AsmWriter.cpp revision f824868ed9d2cc756a797f6dbd67732f75e31cd6
1//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This library implements the functionality defined in llvm/Assembly/Writer.h
11//
12// Note that these routines must be extremely tolerant of various errors in the
13// LLVM code, because it can be used for debugging transformations.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Assembly/CachedWriter.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/Assembly/PrintModulePass.h"
20#include "llvm/Assembly/AsmAnnotationWriter.h"
21#include "llvm/CallingConv.h"
22#include "llvm/Constants.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instruction.h"
26#include "llvm/Instructions.h"
27#include "llvm/Module.h"
28#include "llvm/SymbolTable.h"
29#include "llvm/Support/CFG.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/MathExtras.h"
33#include <algorithm>
34using namespace llvm;
35
36namespace llvm {
37
38// Make virtual table appear in this compilation unit.
39AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
40
41/// This class provides computation of slot numbers for LLVM Assembly writing.
42/// @brief LLVM Assembly Writing Slot Computation.
43class SlotMachine {
44
45/// @name Types
46/// @{
47public:
48
49  /// @brief A mapping of Values to slot numbers
50  typedef std::map<const Value*, unsigned> ValueMap;
51  typedef std::map<const Type*, unsigned> TypeMap;
52
53  /// @brief A plane with next slot number and ValueMap
54  struct ValuePlane {
55    unsigned next_slot;        ///< The next slot number to use
56    ValueMap map;              ///< The map of Value* -> unsigned
57    ValuePlane() { next_slot = 0; } ///< Make sure we start at 0
58  };
59
60  struct TypePlane {
61    unsigned next_slot;
62    TypeMap map;
63    TypePlane() { next_slot = 0; }
64    void clear() { map.clear(); next_slot = 0; }
65  };
66
67  /// @brief The map of planes by Type
68  typedef std::map<const Type*, ValuePlane> TypedPlanes;
69
70/// @}
71/// @name Constructors
72/// @{
73public:
74  /// @brief Construct from a module
75  SlotMachine(const Module *M );
76
77  /// @brief Construct from a function, starting out in incorp state.
78  SlotMachine(const Function *F );
79
80/// @}
81/// @name Accessors
82/// @{
83public:
84  /// Return the slot number of the specified value in it's type
85  /// plane.  Its an error to ask for something not in the SlotMachine.
86  /// Its an error to ask for a Type*
87  int getSlot(const Value *V);
88  int getSlot(const Type*Ty);
89
90  /// Determine if a Value has a slot or not
91  bool hasSlot(const Value* V);
92  bool hasSlot(const Type* Ty);
93
94/// @}
95/// @name Mutators
96/// @{
97public:
98  /// If you'd like to deal with a function instead of just a module, use
99  /// this method to get its data into the SlotMachine.
100  void incorporateFunction(const Function *F) {
101    TheFunction = F;
102    FunctionProcessed = false;
103  }
104
105  /// After calling incorporateFunction, use this method to remove the
106  /// most recently incorporated function from the SlotMachine. This
107  /// will reset the state of the machine back to just the module contents.
108  void purgeFunction();
109
110/// @}
111/// @name Implementation Details
112/// @{
113private:
114  /// This function does the actual initialization.
115  inline void initialize();
116
117  /// Values can be crammed into here at will. If they haven't
118  /// been inserted already, they get inserted, otherwise they are ignored.
119  /// Either way, the slot number for the Value* is returned.
120  unsigned createSlot(const Value *V);
121  unsigned createSlot(const Type* Ty);
122
123  /// Insert a value into the value table. Return the slot number
124  /// that it now occupies.  BadThings(TM) will happen if you insert a
125  /// Value that's already been inserted.
126  unsigned insertValue( const Value *V );
127  unsigned insertValue( const Type* Ty);
128
129  /// Add all of the module level global variables (and their initializers)
130  /// and function declarations, but not the contents of those functions.
131  void processModule();
132
133  /// Add all of the functions arguments, basic blocks, and instructions
134  void processFunction();
135
136  SlotMachine(const SlotMachine &);  // DO NOT IMPLEMENT
137  void operator=(const SlotMachine &);  // DO NOT IMPLEMENT
138
139/// @}
140/// @name Data
141/// @{
142public:
143
144  /// @brief The module for which we are holding slot numbers
145  const Module* TheModule;
146
147  /// @brief The function for which we are holding slot numbers
148  const Function* TheFunction;
149  bool FunctionProcessed;
150
151  /// @brief The TypePlanes map for the module level data
152  TypedPlanes mMap;
153  TypePlane mTypes;
154
155  /// @brief The TypePlanes map for the function level data
156  TypedPlanes fMap;
157  TypePlane fTypes;
158
159/// @}
160
161};
162
163}  // end namespace llvm
164
165static RegisterPass<PrintModulePass>
166X("printm", "Print module to stderr");
167static RegisterPass<PrintFunctionPass>
168Y("print","Print function to stderr");
169
170static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
171                                   bool PrintName,
172                                 std::map<const Type *, std::string> &TypeTable,
173                                   SlotMachine *Machine);
174
175static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
176                                   bool PrintName,
177                                 std::map<const Type *, std::string> &TypeTable,
178                                   SlotMachine *Machine);
179
180static const Module *getModuleFromVal(const Value *V) {
181  if (const Argument *MA = dyn_cast<Argument>(V))
182    return MA->getParent() ? MA->getParent()->getParent() : 0;
183  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
184    return BB->getParent() ? BB->getParent()->getParent() : 0;
185  else if (const Instruction *I = dyn_cast<Instruction>(V)) {
186    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
187    return M ? M->getParent() : 0;
188  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
189    return GV->getParent();
190  return 0;
191}
192
193static SlotMachine *createSlotMachine(const Value *V) {
194  if (const Argument *FA = dyn_cast<Argument>(V)) {
195    return new SlotMachine(FA->getParent());
196  } else if (const Instruction *I = dyn_cast<Instruction>(V)) {
197    return new SlotMachine(I->getParent()->getParent());
198  } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
199    return new SlotMachine(BB->getParent());
200  } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)){
201    return new SlotMachine(GV->getParent());
202  } else if (const Function *Func = dyn_cast<Function>(V)) {
203    return new SlotMachine(Func);
204  }
205  return 0;
206}
207
208// getLLVMName - Turn the specified string into an 'LLVM name', which is either
209// prefixed with % (if the string only contains simple characters) or is
210// surrounded with ""'s (if it has special chars in it).
211static std::string getLLVMName(const std::string &Name,
212                               bool prefixName = true) {
213  assert(!Name.empty() && "Cannot get empty name!");
214
215  // First character cannot start with a number...
216  if (Name[0] >= '0' && Name[0] <= '9')
217    return "\"" + Name + "\"";
218
219  // Scan to see if we have any characters that are not on the "white list"
220  for (unsigned i = 0, e = Name.size(); i != e; ++i) {
221    char C = Name[i];
222    assert(C != '"' && "Illegal character in LLVM value name!");
223    if ((C < 'a' || C > 'z') && (C < 'A' || C > 'Z') && (C < '0' || C > '9') &&
224        C != '-' && C != '.' && C != '_')
225      return "\"" + Name + "\"";
226  }
227
228  // If we get here, then the identifier is legal to use as a "VarID".
229  if (prefixName)
230    return "%"+Name;
231  else
232    return Name;
233}
234
235
236/// fillTypeNameTable - If the module has a symbol table, take all global types
237/// and stuff their names into the TypeNames map.
