AsmWriter.cpp revision 207855cff9b4811004b9720f28a5bd0adf3784b7
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AsmAnnotationWriter.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/Operator.h"
27#include "llvm/Module.h"
28#include "llvm/ValueSymbolTable.h"
29#include "llvm/TypeSymbolTable.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/Dwarf.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/FormattedStream.h"
40#include <algorithm>
41#include <cctype>
42#include <map>
43using namespace llvm;
44
45// Make virtual table appear in this compilation unit.
46AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
47
48//===----------------------------------------------------------------------===//
49// Helper Functions
50//===----------------------------------------------------------------------===//
51
52static const Module *getModuleFromVal(const Value *V) {
53  if (const Argument *MA = dyn_cast<Argument>(V))
54    return MA->getParent() ? MA->getParent()->getParent() : 0;
55
56  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
57    return BB->getParent() ? BB->getParent()->getParent() : 0;
58
59  if (const Instruction *I = dyn_cast<Instruction>(V)) {
60    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
61    return M ? M->getParent() : 0;
62  }
63
64  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
65    return GV->getParent();
66  if (const NamedMDNode *NMD = dyn_cast<NamedMDNode>(V))
67    return NMD->getParent();
68  return 0;
69}
70
71// PrintEscapedString - Print each character of the specified string, escaping
72// it if it is not printable or if it is an escape char.
73static void PrintEscapedString(const StringRef &Name,
74                               raw_ostream &Out) {
75  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
76    unsigned char C = Name[i];
77    if (isprint(C) && C != '\\' && C != '"')
78      Out << C;
79    else
80      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
81  }
82}
83
84enum PrefixType {
85  GlobalPrefix,
86  LabelPrefix,
87  LocalPrefix,
88  NoPrefix
89};
90
91/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
92/// prefixed with % (if the string only contains simple characters) or is
93/// surrounded with ""'s (if it has special chars in it).  Print it out.
94static void PrintLLVMName(raw_ostream &OS, const StringRef &Name,
95                          PrefixType Prefix) {
96  assert(Name.data() && "Cannot get empty name!");
97  switch (Prefix) {
98  default: llvm_unreachable("Bad prefix!");
99  case NoPrefix: break;
100  case GlobalPrefix: OS << '@'; break;
101  case LabelPrefix:  break;
102  case LocalPrefix:  OS << '%'; break;
103  }
104
105  // Scan the name to see if it needs quotes first.
106  bool NeedsQuotes = isdigit(Name[0]);
107  if (!NeedsQuotes) {
108    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
109      char C = Name[i];
110      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
111        NeedsQuotes = true;
112        break;
113      }
114    }
115  }
116
117  // If we didn't need any quotes, just write out the name in one blast.
118  if (!NeedsQuotes) {
119    OS << Name;
120    return;
121  }
122
123  // Okay, we need quotes.  Output the quotes and escape any scary characters as
124  // needed.
125  OS << '"';
126  PrintEscapedString(Name, OS);
127  OS << '"';
128}
129
130/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
131/// prefixed with % (if the string only contains simple characters) or is
132/// surrounded with ""'s (if it has special chars in it).  Print it out.
133static void PrintLLVMName(raw_ostream &OS, const Value *V) {
134  PrintLLVMName(OS, V->getName(),
135                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
136}
137
138//===----------------------------------------------------------------------===//
139// TypePrinting Class: Type printing machinery
140//===----------------------------------------------------------------------===//
141
142static DenseMap<const Type *, std::string> &getTypeNamesMap(void *M) {
143  return *static_cast<DenseMap<const Type *, std::string>*>(M);
144}
145
146void TypePrinting::clear() {
147  getTypeNamesMap(TypeNames).clear();
148}
149
150bool TypePrinting::hasTypeName(const Type *Ty) const {
151  return getTypeNamesMap(TypeNames).count(Ty);
152}
153
154void TypePrinting::addTypeName(const Type *Ty, const std::string &N) {
155  getTypeNamesMap(TypeNames).insert(std::make_pair(Ty, N));
156}
157
158
159TypePrinting::TypePrinting() {
160  TypeNames = new DenseMap<const Type *, std::string>();
161}
162
163TypePrinting::~TypePrinting() {
164  delete &getTypeNamesMap(TypeNames);
165}
166
167/// CalcTypeName - Write the specified type to the specified raw_ostream, making
168/// use of type names or up references to shorten the type name where possible.
169void TypePrinting::CalcTypeName(const Type *Ty,
170                                SmallVectorImpl<const Type *> &TypeStack,
171                                raw_ostream &OS, bool IgnoreTopLevelName) {
172  // Check to see if the type is named.
173  if (!IgnoreTopLevelName) {
174    DenseMap<const Type *, std::string> &TM = getTypeNamesMap(TypeNames);
175    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
176    if (I != TM.end()) {
177      OS << I->second;
178      return;
179    }
180  }
181
182  // Check to see if the Type is already on the stack...
183  unsigned Slot = 0, CurSize = TypeStack.size();
184  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
185
186  // This is another base case for the recursion.  In this case, we know
187  // that we have looped back to a type that we have previously visited.
188  // Generate the appropriate upreference to handle this.
189  if (Slot < CurSize) {
190    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
191    return;
192  }
193
194  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
195
196  switch (Ty->getTypeID()) {
197  case Type::VoidTyID:      OS << "void"; break;
198  case Type::FloatTyID:     OS << "float"; break;
199  case Type::DoubleTyID:    OS << "double"; break;
200  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
201  case Type::FP128TyID:     OS << "fp128"; break;
202  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
203  case Type::LabelTyID:     OS << "label"; break;
204  case Type::MetadataTyID:  OS << "metadata"; break;
205  case Type::IntegerTyID:
206    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
207    break;
208
209  case Type::FunctionTyID: {
210    const FunctionType *FTy = cast<FunctionType>(Ty);
211    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
212    OS << " (";
213    for (FunctionType::param_iterator I = FTy->param_begin(),
214         E = FTy->param_end(); I != E; ++I) {
215      if (I != FTy->param_begin())
216        OS << ", ";
217      CalcTypeName(*I, TypeStack, OS);
218    }
219    if (FTy->isVarArg()) {
220      if (FTy->getNumParams()) OS << ", ";
221      OS << "...";
222    }
223    OS << ')';
224    break;
225  }
226  case Type::StructTyID: {
227    const StructType *STy = cast<StructType>(Ty);
228    if (STy->isPacked())
229      OS << '<';
230    OS << '{';
231    for (StructType::element_iterator I = STy->element_begin(),
232         E = STy->element_end(); I != E; ++I) {
233      OS << ' ';
234      CalcTypeName(*I, TypeStack, OS);
235      if (next(I) == STy->element_end())
236        OS << ' ';
237      else
238        OS << ',';
239    }
240    OS << '}';
241    if (STy->isPacked())
242      OS << '>';
243    break;
244  }
245  case Type::UnionTyID: {
246    const UnionType *UTy = cast<UnionType>(Ty);
247    OS << "union {";
248    for (StructType::element_iterator I = UTy->element_begin(),
249         E = UTy->element_end(); I != E; ++I) {
250      OS << ' ';
251      CalcTypeName(*I, TypeStack, OS);
252      if (next(I) == UTy->element_end())
253        OS << ' ';
254      else
255        OS << ',';
256    }
257    OS << '}';
258    break;
259  }
260  case Type::PointerTyID: {
261    const PointerType *PTy = cast<PointerType>(Ty);
262    CalcTypeName(PTy->getElementType(), TypeStack, OS);
263    if (unsigned AddressSpace = PTy->getAddressSpace())
264      OS << " addrspace(" << AddressSpace << ')';
265    OS << '*';
266    break;
267  }
268  case Type::ArrayTyID: {
269    const ArrayType *ATy = cast<ArrayType>(Ty);
270    OS << '[' << ATy->getNumElements() << " x ";
271    CalcTypeName(ATy->getElementType(), TypeStack, OS);
272    OS << ']';
273    break;
274  }
275  case Type::VectorTyID: {
276    const VectorType *PTy = cast<VectorType>(Ty);
277    OS << "<" << PTy->getNumElements() << " x ";
278    CalcTypeName(PTy->getElementType(), TypeStack, OS);
279    OS << '>';
280    break;
281  }
282  case Type::OpaqueTyID:
283    OS << "opaque";
284    break;
285  default:
286    OS << "<unrecognized-type>";
287    break;
288  }
289
290  TypeStack.pop_back();       // Remove self from stack.
291}
292
293/// printTypeInt - The internal guts of printing out a type that has a
294/// potentially named portion.
