AsmWriter.cpp revision 3da59db637a887474c1b1346c1f3ccf53b6c4663
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/CachedWriter.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/Assembly/PrintModulePass.h"
20#include "llvm/Assembly/AsmAnnotationWriter.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instruction.h"
26#include "llvm/Instructions.h"
27#include "llvm/Module.h"
28#include "llvm/SymbolTable.h"
29#include "llvm/Support/CFG.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/MathExtras.h"
33#include <algorithm>
34using namespace llvm;
35
36namespace llvm {
37
38// Make virtual table appear in this compilation unit.
39AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
40
41/// This class provides computation of slot numbers for LLVM Assembly writing.
42/// @brief LLVM Assembly Writing Slot Computation.
43class SlotMachine {
44
45/// @name Types
46/// @{
47public:
48
49  /// @brief A mapping of Values to slot numbers
50  typedef std::map<const Value*, unsigned> ValueMap;
51  typedef std::map<const Type*, unsigned> TypeMap;
52
53  /// @brief A plane with next slot number and ValueMap
54  struct ValuePlane {
55    unsigned next_slot;        ///< The next slot number to use
56    ValueMap map;              ///< The map of Value* -> unsigned
57    ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
58  };
59
60  struct TypePlane {
61    unsigned next_slot;
62    TypeMap map;
63    TypePlane() { next_slot = 0; }
64    void clear() { map.clear(); next_slot = 0; }
65  };
66
67  /// @brief The map of planes by Type
68  typedef std::map<const Type*, ValuePlane> TypedPlanes;
69
70/// @}
71/// @name Constructors
72/// @{
73public:
74  /// @brief Construct from a module
75  SlotMachine(const Module *M );
76
77  /// @brief Construct from a function, starting out in incorp state.
78  SlotMachine(const Function *F );
79
80/// @}
81/// @name Accessors
82/// @{
83public:
84  /// Return the slot number of the specified value in it's type
85  /// plane.  Its an error to ask for something not in the SlotMachine.
86  /// Its an error to ask for a Type*
87  int getSlot(const Value *V);
88  int getSlot(const Type*Ty);
89
90  /// Determine if a Value has a slot or not
91  bool hasSlot(const Value* V);
92  bool hasSlot(const Type* Ty);
93
94/// @}
95/// @name Mutators
96/// @{
97public:
98  /// If you'd like to deal with a function instead of just a module, use
99  /// this method to get its data into the SlotMachine.
100  void incorporateFunction(const Function *F) {
101    TheFunction = F;
102    FunctionProcessed = false;
103  }
104
105  /// After calling incorporateFunction, use this method to remove the
106  /// most recently incorporated function from the SlotMachine. This
107  /// will reset the state of the machine back to just the module contents.
108  void purgeFunction();
109
110/// @}
111/// @name Implementation Details
112/// @{
113private:
114  /// This function does the actual initialization.
115  inline void initialize();
116
117  /// Values can be crammed into here at will. If they haven't
118  /// been inserted already, they get inserted, otherwise they are ignored.
119  /// Either way, the slot number for the Value* is returned.
120  unsigned createSlot(const Value *V);
121  unsigned createSlot(const Type* Ty);
122
123  /// Insert a value into the value table. Return the slot number
124  /// that it now occupies.  BadThings(TM) will happen if you insert a
125  /// Value that's already been inserted.
126  unsigned insertValue( const Value *V );
127  unsigned insertValue( const Type* Ty);
128
129  /// Add all of the module level global variables (and their initializers)
130  /// and function declarations, but not the contents of those functions.
131  void processModule();
132
133  /// Add all of the functions arguments, basic blocks, and instructions
134  void processFunction();
135
136  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
137  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
138
139/// @}
140/// @name Data
141/// @{
142public:
143
144  /// @brief The module for which we are holding slot numbers
145  const Module* TheModule;
146
147  /// @brief The function for which we are holding slot numbers
148  const Function* TheFunction;
149  bool FunctionProcessed;
150
151  /// @brief The TypePlanes map for the module level data
152  TypedPlanes mMap;
153  TypePlane mTypes;
154
155  /// @brief The TypePlanes map for the function level data
156  TypedPlanes fMap;
157  TypePlane fTypes;
158
159/// @}
160
161};
162
163}  // end namespace llvm
164
165static RegisterPass<PrintModulePass>
166X("printm", "Print module to stderr");
167static RegisterPass<PrintFunctionPass>
168Y("print","Print function to stderr");
169
170static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
171                                   bool PrintName,
172                                 std::map<const Type *, std::string> &TypeTable,
173                                   SlotMachine *Machine);
174
175static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
176                                   bool PrintName,
177                                 std::map<const Type *, std::string> &TypeTable,
178                                   SlotMachine *Machine);
179
180static const Module *getModuleFromVal(const Value *V) {
181  if (const Argument *MA = dyn_cast<Argument>(V))
182    return MA->getParent() ? MA->getParent()->getParent() : 0;
183  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
184    return BB->getParent() ? BB->getParent()->getParent() : 0;
185  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
186    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
187    return M ? M->getParent() : 0;
188  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
189    return GV->getParent();
190  return 0;
191}
192
193static SlotMachine *createSlotMachine(const Value *V) {
194  if (const Argument *FA = dyn_cast<Argument>(V)) {
195    return new SlotMachine(FA->getParent());
196  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
197    return new SlotMachine(I->getParent()->getParent());
198  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
199    return new SlotMachine(BB->getParent());
200  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
201    return new SlotMachine(GV->getParent());
202  } else if (const Function *Func = dyn_cast<Function>(V)) {
203    return new SlotMachine(Func);
204  }
205  return 0;
206}
207
208// getLLVMName - Turn the specified string into an 'LLVM name', which is either
209// prefixed with % (if the string only contains simple characters) or is
210// surrounded with ""'s (if it has special chars in it).
211static std::string getLLVMName(const std::string &Name,
212                               bool prefixName = true) {
213  assert(!Name.empty() && "Cannot get empty name!");
214
215  // First character cannot start with a number...
216  if (Name[0] >= '0' && Name[0] <= '9')
217    return "\"" + Name + "\"";
218
219  // Scan to see if we have any characters that are not on the "white list"
220  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
221    char C = Name[i];
222    assert(C != '"' && "Illegal character in LLVM value name!");
223    if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
224        C != '-' && C != '.' && C != '_')
225      return "\"" + Name + "\"";
226  }
227
228  // If we get here, then the identifier is legal to use as a "VarID".
229  if (prefixName)
230    return "%"+Name;
231  else
232    return Name;
233}
234
235
236/// fillTypeNameTable - If the module has a symbol table, take all global types
237/// and stuff their names into the TypeNames map.
238///
239static void fillTypeNameTable(const Module *M,
240                              std::map<const Type *, std::string> &TypeNames) {
241  if (!M) return;
242  const SymbolTable &ST = M->getSymbolTable();
243  SymbolTable::type_const_iterator TI = ST.type_begin();
244  for (; TI != ST.type_end(); ++TI ) {
245    // As a heuristic, don't insert pointer to primitive types, because
246    // they are used too often to have a single useful name.
