Instructions.cpp revision 0a5372ed3e8cda10d724feda3c1a1c998db05ca0
1//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements all of the non-inline methods for the LLVM instruction
11// classes.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Constants.h"
16#include "llvm/DerivedTypes.h"
17#include "llvm/Function.h"
18#include "llvm/Instructions.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/CallSite.h"
21#include "llvm/Support/ConstantRange.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Support/Streams.h"
24using namespace llvm;
25
26//===----------------------------------------------------------------------===//
27//                            CallSite Class
28//===----------------------------------------------------------------------===//
29
30#define CALLSITE_DELEGATE_GETTER(METHOD) \
31  Instruction *II(getInstruction());     \
32  return isCall()                        \
33    ? cast<CallInst>(II)->METHOD         \
34    : cast<InvokeInst>(II)->METHOD
35
36#define CALLSITE_DELEGATE_SETTER(METHOD) \
37  Instruction *II(getInstruction());     \
38  if (isCall())                          \
39    cast<CallInst>(II)->METHOD;          \
40  else                                   \
41    cast<InvokeInst>(II)->METHOD
42
43CallSite::CallSite(Instruction *C) {
44  assert((isa<CallInst>(C) || isa<InvokeInst>(C)) && "Not a call!");
45  I.setPointer(C);
46  I.setInt(isa<CallInst>(C));
47}
48unsigned CallSite::getCallingConv() const {
49  CALLSITE_DELEGATE_GETTER(getCallingConv());
50}
51void CallSite::setCallingConv(unsigned CC) {
52  CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
53}
54const AttrListPtr &CallSite::getAttributes() const {
55  CALLSITE_DELEGATE_GETTER(getAttributes());
56}
57void CallSite::setAttributes(const AttrListPtr &PAL) {
58  CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
59}
60bool CallSite::paramHasAttr(uint16_t i, Attributes attr) const {
61  CALLSITE_DELEGATE_GETTER(paramHasAttr(i, attr));
62}
63uint16_t CallSite::getParamAlignment(uint16_t i) const {
64  CALLSITE_DELEGATE_GETTER(getParamAlignment(i));
65}
66bool CallSite::doesNotAccessMemory() const {
67  CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
68}
69void CallSite::setDoesNotAccessMemory(bool doesNotAccessMemory) {
70  CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory(doesNotAccessMemory));
71}
72bool CallSite::onlyReadsMemory() const {
73  CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
74}
75void CallSite::setOnlyReadsMemory(bool onlyReadsMemory) {
76  CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory(onlyReadsMemory));
77}
78bool CallSite::doesNotReturn() const {
79 CALLSITE_DELEGATE_GETTER(doesNotReturn());
80}
81void CallSite::setDoesNotReturn(bool doesNotReturn) {
82  CALLSITE_DELEGATE_SETTER(setDoesNotReturn(doesNotReturn));
83}
84bool CallSite::doesNotThrow() const {
85  CALLSITE_DELEGATE_GETTER(doesNotThrow());
86}
87void CallSite::setDoesNotThrow(bool doesNotThrow) {
88  CALLSITE_DELEGATE_SETTER(setDoesNotThrow(doesNotThrow));
89}
90
91bool CallSite::hasArgument(const Value *Arg) const {
92  for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E; ++AI)
93    if (AI->get() == Arg)
94      return true;
95  return false;
96}
97
98#undef CALLSITE_DELEGATE_GETTER
99#undef CALLSITE_DELEGATE_SETTER
100
101//===----------------------------------------------------------------------===//
102//                            TerminatorInst Class
103//===----------------------------------------------------------------------===//
104
105// Out of line virtual method, so the vtable, etc has a home.
106TerminatorInst::~TerminatorInst() {
107}
108
109//===----------------------------------------------------------------------===//
110//                           UnaryInstruction Class
111//===----------------------------------------------------------------------===//
112
113// Out of line virtual method, so the vtable, etc has a home.
114UnaryInstruction::~UnaryInstruction() {
115}
116
117//===----------------------------------------------------------------------===//
118//                              SelectInst Class
119//===----------------------------------------------------------------------===//
120
121/// areInvalidOperands - Return a string if the specified operands are invalid
122/// for a select operation, otherwise return null.
123const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
124  if (Op1->getType() != Op2->getType())
125    return "both values to select must have same type";
126
127  if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
128    // Vector select.
129    if (VT->getElementType() != Type::Int1Ty)
130      return "vector select condition element type must be i1";
131    const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
132    if (ET == 0)
133      return "selected values for vector select must be vectors";
134    if (ET->getNumElements() != VT->getNumElements())
135      return "vector select requires selected vectors to have "
136                   "the same vector length as select condition";
137  } else if (Op0->getType() != Type::Int1Ty) {
138    return "select condition must be i1 or <n x i1>";
139  }
140  return 0;
141}
142
143
144//===----------------------------------------------------------------------===//
145//                               PHINode Class
146//===----------------------------------------------------------------------===//
147
148PHINode::PHINode(const PHINode &PN)
149  : Instruction(PN.getType(), Instruction::PHI,
150                allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
151    ReservedSpace(PN.getNumOperands()) {
152  Use *OL = OperandList;
153  for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
154    OL[i] = PN.getOperand(i);
155    OL[i+1] = PN.getOperand(i+1);
156  }
157}
158
159PHINode::~PHINode() {
160  if (OperandList)
161    dropHungoffUses(OperandList);
162}
163
164// removeIncomingValue - Remove an incoming value.  This is useful if a
165// predecessor basic block is deleted.
166Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
167  unsigned NumOps = getNumOperands();
168  Use *OL = OperandList;
169  assert(Idx*2 < NumOps && "BB not in PHI node!");
170  Value *Removed = OL[Idx*2];
171
172  // Move everything after this operand down.
173  //
174  // FIXME: we could just swap with the end of the list, then erase.  However,
175  // client might not expect this to happen.  The code as it is thrashes the
176  // use/def lists, which is kinda lame.
177  for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
178    OL[i-2] = OL[i];
179    OL[i-2+1] = OL[i+1];
180  }
181
182  // Nuke the last value.
183  OL[NumOps-2].set(0);
184  OL[NumOps-2+1].set(0);
185  NumOperands = NumOps-2;
186
187  // If the PHI node is dead, because it has zero entries, nuke it now.
188  if (NumOps == 2 && DeletePHIIfEmpty) {
189    // If anyone is using this PHI, make them use a dummy value instead...
190    replaceAllUsesWith(UndefValue::get(getType()));
191    eraseFromParent();
192  }
193  return Removed;
194}
195
196/// resizeOperands - resize operands - This adjusts the length of the operands
197/// list according to the following behavior:
198///   1. If NumOps == 0, grow the operand list in response to a push_back style
199///      of operation.  This grows the number of ops by 1.5 times.
200///   2. If NumOps > NumOperands, reserve space for NumOps operands.
201///   3. If NumOps == NumOperands, trim the reserved space.
202///
203void PHINode::resizeOperands(unsigned NumOps) {
204  unsigned e = getNumOperands();
205  if (NumOps == 0) {
206    NumOps = e*3/2;
207    if (NumOps < 4) NumOps = 4;      // 4 op PHI nodes are VERY common.
208  } else if (NumOps*2 > NumOperands) {
209    // No resize needed.
210    if (ReservedSpace >= NumOps) return;
211  } else if (NumOps == NumOperands) {
212    if (ReservedSpace == NumOps) return;
213  } else {
214    return;
215  }
216
217  ReservedSpace = NumOps;
218  Use *OldOps = OperandList;
219  Use *NewOps = allocHungoffUses(NumOps);
220  std::copy(OldOps, OldOps + e, NewOps);
221  OperandList = NewOps;
222  if (OldOps) Use::zap(OldOps, OldOps + e, true);
223}
224
225/// hasConstantValue - If the specified PHI node always merges together the same
226/// value, return the value, otherwise return null.
227///
228Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
229  // If the PHI node only has one incoming value, eliminate the PHI node...
230  if (getNumIncomingValues() == 1) {
231    if (getIncomingValue(0) != this)   // not  X = phi X
232      return getIncomingValue(0);
233    else
234      return UndefValue::get(getType());  // Self cycle is dead.
235  }
236
237  // Otherwise if all of the incoming values are the same for the PHI, replace
238  // the PHI node with the incoming value.
239  //
240  Value *InVal = 0;
241  bool HasUndefInput = false;
242  for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
243    if (isa<UndefValue>(getIncomingValue(i))) {
244      HasUndefInput = true;
245    } else if (getIncomingValue(i) != this) { // Not the PHI node itself...
246      if (InVal && getIncomingValue(i) != InVal)
247        return 0;  // Not the same, bail out.
248      else
249        InVal = getIncomingValue(i);
250    }
251
252  // The only case that could cause InVal to be null is if we have a PHI node
253  // that only has entries for itself.  In this case, there is no entry into the
254  // loop, so kill the PHI.
255  //
256  if (InVal == 0) InVal = UndefValue::get(getType());
257
258  // If we have a PHI node like phi(X, undef, X), where X is defined by some
259  // instruction, we cannot always return X as the result of the PHI node.  Only
260  // do this if X is not an instruction (thus it must dominate the PHI block),
261  // or if the client is prepared to deal with this possibility.
262  if (HasUndefInput && !AllowNonDominatingInstruction)
263    if (Instruction *IV = dyn_cast<Instruction>(InVal))
264      // If it's in the entry block, it dominates everything.
265      if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
266          isa<InvokeInst>(IV))
267        return 0;   // Cannot guarantee that InVal dominates this PHINode.
268
269  // All of the incoming values are the same, return the value now.
270  return InVal;
271}
272
273
274//===----------------------------------------------------------------------===//
275//                        CallInst Implementation
276//===----------------------------------------------------------------------===//
277
278CallInst::~CallInst() {
279}
280
281void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
282  assert(NumOperands == NumParams+1 && "NumOperands not set up?");
283  Use *OL = OperandList;
284  OL[0] = Func;
285
286  const FunctionType *FTy =
287    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
288  FTy = FTy;  // silence warning.
289
290  assert((NumParams == FTy->getNumParams() ||
291          (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
292         "Calling a function with bad signature!");
293  for (unsigned i = 0; i != NumParams; ++i) {
294    assert((i >= FTy->getNumParams() ||
295            FTy->getParamType(i) == Params[i]->getType()) &&
296           "Calling a function with a bad signature!");
297    OL[i+1] = Params[i];
298  }
299}
300
301void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
302  assert(NumOperands == 3 && "NumOperands not set up?");
303  Use *OL = OperandList;
304  OL[0] = Func;
305  OL[1] = Actual1;
306  OL[2] = Actual2;
307
308  const FunctionType *FTy =
309    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
310  FTy = FTy;  // silence warning.
311
312  assert((FTy->getNumParams() == 2 ||
313          (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
314         "Calling a function with bad signature");
315  assert((0 >= FTy->getNumParams() ||
316          FTy->getParamType(0) == Actual1->getType()) &&
317         "Calling a function with a bad signature!");
318  assert((1 >= FTy->getNumParams() ||
319          FTy->getParamType(1) == Actual2->getType()) &&
320         "Calling a function with a bad signature!");
321}
322
323void CallInst::init(Value *Func, Value *Actual) {
324  assert(NumOperands == 2 && "NumOperands not set up?");
325  Use *OL = OperandList;
326  OL[0] = Func;
327  OL[1] = Actual;
328
329  const FunctionType *FTy =
330    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
331  FTy = FTy;  // silence warning.
332
333  assert((FTy->getNumParams() == 1 ||
334          (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
335         "Calling a function with bad signature");
336  assert((0 == FTy->getNumParams() ||
337          FTy->getParamType(0) == Actual->getType()) &&
338         "Calling a function with a bad signature!");
339}
340
341void CallInst::init(Value *Func) {
342  assert(NumOperands == 1 && "NumOperands not set up?");
