instructions in this basic block,
764/// reassociating them as we go.
765void Reassociate::ReassociateBB(BasicBlock *BB) {
766  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
767    Instruction *BI = BBI++;
768    if (BI->getOpcode() == Instruction::Shl &&
769        isa<ConstantInt>(BI->getOperand(1)))
770      if (Instruction *NI = ConvertShiftToMul(BI)) {
771        MadeChange = true;
772        BI = NI;
773      }
774
775    // Reject cases where it is pointless to do this.
776    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
777        isa<VectorType>(BI->getType()))
778      continue;  // Floating point ops are not associative.
779
780    // If this is a subtract instruction which is not already in negate form,
781    // see if we can convert it to X+-Y.
782    if (BI->getOpcode() == Instruction::Sub) {
783      if (ShouldBreakUpSubtract(BI)) {
784        BI = BreakUpSubtract(BI);
785        MadeChange = true;
786      } else if (BinaryOperator::isNeg(BI)) {
787        // Otherwise, this is a negation.  See if the operand is a multiply tree
788        // and if this is not an inner node of a multiply tree.
789        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
790            (!BI->hasOneUse() ||
791             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
792          BI = LowerNegateToMultiply(BI);
793          MadeChange = true;
794        }
795      }
796    }
797
798    // If this instruction is a commutative binary operator, process it.
799    if (!BI->isAssociative()) continue;
800    BinaryOperator *I = cast<BinaryOperator>(BI);
801
802    // If this is an interior node of a reassociable tree, ignore it until we
803    // get to the root of the tree, to avoid N^2 analysis.
804    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
805      continue;
806
807    // If this is an add tree that is used by a sub instruction, ignore it
808    // until we process the subtract.
809    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
810        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
811      continue;
812
813    ReassociateExpression(I);
814  }
815}
816
817void Reassociate::ReassociateExpression(BinaryOperator *I) {
818
819  // First, walk the expression tree, linearizing the tree, collecting
820  std::vector<ValueEntry> Ops;
821  LinearizeExprTree(I, Ops);
822
823  DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
824
825  // Now that we have linearized the tree to a list and have gathered all of
826  // the operands and their ranks, sort the operands by their rank.  Use a
827  // stable_sort so that values with equal ranks will have their relative
828  // positions maintained (and so the compiler is deterministic).  Note that
829  // this sorts so that the highest ranking values end up at the beginning of
830  // the vector.
831  std::stable_sort(Ops.begin(), Ops.end());
832
833  // OptimizeExpression - Now that we have the expression tree in a convenient
834  // sorted form, optimize it globally if possible.
835  if (Value *V = OptimizeExpression(I, Ops)) {
836    // This expression tree simplified to something that isn't a tree,
837    // eliminate it.
838    DOUT << "Reassoc to scalar: " << *V << "\n";
839    I->replaceAllUsesWith(V);
840    RemoveDeadBinaryOp(I);
841    return;
842  }
843
844  // We want to sink immediates as deeply as possible except in the case where
845  // this is a multiply tree used only by an add, and the immediate is a -1.
846  // In this case we reassociate to put the negation on the outside so that we
847  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
848  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
849      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
850      isa<ConstantInt>(Ops.back().Op) &&
851      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
852    Ops.insert(Ops.begin(), Ops.back());
853    Ops.pop_back();
854  }
855
856  DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
857
858  if (Ops.size() == 1) {
859    // This expression tree simplified to something that isn't a tree,
860    // eliminate it.
861    I->replaceAllUsesWith(Ops[0].Op);
862    RemoveDeadBinaryOp(I);
863  } else {
864    // Now that we ordered and optimized the expressions, splat them back into
865    // the expression tree, removing any unneeded nodes.
866    RewriteExprTree(I, Ops);
867  }
868}
869
870
871bool Reassociate::runOnFunction(Function &F) {
872  // Recalculate the rank map for F
873  BuildRankMap(F);
874
875  MadeChange = false;
876  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
877    ReassociateBB(FI);
878
879  // We are done with the rank map...
880  RankMap.clear();
881  ValueRankMap.clear();
882  return MadeChange;
883}
884
885