247    //
248    const Type *Ty = cast<Type>(TI->second);
249    if (!isa<PointerType>(Ty) ||
250        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
251        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
252      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
253  }
254}
255
256
257
258static void calcTypeName(const Type *Ty,
259                         std::vector<const Type *> &TypeStack,
260                         std::map<const Type *, std::string> &TypeNames,
261                         std::string & Result){
262  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
263    Result += Ty->getDescription();  // Base case
264    return;
265  }
266
267  // Check to see if the type is named.
268  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
269  if (I != TypeNames.end()) {
270    Result += I->second;
271    return;
272  }
273
274  if (isa<OpaqueType>(Ty)) {
275    Result += "opaque";
276    return;
277  }
278
279  // Check to see if the Type is already on the stack...
280  unsigned Slot = 0, CurSize = TypeStack.size();
281  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
282
283  // This is another base case for the recursion.  In this case, we know
284  // that we have looped back to a type that we have previously visited.
285  // Generate the appropriate upreference to handle this.
286  if (Slot < CurSize) {
287    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
288    return;
289  }
290
291  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
292
293  switch (Ty->getTypeID()) {
294  case Type::FunctionTyID: {
295    const FunctionType *FTy = cast<FunctionType>(Ty);
296    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
297    Result += " (";
298    for (FunctionType::param_iterator I = FTy->param_begin(),
299           E = FTy->param_end(); I != E; ++I) {
300      if (I != FTy->param_begin())
301        Result += ", ";
302      calcTypeName(*I, TypeStack, TypeNames, Result);
303    }
304    if (FTy->isVarArg()) {
305      if (FTy->getNumParams()) Result += ", ";
306      Result += "...";
307    }
308    Result += ")";
309    break;
310  }
311  case Type::StructTyID: {
312    const StructType *STy = cast<StructType>(Ty);
313    Result += "{ ";
314    for (StructType::element_iterator I = STy->element_begin(),
315           E = STy->element_end(); I != E; ++I) {
316      if (I != STy->element_begin())
317        Result += ", ";
318      calcTypeName(*I, TypeStack, TypeNames, Result);
319    }
320    Result += " }";
321    break;
322  }
323  case Type::PointerTyID:
324    calcTypeName(cast<PointerType>(Ty)->getElementType(),
325                          TypeStack, TypeNames, Result);
326    Result += "*";
327    break;
328  case Type::ArrayTyID: {
329    const ArrayType *ATy = cast<ArrayType>(Ty);
330    Result += "[" + utostr(ATy->getNumElements()) + " x ";
331    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
332    Result += "]";
333    break;
334  }
335  case Type::PackedTyID: {
336    const PackedType *PTy = cast<PackedType>(Ty);
337    Result += "<" + utostr(PTy->getNumElements()) + " x ";
338    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
339    Result += ">";
340    break;
341  }
342  case Type::OpaqueTyID:
343    Result += "opaque";
344    break;
345  default:
346    Result += "<unrecognized-type>";
347  }
348
349  TypeStack.pop_back();       // Remove self from stack...
350  return;
351}
352
353
354/// printTypeInt - The internal guts of printing out a type that has a
355/// potentially named portion.
356///
357static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
358                              std::map<const Type *, std::string> &TypeNames) {
359  // Primitive types always print out their description, regardless of whether
360  // they have been named or not.
361  //
362  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
363    return Out << Ty->getDescription();
364
365  // Check to see if the type is named.
366  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
367  if (I != TypeNames.end()) return Out << I->second;
368
369  // Otherwise we have a type that has not been named but is a derived type.
370  // Carefully recurse the type hierarchy to print out any contained symbolic
371  // names.
372  //
373  std::vector<const Type *> TypeStack;
374  std::string TypeName;
375  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
376  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
377  return (Out << TypeName);
378}
379
380
381/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
382/// type, iff there is an entry in the modules symbol table for the specified
383/// type or one of it's component types. This is slower than a simple x << Type
384///
385std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
386                                      const Module *M) {
387  Out << ' ';
388
389  // If they want us to print out a type, attempt to make it symbolic if there
390  // is a symbol table in the module...
391  if (M) {
392    std::map<const Type *, std::string> TypeNames;
393    fillTypeNameTable(M, TypeNames);
394
395    return printTypeInt(Out, Ty, TypeNames);
396  } else {
397    return Out << Ty->getDescription();
398  }
399}
400
401// PrintEscapedString - Print each character of the specified string, escaping
402// it if it is not printable or if it is an escape char.
403static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
404  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
405    unsigned char C = Str[i];
406    if (isprint(C) && C != '"' && C != '\\') {
407      Out << C;
408    } else {
409      Out << '\\'
410          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
411          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
412    }
413  }
414}
415
416/// @brief Internal constant writer.
417static void WriteConstantInt(std::ostream &Out, const Constant *CV,
418                             bool PrintName,
419                             std::map<const Type *, std::string> &TypeTable,
420                             SlotMachine *Machine) {
421  const int IndentSize = 4;
422  static std::string Indent = "\n";
423  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
424    Out << (CB->getValue() ? "true" : "false");
425  } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
426    if (CI->getType()->isSigned())
427      Out << CI->getSExtValue();
428    else
429      Out << CI->getZExtValue();
430  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
431    // We would like to output the FP constant value in exponential notation,
432    // but we cannot do this if doing so will lose precision.  Check here to
433    // make sure that we only output it in exponential format if we can parse
434    // the value back and get the same value.
435    //
436    std::string StrVal = ftostr(CFP->getValue());
437
438    // Check to make sure that the stringized number is not some string like
439    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
440    // the string matches the "[-+]?[0-9]" regex.
441    //
442    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
443        ((StrVal[0] == '-' || StrVal[0] == '+') &&
444         (StrVal[1] >= '0' && StrVal[1] <= '9')))
445      // Reparse stringized version!
446      if (atof(StrVal.c_str()) == CFP->getValue()) {
447        Out << StrVal;
448        return;
449      }
450
451    // Otherwise we could not reparse it to exactly the same value, so we must
452    // output the string in hexadecimal format!
453    assert(sizeof(double) == sizeof(uint64_t) &&
454           "assuming that double is 64 bits!");
455    Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
456
457  } else if (isa<ConstantAggregateZero>(CV)) {
458    Out << "zeroinitializer";
459  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
460    // As a special case, print the array as a string if it is an array of
461    // ubytes or an array of sbytes with positive values.
462    //
463    const Type *ETy = CA->getType()->getElementType();
464    if (CA->isString()) {
465      Out << "c\"";
466      PrintEscapedString(CA->getAsString(), Out);
467      Out << "\"";
468
469    } else {                // Cannot output in string format...