295///
296void TypePrinting::print(const Type *Ty, raw_ostream &OS,
297                         bool IgnoreTopLevelName) {
298  // Check to see if the type is named.
299  DenseMap<const Type*, std::string> &TM = getTypeNamesMap(TypeNames);
300  if (!IgnoreTopLevelName) {
301    DenseMap<const Type*, std::string>::iterator I = TM.find(Ty);
302    if (I != TM.end()) {
303      OS << I->second;
304      return;
305    }
306  }
307
308  // Otherwise we have a type that has not been named but is a derived type.
309  // Carefully recurse the type hierarchy to print out any contained symbolic
310  // names.
311  SmallVector<const Type *, 16> TypeStack;
312  std::string TypeName;
313
314  raw_string_ostream TypeOS(TypeName);
315  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
316  OS << TypeOS.str();
317
318  // Cache type name for later use.
319  if (!IgnoreTopLevelName)
320    TM.insert(std::make_pair(Ty, TypeOS.str()));
321}
322
323namespace {
324  class TypeFinder {
325    // To avoid walking constant expressions multiple times and other IR
326    // objects, we keep several helper maps.
327    DenseSet<const Value*> VisitedConstants;
328    DenseSet<const Type*> VisitedTypes;
329
330    TypePrinting &TP;
331    std::vector<const Type*> &NumberedTypes;
332  public:
333    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
334      : TP(tp), NumberedTypes(numberedTypes) {}
335
336    void Run(const Module &M) {
337      // Get types from the type symbol table.  This gets opaque types referened
338      // only through derived named types.
339      const TypeSymbolTable &ST = M.getTypeSymbolTable();
340      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
341           TI != E; ++TI)
342        IncorporateType(TI->second);
343
344      // Get types from global variables.
345      for (Module::const_global_iterator I = M.global_begin(),
346           E = M.global_end(); I != E; ++I) {
347        IncorporateType(I->getType());
348        if (I->hasInitializer())
349          IncorporateValue(I->getInitializer());
350      }
351
352      // Get types from aliases.
353      for (Module::const_alias_iterator I = M.alias_begin(),
354           E = M.alias_end(); I != E; ++I) {
355        IncorporateType(I->getType());
356        IncorporateValue(I->getAliasee());
357      }
358
359      // Get types from functions.
360      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
361        IncorporateType(FI->getType());
362
363        for (Function::const_iterator BB = FI->begin(), E = FI->end();
364             BB != E;++BB)
365          for (BasicBlock::const_iterator II = BB->begin(),
366               E = BB->end(); II != E; ++II) {
367            const Instruction &I = *II;
368            // Incorporate the type of the instruction and all its operands.
369            IncorporateType(I.getType());
370            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
371                 OI != OE; ++OI)
372              IncorporateValue(*OI);
373          }
374      }
375    }
376
377  private:
378    void IncorporateType(const Type *Ty) {
379      // Check to see if we're already visited this type.
380      if (!VisitedTypes.insert(Ty).second)
381        return;
382
383      // If this is a structure or opaque type, add a name for the type.
384      if (((Ty->isStructTy() && cast<StructType>(Ty)->getNumElements())
385            || Ty->isOpaqueTy()) && !TP.hasTypeName(Ty)) {
386        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
387        NumberedTypes.push_back(Ty);
388      }
389
390      // Recursively walk all contained types.
391      for (Type::subtype_iterator I = Ty->subtype_begin(),
392           E = Ty->subtype_end(); I != E; ++I)
393        IncorporateType(*I);
394    }
395
396    /// IncorporateValue - This method is used to walk operand lists finding
397    /// types hiding in constant expressions and other operands that won't be
398    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
399    /// inst operands are all explicitly enumerated.
400    void IncorporateValue(const Value *V) {
401      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
402
403      // Already visited?
404      if (!VisitedConstants.insert(V).second)
405        return;
406
407      // Check this type.
408      IncorporateType(V->getType());
409
410      // Look in operands for types.
411      const Constant *C = cast<Constant>(V);
412      for (Constant::const_op_iterator I = C->op_begin(),
413           E = C->op_end(); I != E;++I)
414        IncorporateValue(*I);
415    }
416  };
417} // end anonymous namespace
418
419
420/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
421/// the specified module to the TypePrinter and all numbered types to it and the
422/// NumberedTypes table.
423static void AddModuleTypesToPrinter(TypePrinting &TP,
424                                    std::vector<const Type*> &NumberedTypes,
425                                    const Module *M) {
426  if (M == 0) return;
427
428  // If the module has a symbol table, take all global types and stuff their
429  // names into the TypeNames map.
430  const TypeSymbolTable &ST = M->getTypeSymbolTable();
431  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
432       TI != E; ++TI) {
433    const Type *Ty = cast<Type>(TI->second);
434
435    // As a heuristic, don't insert pointer to primitive types, because
436    // they are used too often to have a single useful name.
437    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
438      const Type *PETy = PTy->getElementType();
439      if ((PETy->isPrimitiveType() || PETy->isIntegerTy()) &&
440          !PETy->isOpaqueTy())
441        continue;
442    }
443
444    // Likewise don't insert primitives either.
445    if (Ty->isIntegerTy() || Ty->isPrimitiveType())
446      continue;
447
448    // Get the name as a string and insert it into TypeNames.
449    std::string NameStr;
450    raw_string_ostream NameROS(NameStr);
451    formatted_raw_ostream NameOS(NameROS);
452    PrintLLVMName(NameOS, TI->first, LocalPrefix);
453    NameOS.flush();
454    TP.addTypeName(Ty, NameStr);
455  }
456
457  // Walk the entire module to find references to unnamed structure and opaque
458  // types.  This is required for correctness by opaque types (because multiple
459  // uses of an unnamed opaque type needs to be referred to by the same ID) and
460  // it shrinks complex recursive structure types substantially in some cases.
461  TypeFinder(TP, NumberedTypes).Run(*M);
462}
463
464
465/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
466/// type, iff there is an entry in the modules symbol table for the specified
467/// type or one of it's component types.
468///
469void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
470  TypePrinting Printer;
471  std::vector<const Type*> NumberedTypes;
472  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
473  Printer.print(Ty, OS);
474}
475
476//===----------------------------------------------------------------------===//
477// SlotTracker Class: Enumerate slot numbers for unnamed values
478//===----------------------------------------------------------------------===//
479
480namespace {
481
482/// This class provides computation of slot numbers for LLVM Assembly writing.
483///
484class SlotTracker {
485public:
486  /// ValueMap - A mapping of Values to slot numbers.
487  typedef DenseMap<const Value*, unsigned> ValueMap;
488
489private:
490  /// TheModule - The module for which we are holding slot numbers.
491  const Module* TheModule;
492
493  /// TheFunction - The function for which we are holding slot numbers.
494  const Function* TheFunction;
495  bool FunctionProcessed;
496
497  /// mMap - The TypePlanes map for the module level data.
498  ValueMap mMap;
499  unsigned mNext;
500
501  /// fMap - The TypePlanes map for the function level data.
502  ValueMap fMap;
503  unsigned fNext;
504
505  /// mdnMap - Map for MDNodes.
506  DenseMap<const MDNode*, unsigned> mdnMap;
507  unsigned mdnNext;
508public:
509  /// Construct from a module
510  explicit SlotTracker(const Module *M);
511  /// Construct from a function, starting out in incorp state.
512  explicit SlotTracker(const Function *F);
513
514  /// Return the slot number of the specified value in it's type
515  /// plane.  If something is not in the SlotTracker, return -1.
516  int getLocalSlot(const Value *V);
517  int getGlobalSlot(const GlobalValue *V);
518  int getMetadataSlot(const MDNode *N);
519
520  /// If you'd like to deal with a function instead of just a module, use
521  /// this method to get its data into the SlotTracker.
522  void incorporateFunction(const Function *F) {
523    TheFunction = F;
524    FunctionProcessed = false;
525  }
526
527  /// After calling incorporateFunction, use this method to remove the
528  /// most recently incorporated function from the SlotTracker. This
529  /// will reset the state of the machine back to just the module contents.
530  void purgeFunction();
531
532  /// MDNode map iterators.
