AsmWriter.cpp revision f7a551fd929a4a849883cde04cfe54e0590a38b7
1//===-- Writer.cpp - Library for Printing VM assembly files ------*- C++ -*--=//
2//
3// This library implements the functionality defined in llvm/Assembly/Writer.h
4//
5// This library uses the Analysis library to figure out offsets for
6// variables in the method tables...
7//
8// TODO: print out the type name instead of the full type if a particular type
9//       is in the symbol table...
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Assembly/CachedWriter.h"
14#include "llvm/Analysis/SlotCalculator.h"
15#include "llvm/Module.h"
16#include "llvm/Method.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/BasicBlock.h"
19#include "llvm/ConstantVals.h"
20#include "llvm/iMemory.h"
21#include "llvm/iTerminators.h"
22#include "llvm/iPHINode.h"
23#include "llvm/iOther.h"
24#include "llvm/SymbolTable.h"
25#include "Support/StringExtras.h"
26#include "Support/STLExtras.h"
27#include <algorithm>
28#include <map>
29
30static const Module *getModuleFromVal(const Value *V) {
31  if (const MethodArgument *MA =dyn_cast<const MethodArgument>(V))
32    return MA->getParent() ? MA->getParent()->getParent() : 0;
33  else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V))
34    return BB->getParent() ? BB->getParent()->getParent() : 0;
35  else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
36    const Method *M = I->getParent() ? I->getParent()->getParent() : 0;
37    return M ? M->getParent() : 0;
38  } else if (const GlobalValue *GV =dyn_cast<const GlobalValue>(V))
39    return GV->getParent();
40  else if (const Module *Mod  = dyn_cast<const Module>(V))
41    return Mod;
42  return 0;
43}
44
45static SlotCalculator *createSlotCalculator(const Value *V) {
46  assert(!isa<Type>(V) && "Can't create an SC for a type!");
47  if (const MethodArgument *MA =dyn_cast<const MethodArgument>(V)){
48    return new SlotCalculator(MA->getParent(), true);
49  } else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
50    return new SlotCalculator(I->getParent()->getParent(), true);
51  } else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V)) {
52    return new SlotCalculator(BB->getParent(), true);
53  } else if (const GlobalVariable *GV =dyn_cast<const GlobalVariable>(V)){
54    return new SlotCalculator(GV->getParent(), true);
55  } else if (const Method *Meth = dyn_cast<const Method>(V)) {
56    return new SlotCalculator(Meth, true);
57  } else if (const Module *Mod  = dyn_cast<const Module>(V)) {
58    return new SlotCalculator(Mod, true);
59  }
60  return 0;
61}
62
63// WriteAsOperand - Write the name of the specified value out to the specified
64// ostream.  This can be useful when you just want to print int %reg126, not the
65// whole instruction that generated it.
66//
67static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName,
68                                   SlotCalculator *Table) {
69  if (PrintName && V->hasName()) {
70    Out << " %" << V->getName();
71  } else {
72    if (const Constant *CPV = dyn_cast<const Constant>(V)) {
73      Out << " " << CPV->getStrValue();
74    } else {
75      int Slot;
76      if (Table) {
77	Slot = Table->getValSlot(V);
78      } else {
79        if (const Type *Ty = dyn_cast<const Type>(V)) {
80          Out << " " << Ty->getDescription();
81          return;
82        }
83
84        Table = createSlotCalculator(V);
85        if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
86
87	Slot = Table->getValSlot(V);
88	delete Table;
89      }
90      if (Slot >= 0)  Out << " %" << Slot;
91      else if (PrintName)
92        Out << "<badref>";     // Not embeded into a location?
93    }
94  }
95}
96
97
98// If the module has a symbol table, take all global types and stuff their
99// names into the TypeNames map.
100//
101static void fillTypeNameTable(const Module *M,
102                              map<const Type *, string> &TypeNames) {
103  if (M && M->hasSymbolTable()) {
104    const SymbolTable *ST = M->getSymbolTable();
105    SymbolTable::const_iterator PI = ST->find(Type::TypeTy);
106    if (PI != ST->end()) {
107      SymbolTable::type_const_iterator I = PI->second.begin();
108      for (; I != PI->second.end(); ++I) {
109        // As a heuristic, don't insert pointer to primitive types, because
110        // they are used too often to have a single useful name.