470      Out << '[';
471      if (CA->getNumOperands()) {
472        Out << ' ';
473        printTypeInt(Out, ETy, TypeTable);
474        WriteAsOperandInternal(Out, CA->getOperand(0),
475                               PrintName, TypeTable, Machine);
476        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
477          Out << ", ";
478          printTypeInt(Out, ETy, TypeTable);
479          WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
480                                 TypeTable, Machine);
481        }
482      }
483      Out << " ]";
484    }
485  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
486    Out << '{';
487    unsigned N = CS->getNumOperands();
488    if (N) {
489      if (N > 2) {
490        Indent += std::string(IndentSize, ' ');
491        Out << Indent;
492      } else {
493        Out << ' ';
494      }
495      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
496
497      WriteAsOperandInternal(Out, CS->getOperand(0),
498                             PrintName, TypeTable, Machine);
499
500      for (unsigned i = 1; i < N; i++) {
501        Out << ", ";
502        if (N > 2) Out << Indent;
503        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
504
505        WriteAsOperandInternal(Out, CS->getOperand(i),
506                               PrintName, TypeTable, Machine);
507      }
508      if (N > 2) Indent.resize(Indent.size() - IndentSize);
509    }
510
511    Out << " }";
512  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
513      const Type *ETy = CP->getType()->getElementType();
514      assert(CP->getNumOperands() > 0 &&
515             "Number of operands for a PackedConst must be > 0");
516      Out << '<';
517      Out << ' ';
518      printTypeInt(Out, ETy, TypeTable);
519      WriteAsOperandInternal(Out, CP->getOperand(0),
520                             PrintName, TypeTable, Machine);
521      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
522          Out << ", ";
523          printTypeInt(Out, ETy, TypeTable);
524          WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
525                                 TypeTable, Machine);
526      }
527      Out << " >";
528  } else if (isa<ConstantPointerNull>(CV)) {
529    Out << "null";
530
531  } else if (isa<UndefValue>(CV)) {
532    Out << "undef";
533
534  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
535    Out << CE->getOpcodeName() << " (";
536
537    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
538      printTypeInt(Out, (*OI)->getType(), TypeTable);
539      WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
540      if (OI+1 != CE->op_end())
541        Out << ", ";
542    }
543
544    if (CE->isCast()) {
545      Out << " to ";
546      printTypeInt(Out, CE->getType(), TypeTable);
547    }
548
549    Out << ')';
550
551  } else {
552    Out << "<placeholder or erroneous Constant>";
553  }
554}
555
556
557/// WriteAsOperand - Write the name of the specified value out to the specified
558/// ostream.  This can be useful when you just want to print int %reg126, not
559/// the whole instruction that generated it.
560///
561static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
562                                   bool PrintName,
563                                  std::map<const Type*, std::string> &TypeTable,
564                                   SlotMachine *Machine) {
565  Out << ' ';
566  if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
567    Out << getLLVMName(V->getName());
568  else {
569    const Constant *CV = dyn_cast<Constant>(V);
570    if (CV && !isa<GlobalValue>(CV)) {
571      WriteConstantInt(Out, CV, PrintName, TypeTable, Machine);
572    } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
573      Out << "asm ";
574      if (IA->hasSideEffects())
575        Out << "sideeffect ";
576      Out << '"';
577      PrintEscapedString(IA->getAsmString(), Out);
578      Out << "\", \"";
579      PrintEscapedString(IA->getConstraintString(), Out);
580      Out << '"';
581    } else {
582      int Slot;
583      if (Machine) {
584        Slot = Machine->getSlot(V);
585      } else {
586        Machine = createSlotMachine(V);
587        if (Machine)
588          Slot = Machine->getSlot(V);
589        else
590          Slot = -1;
591        delete Machine;
592      }
593      if (Slot != -1)
594        Out << '%' << Slot;
595      else
596        Out << "<badref>";
597    }
598  }
599}
600
601/// WriteAsOperand - Write the name of the specified value out to the specified
602/// ostream.  This can be useful when you just want to print int %reg126, not
603/// the whole instruction that generated it.
604///
605std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
606                                   bool PrintType, bool PrintName,
607                                   const Module *Context) {
608  std::map<const Type *, std::string> TypeNames;
609  if (Context == 0) Context = getModuleFromVal(V);
610
611  if (Context)
612    fillTypeNameTable(Context, TypeNames);
613
614  if (PrintType)
615    printTypeInt(Out, V->getType(), TypeNames);
616
617  WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
618  return Out;
619}
620
621/// WriteAsOperandInternal - Write the name of the specified value out to
622/// the specified ostream.  This can be useful when you just want to print
623/// int %reg126, not the whole instruction that generated it.
624///
625static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
626                                   bool PrintName,
627                                  std::map<const Type*, std::string> &TypeTable,
628                                   SlotMachine *Machine) {
629  Out << ' ';
630  int Slot;
631  if (Machine) {
632    Slot = Machine->getSlot(T);
633    if (Slot != -1)
634      Out << '%' << Slot;
635    else
636      Out << "<badref>";
637  } else {
638    Out << T->getDescription();
639  }
640}
641
642/// WriteAsOperand - Write the name of the specified value out to the specified
643/// ostream.  This can be useful when you just want to print int %reg126, not
644/// the whole instruction that generated it.
645///
646std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Type *Ty,
647                                   bool PrintType, bool PrintName,
648                                   const Module *Context) {
649  std::map<const Type *, std::string> TypeNames;
650  assert(Context != 0 && "Can't write types as operand without module context");
651
652  fillTypeNameTable(Context, TypeNames);
653
654  // if (PrintType)
655    // printTypeInt(Out, V->getType(), TypeNames);
656
657  printTypeInt(Out, Ty, TypeNames);
658
659  WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
660  return Out;
661}
662
663namespace llvm {
664
665class AssemblyWriter {
666  std::ostream &Out;
667  SlotMachine &Machine;
668  const Module *TheModule;
669  std::map<const Type *, std::string> TypeNames;
670  AssemblyAnnotationWriter *AnnotationWriter;
671public:
672  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
673                        AssemblyAnnotationWriter *AAW)
674    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
675
676    // If the module has a symbol table, take all global types and stuff their
677    // names into the TypeNames map.
678    //
679    fillTypeNameTable(M, TypeNames);
680  }
681
682  inline void write(const Module *M)         { printModule(M);      }
683  inline void write(const GlobalVariable *G) { printGlobal(G);      }
684  inline void write(const Function *F)       { printFunction(F);    }
685  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
686  inline void write(const Instruction *I)    { printInstruction(*I); }
687  inline void write(const Constant *CPV)     { printConstant(CPV);  }
688  inline void write(const Type *Ty)          { printType(Ty);       }
689
690  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
691
692  const Module* getModule() { return TheModule; }
693
694private:
695  void printModule(const Module *M);
696  void printSymbolTable(const SymbolTable &ST);
697  void printConstant(const Constant *CPV);
698  void printGlobal(const GlobalVariable *GV);
699  void printFunction(const Function *F);
700  void printArgument(const Argument *FA);
701  void printBasicBlock(const BasicBlock *BB);
702  void printInstruction(const Instruction &I);
703
704  // printType - Go to extreme measures to attempt to print out a short,
705  // symbolic version of a type name.
706  //
707  std::ostream &printType(const Type *Ty) {
708    return printTypeInt(Out, Ty, TypeNames);
709  }
710
711  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
712  // without considering any symbolic types that we may have equal to it.
