AsmWriter.cpp revision 8594d429e02c688d428036f8563f09572da3fbff
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/Writer.h"
18#include "llvm/Assembly/PrintModulePass.h"
19#include "llvm/Assembly/AssemblyAnnotationWriter.h"
20#include "llvm/LLVMContext.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/IntrinsicInst.h"
26#include "llvm/Operator.h"
27#include "llvm/Module.h"
28#include "llvm/ValueSymbolTable.h"
29#include "llvm/TypeSymbolTable.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/CFG.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/Dwarf.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/FormattedStream.h"
41#include <algorithm>
42#include <cctype>
43using namespace llvm;
44
45static cl::opt<bool>
46EnableDebugInfoComment("enable-debug-info-comment", cl::Hidden,
47                       cl::desc("Enable debug info comments"));
48
49
50// Make virtual table appear in this compilation unit.
51AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
52
53//===----------------------------------------------------------------------===//
54// Helper Functions
55//===----------------------------------------------------------------------===//
56
57static const Module *getModuleFromVal(const Value *V) {
58  if (const Argument *MA = dyn_cast<Argument>(V))
59    return MA->getParent() ? MA->getParent()->getParent() : 0;
60
61  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
62    return BB->getParent() ? BB->getParent()->getParent() : 0;
63
64  if (const Instruction *I = dyn_cast<Instruction>(V)) {
65    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
66    return M ? M->getParent() : 0;
67  }
68
69  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
70    return GV->getParent();
71  return 0;
72}
73
74// PrintEscapedString - Print each character of the specified string, escaping
75// it if it is not printable or if it is an escape char.
76static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
77  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
78    unsigned char C = Name[i];
79    if (isprint(C) && C != '\\' && C != '"')
80      Out << C;
81    else
82      Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
83  }
84}
85
86enum PrefixType {
87  GlobalPrefix,
88  LabelPrefix,
89  LocalPrefix,
90  NoPrefix
91};
92
93/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
94/// prefixed with % (if the string only contains simple characters) or is
95/// surrounded with ""'s (if it has special chars in it).  Print it out.
96static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
97  assert(!Name.empty() && "Cannot get empty name!");
98  switch (Prefix) {
99  default: llvm_unreachable("Bad prefix!");
100  case NoPrefix: break;
101  case GlobalPrefix: OS << '@'; break;
102  case LabelPrefix:  break;
103  case LocalPrefix:  OS << '%'; break;
104  }
105
106  // Scan the name to see if it needs quotes first.
107  bool NeedsQuotes = isdigit(Name[0]);
108  if (!NeedsQuotes) {
109    for (unsigned i = 0, e = Name.size(); i != e; ++i) {
110      char C = Name[i];
111      if (!isalnum(C) && C != '-' && C != '.' && C != '_') {
112        NeedsQuotes = true;
113        break;
114      }
115    }
116  }
117
118  // If we didn't need any quotes, just write out the name in one blast.
119  if (!NeedsQuotes) {
120    OS << Name;
121    return;
122  }
123
124  // Okay, we need quotes.  Output the quotes and escape any scary characters as
125  // needed.
126  OS << '"';
127  PrintEscapedString(Name, OS);
128  OS << '"';
129}
130
131/// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
132/// prefixed with % (if the string only contains simple characters) or is
133/// surrounded with ""'s (if it has special chars in it).  Print it out.
134static void PrintLLVMName(raw_ostream &OS, const Value *V) {
135  PrintLLVMName(OS, V->getName(),
136                isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
137}
138
139//===----------------------------------------------------------------------===//
140// TypePrinting Class: Type printing machinery
141//===----------------------------------------------------------------------===//
142
143/// TypePrinting - Type printing machinery.
144namespace {
145class TypePrinting {
146  DenseMap<const Type *, std::string> TypeNames;
147  TypePrinting(const TypePrinting &);   // DO NOT IMPLEMENT
148  void operator=(const TypePrinting&);  // DO NOT IMPLEMENT
149public:
150  TypePrinting() {}
151  ~TypePrinting() {}
152
153  void clear() {
154    TypeNames.clear();
155  }
156
157  void print(const Type *Ty, raw_ostream &OS, bool IgnoreTopLevelName = false);
158
159  void printAtLeastOneLevel(const Type *Ty, raw_ostream &OS) {
160    print(Ty, OS, true);
161  }
162
163  /// hasTypeName - Return true if the type has a name in TypeNames, false
164  /// otherwise.
165  bool hasTypeName(const Type *Ty) const {
166    return TypeNames.count(Ty);
167  }
168
169
170  /// addTypeName - Add a name for the specified type if it doesn't already have
171  /// one.  This name will be printed instead of the structural version of the
172  /// type in order to make the output more concise.
173  void addTypeName(const Type *Ty, const std::string &N) {
174    TypeNames.insert(std::make_pair(Ty, N));
175  }
176
177private:
178  void CalcTypeName(const Type *Ty, SmallVectorImpl<const Type *> &TypeStack,
179                    raw_ostream &OS, bool IgnoreTopLevelName = false);
180};
181} // end anonymous namespace.
182
183/// CalcTypeName - Write the specified type to the specified raw_ostream, making
184/// use of type names or up references to shorten the type name where possible.
185void TypePrinting::CalcTypeName(const Type *Ty,
186                                SmallVectorImpl<const Type *> &TypeStack,
187                                raw_ostream &OS, bool IgnoreTopLevelName) {
188  // Check to see if the type is named.
189  if (!IgnoreTopLevelName) {
190    DenseMap<const Type *, std::string> &TM = TypeNames;
191    DenseMap<const Type *, std::string>::iterator I = TM.find(Ty);
192    if (I != TM.end()) {
193      OS << I->second;
194      return;
195    }
196  }
197
198  // Check to see if the Type is already on the stack...
199  unsigned Slot = 0, CurSize = TypeStack.size();
200  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
201
202  // This is another base case for the recursion.  In this case, we know
203  // that we have looped back to a type that we have previously visited.
204  // Generate the appropriate upreference to handle this.
205  if (Slot < CurSize) {
206    OS << '\\' << unsigned(CurSize-Slot);     // Here's the upreference
207    return;
208  }
209
210  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
211
212  switch (Ty->getTypeID()) {
213  case Type::VoidTyID:      OS << "void"; break;
214  case Type::FloatTyID:     OS << "float"; break;
215  case Type::DoubleTyID:    OS << "double"; break;
216  case Type::X86_FP80TyID:  OS << "x86_fp80"; break;
217  case Type::FP128TyID:     OS << "fp128"; break;
218  case Type::PPC_FP128TyID: OS << "ppc_fp128"; break;
219  case Type::LabelTyID:     OS << "label"; break;
220  case Type::MetadataTyID:  OS << "metadata"; break;
221  case Type::X86_MMXTyID:   OS << "x86_mmx"; break;
222  case Type::IntegerTyID:
223    OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
224    break;
225
226  case Type::FunctionTyID: {
227    const FunctionType *FTy = cast<FunctionType>(Ty);
228    CalcTypeName(FTy->getReturnType(), TypeStack, OS);
229    OS << " (";
230    for (FunctionType::param_iterator I = FTy->param_begin(),
231         E = FTy->param_end(); I != E; ++I) {
232      if (I != FTy->param_begin())
233        OS << ", ";
234      CalcTypeName(*I, TypeStack, OS);
235    }
236    if (FTy->isVarArg()) {
237      if (FTy->getNumParams()) OS << ", ";
238      OS << "...";
239    }
240    OS << ')';
241    break;
242  }
243  case Type::StructTyID: {
244    const StructType *STy = cast<StructType>(Ty);
245    if (STy->isPacked())
246      OS << '<';
247    OS << '{';
248    for (StructType::element_iterator I = STy->element_begin(),
249         E = STy->element_end(); I != E; ++I) {
250      OS << ' ';
251      CalcTypeName(*I, TypeStack, OS);
252      if (llvm::next(I) == STy->element_end())
253        OS << ' ';
254      else
255        OS << ',';
256    }
257    OS << '}';
258    if (STy->isPacked())
259      OS << '>';
260    break;
261  }
262  case Type::PointerTyID: {
263    const PointerType *PTy = cast<PointerType>(Ty);
264    CalcTypeName(PTy->getElementType(), TypeStack, OS);
265    if (unsigned AddressSpace = PTy->getAddressSpace())
266      OS << " addrspace(" << AddressSpace << ')';
267    OS << '*';
268    break;
269  }
270  case Type::ArrayTyID: {
271    const ArrayType *ATy = cast<ArrayType>(Ty);
272    OS << '[' << ATy->getNumElements() << " x ";
273    CalcTypeName(ATy->getElementType(), TypeStack, OS);
274    OS << ']';
275    break;
276  }
277  case Type::VectorTyID: {
278    const VectorType *PTy = cast<VectorType>(Ty);
279    OS << "<" << PTy->getNumElements() << " x ";
280    CalcTypeName(PTy->getElementType(), TypeStack, OS);
281    OS << '>';
282    break;
283  }
284  case Type::OpaqueTyID:
285    OS << "opaque";
286    break;
287  default:
288    OS << "<unrecognized-type>";
289    break;
290  }
291
292  TypeStack.pop_back();       // Remove self from stack.
293}
294
295/// printTypeInt - The internal guts of printing out a type that has a
296/// potentially named portion.
297///
298void TypePrinting::print(const Type *Ty, raw_ostream &OS,
299                         bool IgnoreTopLevelName) {
300  // Check to see if the type is named.
301  if (!IgnoreTopLevelName) {
302    DenseMap<const Type*, std::string>::iterator I = TypeNames.find(Ty);
303    if (I != TypeNames.end()) {
304      OS << I->second;
305      return;
306    }
307  }
308
309  // Otherwise we have a type that has not been named but is a derived type.
310  // Carefully recurse the type hierarchy to print out any contained symbolic
311  // names.