343  Use *OL = OperandList;
344  OL[0] = Func;
345
346  const FunctionType *FTy =
347    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
348  FTy = FTy;  // silence warning.
349
350  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
351}
352
353CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
354                   Instruction *InsertBefore)
355  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
356                                   ->getElementType())->getReturnType(),
357                Instruction::Call,
358                OperandTraits<CallInst>::op_end(this) - 2,
359                2, InsertBefore) {
360  init(Func, Actual);
361  setName(Name);
362}
363
364CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
365                   BasicBlock  *InsertAtEnd)
366  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
367                                   ->getElementType())->getReturnType(),
368                Instruction::Call,
369                OperandTraits<CallInst>::op_end(this) - 2,
370                2, InsertAtEnd) {
371  init(Func, Actual);
372  setName(Name);
373}
374CallInst::CallInst(Value *Func, const std::string &Name,
375                   Instruction *InsertBefore)
376  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
377                                   ->getElementType())->getReturnType(),
378                Instruction::Call,
379                OperandTraits<CallInst>::op_end(this) - 1,
380                1, InsertBefore) {
381  init(Func);
382  setName(Name);
383}
384
385CallInst::CallInst(Value *Func, const std::string &Name,
386                   BasicBlock *InsertAtEnd)
387  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
388                                   ->getElementType())->getReturnType(),
389                Instruction::Call,
390                OperandTraits<CallInst>::op_end(this) - 1,
391                1, InsertAtEnd) {
392  init(Func);
393  setName(Name);
394}
395
396CallInst::CallInst(const CallInst &CI)
397  : Instruction(CI.getType(), Instruction::Call,
398                OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
399                CI.getNumOperands()) {
400  setAttributes(CI.getAttributes());
401  SubclassData = CI.SubclassData;
402  Use *OL = OperandList;
403  Use *InOL = CI.OperandList;
404  for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
405    OL[i] = InOL[i];
406}
407
408void CallInst::addAttribute(unsigned i, Attributes attr) {
409  AttrListPtr PAL = getAttributes();
410  PAL = PAL.addAttr(i, attr);
411  setAttributes(PAL);
412}
413
414void CallInst::removeAttribute(unsigned i, Attributes attr) {
415  AttrListPtr PAL = getAttributes();
416  PAL = PAL.removeAttr(i, attr);
417  setAttributes(PAL);
418}
419
420bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
421  if (AttributeList.paramHasAttr(i, attr))
422    return true;
423  if (const Function *F = getCalledFunction())
424    return F->paramHasAttr(i, attr);
425  return false;
426}
427
428
429//===----------------------------------------------------------------------===//
430//                        InvokeInst Implementation
431//===----------------------------------------------------------------------===//
432
433void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
434                      Value* const *Args, unsigned NumArgs) {
435  assert(NumOperands == 3+NumArgs && "NumOperands not set up?");
436  Use *OL = OperandList;
437  OL[0] = Fn;
438  OL[1] = IfNormal;
439  OL[2] = IfException;
440  const FunctionType *FTy =
441    cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
442  FTy = FTy;  // silence warning.
443
444  assert(((NumArgs == FTy->getNumParams()) ||
445          (FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
446         "Calling a function with bad signature");
447
448  for (unsigned i = 0, e = NumArgs; i != e; i++) {
449    assert((i >= FTy->getNumParams() ||
450            FTy->getParamType(i) == Args[i]->getType()) &&
451           "Invoking a function with a bad signature!");
452
453    OL[i+3] = Args[i];
454  }
455}
456
457InvokeInst::InvokeInst(const InvokeInst &II)
458  : TerminatorInst(II.getType(), Instruction::Invoke,
459                   OperandTraits<InvokeInst>::op_end(this)
460                   - II.getNumOperands(),
461                   II.getNumOperands()) {
462  setAttributes(II.getAttributes());
463  SubclassData = II.SubclassData;
464  Use *OL = OperandList, *InOL = II.OperandList;
465  for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
466    OL[i] = InOL[i];
467}
468
469BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
470  return getSuccessor(idx);
471}
472unsigned InvokeInst::getNumSuccessorsV() const {
473  return getNumSuccessors();
474}
475void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
476  return setSuccessor(idx, B);
477}
478
479bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
480  if (AttributeList.paramHasAttr(i, attr))
481    return true;
482  if (const Function *F = getCalledFunction())
483    return F->paramHasAttr(i, attr);
484  return false;
485}
486
487void InvokeInst::addAttribute(unsigned i, Attributes attr) {
488  AttrListPtr PAL = getAttributes();
489  PAL = PAL.addAttr(i, attr);
490  setAttributes(PAL);
491}
492
493void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
494  AttrListPtr PAL = getAttributes();
495  PAL = PAL.removeAttr(i, attr);
496  setAttributes(PAL);
497}
498
499
500//===----------------------------------------------------------------------===//
501//                        ReturnInst Implementation
502//===----------------------------------------------------------------------===//
503
504ReturnInst::ReturnInst(const ReturnInst &RI)
505  : TerminatorInst(Type::VoidTy, Instruction::Ret,
506                   OperandTraits<ReturnInst>::op_end(this) -
507                     RI.getNumOperands(),
508                   RI.getNumOperands()) {
509  if (RI.getNumOperands())
510    Op<0>() = RI.Op<0>();
511}
512
513ReturnInst::ReturnInst(Value *retVal, Instruction *InsertBefore)
514  : TerminatorInst(Type::VoidTy, Instruction::Ret,
515                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
516                   InsertBefore) {
517  if (retVal)
518    Op<0>() = retVal;
519}
520ReturnInst::ReturnInst(Value *retVal, BasicBlock *InsertAtEnd)
521  : TerminatorInst(Type::VoidTy, Instruction::Ret,
522                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
523                   InsertAtEnd) {
524  if (retVal)
525    Op<0>() = retVal;
526}
527ReturnInst::ReturnInst(BasicBlock *InsertAtEnd)
528  : TerminatorInst(Type::VoidTy, Instruction::Ret,
529                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
530}
531
532unsigned ReturnInst::getNumSuccessorsV() const {
533  return getNumSuccessors();
534}
535
536/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
537/// emit the vtable for the class in this translation unit.
538void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
539  LLVM_UNREACHABLE("ReturnInst has no successors!");
540}
541
542BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
543  LLVM_UNREACHABLE("ReturnInst has no successors!");
544  return 0;
545}
546
547ReturnInst::~ReturnInst() {
548}
549
550//===----------------------------------------------------------------------===//
551//                        UnwindInst Implementation
552//===----------------------------------------------------------------------===//
553
554UnwindInst::UnwindInst(Instruction *InsertBefore)
555  : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertBefore) {
556}
557UnwindInst::UnwindInst(BasicBlock *InsertAtEnd)
558  : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertAtEnd) {
559}
560
561
562unsigned UnwindInst::getNumSuccessorsV() const {
563  return getNumSuccessors();
564}
565
566void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
567  LLVM_UNREACHABLE("UnwindInst has no successors!");
568}
569
570BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
571  LLVM_UNREACHABLE("UnwindInst has no successors!");
572  return 0;
573}
574
575//===----------------------------------------------------------------------===//
576//                      UnreachableInst Implementation
577//===----------------------------------------------------------------------===//
578
579UnreachableInst::UnreachableInst(Instruction *InsertBefore)
580  : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertBefore) {
581}
582UnreachableInst::UnreachableInst(BasicBlock *InsertAtEnd)
583  : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertAtEnd) {
584}
585
586unsigned UnreachableInst::getNumSuccessorsV() const {
587  return getNumSuccessors();
588}
589
590void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
591  LLVM_UNREACHABLE("UnwindInst has no successors!");
592}
593
594BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
595  LLVM_UNREACHABLE("UnwindInst has no successors!");
596  return 0;
597}
598
599//===----------------------------------------------------------------------===//
600//                        BranchInst Implementation
601//===----------------------------------------------------------------------===//
602
603void BranchInst::AssertOK() {
604  if (isConditional())
605    assert(getCondition()->getType() == Type::Int1Ty &&
606           "May only branch on boolean predicates!");
607}
608
609BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
610  : TerminatorInst(Type::VoidTy, Instruction::Br,
611                   OperandTraits<BranchInst>::op_end(this) - 1,
612                   1, InsertBefore) {
613  assert(IfTrue != 0 && "Branch destination may not be null!");
614  Op<-1>() = IfTrue;
615}
616BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
617                       Instruction *InsertBefore)
618  : TerminatorInst(Type::VoidTy, Instruction::Br,
619                   OperandTraits<BranchInst>::op_end(this) - 3,
620                   3, InsertBefore) {
621  Op<-1>() = IfTrue;
622  Op<-2>() = IfFalse;
623  Op<-3>() = Cond;
624#ifndef NDEBUG
625  AssertOK();
626#endif
627}
628
629BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
630  : TerminatorInst(Type::VoidTy, Instruction::Br,
631                   OperandTraits<BranchInst>::op_end(this) - 1,
632                   1, InsertAtEnd) {
633  assert(IfTrue != 0 && "Branch destination may not be null!");
634  Op<-1>() = IfTrue;
635}
636
637BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
638           BasicBlock *InsertAtEnd)
639  : TerminatorInst(Type::VoidTy, Instruction::Br,
640                   OperandTraits<BranchInst>::op_end(this) - 3,
641                   3, InsertAtEnd) {
642  Op<-1>() = IfTrue;
643  Op<-2>() = IfFalse;
644  Op<-3>() = Cond;
645#ifndef NDEBUG
646  AssertOK();
647#endif
648}
649
650
651BranchInst::BranchInst(const BranchInst &BI) :
652  TerminatorInst(Type::VoidTy, Instruction::Br,
653                 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
654                 BI.getNumOperands()) {
655  Op<-1>() = BI.Op<-1>();
656  if (BI.getNumOperands() != 1) {
657    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
658    Op<-3>() = BI.Op<-3>();
659    Op<-2>() = BI.Op<-2>();
660  }
661}
662
663
664Use* Use::getPrefix() {
665  PointerIntPair<Use**, 2, PrevPtrTag> &PotentialPrefix(this[-1].Prev);
666  if (PotentialPrefix.getOpaqueValue())
667    return 0;
668
669  return reinterpret_cast<Use*>((char*)&PotentialPrefix + 1);
670}
671
672BranchInst::~BranchInst() {
673  if (NumOperands == 1) {
674    if (Use *Prefix = OperandList->getPrefix()) {
675      Op<-1>() = 0;
676      //
677      // mark OperandList to have a special value for scrutiny
678      // by baseclass destructors and operator delete
679      OperandList = Prefix;
680    } else {
681      NumOperands = 3;
682      OperandList = op_begin();
683    }
684  }
685}
686
687
688BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
689  return getSuccessor(idx);
690}
691unsigned BranchInst::getNumSuccessorsV() const {
692  return getNumSuccessors();
693}
694void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
695  setSuccessor(idx, B);
696}
697
698
699//===----------------------------------------------------------------------===//
700//                        AllocationInst Implementation
701//===----------------------------------------------------------------------===//
702
703static Value *getAISize(Value *Amt) {
704  if (!Amt)
705    Amt = ConstantInt::get(Type::Int32Ty, 1);
706  else {
707    assert(!isa<BasicBlock>(Amt) &&
708           "Passed basic block into allocation size parameter! Use other ctor");
709    assert(Amt->getType() == Type::Int32Ty &&
710           "Malloc/Allocation array size is not a 32-bit integer!");
711  }
712  return Amt;
713}
714
715AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
716                               unsigned Align, const std::string &Name,
717                               Instruction *InsertBefore)
718  : UnaryInstruction(PointerType::getUnqual(Ty), iTy, getAISize(ArraySize),
719                     InsertBefore) {
720  setAlignment(Align);
721  assert(Ty != Type::VoidTy && "Cannot allocate void!");
722  setName(Name);
723}
724
725AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
726                               unsigned Align, const std::string &Name,
727                               BasicBlock *InsertAtEnd)
728  : UnaryInstruction(PointerType::getUnqual(Ty), iTy, getAISize(ArraySize),
729                     InsertAtEnd) {
730  setAlignment(Align);
731  assert(Ty != Type::VoidTy && "Cannot allocate void!");
732  setName(Name);
733}
734
735// Out of line virtual method, so the vtable, etc has a home.
736AllocationInst::~AllocationInst() {
737}
738
739void AllocationInst::setAlignment(unsigned Align) {
740  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
741  SubclassData = Log2_32(Align) + 1;
742  assert(getAlignment() == Align && "Alignment representation error!");
743}
744
745bool AllocationInst::isArrayAllocation() const {
746  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
747    return CI->getZExtValue() != 1;
748  return true;
749}
750
751const Type *AllocationInst::getAllocatedType() const {
752  return getType()->getElementType();
753}
754
755AllocaInst::AllocaInst(const AllocaInst &AI)
756  : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
757                   Instruction::Alloca, AI.getAlignment()) {
758}
759
760/// isStaticAlloca - Return true if this alloca is in the entry block of the
761/// function and is a constant size.  If so, the code generator will fold it
762/// into the prolog/epilog code, so it is basically free.
763bool AllocaInst::isStaticAlloca() const {
764  // Must be constant size.
765  if (!isa<ConstantInt>(getArraySize())) return false;
766
767  // Must be in the entry block.