713  //
714  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
715
716  // printInfoComment - Print a little comment after the instruction indicating
717  // which slot it occupies.
718  void printInfoComment(const Value &V);
719};
720}  // end of llvm namespace
721
722/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
723/// without considering any symbolic types that we may have equal to it.
724///
725std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
726  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
727    printType(FTy->getReturnType()) << " (";
728    for (FunctionType::param_iterator I = FTy->param_begin(),
729           E = FTy->param_end(); I != E; ++I) {
730      if (I != FTy->param_begin())
731        Out << ", ";
732      printType(*I);
733    }
734    if (FTy->isVarArg()) {
735      if (FTy->getNumParams()) Out << ", ";
736      Out << "...";
737    }
738    Out << ')';
739  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
740    Out << "{ ";
741    for (StructType::element_iterator I = STy->element_begin(),
742           E = STy->element_end(); I != E; ++I) {
743      if (I != STy->element_begin())
744        Out << ", ";
745      printType(*I);
746    }
747    Out << " }";
748  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
749    printType(PTy->getElementType()) << '*';
750  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
751    Out << '[' << ATy->getNumElements() << " x ";
752    printType(ATy->getElementType()) << ']';
753  } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
754    Out << '<' << PTy->getNumElements() << " x ";
755    printType(PTy->getElementType()) << '>';
756  }
757  else if (isa<OpaqueType>(Ty)) {
758    Out << "opaque";
759  } else {
760    if (!Ty->isPrimitiveType())
761      Out << "<unknown derived type>";
762    printType(Ty);
763  }
764  return Out;
765}
766
767
768void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
769                                  bool PrintName) {
770  if (Operand != 0) {
771    if (PrintType) { Out << ' '; printType(Operand->getType()); }
772    WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
773  } else {
774    Out << "<null operand!>";
775  }
776}
777
778
779void AssemblyWriter::printModule(const Module *M) {
780  if (!M->getModuleIdentifier().empty() &&
781      // Don't print the ID if it will start a new line (which would
782      // require a comment char before it).
783      M->getModuleIdentifier().find('\n') == std::string::npos)
784    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
785
786  if (!M->getDataLayout().empty())
787    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
788
789  switch (M->getEndianness()) {
790  case Module::LittleEndian: Out << "target endian = little\n"; break;
791  case Module::BigEndian:    Out << "target endian = big\n";    break;
792  case Module::AnyEndianness: break;
793  }
794  switch (M->getPointerSize()) {
795  case Module::Pointer32:    Out << "target pointersize = 32\n"; break;
796  case Module::Pointer64:    Out << "target pointersize = 64\n"; break;
797  case Module::AnyPointerSize: break;
798  }
799  if (!M->getTargetTriple().empty())
800    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
801
802  if (!M->getModuleInlineAsm().empty()) {
803    // Split the string into lines, to make it easier to read the .ll file.
804    std::string Asm = M->getModuleInlineAsm();
805    size_t CurPos = 0;
806    size_t NewLine = Asm.find_first_of('\n', CurPos);
807    while (NewLine != std::string::npos) {
808      // We found a newline, print the portion of the asm string from the
809      // last newline up to this newline.
810      Out << "module asm \"";
811      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
812                         Out);
813      Out << "\"\n";
814      CurPos = NewLine+1;
815      NewLine = Asm.find_first_of('\n', CurPos);
816    }
817    Out << "module asm \"";
818    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
819    Out << "\"\n";
820  }
821
822  // Loop over the dependent libraries and emit them.
823  Module::lib_iterator LI = M->lib_begin();
824  Module::lib_iterator LE = M->lib_end();
825  if (LI != LE) {
826    Out << "deplibs = [ ";
827    while (LI != LE) {
828      Out << '"' << *LI << '"';
829      ++LI;
830      if (LI != LE)
831        Out << ", ";
832    }
833    Out << " ]\n";
834  }
835
836  // Loop over the symbol table, emitting all named constants.
837  printSymbolTable(M->getSymbolTable());
838
839  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I)
840    printGlobal(I);
841
842  Out << "\nimplementation   ; Functions:\n";
843
844  // Output all of the functions.
845  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
846    printFunction(I);
847}
848
849void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
850  if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
851
852  if (!GV->hasInitializer())
853    switch (GV->getLinkage()) {
854     case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
855     case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
856     default: Out << "external "; break;
857    }
858  else
859    switch (GV->getLinkage()) {
860    case GlobalValue::InternalLinkage:     Out << "internal "; break;
861    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
862    case GlobalValue::WeakLinkage:         Out << "weak "; break;
863    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
864    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
865    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
866    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
867    case GlobalValue::ExternalLinkage:     break;
868    case GlobalValue::GhostLinkage:
869      std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
870      abort();
871    }
872
873  Out << (GV->isConstant() ? "constant " : "global ");
874  printType(GV->getType()->getElementType());
875
876  if (GV->hasInitializer()) {
877    Constant* C = cast<Constant>(GV->getInitializer());
878    assert(C &&  "GlobalVar initializer isn't constant?");
879    writeOperand(GV->getInitializer(), false, isa<GlobalValue>(C));
880  }
881
882  if (GV->hasSection())
883    Out << ", section \"" << GV->getSection() << '"';
884  if (GV->getAlignment())
885    Out << ", align " << GV->getAlignment();
886
887  printInfoComment(*GV);
888  Out << "\n";
889}
890
891
892// printSymbolTable - Run through symbol table looking for constants
893// and types. Emit their declarations.
894void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
895
896  // Print the types.
897  for (SymbolTable::type_const_iterator TI = ST.type_begin();
898       TI != ST.type_end(); ++TI ) {
899    Out << "\t" << getLLVMName(TI->first) << " = type ";
900
901    // Make sure we print out at least one level of the type structure, so
902    // that we do not get %FILE = type %FILE
903    //
904    printTypeAtLeastOneLevel(TI->second) << "\n";
905  }
906
907  // Print the constants, in type plane order.
908  for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
909       PI != ST.plane_end(); ++PI ) {
910    SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
911    SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
912
913    for (; VI != VE; ++VI) {
914      const Value* V = VI->second;
915      const Constant *CPV = dyn_cast<Constant>(V) ;
916      if (CPV && !isa<GlobalValue>(V)) {
917        printConstant(CPV);
918      }
919    }
920  }
921}
922
923
924/// printConstant - Print out a constant pool entry...
925///
926void AssemblyWriter::printConstant(const Constant *CPV) {
927  // Don't print out unnamed constants, they will be inlined
928  if (!CPV->hasName()) return;
929
930  // Print out name...
931  Out << "\t" << getLLVMName(CPV->getName()) << " =";
932
933  // Write the value out now...
934  writeOperand(CPV, true, false);
935
936  printInfoComment(*CPV);
937  Out << "\n";
938}
939
940/// printFunction - Print all aspects of a function.
941///
942void AssemblyWriter::printFunction(const Function *F) {
943  // Print out the return type and name...
944  Out << "\n";
945
946  // Ensure that no local symbols conflict with global symbols.