312  SmallVector<const Type *, 16> TypeStack;
313  std::string TypeName;
314
315  raw_string_ostream TypeOS(TypeName);
316  CalcTypeName(Ty, TypeStack, TypeOS, IgnoreTopLevelName);
317  OS << TypeOS.str();
318
319  // Cache type name for later use.
320  if (!IgnoreTopLevelName)
321    TypeNames.insert(std::make_pair(Ty, TypeOS.str()));
322}
323
324namespace {
325  class TypeFinder {
326    // To avoid walking constant expressions multiple times and other IR
327    // objects, we keep several helper maps.
328    DenseSet<const Value*> VisitedConstants;
329    DenseSet<const Type*> VisitedTypes;
330
331    TypePrinting &TP;
332    std::vector<const Type*> &NumberedTypes;
333  public:
334    TypeFinder(TypePrinting &tp, std::vector<const Type*> &numberedTypes)
335      : TP(tp), NumberedTypes(numberedTypes) {}
336
337    void Run(const Module &M) {
338      // Get types from the type symbol table.  This gets opaque types referened
339      // only through derived named types.
340      const TypeSymbolTable &ST = M.getTypeSymbolTable();
341      for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
342           TI != E; ++TI)
343        IncorporateType(TI->second);
344
345      // Get types from global variables.
346      for (Module::const_global_iterator I = M.global_begin(),
347           E = M.global_end(); I != E; ++I) {
348        IncorporateType(I->getType());
349        if (I->hasInitializer())
350          IncorporateValue(I->getInitializer());
351      }
352
353      // Get types from aliases.
354      for (Module::const_alias_iterator I = M.alias_begin(),
355           E = M.alias_end(); I != E; ++I) {
356        IncorporateType(I->getType());
357        IncorporateValue(I->getAliasee());
358      }
359
360      // Get types from functions.
361      for (Module::const_iterator FI = M.begin(), E = M.end(); FI != E; ++FI) {
362        IncorporateType(FI->getType());
363
364        for (Function::const_iterator BB = FI->begin(), E = FI->end();
365             BB != E;++BB)
366          for (BasicBlock::const_iterator II = BB->begin(),
367               E = BB->end(); II != E; ++II) {
368            const Instruction &I = *II;
369            // Incorporate the type of the instruction and all its operands.
370            IncorporateType(I.getType());
371            for (User::const_op_iterator OI = I.op_begin(), OE = I.op_end();
372                 OI != OE; ++OI)
373              IncorporateValue(*OI);
374          }
375      }
376    }
377
378  private:
379    void IncorporateType(const Type *Ty) {
380      // Check to see if we're already visited this type.
381      if (!VisitedTypes.insert(Ty).second)
382        return;
383
384      // If this is a structure or opaque type, add a name for the type.
385      if (((Ty->isStructTy() && cast<StructType>(Ty)->getNumElements())
386            || Ty->isOpaqueTy()) && !TP.hasTypeName(Ty)) {
387        TP.addTypeName(Ty, "%"+utostr(unsigned(NumberedTypes.size())));
388        NumberedTypes.push_back(Ty);
389      }
390
391      // Recursively walk all contained types.
392      for (Type::subtype_iterator I = Ty->subtype_begin(),
393           E = Ty->subtype_end(); I != E; ++I)
394        IncorporateType(*I);
395    }
396
397    /// IncorporateValue - This method is used to walk operand lists finding
398    /// types hiding in constant expressions and other operands that won't be
399    /// walked in other ways.  GlobalValues, basic blocks, instructions, and
400    /// inst operands are all explicitly enumerated.
401    void IncorporateValue(const Value *V) {
402      if (V == 0 || !isa<Constant>(V) || isa<GlobalValue>(V)) return;
403
404      // Already visited?
405      if (!VisitedConstants.insert(V).second)
406        return;
407
408      // Check this type.
409      IncorporateType(V->getType());
410
411      // Look in operands for types.
412      const Constant *C = cast<Constant>(V);
413      for (Constant::const_op_iterator I = C->op_begin(),
414           E = C->op_end(); I != E;++I)
415        IncorporateValue(*I);
416    }
417  };
418} // end anonymous namespace
419
420
421/// AddModuleTypesToPrinter - Add all of the symbolic type names for types in
422/// the specified module to the TypePrinter and all numbered types to it and the
423/// NumberedTypes table.
424static void AddModuleTypesToPrinter(TypePrinting &TP,
425                                    std::vector<const Type*> &NumberedTypes,
426                                    const Module *M) {
427  if (M == 0) return;
428
429  // If the module has a symbol table, take all global types and stuff their
430  // names into the TypeNames map.
431  const TypeSymbolTable &ST = M->getTypeSymbolTable();
432  for (TypeSymbolTable::const_iterator TI = ST.begin(), E = ST.end();
433       TI != E; ++TI) {
434    const Type *Ty = cast<Type>(TI->second);
435
436    // As a heuristic, don't insert pointer to primitive types, because
437    // they are used too often to have a single useful name.
438    if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
439      const Type *PETy = PTy->getElementType();
440      if ((PETy->isPrimitiveType() || PETy->isIntegerTy()) &&
441          !PETy->isOpaqueTy())
442        continue;
443    }
444
445    // Likewise don't insert primitives either.
446    if (Ty->isIntegerTy() || Ty->isPrimitiveType())
447      continue;
448
449    // Get the name as a string and insert it into TypeNames.
450    std::string NameStr;
451    raw_string_ostream NameROS(NameStr);
452    formatted_raw_ostream NameOS(NameROS);
453    PrintLLVMName(NameOS, TI->first, LocalPrefix);
454    NameOS.flush();
455    TP.addTypeName(Ty, NameStr);
456  }
457
458  // Walk the entire module to find references to unnamed structure and opaque
459  // types.  This is required for correctness by opaque types (because multiple
460  // uses of an unnamed opaque type needs to be referred to by the same ID) and
461  // it shrinks complex recursive structure types substantially in some cases.
462  TypeFinder(TP, NumberedTypes).Run(*M);
463}
464
465
466/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
467/// type, iff there is an entry in the modules symbol table for the specified
468/// type or one of it's component types.
469///
470void llvm::WriteTypeSymbolic(raw_ostream &OS, const Type *Ty, const Module *M) {
471  TypePrinting Printer;
472  std::vector<const Type*> NumberedTypes;
473  AddModuleTypesToPrinter(Printer, NumberedTypes, M);
474  Printer.print(Ty, OS);
475}
476
477//===----------------------------------------------------------------------===//
478// SlotTracker Class: Enumerate slot numbers for unnamed values
479//===----------------------------------------------------------------------===//
480
481namespace {
482
483/// This class provides computation of slot numbers for LLVM Assembly writing.
484///
485class SlotTracker {
486public:
487  /// ValueMap - A mapping of Values to slot numbers.
488  typedef DenseMap<const Value*, unsigned> ValueMap;
489
490private:
491  /// TheModule - The module for which we are holding slot numbers.
492  const Module* TheModule;
493
494  /// TheFunction - The function for which we are holding slot numbers.
495  const Function* TheFunction;
496  bool FunctionProcessed;
497
498  /// mMap - The TypePlanes map for the module level data.
499  ValueMap mMap;
500  unsigned mNext;
501
502  /// fMap - The TypePlanes map for the function level data.
503  ValueMap fMap;
504  unsigned fNext;
505
506  /// mdnMap - Map for MDNodes.
507  DenseMap<const MDNode*, unsigned> mdnMap;
508  unsigned mdnNext;
509public:
510  /// Construct from a module
511  explicit SlotTracker(const Module *M);
512  /// Construct from a function, starting out in incorp state.
513  explicit SlotTracker(const Function *F);
514
515  /// Return the slot number of the specified value in it's type
516  /// plane.  If something is not in the SlotTracker, return -1.
517  int getLocalSlot(const Value *V);
518  int getGlobalSlot(const GlobalValue *V);
519  int getMetadataSlot(const MDNode *N);
520
521  /// If you'd like to deal with a function instead of just a module, use
522  /// this method to get its data into the SlotTracker.
523  void incorporateFunction(const Function *F) {
524    TheFunction = F;
525    FunctionProcessed = false;
526  }
527
528  /// After calling incorporateFunction, use this method to remove the
529  /// most recently incorporated function from the SlotTracker. This
530  /// will reset the state of the machine back to just the module contents.
531  void purgeFunction();
532
533  /// MDNode map iterators.
534  typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
535  mdn_iterator mdn_begin() { return mdnMap.begin(); }
536  mdn_iterator mdn_end() { return mdnMap.end(); }
537  unsigned mdn_size() const { return mdnMap.size(); }
538  bool mdn_empty() const { return mdnMap.empty(); }
539
540  /// This function does the actual initialization.
541  inline void initialize();
542
543  // Implementation Details
544private:
545  /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
546  void CreateModuleSlot(const GlobalValue *V);
547
548  /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
549  void CreateMetadataSlot(const MDNode *N);
550
551  /// CreateFunctionSlot - Insert the specified Value* into the slot table.
552  void CreateFunctionSlot(const Value *V);
553
554  /// Add all of the module level global variables (and their initializers)
555  /// and function declarations, but not the contents of those functions.
556  void processModule();
557
558  /// Add all of the functions arguments, basic blocks, and instructions.