238///
239static void fillTypeNameTable(const Module *M,
240                              std::map<const Type *, std::string> &TypeNames) {
241  if (!M) return;
242  const SymbolTable &ST = M->getSymbolTable();
243  SymbolTable::type_const_iterator TI = ST.type_begin();
244  for (; TI != ST.type_end(); ++TI ) {
245    // As a heuristic, don't insert pointer to primitive types, because
246    // they are used too often to have a single useful name.
247    //
248    const Type *Ty = cast<Type>(TI->second);
249    if (!isa<PointerType>(Ty) ||
250        !cast<PointerType>(Ty)->getElementType()->isPrimitiveType() ||
251        isa<OpaqueType>(cast<PointerType>(Ty)->getElementType()))
252      TypeNames.insert(std::make_pair(Ty, getLLVMName(TI->first)));
253  }
254}
255
256
257
258static void calcTypeName(const Type *Ty,
259                         std::vector<const Type *> &TypeStack,
260                         std::map<const Type *, std::string> &TypeNames,
261                         std::string & Result){
262  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty)) {
263    Result += Ty->getDescription();  // Base case
264    return;
265  }
266
267  // Check to see if the type is named.
268  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
269  if (I != TypeNames.end()) {
270    Result += I->second;
271    return;
272  }
273
274  if (isa<OpaqueType>(Ty)) {
275    Result += "opaque";
276    return;
277  }
278
279  // Check to see if the Type is already on the stack...
280  unsigned Slot = 0, CurSize = TypeStack.size();
281  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
282
283  // This is another base case for the recursion.  In this case, we know
284  // that we have looped back to a type that we have previously visited.
285  // Generate the appropriate upreference to handle this.
286  if (Slot < CurSize) {
287    Result += "\\" + utostr(CurSize-Slot);     // Here's the upreference
288    return;
289  }
290
291  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
292
293  switch (Ty->getTypeID()) {
294  case Type::FunctionTyID: {
295    const FunctionType *FTy = cast<FunctionType>(Ty);
296    calcTypeName(FTy->getReturnType(), TypeStack, TypeNames, Result);
297    Result += " (";
298    for (FunctionType::param_iterator I = FTy->param_begin(),
299           E = FTy->param_end(); I != E; ++I) {
300      if (I != FTy->param_begin())
301        Result += ", ";
302      calcTypeName(*I, TypeStack, TypeNames, Result);
303    }
304    if (FTy->isVarArg()) {
305      if (FTy->getNumParams()) Result += ", ";
306      Result += "...";
307    }
308    Result += ")";
309    break;
310  }
311  case Type::StructTyID: {
312    const StructType *STy = cast<StructType>(Ty);
313    Result += "{ ";
314    for (StructType::element_iterator I = STy->element_begin(),
315           E = STy->element_end(); I != E; ++I) {
316      if (I != STy->element_begin())
317        Result += ", ";
318      calcTypeName(*I, TypeStack, TypeNames, Result);
319    }
320    Result += " }";
321    break;
322  }
323  case Type::PointerTyID:
324    calcTypeName(cast<PointerType>(Ty)->getElementType(),
325                          TypeStack, TypeNames, Result);
326    Result += "*";
327    break;
328  case Type::ArrayTyID: {
329    const ArrayType *ATy = cast<ArrayType>(Ty);
330    Result += "[" + utostr(ATy->getNumElements()) + " x ";
331    calcTypeName(ATy->getElementType(), TypeStack, TypeNames, Result);
332    Result += "]";
333    break;
334  }
335  case Type::PackedTyID: {
336    const PackedType *PTy = cast<PackedType>(Ty);
337    Result += "<" + utostr(PTy->getNumElements()) + " x ";
338    calcTypeName(PTy->getElementType(), TypeStack, TypeNames, Result);
339    Result += ">";
340    break;
341  }
342  case Type::OpaqueTyID:
343    Result += "opaque";
344    break;
345  default:
346    Result += "<unrecognized-type>";
347  }
348
349  TypeStack.pop_back();       // Remove self from stack...
350  return;
351}
352
353
354/// printTypeInt - The internal guts of printing out a type that has a
355/// potentially named portion.
356///
357static std::ostream &printTypeInt(std::ostream &Out, const Type *Ty,
358                              std::map<const Type *, std::string> &TypeNames) {
359  // Primitive types always print out their description, regardless of whether
360  // they have been named or not.
361  //
362  if (Ty->isPrimitiveType() && !isa<OpaqueType>(Ty))
363    return Out << Ty->getDescription();
364
365  // Check to see if the type is named.
366  std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
367  if (I != TypeNames.end()) return Out << I->second;
368
369  // Otherwise we have a type that has not been named but is a derived type.
370  // Carefully recurse the type hierarchy to print out any contained symbolic
371  // names.
372  //
373  std::vector<const Type *> TypeStack;
374  std::string TypeName;
375  calcTypeName(Ty, TypeStack, TypeNames, TypeName);
376  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
377  return (Out << TypeName);
378}
379
380
381/// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
382/// type, iff there is an entry in the modules symbol table for the specified
383/// type or one of it's component types. This is slower than a simple x << Type
384///
385std::ostream &llvm::WriteTypeSymbolic(std::ostream &Out, const Type *Ty,
386                                      const Module *M) {
387  Out << ' ';
388
389  // If they want us to print out a type, attempt to make it symbolic if there
390  // is a symbol table in the module...
391  if (M) {
392    std::map<const Type *, std::string> TypeNames;
393    fillTypeNameTable(M, TypeNames);
394
395    return printTypeInt(Out, Ty, TypeNames);
396  } else {
397    return Out << Ty->getDescription();
398  }
399}
400
401// PrintEscapedString - Print each character of the specified string, escaping
402// it if it is not printable or if it is an escape char.
403static void PrintEscapedString(const std::string &Str, std::ostream &Out) {
404  for (unsigned i = 0, e = Str.size(); i != e; ++i) {
405    unsigned char C = Str[i];
406    if (isprint(C) && C != '"' && C != '\\') {
407      Out << C;
408    } else {
409      Out << '\\'
410          << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
411          << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
412    }
413  }
414}
415
416/// @brief Internal constant writer.
417static void WriteConstantInt(std::ostream &Out, const Constant *CV,
418                             bool PrintName,
419                             std::map<const Type *, std::string> &TypeTable,
420                             SlotMachine *Machine) {
421  const int IndentSize = 4;
422  static std::string Indent = "\n";
423  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
424    Out << (CB == ConstantBool::True ? "true" : "false");
425  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
426    Out << CI->getValue();
427  } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
428    Out << CI->getValue();
429  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
430    // We would like to output the FP constant value in exponential notation,
431    // but we cannot do this if doing so will lose precision.  Check here to
432    // make sure that we only output it in exponential format if we can parse
433    // the value back and get the same value.
434    //
435    std::string StrVal = ftostr(CFP->getValue());
436
437    // Check to make sure that the stringized number is not some string like
438    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
439    // the string matches the "[-+]?[0-9]" regex.
440    //
441    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
442        ((StrVal[0] == '-' || StrVal[0] == '+') &&
443         (StrVal[1] >= '0' && StrVal[1] <= '9')))
444      // Reparse stringized version!
445      if (atof(StrVal.c_str()) == CFP->getValue()) {
446        Out << StrVal;
447        return;
448      }
449
450    // Otherwise we could not reparse it to exactly the same value, so we must
451    // output the string in hexadecimal format!
452    assert(sizeof(double) == sizeof(uint64_t) &&
453           "assuming that double is 64 bits!");
454    Out << "0x" << utohexstr(DoubleToBits(CFP->getValue()));
455
456  } else if (isa<ConstantAggregateZero>(CV)) {
457    Out << "zeroinitializer";
458  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
459    // As a special case, print the array as a string if it is an array of
460    // ubytes or an array of sbytes with positive values.