768  const BasicBlock *Parent = getParent();
769  return Parent == &Parent->getParent()->front();
770}
771
772MallocInst::MallocInst(const MallocInst &MI)
773  : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
774                   Instruction::Malloc, MI.getAlignment()) {
775}
776
777//===----------------------------------------------------------------------===//
778//                             FreeInst Implementation
779//===----------------------------------------------------------------------===//
780
781void FreeInst::AssertOK() {
782  assert(isa<PointerType>(getOperand(0)->getType()) &&
783         "Can not free something of nonpointer type!");
784}
785
786FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
787  : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertBefore) {
788  AssertOK();
789}
790
791FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
792  : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertAtEnd) {
793  AssertOK();
794}
795
796
797//===----------------------------------------------------------------------===//
798//                           LoadInst Implementation
799//===----------------------------------------------------------------------===//
800
801void LoadInst::AssertOK() {
802  assert(isa<PointerType>(getOperand(0)->getType()) &&
803         "Ptr must have pointer type.");
804}
805
806LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
807  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
808                     Load, Ptr, InsertBef) {
809  setVolatile(false);
810  setAlignment(0);
811  AssertOK();
812  setName(Name);
813}
814
815LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
816  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
817                     Load, Ptr, InsertAE) {
818  setVolatile(false);
819  setAlignment(0);
820  AssertOK();
821  setName(Name);
822}
823
824LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
825                   Instruction *InsertBef)
826  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
827                     Load, Ptr, InsertBef) {
828  setVolatile(isVolatile);
829  setAlignment(0);
830  AssertOK();
831  setName(Name);
832}
833
834LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
835                   unsigned Align, Instruction *InsertBef)
836  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
837                     Load, Ptr, InsertBef) {
838  setVolatile(isVolatile);
839  setAlignment(Align);
840  AssertOK();
841  setName(Name);
842}
843
844LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
845                   unsigned Align, BasicBlock *InsertAE)
846  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
847                     Load, Ptr, InsertAE) {
848  setVolatile(isVolatile);
849  setAlignment(Align);
850  AssertOK();
851  setName(Name);
852}
853
854LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
855                   BasicBlock *InsertAE)
856  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
857                     Load, Ptr, InsertAE) {
858  setVolatile(isVolatile);
859  setAlignment(0);
860  AssertOK();
861  setName(Name);
862}
863
864
865
866LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
867  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
868                     Load, Ptr, InsertBef) {
869  setVolatile(false);
870  setAlignment(0);
871  AssertOK();
872  if (Name && Name[0]) setName(Name);
873}
874
875LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
876  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
877                     Load, Ptr, InsertAE) {
878  setVolatile(false);
879  setAlignment(0);
880  AssertOK();
881  if (Name && Name[0]) setName(Name);
882}
883
884LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
885                   Instruction *InsertBef)
886: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
887                   Load, Ptr, InsertBef) {
888  setVolatile(isVolatile);
889  setAlignment(0);
890  AssertOK();
891  if (Name && Name[0]) setName(Name);
892}
893
894LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
895                   BasicBlock *InsertAE)
896  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
897                     Load, Ptr, InsertAE) {
898  setVolatile(isVolatile);
899  setAlignment(0);
900  AssertOK();
901  if (Name && Name[0]) setName(Name);
902}
903
904void LoadInst::setAlignment(unsigned Align) {
905  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
906  SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
907}
908
909//===----------------------------------------------------------------------===//
910//                           StoreInst Implementation
911//===----------------------------------------------------------------------===//
912
913void StoreInst::AssertOK() {
914  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
915  assert(isa<PointerType>(getOperand(1)->getType()) &&
916         "Ptr must have pointer type!");
917  assert(getOperand(0)->getType() ==
918                 cast<PointerType>(getOperand(1)->getType())->getElementType()
919         && "Ptr must be a pointer to Val type!");
920}
921
922
923StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
924  : Instruction(Type::VoidTy, Store,
925                OperandTraits<StoreInst>::op_begin(this),
926                OperandTraits<StoreInst>::operands(this),
927                InsertBefore) {
928  Op<0>() = val;
929  Op<1>() = addr;
930  setVolatile(false);
931  setAlignment(0);
932  AssertOK();
933}
934
935StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
936  : Instruction(Type::VoidTy, Store,
937                OperandTraits<StoreInst>::op_begin(this),
938                OperandTraits<StoreInst>::operands(this),
939                InsertAtEnd) {
940  Op<0>() = val;
941  Op<1>() = addr;
942  setVolatile(false);
943  setAlignment(0);
944  AssertOK();
945}
946
947StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
948                     Instruction *InsertBefore)
949  : Instruction(Type::VoidTy, Store,
950                OperandTraits<StoreInst>::op_begin(this),
951                OperandTraits<StoreInst>::operands(this),
952                InsertBefore) {
953  Op<0>() = val;
954  Op<1>() = addr;
955  setVolatile(isVolatile);
956  setAlignment(0);
957  AssertOK();
958}
959
960StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
961                     unsigned Align, Instruction *InsertBefore)
962  : Instruction(Type::VoidTy, Store,
963                OperandTraits<StoreInst>::op_begin(this),
964                OperandTraits<StoreInst>::operands(this),
965                InsertBefore) {
966  Op<0>() = val;
967  Op<1>() = addr;
968  setVolatile(isVolatile);
969  setAlignment(Align);
970  AssertOK();
971}
972
973StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
974                     unsigned Align, BasicBlock *InsertAtEnd)
975  : Instruction(Type::VoidTy, Store,
976                OperandTraits<StoreInst>::op_begin(this),
977                OperandTraits<StoreInst>::operands(this),
978                InsertAtEnd) {
979  Op<0>() = val;
980  Op<1>() = addr;
981  setVolatile(isVolatile);
982  setAlignment(Align);
983  AssertOK();
984}
985
986StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
987                     BasicBlock *InsertAtEnd)
988  : Instruction(Type::VoidTy, Store,
989                OperandTraits<StoreInst>::op_begin(this),
990                OperandTraits<StoreInst>::operands(this),
991                InsertAtEnd) {
992  Op<0>() = val;
993  Op<1>() = addr;
994  setVolatile(isVolatile);
995  setAlignment(0);
996  AssertOK();
997}
998
999void StoreInst::setAlignment(unsigned Align) {
1000  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1001  SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
1002}
1003
1004//===----------------------------------------------------------------------===//
1005//                       GetElementPtrInst Implementation
1006//===----------------------------------------------------------------------===//
1007
1008static unsigned retrieveAddrSpace(const Value *Val) {
1009  return cast<PointerType>(Val->getType())->getAddressSpace();
1010}
1011
1012void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
1013                             const std::string &Name) {
1014  assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
1015  Use *OL = OperandList;
1016  OL[0] = Ptr;
1017
1018  for (unsigned i = 0; i != NumIdx; ++i)
1019    OL[i+1] = Idx[i];
1020
1021  setName(Name);
1022}
1023
1024void GetElementPtrInst::init(Value *Ptr, Value *Idx, const std::string &Name) {
1025  assert(NumOperands == 2 && "NumOperands not initialized?");
1026  Use *OL = OperandList;
1027  OL[0] = Ptr;
1028  OL[1] = Idx;
1029
1030  setName(Name);
1031}
1032
1033GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1034  : Instruction(GEPI.getType(), GetElementPtr,
1035                OperandTraits<GetElementPtrInst>::op_end(this)
1036                - GEPI.getNumOperands(),
1037                GEPI.getNumOperands()) {
1038  Use *OL = OperandList;
1039  Use *GEPIOL = GEPI.OperandList;
1040  for (unsigned i = 0, E = NumOperands; i != E; ++i)
1041    OL[i] = GEPIOL[i];
1042}
1043
1044GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1045                                     const std::string &Name, Instruction *InBe)
1046  : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx)),
1047                                 retrieveAddrSpace(Ptr)),
1048                GetElementPtr,
1049                OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1050                2, InBe) {
1051  init(Ptr, Idx, Name);
1052}
1053
1054GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1055                                     const std::string &Name, BasicBlock *IAE)
1056  : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx)),
1057                                 retrieveAddrSpace(Ptr)),
1058                GetElementPtr,
1059                OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1060                2, IAE) {
1061  init(Ptr, Idx, Name);
1062}
1063
1064/// getIndexedType - Returns the type of the element that would be accessed with
1065/// a gep instruction with the specified parameters.
1066///
1067/// The Idxs pointer should point to a continuous piece of memory containing the
1068/// indices, either as Value* or uint64_t.
1069///
1070/// A null type is returned if the indices are invalid for the specified
1071/// pointer type.
1072///
1073template <typename IndexTy>
1074static const Type* getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
1075                                          unsigned NumIdx) {
1076  const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1077  if (!PTy) return 0;   // Type isn't a pointer type!
1078  const Type *Agg = PTy->getElementType();
1079
1080  // Handle the special case of the empty set index set, which is always valid.
1081  if (NumIdx == 0)
1082    return Agg;
1083
1084  // If there is at least one index, the top level type must be sized, otherwise
1085  // it cannot be 'stepped over'.  We explicitly allow abstract types (those
1086  // that contain opaque types) under the assumption that it will be resolved to
1087  // a sane type later.
1088  if (!Agg->isSized() && !Agg->isAbstract())
1089    return 0;
1090
1091  unsigned CurIdx = 1;
1092  for (; CurIdx != NumIdx; ++CurIdx) {
1093    const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1094    if (!CT || isa<PointerType>(CT)) return 0;
1095    IndexTy Index = Idxs[CurIdx];
1096    if (!CT->indexValid(Index)) return 0;
1097    Agg = CT->getTypeAtIndex(Index);
1098
1099    // If the new type forwards to another type, then it is in the middle
1100    // of being refined to another type (and hence, may have dropped all
1101    // references to what it was using before).  So, use the new forwarded
1102    // type.
1103    if (const Type *Ty = Agg->getForwardedType())
1104      Agg = Ty;
1105  }
1106  return CurIdx == NumIdx ? Agg : 0;
1107}
1108
1109const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1110                                              Value* const *Idxs,
1111                                              unsigned NumIdx) {
1112  return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1113}
1114
1115const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1116                                              uint64_t const *Idxs,
1117                                              unsigned NumIdx) {
1118  return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1119}
1120
1121const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
1122  const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1123  if (!PTy) return 0;   // Type isn't a pointer type!
1124
1125  // Check the pointer index.
1126  if (!PTy->indexValid(Idx)) return 0;
1127
1128  return PTy->getElementType();
1129}
1130
1131
1132/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1133/// zeros.  If so, the result pointer and the first operand have the same
1134/// value, just potentially different types.
1135bool GetElementPtrInst::hasAllZeroIndices() const {
1136  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1137    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1138      if (!CI->isZero()) return false;
1139    } else {
1140      return false;
1141    }
1142  }
1143  return true;
1144}
1145
1146/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1147/// constant integers.  If so, the result pointer and the first operand have
1148/// a constant offset between them.