559  void processFunction();
560
561  SlotTracker(const SlotTracker &);  // DO NOT IMPLEMENT
562  void operator=(const SlotTracker &);  // DO NOT IMPLEMENT
563};
564
565}  // end anonymous namespace
566
567
568static SlotTracker *createSlotTracker(const Value *V) {
569  if (const Argument *FA = dyn_cast<Argument>(V))
570    return new SlotTracker(FA->getParent());
571
572  if (const Instruction *I = dyn_cast<Instruction>(V))
573    return new SlotTracker(I->getParent()->getParent());
574
575  if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
576    return new SlotTracker(BB->getParent());
577
578  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
579    return new SlotTracker(GV->getParent());
580
581  if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
582    return new SlotTracker(GA->getParent());
583
584  if (const Function *Func = dyn_cast<Function>(V))
585    return new SlotTracker(Func);
586
587  if (const MDNode *MD = dyn_cast<MDNode>(V)) {
588    if (!MD->isFunctionLocal())
589      return new SlotTracker(MD->getFunction());
590
591    return new SlotTracker((Function *)0);
592  }
593
594  return 0;
595}
596
597#if 0
598#define ST_DEBUG(X) dbgs() << X
599#else
600#define ST_DEBUG(X)
601#endif
602
603// Module level constructor. Causes the contents of the Module (sans functions)
604// to be added to the slot table.
605SlotTracker::SlotTracker(const Module *M)
606  : TheModule(M), TheFunction(0), FunctionProcessed(false),
607    mNext(0), fNext(0),  mdnNext(0) {
608}
609
610// Function level constructor. Causes the contents of the Module and the one
611// function provided to be added to the slot table.
612SlotTracker::SlotTracker(const Function *F)
613  : TheModule(F ? F->getParent() : 0), TheFunction(F), FunctionProcessed(false),
614    mNext(0), fNext(0), mdnNext(0) {
615}
616
617inline void SlotTracker::initialize() {
618  if (TheModule) {
619    processModule();
620    TheModule = 0; ///< Prevent re-processing next time we're called.
621  }
622
623  if (TheFunction && !FunctionProcessed)
624    processFunction();
625}
626
627// Iterate through all the global variables, functions, and global
628// variable initializers and create slots for them.
629void SlotTracker::processModule() {
630  ST_DEBUG("begin processModule!\n");
631
632  // Add all of the unnamed global variables to the value table.
633  for (Module::const_global_iterator I = TheModule->global_begin(),
634         E = TheModule->global_end(); I != E; ++I) {
635    if (!I->hasName())
636      CreateModuleSlot(I);
637  }
638
639  // Add metadata used by named metadata.
640  for (Module::const_named_metadata_iterator
641         I = TheModule->named_metadata_begin(),
642         E = TheModule->named_metadata_end(); I != E; ++I) {
643    const NamedMDNode *NMD = I;
644    for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
645      CreateMetadataSlot(NMD->getOperand(i));
646  }
647
648  // Add all the unnamed functions to the table.
649  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
650       I != E; ++I)
651    if (!I->hasName())
652      CreateModuleSlot(I);
653
654  ST_DEBUG("end processModule!\n");
655}
656
657// Process the arguments, basic blocks, and instructions  of a function.
658void SlotTracker::processFunction() {
659  ST_DEBUG("begin processFunction!\n");
660  fNext = 0;
661
662  // Add all the function arguments with no names.
663  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
664      AE = TheFunction->arg_end(); AI != AE; ++AI)
665    if (!AI->hasName())
666      CreateFunctionSlot(AI);
667
668  ST_DEBUG("Inserting Instructions:\n");
669
670  SmallVector<std::pair<unsigned, MDNode*>, 4> MDForInst;
671
672  // Add all of the basic blocks and instructions with no names.
673  for (Function::const_iterator BB = TheFunction->begin(),
674       E = TheFunction->end(); BB != E; ++BB) {
675    if (!BB->hasName())
676      CreateFunctionSlot(BB);
677
678    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
679         ++I) {
680      if (!I->getType()->isVoidTy() && !I->hasName())
681        CreateFunctionSlot(I);
682
683      // Intrinsics can directly use metadata.  We allow direct calls to any
684      // llvm.foo function here, because the target may not be linked into the
685      // optimizer.
686      if (const CallInst *CI = dyn_cast<CallInst>(I)) {
687        if (Function *F = CI->getCalledFunction())
688          if (F->getName().startswith("llvm."))
689            for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
690              if (MDNode *N = dyn_cast_or_null<MDNode>(I->getOperand(i)))
691                CreateMetadataSlot(N);
692      }
693
694      // Process metadata attached with this instruction.
695      I->getAllMetadata(MDForInst);
696      for (unsigned i = 0, e = MDForInst.size(); i != e; ++i)
697        CreateMetadataSlot(MDForInst[i].second);
698      MDForInst.clear();
699    }
700  }
701
702  FunctionProcessed = true;
703
704  ST_DEBUG("end processFunction!\n");
705}
706
707/// Clean up after incorporating a function. This is the only way to get out of
708/// the function incorporation state that affects get*Slot/Create*Slot. Function
709/// incorporation state is indicated by TheFunction != 0.
710void SlotTracker::purgeFunction() {
711  ST_DEBUG("begin purgeFunction!\n");
712  fMap.clear(); // Simply discard the function level map
713  TheFunction = 0;
714  FunctionProcessed = false;
715  ST_DEBUG("end purgeFunction!\n");
716}
717
718/// getGlobalSlot - Get the slot number of a global value.
719int SlotTracker::getGlobalSlot(const GlobalValue *V) {
720  // Check for uninitialized state and do lazy initialization.
721  initialize();
722
723  // Find the type plane in the module map
724  ValueMap::iterator MI = mMap.find(V);
725  return MI == mMap.end() ? -1 : (int)MI->second;
726}
727
728/// getMetadataSlot - Get the slot number of a MDNode.
729int SlotTracker::getMetadataSlot(const MDNode *N) {
730  // Check for uninitialized state and do lazy initialization.
731  initialize();
732
733  // Find the type plane in the module map
734  mdn_iterator MI = mdnMap.find(N);
735  return MI == mdnMap.end() ? -1 : (int)MI->second;
736}
737
738
739/// getLocalSlot - Get the slot number for a value that is local to a function.
740int SlotTracker::getLocalSlot(const Value *V) {
741  assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
742
743  // Check for uninitialized state and do lazy initialization.
744  initialize();
745
746  ValueMap::iterator FI = fMap.find(V);
747  return FI == fMap.end() ? -1 : (int)FI->second;
748}
749
750
751/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
752void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
753  assert(V && "Can't insert a null Value into SlotTracker!");
754  assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
755  assert(!V->hasName() && "Doesn't need a slot!");
756
757  unsigned DestSlot = mNext++;
758  mMap[V] = DestSlot;
759
760  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
761           DestSlot << " [");
762  // G = Global, F = Function, A = Alias, o = other
763  ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
764            (isa<Function>(V) ? 'F' :
765             (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
766}
767
768/// CreateSlot - Create a new slot for the specified value if it has no name.
769void SlotTracker::CreateFunctionSlot(const Value *V) {
770  assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
771
772  unsigned DestSlot = fNext++;
773  fMap[V] = DestSlot;
774
775  // G = Global, F = Function, o = other
776  ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
777           DestSlot << " [o]\n");
778}
779
780/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
781void SlotTracker::CreateMetadataSlot(const MDNode *N) {
782  assert(N && "Can't insert a null Value into SlotTracker!");
783
784  // Don't insert if N is a function-local metadata, these are always printed
785  // inline.
786  if (!N->isFunctionLocal()) {
787    mdn_iterator I = mdnMap.find(N);
788    if (I != mdnMap.end())
789      return;
790
791    unsigned DestSlot = mdnNext++;
792    mdnMap[N] = DestSlot;
793  }
794
795  // Recursively add any MDNodes referenced by operands.
796  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
797    if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
798      CreateMetadataSlot(Op);
799}
800
801//===----------------------------------------------------------------------===//
802// AsmWriter Implementation
803//===----------------------------------------------------------------------===//
804
805static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
806                                   TypePrinting *TypePrinter,
807                                   SlotTracker *Machine,
808                                   const Module *Context);
809
810
811
812static const char *getPredicateText(unsigned predicate) {
813  const char * pred = "unknown";
814  switch (predicate) {
815  case FCmpInst::FCMP_FALSE: pred = "false"; break;
816  case FCmpInst::FCMP_OEQ:   pred = "oeq"; break;
817  case FCmpInst::FCMP_OGT:   pred = "ogt"; break;
818  case FCmpInst::FCMP_OGE:   pred = "oge"; break;
819  case FCmpInst::FCMP_OLT:   pred = "olt"; break;
820  case FCmpInst::FCMP_OLE:   pred = "ole"; break;
821  case FCmpInst::FCMP_ONE:   pred = "one"; break;
822  case FCmpInst::FCMP_ORD:   pred = "ord"; break;
823  case FCmpInst::FCMP_UNO:   pred = "uno"; break;
824  case FCmpInst::FCMP_UEQ:   pred = "ueq"; break;
825  case FCmpInst::FCMP_UGT:   pred = "ugt"; break;
826  case FCmpInst::FCMP_UGE:   pred = "uge"; break;
827  case FCmpInst::FCMP_ULT:   pred = "ult"; break;
828  case FCmpInst::FCMP_ULE:   pred = "ule"; break;
829  case FCmpInst::FCMP_UNE:   pred = "une"; break;
830  case FCmpInst::FCMP_TRUE:  pred = "true"; break;
831  case ICmpInst::ICMP_EQ:    pred = "eq"; break;
832  case ICmpInst::ICMP_NE:    pred = "ne"; break;
833  case ICmpInst::ICMP_SGT:   pred = "sgt"; break;
834  case ICmpInst::ICMP_SGE:   pred = "sge"; break;
835  case ICmpInst::ICMP_SLT:   pred = "slt"; break;
836  case ICmpInst::ICMP_SLE:   pred = "sle"; break;
837  case ICmpInst::ICMP_UGT:   pred = "ugt"; break;
838  case ICmpInst::ICMP_UGE:   pred = "uge"; break;
839  case ICmpInst::ICMP_ULT:   pred = "ult"; break;
840  case ICmpInst::ICMP_ULE:   pred = "ule"; break;
841  }
842  return pred;
843}
844
845
846static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
847  if (const OverflowingBinaryOperator *OBO =
848        dyn_cast<OverflowingBinaryOperator>(U)) {
849    if (OBO->hasNoUnsignedWrap())
850      Out << " nuw";
851    if (OBO->hasNoSignedWrap())
852      Out << " nsw";
853  } else if (const PossiblyExactOperator *Div =
854               dyn_cast<PossiblyExactOperator>(U)) {
855    if (Div->isExact())
856      Out << " exact";
857  } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
858    if (GEP->isInBounds())
859      Out << " inbounds";
860  }
861}
862
863static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
864                                  TypePrinting &TypePrinter,
865                                  SlotTracker *Machine,
866                                  const Module *Context) {
867  if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
868    if (CI->getType()->isIntegerTy(1)) {
869      Out << (CI->getZExtValue() ? "true" : "false");
870      return;
871    }
872    Out << CI->getValue();
873    return;
874  }
875
876  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
877    if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble ||
878        &CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle) {
879      // We would like to output the FP constant value in exponential notation,
880      // but we cannot do this if doing so will lose precision.  Check here to
881      // make sure that we only output it in exponential format if we can parse
882      // the value back and get the same value.