947  const_cast<Function*>(F)->renameLocalSymbols();
948
949  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
950
951  if (F->isExternal())
952    switch (F->getLinkage()) {
953    case GlobalValue::DLLImportLinkage:    Out << "declare dllimport "; break;
954    case GlobalValue::ExternalWeakLinkage: Out << "declare extern_weak "; break;
955    default: Out << "declare ";
956    }
957  else
958    switch (F->getLinkage()) {
959    case GlobalValue::InternalLinkage:     Out << "internal "; break;
960    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
961    case GlobalValue::WeakLinkage:         Out << "weak "; break;
962    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
963    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
964    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
965    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
966    case GlobalValue::ExternalLinkage: break;
967    case GlobalValue::GhostLinkage:
968      std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
969      abort();
970    }
971
972  // Print the calling convention.
973  switch (F->getCallingConv()) {
974  case CallingConv::C: break;   // default
975  case CallingConv::CSRet:        Out << "csretcc "; break;
976  case CallingConv::Fast:         Out << "fastcc "; break;
977  case CallingConv::Cold:         Out << "coldcc "; break;
978  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
979  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
980  default: Out << "cc" << F->getCallingConv() << " "; break;
981  }
982
983  printType(F->getReturnType()) << ' ';
984  if (!F->getName().empty())
985    Out << getLLVMName(F->getName());
986  else
987    Out << "\"\"";
988  Out << '(';
989  Machine.incorporateFunction(F);
990
991  // Loop over the arguments, printing them...
992  const FunctionType *FT = F->getFunctionType();
993
994  for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
995    printArgument(I);
996
997  // Finish printing arguments...
998  if (FT->isVarArg()) {
999    if (FT->getNumParams()) Out << ", ";
1000    Out << "...";  // Output varargs portion of signature!
1001  }
1002  Out << ')';
1003
1004  if (F->hasSection())
1005    Out << " section \"" << F->getSection() << '"';
1006  if (F->getAlignment())
1007    Out << " align " << F->getAlignment();
1008
1009  if (F->isExternal()) {
1010    Out << "\n";
1011  } else {
1012    Out << " {";
1013
1014    // Output all of its basic blocks... for the function
1015    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1016      printBasicBlock(I);
1017
1018    Out << "}\n";
1019  }
1020
1021  Machine.purgeFunction();
1022}
1023
1024/// printArgument - This member is called for every argument that is passed into
1025/// the function.  Simply print it out
1026///
1027void AssemblyWriter::printArgument(const Argument *Arg) {
1028  // Insert commas as we go... the first arg doesn't get a comma
1029  if (Arg != Arg->getParent()->arg_begin()) Out << ", ";
1030
1031  // Output type...
1032  printType(Arg->getType());
1033
1034  // Output name, if available...
1035  if (Arg->hasName())
1036    Out << ' ' << getLLVMName(Arg->getName());
1037}
1038
1039/// printBasicBlock - This member is called for each basic block in a method.
1040///
1041void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1042  if (BB->hasName()) {              // Print out the label if it exists...
1043    Out << "\n" << getLLVMName(BB->getName(), false) << ':';
1044  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1045    Out << "\n; <label>:";
1046    int Slot = Machine.getSlot(BB);
1047    if (Slot != -1)
1048      Out << Slot;
1049    else
1050      Out << "<badref>";
1051  }
1052
1053  if (BB->getParent() == 0)
1054    Out << "\t\t; Error: Block without parent!";
1055  else {
1056    if (BB != &BB->getParent()->front()) {  // Not the entry block?
1057      // Output predecessors for the block...
1058      Out << "\t\t;";
1059      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1060
1061      if (PI == PE) {
1062        Out << " No predecessors!";
1063      } else {
1064        Out << " preds =";
1065        writeOperand(*PI, false, true);
1066        for (++PI; PI != PE; ++PI) {
1067          Out << ',';
1068          writeOperand(*PI, false, true);
1069        }
1070      }
1071    }
1072  }
1073
1074  Out << "\n";
1075
1076  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1077
1078  // Output all of the instructions in the basic block...
1079  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1080    printInstruction(*I);
1081
1082  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1083}
1084
1085
1086/// printInfoComment - Print a little comment after the instruction indicating
1087/// which slot it occupies.
1088///
1089void AssemblyWriter::printInfoComment(const Value &V) {
1090  if (V.getType() != Type::VoidTy) {
1091    Out << "\t\t; <";
1092    printType(V.getType()) << '>';
1093
1094    if (!V.hasName()) {
1095      int SlotNum = Machine.getSlot(&V);
1096      if (SlotNum == -1)
1097        Out << ":<badref>";
1098      else
1099        Out << ':' << SlotNum; // Print out the def slot taken.
1100    }
1101    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1102  }
1103}
1104
1105// This member is called for each Instruction in a function..
1106void AssemblyWriter::printInstruction(const Instruction &I) {
1107  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1108
1109  Out << "\t";
1110
1111  // Print out name if it exists...
1112  if (I.hasName())
1113    Out << getLLVMName(I.getName()) << " = ";
1114
1115  // If this is a volatile load or store, print out the volatile marker.
1116  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1117      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1118      Out << "volatile ";
1119  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1120    // If this is a call, check if it's a tail call.
1121    Out << "tail ";
1122  }
1123
1124  // Print out the opcode...
1125  Out << I.getOpcodeName();
1126
1127  // Print out the type of the operands...
1128  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1129
1130  // Special case conditional branches to swizzle the condition out to the front
1131  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1132    writeOperand(I.getOperand(2), true);
1133    Out << ',';
1134    writeOperand(Operand, true);
1135    Out << ',';
1136    writeOperand(I.getOperand(1), true);
1137
1138  } else if (isa<SwitchInst>(I)) {
1139    // Special case switch statement to get formatting nice and correct...
1140    writeOperand(Operand        , true); Out << ',';
1141    writeOperand(I.getOperand(1), true); Out << " [";
1142
1143    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1144      Out << "\n\t\t";
1145      writeOperand(I.getOperand(op  ), true); Out << ',';
1146      writeOperand(I.getOperand(op+1), true);
1147    }
1148    Out << "\n\t]";
1149  } else if (isa<PHINode>(I)) {
1150    Out << ' ';
1151    printType(I.getType());
1152    Out << ' ';
1153
1154    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1155      if (op) Out << ", ";
1156      Out << '[';
1157      writeOperand(I.getOperand(op  ), false); Out << ',';
1158      writeOperand(I.getOperand(op+1), false); Out << " ]";
1159    }
1160  } else if (isa<ReturnInst>(I) && !Operand) {
1161    Out << " void";
1162  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1163    // Print the calling convention being used.
1164    switch (CI->getCallingConv()) {
1165    case CallingConv::C: break;   // default
1166    case CallingConv::CSRet: Out << " csretcc"; break;
1167    case CallingConv::Fast:  Out << " fastcc"; break;
1168    case CallingConv::Cold:  Out << " coldcc"; break;
1169    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1170    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1171    default: Out << " cc" << CI->getCallingConv(); break;
1172    }
1173
1174    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1175    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1176    const Type       *RetTy = FTy->getReturnType();
1177
1178    // If possible, print out the short form of the call instruction.  We can
1179    // only do this if the first argument is a pointer to a nonvararg function,
1180    // and if the return type is not a pointer to a function.