461    //
462    const Type *ETy = CA->getType()->getElementType();
463    if (CA->isString()) {
464      Out << "c\"";
465      PrintEscapedString(CA->getAsString(), Out);
466      Out << "\"";
467
468    } else {                // Cannot output in string format...
469      Out << '[';
470      if (CA->getNumOperands()) {
471        Out << ' ';
472        printTypeInt(Out, ETy, TypeTable);
473        WriteAsOperandInternal(Out, CA->getOperand(0),
474                               PrintName, TypeTable, Machine);
475        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
476          Out << ", ";
477          printTypeInt(Out, ETy, TypeTable);
478          WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
479                                 TypeTable, Machine);
480        }
481      }
482      Out << " ]";
483    }
484  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
485    Out << '{';
486    unsigned N = CS->getNumOperands();
487    if (N) {
488      if (N > 2) {
489        Indent += std::string(IndentSize, ' ');
490        Out << Indent;
491      } else {
492        Out << ' ';
493      }
494      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
495
496      WriteAsOperandInternal(Out, CS->getOperand(0),
497                             PrintName, TypeTable, Machine);
498
499      for (unsigned i = 1; i < N; i++) {
500        Out << ", ";
501        if (N > 2) Out << Indent;
502        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
503
504        WriteAsOperandInternal(Out, CS->getOperand(i),
505                               PrintName, TypeTable, Machine);
506      }
507      if (N > 2) Indent.resize(Indent.size() - IndentSize);
508    }
509
510    Out << " }";
511  } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CV)) {
512      const Type *ETy = CP->getType()->getElementType();
513      assert(CP->getNumOperands() > 0 &&
514             "Number of operands for a PackedConst must be > 0");
515      Out << '<';
516      Out << ' ';
517      printTypeInt(Out, ETy, TypeTable);
518      WriteAsOperandInternal(Out, CP->getOperand(0),
519                             PrintName, TypeTable, Machine);
520      for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
521          Out << ", ";
522          printTypeInt(Out, ETy, TypeTable);
523          WriteAsOperandInternal(Out, CP->getOperand(i), PrintName,
524                                 TypeTable, Machine);
525      }
526      Out << " >";
527  } else if (isa<ConstantPointerNull>(CV)) {
528    Out << "null";
529
530  } else if (isa<UndefValue>(CV)) {
531    Out << "undef";
532
533  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
534    Out << CE->getOpcodeName() << " (";
535
536    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
537      printTypeInt(Out, (*OI)->getType(), TypeTable);
538      WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Machine);
539      if (OI+1 != CE->op_end())
540        Out << ", ";
541    }
542
543    if (CE->getOpcode() == Instruction::Cast) {
544      Out << " to ";
545      printTypeInt(Out, CE->getType(), TypeTable);
546    }
547    Out << ')';
548
549  } else {
550    Out << "<placeholder or erroneous Constant>";
551  }
552}
553
554
555/// WriteAsOperand - Write the name of the specified value out to the specified
556/// ostream.  This can be useful when you just want to print int %reg126, not
557/// the whole instruction that generated it.
558///
559static void WriteAsOperandInternal(std::ostream &Out, const Value *V,
560                                   bool PrintName,
561                                  std::map<const Type*, std::string> &TypeTable,
562                                   SlotMachine *Machine) {
563  Out << ' ';
564  if ((PrintName || isa<GlobalValue>(V)) && V->hasName())
565    Out << getLLVMName(V->getName());
566  else {
567    const Constant *CV = dyn_cast<Constant>(V);
568    if (CV && !isa<GlobalValue>(CV)) {
569      WriteConstantInt(Out, CV, PrintName, TypeTable, Machine);
570    } else if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
571      Out << "asm ";
572      if (IA->hasSideEffects())
573        Out << "sideeffect ";
574      Out << '"';
575      PrintEscapedString(IA->getAsmString(), Out);
576      Out << "\", \"";
577      PrintEscapedString(IA->getConstraintString(), Out);
578      Out << '"';
579    } else {
580      int Slot;
581      if (Machine) {
582        Slot = Machine->getSlot(V);
583      } else {
584        Machine = createSlotMachine(V);
585        if (Machine)
586          Slot = Machine->getSlot(V);
587        else
588          Slot = -1;
589        delete Machine;
590      }
591      if (Slot != -1)
592        Out << '%' << Slot;
593      else
594        Out << "<badref>";
595    }
596  }
597}
598
599/// WriteAsOperand - Write the name of the specified value out to the specified
600/// ostream.  This can be useful when you just want to print int %reg126, not
601/// the whole instruction that generated it.
602///
603std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Value *V,
604                                   bool PrintType, bool PrintName,
605                                   const Module *Context) {
606  std::map<const Type *, std::string> TypeNames;
607  if (Context == 0) Context = getModuleFromVal(V);
608
609  if (Context)
610    fillTypeNameTable(Context, TypeNames);
611
612  if (PrintType)
613    printTypeInt(Out, V->getType(), TypeNames);
614
615  WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
616  return Out;
617}
618
619/// WriteAsOperandInternal - Write the name of the specified value out to
620/// the specified ostream.  This can be useful when you just want to print
621/// int %reg126, not the whole instruction that generated it.
622///
623static void WriteAsOperandInternal(std::ostream &Out, const Type *T,
624                                   bool PrintName,
625                                  std::map<const Type*, std::string> &TypeTable,
626                                   SlotMachine *Machine) {
627  Out << ' ';
628  int Slot;
629  if (Machine) {
630    Slot = Machine->getSlot(T);
631    if (Slot != -1)
632      Out << '%' << Slot;
633    else
634      Out << "<badref>";
635  } else {
636    Out << T->getDescription();
637  }
638}
639
640/// WriteAsOperand - Write the name of the specified value out to the specified
641/// ostream.  This can be useful when you just want to print int %reg126, not
642/// the whole instruction that generated it.
643///
644std::ostream &llvm::WriteAsOperand(std::ostream &Out, const Type *Ty,
645                                   bool PrintType, bool PrintName,
646                                   const Module *Context) {
647  std::map<const Type *, std::string> TypeNames;
648  assert(Context != 0 && "Can't write types as operand without module context");
649
650  fillTypeNameTable(Context, TypeNames);
651
652  // if (PrintType)
653    // printTypeInt(Out, V->getType(), TypeNames);
654
655  printTypeInt(Out, Ty, TypeNames);
656
657  WriteAsOperandInternal(Out, Ty, PrintName, TypeNames, 0);
658  return Out;
659}
660
661namespace llvm {
662
663class AssemblyWriter {
664  std::ostream &Out;
665  SlotMachine &Machine;
666  const Module *TheModule;
667  std::map<const Type *, std::string> TypeNames;
668  AssemblyAnnotationWriter *AnnotationWriter;
669public:
670  inline AssemblyWriter(std::ostream &o, SlotMachine &Mac, const Module *M,
671                        AssemblyAnnotationWriter *AAW)
672    : Out(o), Machine(Mac), TheModule(M), AnnotationWriter(AAW) {
673
674    // If the module has a symbol table, take all global types and stuff their
675    // names into the TypeNames map.
676    //
677    fillTypeNameTable(M, TypeNames);
678  }
679
680  inline void write(const Module *M)         { printModule(M);      }
681  inline void write(const GlobalVariable *G) { printGlobal(G);      }
682  inline void write(const Function *F)       { printFunction(F);    }
683  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
684  inline void write(const Instruction *I)    { printInstruction(*I); }
685  inline void write(const Constant *CPV)     { printConstant(CPV);  }
686  inline void write(const Type *Ty)          { printType(Ty);       }
687
688  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
689
690  const Module* getModule() { return TheModule; }
691
692private:
693  void printModule(const Module *M);
694  void printSymbolTable(const SymbolTable &ST);
695  void printConstant(const Constant *CPV);
696  void printGlobal(const GlobalVariable *GV);
697  void printFunction(const Function *F);
698  void printArgument(const Argument *FA);
699  void printBasicBlock(const BasicBlock *BB);
700  void printInstruction(const Instruction &I);
701
702  // printType - Go to extreme measures to attempt to print out a short,
703  // symbolic version of a type name.