111        //
112        const Type *Ty = cast<const Type>(I->second);
113        if (!isa<PointerType>(Ty) ||
114            !cast<PointerType>(Ty)->getElementType()->isPrimitiveType())
115          TypeNames.insert(make_pair(Ty, "%"+I->first));
116      }
117    }
118  }
119}
120
121
122
123static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
124                           map<const Type *, string> &TypeNames) {
125  if (Ty->isPrimitiveType()) return Ty->getDescription();  // Base case
126
127  // Check to see if the type is named.
128  map<const Type *, string>::iterator I = TypeNames.find(Ty);
129  if (I != TypeNames.end()) return I->second;
130
131  // Check to see if the Type is already on the stack...
132  unsigned Slot = 0, CurSize = TypeStack.size();
133  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
134
135  // This is another base case for the recursion.  In this case, we know
136  // that we have looped back to a type that we have previously visited.
137  // Generate the appropriate upreference to handle this.
138  //
139  if (Slot < CurSize)
140    return "\\" + utostr(CurSize-Slot);       // Here's the upreference
141
142  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
143
144  string Result;
145  switch (Ty->getPrimitiveID()) {
146  case Type::MethodTyID: {
147    const MethodType *MTy = cast<const MethodType>(Ty);
148    Result = calcTypeName(MTy->getReturnType(), TypeStack, TypeNames) + " (";
149    for (MethodType::ParamTypes::const_iterator
150           I = MTy->getParamTypes().begin(),
151           E = MTy->getParamTypes().end(); I != E; ++I) {
152      if (I != MTy->getParamTypes().begin())
153        Result += ", ";
154      Result += calcTypeName(*I, TypeStack, TypeNames);
155    }
156    if (MTy->isVarArg()) {
157      if (!MTy->getParamTypes().empty()) Result += ", ";
158      Result += "...";
159    }
160    Result += ")";
161    break;
162  }
163  case Type::StructTyID: {
164    const StructType *STy = cast<const StructType>(Ty);
165    Result = "{ ";
166    for (StructType::ElementTypes::const_iterator
167           I = STy->getElementTypes().begin(),
168           E = STy->getElementTypes().end(); I != E; ++I) {
169      if (I != STy->getElementTypes().begin())
170        Result += ", ";
171      Result += calcTypeName(*I, TypeStack, TypeNames);
172    }
173    Result += " }";
174    break;
175  }
176  case Type::PointerTyID:
177    Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(),
178                          TypeStack, TypeNames) + " *";
179    break;
180  case Type::ArrayTyID: {
181    const ArrayType *ATy = cast<const ArrayType>(Ty);
182    int NumElements = ATy->getNumElements();
183    Result = "[";
184    if (NumElements != -1) Result += itostr(NumElements) + " x ";
185    Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
186    break;
187  }
188  default:
189    assert(0 && "Unhandled case in getTypeProps!");
190    Result = "<error>";
191  }
192
193  TypeStack.pop_back();       // Remove self from stack...
194  return Result;
195}
196
197
198// printTypeInt - The internal guts of printing out a type that has a
199// potentially named portion.
200//
201static ostream &printTypeInt(ostream &Out, const Type *Ty,
202                             map<const Type *, string> &TypeNames) {
203  // Primitive types always print out their description, regardless of whether
204  // they have been named or not.
205  //
206  if (Ty->isPrimitiveType()) return Out << Ty->getDescription();
207
208  // Check to see if the type is named.
209  map<const Type *, string>::iterator I = TypeNames.find(Ty);
210  if (I != TypeNames.end()) return Out << I->second;
211
212  // Otherwise we have a type that has not been named but is a derived type.
213  // Carefully recurse the type hierarchy to print out any contained symbolic
214  // names.
215  //
216  vector<const Type *> TypeStack;
217  string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
218  TypeNames.insert(make_pair(Ty, TypeName));   // Cache type name for later use
219  return Out << TypeName;
220}
221
222
223// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
224// type, iff there is an entry in the modules symbol table for the specified
225// type or one of it's component types.  This is slower than a simple x << Type;
226//
227ostream &WriteTypeSymbolic(ostream &Out, const Type *Ty, const Module *M) {
228  Out << " ";
229
230  // If they want us to print out a type, attempt to make it symbolic if there
231  // is a symbol table in the module...