533  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
534  mdn_iterator mdn_begin() { return mdnMap.begin(); }
535  mdn_iterator mdn_end() { return mdnMap.end(); }
536  unsigned mdn_size() const { return mdnMap.size(); }
537  bool mdn_empty() const { return mdnMap.empty(); }
538
539  /// This function does the actual initialization.
540  inline void initialize();
541
542  // Implementation Details
543private:
544  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
545  void CreateModuleSlot(const GlobalValue *V);
546
547  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
548  void CreateMetadataSlot(const MDNode *N);
549
550  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
551  void CreateFunctionSlot(const Value *V);
552
553  /// Add all of the module level global variables (and their initializers)
554  /// and function declarations, but not the contents of those functions.
555  void processModule();
556
557  /// Add all of the functions arguments, basic blocks, and instructions.
558  void processFunction();
559
560  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
561  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
562};
563
564}  // end anonymous namespace
565
566
567static SlotTracker *createSlotTracker(const Value *V) {
568  if (const Argument *FA = dyn_cast<Argument>(V))
569    return new SlotTracker(FA->getParent());
570
571  if (const Instruction *I = dyn_cast<Instruction>(V))
572    return new SlotTracker(I->getParent()->getParent());
573
574  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
575    return new SlotTracker(BB->getParent());
576
577  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
578    return new SlotTracker(GV->getParent());
579
580  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
581    return new SlotTracker(GA->getParent());
582
583  if (const Function *Func = dyn_cast<Function>(V))
584    return new SlotTracker(Func);
585
586  if (isa<MDNode>(V))
587    return new SlotTracker((Function *)0);
588
589  return 0;
590}
591
592#if 0
593#define ST_DEBUG(X) dbgs() << X
594#else
595#define ST_DEBUG(X)
596#endif
597
598// Module level constructor. Causes the contents of the Module (sans functions)
599// to be added to the slot table.
600SlotTracker::SlotTracker(const Module *M)
601  : TheModule(M), TheFunction(0), FunctionProcessed(false),
602    mNext(0), fNext(0),  mdnNext(0) {
603}
604
605// Function level constructor. Causes the contents of the Module and the one
606// function provided to be added to the slot table.
607SlotTracker::SlotTracker(const Function *F)
608  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
609    mNext(0), fNext(0), mdnNext(0) {
610}
611
612inline void SlotTracker::initialize() {
613  if (TheModule) {
614    processModule();
615    TheModule = 0; ///< Prevent re-processing next time we're called.
616  }
617
618  if (TheFunction && !FunctionProcessed)
619    processFunction();
620}
621
622// Iterate through all the global variables, functions, and global
623// variable initializers and create slots for them.
624void SlotTracker::processModule() {
625  ST_DEBUG("begin processModule!\n");
626
627  // Add all of the unnamed global variables to the value table.
628  for (Module::const_global_iterator I = TheModule->global_begin(),
629         E = TheModule->global_end(); I != E; ++I) {
630    if (!I->hasName())
631      CreateModuleSlot(I);
632  }
633
634  // Add metadata used by named metadata.
635  for (Module::const_named_metadata_iterator
636         I = TheModule->named_metadata_begin(),
637         E = TheModule->named_metadata_end(); I != E; ++I) {
638    const NamedMDNode *NMD = I;
639    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
640      if (MDNode *MD = NMD->getOperand(i))
641        CreateMetadataSlot(MD);
642    }
643  }
644
645  // Add all the unnamed functions to the table.
646  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
647       I != E; ++I)
648    if (!I->hasName())
649      CreateModuleSlot(I);
650
651  ST_DEBUG("end processModule!\n");
652}
653
654// Process the arguments, basic blocks, and instructions  of a function.
655void SlotTracker::processFunction() {
656  ST_DEBUG("begin processFunction!\n");
657  fNext = 0;
658
659  // Add all the function arguments with no names.
660  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
661      AE = TheFunction->arg_end(); AI != AE; ++AI)
662    if (!AI->hasName())
663      CreateFunctionSlot(AI);
664
665  ST_DEBUG("Inserting Instructions:\n");
666
667  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
668
669  // Add all of the basic blocks and instructions with no names.
670  for (Function::const_iterator BB = TheFunction->begin(),
671       E = TheFunction->end(); BB != E; ++BB) {
672    if (!BB->hasName())
673      CreateFunctionSlot(BB);
674
675    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
676         ++I) {
677      if (!I->getType()->isVoidTy() && !I->hasName())
678        CreateFunctionSlot(I);
679
680      // Intrinsics can directly use metadata.  We allow direct calls to any
681      // llvm.foo function here, because the target may not be linked into the
682      // optimizer.
683      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
684        if (Function *F = CI->getCalledFunction())
685          if (F->getName().startswith("llvm."))
686            for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
687              if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
688                CreateMetadataSlot(N);
689      }
690
691      // Process metadata attached with this instruction.
692      I->getAllMetadata(MDForInst);
693      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
694        CreateMetadataSlot(MDForInst[i].second);
695      MDForInst.clear();
696    }
697  }
698
699  FunctionProcessed = true;
700
701  ST_DEBUG("end processFunction!\n");
702}
703
704/// Clean up after incorporating a function. This is the only way to get out of
705/// the function incorporation state that affects get*Slot/Create*Slot. Function
706/// incorporation state is indicated by TheFunction != 0.
707void SlotTracker::purgeFunction() {
708  ST_DEBUG("begin purgeFunction!\n");
709  fMap.clear(); // Simply discard the function level map
710  TheFunction = 0;
711  FunctionProcessed = false;
712  ST_DEBUG("end purgeFunction!\n");
713}
714
715/// getGlobalSlot - Get the slot number of a global value.
716int SlotTracker::getGlobalSlot(const GlobalValue *V) {
717  // Check for uninitialized state and do lazy initialization.
718  initialize();
719
720  // Find the type plane in the module map
721  ValueMap::iterator MI = mMap.find(V);
722  return MI == mMap.end() ? -1 : (int)MI->second;
723}
724
725/// getMetadataSlot - Get the slot number of a MDNode.
726int SlotTracker::getMetadataSlot(const MDNode *N) {
727  // Check for uninitialized state and do lazy initialization.
728  initialize();
729
730  // Find the type plane in the module map
731  mdn_iterator MI = mdnMap.find(N);
732  return MI == mdnMap.end() ? -1 : (int)MI->second;
733}
734
735
736/// getLocalSlot - Get the slot number for a value that is local to a function.
737int SlotTracker::getLocalSlot(const Value *V) {
738  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
739
740  // Check for uninitialized state and do lazy initialization.
741  initialize();
742
743  ValueMap::iterator FI = fMap.find(V);
744  return FI == fMap.end() ? -1 : (int)FI->second;
745}
746
747
748/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
749void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
750  assert(V && "Can't insert a null Value into SlotTracker!");
751  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
752  assert(!V->hasName() && "Doesn't need a slot!");
753
754  unsigned DestSlot = mNext++;
755  mMap[V] = DestSlot;
756
757  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
758           DestSlot << " [");
759  // G = Global, F = Function, A = Alias, o = other
760  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
761            (isa<Function>(V) ? 'F' :
762             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
763}
764
765/// CreateSlot - Create a new slot for the specified value if it has no name.
766void SlotTracker::CreateFunctionSlot(const Value *V) {
767  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
768
769  unsigned DestSlot = fNext++;
770  fMap[V] = DestSlot;
771
772  // G = Global, F = Function, o = other
773  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
774           DestSlot << " [o]\n");
775}
776
777/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
778void SlotTracker::CreateMetadataSlot(const MDNode *N) {
779  assert(N && "Can't insert a null Value into SlotTracker!");
780
781  // Don't insert if N is a function-local metadata, these are always printed
782  // inline.
783  if (N->isFunctionLocal())
784    return;
785
786  mdn_iterator I = mdnMap.find(N);
787  if (I != mdnMap.end())
788    return;
789
790  unsigned DestSlot = mdnNext++;
791  mdnMap[N] = DestSlot;
792
793  // Recursively add any MDNodes referenced by operands.