704  //
705  std::ostream &printType(const Type *Ty) {
706    return printTypeInt(Out, Ty, TypeNames);
707  }
708
709  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
710  // without considering any symbolic types that we may have equal to it.
711  //
712  std::ostream &printTypeAtLeastOneLevel(const Type *Ty);
713
714  // printInfoComment - Print a little comment after the instruction indicating
715  // which slot it occupies.
716  void printInfoComment(const Value &V);
717};
718}  // end of llvm namespace
719
720/// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
721/// without considering any symbolic types that we may have equal to it.
722///
723std::ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
724  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
725    printType(FTy->getReturnType()) << " (";
726    for (FunctionType::param_iterator I = FTy->param_begin(),
727           E = FTy->param_end(); I != E; ++I) {
728      if (I != FTy->param_begin())
729        Out << ", ";
730      printType(*I);
731    }
732    if (FTy->isVarArg()) {
733      if (FTy->getNumParams()) Out << ", ";
734      Out << "...";
735    }
736    Out << ')';
737  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
738    Out << "{ ";
739    for (StructType::element_iterator I = STy->element_begin(),
740           E = STy->element_end(); I != E; ++I) {
741      if (I != STy->element_begin())
742        Out << ", ";
743      printType(*I);
744    }
745    Out << " }";
746  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
747    printType(PTy->getElementType()) << '*';
748  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
749    Out << '[' << ATy->getNumElements() << " x ";
750    printType(ATy->getElementType()) << ']';
751  } else if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
752    Out << '<' << PTy->getNumElements() << " x ";
753    printType(PTy->getElementType()) << '>';
754  }
755  else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
756    Out << "opaque";
757  } else {
758    if (!Ty->isPrimitiveType())
759      Out << "<unknown derived type>";
760    printType(Ty);
761  }
762  return Out;
763}
764
765
766void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
767                                  bool PrintName) {
768  if (Operand != 0) {
769    if (PrintType) { Out << ' '; printType(Operand->getType()); }
770    WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Machine);
771  } else {
772    Out << "<null operand!>";
773  }
774}
775
776
777void AssemblyWriter::printModule(const Module *M) {
778  if (!M->getModuleIdentifier().empty() &&
779      // Don't print the ID if it will start a new line (which would
780      // require a comment char before it).
781      M->getModuleIdentifier().find('\n') == std::string::npos)
782    Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
783
784  switch (M->getEndianness()) {
785  case Module::LittleEndian: Out << "target endian = little\n"; break;
786  case Module::BigEndian:    Out << "target endian = big\n";    break;
787  case Module::AnyEndianness: break;
788  }
789  switch (M->getPointerSize()) {
790  case Module::Pointer32:    Out << "target pointersize = 32\n"; break;
791  case Module::Pointer64:    Out << "target pointersize = 64\n"; break;
792  case Module::AnyPointerSize: break;
793  }
794  if (!M->getTargetTriple().empty())
795    Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
796
797  if (!M->getModuleInlineAsm().empty()) {
798    // Split the string into lines, to make it easier to read the .ll file.
799    std::string Asm = M->getModuleInlineAsm();
800    size_t CurPos = 0;
801    size_t NewLine = Asm.find_first_of('\n', CurPos);
802    while (NewLine != std::string::npos) {
803      // We found a newline, print the portion of the asm string from the
804      // last newline up to this newline.
805      Out << "module asm \"";
806      PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.begin()+NewLine),
807                         Out);
808      Out << "\"\n";
809      CurPos = NewLine+1;
810      NewLine = Asm.find_first_of('\n', CurPos);
811    }
812    Out << "module asm \"";
813    PrintEscapedString(std::string(Asm.begin()+CurPos, Asm.end()), Out);
814    Out << "\"\n";
815  }
816
817  // Loop over the dependent libraries and emit them.
818  Module::lib_iterator LI = M->lib_begin();
819  Module::lib_iterator LE = M->lib_end();
820  if (LI != LE) {
821    Out << "deplibs = [ ";
822    while (LI != LE) {
823      Out << '"' << *LI << '"';
824      ++LI;
825      if (LI != LE)
826        Out << ", ";
827    }
828    Out << " ]\n";
829  }
830
831  // Loop over the symbol table, emitting all named constants.
832  printSymbolTable(M->getSymbolTable());
833
834  for (Module::const_global_iterator I = M->global_begin(), E = M->global_end(); I != E; ++I)
835    printGlobal(I);
836
837  Out << "\nimplementation   ; Functions:\n";
838
839  // Output all of the functions.
840  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
841    printFunction(I);
842}
843
844void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
845  if (GV->hasName()) Out << getLLVMName(GV->getName()) << " = ";
846
847  if (!GV->hasInitializer())
848    switch (GV->getLinkage()) {
849     case GlobalValue::DLLImportLinkage:   Out << "dllimport "; break;
850     case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
851     default: Out << "external "; break;
852    }
853  else
854    switch (GV->getLinkage()) {
855    case GlobalValue::InternalLinkage:     Out << "internal "; break;
856    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
857    case GlobalValue::WeakLinkage:         Out << "weak "; break;
858    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
859    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
860    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
861    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
862    case GlobalValue::ExternalLinkage:     break;
863    case GlobalValue::GhostLinkage:
864      std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
865      abort();
866    }
867
868  Out << (GV->isConstant() ? "constant " : "global ");
869  printType(GV->getType()->getElementType());
870
871  if (GV->hasInitializer()) {
872    Constant* C = cast<Constant>(GV->getInitializer());
873    assert(C &&  "GlobalVar initializer isn't constant?");
874    writeOperand(GV->getInitializer(), false, isa<GlobalValue>(C));
875  }
876
877  if (GV->hasSection())
878    Out << ", section \"" << GV->getSection() << '"';
879  if (GV->getAlignment())
880    Out << ", align " << GV->getAlignment();
881
882  printInfoComment(*GV);
883  Out << "\n";
884}
885
886
887// printSymbolTable - Run through symbol table looking for constants
888// and types. Emit their declarations.
889void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
890
891  // Print the types.
892  for (SymbolTable::type_const_iterator TI = ST.type_begin();
893       TI != ST.type_end(); ++TI ) {
894    Out << "\t" << getLLVMName(TI->first) << " = type ";
895
896    // Make sure we print out at least one level of the type structure, so
897    // that we do not get %FILE = type %FILE
898    //
899    printTypeAtLeastOneLevel(TI->second) << "\n";
900  }
901
902  // Print the constants, in type plane order.
903  for (SymbolTable::plane_const_iterator PI = ST.plane_begin();
904       PI != ST.plane_end(); ++PI ) {
905    SymbolTable::value_const_iterator VI = ST.value_begin(PI->first);
906    SymbolTable::value_const_iterator VE = ST.value_end(PI->first);
907
908    for (; VI != VE; ++VI) {
909      const Value* V = VI->second;
910      const Constant *CPV = dyn_cast<Constant>(V) ;
911      if (CPV && !isa<GlobalValue>(V)) {
912        printConstant(CPV);
913      }
914    }
915  }
916}
917
918
919/// printConstant - Print out a constant pool entry...
920///
921void AssemblyWriter::printConstant(const Constant *CPV) {
922  // Don't print out unnamed constants, they will be inlined
923  if (!CPV->hasName()) return;
924
925  // Print out name...
