Instructions.cpp revision 1ed26acc58a13f125bc9e1d5e5aa22fd479654ff
1//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements all of the non-inline methods for the LLVM instruction
11// classes.
12//
13//===----------------------------------------------------------------------===//
14
15#include "LLVMContextImpl.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/Support/CallSite.h"
24#include "llvm/Support/ConstantRange.h"
25#include "llvm/Support/MathExtras.h"
26using namespace llvm;
27
28//===----------------------------------------------------------------------===//
29//                            CallSite Class
30//===----------------------------------------------------------------------===//
31
32User::op_iterator CallSite::getCallee() const {
33  Instruction *II(getInstruction());
34  return isCall()
35    ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
36    : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
37}
38
39//===----------------------------------------------------------------------===//
40//                            TerminatorInst Class
41//===----------------------------------------------------------------------===//
42
43// Out of line virtual method, so the vtable, etc has a home.
44TerminatorInst::~TerminatorInst() {
45}
46
47//===----------------------------------------------------------------------===//
48//                           UnaryInstruction Class
49//===----------------------------------------------------------------------===//
50
51// Out of line virtual method, so the vtable, etc has a home.
52UnaryInstruction::~UnaryInstruction() {
53}
54
55//===----------------------------------------------------------------------===//
56//                              SelectInst Class
57//===----------------------------------------------------------------------===//
58
59/// areInvalidOperands - Return a string if the specified operands are invalid
60/// for a select operation, otherwise return null.
61const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
62  if (Op1->getType() != Op2->getType())
63    return "both values to select must have same type";
64
65  if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
66    // Vector select.
67    if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
68      return "vector select condition element type must be i1";
69    const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
70    if (ET == 0)
71      return "selected values for vector select must be vectors";
72    if (ET->getNumElements() != VT->getNumElements())
73      return "vector select requires selected vectors to have "
74                   "the same vector length as select condition";
75  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
76    return "select condition must be i1 or <n x i1>";
77  }
78  return 0;
79}
80
81
82//===----------------------------------------------------------------------===//
83//                               PHINode Class
84//===----------------------------------------------------------------------===//
85
86PHINode::PHINode(const PHINode &PN)
87  : Instruction(PN.getType(), Instruction::PHI,
88                allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
89    ReservedSpace(PN.getNumOperands()) {
90  Use *OL = OperandList;
91  for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
92    OL[i] = PN.getOperand(i);
93    OL[i+1] = PN.getOperand(i+1);
94  }
95  SubclassOptionalData = PN.SubclassOptionalData;
96}
97
98PHINode::~PHINode() {
99  dropHungoffUses();
100}
101
102// removeIncomingValue - Remove an incoming value.  This is useful if a
103// predecessor basic block is deleted.
104Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
105  unsigned NumOps = getNumOperands();
106  Use *OL = OperandList;
107  assert(Idx*2 < NumOps && "BB not in PHI node!");
108  Value *Removed = OL[Idx*2];
109
110  // Move everything after this operand down.
111  //
112  // FIXME: we could just swap with the end of the list, then erase.  However,
113  // client might not expect this to happen.  The code as it is thrashes the
114  // use/def lists, which is kinda lame.
115  for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
116    OL[i-2] = OL[i];
117    OL[i-2+1] = OL[i+1];
118  }
119
120  // Nuke the last value.
121  OL[NumOps-2].set(0);
122  OL[NumOps-2+1].set(0);
123  NumOperands = NumOps-2;
124
125  // If the PHI node is dead, because it has zero entries, nuke it now.
126  if (NumOps == 2 && DeletePHIIfEmpty) {
127    // If anyone is using this PHI, make them use a dummy value instead...
128    replaceAllUsesWith(UndefValue::get(getType()));
129    eraseFromParent();
130  }
131  return Removed;
132}
133
134/// resizeOperands - resize operands - This adjusts the length of the operands
135/// list according to the following behavior:
136///   1. If NumOps == 0, grow the operand list in response to a push_back style
137///      of operation.  This grows the number of ops by 1.5 times.
138///   2. If NumOps > NumOperands, reserve space for NumOps operands.
139///   3. If NumOps == NumOperands, trim the reserved space.
140///
141void PHINode::resizeOperands(unsigned NumOps) {
142  unsigned e = getNumOperands();
143  if (NumOps == 0) {
144    NumOps = e*3/2;
145    if (NumOps < 4) NumOps = 4;      // 4 op PHI nodes are VERY common.
146  } else if (NumOps*2 > NumOperands) {
147    // No resize needed.
148    if (ReservedSpace >= NumOps) return;
149  } else if (NumOps == NumOperands) {
150    if (ReservedSpace == NumOps) return;
151  } else {
152    return;
153  }
154
155  ReservedSpace = NumOps;
156  Use *OldOps = OperandList;
157  Use *NewOps = allocHungoffUses(NumOps);
158  std::copy(OldOps, OldOps + e, NewOps);
159  OperandList = NewOps;
160  Use::zap(OldOps, OldOps + e, true);
161}
162
163/// hasConstantValue - If the specified PHI node always merges together the same
164/// value, return the value, otherwise return null.