794  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
795    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
796      CreateMetadataSlot(Op);
797}
798
799//===----------------------------------------------------------------------===//
800// AsmWriter Implementation
801//===----------------------------------------------------------------------===//
802
803static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
804                                   TypePrinting *TypePrinter,
805                                   SlotTracker *Machine);
806
807
808
809static const char *getPredicateText(unsigned predicate) {
810  const char * pred = "unknown";
811  switch (predicate) {
812  case FCmpInst::FCMP_FALSE: pred = "false"; break;
813  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
814  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
815  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
816  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
817  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
818  case FCmpInst::FCMP_ONE:   pred = "one"; break;
819  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
820  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
821  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
822  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
823  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
824  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
825  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
826  case FCmpInst::FCMP_UNE:   pred = "une"; break;
827  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
828  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
829  case ICmpInst::ICMP_NE:    pred = "ne"; break;
830  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
831  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
832  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
833  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
834  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
835  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
836  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
837  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
838  }
839  return pred;
840}
841
842
843static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
844  if (const OverflowingBinaryOperator *OBO =
845        dyn_cast<OverflowingBinaryOperator>(U)) {
846    if (OBO->hasNoUnsignedWrap())
847      Out << " nuw";
848    if (OBO->hasNoSignedWrap())
849      Out << " nsw";
850  } else if (const SDivOperator *Div = dyn_cast<SDivOperator>(U)) {
851    if (Div->isExact())
852      Out << " exact";
853  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
854    if (GEP->isInBounds())
855      Out << " inbounds";
856  }
857}
858
859static void WriteConstantInt(raw_ostream &Out, const Constant *CV,
860                             TypePrinting &TypePrinter, SlotTracker *Machine) {
861  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
862    if (CI->getType()->isIntegerTy(1)) {
863      Out << (CI->getZExtValue() ? "true" : "false");
864      return;
865    }
866    Out << CI->getValue();
867    return;
868  }
869
870  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
871    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
872        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
873      // We would like to output the FP constant value in exponential notation,
874      // but we cannot do this if doing so will lose precision.  Check here to
875      // make sure that we only output it in exponential format if we can parse
876      // the value back and get the same value.
877      //
878      bool ignored;
879      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
880      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
881                              CFP->getValueAPF().convertToFloat();
882      SmallString<128> StrVal;
883      raw_svector_ostream(StrVal) << Val;
884
885      // Check to make sure that the stringized number is not some string like
886      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
887      // that the string matches the "[-+]?[0-9]" regex.
888      //
889      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
890          ((StrVal[0] == '-' || StrVal[0] == '+') &&
891           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
892        // Reparse stringized version!
893        if (atof(StrVal.c_str()) == Val) {
894          Out << StrVal.str();
895          return;
896        }
897      }
898      // Otherwise we could not reparse it to exactly the same value, so we must
899      // output the string in hexadecimal format!  Note that loading and storing
900      // floating point types changes the bits of NaNs on some hosts, notably
901      // x86, so we must not use these types.
902      assert(sizeof(double) == sizeof(uint64_t) &&
903             "assuming that double is 64 bits!");
904      char Buffer[40];
905      APFloat apf = CFP->getValueAPF();
906      // Floats are represented in ASCII IR as double, convert.
907      if (!isDouble)
908        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
909                          &ignored);
910      Out << "0x" <<
911              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
912                            Buffer+40);
913      return;
914    }
915
916    // Some form of long double.  These appear as a magic letter identifying
917    // the type, then a fixed number of hex digits.
918    Out << "0x";
919    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
920      Out << 'K';
921      // api needed to prevent premature destruction
922      APInt api = CFP->getValueAPF().bitcastToAPInt();
923      const uint64_t* p = api.getRawData();
924      uint64_t word = p[1];
925      int shiftcount=12;
926      int width = api.getBitWidth();
927      for (int j=0; j<width; j+=4, shiftcount-=4) {
928        unsigned int nibble = (word>>shiftcount) & 15;
929        if (nibble < 10)
930          Out << (unsigned char)(nibble + '0');
931        else
932          Out << (unsigned char)(nibble - 10 + 'A');
933        if (shiftcount == 0 && j+4 < width) {
934          word = *p;
935          shiftcount = 64;
936          if (width-j-4 < 64)
937            shiftcount = width-j-4;
938        }
939      }
940      return;
941    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
942      Out << 'L';
943    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
944      Out << 'M';
945    else
946      llvm_unreachable("Unsupported floating point type");
947    // api needed to prevent premature destruction
948    APInt api = CFP->getValueAPF().bitcastToAPInt();
949    const uint64_t* p = api.getRawData();
950    uint64_t word = *p;
951    int shiftcount=60;
952    int width = api.getBitWidth();
953    for (int j=0; j<width; j+=4, shiftcount-=4) {
954      unsigned int nibble = (word>>shiftcount) & 15;
955      if (nibble < 10)
956        Out << (unsigned char)(nibble + '0');
957      else
958        Out << (unsigned char)(nibble - 10 + 'A');
959      if (shiftcount == 0 && j+4 < width) {
960        word = *(++p);
961        shiftcount = 64;
962        if (width-j-4 < 64)
963          shiftcount = width-j-4;
964      }
965    }
966    return;
967  }
968
969  if (isa<ConstantAggregateZero>(CV)) {
970    Out << "zeroinitializer";
971    return;
972  }
973
974  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
975    Out << "blockaddress(";
976    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine);
977    Out << ", ";
978    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine);
979    Out << ")";
980    return;
981  }
982
983  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
984    // As a special case, print the array as a string if it is an array of
985    // i8 with ConstantInt values.
986    //
987    const Type *ETy = CA->getType()->getElementType();
988    if (CA->isString()) {
989      Out << "c\"";
990      PrintEscapedString(CA->getAsString(), Out);
991      Out << '"';
992    } else {                // Cannot output in string format...
993      Out << '[';
994      if (CA->getNumOperands()) {
995        TypePrinter.print(ETy, Out);
996        Out << ' ';
997        WriteAsOperandInternal(Out, CA->getOperand(0),
998                               &TypePrinter, Machine);
999        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1000          Out << ", ";
1001          TypePrinter.print(ETy, Out);
1002          Out << ' ';
1003          WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine);
1004        }
1005      }
1006      Out << ']';
1007    }
1008    return;
1009  }
1010
1011  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1012    if (CS->getType()->isPacked())
1013      Out << '<';
1014    Out << '{';
1015    unsigned N = CS->getNumOperands();
1016    if (N) {
1017      Out << ' ';
1018      TypePrinter.print(CS->getOperand(0)->getType(), Out);
1019      Out << ' ';
1020
1021      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine);
1022
1023      for (unsigned i = 1; i < N; i++) {
1024        Out << ", ";
1025        TypePrinter.print(CS->getOperand(i)->getType(), Out);
1026        Out << ' ';
1027
1028        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine);
1029      }
1030      Out << ' ';
1031    }
1032
1033    Out << '}';
1034    if (CS->getType()->isPacked())
1035      Out << '>';
1036    return;
1037  }
1038
1039  if (const ConstantUnion *CU = dyn_cast<ConstantUnion>(CV)) {
1040    Out << "{ ";
1041    TypePrinter.print(CU->getOperand(0)->getType(), Out);
1042    Out << ' ';
1043    WriteAsOperandInternal(Out, CU->getOperand(0), &TypePrinter, Machine);
1044    Out << " }";
1045    return;
1046  }
1047
1048  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1049    const Type *ETy = CP->getType()->getElementType();
1050    assert(CP->getNumOperands() > 0 &&
1051           "Number of operands for a PackedConst must be > 0");
1052    Out << '<';
1053    TypePrinter.print(ETy, Out);
1054    Out << ' ';
1055    WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine);
1056    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1057      Out << ", ";
1058      TypePrinter.print(ETy, Out);
1059      Out << ' ';
1060      WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine);
1061    }
1062    Out << '>';
1063    return;
1064  }
1065
1066  if (isa<ConstantPointerNull>(CV)) {
1067    Out << "null";
1068    return;
1069  }
1070
1071  if (isa<UndefValue>(CV)) {
1072    Out << "undef";
1073    return;
1074  }
1075
1076  if (const MDNode *Node = dyn_cast<MDNode>(CV)) {
1077    Out << "!" << Machine->getMetadataSlot(Node);
1078    return;
1079  }
1080
1081  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1082    Out << CE->getOpcodeName();
1083    WriteOptimizationInfo(Out, CE);
1084    if (CE->isCompare())
1085      Out << ' ' << getPredicateText(CE->getPredicate());
1086    Out << " (";
1087
1088    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1089      TypePrinter.print((*OI)->getType(), Out);
1090      Out << ' ';
1091      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine);
1092      if (OI+1 != CE->op_end())
1093        Out << ", ";
1094    }
1095
1096    if (CE->hasIndices()) {
1097      const SmallVector<unsigned, 4> &Indices = CE->getIndices();
1098      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1099        Out << ", " << Indices[i];
1100    }
1101
1102    if (CE->isCast()) {
1103      Out << " to ";
1104      TypePrinter.print(CE->getType(), Out);
1105    }
1106
1107    Out << ')';
1108    return;
1109  }
1110
1111  Out << "<placeholder or erroneous Constant>";
1112}
1113
1114static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1115                                    TypePrinting *TypePrinter,
1116                                    SlotTracker *Machine) {
1117  Out << "!{";
1118  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1119    const Value *V = Node->getOperand(mi);
1120    if (V == 0)
1121      Out << "null";
1122    else {
1123      TypePrinter->print(V->getType(), Out);
1124      Out << ' ';
1125      WriteAsOperandInternal(Out, Node->getOperand(mi),
1126                             TypePrinter, Machine);
1127    }
1128    if (mi + 1 != me)
1129      Out << ", ";
1130  }
1131
1132  Out << "}";
1133}
1134
1135
1136/// WriteAsOperand - Write the name of the specified value out to the specified
1137/// ostream.  This can be useful when you just want to print int %reg126, not
1138/// the whole instruction that generated it.