926  Out << "\t" << getLLVMName(CPV->getName()) << " =";
927
928  // Write the value out now...
929  writeOperand(CPV, true, false);
930
931  printInfoComment(*CPV);
932  Out << "\n";
933}
934
935/// printFunction - Print all aspects of a function.
936///
937void AssemblyWriter::printFunction(const Function *F) {
938  // Print out the return type and name...
939  Out << "\n";
940
941  // Ensure that no local symbols conflict with global symbols.
942  const_cast<Function*>(F)->renameLocalSymbols();
943
944  if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
945
946  if (F->isExternal())
947    switch (F->getLinkage()) {
948    case GlobalValue::DLLImportLinkage:    Out << "declare dllimport "; break;
949    case GlobalValue::ExternalWeakLinkage: Out << "declare extern_weak "; break;
950    default: Out << "declare ";
951    }
952  else
953    switch (F->getLinkage()) {
954    case GlobalValue::InternalLinkage:     Out << "internal "; break;
955    case GlobalValue::LinkOnceLinkage:     Out << "linkonce "; break;
956    case GlobalValue::WeakLinkage:         Out << "weak "; break;
957    case GlobalValue::AppendingLinkage:    Out << "appending "; break;
958    case GlobalValue::DLLImportLinkage:    Out << "dllimport "; break;
959    case GlobalValue::DLLExportLinkage:    Out << "dllexport "; break;
960    case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
961    case GlobalValue::ExternalLinkage: break;
962    case GlobalValue::GhostLinkage:
963      std::cerr << "GhostLinkage not allowed in AsmWriter!\n";
964      abort();
965    }
966
967  // Print the calling convention.
968  switch (F->getCallingConv()) {
969  case CallingConv::C: break;   // default
970  case CallingConv::CSRet:        Out << "csretcc "; break;
971  case CallingConv::Fast:         Out << "fastcc "; break;
972  case CallingConv::Cold:         Out << "coldcc "; break;
973  case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
974  case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
975  default: Out << "cc" << F->getCallingConv() << " "; break;
976  }
977
978  printType(F->getReturnType()) << ' ';
979  if (!F->getName().empty())
980    Out << getLLVMName(F->getName());
981  else
982    Out << "\"\"";
983  Out << '(';
984  Machine.incorporateFunction(F);
985
986  // Loop over the arguments, printing them...
987  const FunctionType *FT = F->getFunctionType();
988
989  for(Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
990    printArgument(I);
991
992  // Finish printing arguments...
993  if (FT->isVarArg()) {
994    if (FT->getNumParams()) Out << ", ";
995    Out << "...";  // Output varargs portion of signature!
996  }
997  Out << ')';
998
999  if (F->hasSection())
1000    Out << " section \"" << F->getSection() << '"';
1001  if (F->getAlignment())
1002    Out << " align " << F->getAlignment();
1003
1004  if (F->isExternal()) {
1005    Out << "\n";
1006  } else {
1007    Out << " {";
1008
1009    // Output all of its basic blocks... for the function
1010    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
1011      printBasicBlock(I);
1012
1013    Out << "}\n";
1014  }
1015
1016  Machine.purgeFunction();
1017}
1018
1019/// printArgument - This member is called for every argument that is passed into
1020/// the function.  Simply print it out
1021///
1022void AssemblyWriter::printArgument(const Argument *Arg) {
1023  // Insert commas as we go... the first arg doesn't get a comma
1024  if (Arg != Arg->getParent()->arg_begin()) Out << ", ";
1025
1026  // Output type...
1027  printType(Arg->getType());
1028
1029  // Output name, if available...
1030  if (Arg->hasName())
1031    Out << ' ' << getLLVMName(Arg->getName());
1032}
1033
1034/// printBasicBlock - This member is called for each basic block in a method.
1035///
1036void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
1037  if (BB->hasName()) {              // Print out the label if it exists...
1038    Out << "\n" << getLLVMName(BB->getName(), false) << ':';
1039  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
1040    Out << "\n; <label>:";
1041    int Slot = Machine.getSlot(BB);
1042    if (Slot != -1)
1043      Out << Slot;
1044    else
1045      Out << "<badref>";
1046  }
1047
1048  if (BB->getParent() == 0)
1049    Out << "\t\t; Error: Block without parent!";
1050  else {
1051    if (BB != &BB->getParent()->front()) {  // Not the entry block?
1052      // Output predecessors for the block...
1053      Out << "\t\t;";
1054      pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
1055
1056      if (PI == PE) {
1057        Out << " No predecessors!";
1058      } else {
1059        Out << " preds =";
1060        writeOperand(*PI, false, true);
1061        for (++PI; PI != PE; ++PI) {
1062          Out << ',';
1063          writeOperand(*PI, false, true);
1064        }
1065      }
1066    }
1067  }
1068
1069  Out << "\n";
1070
1071  if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
1072
1073  // Output all of the instructions in the basic block...
1074  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
1075    printInstruction(*I);
1076
1077  if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
1078}
1079
1080
1081/// printInfoComment - Print a little comment after the instruction indicating
1082/// which slot it occupies.
1083///
1084void AssemblyWriter::printInfoComment(const Value &V) {
1085  if (V.getType() != Type::VoidTy) {
1086    Out << "\t\t; <";
1087    printType(V.getType()) << '>';
1088
1089    if (!V.hasName()) {
1090      int SlotNum = Machine.getSlot(&V);
1091      if (SlotNum == -1)
1092        Out << ":<badref>";
1093      else
1094        Out << ':' << SlotNum; // Print out the def slot taken.
1095    }
1096    Out << " [#uses=" << V.getNumUses() << ']';  // Output # uses
1097  }
1098}
1099
1100// This member is called for each Instruction in a function..
1101void AssemblyWriter::printInstruction(const Instruction &I) {
1102  if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
1103
1104  Out << "\t";
1105
1106  // Print out name if it exists...
1107  if (I.hasName())
1108    Out << getLLVMName(I.getName()) << " = ";
1109
1110  // If this is a volatile load or store, print out the volatile marker.
1111  if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
1112      (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile())) {
1113      Out << "volatile ";
1114  } else if (isa<CallInst>(I) && cast<CallInst>(I).isTailCall()) {
1115    // If this is a call, check if it's a tail call.
1116    Out << "tail ";
1117  }
1118
1119  // Print out the opcode...
1120  Out << I.getOpcodeName();
1121
1122  // Print out the type of the operands...
1123  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
1124
1125  // Special case conditional branches to swizzle the condition out to the front
1126  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
1127    writeOperand(I.getOperand(2), true);
1128    Out << ',';
1129    writeOperand(Operand, true);
1130    Out << ',';
1131    writeOperand(I.getOperand(1), true);
1132
1133  } else if (isa<SwitchInst>(I)) {
1134    // Special case switch statement to get formatting nice and correct...
1135    writeOperand(Operand        , true); Out << ',';
1136    writeOperand(I.getOperand(1), true); Out << " [";
1137
1138    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
1139      Out << "\n\t\t";
1140      writeOperand(I.getOperand(op  ), true); Out << ',';
1141      writeOperand(I.getOperand(op+1), true);
1142    }
1143    Out << "\n\t]";
1144  } else if (isa<PHINode>(I)) {
1145    Out << ' ';
1146    printType(I.getType());
1147    Out << ' ';
1148
1149    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
1150      if (op) Out << ", ";
1151      Out << '[';
1152      writeOperand(I.getOperand(op  ), false); Out << ',';
1153      writeOperand(I.getOperand(op+1), false); Out << " ]";
1154    }
1155  } else if (isa<ReturnInst>(I) && !Operand) {
1156    Out << " void";
1157  } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
1158    // Print the calling convention being used.