165Value *PHINode::hasConstantValue() const {
166  // Exploit the fact that phi nodes always have at least one entry.
167  Value *ConstantValue = getIncomingValue(0);
168  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
169    if (getIncomingValue(i) != ConstantValue)
170      return 0; // Incoming values not all the same.
171  return ConstantValue;
172}
173
174
175//===----------------------------------------------------------------------===//
176//                        CallInst Implementation
177//===----------------------------------------------------------------------===//
178
179CallInst::~CallInst() {
180}
181
182void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
183  assert(NumOperands == NumParams+1 && "NumOperands not set up?");
184  Op<-1>() = Func;
185
186  const FunctionType *FTy =
187    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
188  (void)FTy;  // silence warning.
189
190  assert((NumParams == FTy->getNumParams() ||
191          (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
192         "Calling a function with bad signature!");
193  for (unsigned i = 0; i != NumParams; ++i) {
194    assert((i >= FTy->getNumParams() ||
195            FTy->getParamType(i) == Params[i]->getType()) &&
196           "Calling a function with a bad signature!");
197    OperandList[i] = Params[i];
198  }
199}
200
201void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
202  assert(NumOperands == 3 && "NumOperands not set up?");
203  Op<-1>() = Func;
204  Op<0>() = Actual1;
205  Op<1>() = Actual2;
206
207  const FunctionType *FTy =
208    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
209  (void)FTy;  // silence warning.
210
211  assert((FTy->getNumParams() == 2 ||
212          (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
213         "Calling a function with bad signature");
214  assert((0 >= FTy->getNumParams() ||
215          FTy->getParamType(0) == Actual1->getType()) &&
216         "Calling a function with a bad signature!");
217  assert((1 >= FTy->getNumParams() ||
218          FTy->getParamType(1) == Actual2->getType()) &&
219         "Calling a function with a bad signature!");
220}
221
222void CallInst::init(Value *Func, Value *Actual) {
223  assert(NumOperands == 2 && "NumOperands not set up?");
224  Op<-1>() = Func;
225  Op<0>() = Actual;
226
227  const FunctionType *FTy =
228    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
229  (void)FTy;  // silence warning.
230
231  assert((FTy->getNumParams() == 1 ||
232          (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
233         "Calling a function with bad signature");
234  assert((0 == FTy->getNumParams() ||
235          FTy->getParamType(0) == Actual->getType()) &&
236         "Calling a function with a bad signature!");
237}
238
239void CallInst::init(Value *Func) {
240  assert(NumOperands == 1 && "NumOperands not set up?");
241  Op<-1>() = Func;
242
243  const FunctionType *FTy =
244    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
245  (void)FTy;  // silence warning.
246
247  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
248}
249
250CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
251                   Instruction *InsertBefore)
252  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
253                                   ->getElementType())->getReturnType(),
254                Instruction::Call,
255                OperandTraits<CallInst>::op_end(this) - 2,
256                2, InsertBefore) {
257  init(Func, Actual);
258  setName(Name);
259}
260
261CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
262                   BasicBlock  *InsertAtEnd)
263  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
264                                   ->getElementType())->getReturnType(),
265                Instruction::Call,
266                OperandTraits<CallInst>::op_end(this) - 2,
267                2, InsertAtEnd) {
268  init(Func, Actual);
269  setName(Name);
270}
271CallInst::CallInst(Value *Func, const Twine &Name,
272                   Instruction *InsertBefore)
273  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
274                                   ->getElementType())->getReturnType(),
275                Instruction::Call,
276                OperandTraits<CallInst>::op_end(this) - 1,
277                1, InsertBefore) {
278  init(Func);
279  setName(Name);
280}
281
282CallInst::CallInst(Value *Func, const Twine &Name,
283                   BasicBlock *InsertAtEnd)
284  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
285                                   ->getElementType())->getReturnType(),
286                Instruction::Call,
287                OperandTraits<CallInst>::op_end(this) - 1,
288                1, InsertAtEnd) {
289  init(Func);
290  setName(Name);
291}
292
293CallInst::CallInst(const CallInst &CI)
294  : Instruction(CI.getType(), Instruction::Call,
295                OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
296                CI.getNumOperands()) {
297  setAttributes(CI.getAttributes());
298  setTailCall(CI.isTailCall());
299  setCallingConv(CI.getCallingConv());
300
301  Use *OL = OperandList;
302  Use *InOL = CI.OperandList;
303  for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
304    OL[i] = InOL[i];
305  SubclassOptionalData = CI.SubclassOptionalData;
306}
307
308void CallInst::addAttribute(unsigned i, Attributes attr) {
309  AttrListPtr PAL = getAttributes();
310  PAL = PAL.addAttr(i, attr);
311  setAttributes(PAL);
312}
313
314void CallInst::removeAttribute(unsigned i, Attributes attr) {
315  AttrListPtr PAL = getAttributes();
316  PAL = PAL.removeAttr(i, attr);
317  setAttributes(PAL);
318}
319
320bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
321  if (AttributeList.paramHasAttr(i, attr))
322    return true;
323  if (const Function *F = getCalledFunction())
324    return F->paramHasAttr(i, attr);
325  return false;
326}
327
328/// IsConstantOne - Return true only if val is constant int 1