883      //
884      bool ignored;
885      bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
886      double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
887                              CFP->getValueAPF().convertToFloat();
888      SmallString<128> StrVal;
889      raw_svector_ostream(StrVal) << Val;
890
891      // Check to make sure that the stringized number is not some string like
892      // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
893      // that the string matches the "[-+]?[0-9]" regex.
894      //
895      if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
896          ((StrVal[0] == '-' || StrVal[0] == '+') &&
897           (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
898        // Reparse stringized version!
899        if (atof(StrVal.c_str()) == Val) {
900          Out << StrVal.str();
901          return;
902        }
903      }
904      // Otherwise we could not reparse it to exactly the same value, so we must
905      // output the string in hexadecimal format!  Note that loading and storing
906      // floating point types changes the bits of NaNs on some hosts, notably
907      // x86, so we must not use these types.
908      assert(sizeof(double) == sizeof(uint64_t) &&
909             "assuming that double is 64 bits!");
910      char Buffer[40];
911      APFloat apf = CFP->getValueAPF();
912      // Floats are represented in ASCII IR as double, convert.
913      if (!isDouble)
914        apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
915                          &ignored);
916      Out << "0x" <<
917              utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
918                            Buffer+40);
919      return;
920    }
921
922    // Some form of long double.  These appear as a magic letter identifying
923    // the type, then a fixed number of hex digits.
924    Out << "0x";
925    if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
926      Out << 'K';
927      // api needed to prevent premature destruction
928      APInt api = CFP->getValueAPF().bitcastToAPInt();
929      const uint64_t* p = api.getRawData();
930      uint64_t word = p[1];
931      int shiftcount=12;
932      int width = api.getBitWidth();
933      for (int j=0; j<width; j+=4, shiftcount-=4) {
934        unsigned int nibble = (word>>shiftcount) & 15;
935        if (nibble < 10)
936          Out << (unsigned char)(nibble + '0');
937        else
938          Out << (unsigned char)(nibble - 10 + 'A');
939        if (shiftcount == 0 && j+4 < width) {
940          word = *p;
941          shiftcount = 64;
942          if (width-j-4 < 64)
943            shiftcount = width-j-4;
944        }
945      }
946      return;
947    } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad)
948      Out << 'L';
949    else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
950      Out << 'M';
951    else
952      llvm_unreachable("Unsupported floating point type");
953    // api needed to prevent premature destruction
954    APInt api = CFP->getValueAPF().bitcastToAPInt();
955    const uint64_t* p = api.getRawData();
956    uint64_t word = *p;
957    int shiftcount=60;
958    int width = api.getBitWidth();
959    for (int j=0; j<width; j+=4, shiftcount-=4) {
960      unsigned int nibble = (word>>shiftcount) & 15;
961      if (nibble < 10)
962        Out << (unsigned char)(nibble + '0');
963      else
964        Out << (unsigned char)(nibble - 10 + 'A');
965      if (shiftcount == 0 && j+4 < width) {
966        word = *(++p);
967        shiftcount = 64;
968        if (width-j-4 < 64)
969          shiftcount = width-j-4;
970      }
971    }
972    return;
973  }
974
975  if (isa<ConstantAggregateZero>(CV)) {
976    Out << "zeroinitializer";
977    return;
978  }
979
980  if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
981    Out << "blockaddress(";
982    WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
983                           Context);
984    Out << ", ";
985    WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
986                           Context);
987    Out << ")";
988    return;
989  }
990
991  if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
992    // As a special case, print the array as a string if it is an array of
993    // i8 with ConstantInt values.
994    //
995    const Type *ETy = CA->getType()->getElementType();
996    if (CA->isString()) {
997      Out << "c\"";
998      PrintEscapedString(CA->getAsString(), Out);
999      Out << '"';
1000    } else {                // Cannot output in string format...
1001      Out << '[';
1002      if (CA->getNumOperands()) {
1003        TypePrinter.print(ETy, Out);
1004        Out << ' ';
1005        WriteAsOperandInternal(Out, CA->getOperand(0),
1006                               &TypePrinter, Machine,
1007                               Context);
1008        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1009          Out << ", ";
1010          TypePrinter.print(ETy, Out);
1011          Out << ' ';
1012          WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1013                                 Context);
1014        }
1015      }
1016      Out << ']';
1017    }
1018    return;
1019  }
1020
1021  if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1022    if (CS->getType()->isPacked())
1023      Out << '<';
1024    Out << '{';
1025    unsigned N = CS->getNumOperands();
1026    if (N) {
1027      Out << ' ';
1028      TypePrinter.print(CS->getOperand(0)->getType(), Out);
1029      Out << ' ';
1030
1031      WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1032                             Context);
1033
1034      for (unsigned i = 1; i < N; i++) {
1035        Out << ", ";
1036        TypePrinter.print(CS->getOperand(i)->getType(), Out);
1037        Out << ' ';
1038
1039        WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1040                               Context);
1041      }
1042      Out << ' ';
1043    }
1044
1045    Out << '}';
1046    if (CS->getType()->isPacked())
1047      Out << '>';
1048    return;
1049  }
1050
1051  if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
1052    const Type *ETy = CP->getType()->getElementType();
1053    assert(CP->getNumOperands() > 0 &&
1054           "Number of operands for a PackedConst must be > 0");
1055    Out << '<';
1056    TypePrinter.print(ETy, Out);
1057    Out << ' ';
1058    WriteAsOperandInternal(Out, CP->getOperand(0), &TypePrinter, Machine,
1059                           Context);
1060    for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
1061      Out << ", ";
1062      TypePrinter.print(ETy, Out);
1063      Out << ' ';
1064      WriteAsOperandInternal(Out, CP->getOperand(i), &TypePrinter, Machine,
1065                             Context);
1066    }
1067    Out << '>';
1068    return;
1069  }
1070
1071  if (isa<ConstantPointerNull>(CV)) {
1072    Out << "null";
1073    return;
1074  }
1075
1076  if (isa<UndefValue>(CV)) {
1077    Out << "undef";
1078    return;
1079  }
1080
1081  if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1082    Out << CE->getOpcodeName();
1083    WriteOptimizationInfo(Out, CE);
1084    if (CE->isCompare())
1085      Out << ' ' << getPredicateText(CE->getPredicate());
1086    Out << " (";
1087
1088    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1089      TypePrinter.print((*OI)->getType(), Out);
1090      Out << ' ';
1091      WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1092      if (OI+1 != CE->op_end())
1093        Out << ", ";
1094    }
1095
1096    if (CE->hasIndices()) {
1097      ArrayRef<unsigned> Indices = CE->getIndices();
1098      for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1099        Out << ", " << Indices[i];
1100    }
1101
1102    if (CE->isCast()) {
1103      Out << " to ";
1104      TypePrinter.print(CE->getType(), Out);
1105    }
1106
1107    Out << ')';
1108    return;
1109  }
1110
1111  Out << "<placeholder or erroneous Constant>";
1112}
1113
1114static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1115                                    TypePrinting *TypePrinter,
1116                                    SlotTracker *Machine,
1117                                    const Module *Context) {
1118  Out << "!{";
1119  for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1120    const Value *V = Node->getOperand(mi);
1121    if (V == 0)
1122      Out << "null";
1123    else {
1124      TypePrinter->print(V->getType(), Out);
1125      Out << ' ';
1126      WriteAsOperandInternal(Out, Node->getOperand(mi),
1127                             TypePrinter, Machine, Context);
1128    }
1129    if (mi + 1 != me)
1130      Out << ", ";
1131  }
1132
1133  Out << "}";
1134}
1135
1136
1137/// WriteAsOperand - Write the name of the specified value out to the specified
1138/// ostream.  This can be useful when you just want to print int %reg126, not
1139/// the whole instruction that generated it.
1140///
1141static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1142                                   TypePrinting *TypePrinter,
1143                                   SlotTracker *Machine,
1144                                   const Module *Context) {
1145  if (V->hasName()) {
1146    PrintLLVMName(Out, V);
1147    return;
1148  }
1149
1150  const Constant *CV = dyn_cast<Constant>(V);
1151  if (CV && !isa<GlobalValue>(CV)) {
1152    assert(TypePrinter && "Constants require TypePrinting!");
1153    WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1154    return;
1155  }
1156
1157  if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1158    Out << "asm ";
1159    if (IA->hasSideEffects())
1160      Out << "sideeffect ";
1161    if (IA->isAlignStack())
1162      Out << "alignstack ";
1163    Out << '"';
1164    PrintEscapedString(IA->getAsmString(), Out);
1165    Out << "\", \"";
1166    PrintEscapedString(IA->getConstraintString(), Out);
1167    Out << '"';
1168    return;
1169  }
1170
1171  if (const MDNode *N = dyn_cast<MDNode>(V)) {
1172    if (N->isFunctionLocal()) {
1173      // Print metadata inline, not via slot reference number.