1149bool GetElementPtrInst::hasAllConstantIndices() const {
1150  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1151    if (!isa<ConstantInt>(getOperand(i)))
1152      return false;
1153  }
1154  return true;
1155}
1156
1157
1158//===----------------------------------------------------------------------===//
1159//                           ExtractElementInst Implementation
1160//===----------------------------------------------------------------------===//
1161
1162ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1163                                       const std::string &Name,
1164                                       Instruction *InsertBef)
1165  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1166                ExtractElement,
1167                OperandTraits<ExtractElementInst>::op_begin(this),
1168                2, InsertBef) {
1169  assert(isValidOperands(Val, Index) &&
1170         "Invalid extractelement instruction operands!");
1171  Op<0>() = Val;
1172  Op<1>() = Index;
1173  setName(Name);
1174}
1175
1176ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
1177                                       const std::string &Name,
1178                                       Instruction *InsertBef)
1179  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1180                ExtractElement,
1181                OperandTraits<ExtractElementInst>::op_begin(this),
1182                2, InsertBef) {
1183  Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1184  assert(isValidOperands(Val, Index) &&
1185         "Invalid extractelement instruction operands!");
1186  Op<0>() = Val;
1187  Op<1>() = Index;
1188  setName(Name);
1189}
1190
1191
1192ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1193                                       const std::string &Name,
1194                                       BasicBlock *InsertAE)
1195  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1196                ExtractElement,
1197                OperandTraits<ExtractElementInst>::op_begin(this),
1198                2, InsertAE) {
1199  assert(isValidOperands(Val, Index) &&
1200         "Invalid extractelement instruction operands!");
1201
1202  Op<0>() = Val;
1203  Op<1>() = Index;
1204  setName(Name);
1205}
1206
1207ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
1208                                       const std::string &Name,
1209                                       BasicBlock *InsertAE)
1210  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1211                ExtractElement,
1212                OperandTraits<ExtractElementInst>::op_begin(this),
1213                2, InsertAE) {
1214  Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1215  assert(isValidOperands(Val, Index) &&
1216         "Invalid extractelement instruction operands!");
1217
1218  Op<0>() = Val;
1219  Op<1>() = Index;
1220  setName(Name);
1221}
1222
1223
1224bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1225  if (!isa<VectorType>(Val->getType()) || Index->getType() != Type::Int32Ty)
1226    return false;
1227  return true;
1228}
1229
1230
1231//===----------------------------------------------------------------------===//
1232//                           InsertElementInst Implementation
1233//===----------------------------------------------------------------------===//
1234
1235InsertElementInst::InsertElementInst(const InsertElementInst &IE)
1236    : Instruction(IE.getType(), InsertElement,
1237                  OperandTraits<InsertElementInst>::op_begin(this), 3) {
1238  Op<0>() = IE.Op<0>();
1239  Op<1>() = IE.Op<1>();
1240  Op<2>() = IE.Op<2>();
1241}
1242InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1243                                     const std::string &Name,
1244                                     Instruction *InsertBef)
1245  : Instruction(Vec->getType(), InsertElement,
1246                OperandTraits<InsertElementInst>::op_begin(this),
1247                3, InsertBef) {
1248  assert(isValidOperands(Vec, Elt, Index) &&
1249         "Invalid insertelement instruction operands!");
1250  Op<0>() = Vec;
1251  Op<1>() = Elt;
1252  Op<2>() = Index;
1253  setName(Name);
1254}
1255
1256InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
1257                                     const std::string &Name,
1258                                     Instruction *InsertBef)
1259  : Instruction(Vec->getType(), InsertElement,
1260                OperandTraits<InsertElementInst>::op_begin(this),
1261                3, InsertBef) {
1262  Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1263  assert(isValidOperands(Vec, Elt, Index) &&
1264         "Invalid insertelement instruction operands!");
1265  Op<0>() = Vec;
1266  Op<1>() = Elt;
1267  Op<2>() = Index;
1268  setName(Name);
1269}
1270
1271
1272InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1273                                     const std::string &Name,
1274                                     BasicBlock *InsertAE)
1275  : Instruction(Vec->getType(), InsertElement,
1276                OperandTraits<InsertElementInst>::op_begin(this),
1277                3, InsertAE) {
1278  assert(isValidOperands(Vec, Elt, Index) &&
1279         "Invalid insertelement instruction operands!");
1280
1281  Op<0>() = Vec;
1282  Op<1>() = Elt;
1283  Op<2>() = Index;
1284  setName(Name);
1285}
1286
1287InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
1288                                     const std::string &Name,
1289                                     BasicBlock *InsertAE)
1290: Instruction(Vec->getType(), InsertElement,
1291              OperandTraits<InsertElementInst>::op_begin(this),
1292              3, InsertAE) {
1293  Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1294  assert(isValidOperands(Vec, Elt, Index) &&
1295         "Invalid insertelement instruction operands!");
1296
1297  Op<0>() = Vec;
1298  Op<1>() = Elt;
1299  Op<2>() = Index;
1300  setName(Name);
1301}
1302
1303bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1304                                        const Value *Index) {
1305  if (!isa<VectorType>(Vec->getType()))
1306    return false;   // First operand of insertelement must be vector type.
1307
1308  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1309    return false;// Second operand of insertelement must be vector element type.
1310
1311  if (Index->getType() != Type::Int32Ty)
1312    return false;  // Third operand of insertelement must be i32.
1313  return true;
1314}
1315
1316
1317//===----------------------------------------------------------------------===//
1318//                      ShuffleVectorInst Implementation
1319//===----------------------------------------------------------------------===//
1320
1321ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst &SV)
1322  : Instruction(SV.getType(), ShuffleVector,
1323                OperandTraits<ShuffleVectorInst>::op_begin(this),
1324                OperandTraits<ShuffleVectorInst>::operands(this)) {
1325  Op<0>() = SV.Op<0>();
1326  Op<1>() = SV.Op<1>();
1327  Op<2>() = SV.Op<2>();
1328}
1329
1330ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1331                                     const std::string &Name,
1332                                     Instruction *InsertBefore)
1333: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1334                cast<VectorType>(Mask->getType())->getNumElements()),
1335              ShuffleVector,
1336              OperandTraits<ShuffleVectorInst>::op_begin(this),
1337              OperandTraits<ShuffleVectorInst>::operands(this),
1338              InsertBefore) {
1339  assert(isValidOperands(V1, V2, Mask) &&
1340         "Invalid shuffle vector instruction operands!");
1341  Op<0>() = V1;
1342  Op<1>() = V2;
1343  Op<2>() = Mask;
1344  setName(Name);
1345}
1346
1347ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1348                                     const std::string &Name,
1349                                     BasicBlock *InsertAtEnd)
1350  : Instruction(V1->getType(), ShuffleVector,
1351                OperandTraits<ShuffleVectorInst>::op_begin(this),
1352                OperandTraits<ShuffleVectorInst>::operands(this),
1353                InsertAtEnd) {
1354  assert(isValidOperands(V1, V2, Mask) &&
1355         "Invalid shuffle vector instruction operands!");
1356
1357  Op<0>() = V1;
1358  Op<1>() = V2;
1359  Op<2>() = Mask;
1360  setName(Name);
1361}
1362
1363bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1364                                        const Value *Mask) {
1365  if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1366    return false;
1367
1368  const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1369  if (!isa<Constant>(Mask) || MaskTy == 0 ||
1370      MaskTy->getElementType() != Type::Int32Ty)
1371    return false;
1372  return true;
1373}
1374
1375/// getMaskValue - Return the index from the shuffle mask for the specified
1376/// output result.  This is either -1 if the element is undef or a number less
1377/// than 2*numelements.
1378int ShuffleVectorInst::getMaskValue(unsigned i) const {
1379  const Constant *Mask = cast<Constant>(getOperand(2));
1380  if (isa<UndefValue>(Mask)) return -1;
1381  if (isa<ConstantAggregateZero>(Mask)) return 0;
1382  const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1383  assert(i < MaskCV->getNumOperands() && "Index out of range");
1384
1385  if (isa<UndefValue>(MaskCV->getOperand(i)))
1386    return -1;
1387  return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1388}
1389
1390//===----------------------------------------------------------------------===//
1391//                             InsertValueInst Class
1392//===----------------------------------------------------------------------===//
1393
1394void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
1395                           unsigned NumIdx, const std::string &Name) {
1396  assert(NumOperands == 2 && "NumOperands not initialized?");
1397  Op<0>() = Agg;
1398  Op<1>() = Val;
1399
1400  Indices.insert(Indices.end(), Idx, Idx + NumIdx);
1401  setName(Name);
1402}
1403
1404void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
1405                           const std::string &Name) {
1406  assert(NumOperands == 2 && "NumOperands not initialized?");
1407  Op<0>() = Agg;
1408  Op<1>() = Val;
1409
1410  Indices.push_back(Idx);
1411  setName(Name);
1412}
1413
1414InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1415  : Instruction(IVI.getType(), InsertValue,
1416                OperandTraits<InsertValueInst>::op_begin(this), 2),
1417    Indices(IVI.Indices) {
1418  Op<0>() = IVI.getOperand(0);
1419  Op<1>() = IVI.getOperand(1);
1420}
1421
1422InsertValueInst::InsertValueInst(Value *Agg,
1423                                 Value *Val,
1424                                 unsigned Idx,
1425                                 const std::string &Name,
1426                                 Instruction *InsertBefore)
1427  : Instruction(Agg->getType(), InsertValue,
1428                OperandTraits<InsertValueInst>::op_begin(this),
1429                2, InsertBefore) {
1430  init(Agg, Val, Idx, Name);
1431}
1432
1433InsertValueInst::InsertValueInst(Value *Agg,
1434                                 Value *Val,
1435                                 unsigned Idx,
1436                                 const std::string &Name,
1437                                 BasicBlock *InsertAtEnd)
1438  : Instruction(Agg->getType(), InsertValue,
1439                OperandTraits<InsertValueInst>::op_begin(this),
1440                2, InsertAtEnd) {
1441  init(Agg, Val, Idx, Name);
1442}
1443
1444//===----------------------------------------------------------------------===//
1445//                             ExtractValueInst Class
1446//===----------------------------------------------------------------------===//
1447
1448void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
1449                            const std::string &Name) {
1450  assert(NumOperands == 1 && "NumOperands not initialized?");
1451
1452  Indices.insert(Indices.end(), Idx, Idx + NumIdx);
1453  setName(Name);
1454}
1455
1456void ExtractValueInst::init(unsigned Idx, const std::string &Name) {
1457  assert(NumOperands == 1 && "NumOperands not initialized?");
1458
1459  Indices.push_back(Idx);
1460  setName(Name);
1461}
1462
1463ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1464  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1465    Indices(EVI.Indices) {
1466}
1467
1468// getIndexedType - Returns the type of the element that would be extracted
1469// with an extractvalue instruction with the specified parameters.
1470//
1471// A null type is returned if the indices are invalid for the specified
1472// pointer type.
1473//
1474const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1475                                             const unsigned *Idxs,
1476                                             unsigned NumIdx) {
1477  unsigned CurIdx = 0;
1478  for (; CurIdx != NumIdx; ++CurIdx) {
1479    const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1480    if (!CT || isa<PointerType>(CT) || isa<VectorType>(CT)) return 0;
1481    unsigned Index = Idxs[CurIdx];
1482    if (!CT->indexValid(Index)) return 0;
1483    Agg = CT->getTypeAtIndex(Index);
1484
1485    // If the new type forwards to another type, then it is in the middle
1486    // of being refined to another type (and hence, may have dropped all
1487    // references to what it was using before).  So, use the new forwarded
1488    // type.
1489    if (const Type *Ty = Agg->getForwardedType())
1490      Agg = Ty;
1491  }
1492  return CurIdx == NumIdx ? Agg : 0;
1493}
1494
1495const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1496                                             unsigned Idx) {
1497  return getIndexedType(Agg, &Idx, 1);
1498}
1499
1500//===----------------------------------------------------------------------===//
1501//                             BinaryOperator Class
1502//===----------------------------------------------------------------------===//
1503
1504/// AdjustIType - Map Add, Sub, and Mul to FAdd, FSub, and FMul when the
1505/// type is floating-point, to help provide compatibility with an older API.
1506///
1507static BinaryOperator::BinaryOps AdjustIType(BinaryOperator::BinaryOps iType,
1508                                             const Type *Ty) {
1509  // API compatibility: Adjust integer opcodes to floating-point opcodes.
1510  if (Ty->isFPOrFPVector()) {
1511    if (iType == BinaryOperator::Add) iType = BinaryOperator::FAdd;
1512    else if (iType == BinaryOperator::Sub) iType = BinaryOperator::FSub;
1513    else if (iType == BinaryOperator::Mul) iType = BinaryOperator::FMul;
1514  }
1515  return iType;
1516}
1517
1518BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1519                               const Type *Ty, const std::string &Name,
1520                               Instruction *InsertBefore)
1521  : Instruction(Ty, AdjustIType(iType, Ty),
1522                OperandTraits<BinaryOperator>::op_begin(this),
1523                OperandTraits<BinaryOperator>::operands(this),
1524                InsertBefore) {
1525  Op<0>() = S1;
1526  Op<1>() = S2;
1527  init(AdjustIType(iType, Ty));
1528  setName(Name);
1529}
1530
1531BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1532                               const Type *Ty, const std::string &Name,
1533                               BasicBlock *InsertAtEnd)
1534  : Instruction(Ty, AdjustIType(iType, Ty),
1535                OperandTraits<BinaryOperator>::op_begin(this),
1536                OperandTraits<BinaryOperator>::operands(this),
1537                InsertAtEnd) {
1538  Op<0>() = S1;
1539  Op<1>() = S2;
1540  init(AdjustIType(iType, Ty));
1541  setName(Name);