232  if (M && M->hasSymbolTable()) {
233    map<const Type *, string> TypeNames;
234    fillTypeNameTable(M, TypeNames);
235
236    return printTypeInt(Out, Ty, TypeNames);
237  } else {
238    return Out << Ty->getDescription();
239  }
240}
241
242
243// WriteAsOperand - Write the name of the specified value out to the specified
244// ostream.  This can be useful when you just want to print int %reg126, not the
245// whole instruction that generated it.
246//
247ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType,
248			bool PrintName, SlotCalculator *Table) {
249  if (PrintType)
250    WriteTypeSymbolic(Out, V->getType(), getModuleFromVal(V));
251
252  WriteAsOperandInternal(Out, V, PrintName, Table);
253  return Out;
254}
255
256
257
258class AssemblyWriter {
259  ostream &Out;
260  SlotCalculator &Table;
261  const Module *TheModule;
262  map<const Type *, string> TypeNames;
263public:
264  inline AssemblyWriter(ostream &o, SlotCalculator &Tab, const Module *M)
265    : Out(o), Table(Tab), TheModule(M) {
266
267    // If the module has a symbol table, take all global types and stuff their
268    // names into the TypeNames map.
269    //
270    fillTypeNameTable(M, TypeNames);
271  }
272
273  inline void write(const Module *M)         { printModule(M);      }
274  inline void write(const GlobalVariable *G) { printGlobal(G);      }
275  inline void write(const Method *M)         { printMethod(M);      }
276  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
277  inline void write(const Instruction *I)    { printInstruction(I); }
278  inline void write(const Constant *CPV)     { printConstant(CPV);  }
279  inline void write(const Type *Ty)          { printType(Ty);       }
280
281private :
282  void printModule(const Module *M);
283  void printSymbolTable(const SymbolTable &ST);
284  void printConstant(const Constant *CPV);
285  void printGlobal(const GlobalVariable *GV);
286  void printMethod(const Method *M);
287  void printMethodArgument(const MethodArgument *MA);
288  void printBasicBlock(const BasicBlock *BB);
289  void printInstruction(const Instruction *I);
290  ostream &printType(const Type *Ty);
291
292  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
293
294  // printInfoComment - Print a little comment after the instruction indicating
295  // which slot it occupies.
296  void printInfoComment(const Value *V);
297};
298
299
300void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
301				  bool PrintName) {
302  if (PrintType) { Out << " "; printType(Operand->getType()); }
303  WriteAsOperandInternal(Out, Operand, PrintName, &Table);
304}
305
306
307void AssemblyWriter::printModule(const Module *M) {
308  // Loop over the symbol table, emitting all named constants...
309  if (M->hasSymbolTable())
310    printSymbolTable(*M->getSymbolTable());
311
312  for_each(M->gbegin(), M->gend(),
313	   bind_obj(this, &AssemblyWriter::printGlobal));
314
315  Out << "implementation\n";
316
317  // Output all of the methods...
318  for_each(M->begin(), M->end(), bind_obj(this,&AssemblyWriter::printMethod));
319}
320
321void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
322  if (GV->hasName()) Out << "%" << GV->getName() << " = ";
323
324  if (GV->hasInternalLinkage()) Out << "internal ";
325  if (!GV->hasInitializer()) Out << "uninitialized ";
326
327  Out << (GV->isConstant() ? "constant " : "global ");
328  printType(GV->getType()->getElementType());
329
330  if (GV->hasInitializer())
331    writeOperand(GV->getInitializer(), false, false);
332
333  printInfoComment(GV);
334  Out << endl;
335}
336
337
338// printSymbolTable - Run through symbol table looking for named constants
339// if a named constant is found, emit it's declaration...
340//
341void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
342  for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
343    SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
344    SymbolTable::type_const_iterator End = ST.type_end(TI->first);
345
346    for (; I != End; ++I) {
347      const Value *V = I->second;
348      if (const Constant *CPV = dyn_cast<const Constant>(V)) {
349	printConstant(CPV);
350      } else if (const Type *Ty = dyn_cast<const Type>(V)) {
351	Out << "\t%" << I->first << " = type " << Ty->getDescription() << endl;
352      }
353    }
354  }
355}
356
357
358// printConstant - Print out a constant pool entry...
359//
360void AssemblyWriter::printConstant(const Constant *CPV) {
361  // Don't print out unnamed constants, they will be inlined
362  if (!CPV->hasName()) return;
363
364  // Print out name...
365  Out << "\t%" << CPV->getName() << " = ";
366
367  // Print out the constant type...