1174      WriteMDNodeBodyInternal(Out, N, TypePrinter, Machine, Context);
1175      return;
1176    }
1177
1178    if (!Machine) {
1179      if (N->isFunctionLocal())
1180        Machine = new SlotTracker(N->getFunction());
1181      else
1182        Machine = new SlotTracker(Context);
1183    }
1184    int Slot = Machine->getMetadataSlot(N);
1185    if (Slot == -1)
1186      Out << "<badref>";
1187    else
1188      Out << '!' << Slot;
1189    return;
1190  }
1191
1192  if (const MDString *MDS = dyn_cast<MDString>(V)) {
1193    Out << "!\"";
1194    PrintEscapedString(MDS->getString(), Out);
1195    Out << '"';
1196    return;
1197  }
1198
1199  if (V->getValueID() == Value::PseudoSourceValueVal ||
1200      V->getValueID() == Value::FixedStackPseudoSourceValueVal) {
1201    V->print(Out);
1202    return;
1203  }
1204
1205  char Prefix = '%';
1206  int Slot;
1207  if (Machine) {
1208    if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1209      Slot = Machine->getGlobalSlot(GV);
1210      Prefix = '@';
1211    } else {
1212      Slot = Machine->getLocalSlot(V);
1213    }
1214  } else {
1215    Machine = createSlotTracker(V);
1216    if (Machine) {
1217      if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1218        Slot = Machine->getGlobalSlot(GV);
1219        Prefix = '@';
1220      } else {
1221        Slot = Machine->getLocalSlot(V);
1222      }
1223      delete Machine;
1224    } else {
1225      Slot = -1;
1226    }
1227  }
1228
1229  if (Slot != -1)
1230    Out << Prefix << Slot;
1231  else
1232    Out << "<badref>";
1233}
1234
1235void llvm::WriteAsOperand(raw_ostream &Out, const Value *V,
1236                          bool PrintType, const Module *Context) {
1237
1238  // Fast path: Don't construct and populate a TypePrinting object if we
1239  // won't be needing any types printed.
1240  if (!PrintType &&
1241      ((!isa<Constant>(V) && !isa<MDNode>(V)) ||
1242       V->hasName() || isa<GlobalValue>(V))) {
1243    WriteAsOperandInternal(Out, V, 0, 0, Context);
1244    return;
1245  }
1246
1247  if (Context == 0) Context = getModuleFromVal(V);
1248
1249  TypePrinting TypePrinter;
1250  std::vector<const Type*> NumberedTypes;
1251  AddModuleTypesToPrinter(TypePrinter, NumberedTypes, Context);
1252  if (PrintType) {
1253    TypePrinter.print(V->getType(), Out);
1254    Out << ' ';
1255  }
1256
1257  WriteAsOperandInternal(Out, V, &TypePrinter, 0, Context);
1258}
1259
1260namespace {
1261
1262class AssemblyWriter {
1263  formatted_raw_ostream &Out;
1264  SlotTracker &Machine;
1265  const Module *TheModule;
1266  TypePrinting TypePrinter;
1267  AssemblyAnnotationWriter *AnnotationWriter;
1268  std::vector<const Type*> NumberedTypes;
1269
1270public:
1271  inline AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
1272                        const Module *M,
1273                        AssemblyAnnotationWriter *AAW)
1274    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
1275    AddModuleTypesToPrinter(TypePrinter, NumberedTypes, M);
1276  }
1277
1278  void printMDNodeBody(const MDNode *MD);
1279  void printNamedMDNode(const NamedMDNode *NMD);
1280
1281  void printModule(const Module *M);
1282
1283  void writeOperand(const Value *Op, bool PrintType);
1284  void writeParamOperand(const Value *Operand, Attributes Attrs);
1285
1286  void writeAllMDNodes();
1287
1288  void printTypeSymbolTable(const TypeSymbolTable &ST);
1289  void printGlobal(const GlobalVariable *GV);
1290  void printAlias(const GlobalAlias *GV);
1291  void printFunction(const Function *F);
1292  void printArgument(const Argument *FA, Attributes Attrs);
1293  void printBasicBlock(const BasicBlock *BB);
1294  void printInstruction(const Instruction &I);
1295
1296private:
1297  // printInfoComment - Print a little comment after the instruction indicating
1298  // which slot it occupies.
1299  void printInfoComment(const Value &V);
1300};
1301}  // end of anonymous namespace
1302
1303void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
1304  if (Operand == 0) {
1305    Out << "<null operand!>";
1306    return;
1307  }
1308  if (PrintType) {
1309    TypePrinter.print(Operand->getType(), Out);
1310    Out << ' ';
1311  }
1312  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1313}
1314
1315void AssemblyWriter::writeParamOperand(const Value *Operand,
1316                                       Attributes Attrs) {
1317  if (Operand == 0) {
1318    Out << "<null operand!>";
1319    return;
1320  }
1321
1322  // Print the type
1323  TypePrinter.print(Operand->getType(), Out);
1324  // Print parameter attributes list
1325  if (Attrs != Attribute::None)
1326    Out << ' ' << Attribute::getAsString(Attrs);
1327  Out << ' ';
1328  // Print the operand
1329  WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
1330}
1331
1332void AssemblyWriter::printModule(const Module *M) {
1333  if (!M->getModuleIdentifier().empty() &&
1334      // Don't print the ID if it will start a new line (which would
1335      // require a comment char before it).
1336      M->getModuleIdentifier().find('\n') == std::string::npos)
1337    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
1338
1339  if (!M->getDataLayout().empty())
1340    Out << "target datalayout = \"" << M->getDataLayout() << "\"\n";
1341  if (!M->getTargetTriple().empty())
1342    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
1343
1344  if (!M->getModuleInlineAsm().empty()) {
1345    // Split the string into lines, to make it easier to read the .ll file.
1346    std::string Asm = M->getModuleInlineAsm();
1347    size_t CurPos = 0;
1348    size_t NewLine = Asm.find_first_of('\n', CurPos);
1349    Out << '\n';
1350    while (NewLine != std::string::npos) {
1351      // We found a newline, print the portion of the asm string from the
1352      // last newline up to this newline.
1353      Out << "module asm \"";
1354      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
1355                         Out);
1356      Out << "\"\n";
1357      CurPos = NewLine+1;
1358      NewLine = Asm.find_first_of('\n', CurPos);
1359    }
1360    std::string rest(Asm.begin()+CurPos, Asm.end());
1361    if (!rest.empty()) {
1362      Out << "module asm \"";
1363      PrintEscapedString(rest, Out);
1364      Out << "\"\n";
1365    }
1366  }
1367
1368  // Loop over the dependent libraries and emit them.
1369  Module::lib_iterator LI = M->lib_begin();
1370  Module::lib_iterator LE = M->lib_end();
1371  if (LI != LE) {
1372    Out << '\n';
1373    Out << "deplibs = [ ";
1374    while (LI != LE) {
1375      Out << '"' << *LI << '"';
1376      ++LI;
1377      if (LI != LE)
1378        Out << ", ";
1379    }
1380    Out << " ]";
1381  }
1382
1383  // Loop over the symbol table, emitting all id'd types.
1384  if (!M->getTypeSymbolTable().empty() || !NumberedTypes.empty()) Out << '\n';
1385  printTypeSymbolTable(M->getTypeSymbolTable());
1386
1387  // Output all globals.
1388  if (!M->global_empty()) Out << '\n';
1389  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end();
1390       I != E; ++I)
1391    printGlobal(I);
1392
1393  // Output all aliases.
1394  if (!M->alias_empty()) Out << "\n";
1395  for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
1396       I != E; ++I)
1397    printAlias(I);
1398
1399  // Output all of the functions.
1400  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
1401    printFunction(I);
1402
1403  // Output named metadata.
1404  if (!M->named_metadata_empty()) Out << '\n';
1405
1406  for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
1407       E = M->named_metadata_end(); I != E; ++I)
1408    printNamedMDNode(I);
1409
1410  // Output metadata.