1542}
1543
1544
1545void BinaryOperator::init(BinaryOps iType) {
1546  Value *LHS = getOperand(0), *RHS = getOperand(1);
1547  LHS = LHS; RHS = RHS; // Silence warnings.
1548  assert(LHS->getType() == RHS->getType() &&
1549         "Binary operator operand types must match!");
1550#ifndef NDEBUG
1551  switch (iType) {
1552  case Add: case Sub:
1553  case Mul:
1554    assert(getType() == LHS->getType() &&
1555           "Arithmetic operation should return same type as operands!");
1556    assert(getType()->isIntOrIntVector() &&
1557           "Tried to create an integer operation on a non-integer type!");
1558    break;
1559  case FAdd: case FSub:
1560  case FMul:
1561    assert(getType() == LHS->getType() &&
1562           "Arithmetic operation should return same type as operands!");
1563    assert(getType()->isFPOrFPVector() &&
1564           "Tried to create a floating-point operation on a "
1565           "non-floating-point type!");
1566    break;
1567  case UDiv:
1568  case SDiv:
1569    assert(getType() == LHS->getType() &&
1570           "Arithmetic operation should return same type as operands!");
1571    assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1572            cast<VectorType>(getType())->getElementType()->isInteger())) &&
1573           "Incorrect operand type (not integer) for S/UDIV");
1574    break;
1575  case FDiv:
1576    assert(getType() == LHS->getType() &&
1577           "Arithmetic operation should return same type as operands!");
1578    assert(getType()->isFPOrFPVector() &&
1579           "Incorrect operand type (not floating point) for FDIV");
1580    break;
1581  case URem:
1582  case SRem:
1583    assert(getType() == LHS->getType() &&
1584           "Arithmetic operation should return same type as operands!");
1585    assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1586            cast<VectorType>(getType())->getElementType()->isInteger())) &&
1587           "Incorrect operand type (not integer) for S/UREM");
1588    break;
1589  case FRem:
1590    assert(getType() == LHS->getType() &&
1591           "Arithmetic operation should return same type as operands!");
1592    assert(getType()->isFPOrFPVector() &&
1593           "Incorrect operand type (not floating point) for FREM");
1594    break;
1595  case Shl:
1596  case LShr:
1597  case AShr:
1598    assert(getType() == LHS->getType() &&
1599           "Shift operation should return same type as operands!");
1600    assert((getType()->isInteger() ||
1601            (isa<VectorType>(getType()) &&
1602             cast<VectorType>(getType())->getElementType()->isInteger())) &&
1603           "Tried to create a shift operation on a non-integral type!");
1604    break;
1605  case And: case Or:
1606  case Xor:
1607    assert(getType() == LHS->getType() &&
1608           "Logical operation should return same type as operands!");
1609    assert((getType()->isInteger() ||
1610            (isa<VectorType>(getType()) &&
1611             cast<VectorType>(getType())->getElementType()->isInteger())) &&
1612           "Tried to create a logical operation on a non-integral type!");
1613    break;
1614  default:
1615    break;
1616  }
1617#endif
1618}
1619
1620BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1621                                       const std::string &Name,
1622                                       Instruction *InsertBefore) {
1623  assert(S1->getType() == S2->getType() &&
1624         "Cannot create binary operator with two operands of differing type!");
1625  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1626}
1627
1628BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1629                                       const std::string &Name,
1630                                       BasicBlock *InsertAtEnd) {
1631  BinaryOperator *Res = Create(Op, S1, S2, Name);
1632  InsertAtEnd->getInstList().push_back(Res);
1633  return Res;
1634}
1635
1636BinaryOperator *BinaryOperator::CreateNeg(LLVMContext &Context,
1637                                          Value *Op, const std::string &Name,
1638                                          Instruction *InsertBefore) {
1639  Value *zero = Context.getZeroValueForNegation(Op->getType());
1640  return new BinaryOperator(Instruction::Sub,
1641                            zero, Op,
1642                            Op->getType(), Name, InsertBefore);
1643}
1644
1645BinaryOperator *BinaryOperator::CreateNeg(LLVMContext &Context,
1646                                          Value *Op, const std::string &Name,
1647                                          BasicBlock *InsertAtEnd) {
1648  Value *zero = Context.getZeroValueForNegation(Op->getType());
1649  return new BinaryOperator(Instruction::Sub,
1650                            zero, Op,
1651                            Op->getType(), Name, InsertAtEnd);
1652}
1653
1654BinaryOperator *BinaryOperator::CreateFNeg(LLVMContext &Context,
1655                                           Value *Op, const std::string &Name,
1656                                           Instruction *InsertBefore) {
1657  Value *zero = Context.getZeroValueForNegation(Op->getType());
1658  return new BinaryOperator(Instruction::FSub,
1659                            zero, Op,
1660                            Op->getType(), Name, InsertBefore);
1661}
1662
1663BinaryOperator *BinaryOperator::CreateFNeg(LLVMContext &Context,
1664                                           Value *Op, const std::string &Name,
1665                                           BasicBlock *InsertAtEnd) {
1666  Value *zero = Context.getZeroValueForNegation(Op->getType());
1667  return new BinaryOperator(Instruction::FSub,
1668                            zero, Op,
1669                            Op->getType(), Name, InsertAtEnd);
1670}
1671
1672BinaryOperator *BinaryOperator::CreateNot(Value *Op, const std::string &Name,
1673                                          Instruction *InsertBefore) {
1674  Constant *C;
1675  if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1676    C = ConstantInt::getAllOnesValue(PTy->getElementType());
1677    C = ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), C));
1678  } else {
1679    C = ConstantInt::getAllOnesValue(Op->getType());
1680  }
1681
1682  return new BinaryOperator(Instruction::Xor, Op, C,
1683                            Op->getType(), Name, InsertBefore);
1684}
1685
1686BinaryOperator *BinaryOperator::CreateNot(Value *Op, const std::string &Name,
1687                                          BasicBlock *InsertAtEnd) {
1688  Constant *AllOnes;
1689  if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1690    // Create a vector of all ones values.
1691    Constant *Elt = ConstantInt::getAllOnesValue(PTy->getElementType());
1692    AllOnes =
1693      ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), Elt));
1694  } else {
1695    AllOnes = ConstantInt::getAllOnesValue(Op->getType());
1696  }
1697
1698  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1699                            Op->getType(), Name, InsertAtEnd);
1700}
1701
1702
1703// isConstantAllOnes - Helper function for several functions below
1704static inline bool isConstantAllOnes(const Value *V) {
1705  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1706    return CI->isAllOnesValue();
1707  if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1708    return CV->isAllOnesValue();
1709  return false;
1710}
1711
1712bool BinaryOperator::isNeg(LLVMContext &Context, const Value *V) {
1713  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1714    if (Bop->getOpcode() == Instruction::Sub)
1715      return Bop->getOperand(0) ==
1716             Context.getZeroValueForNegation(Bop->getType());
1717  return false;
1718}
1719
1720bool BinaryOperator::isFNeg(LLVMContext &Context, const Value *V) {
1721  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1722    if (Bop->getOpcode() == Instruction::FSub)
1723      return Bop->getOperand(0) ==
1724             Context.getZeroValueForNegation(Bop->getType());
1725  return false;
1726}
1727
1728bool BinaryOperator::isNot(const Value *V) {
1729  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1730    return (Bop->getOpcode() == Instruction::Xor &&
1731            (isConstantAllOnes(Bop->getOperand(1)) ||
1732             isConstantAllOnes(Bop->getOperand(0))));
1733  return false;
1734}
1735
1736Value *BinaryOperator::getNegArgument(Value *BinOp) {
1737  return cast<BinaryOperator>(BinOp)->getOperand(1);
1738}
1739
1740const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1741  return getNegArgument(const_cast<Value*>(BinOp));
1742}
1743
1744Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1745  return cast<BinaryOperator>(BinOp)->getOperand(1);
1746}
1747
1748const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1749  return getFNegArgument(const_cast<Value*>(BinOp));
1750}
1751
1752Value *BinaryOperator::getNotArgument(Value *BinOp) {
1753  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1754  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1755  Value *Op0 = BO->getOperand(0);
1756  Value *Op1 = BO->getOperand(1);
1757  if (isConstantAllOnes(Op0)) return Op1;
1758
1759  assert(isConstantAllOnes(Op1));
1760  return Op0;
1761}
1762
1763const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1764  return getNotArgument(const_cast<Value*>(BinOp));
1765}
1766
1767
1768// swapOperands - Exchange the two operands to this instruction.  This
1769// instruction is safe to use on any binary instruction and does not
1770// modify the semantics of the instruction.  If the instruction is
1771// order dependent (SetLT f.e.) the opcode is changed.
1772//
1773bool BinaryOperator::swapOperands() {
1774  if (!isCommutative())
1775    return true; // Can't commute operands
1776  Op<0>().swap(Op<1>());
1777  return false;
1778}
1779
1780//===----------------------------------------------------------------------===//
1781//                                CastInst Class
1782//===----------------------------------------------------------------------===//
1783
1784// Just determine if this cast only deals with integral->integral conversion.
1785bool CastInst::isIntegerCast() const {
1786  switch (getOpcode()) {
1787    default: return false;
1788    case Instruction::ZExt:
1789    case Instruction::SExt:
1790    case Instruction::Trunc:
1791      return true;
1792    case Instruction::BitCast:
1793      return getOperand(0)->getType()->isInteger() && getType()->isInteger();
1794  }
1795}
1796
1797bool CastInst::isLosslessCast() const {
1798  // Only BitCast can be lossless, exit fast if we're not BitCast
1799  if (getOpcode() != Instruction::BitCast)
1800    return false;
1801
1802  // Identity cast is always lossless
1803  const Type* SrcTy = getOperand(0)->getType();
1804  const Type* DstTy = getType();
1805  if (SrcTy == DstTy)
1806    return true;
1807
1808  // Pointer to pointer is always lossless.
1809  if (isa<PointerType>(SrcTy))
1810    return isa<PointerType>(DstTy);
1811  return false;  // Other types have no identity values
1812}
1813
1814/// This function determines if the CastInst does not require any bits to be
1815/// changed in order to effect the cast. Essentially, it identifies cases where
1816/// no code gen is necessary for the cast, hence the name no-op cast.  For
1817/// example, the following are all no-op casts:
1818/// # bitcast i32* %x to i8*
1819/// # bitcast <2 x i32> %x to <4 x i16>
1820/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
1821/// @brief Determine if a cast is a no-op.
1822bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1823  switch (getOpcode()) {
1824    default:
1825      assert(!"Invalid CastOp");
1826    case Instruction::Trunc:
1827    case Instruction::ZExt:
1828    case Instruction::SExt:
1829    case Instruction::FPTrunc:
1830    case Instruction::FPExt:
1831    case Instruction::UIToFP:
1832    case Instruction::SIToFP:
1833    case Instruction::FPToUI:
1834    case Instruction::FPToSI:
1835      return false; // These always modify bits
1836    case Instruction::BitCast:
1837      return true;  // BitCast never modifies bits.
1838    case Instruction::PtrToInt:
1839      return IntPtrTy->getScalarSizeInBits() ==
1840             getType()->getScalarSizeInBits();
1841    case Instruction::IntToPtr:
1842      return IntPtrTy->getScalarSizeInBits() ==
1843             getOperand(0)->getType()->getScalarSizeInBits();
1844  }
1845}
1846
1847/// This function determines if a pair of casts can be eliminated and what
1848/// opcode should be used in the elimination. This assumes that there are two
1849/// instructions like this:
1850/// *  %F = firstOpcode SrcTy %x to MidTy
1851/// *  %S = secondOpcode MidTy %F to DstTy
1852/// The function returns a resultOpcode so these two casts can be replaced with:
1853/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
1854/// If no such cast is permited, the function returns 0.
1855unsigned CastInst::isEliminableCastPair(
1856  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1857  const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1858{
1859  // Define the 144 possibilities for these two cast instructions. The values
1860  // in this matrix determine what to do in a given situation and select the
1861  // case in the switch below.  The rows correspond to firstOp, the columns
1862  // correspond to secondOp.  In looking at the table below, keep in  mind
1863  // the following cast properties:
1864  //
1865  //          Size Compare       Source               Destination
1866  // Operator  Src ? Size   Type       Sign         Type       Sign
1867  // -------- ------------ -------------------   ---------------------
1868  // TRUNC         >       Integer      Any        Integral     Any
1869  // ZEXT          <       Integral   Unsigned     Integer      Any
1870  // SEXT          <       Integral    Signed      Integer      Any
1871  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
1872  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
1873  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
1874  // SITOFP       n/a      Integral    Signed      FloatPt      n/a
1875  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
1876  // FPEXT         <       FloatPt      n/a        FloatPt      n/a
1877  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
1878  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
1879  // BITCONVERT    =       FirstClass   n/a       FirstClass    n/a
1880  //
1881  // NOTE: some transforms are safe, but we consider them to be non-profitable.
1882  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
1883  // into "fptoui double to i64", but this loses information about the range
1884  // of the produced value (we no longer know the top-part is all zeros).
1885  // Further this conversion is often much more expensive for typical hardware,
1886  // and causes issues when building libgcc.  We disallow fptosi+sext for the
1887  // same reason.