368  printType(CPV->getType());
369
370  // Write the value out now...
371  writeOperand(CPV, false, false);
372
373  if (!CPV->hasName() && CPV->getType() != Type::VoidTy) {
374    int Slot = Table.getValSlot(CPV); // Print out the def slot taken...
375    Out << "\t\t; <";
376    printType(CPV->getType()) << ">:";
377    if (Slot >= 0) Out << Slot;
378    else Out << "<badref>";
379  }
380
381  Out << endl;
382}
383
384// printMethod - Print all aspects of a method.
385//
386void AssemblyWriter::printMethod(const Method *M) {
387  // Print out the return type and name...
388  Out << "\n" << (M->isExternal() ? "declare " : "")
389      << (M->hasInternalLinkage() ? "internal " : "");
390  printType(M->getReturnType()) << " \"" << M->getName() << "\"(";
391  Table.incorporateMethod(M);
392
393  // Loop over the arguments, printing them...
394  const MethodType *MT = cast<const MethodType>(M->getMethodType());
395
396  if (!M->isExternal()) {
397    for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
398	     bind_obj(this, &AssemblyWriter::printMethodArgument));
399  } else {
400    // Loop over the arguments, printing them...
401    const MethodType *MT = cast<const MethodType>(M->getMethodType());
402    for (MethodType::ParamTypes::const_iterator I = MT->getParamTypes().begin(),
403	   E = MT->getParamTypes().end(); I != E; ++I) {
404      if (I != MT->getParamTypes().begin()) Out << ", ";
405      printType(*I);
406    }
407  }
408
409  // Finish printing arguments...
410  if (MT->isVarArg()) {
411    if (MT->getParamTypes().size()) Out << ", ";
412    Out << "...";  // Output varargs portion of signature!
413  }
414  Out << ")\n";
415
416  if (!M->isExternal()) {
417    // Loop over the symbol table, emitting all named constants...
418    if (M->hasSymbolTable())
419      printSymbolTable(*M->getSymbolTable());
420
421    Out << "begin";
422
423    // Output all of its basic blocks... for the method
424    for_each(M->begin(), M->end(),
425	     bind_obj(this, &AssemblyWriter::printBasicBlock));
426
427    Out << "end\n";
428  }
429
430  Table.purgeMethod();
431}
432
433// printMethodArgument - This member is called for every argument that
434// is passed into the method.  Simply print it out
435//
436void AssemblyWriter::printMethodArgument(const MethodArgument *Arg) {
437  // Insert commas as we go... the first arg doesn't get a comma
438  if (Arg != Arg->getParent()->getArgumentList().front()) Out << ", ";
439
440  // Output type...
441  printType(Arg->getType());
442
443  // Output name, if available...
444  if (Arg->hasName())
445    Out << " %" << Arg->getName();
446  else if (Table.getValSlot(Arg) < 0)
447    Out << "<badref>";
448}
449
450// printBasicBlock - This member is called for each basic block in a methd.
451//
452void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
453  if (BB->hasName()) {              // Print out the label if it exists...
454    Out << "\n" << BB->getName() << ":";
455  } else {
456    int Slot = Table.getValSlot(BB);
457    Out << "\n; <label>:";
458    if (Slot >= 0)
459      Out << Slot;         // Extra newline seperates out label's
460    else
461      Out << "<badref>";
462  }
463  Out << "\t\t\t\t\t;[#uses=" << BB->use_size() << "]\n";  // Output # uses
464
465  // Output all of the instructions in the basic block...
466  for_each(BB->begin(), BB->end(),
467	   bind_obj(this, &AssemblyWriter::printInstruction));
468}
469
470
471// printInfoComment - Print a little comment after the instruction indicating
472// which slot it occupies.
473//
474void AssemblyWriter::printInfoComment(const Value *V) {
475  if (V->getType() != Type::VoidTy) {
476    Out << "\t\t; <";
477    printType(V->getType()) << ">";
478
479    if (!V->hasName()) {
480      int Slot = Table.getValSlot(V); // Print out the def slot taken...
481      if (Slot >= 0) Out << ":" << Slot;
482      else Out << ":<badref>";
483    }
484    Out << " [#uses=" << V->use_size() << "]";  // Output # uses
485  }
486}
487
488// printInstruction - This member is called for each Instruction in a methd.
489//
490void AssemblyWriter::printInstruction(const Instruction *I) {
491  Out << "\t";
492
493  // Print out name if it exists...