1159    switch (CI->getCallingConv()) {
1160    case CallingConv::C: break;   // default
1161    case CallingConv::CSRet: Out << " csretcc"; break;
1162    case CallingConv::Fast:  Out << " fastcc"; break;
1163    case CallingConv::Cold:  Out << " coldcc"; break;
1164    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1165    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1166    default: Out << " cc" << CI->getCallingConv(); break;
1167    }
1168
1169    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1170    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1171    const Type       *RetTy = FTy->getReturnType();
1172
1173    // If possible, print out the short form of the call instruction.  We can
1174    // only do this if the first argument is a pointer to a nonvararg function,
1175    // and if the return type is not a pointer to a function.
1176    //
1177    if (!FTy->isVarArg() &&
1178        (!isa<PointerType>(RetTy) ||
1179         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1180      Out << ' '; printType(RetTy);
1181      writeOperand(Operand, false);
1182    } else {
1183      writeOperand(Operand, true);
1184    }
1185    Out << '(';
1186    if (CI->getNumOperands() > 1) writeOperand(CI->getOperand(1), true);
1187    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
1188      Out << ',';
1189      writeOperand(I.getOperand(op), true);
1190    }
1191
1192    Out << " )";
1193  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
1194    const PointerType  *PTy = cast<PointerType>(Operand->getType());
1195    const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
1196    const Type       *RetTy = FTy->getReturnType();
1197
1198    // Print the calling convention being used.
1199    switch (II->getCallingConv()) {
1200    case CallingConv::C: break;   // default
1201    case CallingConv::CSRet: Out << " csretcc"; break;
1202    case CallingConv::Fast:  Out << " fastcc"; break;
1203    case CallingConv::Cold:  Out << " coldcc"; break;
1204    case CallingConv::X86_StdCall:  Out << "x86_stdcallcc "; break;
1205    case CallingConv::X86_FastCall: Out << "x86_fastcallcc "; break;
1206    default: Out << " cc" << II->getCallingConv(); break;
1207    }
1208
1209    // If possible, print out the short form of the invoke instruction. We can
1210    // only do this if the first argument is a pointer to a nonvararg function,
1211    // and if the return type is not a pointer to a function.
1212    //
1213    if (!FTy->isVarArg() &&
1214        (!isa<PointerType>(RetTy) ||
1215         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
1216      Out << ' '; printType(RetTy);
1217      writeOperand(Operand, false);
1218    } else {
1219      writeOperand(Operand, true);
1220    }
1221
1222    Out << '(';
1223    if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
1224    for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
1225      Out << ',';
1226      writeOperand(I.getOperand(op), true);
1227    }
1228
1229    Out << " )\n\t\t\tto";
1230    writeOperand(II->getNormalDest(), true);
1231    Out << " unwind";
1232    writeOperand(II->getUnwindDest(), true);
1233
1234  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
1235    Out << ' ';
1236    printType(AI->getType()->getElementType());
1237    if (AI->isArrayAllocation()) {
1238      Out << ',';
1239      writeOperand(AI->getArraySize(), true);
1240    }
1241    if (AI->getAlignment()) {
1242      Out << ", align " << AI->getAlignment();
1243    }
1244  } else if (isa<CastInst>(I)) {
1245    if (Operand) writeOperand(Operand, true);   // Work with broken code
1246    Out << " to ";
1247    printType(I.getType());
1248  } else if (isa<VAArgInst>(I)) {
1249    if (Operand) writeOperand(Operand, true);   // Work with broken code
1250    Out << ", ";
1251    printType(I.getType());
1252  } else if (Operand) {   // Print the normal way...
1253
1254    // PrintAllTypes - Instructions who have operands of all the same type
1255    // omit the type from all but the first operand.  If the instruction has
1256    // different type operands (for example br), then they are all printed.
1257    bool PrintAllTypes = false;
1258    const Type *TheType = Operand->getType();
1259
1260    // Shift Left & Right print both types even for Ubyte LHS, and select prints
1261    // types even if all operands are bools.
1262    if (isa<ShiftInst>(I) || isa<SelectInst>(I) || isa<StoreInst>(I) ||
1263        isa<ShuffleVectorInst>(I)) {
1264      PrintAllTypes = true;
1265    } else {
1266      for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
1267        Operand = I.getOperand(i);
1268        if (Operand->getType() != TheType) {
1269          PrintAllTypes = true;    // We have differing types!  Print them all!
1270          break;
1271        }
1272      }
1273    }
1274
1275    if (!PrintAllTypes) {
1276      Out << ' ';
1277      printType(TheType);
1278    }
1279
1280    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
1281      if (i) Out << ',';
1282      writeOperand(I.getOperand(i), PrintAllTypes);
1283    }
1284  }
1285
1286  printInfoComment(I);
1287  Out << "\n";
1288}
1289
1290
1291//===----------------------------------------------------------------------===//
1292//                       External Interface declarations
1293//===----------------------------------------------------------------------===//
1294
1295void Module::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1296  SlotMachine SlotTable(this);
1297  AssemblyWriter W(o, SlotTable, this, AAW);
1298  W.write(this);
1299}
1300
1301void GlobalVariable::print(std::ostream &o) const {
1302  SlotMachine SlotTable(getParent());
1303  AssemblyWriter W(o, SlotTable, getParent(), 0);
1304  W.write(this);
1305}
1306
1307void Function::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1308  SlotMachine SlotTable(getParent());
1309  AssemblyWriter W(o, SlotTable, getParent(), AAW);
1310
1311  W.write(this);
1312}
1313
1314void InlineAsm::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1315  WriteAsOperand(o, this, true, true, 0);
1316}
1317
1318void BasicBlock::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1319  SlotMachine SlotTable(getParent());
1320  AssemblyWriter W(o, SlotTable,
1321                   getParent() ? getParent()->getParent() : 0, AAW);
1322  W.write(this);
1323}
1324
1325void Instruction::print(std::ostream &o, AssemblyAnnotationWriter *AAW) const {
1326  const Function *F = getParent() ? getParent()->getParent() : 0;
1327  SlotMachine SlotTable(F);
1328  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0, AAW);
1329
1330  W.write(this);
1331}
1332
1333void Constant::print(std::ostream &o) const {
1334  if (this == 0) { o << "<null> constant value\n"; return; }
1335
1336  o << ' ' << getType()->getDescription() << ' ';
1337
1338  std::map<const Type *, std::string> TypeTable;
1339  WriteConstantInt(o, this, false, TypeTable, 0);
1340}
1341
1342void Type::print(std::ostream &o) const {
1343  if (this == 0)
1344    o << "<null Type>";
1345  else
1346    o << getDescription();
1347}
1348
1349void Argument::print(std::ostream &o) const {
1350  WriteAsOperand(o, this, true, true,
1351                 getParent() ? getParent()->getParent() : 0);
1352}
1353
1354// Value::dump - allow easy printing of  Values from the debugger.
1355// Located here because so much of the needed functionality is here.
1356void Value::dump() const { print(std::cerr); }
1357
1358// Type::dump - allow easy printing of  Values from the debugger.
1359// Located here because so much of the needed functionality is here.