1181    //
1182    if (!FTy->isVarArg() &&
1183        (!isa<PointerType>(RetTy) ||
1184         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1185      Out << ' '; printType(RetTy);
1186      writeOperand(Operand, false);
1187    } else {
1188      writeOperand(Operand, true);
1189    }
1190    Out << '(';
1191    if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true);
1192    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
1193      Out << ',';
1194      writeOperand(I.getOperand(op), true);
1195    }
1196
1197    Out << " )";
1198  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1199    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1200    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1201    const Type       *RetTy = FTy->getReturnType();
1202
1203    // Print the calling convention being used.
1204    switch (II->getCallingConv()) {
1205    case CallingConv::C: break;   // default
1206    case CallingConv::CSRet: Out << " csretcc"; break;
1207    case CallingConv::Fast:  Out << " fastcc"; break;
1208    case CallingConv::Cold:  Out << " coldcc"; break;
1209    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1210    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1211    default: Out << " cc" << II->getCallingConv(); break;
1212    }
1213
1214    // If possible, print out the short form of the invoke instruction. We can
1215    // only do this if the first argument is a pointer to a nonvararg function,
1216    // and if the return type is not a pointer to a function.
1217    //
1218    if (!FTy->isVarArg() &&
1219        (!isa<PointerType>(RetTy) ||
1220         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1221      Out << ' '; printType(RetTy);
1222      writeOperand(Operand, false);
1223    } else {
1224      writeOperand(Operand, true);
1225    }
1226
1227    Out << '(';
1228    if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
1229    for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
1230      Out << ',';
1231      writeOperand(I.getOperand(op), true);
1232    }
1233
1234    Out << " )\n\t\t\tto";
1235    writeOperand(II->getNormalDest(), true);
1236    Out << " unwind";
1237    writeOperand(II->getUnwindDest(), true);
1238
1239  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1240    Out << ' ';
1241    printType(AI->getType()->getElementType());
1242    if (AI->isArrayAllocation()) {
1243      Out << ',';
1244      writeOperand(AI->getArraySize(), true);
1245    }
1246    if (AI->getAlignment()) {
1247      Out << ", align " << AI->getAlignment();
1248    }
1249  } else if (isa<CastInst>(I)) {
1250    if (Operand) writeOperand(Operand, true);   // Work with broken code
1251    Out << " to ";
1252    printType(I.getType());
1253  } else if (isa<VAArgInst>(I)) {
1254    if (Operand) writeOperand(Operand, true);   // Work with broken code
1255    Out << ", ";
1256    printType(I.getType());
1257  } else if (Operand) {   // Print the normal way...
1258
1259    // PrintAllTypes - Instructions who have operands of all the same type
1260    // omit the type from all but the first operand.  If the instruction has
1261    // different type operands (for example br), then they are all printed.
1262    bool PrintAllTypes = false;
1263    const Type *TheType = Operand->getType();
1264
1265    // Shift Left & Right print both types even for Ubyte LHS, and select prints
1266    // types even if all operands are bools.
1267    if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) ||
1268        isa<ShuffleVectorInst>(I)) {
1269      PrintAllTypes = true;
1270    } else {
1271      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1272        Operand = I.getOperand(i);
1273        if (Operand->getType() != TheType) {
1274          PrintAllTypes = true;    // We have differing types!  Print them all!
1275          break;
1276        }
1277      }
1278    }
1279
1280    if (!PrintAllTypes) {
1281      Out << ' ';
1282      printType(TheType);
1283    }
1284
1285    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1286      if (i) Out << ',';
1287      writeOperand(I.getOperand(i), PrintAllTypes);
1288    }
1289  }
1290
1291  printInfoComment(I);
1292  Out << "\n";
1293}
1294
1295
1296//===----------------------------------------------------------------------===//
1297//                       External Interface declarations
1298//===----------------------------------------------------------------------===//
1299
1300void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1301  SlotMachine SlotTable(this);
1302  AssemblyWriter W(o, SlotTable, this, AAW);
1303  W.write(this);
1304}
1305
1306void GlobalVariable::print(std::ostream &o) const {
1307  SlotMachine SlotTable(getParent());
1308  AssemblyWriter W(o, SlotTable, getParent(), 0);
1309  W.write(this);
1310}
1311
1312void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1313  SlotMachine SlotTable(getParent());
1314  AssemblyWriter W(o, SlotTable, getParent(), AAW);
1315
1316  W.write(this);
1317}
1318
1319void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1320  WriteAsOperand(o, this, true, true, 0);
1321}
1322
1323void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1324  SlotMachine SlotTable(getParent());
1325  AssemblyWriter W(o, SlotTable,
1326                   getParent() ? getParent()->getParent() : 0, AAW);
1327  W.write(this);
1328}
1329
1330void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1331  const Function *F = getParent() ? getParent()->getParent() : 0;
1332  SlotMachine SlotTable(F);
1333  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1334
1335  W.write(this);
1336}
1337
1338void Constant::print(std::ostream &o) const {
1339  if (this == 0) { o << "<null> constant value\n"; return; }
1340
1341  o << ' ' << getType()->getDescription() << ' ';
1342
1343  std::map<const Type *, std::string> TypeTable;
1344  WriteConstantInt(o, this, false, TypeTable, 0);
1345}
1346
1347void Type::print(std::ostream &o) const {
1348  if (this == 0)
1349    o << "<null Type>";
1350  else
1351    o << getDescription();
1352}
1353
1354void Argument::print(std::ostream &o) const {
1355  WriteAsOperand(o, this, true, true,
1356                 getParent() ? getParent()->getParent() : 0);
1357}
1358
1359// Value::dump - allow easy printing of  Values from the debugger.
1360// Located here because so much of the needed functionality is here.
1361void Value::dump() const { print(std::cerr); std::cerr << '\n'; }
1362
1363// Type::dump - allow easy printing of  Values from the debugger.
1364// Located here because so much of the needed functionality is here.