494  if (I && I->hasName())
495    Out << "%" << I->getName() << " = ";
496
497  // Print out the opcode...
498  Out << I->getOpcodeName();
499
500  // Print out the type of the operands...
501  const Value *Operand = I->getNumOperands() ? I->getOperand(0) : 0;
502
503  // Special case conditional branches to swizzle the condition out to the front
504  if (I->getOpcode() == Instruction::Br && I->getNumOperands() > 1) {
505    writeOperand(I->getOperand(2), true);
506    Out << ",";
507    writeOperand(Operand, true);
508    Out << ",";
509    writeOperand(I->getOperand(1), true);
510
511  } else if (I->getOpcode() == Instruction::Switch) {
512    // Special case switch statement to get formatting nice and correct...
513    writeOperand(Operand         , true); Out << ",";
514    writeOperand(I->getOperand(1), true); Out << " [";
515
516    for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; op += 2) {
517      Out << "\n\t\t";
518      writeOperand(I->getOperand(op  ), true); Out << ",";
519      writeOperand(I->getOperand(op+1), true);
520    }
521    Out << "\n\t]";
522  } else if (isa<PHINode>(I)) {
523    Out << " ";
524    printType(I->getType());
525    Out << " ";
526
527    for (unsigned op = 0, Eop = I->getNumOperands(); op < Eop; op += 2) {
528      if (op) Out << ", ";
529      Out << "[";
530      writeOperand(I->getOperand(op  ), false); Out << ",";
531      writeOperand(I->getOperand(op+1), false); Out << " ]";
532    }
533  } else if (isa<ReturnInst>(I) && !Operand) {
534    Out << " void";
535  } else if (isa<CallInst>(I)) {
536    const PointerType *PTy = dyn_cast<PointerType>(Operand->getType());
537    const MethodType  *MTy = PTy ?dyn_cast<MethodType>(PTy->getElementType()):0;
538    const Type      *RetTy = MTy ? MTy->getReturnType() : 0;
539
540    // If possible, print out the short form of the call instruction, but we can
541    // only do this if the first argument is a pointer to a nonvararg method,
542    // and if the value returned is not a pointer to a method.
543    //
544    if (RetTy && !MTy->isVarArg() &&
545        (!isa<PointerType>(RetTy)||!isa<MethodType>(cast<PointerType>(RetTy)))){
546      Out << " "; printType(RetTy);
547      writeOperand(Operand, false);
548    } else {
549      writeOperand(Operand, true);
550    }
551    Out << "(";
552    if (I->getNumOperands() > 1) writeOperand(I->getOperand(1), true);
553    for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; ++op) {
554      Out << ",";
555      writeOperand(I->getOperand(op), true);
556    }
557
558    Out << " )";
559  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
560    // TODO: Should try to print out short form of the Invoke instruction
561    writeOperand(Operand, true);
562    Out << "(";
563    if (I->getNumOperands() > 3) writeOperand(I->getOperand(3), true);
564    for (unsigned op = 4, Eop = I->getNumOperands(); op < Eop; ++op) {
565      Out << ",";
566      writeOperand(I->getOperand(op), true);
567    }
568
569    Out << " )\n\t\t\tto";
570    writeOperand(II->getNormalDest(), true);
571    Out << " except";
572    writeOperand(II->getExceptionalDest(), true);
573
574  } else if (I->getOpcode() == Instruction::Malloc ||
575	     I->getOpcode() == Instruction::Alloca) {
576    Out << " ";
577    printType(cast<const PointerType>(I->getType())->getElementType());
578    if (I->getNumOperands()) {
579      Out << ",";
580      writeOperand(I->getOperand(0), true);
581    }
582  } else if (isa<CastInst>(I)) {
583    writeOperand(Operand, true);
584    Out << " to ";
585    printType(I->getType());
586  } else if (Operand) {   // Print the normal way...
587
588    // PrintAllTypes - Instructions who have operands of all the same type
589    // omit the type from all but the first operand.  If the instruction has
590    // different type operands (for example br), then they are all printed.