1360void Type::dump() const { print(std::cerr); }
1361
1362//===----------------------------------------------------------------------===//
1363//  CachedWriter Class Implementation
1364//===----------------------------------------------------------------------===//
1365
1366void CachedWriter::setModule(const Module *M) {
1367  delete SC; delete AW;
1368  if (M) {
1369    SC = new SlotMachine(M );
1370    AW = new AssemblyWriter(Out, *SC, M, 0);
1371  } else {
1372    SC = 0; AW = 0;
1373  }
1374}
1375
1376CachedWriter::~CachedWriter() {
1377  delete AW;
1378  delete SC;
1379}
1380
1381CachedWriter &CachedWriter::operator<<(const Value &V) {
1382  assert(AW && SC && "CachedWriter does not have a current module!");
1383  if (const Instruction *I = dyn_cast<Instruction>(&V))
1384    AW->write(I);
1385  else if (const BasicBlock *BB = dyn_cast<BasicBlock>(&V))
1386    AW->write(BB);
1387  else if (const Function *F = dyn_cast<Function>(&V))
1388    AW->write(F);
1389  else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(&V))
1390    AW->write(GV);
1391  else
1392    AW->writeOperand(&V, true, true);
1393  return *this;
1394}
1395
1396CachedWriter& CachedWriter::operator<<(const Type &Ty) {
1397  if (SymbolicTypes) {
1398    const Module *M = AW->getModule();
1399    if (M) WriteTypeSymbolic(Out, &Ty, M);
1400  } else {
1401    AW->write(&Ty);
1402  }
1403  return *this;
1404}
1405
1406//===----------------------------------------------------------------------===//
1407//===--                    SlotMachine Implementation
1408//===----------------------------------------------------------------------===//
1409
1410#if 0
1411#define SC_DEBUG(X) std::cerr << X
1412#else
1413#define SC_DEBUG(X)
1414#endif
1415
1416// Module level constructor. Causes the contents of the Module (sans functions)
1417// to be added to the slot table.
1418SlotMachine::SlotMachine(const Module *M)
1419  : TheModule(M)    ///< Saved for lazy initialization.
1420  , TheFunction(0)
1421  , FunctionProcessed(false)
1422  , mMap()
1423  , mTypes()
1424  , fMap()
1425  , fTypes()
1426{
1427}
1428
1429// Function level constructor. Causes the contents of the Module and the one
1430// function provided to be added to the slot table.
1431SlotMachine::SlotMachine(const Function *F )
1432  : TheModule( F ? F->getParent() : 0 ) ///< Saved for lazy initialization
1433  , TheFunction(F) ///< Saved for lazy initialization
1434  , FunctionProcessed(false)
1435  , mMap()
1436  , mTypes()
1437  , fMap()
1438  , fTypes()
1439{
1440}
1441
1442inline void SlotMachine::initialize(void) {
1443  if ( TheModule) {
1444    processModule();
1445    TheModule = 0; ///< Prevent re-processing next time we're called.
1446  }
1447  if ( TheFunction && ! FunctionProcessed) {
1448    processFunction();
1449  }
1450}
1451
1452// Iterate through all the global variables, functions, and global
1453// variable initializers and create slots for them.
1454void SlotMachine::processModule() {
1455  SC_DEBUG("begin processModule!\n");
1456
1457  // Add all of the global variables to the value table...
1458  for (Module::const_global_iterator I = TheModule->global_begin(), E = TheModule->global_end();
1459       I != E; ++I)
1460    createSlot(I);
1461
1462  // Add all the functions to the table
1463  for (Module::const_iterator I = TheModule->begin(), E = TheModule->end();
1464       I != E; ++I)
1465    createSlot(I);
1466
1467  SC_DEBUG("end processModule!\n");
1468}
1469
1470
1471// Process the arguments, basic blocks, and instructions  of a function.
1472void SlotMachine::processFunction() {
1473  SC_DEBUG("begin processFunction!\n");
1474
1475  // Add all the function arguments
1476  for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1477      AE = TheFunction->arg_end(); AI != AE; ++AI)
1478    createSlot(AI);
1479
1480  SC_DEBUG("Inserting Instructions:\n");
1481
1482  // Add all of the basic blocks and instructions
1483  for (Function::const_iterator BB = TheFunction->begin(),
1484       E = TheFunction->end(); BB != E; ++BB) {
1485    createSlot(BB);
1486    for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
1487      createSlot(I);
1488    }
1489  }
1490
1491  FunctionProcessed = true;
1492
1493  SC_DEBUG("end processFunction!\n");
1494}
1495
1496// Clean up after incorporating a function. This is the only way
1497// to get out of the function incorporation state that affects the
1498// getSlot/createSlot lock. Function incorporation state is indicated
1499// by TheFunction != 0.
1500void SlotMachine::purgeFunction() {
1501  SC_DEBUG("begin purgeFunction!\n");
1502  fMap.clear(); // Simply discard the function level map
1503  fTypes.clear();
1504  TheFunction = 0;
1505  FunctionProcessed = false;
1506  SC_DEBUG("end purgeFunction!\n");
1507}
1508
1509/// Get the slot number for a value. This function will assert if you
1510/// ask for a Value that hasn't previously been inserted with createSlot.
1511/// Types are forbidden because Type does not inherit from Value (any more).
1512int SlotMachine::getSlot(const Value *V) {
1513  assert( V && "Can't get slot for null Value" );
1514  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1515    "Can't insert a non-GlobalValue Constant into SlotMachine");
1516
1517  // Check for uninitialized state and do lazy initialization
1518  this->initialize();
1519
1520  // Get the type of the value
1521  const Type* VTy = V->getType();
1522
1523  // Find the type plane in the module map
1524  TypedPlanes::const_iterator MI = mMap.find(VTy);
1525
1526  if ( TheFunction ) {
1527    // Lookup the type in the function map too
1528    TypedPlanes::const_iterator FI = fMap.find(VTy);
1529    // If there is a corresponding type plane in the function map
1530    if ( FI != fMap.end() ) {
1531      // Lookup the Value in the function map
1532      ValueMap::const_iterator FVI = FI->second.map.find(V);
1533      // If the value doesn't exist in the function map
1534      if ( FVI == FI->second.map.end() ) {
1535        // Look up the value in the module map.
1536        if (MI == mMap.end()) return -1;
1537        ValueMap::const_iterator MVI = MI->second.map.find(V);
1538        // If we didn't find it, it wasn't inserted
1539        if (MVI == MI->second.map.end()) return -1;
1540        assert( MVI != MI->second.map.end() && "Value not found");
1541        // We found it only at the module level
1542        return MVI->second;
1543
1544      // else the value exists in the function map
1545      } else {
1546        // Return the slot number as the module's contribution to
1547        // the type plane plus the index in the function's contribution
1548        // to the type plane.
1549        if (MI != mMap.end())
1550          return MI->second.next_slot + FVI->second;
1551        else
1552          return FVI->second;
1553      }
1554    }
1555  }
1556
1557  // N.B. Can get here only if either !TheFunction or the function doesn't
1558  // have a corresponding type plane for the Value
1559
1560  // Make sure the type plane exists
1561  if (MI == mMap.end()) return -1;
1562  // Lookup the value in the module's map
1563  ValueMap::const_iterator MVI = MI->second.map.find(V);
1564  // Make sure we found it.
1565  if (MVI == MI->second.map.end()) return -1;
1566  // Return it.
1567  return MVI->second;
1568}
1569
1570/// Get the slot number for a value. This function will assert if you
1571/// ask for a Value that hasn't previously been inserted with createSlot.
1572/// Types are forbidden because Type does not inherit from Value (any more).
1573int SlotMachine::getSlot(const Type *Ty) {
1574  assert( Ty && "Can't get slot for null Type" );
1575
1576  // Check for uninitialized state and do lazy initialization
1577  this->initialize();
1578
1579  if ( TheFunction ) {
1580    // Lookup the Type in the function map
1581    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
1582    // If the Type doesn't exist in the function map
1583    if ( FTI == fTypes.map.end() ) {
1584      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1585      // If we didn't find it, it wasn't inserted
1586      if (MTI == mTypes.map.end())
1587        return -1;
1588      // We found it only at the module level
1589      return MTI->second;
1590
1591    // else the value exists in the function map
1592    } else {
1593      // Return the slot number as the module's contribution to
1594      // the type plane plus the index in the function's contribution
1595      // to the type plane.