1139///
1140static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1141                                   TypePrinting *TypePrinter,
1142                                   SlotTracker *Machine) {
1143  if (V->hasName()) {
1144    PrintLLVMName(Out, V);
1145    return;
1146  }
1147
1148  const Constant *CV = dyn_cast<Constant>(V);
1149  if (CV && !isa<GlobalValue>(CV)) {
1150    assert(TypePrinter && "Constants require TypePrinting!");
1151    WriteConstantInt(Out, CV, *TypePrinter, Machine);
1152    return;
1153  }
1154
1155  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1156    Out << "asm ";
1157    if (IA->hasSideEffects())
1158      Out << "sideeffect ";
1159    if (IA->isAlignStack())
1160      Out << "alignstack ";
1161    Out << '"';
1162    PrintEscapedString(IA->getAsmString(), Out);
1163    Out << "\", \"";
1164    PrintEscapedString(IA->getConstraintString(), Out);
1165    Out << '"';
1166    return;
1167  }
1168
1169  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1170    if (N->isFunctionLocal()) {
1171      // Print metadata inline, not via slot reference number.
1172      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine);
1173      return;
1174    }
1175
1176    if (!Machine)
1177      Machine = createSlotTracker(V);
1178    Out << '!' << Machine->getMetadataSlot(N);
1179    return;
1180  }
1181
1182  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1183    Out << "!\"";
1184    PrintEscapedString(MDS->getString(), Out);
1185    Out << '"';
1186    return;
1187  }
1188
1189  if (V->getValueID() == Value::PseudoSourceValueVal ||
1190      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1191    V->print(Out);
1192    return;
1193  }
1194
1195  char Prefix = '%';
1196  int Slot;
1197  if (Machine) {
1198    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1199      Slot = Machine->getGlobalSlot(GV);
1200      Prefix = '@';
1201    } else {
1202      Slot = Machine->getLocalSlot(V);
1203    }
1204  } else {
1205    Machine = createSlotTracker(V);
1206    if (Machine) {
1207      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1208        Slot = Machine->getGlobalSlot(GV);
1209        Prefix = '@';
1210      } else {
1211        Slot = Machine->getLocalSlot(V);
1212      }
1213      delete Machine;
1214    } else {
1215      Slot = -1;
1216    }
1217  }
1218
1219  if (Slot != -1)
1220    Out << Prefix << Slot;
1221  else
1222    Out << "<badref>";
1223}
1224
1225void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1226                          bool PrintType, const Module *Context) {
1227
1228  // Fast path: Don't construct and populate a TypePrinting object if we
1229  // won't be needing any types printed.
1230  if (!PrintType &&
1231      (!isa<Constant>(V) || V->hasName() || isa<GlobalValue>(V))) {
1232    WriteAsOperandInternal(Out, V, 0, 0);
1233    return;
1234  }
1235
1236  if (Context == 0) Context = getModuleFromVal(V);
1237
1238  TypePrinting TypePrinter;
1239  std::vector<const Type*> NumberedTypes;
1240  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1241  if (PrintType) {
1242    TypePrinter.print(V->getType(), Out);
1243    Out << ' ';
1244  }
1245
1246  WriteAsOperandInternal(Out, V, &TypePrinter, 0);
1247}
1248
1249namespace {
1250
1251class AssemblyWriter {
1252  formatted_raw_ostream &Out;
1253  SlotTracker &Machine;
1254  const Module *TheModule;
1255  TypePrinting TypePrinter;
1256  AssemblyAnnotationWriter *AnnotationWriter;
1257  std::vector<const Type*> NumberedTypes;
1258
1259public:
1260  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1261                        const Module *M,
1262                        AssemblyAnnotationWriter *AAW)
1263    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1264    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1265  }
1266
1267  void printMDNodeBody(const MDNode *MD);
1268  void printNamedMDNode(const NamedMDNode *NMD);
1269
1270  void printModule(const Module *M);
1271
1272  void writeOperand(const Value *Op, bool PrintType);
1273  void writeParamOperand(const Value *Operand, Attributes Attrs);
1274
1275  void writeAllMDNodes();
1276
1277  void printTypeSymbolTable(const TypeSymbolTable &ST);
1278  void printGlobal(const GlobalVariable *GV);
1279  void printAlias(const GlobalAlias *GV);
1280  void printFunction(const Function *F);
1281  void printArgument(const Argument *FA, Attributes Attrs);
1282  void printBasicBlock(const BasicBlock *BB);
1283  void printInstruction(const Instruction &I);
1284
1285private:
1286  // printInfoComment - Print a little comment after the instruction indicating
1287  // which slot it occupies.
1288  void printInfoComment(const Value &V);
1289};
1290}  // end of anonymous namespace
1291
1292void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1293  if (Operand == 0) {
1294    Out << "<null operand!>";
1295    return;
1296  }
1297  if (PrintType) {
1298    TypePrinter.print(Operand->getType(), Out);
1299    Out << ' ';
1300  }
1301  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1302}
1303
1304void AssemblyWriter::writeParamOperand(const Value *Operand,
1305                                       Attributes Attrs) {
1306  if (Operand == 0) {
1307    Out << "<null operand!>";
1308    return;
1309  }
1310
1311  // Print the type
1312  TypePrinter.print(Operand->getType(), Out);
1313  // Print parameter attributes list
1314  if (Attrs != Attribute::None)
1315    Out << ' ' << Attribute::getAsString(Attrs);
1316  Out << ' ';
1317  // Print the operand
1318  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine);
1319}
1320
1321void AssemblyWriter::printModule(const Module *M) {
1322  if (!M->getModuleIdentifier().empty() &&
1323      // Don't print the ID if it will start a new line (which would
1324      // require a comment char before it).
1325      M->getModuleIdentifier().find('\n') == std::string::npos)
1326    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1327
1328  if (!M->getDataLayout().empty())
1329    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1330  if (!M->getTargetTriple().empty())
1331    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1332
1333  if (!M->getModuleInlineAsm().empty()) {
1334    // Split the string into lines, to make it easier to read the .ll file.
1335    std::string Asm = M->getModuleInlineAsm();
1336    size_t CurPos = 0;
1337    size_t NewLine = Asm.find_first_of('\n', CurPos);
1338    Out << '\n';
1339    while (NewLine != std::string::npos) {
1340      // We found a newline, print the portion of the asm string from the
1341      // last newline up to this newline.
1342      Out << "module asm \"";
1343      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1344                         Out);
1345      Out << "\"\n";
1346      CurPos = NewLine+1;
1347      NewLine = Asm.find_first_of('\n', CurPos);
1348    }
1349    Out << "module asm \"";
1350    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
1351    Out << "\"\n";
1352  }
1353
1354  // Loop over the dependent libraries and emit them.
1355  Module::lib_iterator LI = M->lib_begin();
1356  Module::lib_iterator LE = M->lib_end();
1357  if (LI != LE) {
1358    Out << '\n';
1359    Out << "deplibs = [ ";
1360    while (LI != LE) {
1361      Out << '"' << *LI << '"';
1362      ++LI;
1363      if (LI != LE)
1364        Out << ", ";
1365    }
1366    Out << " ]";
1367  }
1368
1369  // Loop over the symbol table, emitting all id'd types.
1370  if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1371  printTypeSymbolTable(M->getTypeSymbolTable());
1372
1373  // Output all globals.