1411  if (!Machine.mdn_empty()) {
1412    Out << '\n';
1413    writeAllMDNodes();
1414  }
1415}
1416
1417void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
1418  Out << '!';
1419  StringRef Name = NMD->getName();
1420  if (Name.empty()) {
1421    Out << "<empty name> ";
1422  } else {
1423    if (isalpha(Name[0]) || Name[0] == '-' || Name[0] == '$' ||
1424        Name[0] == '.' || Name[0] == '_')
1425      Out << Name[0];
1426    else
1427      Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
1428    for (unsigned i = 1, e = Name.size(); i != e; ++i) {
1429      unsigned char C = Name[i];
1430      if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
1431        Out << C;
1432      else
1433        Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
1434    }
1435  }
1436  Out << " = !{";
1437  for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
1438    if (i) Out << ", ";
1439    int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
1440    if (Slot == -1)
1441      Out << "<badref>";
1442    else
1443      Out << '!' << Slot;
1444  }
1445  Out << "}\n";
1446}
1447
1448
1449static void PrintLinkage(GlobalValue::LinkageTypes LT,
1450                         formatted_raw_ostream &Out) {
1451  switch (LT) {
1452  case GlobalValue::ExternalLinkage: break;
1453  case GlobalValue::PrivateLinkage:       Out << "private ";        break;
1454  case GlobalValue::LinkerPrivateLinkage: Out << "linker_private "; break;
1455  case GlobalValue::LinkerPrivateWeakLinkage:
1456    Out << "linker_private_weak ";
1457    break;
1458  case GlobalValue::LinkerPrivateWeakDefAutoLinkage:
1459    Out << "linker_private_weak_def_auto ";
1460    break;
1461  case GlobalValue::InternalLinkage:      Out << "internal ";       break;
1462  case GlobalValue::LinkOnceAnyLinkage:   Out << "linkonce ";       break;
1463  case GlobalValue::LinkOnceODRLinkage:   Out << "linkonce_odr ";   break;
1464  case GlobalValue::WeakAnyLinkage:       Out << "weak ";           break;
1465  case GlobalValue::WeakODRLinkage:       Out << "weak_odr ";       break;
1466  case GlobalValue::CommonLinkage:        Out << "common ";         break;
1467  case GlobalValue::AppendingLinkage:     Out << "appending ";      break;
1468  case GlobalValue::DLLImportLinkage:     Out << "dllimport ";      break;
1469  case GlobalValue::DLLExportLinkage:     Out << "dllexport ";      break;
1470  case GlobalValue::ExternalWeakLinkage:  Out << "extern_weak ";    break;
1471  case GlobalValue::AvailableExternallyLinkage:
1472    Out << "available_externally ";
1473    break;
1474  }
1475}
1476
1477
1478static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
1479                            formatted_raw_ostream &Out) {
1480  switch (Vis) {
1481  case GlobalValue::DefaultVisibility: break;
1482  case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
1483  case GlobalValue::ProtectedVisibility: Out << "protected "; break;
1484  }
1485}
1486
1487void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
1488  if (GV->isMaterializable())
1489    Out << "; Materializable\n";
1490
1491  WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
1492  Out << " = ";
1493
1494  if (!GV->hasInitializer() && GV->hasExternalLinkage())
1495    Out << "external ";
1496
1497  PrintLinkage(GV->getLinkage(), Out);
1498  PrintVisibility(GV->getVisibility(), Out);
1499
1500  if (GV->isThreadLocal()) Out << "thread_local ";
1501  if (unsigned AddressSpace = GV->getType()->getAddressSpace())
1502    Out << "addrspace(" << AddressSpace << ") ";
1503  if (GV->hasUnnamedAddr()) Out << "unnamed_addr ";
1504  Out << (GV->isConstant() ? "constant " : "global ");
1505  TypePrinter.print(GV->getType()->getElementType(), Out);
1506
1507  if (GV->hasInitializer()) {
1508    Out << ' ';
1509    writeOperand(GV->getInitializer(), false);
1510  }
1511
1512  if (GV->hasSection()) {
1513    Out << ", section \"";
1514    PrintEscapedString(GV->getSection(), Out);
1515    Out << '"';
1516  }
1517  if (GV->getAlignment())
1518    Out << ", align " << GV->getAlignment();
1519
1520  printInfoComment(*GV);
1521  Out << '\n';
1522}
1523
1524void AssemblyWriter::printAlias(const GlobalAlias *GA) {
1525  if (GA->isMaterializable())
1526    Out << "; Materializable\n";
1527
1528  // Don't crash when dumping partially built GA
1529  if (!GA->hasName())
1530    Out << "<<nameless>> = ";
1531  else {
1532    PrintLLVMName(Out, GA);
1533    Out << " = ";
1534  }
1535  PrintVisibility(GA->getVisibility(), Out);
1536
1537  Out << "alias ";
1538
1539  PrintLinkage(GA->getLinkage(), Out);
1540
1541  const Constant *Aliasee = GA->getAliasee();
1542
1543  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Aliasee)) {
1544    TypePrinter.print(GV->getType(), Out);
1545    Out << ' ';
1546    PrintLLVMName(Out, GV);
1547  } else if (const Function *F = dyn_cast<Function>(Aliasee)) {
1548    TypePrinter.print(F->getFunctionType(), Out);
1549    Out << "* ";
1550
1551    WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1552  } else if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(Aliasee)) {
1553    TypePrinter.print(GA->getType(), Out);
1554    Out << ' ';
1555    PrintLLVMName(Out, GA);
1556  } else {
1557    const ConstantExpr *CE = cast<ConstantExpr>(Aliasee);
1558    // The only valid GEP is an all zero GEP.
1559    assert((CE->getOpcode() == Instruction::BitCast ||
1560            CE->getOpcode() == Instruction::GetElementPtr) &&
1561           "Unsupported aliasee");
1562    writeOperand(CE, false);
1563  }
1564
1565  printInfoComment(*GA);
1566  Out << '\n';
1567}
1568
1569void AssemblyWriter::printTypeSymbolTable(const TypeSymbolTable &ST) {
1570  // Emit all numbered types.
1571  for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
1572    Out << '%' << i << " = type ";
1573
1574    // Make sure we print out at least one level of the type structure, so
1575    // that we do not get %2 = type %2
1576    TypePrinter.printAtLeastOneLevel(NumberedTypes[i], Out);
1577    Out << '\n';
1578  }
1579
1580  // Print the named types.
1581  for (TypeSymbolTable::const_iterator TI = ST.begin(), TE = ST.end();
1582       TI != TE; ++TI) {
1583    PrintLLVMName(Out, TI->first, LocalPrefix);
1584    Out << " = type ";
1585
1586    // Make sure we print out at least one level of the type structure, so
1587    // that we do not get %FILE = type %FILE
1588    TypePrinter.printAtLeastOneLevel(TI->second, Out);
1589    Out << '\n';
1590  }
1591}
1592
1593/// printFunction - Print all aspects of a function.
1594///
1595void AssemblyWriter::printFunction(const Function *F) {
1596  // Print out the return type and name.
1597  Out << '\n';
1598
1599  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
1600
1601  if (F->isMaterializable())
1602    Out << "; Materializable\n";
1603
1604  if (F->isDeclaration())
1605    Out << "declare ";
1606  else
1607    Out << "define ";
1608
1609  PrintLinkage(F->getLinkage(), Out);
1610  PrintVisibility(F->getVisibility(), Out);
1611
1612  // Print the calling convention.
1613  switch (F->getCallingConv()) {
1614  case CallingConv::C: break;   // default
1615  case CallingConv::Fast:         Out << "fastcc "; break;
1616  case CallingConv::Cold:         Out << "coldcc "; break;
1617  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1618  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1619  case CallingConv::X86_ThisCall: Out << "x86_thiscallcc "; break;
1620  case CallingConv::ARM_APCS:     Out << "arm_apcscc "; break;
1621  case CallingConv::ARM_AAPCS:    Out << "arm_aapcscc "; break;
1622  case CallingConv::ARM_AAPCS_VFP:Out << "arm_aapcs_vfpcc "; break;
1623  case CallingConv::MSP430_INTR:  Out << "msp430_intrcc "; break;
1624  case CallingConv::PTX_Kernel:   Out << "ptx_kernel "; break;
1625  case CallingConv::PTX_Device:   Out << "ptx_device "; break;
1626  default: Out << "cc" << F->getCallingConv() << " "; break;
1627  }
1628
1629  const FunctionType *FT = F->getFunctionType();
1630  const AttrListPtr &Attrs = F->getAttributes();
1631  Attributes RetAttrs = Attrs.getRetAttributes();
1632  if (RetAttrs != Attribute::None)
1633    Out <<  Attribute::getAsString(Attrs.getRetAttributes()) << ' ';
1634  TypePrinter.print(F->getReturnType(), Out);
1635  Out << ' ';
1636  WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
1637  Out << '(';
1638  Machine.incorporateFunction(F);
1639
1640  // Loop over the arguments, printing them...
1641
1642  unsigned Idx = 1;
1643  if (!F->isDeclaration()) {
1644    // If this isn't a declaration, print the argument names as well.
1645    for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1646         I != E; ++I) {
1647      // Insert commas as we go... the first arg doesn't get a comma
1648      if (I != F->arg_begin()) Out << ", ";
1649      printArgument(I, Attrs.getParamAttributes(Idx));
1650      Idx++;
1651    }
1652  } else {
1653    // Otherwise, print the types from the function type.
1654    for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1655      // Insert commas as we go... the first arg doesn't get a comma
1656      if (i) Out << ", ";
1657
1658      // Output type...
1659      TypePrinter.print(FT->getParamType(i), Out);
1660
1661      Attributes ArgAttrs = Attrs.getParamAttributes(i+1);
1662      if (ArgAttrs != Attribute::None)
1663        Out << ' ' << Attribute::getAsString(ArgAttrs);
1664    }
1665  }
1666
1667  // Finish printing arguments...
1668  if (FT->isVarArg()) {
1669    if (FT->getNumParams()) Out << ", ";
1670    Out << "...";  // Output varargs portion of signature!
1671  }
1672  Out << ')';
1673  if (F->hasUnnamedAddr())
1674    Out << " unnamed_addr";
1675  Attributes FnAttrs = Attrs.getFnAttributes();
1676  if (FnAttrs != Attribute::None)
1677    Out << ' ' << Attribute::getAsString(Attrs.getFnAttributes());
1678  if (F->hasSection()) {
1679    Out << " section \"";
1680    PrintEscapedString(F->getSection(), Out);
1681    Out << '"';
1682  }
1683  if (F->getAlignment())
1684    Out << " align " << F->getAlignment();
1685  if (F->hasGC())
1686    Out << " gc \"" << F->getGC() << '"';
1687  if (F->isDeclaration()) {
1688    Out << '\n';
1689  } else {
1690    Out << " {";
1691    // Output all of the function's basic blocks.
1692    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1693      printBasicBlock(I);
1694
1695    Out << "}\n";
1696  }
1697
1698  Machine.purgeFunction();
1699}
1700
1701/// printArgument - This member is called for every argument that is passed into
1702/// the function.  Simply print it out
1703///
1704void AssemblyWriter::printArgument(const Argument *Arg,
1705                                   Attributes Attrs) {
1706  // Output type...
1707  TypePrinter.print(Arg->getType(), Out);
1708
1709  // Output parameter attributes list
1710  if (Attrs != Attribute::None)
1711    Out << ' ' << Attribute::getAsString(Attrs);
1712
1713  // Output name, if available...
1714  if (Arg->hasName()) {
1715    Out << ' ';
1716    PrintLLVMName(Out, Arg);
1717  }
1718}
1719
1720/// printBasicBlock - This member is called for each basic block in a method.