1596      return mTypes.next_slot + FTI->second;
1597    }
1598  }
1599
1600  // N.B. Can get here only if either !TheFunction
1601
1602  // Lookup the value in the module's map
1603  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1604  // Make sure we found it.
1605  if (MTI == mTypes.map.end()) return -1;
1606  // Return it.
1607  return MTI->second;
1608}
1609
1610// Create a new slot, or return the existing slot if it is already
1611// inserted. Note that the logic here parallels getSlot but instead
1612// of asserting when the Value* isn't found, it inserts the value.
1613unsigned SlotMachine::createSlot(const Value *V) {
1614  assert( V && "Can't insert a null Value to SlotMachine");
1615  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1616    "Can't insert a non-GlobalValue Constant into SlotMachine");
1617
1618  const Type* VTy = V->getType();
1619
1620  // Just ignore void typed things
1621  if (VTy == Type::VoidTy) return 0; // FIXME: Wrong return value!
1622
1623  // Look up the type plane for the Value's type from the module map
1624  TypedPlanes::const_iterator MI = mMap.find(VTy);
1625
1626  if ( TheFunction ) {
1627    // Get the type plane for the Value's type from the function map
1628    TypedPlanes::const_iterator FI = fMap.find(VTy);
1629    // If there is a corresponding type plane in the function map
1630    if ( FI != fMap.end() ) {
1631      // Lookup the Value in the function map
1632      ValueMap::const_iterator FVI = FI->second.map.find(V);
1633      // If the value doesn't exist in the function map
1634      if ( FVI == FI->second.map.end() ) {
1635        // If there is no corresponding type plane in the module map
1636        if ( MI == mMap.end() )
1637          return insertValue(V);
1638        // Look up the value in the module map
1639        ValueMap::const_iterator MVI = MI->second.map.find(V);
1640        // If we didn't find it, it wasn't inserted
1641        if ( MVI == MI->second.map.end() )
1642          return insertValue(V);
1643        else
1644          // We found it only at the module level
1645          return MVI->second;
1646
1647      // else the value exists in the function map
1648      } else {
1649        if ( MI == mMap.end() )
1650          return FVI->second;
1651        else
1652          // Return the slot number as the module's contribution to
1653          // the type plane plus the index in the function's contribution
1654          // to the type plane.
1655          return MI->second.next_slot + FVI->second;
1656      }
1657
1658    // else there is not a corresponding type plane in the function map
1659    } else {
1660      // If the type plane doesn't exists at the module level
1661      if ( MI == mMap.end() ) {
1662        return insertValue(V);
1663      // else type plane exists at the module level, examine it
1664      } else {
1665        // Look up the value in the module's map
1666        ValueMap::const_iterator MVI = MI->second.map.find(V);
1667        // If we didn't find it there either
1668        if ( MVI == MI->second.map.end() )
1669          // Return the slot number as the module's contribution to
1670          // the type plane plus the index of the function map insertion.
1671          return MI->second.next_slot + insertValue(V);
1672        else
1673          return MVI->second;
1674      }
1675    }
1676  }
1677
1678  // N.B. Can only get here if !TheFunction
1679
1680  // If the module map's type plane is not for the Value's type
1681  if ( MI != mMap.end() ) {
1682    // Lookup the value in the module's map
1683    ValueMap::const_iterator MVI = MI->second.map.find(V);
1684    if ( MVI != MI->second.map.end() )
1685      return MVI->second;
1686  }
1687
1688  return insertValue(V);
1689}
1690
1691// Create a new slot, or return the existing slot if it is already
1692// inserted. Note that the logic here parallels getSlot but instead
1693// of asserting when the Value* isn't found, it inserts the value.
1694unsigned SlotMachine::createSlot(const Type *Ty) {
1695  assert( Ty && "Can't insert a null Type to SlotMachine");
1696
1697  if ( TheFunction ) {
1698    // Lookup the Type in the function map
1699    TypeMap::const_iterator FTI = fTypes.map.find(Ty);
1700    // If the type doesn't exist in the function map
1701    if ( FTI == fTypes.map.end() ) {
1702      // Look up the type in the module map
1703      TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1704      // If we didn't find it, it wasn't inserted
1705      if ( MTI == mTypes.map.end() )
1706        return insertValue(Ty);
1707      else
1708        // We found it only at the module level
1709        return MTI->second;
1710
1711    // else the value exists in the function map
1712    } else {
1713      // Return the slot number as the module's contribution to
1714      // the type plane plus the index in the function's contribution
1715      // to the type plane.
1716      return mTypes.next_slot + FTI->second;
1717    }
1718  }
1719
1720  // N.B. Can only get here if !TheFunction
1721
1722  // Lookup the type in the module's map
1723  TypeMap::const_iterator MTI = mTypes.map.find(Ty);
1724  if ( MTI != mTypes.map.end() )
1725    return MTI->second;
1726
1727  return insertValue(Ty);
1728}
1729
1730// Low level insert function. Minimal checking is done. This
1731// function is just for the convenience of createSlot (above).
1732unsigned SlotMachine::insertValue(const Value *V ) {
1733  assert(V && "Can't insert a null Value into SlotMachine!");
1734  assert(!isa<Constant>(V) || isa<GlobalValue>(V) &&
1735    "Can't insert a non-GlobalValue Constant into SlotMachine");
1736
1737  // If this value does not contribute to a plane (is void)
1738  // or if the value already has a name then ignore it.
1739  if (V->getType() == Type::VoidTy || V->hasName() ) {
1740      SC_DEBUG("ignored value " << *V << "\n");
1741      return 0;   // FIXME: Wrong return value
1742  }
1743
1744  const Type *VTy = V->getType();
1745  unsigned DestSlot = 0;
1746
1747  if ( TheFunction ) {
1748    TypedPlanes::iterator I = fMap.find( VTy );
1749    if ( I == fMap.end() )
1750      I = fMap.insert(std::make_pair(VTy,ValuePlane())).first;
1751    DestSlot = I->second.map[V] = I->second.next_slot++;
1752  } else {
1753    TypedPlanes::iterator I = mMap.find( VTy );
1754    if ( I == mMap.end() )
1755      I = mMap.insert(std::make_pair(VTy,ValuePlane())).first;
1756    DestSlot = I->second.map[V] = I->second.next_slot++;
1757  }
1758
1759  SC_DEBUG("  Inserting value [" << VTy << "] = " << V << " slot=" <<
1760           DestSlot << " [");
1761  // G = Global, C = Constant, T = Type, F = Function, o = other
1762  SC_DEBUG((isa<GlobalVariable>(V) ? 'G' : (isa<Function>(V) ? 'F' :
1763           (isa<Constant>(V) ? 'C' : 'o'))));
1764  SC_DEBUG("]\n");
1765  return DestSlot;
1766}
1767
1768// Low level insert function. Minimal checking is done. This
1769// function is just for the convenience of createSlot (above).
1770unsigned SlotMachine::insertValue(const Type *Ty ) {
1771  assert(Ty && "Can't insert a null Type into SlotMachine!");
1772
1773  unsigned DestSlot = 0;
1774
1775  if ( TheFunction ) {
1776    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
1777  } else {
1778    DestSlot = fTypes.map[Ty] = fTypes.next_slot++;
1779  }
1780  SC_DEBUG("  Inserting type [" << DestSlot << "] = " << Ty << "\n");
1781  return DestSlot;
1782}
1783
1784// vim: sw=2
1785