1374  if (!M->global_empty()) Out << '\n';
1375  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1376       I != E; ++I)
1377    printGlobal(I);
1378
1379  // Output all aliases.
1380  if (!M->alias_empty()) Out << "\n";
1381  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1382       I != E; ++I)
1383    printAlias(I);
1384
1385  // Output all of the functions.
1386  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1387    printFunction(I);
1388
1389  // Output named metadata.
1390  if (!M->named_metadata_empty()) Out << '\n';
1391
1392  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1393       E = M->named_metadata_end(); I != E; ++I)
1394    printNamedMDNode(I);
1395
1396  // Output metadata.
1397  if (!Machine.mdn_empty()) {
1398    Out << '\n';
1399    writeAllMDNodes();
1400  }
1401}
1402
1403void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1404  Out << "!" << NMD->getName() << " = !{";
1405  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1406    if (i) Out << ", ";
1407    if (MDNode *MD = NMD->getOperand(i))
1408      Out << '!' << Machine.getMetadataSlot(MD);
1409    else
1410      Out << "null";
1411  }
1412  Out << "}\n";
1413}
1414
1415
1416static void PrintLinkage(GlobalValue::LinkageTypes LT,
1417                         formatted_raw_ostream &Out) {
1418  switch (LT) {
1419  case GlobalValue::ExternalLinkage: break;
1420  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1421  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1422  case GlobalValue::LinkerWeakLinkage:    Out << "linker_weak ";    break;
1423  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1424  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1425  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1426  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1427  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1428  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1429  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1430  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1431  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1432  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1433  case GlobalValue::AvailableExternallyLinkage:
1434    Out << "available_externally ";
1435    break;
1436  }
1437}
1438
1439
1440static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1441                            formatted_raw_ostream &Out) {
1442  switch (Vis) {
1443  case GlobalValue::DefaultVisibility: break;
1444  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1445  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1446  }
1447}
1448
1449void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1450  if (GV->isMaterializable())
1451    Out << "; Materializable\n";
1452
1453  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine);
1454  Out << " = ";
1455
1456  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1457    Out << "external ";
1458
1459  PrintLinkage(GV->getLinkage(), Out);
1460  PrintVisibility(GV->getVisibility(), Out);
1461
1462  if (GV->isThreadLocal()) Out << "thread_local ";
1463  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1464    Out << "addrspace(" << AddressSpace << ") ";
1465  Out << (GV->isConstant() ? "constant " : "global ");
1466  TypePrinter.print(GV->getType()->getElementType(), Out);
1467
1468  if (GV->hasInitializer()) {
1469    Out << ' ';
1470    writeOperand(GV->getInitializer(), false);
1471  }
1472
1473  if (GV->hasSection())
1474    Out << ", section \"" << GV->getSection() << '"';
1475  if (GV->getAlignment())
1476    Out << ", align " << GV->getAlignment();
1477
1478  printInfoComment(*GV);
1479  Out << '\n';
1480}
1481
1482void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1483  if (GA->isMaterializable())
1484    Out << "; Materializable\n";
1485
1486  // Don't crash when dumping partially built GA
1487  if (!GA->hasName())
1488    Out << "<<nameless>> = ";
1489  else {
1490    PrintLLVMName(Out, GA);
1491    Out << " = ";
1492  }
1493  PrintVisibility(GA->getVisibility(), Out);
1494
1495  Out << "alias ";
1496
1497  PrintLinkage(GA->getLinkage(), Out);
1498
1499  const Constant *Aliasee = GA->getAliasee();
1500
1501  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1502    TypePrinter.print(GV->getType(), Out);
1503    Out << ' ';
1504    PrintLLVMName(Out, GV);
1505  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1506    TypePrinter.print(F->getFunctionType(), Out);
1507    Out << "* ";
1508
1509    WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1510  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1511    TypePrinter.print(GA->getType(), Out);
1512    Out << ' ';
1513    PrintLLVMName(Out, GA);
1514  } else {
1515    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1516    // The only valid GEP is an all zero GEP.
1517    assert((CE->getOpcode() == Instruction::BitCast ||
1518            CE->getOpcode() == Instruction::GetElementPtr) &&
1519           "Unsupported aliasee");
1520    writeOperand(CE, false);
1521  }
1522
1523  printInfoComment(*GA);
1524  Out << '\n';
1525}
1526
1527void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1528  // Emit all numbered types.
1529  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1530    Out << '%' << i << " = type ";
1531
1532    // Make sure we print out at least one level of the type structure, so
1533    // that we do not get %2 = type %2
1534    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1535    Out << '\n';
1536  }
1537
1538  // Print the named types.
1539  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1540       TI != TE; ++TI) {
1541    PrintLLVMName(Out, TI->first, LocalPrefix);
1542    Out << " = type ";
1543
1544    // Make sure we print out at least one level of the type structure, so
1545    // that we do not get %FILE = type %FILE
1546    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1547    Out << '\n';
1548  }
1549}
1550
1551/// printFunction - Print all aspects of a function.
1552///
1553void AssemblyWriter::printFunction(const Function *F) {
1554  // Print out the return type and name.
1555  Out << '\n';
1556
1557  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1558
1559  if (F->isMaterializable())
1560    Out << "; Materializable\n";
1561
1562  if (F->isDeclaration())
1563    Out << "declare ";
1564  else
1565    Out << "define ";
1566
1567  PrintLinkage(F->getLinkage(), Out);
1568  PrintVisibility(F->getVisibility(), Out);
1569
1570  // Print the calling convention.
1571  switch (F->getCallingConv()) {
1572  case CallingConv::C: break;   // default
1573  case CallingConv::Fast:         Out << "fastcc "; break;
1574  case CallingConv::Cold:         Out << "coldcc "; break;
1575  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1576  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1577  case CallingConv::X86_ThisCall: Out << "x86_thiscallcc "; break;
1578  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1579  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1580  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1581  case CallingConv::MSP430_INTR:  Out << "msp430_intrcc "; break;
1582  default: Out << "cc" << F->getCallingConv() << " "; break;
1583  }
1584
1585  const FunctionType *FT = F->getFunctionType();
1586  const AttrListPtr &Attrs = F->getAttributes();
1587  Attributes RetAttrs = Attrs.getRetAttributes();
1588  if (RetAttrs != Attribute::None)
1589    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1590  TypePrinter.print(F->getReturnType(), Out);
1591  Out << ' ';
1592  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine);
1593  Out << '(';
1594  Machine.incorporateFunction(F);
1595
1596  // Loop over the arguments, printing them...
1597
1598  unsigned Idx = 1;
1599  if (!F->isDeclaration()) {
1600    // If this isn't a declaration, print the argument names as well.
1601    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1602         I != E; ++I) {
1603      // Insert commas as we go... the first arg doesn't get a comma
1604      if (I != F->arg_begin()) Out << ", ";
1605      printArgument(I, Attrs.getParamAttributes(Idx));
1606      Idx++;
1607    }
1608  } else {
1609    // Otherwise, print the types from the function type.
1610    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1611      // Insert commas as we go... the first arg doesn't get a comma
1612      if (i) Out << ", ";
1613
1614      // Output type...
1615      TypePrinter.print(FT->getParamType(i), Out);
1616
1617      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1618      if (ArgAttrs != Attribute::None)
1619        Out << ' ' << Attribute::getAsString(ArgAttrs);
1620    }
1621  }
1622
1623  // Finish printing arguments...
1624  if (FT->isVarArg()) {
1625    if (FT->getNumParams()) Out << ", ";
1626    Out << "...";  // Output varargs portion of signature!
1627  }
1628  Out << ')';
1629  Attributes FnAttrs = Attrs.getFnAttributes();
1630  if (FnAttrs != Attribute::None)
1631    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1632  if (F->hasSection())
1633    Out << " section \"" << F->getSection() << '"';
1634  if (F->getAlignment())
1635    Out << " align " << F->getAlignment();
1636  if (F->hasGC())
1637    Out << " gc \"" << F->getGC() << '"';
1638  if (F->isDeclaration()) {
1639    Out << "\n";
1640  } else {
1641    Out << " {";
1642
1643    // Output all of its basic blocks... for the function
1644    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1645      printBasicBlock(I);
1646
1647    Out << "}\n";
1648  }
1649
1650  Machine.purgeFunction();
1651}
1652
1653/// printArgument - This member is called for every argument that is passed into
1654/// the function.  Simply print it out
1655///
1656void AssemblyWriter::printArgument(const Argument *Arg,
1657                                   Attributes Attrs) {
1658  // Output type...