1721///
1722void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1723  if (BB->hasName()) {              // Print out the label if it exists...
1724    Out << "\n";
1725    PrintLLVMName(Out, BB->getName(), LabelPrefix);
1726    Out << ':';
1727  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1728    Out << "\n; <label>:";
1729    int Slot = Machine.getLocalSlot(BB);
1730    if (Slot != -1)
1731      Out << Slot;
1732    else
1733      Out << "<badref>";
1734  }
1735
1736  if (BB->getParent() == 0) {
1737    Out.PadToColumn(50);
1738    Out << "; Error: Block without parent!";
1739  } else if (BB != &BB->getParent()->getEntryBlock()) {  // Not the entry block?
1740    // Output predecessors for the block.
1741    Out.PadToColumn(50);
1742    Out << ";";
1743    const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1744
1745    if (PI == PE) {
1746      Out << " No predecessors!";
1747    } else {
1748      Out << " preds = ";
1749      writeOperand(*PI, false);
1750      for (++PI; PI != PE; ++PI) {
1751        Out << ", ";
1752        writeOperand(*PI, false);
1753      }
1754    }
1755  }
1756
1757  Out << "\n";
1758
1759  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1760
1761  // Output all of the instructions in the basic block...
1762  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1763    printInstruction(*I);
1764    Out << '\n';
1765  }
1766
1767  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1768}
1769
1770/// printDebugLoc - Print DebugLoc.
1771static void printDebugLoc(const DebugLoc &DL, formatted_raw_ostream &OS) {
1772  OS << DL.getLine() << ":" << DL.getCol();
1773  if (MDNode *N = DL.getInlinedAt(getGlobalContext())) {
1774    DebugLoc IDL = DebugLoc::getFromDILocation(N);
1775    if (!IDL.isUnknown()) {
1776      OS << "@";
1777      printDebugLoc(IDL,OS);
1778    }
1779  }
1780}
1781
1782/// printInfoComment - Print a little comment after the instruction indicating
1783/// which slot it occupies.
1784///
1785void AssemblyWriter::printInfoComment(const Value &V) {
1786  if (AnnotationWriter) {
1787    AnnotationWriter->printInfoComment(V, Out);
1788    return;
1789  } else if (EnableDebugInfoComment) {
1790    bool Padded = false;
1791    if (const Instruction *I = dyn_cast<Instruction>(&V)) {
1792      const DebugLoc &DL = I->getDebugLoc();
1793      if (!DL.isUnknown()) {
1794        if (!Padded) {
1795          Out.PadToColumn(50);
1796          Padded = true;
1797          Out << ";";
1798        }
1799        Out << " [debug line = ";
1800        printDebugLoc(DL,Out);
1801        Out << "]";
1802      }
1803      if (const DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
1804        const MDNode *Var = DDI->getVariable();
1805        if (!Padded) {
1806          Out.PadToColumn(50);
1807          Padded = true;
1808          Out << ";";
1809        }
1810        if (Var && Var->getNumOperands() >= 2)
1811          if (MDString *MDS = dyn_cast_or_null<MDString>(Var->getOperand(2)))
1812            Out << " [debug variable = " << MDS->getString() << "]";
1813      }
1814      else if (const DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
1815        const MDNode *Var = DVI->getVariable();
1816        if (!Padded) {
1817          Out.PadToColumn(50);
1818          Padded = true;
1819          Out << ";";
1820        }
1821        if (Var && Var->getNumOperands() >= 2)
1822          if (MDString *MDS = dyn_cast_or_null<MDString>(Var->getOperand(2)))
1823            Out << " [debug variable = " << MDS->getString() << "]";
1824      }
1825    }
1826  }
1827}
1828
1829// This member is called for each Instruction in a function..
1830void AssemblyWriter::printInstruction(const Instruction &I) {
1831  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1832
1833  // Print out indentation for an instruction.
1834  Out << "  ";
1835
1836  // Print out name if it exists...
1837  if (I.hasName()) {
1838    PrintLLVMName(Out, &I);
1839    Out << " = ";
1840  } else if (!I.getType()->isVoidTy()) {
1841    // Print out the def slot taken.
1842    int SlotNum = Machine.getLocalSlot(&I);
1843    if (SlotNum == -1)
1844      Out << "<badref> = ";
1845    else
1846      Out << '%' << SlotNum << " = ";
1847  }
1848
1849  // If this is a volatile load or store, print out the volatile marker.
1850  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1851      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1852      Out << "volatile ";
1853  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1854    // If this is a call, check if it's a tail call.
1855    Out << "tail ";
1856  }
1857
1858  // Print out the opcode...
1859  Out << I.getOpcodeName();
1860
1861  // Print out optimization information.
1862  WriteOptimizationInfo(Out, &I);
1863
1864  // Print out the compare instruction predicates
1865  if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
1866    Out << ' ' << getPredicateText(CI->getPredicate());
1867
1868  // Print out the type of the operands...
1869  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1870
1871  // Special case conditional branches to swizzle the condition out to the front
1872  if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
1873    BranchInst &BI(cast<BranchInst>(I));
1874    Out << ' ';
1875    writeOperand(BI.getCondition(), true);
1876    Out << ", ";
1877    writeOperand(BI.getSuccessor(0), true);
1878    Out << ", ";
1879    writeOperand(BI.getSuccessor(1), true);
1880
1881  } else if (isa<SwitchInst>(I)) {
1882    // Special case switch instruction to get formatting nice and correct.
1883    Out << ' ';
1884    writeOperand(Operand        , true);
1885    Out << ", ";
1886    writeOperand(I.getOperand(1), true);
1887    Out << " [";
1888
1889    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1890      Out << "\n    ";
1891      writeOperand(I.getOperand(op  ), true);
1892      Out << ", ";
1893      writeOperand(I.getOperand(op+1), true);
1894    }
1895    Out << "\n  ]";
1896  } else if (isa<IndirectBrInst>(I)) {
1897    // Special case indirectbr instruction to get formatting nice and correct.
1898    Out << ' ';
1899    writeOperand(Operand, true);
1900    Out << ", [";
1901
1902    for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1903      if (i != 1)
1904        Out << ", ";
1905      writeOperand(I.getOperand(i), true);
1906    }
1907    Out << ']';
1908  } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
1909    Out << ' ';
1910    TypePrinter.print(I.getType(), Out);
1911    Out << ' ';
1912
1913    for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
1914      if (op) Out << ", ";
1915      Out << "[ ";
1916      writeOperand(PN->getIncomingValue(op), false); Out << ", ";
1917      writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
1918    }
1919  } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
1920    Out << ' ';
1921    writeOperand(I.getOperand(0), true);
1922    for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
1923      Out << ", " << *i;
1924  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
1925    Out << ' ';
1926    writeOperand(I.getOperand(0), true); Out << ", ";
1927    writeOperand(I.getOperand(1), true);
1928    for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
1929      Out << ", " << *i;
1930  } else if (isa<ReturnInst>(I) && !Operand) {
1931    Out << " void";
1932  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1933    // Print the calling convention being used.
1934    switch (CI->getCallingConv()) {
1935    case CallingConv::C: break;   // default
1936    case CallingConv::Fast:  Out << " fastcc"; break;
1937    case CallingConv::Cold:  Out << " coldcc"; break;
1938    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1939    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1940    case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
1941    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1942    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1943    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
1944    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
1945    case CallingConv::PTX_Kernel:   Out << " ptx_kernel"; break;
1946    case CallingConv::PTX_Device:   Out << " ptx_device"; break;
1947    default: Out << " cc" << CI->getCallingConv(); break;
1948    }
1949
1950    Operand = CI->getCalledValue();
1951    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1952    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1953    const Type         *RetTy = FTy->getReturnType();
1954    const AttrListPtr &PAL = CI->getAttributes();
1955
1956    if (PAL.getRetAttributes() != Attribute::None)
1957      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
1958
1959    // If possible, print out the short form of the call instruction.  We can
1960    // only do this if the first argument is a pointer to a nonvararg function,
1961    // and if the return type is not a pointer to a function.
1962    //
1963    Out << ' ';
1964    if (!FTy->isVarArg() &&
1965        (!RetTy->isPointerTy() ||
1966         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
1967      TypePrinter.print(RetTy, Out);
1968      Out << ' ';
1969      writeOperand(Operand, false);
1970    } else {
1971      writeOperand(Operand, true);
1972    }
1973    Out << '(';
1974    for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
1975      if (op > 0)
1976        Out << ", ";
1977      writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op + 1));
1978    }
1979    Out << ')';
1980    if (PAL.getFnAttributes() != Attribute::None)
1981      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
1982  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1983    Operand = II->getCalledValue();
1984    const PointerType    *PTy = cast<PointerType>(Operand->getType());
1985    const FunctionType   *FTy = cast<FunctionType>(PTy->getElementType());
1986    const Type         *RetTy = FTy->getReturnType();
1987    const AttrListPtr &PAL = II->getAttributes();
1988
1989    // Print the calling convention being used.
1990    switch (II->getCallingConv()) {
1991    case CallingConv::C: break;   // default
1992    case CallingConv::Fast:  Out << " fastcc"; break;
1993    case CallingConv::Cold:  Out << " coldcc"; break;
1994    case CallingConv::X86_StdCall:  Out << " x86_stdcallcc"; break;
1995    case CallingConv::X86_FastCall: Out << " x86_fastcallcc"; break;
1996    case CallingConv::X86_ThisCall: Out << " x86_thiscallcc"; break;
1997    case CallingConv::ARM_APCS:     Out << " arm_apcscc "; break;
1998    case CallingConv::ARM_AAPCS:    Out << " arm_aapcscc "; break;
1999    case CallingConv::ARM_AAPCS_VFP:Out << " arm_aapcs_vfpcc "; break;
2000    case CallingConv::MSP430_INTR:  Out << " msp430_intrcc "; break;
2001    case CallingConv::PTX_Kernel:   Out << " ptx_kernel"; break;
2002    case CallingConv::PTX_Device:   Out << " ptx_device"; break;
2003    default: Out << " cc" << II->getCallingConv(); break;
2004    }
2005
2006    if (PAL.getRetAttributes() != Attribute::None)
2007      Out << ' ' << Attribute::getAsString(PAL.getRetAttributes());
2008
2009    // If possible, print out the short form of the invoke instruction. We can
2010    // only do this if the first argument is a pointer to a nonvararg function,
2011    // and if the return type is not a pointer to a function.