1365void Type::dump() const { print(std::cerr); std::cerr << '\n'; }
1366
1367//===----------------------------------------------------------------------===//
1368//  CachedWriter Class Implementation
1369//===----------------------------------------------------------------------===//
1370
1371void CachedWriter::setModule(const Module *M) {
1372  delete SC; delete AW;
1373  if (M) {
1374    SC = new SlotMachine(M );
1375    AW = new AssemblyWriter(Out, *SC, M, 0);
1376  } else {
1377    SC = 0; AW = 0;
1378  }
1379}
1380
1381CachedWriter::~CachedWriter() {
1382  delete AW;
1383  delete SC;
1384}
1385
1386CachedWriter &CachedWriter::operator<<(const Value &V) {
1387  assert(AW && SC && "CachedWriter does not have a current module!");
1388  if (const Instruction *I = dyn_cast<Instruction>(&V))
1389    AW->write(I);
1390  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(&V))
1391    AW->write(BB);
1392  else if (const Function *F = dyn_cast<Function>(&V))
1393    AW->write(F);
1394  else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(&V))
1395    AW->write(GV);
1396  else
1397    AW->writeOperand(&V, true, true);
1398  return *this;
1399}
1400
1401CachedWriter& CachedWriter::operator<<(const Type &Ty) {
1402  if (SymbolicTypes) {
1403    const Module *M = AW->getModule();
1404    if (M) WriteTypeSymbolic(Out, &Ty, M);
1405  } else {
1406    AW->write(&Ty);
1407  }
1408  return *this;
1409}
1410
1411//===----------------------------------------------------------------------===//
1412//===--                    SlotMachine Implementation
1413//===----------------------------------------------------------------------===//
1414
1415#if 0
1416#define SC_DEBUG(X) std::cerr << X
1417#else
1418#define SC_DEBUG(X)
1419#endif
1420
1421// Module level constructor. Causes the contents of the Module (sans functions)
1422// to be added to the slot table.
1423SlotMachine::SlotMachine(const Module *M)
1424  : TheModule(M)    ///< Saved for lazy initialization.
1425  , TheFunction(0)
1426  , FunctionProcessed(false)
1427  , mMap()
1428  , mTypes()
1429  , fMap()
1430  , fTypes()
1431{
1432}
1433
1434// Function level constructor. Causes the contents of the Module and the one
1435// function provided to be added to the slot table.
1436SlotMachine::SlotMachine(const Function *F )
1437  : TheModule( F ? F->getParent() : 0 ) ///< Saved for lazy initialization
1438  , TheFunction(F) ///< Saved for lazy initialization
1439  , FunctionProcessed(false)
1440  , mMap()
1441  , mTypes()
1442  , fMap()
1443  , fTypes()
1444{
1445}
1446
1447inline void SlotMachine::initialize(void) {
1448  if ( TheModule) {
1449    processModule();
1450    TheModule = 0; ///< Prevent re-processing next time we're called.
1451  }
1452  if ( TheFunction && ! FunctionProcessed) {
1453    processFunction();
1454  }
1455}
1456
1457// Iterate through all the global variables, functions, and global
1458// variable initializers and create slots for them.
1459void SlotMachine::processModule() {
1460  SC_DEBUG("begin processModule!\n");
1461
1462  // Add all of the global variables to the value table...
1463  for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end();
1464       I != E; ++I)
1465    createSlot(I);
1466
1467  // Add all the functions to the table
1468  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1469       I != E; ++I)
1470    createSlot(I);
1471
1472  SC_DEBUG("end processModule!\n");
1473}
1474
1475
1476// Process the arguments, basic blocks, and instructions  of a function.
1477void SlotMachine::processFunction() {
1478  SC_DEBUG("begin processFunction!\n");
1479
1480  // Add all the function arguments
1481  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1482      AE = TheFunction->arg_end(); AI != AE; ++AI)
1483    createSlot(AI);
1484
1485  SC_DEBUG("Inserting Instructions:\n");
1486
1487  // Add all of the basic blocks and instructions
1488  for (Function::const_iterator BB = TheFunction->begin(),
1489       E = TheFunction->end(); BB != E; ++BB) {
1490    createSlot(BB);
1491    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
1492      createSlot(I);
1493    }
1494  }
1495
1496  FunctionProcessed = true;
1497
1498  SC_DEBUG("end processFunction!\n");
1499}
1500
1501// Clean up after incorporating a function. This is the only way
1502// to get out of the function incorporation state that affects the
1503// getSlot/createSlot lock. Function incorporation state is indicated
1504// by TheFunction != 0.
1505void SlotMachine::purgeFunction() {
1506  SC_DEBUG("begin purgeFunction!\n");
1507  fMap.clear(); // Simply discard the function level map
1508  fTypes.clear();
1509  TheFunction = 0;
1510  FunctionProcessed = false;
1511  SC_DEBUG("end purgeFunction!\n");
1512}
1513
1514/// Get the slot number for a value. This function will assert if you
1515/// ask for a Value that hasn't previously been inserted with createSlot.
1516/// Types are forbidden because Type does not inherit from Value (any more).
1517int SlotMachine::getSlot(const Value *V) {
1518  assert( V && "Can't get slot for null Value" );
1519  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1520    "Can't insert a non-GlobalValue Constant into SlotMachine");
1521
1522  // Check for uninitialized state and do lazy initialization
1523  this->initialize();
1524
1525  // Get the type of the value
1526  const Type* VTy = V->getType();
1527
1528  // Find the type plane in the module map
1529  TypedPlanes::const_iterator MI = mMap.find(VTy);
1530
1531  if ( TheFunction ) {
1532    // Lookup the type in the function map too
1533    TypedPlanes::const_iterator FI = fMap.find(VTy);
1534    // If there is a corresponding type plane in the function map
1535    if ( FI != fMap.end() ) {
1536      // Lookup the Value in the function map
1537      ValueMap::const_iterator FVI = FI->second.map.find(V);
1538      // If the value doesn't exist in the function map
1539      if ( FVI == FI->second.map.end() ) {
1540        // Look up the value in the module map.
1541        if (MI == mMap.end()) return -1;
1542        ValueMap::const_iterator MVI = MI->second.map.find(V);
1543        // If we didn't find it, it wasn't inserted
1544        if (MVI == MI->second.map.end()) return -1;
1545        assert( MVI != MI->second.map.end() && "Value not found");
1546        // We found it only at the module level
1547        return MVI->second;
1548
1549      // else the value exists in the function map
1550      } else {
1551        // Return the slot number as the module's contribution to
1552        // the type plane plus the index in the function's contribution
1553        // to the type plane.
1554        if (MI != mMap.end())
1555          return MI->second.next_slot + FVI->second;
1556        else
1557          return FVI->second;
1558      }
1559    }
1560  }
1561
1562  // N.B. Can get here only if either !TheFunction or the function doesn't
1563  // have a corresponding type plane for the Value
1564
1565  // Make sure the type plane exists
1566  if (MI == mMap.end()) return -1;
1567  // Lookup the value in the module's map
1568  ValueMap::const_iterator MVI = MI->second.map.find(V);
1569  // Make sure we found it.
1570  if (MVI == MI->second.map.end()) return -1;
1571  // Return it.
1572  return MVI->second;
1573}
1574
1575/// Get the slot number for a value. This function will assert if you
1576/// ask for a Value that hasn't previously been inserted with createSlot.
1577/// Types are forbidden because Type does not inherit from Value (any more).
1578int SlotMachine::getSlot(const Type *Ty) {
1579  assert( Ty && "Can't get slot for null Type" );
1580
1581  // Check for uninitialized state and do lazy initialization
1582  this->initialize();
1583
1584  if ( TheFunction ) {
1585    // Lookup the Type in the function map
1586    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
1587    // If the Type doesn't exist in the function map
1588    if ( FTI == fTypes.map.end() ) {
1589      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1590      // If we didn't find it, it wasn't inserted
1591      if (MTI == mTypes.map.end())
1592        return -1;
1593      // We found it only at the module level
1594      return MTI->second;
1595
1596    // else the value exists in the function map
1597    } else {
1598      // Return the slot number as the module's contribution to
1599      // the type plane plus the index in the function's contribution
1600      // to the type plane.