1659  TypePrinter.print(Arg->getType(), Out);
1660
1661  // Output parameter attributes list
1662  if (Attrs != Attribute::None)
1663    Out << ' ' << Attribute::getAsString(Attrs);
1664
1665  // Output name, if available...
1666  if (Arg->hasName()) {
1667    Out << ' ';
1668    PrintLLVMName(Out, Arg);
1669  }
1670}
1671
1672/// printBasicBlock - This member is called for each basic block in a method.
1673///
1674void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1675  if (BB->hasName()) {              // Print out the label if it exists...
1676    Out << "\n";
1677    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1678    Out << ':';
1679  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1680    Out << "\n; <label>:";
1681    int Slot = Machine.getLocalSlot(BB);
1682    if (Slot != -1)
1683      Out << Slot;
1684    else
1685      Out << "<badref>";
1686  }
1687
1688  if (BB->getParent() == 0) {
1689    Out.PadToColumn(50);
1690    Out << "; Error: Block without parent!";
1691  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1692    // Output predecessors for the block...
1693    Out.PadToColumn(50);
1694    Out << ";";
1695    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1696
1697    if (PI == PE) {
1698      Out << " No predecessors!";
1699    } else {
1700      Out << " preds = ";
1701      writeOperand(*PI, false);
1702      for (++PI; PI != PE; ++PI) {
1703        Out << ", ";
1704        writeOperand(*PI, false);
1705      }
1706    }
1707  }
1708
1709  Out << "\n";
1710
1711  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1712
1713  // Output all of the instructions in the basic block...
1714  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1715    printInstruction(*I);
1716    Out << '\n';
1717  }
1718
1719  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1720}
1721
1722/// printInfoComment - Print a little comment after the instruction indicating
1723/// which slot it occupies.
1724///
1725void AssemblyWriter::printInfoComment(const Value &V) {
1726  if (AnnotationWriter) {
1727    AnnotationWriter->printInfoComment(V, Out);
1728    return;
1729  }
1730
1731  if (V.getType()->isVoidTy()) return;
1732
1733  Out.PadToColumn(50);
1734  Out << "; <";
1735  TypePrinter.print(V.getType(), Out);
1736  Out << "> [#uses=" << V.getNumUses() << ']';  // Output # uses
1737}
1738
1739// This member is called for each Instruction in a function..
1740void AssemblyWriter::printInstruction(const Instruction &I) {
1741  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1742
1743  // Print out indentation for an instruction.
1744  Out << "  ";
1745
1746  // Print out name if it exists...
1747  if (I.hasName()) {
1748    PrintLLVMName(Out, &I);
1749    Out << " = ";
1750  } else if (!I.getType()->isVoidTy()) {
1751    // Print out the def slot taken.
1752    int SlotNum = Machine.getLocalSlot(&I);
1753    if (SlotNum == -1)
1754      Out << "<badref> = ";
1755    else
1756      Out << '%' << SlotNum << " = ";
1757  }
1758
1759  // If this is a volatile load or store, print out the volatile marker.
1760  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1761      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1762      Out << "volatile ";
1763  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1764    // If this is a call, check if it's a tail call.
1765    Out << "tail ";
1766  }
1767
1768  // Print out the opcode...
1769  Out << I.getOpcodeName();
1770
1771  // Print out optimization information.
1772  WriteOptimizationInfo(Out, &I);
1773
1774  // Print out the compare instruction predicates
1775  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1776    Out << ' ' << getPredicateText(CI->getPredicate());
1777
1778  // Print out the type of the operands...
1779  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1780
1781  // Special case conditional branches to swizzle the condition out to the front
1782  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1783    BranchInst &BI(cast<BranchInst>(I));
1784    Out << ' ';
1785    writeOperand(BI.getCondition(), true);
1786    Out << ", ";
1787    writeOperand(BI.getSuccessor(0), true);
1788    Out << ", ";
1789    writeOperand(BI.getSuccessor(1), true);
1790
1791  } else if (isa<SwitchInst>(I)) {
1792    // Special case switch instruction to get formatting nice and correct.
1793    Out << ' ';
1794    writeOperand(Operand        , true);
1795    Out << ", ";
1796    writeOperand(I.getOperand(1), true);
1797    Out << " [";
1798
1799    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1800      Out << "\n    ";
1801      writeOperand(I.getOperand(op  ), true);
1802      Out << ", ";
1803      writeOperand(I.getOperand(op+1), true);
1804    }
1805    Out << "\n  ]";
1806  } else if (isa<IndirectBrInst>(I)) {
1807    // Special case indirectbr instruction to get formatting nice and correct.
1808    Out << ' ';
1809    writeOperand(Operand, true);
1810    Out << ", [";
1811
1812    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1813      if (i != 1)
1814        Out << ", ";
1815      writeOperand(I.getOperand(i), true);
1816    }
1817    Out << ']';
1818  } else if (isa<PHINode>(I)) {
1819    Out << ' ';
1820    TypePrinter.print(I.getType(), Out);
1821    Out << ' ';
1822
1823    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1824      if (op) Out << ", ";
1825      Out << "[ ";
1826      writeOperand(I.getOperand(op  ), false); Out << ", ";
1827      writeOperand(I.getOperand(op+1), false); Out << " ]";
1828    }
1829  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1830    Out << ' ';
1831    writeOperand(I.getOperand(0), true);
1832    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1833      Out << ", " << *i;
1834  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1835    Out << ' ';
1836    writeOperand(I.getOperand(0), true); Out << ", ";
1837    writeOperand(I.getOperand(1), true);
1838    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1839      Out << ", " << *i;
1840  } else if (isa<ReturnInst>(I) && !Operand) {
1841    Out << " void";
1842  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1843    // Print the calling convention being used.
1844    switch (CI->getCallingConv()) {
1845    case CallingConv::C: break;   // default
1846    case CallingConv::Fast:  Out << " fastcc"; break;
1847    case CallingConv::Cold:  Out << " coldcc"; break;
1848    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1849    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1850    case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
1851    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1852    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1853    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1854    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1855    default: Out << " cc" << CI->getCallingConv(); break;
1856    }
1857
1858    Operand = CI->getCalledValue();
1859    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1860    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1861    const Type         *RetTy = FTy->getReturnType();
1862    const AttrListPtr &PAL = CI->getAttributes();
1863
1864    if (PAL.getRetAttributes() != Attribute::None)
1865      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1866
1867    // If possible, print out the short form of the call instruction.  We can
1868    // only do this if the first argument is a pointer to a nonvararg function,
1869    // and if the return type is not a pointer to a function.
1870    //
1871    Out << ' ';
1872    if (!FTy->isVarArg() &&
1873        (!RetTy->isPointerTy() ||
1874         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1875      TypePrinter.print(RetTy, Out);
1876      Out << ' ';
1877      writeOperand(Operand, false);
1878    } else {
1879      writeOperand(Operand, true);
1880    }
1881    Out << '(';
1882    for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1883      if (op > 0)
1884        Out << ", ";
1885      writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1));
1886    }
1887    Out << ')';
1888    if (PAL.getFnAttributes() != Attribute::None)
1889      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1890  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1891    Operand = II->getCalledValue();
1892    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1893    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1894    const Type         *RetTy = FTy->getReturnType();
1895    const AttrListPtr &PAL = II->getAttributes();
1896
1897    // Print the calling convention being used.
1898    switch (II->getCallingConv()) {
1899    case CallingConv::C: break;   // default
1900    case CallingConv::Fast:  Out << " fastcc"; break;
1901    case CallingConv::Cold:  Out << " coldcc"; break;
1902    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1903    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1904    case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
1905    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1906    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1907    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1908    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1909    default: Out << " cc" << II->getCallingConv(); break;
1910    }
1911
1912    if (PAL.getRetAttributes() != Attribute::None)
1913      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1914
1915    // If possible, print out the short form of the invoke instruction. We can
1916    // only do this if the first argument is a pointer to a nonvararg function,
1917    // and if the return type is not a pointer to a function.