2012    //
2013    Out << ' ';
2014    if (!FTy->isVarArg() &&
2015        (!RetTy->isPointerTy() ||
2016         !cast<PointerType>(RetTy)->getElementType()->isFunctionTy())) {
2017      TypePrinter.print(RetTy, Out);
2018      Out << ' ';
2019      writeOperand(Operand, false);
2020    } else {
2021      writeOperand(Operand, true);
2022    }
2023    Out << '(';
2024    for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
2025      if (op)
2026        Out << ", ";
2027      writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op + 1));
2028    }
2029
2030    Out << ')';
2031    if (PAL.getFnAttributes() != Attribute::None)
2032      Out << ' ' << Attribute::getAsString(PAL.getFnAttributes());
2033
2034    Out << "\n          to ";
2035    writeOperand(II->getNormalDest(), true);
2036    Out << " unwind ";
2037    writeOperand(II->getUnwindDest(), true);
2038
2039  } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
2040    Out << ' ';
2041    TypePrinter.print(AI->getType()->getElementType(), Out);
2042    if (!AI->getArraySize() || AI->isArrayAllocation()) {
2043      Out << ", ";
2044      writeOperand(AI->getArraySize(), true);
2045    }
2046    if (AI->getAlignment()) {
2047      Out << ", align " << AI->getAlignment();
2048    }
2049  } else if (isa<CastInst>(I)) {
2050    if (Operand) {
2051      Out << ' ';
2052      writeOperand(Operand, true);   // Work with broken code
2053    }
2054    Out << " to ";
2055    TypePrinter.print(I.getType(), Out);
2056  } else if (isa<VAArgInst>(I)) {
2057    if (Operand) {
2058      Out << ' ';
2059      writeOperand(Operand, true);   // Work with broken code
2060    }
2061    Out << ", ";
2062    TypePrinter.print(I.getType(), Out);
2063  } else if (Operand) {   // Print the normal way.
2064
2065    // PrintAllTypes - Instructions who have operands of all the same type
2066    // omit the type from all but the first operand.  If the instruction has
2067    // different type operands (for example br), then they are all printed.
2068    bool PrintAllTypes = false;
2069    const Type *TheType = Operand->getType();
2070
2071    // Select, Store and ShuffleVector always print all types.
2072    if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
2073        || isa<ReturnInst>(I)) {
2074      PrintAllTypes = true;
2075    } else {
2076      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
2077        Operand = I.getOperand(i);
2078        // note that Operand shouldn't be null, but the test helps make dump()
2079        // more tolerant of malformed IR
2080        if (Operand && Operand->getType() != TheType) {
2081          PrintAllTypes = true;    // We have differing types!  Print them all!
2082          break;
2083        }
2084      }
2085    }
2086
2087    if (!PrintAllTypes) {
2088      Out << ' ';
2089      TypePrinter.print(TheType, Out);
2090    }
2091
2092    Out << ' ';
2093    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
2094      if (i) Out << ", ";
2095      writeOperand(I.getOperand(i), PrintAllTypes);
2096    }
2097  }
2098
2099  // Print post operand alignment for load/store.
2100  if (isa<LoadInst>(I) && cast<LoadInst>(I).getAlignment()) {
2101    Out << ", align " << cast<LoadInst>(I).getAlignment();
2102  } else if (isa<StoreInst>(I) && cast<StoreInst>(I).getAlignment()) {
2103    Out << ", align " << cast<StoreInst>(I).getAlignment();
2104  }
2105
2106  // Print Metadata info.
2107  SmallVector<std::pair<unsigned, MDNode*>, 4> InstMD;
2108  I.getAllMetadata(InstMD);
2109  if (!InstMD.empty()) {
2110    SmallVector<StringRef, 8> MDNames;
2111    I.getType()->getContext().getMDKindNames(MDNames);
2112    for (unsigned i = 0, e = InstMD.size(); i != e; ++i) {
2113      unsigned Kind = InstMD[i].first;
2114       if (Kind < MDNames.size()) {
2115         Out << ", !" << MDNames[Kind];
2116      } else {
2117        Out << ", !<unknown kind #" << Kind << ">";
2118      }
2119      Out << ' ';
2120      WriteAsOperandInternal(Out, InstMD[i].second, &TypePrinter, &Machine,
2121                             TheModule);
2122    }
2123  }
2124  printInfoComment(I);
2125}
2126
2127static void WriteMDNodeComment(const MDNode *Node,
2128                               formatted_raw_ostream &Out) {
2129  if (Node->getNumOperands() < 1)
2130    return;
2131  ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Node->getOperand(0));
2132  if (!CI) return;
2133  APInt Val = CI->getValue();
2134  APInt Tag = Val & ~APInt(Val.getBitWidth(), LLVMDebugVersionMask);
2135  if (Val.ult(LLVMDebugVersion))
2136    return;
2137
2138  Out.PadToColumn(50);
2139  if (Tag == dwarf::DW_TAG_user_base)
2140    Out << "; [ DW_TAG_user_base ]";
2141  else if (Tag.isIntN(32)) {
2142    if (const char *TagName = dwarf::TagString(Tag.getZExtValue()))
2143      Out << "; [ " << TagName << " ]";
2144  }
2145}
2146
2147void AssemblyWriter::writeAllMDNodes() {
2148  SmallVector<const MDNode *, 16> Nodes;
2149  Nodes.resize(Machine.mdn_size());
2150  for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
2151       I != E; ++I)
2152    Nodes[I->second] = cast<MDNode>(I->first);
2153
2154  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2155    Out << '!' << i << " = metadata ";
2156    printMDNodeBody(Nodes[i]);
2157  }
2158}
2159
2160void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
2161  WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
2162  WriteMDNodeComment(Node, Out);
2163  Out << "\n";
2164}
2165
2166//===----------------------------------------------------------------------===//
2167//                       External Interface declarations
2168//===----------------------------------------------------------------------===//
2169
2170void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2171  SlotTracker SlotTable(this);
2172  formatted_raw_ostream OS(ROS);
2173  AssemblyWriter W(OS, SlotTable, this, AAW);
2174  W.printModule(this);
2175}
2176
2177void NamedMDNode::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2178  SlotTracker SlotTable(getParent());
2179  formatted_raw_ostream OS(ROS);
2180  AssemblyWriter W(OS, SlotTable, getParent(), AAW);
2181  W.printNamedMDNode(this);
2182}
2183
2184void Type::print(raw_ostream &OS) const {
2185  if (this == 0) {
2186    OS << "<null Type>";
2187    return;
2188  }
2189  TypePrinting().print(this, OS);
2190}
2191
2192void Value::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
2193  if (this == 0) {
2194    ROS << "printing a <null> value\n";
2195    return;
2196  }
2197  formatted_raw_ostream OS(ROS);
2198  if (const Instruction *I = dyn_cast<Instruction>(this)) {
2199    const Function *F = I->getParent() ? I->getParent()->getParent() : 0;
2200    SlotTracker SlotTable(F);
2201    AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), AAW);
2202    W.printInstruction(*I);
2203  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
2204    SlotTracker SlotTable(BB->getParent());
2205    AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), AAW);
2206    W.printBasicBlock(BB);
2207  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
2208    SlotTracker SlotTable(GV->getParent());
2209    AssemblyWriter W(OS, SlotTable, GV->getParent(), AAW);
2210    if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
2211      W.printGlobal(V);
2212    else if (const Function *F = dyn_cast<Function>(GV))
2213      W.printFunction(F);
2214    else
2215      W.printAlias(cast<GlobalAlias>(GV));
2216  } else if (const MDNode *N = dyn_cast<MDNode>(this)) {
2217    const Function *F = N->getFunction();
2218    SlotTracker SlotTable(F);
2219    AssemblyWriter W(OS, SlotTable, F ? F->getParent() : 0, AAW);
2220    W.printMDNodeBody(N);
2221  } else if (const Constant *C = dyn_cast<Constant>(this)) {
2222    TypePrinting TypePrinter;
2223    TypePrinter.print(C->getType(), OS);
2224    OS << ' ';
2225    WriteConstantInternal(OS, C, TypePrinter, 0, 0);
2226  } else if (isa<InlineAsm>(this) || isa<MDString>(this) ||
2227             isa<Argument>(this)) {
2228    WriteAsOperand(OS, this, true, 0);
2229  } else {
2230    // Otherwise we don't know what it is. Call the virtual function to
2231    // allow a subclass to print itself.
2232    printCustom(OS);
2233  }
2234}
2235
2236// Value::printCustom - subclasses should override this to implement printing.
2237void Value::printCustom(raw_ostream &OS) const {
2238  llvm_unreachable("Unknown value to print out!");
2239}
2240
2241// Value::dump - allow easy printing of Values from the debugger.
2242void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
2243
2244// Type::dump - allow easy printing of Types from the debugger.
2245// This one uses type names from the given context module
2246void Type::dump(const Module *Context) const {
2247  WriteTypeSymbolic(dbgs(), this, Context);
2248  dbgs() << '\n';
2249}
2250
2251// Type::dump - allow easy printing of Types from the debugger.
2252void Type::dump() const { dump(0); }
2253
2254// Module::dump() - Allow printing of Modules from the debugger.
2255void Module::dump() const { print(dbgs(), 0); }
2256