591    bool PrintAllTypes = false;
592    const Type *TheType = Operand->getType();
593
594    for (unsigned i = 1, E = I->getNumOperands(); i != E; ++i) {
595      Operand = I->getOperand(i);
596      if (Operand->getType() != TheType) {
597	PrintAllTypes = true;       // We have differing types!  Print them all!
598	break;
599      }
600    }
601
602    // Shift Left & Right print both types even for Ubyte LHS
603    if (isa<ShiftInst>(I)) PrintAllTypes = true;
604
605    if (!PrintAllTypes) {
606      Out << " ";
607      printType(I->getOperand(0)->getType());
608    }
609
610    for (unsigned i = 0, E = I->getNumOperands(); i != E; ++i) {
611      if (i) Out << ",";
612      writeOperand(I->getOperand(i), PrintAllTypes);
613    }
614  }
615
616  printInfoComment(I);
617  Out << endl;
618}
619
620
621// printType - Go to extreme measures to attempt to print out a short, symbolic
622// version of a type name.
623//
624ostream &AssemblyWriter::printType(const Type *Ty) {
625  return printTypeInt(Out, Ty, TypeNames);
626}
627
628
629//===----------------------------------------------------------------------===//
630//                       External Interface declarations
631//===----------------------------------------------------------------------===//
632
633
634
635void WriteToAssembly(const Module *M, ostream &o) {
636  if (M == 0) { o << "<null> module\n"; return; }
637  SlotCalculator SlotTable(M, true);
638  AssemblyWriter W(o, SlotTable, M);
639
640  W.write(M);
641}
642
643void WriteToAssembly(const GlobalVariable *G, ostream &o) {
644  if (G == 0) { o << "<null> global variable\n"; return; }
645  SlotCalculator SlotTable(G->getParent(), true);
646  AssemblyWriter W(o, SlotTable, G->getParent());
647  W.write(G);
648}
649
650void WriteToAssembly(const Method *M, ostream &o) {
651  if (M == 0) { o << "<null> method\n"; return; }
652  SlotCalculator SlotTable(M->getParent(), true);
653  AssemblyWriter W(o, SlotTable, M->getParent());
654
655  W.write(M);
656}
657
658
659void WriteToAssembly(const BasicBlock *BB, ostream &o) {
660  if (BB == 0) { o << "<null> basic block\n"; return; }
661
662  SlotCalculator SlotTable(BB->getParent(), true);
663  AssemblyWriter W(o, SlotTable,
664                   BB->getParent() ? BB->getParent()->getParent() : 0);
665
666  W.write(BB);
667}
668
669void WriteToAssembly(const Constant *CPV, ostream &o) {
670  if (CPV == 0) { o << "<null> constant pool value\n"; return; }
671  o << " " << CPV->getType()->getDescription() << " " << CPV->getStrValue();
672}
673
674void WriteToAssembly(const Instruction *I, ostream &o) {
675  if (I == 0) { o << "<null> instruction\n"; return; }
676
677  const Method *M = I->getParent() ? I->getParent()->getParent() : 0;
678  SlotCalculator SlotTable(M, true);
679  AssemblyWriter W(o, SlotTable, M ? M->getParent() : 0);
680
681  W.write(I);
682}
683
684void CachedWriter::setModule(const Module *M) {
685  delete SC; delete AW;
686  if (M) {
687    SC = new SlotCalculator(M, true);
688    AW = new AssemblyWriter(Out, *SC, M);
689  } else {
690    SC = 0; AW = 0;
691  }
692}
693
694CachedWriter::~CachedWriter() {
695  delete AW;
696  delete SC;
697}
698
699CachedWriter &CachedWriter::operator<<(const Value *V) {
700  assert(AW && SC && "CachedWriter does not have a current module!");
701  switch (V->getValueType()) {
702  case Value::ConstantVal:
703    Out << " "; AW->write(V->getType());
704    Out << " " << cast<Constant>(V)->getStrValue(); break;
705  case Value::MethodArgumentVal:
706    AW->write(V->getType()); Out << " " << V->getName(); break;
707  case Value::TypeVal:           AW->write(cast<const Type>(V)); break;
708  case Value::InstructionVal:    AW->write(cast<Instruction>(V)); break;
709  case Value::BasicBlockVal:     AW->write(cast<BasicBlock>(V)); break;
710  case Value::MethodVal:         AW->write(cast<Method>(V)); break;
711  case Value::GlobalVariableVal: AW->write(cast<GlobalVariable>(V)); break;
712  case Value::ModuleVal:         AW->write(cast<Module>(V)); break;
713  default: Out << "<unknown value type: " << V->getValueType() << ">"; break;
714  }
715  return *this;
716}
717