1601      return mTypes.next_slot + FTI->second;
1602    }
1603  }
1604
1605  // N.B. Can get here only if either !TheFunction
1606
1607  // Lookup the value in the module's map
1608  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1609  // Make sure we found it.
1610  if (MTI == mTypes.map.end()) return -1;
1611  // Return it.
1612  return MTI->second;
1613}
1614
1615// Create a new slot, or return the existing slot if it is already
1616// inserted. Note that the logic here parallels getSlot but instead
1617// of asserting when the Value* isn't found, it inserts the value.
1618unsigned SlotMachine::createSlot(const Value *V) {
1619  assert( V && "Can't insert a null Value to SlotMachine");
1620  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1621    "Can't insert a non-GlobalValue Constant into SlotMachine");
1622
1623  const Type* VTy = V->getType();
1624
1625  // Just ignore void typed things
1626  if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
1627
1628  // Look up the type plane for the Value's type from the module map
1629  TypedPlanes::const_iterator MI = mMap.find(VTy);
1630
1631  if ( TheFunction ) {
1632    // Get the type plane for the Value's type from the function map
1633    TypedPlanes::const_iterator FI = fMap.find(VTy);
1634    // If there is a corresponding type plane in the function map
1635    if ( FI != fMap.end() ) {
1636      // Lookup the Value in the function map
1637      ValueMap::const_iterator FVI = FI->second.map.find(V);
1638      // If the value doesn't exist in the function map
1639      if ( FVI == FI->second.map.end() ) {
1640        // If there is no corresponding type plane in the module map
1641        if ( MI == mMap.end() )
1642          return insertValue(V);
1643        // Look up the value in the module map
1644        ValueMap::const_iterator MVI = MI->second.map.find(V);
1645        // If we didn't find it, it wasn't inserted
1646        if ( MVI == MI->second.map.end() )
1647          return insertValue(V);
1648        else
1649          // We found it only at the module level
1650          return MVI->second;
1651
1652      // else the value exists in the function map
1653      } else {
1654        if ( MI == mMap.end() )
1655          return FVI->second;
1656        else
1657          // Return the slot number as the module's contribution to
1658          // the type plane plus the index in the function's contribution
1659          // to the type plane.
1660          return MI->second.next_slot + FVI->second;
1661      }
1662
1663    // else there is not a corresponding type plane in the function map
1664    } else {
1665      // If the type plane doesn't exists at the module level
1666      if ( MI == mMap.end() ) {
1667        return insertValue(V);
1668      // else type plane exists at the module level, examine it
1669      } else {
1670        // Look up the value in the module's map
1671        ValueMap::const_iterator MVI = MI->second.map.find(V);
1672        // If we didn't find it there either
1673        if ( MVI == MI->second.map.end() )
1674          // Return the slot number as the module's contribution to
1675          // the type plane plus the index of the function map insertion.
1676          return MI->second.next_slot + insertValue(V);
1677        else
1678          return MVI->second;
1679      }
1680    }
1681  }
1682
1683  // N.B. Can only get here if !TheFunction
1684
1685  // If the module map's type plane is not for the Value's type
1686  if ( MI != mMap.end() ) {
1687    // Lookup the value in the module's map
1688    ValueMap::const_iterator MVI = MI->second.map.find(V);
1689    if ( MVI != MI->second.map.end() )
1690      return MVI->second;
1691  }
1692
1693  return insertValue(V);
1694}
1695
1696// Create a new slot, or return the existing slot if it is already
1697// inserted. Note that the logic here parallels getSlot but instead
1698// of asserting when the Value* isn't found, it inserts the value.
1699unsigned SlotMachine::createSlot(const Type *Ty) {
1700  assert( Ty && "Can't insert a null Type to SlotMachine");
1701
1702  if ( TheFunction ) {
1703    // Lookup the Type in the function map
1704    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
1705    // If the type doesn't exist in the function map
1706    if ( FTI == fTypes.map.end() ) {
1707      // Look up the type in the module map
1708      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1709      // If we didn't find it, it wasn't inserted
1710      if ( MTI == mTypes.map.end() )
1711        return insertValue(Ty);
1712      else
1713        // We found it only at the module level
1714        return MTI->second;
1715
1716    // else the value exists in the function map
1717    } else {
1718      // Return the slot number as the module's contribution to
1719      // the type plane plus the index in the function's contribution
1720      // to the type plane.
1721      return mTypes.next_slot + FTI->second;
1722    }
1723  }
1724
1725  // N.B. Can only get here if !TheFunction
1726
1727  // Lookup the type in the module's map
1728  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1729  if ( MTI != mTypes.map.end() )
1730    return MTI->second;
1731
1732  return insertValue(Ty);
1733}
1734
1735// Low level insert function. Minimal checking is done. This
1736// function is just for the convenience of createSlot (above).
1737unsigned SlotMachine::insertValue(const Value *V ) {
1738  assert(V && "Can't insert a null Value into SlotMachine!");
1739  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1740    "Can't insert a non-GlobalValue Constant into SlotMachine");
1741
1742  // If this value does not contribute to a plane (is void)
1743  // or if the value already has a name then ignore it.
1744  if (V->getType() == Type::VoidTy || V->hasName() ) {
1745      SC_DEBUG("ignored value " << *V << "\n");
1746      return 0;   // FIXME: Wrong return value
1747  }
1748
1749  const Type *VTy = V->getType();
1750  unsigned DestSlot = 0;
1751
1752  if ( TheFunction ) {
1753    TypedPlanes::iterator I = fMap.find( VTy );
1754    if ( I == fMap.end() )
1755      I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
1756    DestSlot = I->second.map[V] = I->second.next_slot++;
1757  } else {
1758    TypedPlanes::iterator I = mMap.find( VTy );
1759    if ( I == mMap.end() )
1760      I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
1761    DestSlot = I->second.map[V] = I->second.next_slot++;
1762  }
1763
1764  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1765           DestSlot << " [");
1766  // G = Global, C = Constant, T = Type, F = Function, o = other
1767  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' :
1768           (isa<Constant>(V) ? 'C' : 'o'))));
1769  SC_DEBUG("]\n");
1770  return DestSlot;
1771}
1772
1773// Low level insert function. Minimal checking is done. This
1774// function is just for the convenience of createSlot (above).
1775unsigned SlotMachine::insertValue(const Type *Ty ) {
1776  assert(Ty && "Can't insert a null Type into SlotMachine!");
1777
1778  unsigned DestSlot = 0;
1779
1780  if ( TheFunction ) {
1781    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
1782  } else {
1783    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
1784  }
1785  SC_DEBUG("  Inserting type [" << DestSlot << "] = " << Ty << "\n");
1786  return DestSlot;
1787}
1788
1789// vim: sw=2
1790