1918    //
1919    Out << ' ';
1920    if (!FTy->isVarArg() &&
1921        (!RetTy->isPointerTy() ||
1922         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1923      TypePrinter.print(RetTy, Out);
1924      Out << ' ';
1925      writeOperand(Operand, false);
1926    } else {
1927      writeOperand(Operand, true);
1928    }
1929    Out << '(';
1930    for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
1931      if (op)
1932        Out << ", ";
1933      writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1));
1934    }
1935
1936    Out << ')';
1937    if (PAL.getFnAttributes() != Attribute::None)
1938      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1939
1940    Out << "\n          to ";
1941    writeOperand(II->getNormalDest(), true);
1942    Out << " unwind ";
1943    writeOperand(II->getUnwindDest(), true);
1944
1945  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
1946    Out << ' ';
1947    TypePrinter.print(AI->getType()->getElementType(), Out);
1948    if (!AI->getArraySize() || AI->isArrayAllocation()) {
1949      Out << ", ";
1950      writeOperand(AI->getArraySize(), true);
1951    }
1952    if (AI->getAlignment()) {
1953      Out << ", align " << AI->getAlignment();
1954    }
1955  } else if (isa<CastInst>(I)) {
1956    if (Operand) {
1957      Out << ' ';
1958      writeOperand(Operand, true);   // Work with broken code
1959    }
1960    Out << " to ";
1961    TypePrinter.print(I.getType(), Out);
1962  } else if (isa<VAArgInst>(I)) {
1963    if (Operand) {
1964      Out << ' ';
1965      writeOperand(Operand, true);   // Work with broken code
1966    }
1967    Out << ", ";
1968    TypePrinter.print(I.getType(), Out);
1969  } else if (Operand) {   // Print the normal way.
1970
1971    // PrintAllTypes - Instructions who have operands of all the same type
1972    // omit the type from all but the first operand.  If the instruction has
1973    // different type operands (for example br), then they are all printed.
1974    bool PrintAllTypes = false;
1975    const Type *TheType = Operand->getType();
1976
1977    // Select, Store and ShuffleVector always print all types.
1978    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
1979        || isa<ReturnInst>(I)) {
1980      PrintAllTypes = true;
1981    } else {
1982      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1983        Operand = I.getOperand(i);
1984        // note that Operand shouldn't be null, but the test helps make dump()
1985        // more tolerant of malformed IR
1986        if (Operand && Operand->getType() != TheType) {
1987          PrintAllTypes = true;    // We have differing types!  Print them all!
1988          break;
1989        }
1990      }
1991    }
1992
1993    if (!PrintAllTypes) {
1994      Out << ' ';
1995      TypePrinter.print(TheType, Out);
1996    }
1997
1998    Out << ' ';
1999    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
2000      if (i) Out << ", ";
2001      writeOperand(I.getOperand(i), PrintAllTypes);
2002    }
2003  }
2004
2005  // Print post operand alignment for load/store.
2006  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
2007    Out << ", align " << cast<LoadInst>(I).getAlignment();
2008  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
2009    Out << ", align " << cast<StoreInst>(I).getAlignment();
2010  }
2011
2012  // Print Metadata info.
2013  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2014  I.getAllMetadata(InstMD);
2015  if (!InstMD.empty()) {
2016    SmallVector<StringRef, 8> MDNames;
2017    I.getType()->getContext().getMDKindNames(MDNames);
2018    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2019      unsigned Kind = InstMD[i].first;
2020       if (Kind < MDNames.size()) {
2021         Out << ", !" << MDNames[Kind];
2022      } else {
2023        Out << ", !<unknown kind #" << Kind << ">";
2024      }
2025      Out << " !" << Machine.getMetadataSlot(InstMD[i].second);
2026    }
2027  }
2028  printInfoComment(I);
2029}
2030
2031static void WriteMDNodeComment(const MDNode *Node,
2032			       formatted_raw_ostream &Out) {
2033  if (Node->getNumOperands() < 1)
2034    return;
2035  ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0));
2036  if (!CI) return;
2037  APInt Val = CI->getValue();
2038  APInt Tag = Val & ~APInt(Val.getBitWidth(), LLVMDebugVersionMask);
2039  if (Val.ult(LLVMDebugVersion))
2040    return;
2041
2042  Out.PadToColumn(50);
2043  if (Tag == dwarf::DW_TAG_auto_variable)
2044    Out << "; [ DW_TAG_auto_variable ]";
2045  else if (Tag == dwarf::DW_TAG_arg_variable)
2046    Out << "; [ DW_TAG_arg_variable ]";
2047  else if (Tag == dwarf::DW_TAG_return_variable)
2048    Out << "; [ DW_TAG_return_variable ]";
2049  else if (Tag == dwarf::DW_TAG_vector_type)
2050    Out << "; [ DW_TAG_vector_type ]";
2051  else if (Tag == dwarf::DW_TAG_user_base)
2052    Out << "; [ DW_TAG_user_base ]";
2053  else if (Tag.isIntN(32)) {
2054    if (const char *TagName = dwarf::TagString(Tag.getZExtValue()))
2055      Out << "; [ " << TagName << " ]";
2056  }
2057}
2058
2059void AssemblyWriter::writeAllMDNodes() {
2060  SmallVector<const MDNode *, 16> Nodes;
2061  Nodes.resize(Machine.mdn_size());
2062  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2063       I != E; ++I)
2064    Nodes[I->second] = cast<MDNode>(I->first);
2065
2066  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2067    Out << '!' << i << " = metadata ";
2068    printMDNodeBody(Nodes[i]);
2069  }
2070}
2071
2072void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2073  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine);
2074  WriteMDNodeComment(Node, Out);
2075  Out << "\n";
2076}
2077
2078//===----------------------------------------------------------------------===//
2079//                       External Interface declarations
2080//===----------------------------------------------------------------------===//
2081
2082void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2083  SlotTracker SlotTable(this);
2084  formatted_raw_ostream OS(ROS);
2085  AssemblyWriter W(OS, SlotTable, this, AAW);
2086  W.printModule(this);
2087}
2088
2089void Type::print(raw_ostream &OS) const {
2090  if (this == 0) {
2091    OS << "<null Type>";
2092    return;
2093  }
2094  TypePrinting().print(this, OS);
2095}
2096
2097void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2098  if (this == 0) {
2099    ROS << "printing a <null> value\n";
2100    return;
2101  }
2102  formatted_raw_ostream OS(ROS);
2103  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2104    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2105    SlotTracker SlotTable(F);
2106    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2107    W.printInstruction(*I);
2108  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2109    SlotTracker SlotTable(BB->getParent());
2110    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2111    W.printBasicBlock(BB);
2112  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2113    SlotTracker SlotTable(GV->getParent());
2114    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2115    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2116      W.printGlobal(V);
2117    else if (const Function *F = dyn_cast<Function>(GV))
2118      W.printFunction(F);
2119    else
2120      W.printAlias(cast<GlobalAlias>(GV));
2121  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2122    const Function *F = N->getFunction();
2123    SlotTracker SlotTable(F);
2124    AssemblyWriter W(OS, SlotTable, F ? getModuleFromVal(F) : 0, AAW);
2125    W.printMDNodeBody(N);
2126  } else if (const NamedMDNode *N = dyn_cast<NamedMDNode>(this)) {
2127    SlotTracker SlotTable(N->getParent());
2128    AssemblyWriter W(OS, SlotTable, N->getParent(), AAW);
2129    W.printNamedMDNode(N);
2130  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2131    TypePrinting TypePrinter;
2132    TypePrinter.print(C->getType(), OS);
2133    OS << ' ';
2134    WriteConstantInt(OS, C, TypePrinter, 0);
2135  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2136             isa<Argument>(this)) {
2137    WriteAsOperand(OS, this, true, 0);
2138  } else {
2139    // Otherwise we don't know what it is. Call the virtual function to
2140    // allow a subclass to print itself.
2141    printCustom(OS);
2142  }
2143}
2144
2145// Value::printCustom - subclasses should override this to implement printing.
2146void Value::printCustom(raw_ostream &OS) const {
2147  llvm_unreachable("Unknown value to print out!");
2148}
2149
2150// Value::dump - allow easy printing of Values from the debugger.
2151void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2152
2153// Type::dump - allow easy printing of Types from the debugger.
2154// This one uses type names from the given context module
2155void Type::dump(const Module *Context) const {
2156  WriteTypeSymbolic(dbgs(), this, Context);
2157  dbgs() << '\n';
2158}
2159
2160// Type::dump - allow easy printing of Types from the debugger.
2161void Type::dump() const { dump(0); }
2162
2163// Module::dump() - Allow printing of Modules from the debugger.
2164void Module::dump() const { print(dbgs(), 0); }
2165