1888  const unsigned numCastOps =
1889    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
1890  static const uint8_t CastResults[numCastOps][numCastOps] = {
1891    // T        F  F  U  S  F  F  P  I  B   -+
1892    // R  Z  S  P  P  I  I  T  P  2  N  T    |
1893    // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
1894    // N  X  X  U  S  F  F  N  X  N  2  V    |
1895    // C  T  T  I  I  P  P  C  T  T  P  T   -+
1896    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
1897    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
1898    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
1899    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
1900    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
1901    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
1902    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
1903    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
1904    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
1905    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
1906    { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
1907    {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
1908  };
1909
1910  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
1911                            [secondOp-Instruction::CastOpsBegin];
1912  switch (ElimCase) {
1913    case 0:
1914      // categorically disallowed
1915      return 0;
1916    case 1:
1917      // allowed, use first cast's opcode
1918      return firstOp;
1919    case 2:
1920      // allowed, use second cast's opcode
1921      return secondOp;
1922    case 3:
1923      // no-op cast in second op implies firstOp as long as the DestTy
1924      // is integer
1925      if (DstTy->isInteger())
1926        return firstOp;
1927      return 0;
1928    case 4:
1929      // no-op cast in second op implies firstOp as long as the DestTy
1930      // is floating point
1931      if (DstTy->isFloatingPoint())
1932        return firstOp;
1933      return 0;
1934    case 5:
1935      // no-op cast in first op implies secondOp as long as the SrcTy
1936      // is an integer
1937      if (SrcTy->isInteger())
1938        return secondOp;
1939      return 0;
1940    case 6:
1941      // no-op cast in first op implies secondOp as long as the SrcTy
1942      // is a floating point
1943      if (SrcTy->isFloatingPoint())
1944        return secondOp;
1945      return 0;
1946    case 7: {
1947      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
1948      unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
1949      unsigned MidSize = MidTy->getScalarSizeInBits();
1950      if (MidSize >= PtrSize)
1951        return Instruction::BitCast;
1952      return 0;
1953    }
1954    case 8: {
1955      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
1956      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
1957      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
1958      unsigned SrcSize = SrcTy->getScalarSizeInBits();
1959      unsigned DstSize = DstTy->getScalarSizeInBits();
1960      if (SrcSize == DstSize)
1961        return Instruction::BitCast;
1962      else if (SrcSize < DstSize)
1963        return firstOp;
1964      return secondOp;
1965    }
1966    case 9: // zext, sext -> zext, because sext can't sign extend after zext
1967      return Instruction::ZExt;
1968    case 10:
1969      // fpext followed by ftrunc is allowed if the bit size returned to is
1970      // the same as the original, in which case its just a bitcast
1971      if (SrcTy == DstTy)
1972        return Instruction::BitCast;
1973      return 0; // If the types are not the same we can't eliminate it.
1974    case 11:
1975      // bitcast followed by ptrtoint is allowed as long as the bitcast
1976      // is a pointer to pointer cast.
1977      if (isa<PointerType>(SrcTy) && isa<PointerType>(MidTy))
1978        return secondOp;
1979      return 0;
1980    case 12:
1981      // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
1982      if (isa<PointerType>(MidTy) && isa<PointerType>(DstTy))
1983        return firstOp;
1984      return 0;
1985    case 13: {
1986      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
1987      unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
1988      unsigned SrcSize = SrcTy->getScalarSizeInBits();
1989      unsigned DstSize = DstTy->getScalarSizeInBits();
1990      if (SrcSize <= PtrSize && SrcSize == DstSize)
1991        return Instruction::BitCast;
1992      return 0;
1993    }
1994    case 99:
1995      // cast combination can't happen (error in input). This is for all cases
1996      // where the MidTy is not the same for the two cast instructions.
1997      assert(!"Invalid Cast Combination");
1998      return 0;
1999    default:
2000      assert(!"Error in CastResults table!!!");
2001      return 0;
2002  }
2003  return 0;
2004}
2005
2006CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2007  const std::string &Name, Instruction *InsertBefore) {
2008  // Construct and return the appropriate CastInst subclass
2009  switch (op) {
2010    case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
2011    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
2012    case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
2013    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
2014    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
2015    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
2016    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
2017    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
2018    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
2019    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2020    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2021    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
2022    default:
2023      assert(!"Invalid opcode provided");
2024  }
2025  return 0;
2026}
2027
2028CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2029  const std::string &Name, BasicBlock *InsertAtEnd) {
2030  // Construct and return the appropriate CastInst subclass
2031  switch (op) {
2032    case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
2033    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
2034    case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
2035    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
2036    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
2037    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
2038    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
2039    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
2040    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
2041    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2042    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2043    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
2044    default:
2045      assert(!"Invalid opcode provided");
2046  }
2047  return 0;
2048}
2049
2050CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2051                                        const std::string &Name,
2052                                        Instruction *InsertBefore) {
2053  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2054    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2055  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2056}
2057
2058CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2059                                        const std::string &Name,
2060                                        BasicBlock *InsertAtEnd) {
2061  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2062    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2063  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2064}
2065
2066CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2067                                        const std::string &Name,
2068                                        Instruction *InsertBefore) {
2069  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2070    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2071  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2072}
2073
2074CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2075                                        const std::string &Name,
2076                                        BasicBlock *InsertAtEnd) {
2077  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2078    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2079  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2080}
2081
2082CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2083                                         const std::string &Name,
2084                                         Instruction *InsertBefore) {
2085  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2086    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2087  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2088}
2089
2090CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2091                                         const std::string &Name,
2092                                         BasicBlock *InsertAtEnd) {
2093  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2094    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2095  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2096}
2097
2098CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2099                                      const std::string &Name,
2100                                      BasicBlock *InsertAtEnd) {
2101  assert(isa<PointerType>(S->getType()) && "Invalid cast");
2102  assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
2103         "Invalid cast");
2104
2105  if (Ty->isInteger())
2106    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2107  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2108}
2109
2110/// @brief Create a BitCast or a PtrToInt cast instruction
2111CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2112                                      const std::string &Name,
2113                                      Instruction *InsertBefore) {
2114  assert(isa<PointerType>(S->getType()) && "Invalid cast");
2115  assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
2116         "Invalid cast");
2117
2118  if (Ty->isInteger())
2119    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2120  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2121}
2122
2123CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2124                                      bool isSigned, const std::string &Name,
2125                                      Instruction *InsertBefore) {
2126  assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
2127  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2128  unsigned DstBits = Ty->getScalarSizeInBits();
2129  Instruction::CastOps opcode =
2130    (SrcBits == DstBits ? Instruction::BitCast :
2131     (SrcBits > DstBits ? Instruction::Trunc :
2132      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2133  return Create(opcode, C, Ty, Name, InsertBefore);
2134}
2135
2136CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2137                                      bool isSigned, const std::string &Name,
2138                                      BasicBlock *InsertAtEnd) {
2139  assert(C->getType()->isIntOrIntVector() && Ty->isIntOrIntVector() &&
2140         "Invalid cast");
2141  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2142  unsigned DstBits = Ty->getScalarSizeInBits();
2143  Instruction::CastOps opcode =
2144    (SrcBits == DstBits ? Instruction::BitCast :
2145     (SrcBits > DstBits ? Instruction::Trunc :
2146      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2147  return Create(opcode, C, Ty, Name, InsertAtEnd);
2148}
2149
2150CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2151                                 const std::string &Name,
2152                                 Instruction *InsertBefore) {
2153  assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
2154         "Invalid cast");
2155  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2156  unsigned DstBits = Ty->getScalarSizeInBits();
2157  Instruction::CastOps opcode =
2158    (SrcBits == DstBits ? Instruction::BitCast :
2159     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2160  return Create(opcode, C, Ty, Name, InsertBefore);
2161}
2162
2163CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2164                                 const std::string &Name,
2165                                 BasicBlock *InsertAtEnd) {
2166  assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
2167         "Invalid cast");
2168  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2169  unsigned DstBits = Ty->getScalarSizeInBits();
2170  Instruction::CastOps opcode =
2171    (SrcBits == DstBits ? Instruction::BitCast :
2172     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2173  return Create(opcode, C, Ty, Name, InsertAtEnd);
2174}
2175
2176// Check whether it is valid to call getCastOpcode for these types.
2177// This routine must be kept in sync with getCastOpcode.
2178bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
2179  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2180    return false;
2181
2182  if (SrcTy == DestTy)
2183    return true;
2184
2185  // Get the bit sizes, we'll need these
2186  unsigned SrcBits = SrcTy->getScalarSizeInBits();   // 0 for ptr
2187  unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2188
2189  // Run through the possibilities ...
2190  if (DestTy->isInteger()) {                   // Casting to integral
2191    if (SrcTy->isInteger()) {                  // Casting from integral
2192        return true;
2193    } else if (SrcTy->isFloatingPoint()) {     // Casting from floating pt
2194      return true;
2195    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2196                                               // Casting from vector
2197      return DestBits == PTy->getBitWidth();
2198    } else {                                   // Casting from something else
2199      return isa<PointerType>(SrcTy);
2200    }
2201  } else if (DestTy->isFloatingPoint()) {      // Casting to floating pt
2202    if (SrcTy->isInteger()) {                  // Casting from integral
2203      return true;
2204    } else if (SrcTy->isFloatingPoint()) {     // Casting from floating pt
2205      return true;
2206    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2207                                               // Casting from vector
2208      return DestBits == PTy->getBitWidth();
2209    } else {                                   // Casting from something else
2210      return false;
2211    }
2212  } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2213                                                // Casting to vector
2214    if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2215                                                // Casting from vector
2216      return DestPTy->getBitWidth() == SrcPTy->getBitWidth();
2217    } else {                                    // Casting from something else
2218      return DestPTy->getBitWidth() == SrcBits;
2219    }
2220  } else if (isa<PointerType>(DestTy)) {        // Casting to pointer
2221    if (isa<PointerType>(SrcTy)) {              // Casting from pointer
2222      return true;
2223    } else if (SrcTy->isInteger()) {            // Casting from integral
2224      return true;
2225    } else {                                    // Casting from something else
2226      return false;
2227    }
2228  } else {                                      // Casting to something else
2229    return false;
2230  }
2231}
2232
2233// Provide a way to get a "cast" where the cast opcode is inferred from the
2234// types and size of the operand. This, basically, is a parallel of the
2235// logic in the castIsValid function below.  This axiom should hold:
2236//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2237// should not assert in castIsValid. In other words, this produces a "correct"
2238// casting opcode for the arguments passed to it.
2239// This routine must be kept in sync with isCastable.
2240Instruction::CastOps
2241CastInst::getCastOpcode(
2242  const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
2243  // Get the bit sizes, we'll need these
2244  const Type *SrcTy = Src->getType();
2245  unsigned SrcBits = SrcTy->getScalarSizeInBits();   // 0 for ptr
2246  unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2247
2248  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2249         "Only first class types are castable!");
2250
2251  // Run through the possibilities ...
2252  if (DestTy->isInteger()) {                       // Casting to integral
2253    if (SrcTy->isInteger()) {                      // Casting from integral
2254      if (DestBits < SrcBits)
2255        return Trunc;                               // int -> smaller int
2256      else if (DestBits > SrcBits) {                // its an extension
2257        if (SrcIsSigned)
2258          return SExt;                              // signed -> SEXT
2259        else
2260          return ZExt;                              // unsigned -> ZEXT
2261      } else {
2262        return BitCast;                             // Same size, No-op cast
2263      }
2264    } else if (SrcTy->isFloatingPoint()) {          // Casting from floating pt
2265      if (DestIsSigned)
2266        return FPToSI;                              // FP -> sint
2267      else
2268        return FPToUI;                              // FP -> uint
2269    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2270      assert(DestBits == PTy->getBitWidth() &&
2271               "Casting vector to integer of different width");
2272      PTy = NULL;
2273      return BitCast;                             // Same size, no-op cast
2274    } else {
2275      assert(isa<PointerType>(SrcTy) &&
2276             "Casting from a value that is not first-class type");
2277      return PtrToInt;                              // ptr -> int
2278    }
2279  } else if (DestTy->isFloatingPoint()) {           // Casting to floating pt
2280    if (SrcTy->isInteger()) {                      // Casting from integral
2281      if (SrcIsSigned)
2282        return SIToFP;                              // sint -> FP
2283      else
2284        return UIToFP;                              // uint -> FP
2285    } else if (SrcTy->isFloatingPoint()) {          // Casting from floating pt
2286      if (DestBits < SrcBits) {
2287        return FPTrunc;                             // FP -> smaller FP
2288      } else if (DestBits > SrcBits) {
2289        return FPExt;                               // FP -> larger FP
2290      } else  {
2291        return BitCast;                             // same size, no-op cast
2292      }
2293    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2294      assert(DestBits == PTy->getBitWidth() &&
2295             "Casting vector to floating point of different width");
2296      PTy = NULL;
2297      return BitCast;                             // same size, no-op cast
2298    } else {
2299      LLVM_UNREACHABLE("Casting pointer or non-first class to float");
2300    }
2301  } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2302    if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2303      assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
2304             "Casting vector to vector of different widths");
2305      SrcPTy = NULL;
2306      return BitCast;                             // vector -> vector
2307    } else if (DestPTy->getBitWidth() == SrcBits) {
2308      return BitCast;                               // float/int -> vector
2309    } else {
2310      assert(!"Illegal cast to vector (wrong type or size)");
2311    }
2312  } else if (isa<PointerType>(DestTy)) {
2313    if (isa<PointerType>(SrcTy)) {
2314      return BitCast;                               // ptr -> ptr
2315    } else if (SrcTy->isInteger()) {
2316      return IntToPtr;                              // int -> ptr
2317    } else {
2318      assert(!"Casting pointer to other than pointer or int");
2319    }
2320  } else {
2321    assert(!"Casting to type that is not first-class");
2322  }
2323
2324  // If we fall through to here we probably hit an assertion cast above
2325  // and assertions are not turned on. Anything we return is an error, so
2326  // BitCast is as good a choice as any.
2327  return BitCast;
2328}
2329
2330//===----------------------------------------------------------------------===//
2331//                    CastInst SubClass Constructors
2332//===----------------------------------------------------------------------===//
2333
2334/// Check that the construction parameters for a CastInst are correct. This
2335/// could be broken out into the separate constructors but it is useful to have
2336/// it in one place and to eliminate the redundant code for getting the sizes
2337/// of the types involved.
2338bool
2339CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
2340
2341  // Check for type sanity on the arguments
2342  const Type *SrcTy = S->getType();
2343  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType())
2344    return false;
2345
2346  // Get the size of the types in bits, we'll need this later
2347  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2348  unsigned DstBitSize = DstTy->getScalarSizeInBits();
2349
2350  // Switch on the opcode provided
2351  switch (op) {
2352  default: return false; // This is an input error
2353  case Instruction::Trunc:
2354    return SrcTy->isIntOrIntVector() &&
2355           DstTy->isIntOrIntVector()&& SrcBitSize > DstBitSize;
2356  case Instruction::ZExt:
2357    return SrcTy->isIntOrIntVector() &&
2358           DstTy->isIntOrIntVector()&& SrcBitSize < DstBitSize;
2359  case Instruction::SExt:
2360    return SrcTy->isIntOrIntVector() &&
2361           DstTy->isIntOrIntVector()&& SrcBitSize < DstBitSize;
2362  case Instruction::FPTrunc:
2363    return SrcTy->isFPOrFPVector() &&
2364           DstTy->isFPOrFPVector() &&
2365           SrcBitSize > DstBitSize;
2366  case Instruction::FPExt:
2367    return SrcTy->isFPOrFPVector() &&
2368           DstTy->isFPOrFPVector() &&
2369           SrcBitSize < DstBitSize;
2370  case Instruction::UIToFP:
2371  case Instruction::SIToFP:
2372    if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2373      if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2374        return SVTy->getElementType()->isIntOrIntVector() &&
2375               DVTy->getElementType()->isFPOrFPVector() &&
2376               SVTy->getNumElements() == DVTy->getNumElements();
2377      }
2378    }
2379    return SrcTy->isIntOrIntVector() && DstTy->isFPOrFPVector();
2380  case Instruction::FPToUI:
2381  case Instruction::FPToSI:
2382    if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2383      if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2384        return SVTy->getElementType()->isFPOrFPVector() &&
2385               DVTy->getElementType()->isIntOrIntVector() &&
2386               SVTy->getNumElements() == DVTy->getNumElements();
2387      }
2388    }
2389    return SrcTy->isFPOrFPVector() && DstTy->isIntOrIntVector();
2390  case Instruction::PtrToInt:
2391    return isa<PointerType>(SrcTy) && DstTy->isInteger();
2392  case Instruction::IntToPtr:
2393    return SrcTy->isInteger() && isa<PointerType>(DstTy);
2394  case Instruction::BitCast:
2395    // BitCast implies a no-op cast of type only. No bits change.
2396    // However, you can't cast pointers to anything but pointers.
2397    if (isa<PointerType>(SrcTy) != isa<PointerType>(DstTy))
2398      return false;
2399
2400    // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2401    // these cases, the cast is okay if the source and destination bit widths
2402    // are identical.
2403    return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2404  }
2405}
2406
2407TruncInst::TruncInst(
2408  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2409) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2410  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2411}
2412
2413TruncInst::TruncInst(
2414  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2415) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2416  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2417}
2418
2419ZExtInst::ZExtInst(
2420  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2421)  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2422  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2423}
2424
2425ZExtInst::ZExtInst(
2426  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2427)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2428  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2429}
2430SExtInst::SExtInst(
2431  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2432) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2433  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2434}
2435
2436SExtInst::SExtInst(
2437  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2438)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2439  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2440}
2441
2442FPTruncInst::FPTruncInst(
2443  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2444) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2445  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2446}
2447
2448FPTruncInst::FPTruncInst(
2449  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2450) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2451  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2452}
2453
2454FPExtInst::FPExtInst(
2455  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2456) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2457  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2458}
2459
2460FPExtInst::FPExtInst(
2461  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2462) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2463  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2464}
2465
2466UIToFPInst::UIToFPInst(
2467  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2468) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2469  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2470}
2471
2472UIToFPInst::UIToFPInst(
2473  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2474) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2475  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2476}
2477
2478SIToFPInst::SIToFPInst(
2479  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2480) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2481  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2482}
2483
2484SIToFPInst::SIToFPInst(
2485  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2486) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2487  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2488}
2489
2490FPToUIInst::FPToUIInst(
2491  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2492) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2493  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2494}
2495
2496FPToUIInst::FPToUIInst(
2497  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2498) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2499  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2500}
2501
2502FPToSIInst::FPToSIInst(
2503  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2504) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2505  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2506}
2507
2508FPToSIInst::FPToSIInst(
2509  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2510) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2511  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2512}
2513
2514PtrToIntInst::PtrToIntInst(
2515  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2516) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2517  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2518}
2519
2520PtrToIntInst::PtrToIntInst(
2521  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2522) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2523  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2524}
2525
2526IntToPtrInst::IntToPtrInst(
2527  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2528) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2529  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2530}
2531
2532IntToPtrInst::IntToPtrInst(
2533  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2534) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2535  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2536}
2537
2538BitCastInst::BitCastInst(
2539  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2540) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2541  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2542}
2543
2544BitCastInst::BitCastInst(
2545  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2546) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2547  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2548}
2549
2550//===----------------------------------------------------------------------===//
2551//                               CmpInst Classes
2552//===----------------------------------------------------------------------===//
2553
2554CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2555                 Value *LHS, Value *RHS, const std::string &Name,
2556                 Instruction *InsertBefore)
2557  : Instruction(ty, op,
2558                OperandTraits<CmpInst>::op_begin(this),
2559                OperandTraits<CmpInst>::operands(this),
2560                InsertBefore) {
2561    Op<0>() = LHS;
2562    Op<1>() = RHS;
2563  SubclassData = predicate;
2564  setName(Name);
2565}
2566
2567CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2568                 Value *LHS, Value *RHS, const std::string &Name,
2569                 BasicBlock *InsertAtEnd)
2570  : Instruction(ty, op,
2571                OperandTraits<CmpInst>::op_begin(this),
2572                OperandTraits<CmpInst>::operands(this),
2573                InsertAtEnd) {
2574  Op<0>() = LHS;
2575  Op<1>() = RHS;
2576  SubclassData = predicate;
2577  setName(Name);
2578}
2579
2580CmpInst *
2581CmpInst::Create(LLVMContext &Context, OtherOps Op, unsigned short predicate,
2582                Value *S1, Value *S2,
2583                const std::string &Name, Instruction *InsertBefore) {
2584  if (Op == Instruction::ICmp) {
2585    if (InsertBefore)
2586      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2587                          S1, S2, Name);
2588    else
2589      return new ICmpInst(Context, CmpInst::Predicate(predicate),
2590                          S1, S2, Name);
2591  }
2592
2593  if (InsertBefore)
2594    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2595                        S1, S2, Name);
2596  else
2597    return new FCmpInst(Context, CmpInst::Predicate(predicate),
2598                        S1, S2, Name);
2599}
2600
2601CmpInst *
2602CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2603                const std::string &Name, BasicBlock *InsertAtEnd) {
2604  if (Op == Instruction::ICmp) {
2605    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2606                        S1, S2, Name);
2607  }
2608  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2609                      S1, S2, Name);
2610}
2611
2612void CmpInst::swapOperands() {
2613  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2614    IC->swapOperands();
2615  else
2616    cast<FCmpInst>(this)->swapOperands();
2617}
2618
2619bool CmpInst::isCommutative() {
2620  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2621    return IC->isCommutative();
2622  return cast<FCmpInst>(this)->isCommutative();
2623}
2624
2625bool CmpInst::isEquality() {
2626  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2627    return IC->isEquality();
2628  return cast<FCmpInst>(this)->isEquality();
2629}
2630
2631
2632CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2633  switch (pred) {
2634    default: assert(!"Unknown cmp predicate!");
2635    case ICMP_EQ: return ICMP_NE;
2636    case ICMP_NE: return ICMP_EQ;
2637    case ICMP_UGT: return ICMP_ULE;
2638    case ICMP_ULT: return ICMP_UGE;
2639    case ICMP_UGE: return ICMP_ULT;
2640    case ICMP_ULE: return ICMP_UGT;
2641    case ICMP_SGT: return ICMP_SLE;
2642    case ICMP_SLT: return ICMP_SGE;
2643    case ICMP_SGE: return ICMP_SLT;
2644    case ICMP_SLE: return ICMP_SGT;
2645
2646    case FCMP_OEQ: return FCMP_UNE;
2647    case FCMP_ONE: return FCMP_UEQ;
2648    case FCMP_OGT: return FCMP_ULE;
2649    case FCMP_OLT: return FCMP_UGE;
2650    case FCMP_OGE: return FCMP_ULT;
2651    case FCMP_OLE: return FCMP_UGT;
2652    case FCMP_UEQ: return FCMP_ONE;
2653    case FCMP_UNE: return FCMP_OEQ;
2654    case FCMP_UGT: return FCMP_OLE;
2655    case FCMP_ULT: return FCMP_OGE;
2656    case FCMP_UGE: return FCMP_OLT;
2657    case FCMP_ULE: return FCMP_OGT;
2658    case FCMP_ORD: return FCMP_UNO;
2659    case FCMP_UNO: return FCMP_ORD;
2660    case FCMP_TRUE: return FCMP_FALSE;
2661    case FCMP_FALSE: return FCMP_TRUE;
2662  }
2663}
2664
2665ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2666  switch (pred) {
2667    default: assert(! "Unknown icmp predicate!");
2668    case ICMP_EQ: case ICMP_NE:
2669    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2670       return pred;
2671    case ICMP_UGT: return ICMP_SGT;
2672    case ICMP_ULT: return ICMP_SLT;
2673    case ICMP_UGE: return ICMP_SGE;
2674    case ICMP_ULE: return ICMP_SLE;
2675  }
2676}
2677
2678ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2679  switch (pred) {
2680    default: assert(! "Unknown icmp predicate!");
2681    case ICMP_EQ: case ICMP_NE:
2682    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2683       return pred;
2684    case ICMP_SGT: return ICMP_UGT;
2685    case ICMP_SLT: return ICMP_ULT;
2686    case ICMP_SGE: return ICMP_UGE;
2687    case ICMP_SLE: return ICMP_ULE;
2688  }
2689}
2690
2691bool ICmpInst::isSignedPredicate(Predicate pred) {
2692  switch (pred) {
2693    default: assert(! "Unknown icmp predicate!");
2694    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2695      return true;
2696    case ICMP_EQ:  case ICMP_NE: case ICMP_UGT: case ICMP_ULT:
2697    case ICMP_UGE: case ICMP_ULE:
2698      return false;
2699  }
2700}
2701
2702/// Initialize a set of values that all satisfy the condition with C.
2703///
2704ConstantRange
2705ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2706  APInt Lower(C);
2707  APInt Upper(C);
2708  uint32_t BitWidth = C.getBitWidth();
2709  switch (pred) {
2710  default: LLVM_UNREACHABLE("Invalid ICmp opcode to ConstantRange ctor!");
2711  case ICmpInst::ICMP_EQ: Upper++; break;
2712  case ICmpInst::ICMP_NE: Lower++; break;
2713  case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); break;
2714  case ICmpInst::ICMP_SLT: Lower = APInt::getSignedMinValue(BitWidth); break;
2715  case ICmpInst::ICMP_UGT:
2716    Lower++; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2717    break;
2718  case ICmpInst::ICMP_SGT:
2719    Lower++; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2720    break;
2721  case ICmpInst::ICMP_ULE:
2722    Lower = APInt::getMinValue(BitWidth); Upper++;
2723    break;
2724  case ICmpInst::ICMP_SLE:
2725    Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2726    break;
2727  case ICmpInst::ICMP_UGE:
2728    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2729    break;
2730  case ICmpInst::ICMP_SGE:
2731    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2732    break;
2733  }
2734  return ConstantRange(Lower, Upper);
2735}
2736
2737CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
2738  switch (pred) {
2739    default: assert(!"Unknown cmp predicate!");
2740    case ICMP_EQ: case ICMP_NE:
2741      return pred;
2742    case ICMP_SGT: return ICMP_SLT;
2743    case ICMP_SLT: return ICMP_SGT;
2744    case ICMP_SGE: return ICMP_SLE;
2745    case ICMP_SLE: return ICMP_SGE;
2746    case ICMP_UGT: return ICMP_ULT;
2747    case ICMP_ULT: return ICMP_UGT;
2748    case ICMP_UGE: return ICMP_ULE;
2749    case ICMP_ULE: return ICMP_UGE;
2750
2751    case FCMP_FALSE: case FCMP_TRUE:
2752    case FCMP_OEQ: case FCMP_ONE:
2753    case FCMP_UEQ: case FCMP_UNE:
2754    case FCMP_ORD: case FCMP_UNO:
2755      return pred;
2756    case FCMP_OGT: return FCMP_OLT;
2757    case FCMP_OLT: return FCMP_OGT;
2758    case FCMP_OGE: return FCMP_OLE;
2759    case FCMP_OLE: return FCMP_OGE;
2760    case FCMP_UGT: return FCMP_ULT;
2761    case FCMP_ULT: return FCMP_UGT;
2762    case FCMP_UGE: return FCMP_ULE;
2763    case FCMP_ULE: return FCMP_UGE;
2764  }
2765}
2766
2767bool CmpInst::isUnsigned(unsigned short predicate) {
2768  switch (predicate) {
2769    default: return false;
2770    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
2771    case ICmpInst::ICMP_UGE: return true;
2772  }
2773}
2774
2775bool CmpInst::isSigned(unsigned short predicate){
2776  switch (predicate) {
2777    default: return false;
2778    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
2779    case ICmpInst::ICMP_SGE: return true;
2780  }
2781}
2782
2783bool CmpInst::isOrdered(unsigned short predicate) {
2784  switch (predicate) {
2785    default: return false;
2786    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
2787    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
2788    case FCmpInst::FCMP_ORD: return true;
2789  }
2790}
2791
2792bool CmpInst::isUnordered(unsigned short predicate) {
2793  switch (predicate) {
2794    default: return false;
2795    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
2796    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
2797    case FCmpInst::FCMP_UNO: return true;
2798  }
2799}
2800
2801//===----------------------------------------------------------------------===//
2802//                        SwitchInst Implementation
2803//===----------------------------------------------------------------------===//
2804
2805void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
2806  assert(Value && Default);
2807  ReservedSpace = 2+NumCases*2;
2808  NumOperands = 2;
2809  OperandList = allocHungoffUses(ReservedSpace);
2810
2811  OperandList[0] = Value;
2812  OperandList[1] = Default;
2813}
2814
2815/// SwitchInst ctor - Create a new switch instruction, specifying a value to
2816/// switch on and a default destination.  The number of additional cases can
2817/// be specified here to make memory allocation more efficient.  This
2818/// constructor can also autoinsert before another instruction.
2819SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2820                       Instruction *InsertBefore)
2821  : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertBefore) {
2822  init(Value, Default, NumCases);
2823}
2824
2825/// SwitchInst ctor - Create a new switch instruction, specifying a value to
2826/// switch on and a default destination.  The number of additional cases can
2827/// be specified here to make memory allocation more efficient.  This
2828/// constructor also autoinserts at the end of the specified BasicBlock.
2829SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2830                       BasicBlock *InsertAtEnd)
2831  : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertAtEnd) {
2832  init(Value, Default, NumCases);
2833}
2834
2835SwitchInst::SwitchInst(const SwitchInst &SI)
2836  : TerminatorInst(Type::VoidTy, Instruction::Switch,
2837                   allocHungoffUses(SI.getNumOperands()), SI.getNumOperands()) {
2838  Use *OL = OperandList, *InOL = SI.OperandList;
2839  for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
2840    OL[i] = InOL[i];
2841    OL[i+1] = InOL[i+1];
2842  }
2843}
2844
2845SwitchInst::~SwitchInst() {
2846  dropHungoffUses(OperandList);
2847}
2848
2849
2850/// addCase - Add an entry to the switch instruction...
2851///
2852void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
2853  unsigned OpNo = NumOperands;
2854  if (OpNo+2 > ReservedSpace)
2855    resizeOperands(0);  // Get more space!
2856  // Initialize some new operands.
2857  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
2858  NumOperands = OpNo+2;
2859  OperandList[OpNo] = OnVal;
2860  OperandList[OpNo+1] = Dest;
2861}
2862
2863/// removeCase - This method removes the specified successor from the switch
2864/// instruction.  Note that this cannot be used to remove the default
2865/// destination (successor #0).
2866///
2867void SwitchInst::removeCase(unsigned idx) {
2868  assert(idx != 0 && "Cannot remove the default case!");
2869  assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
2870
2871  unsigned NumOps = getNumOperands();
2872  Use *OL = OperandList;
2873
2874  // Move everything after this operand down.
2875  //
2876  // FIXME: we could just swap with the end of the list, then erase.  However,
2877  // client might not expect this to happen.  The code as it is thrashes the
2878  // use/def lists, which is kinda lame.
2879  for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
2880    OL[i-2] = OL[i];
2881    OL[i-2+1] = OL[i+1];
2882  }
2883
2884  // Nuke the last value.
2885  OL[NumOps-2].set(0);
2886  OL[NumOps-2+1].set(0);
2887  NumOperands = NumOps-2;
2888}
2889
2890/// resizeOperands - resize operands - This adjusts the length of the operands
2891/// list according to the following behavior:
2892///   1. If NumOps == 0, grow the operand list in response to a push_back style
2893///      of operation.  This grows the number of ops by 3 times.
2894///   2. If NumOps > NumOperands, reserve space for NumOps operands.
2895///   3. If NumOps == NumOperands, trim the reserved space.
2896///
2897void SwitchInst::resizeOperands(unsigned NumOps) {
2898  unsigned e = getNumOperands();
2899  if (NumOps == 0) {
2900    NumOps = e*3;
2901  } else if (NumOps*2 > NumOperands) {
2902    // No resize needed.
2903    if (ReservedSpace >= NumOps) return;
2904  } else if (NumOps == NumOperands) {
2905    if (ReservedSpace == NumOps) return;
2906  } else {
2907    return;
2908  }
2909
2910  ReservedSpace = NumOps;
2911  Use *NewOps = allocHungoffUses(NumOps);
2912  Use *OldOps = OperandList;
2913  for (unsigned i = 0; i != e; ++i) {
2914      NewOps[i] = OldOps[i];
2915  }
2916  OperandList = NewOps;
2917  if (OldOps) Use::zap(OldOps, OldOps + e, true);
2918}
2919
2920
2921BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
2922  return getSuccessor(idx);
2923}
2924unsigned SwitchInst::getNumSuccessorsV() const {
2925  return getNumSuccessors();
2926}
2927void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
2928  setSuccessor(idx, B);
2929}
2930
2931// Define these methods here so vtables don't get emitted into every translation
2932// unit that uses these classes.
2933
2934GetElementPtrInst *GetElementPtrInst::clone(LLVMContext&) const {
2935  return new(getNumOperands()) GetElementPtrInst(*this);
2936}
2937
2938BinaryOperator *BinaryOperator::clone(LLVMContext&) const {
2939  return Create(getOpcode(), Op<0>(), Op<1>());
2940}
2941
2942FCmpInst* FCmpInst::clone(LLVMContext &Context) const {
2943  return new FCmpInst(Context, getPredicate(), Op<0>(), Op<1>());
2944}
2945ICmpInst* ICmpInst::clone(LLVMContext &Context) const {
2946  return new ICmpInst(Context, getPredicate(), Op<0>(), Op<1>());
2947}
2948
2949ExtractValueInst *ExtractValueInst::clone(LLVMContext&) const {
2950  return new ExtractValueInst(*this);
2951}
2952InsertValueInst *InsertValueInst::clone(LLVMContext&) const {
2953  return new InsertValueInst(*this);
2954}
2955
2956MallocInst *MallocInst::clone(LLVMContext&) const {
2957  return new MallocInst(*this);
2958}
2959
2960AllocaInst *AllocaInst::clone(LLVMContext&) const {
2961  return new AllocaInst(*this);
2962}
2963
2964FreeInst *FreeInst::clone(LLVMContext&) const {
2965  return new FreeInst(getOperand(0));
2966}
2967
2968LoadInst *LoadInst::clone(LLVMContext&) const {
2969  return new LoadInst(*this);
2970}
2971
2972StoreInst *StoreInst::clone(LLVMContext&) const {
2973  return new StoreInst(*this);
2974}
2975
2976CastInst *TruncInst::clone(LLVMContext&) const {
2977  return new TruncInst(*this);
2978}
2979
2980CastInst *ZExtInst::clone(LLVMContext&) const {
2981  return new ZExtInst(*this);
2982}
2983
2984CastInst *SExtInst::clone(LLVMContext&) const {
2985  return new SExtInst(*this);
2986}
2987
2988CastInst *FPTruncInst::clone(LLVMContext&) const {
2989  return new FPTruncInst(*this);
2990}
2991
2992CastInst *FPExtInst::clone(LLVMContext&) const {
2993  return new FPExtInst(*this);
2994}
2995
2996CastInst *UIToFPInst::clone(LLVMContext&) const {
2997  return new UIToFPInst(*this);
2998}
2999
3000CastInst *SIToFPInst::clone(LLVMContext&) const {
3001  return new SIToFPInst(*this);
3002}
3003
3004CastInst *FPToUIInst::clone(LLVMContext&) const {
3005  return new FPToUIInst(*this);
3006}
3007
3008CastInst *FPToSIInst::clone(LLVMContext&) const {
3009  return new FPToSIInst(*this);
3010}
3011
3012CastInst *PtrToIntInst::clone(LLVMContext&) const {
3013  return new PtrToIntInst(*this);
3014}
3015
3016CastInst *IntToPtrInst::clone(LLVMContext&) const {
3017  return new IntToPtrInst(*this);
3018}
3019
3020CastInst *BitCastInst::clone(LLVMContext&) const {
3021  return new BitCastInst(*this);
3022}
3023
3024CallInst *CallInst::clone(LLVMContext&) const {
3025  return new(getNumOperands()) CallInst(*this);
3026}
3027
3028SelectInst *SelectInst::clone(LLVMContext&)   const {
3029  return new(getNumOperands()) SelectInst(*this);
3030}
3031
3032VAArgInst *VAArgInst::clone(LLVMContext&) const {
3033  return new VAArgInst(*this);
3034}
3035
3036ExtractElementInst *ExtractElementInst::clone(LLVMContext&) const {
3037  return new ExtractElementInst(*this);
3038}
3039
3040InsertElementInst *InsertElementInst::clone(LLVMContext&) const {
3041  return InsertElementInst::Create(*this);
3042}
3043
3044ShuffleVectorInst *ShuffleVectorInst::clone(LLVMContext&) const {
3045  return new ShuffleVectorInst(*this);
3046}
3047
3048PHINode *PHINode::clone(LLVMContext&) const {
3049  return new PHINode(*this);
3050}
3051
3052ReturnInst *ReturnInst::clone(LLVMContext&) const {
3053  return new(getNumOperands()) ReturnInst(*this);
3054}
3055
3056BranchInst *BranchInst::clone(LLVMContext&) const {
3057  unsigned Ops(getNumOperands());
3058  return new(Ops, Ops == 1) BranchInst(*this);
3059}
3060
3061SwitchInst *SwitchInst::clone(LLVMContext&) const {
3062  return new SwitchInst(*this);
3063}
3064
3065InvokeInst *InvokeInst::clone(LLVMContext&) const {
3066  return new(getNumOperands()) InvokeInst(*this);
3067}
3068
3069UnwindInst *UnwindInst::clone(LLVMContext&) const {
3070  return new UnwindInst();
3071}
3072
3073UnreachableInst *UnreachableInst::clone(LLVMContext&) const {
3074  return new UnreachableInst();
3075}
3076