329static bool IsConstantOne(Value *val) {
330  assert(val && "IsConstantOne does not work with NULL val");
331  return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
332}
333
334static Instruction *createMalloc(Instruction *InsertBefore,
335                                 BasicBlock *InsertAtEnd, const Type *IntPtrTy,
336                                 const Type *AllocTy, Value *AllocSize,
337                                 Value *ArraySize, Function *MallocF,
338                                 const Twine &Name) {
339  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
340         "createMalloc needs either InsertBefore or InsertAtEnd");
341
342  // malloc(type) becomes:
343  //       bitcast (i8* malloc(typeSize)) to type*
344  // malloc(type, arraySize) becomes:
345  //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
346  if (!ArraySize)
347    ArraySize = ConstantInt::get(IntPtrTy, 1);
348  else if (ArraySize->getType() != IntPtrTy) {
349    if (InsertBefore)
350      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
351                                              "", InsertBefore);
352    else
353      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
354                                              "", InsertAtEnd);
355  }
356
357  if (!IsConstantOne(ArraySize)) {
358    if (IsConstantOne(AllocSize)) {
359      AllocSize = ArraySize;         // Operand * 1 = Operand
360    } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
361      Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
362                                                     false /*ZExt*/);
363      // Malloc arg is constant product of type size and array size
364      AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
365    } else {
366      // Multiply type size by the array size...
367      if (InsertBefore)
368        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
369                                              "mallocsize", InsertBefore);
370      else
371        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
372                                              "mallocsize", InsertAtEnd);
373    }
374  }
375
376  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
377  // Create the call to Malloc.
378  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
379  Module* M = BB->getParent()->getParent();
380  const Type *BPTy = Type::getInt8PtrTy(BB->getContext());
381  Value *MallocFunc = MallocF;
382  if (!MallocFunc)
383    // prototype malloc as "void *malloc(size_t)"
384    MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, NULL);
385  const PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
386  CallInst *MCall = NULL;
387  Instruction *Result = NULL;
388  if (InsertBefore) {
389    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
390    Result = MCall;
391    if (Result->getType() != AllocPtrType)
392      // Create a cast instruction to convert to the right type...
393      Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
394  } else {
395    MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
396    Result = MCall;
397    if (Result->getType() != AllocPtrType) {
398      InsertAtEnd->getInstList().push_back(MCall);
399      // Create a cast instruction to convert to the right type...
400      Result = new BitCastInst(MCall, AllocPtrType, Name);
401    }
402  }
403  MCall->setTailCall();
404  if (Function *F = dyn_cast<Function>(MallocFunc)) {
405    MCall->setCallingConv(F->getCallingConv());
406    if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
407  }
408  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
409
410  return Result;
411}
412
413/// CreateMalloc - Generate the IR for a call to malloc:
414/// 1. Compute the malloc call's argument as the specified type's size,
415///    possibly multiplied by the array size if the array size is not
416///    constant 1.
417/// 2. Call malloc with that argument.
418/// 3. Bitcast the result of the malloc call to the specified type.
419Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
420                                    const Type *IntPtrTy, const Type *AllocTy,
421                                    Value *AllocSize, Value *ArraySize,
422                                    Function * MallocF,
423                                    const Twine &Name) {
424  return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy, AllocSize,
425                      ArraySize, MallocF, Name);
426}
427
428/// CreateMalloc - Generate the IR for a call to malloc:
429/// 1. Compute the malloc call's argument as the specified type's size,
430///    possibly multiplied by the array size if the array size is not
431///    constant 1.
432/// 2. Call malloc with that argument.
433/// 3. Bitcast the result of the malloc call to the specified type.
434/// Note: This function does not add the bitcast to the basic block, that is the
435/// responsibility of the caller.
436Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
437                                    const Type *IntPtrTy, const Type *AllocTy,
438                                    Value *AllocSize, Value *ArraySize,
439                                    Function *MallocF, const Twine &Name) {
440  return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
441                      ArraySize, MallocF, Name);
442}
443
444static Instruction* createFree(Value* Source, Instruction *InsertBefore,
445                               BasicBlock *InsertAtEnd) {
446  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
447         "createFree needs either InsertBefore or InsertAtEnd");
448  assert(Source->getType()->isPointerTy() &&
449         "Can not free something of nonpointer type!");
450
451  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
452  Module* M = BB->getParent()->getParent();
453
454  const Type *VoidTy = Type::getVoidTy(M->getContext());
455  const Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
456  // prototype free as "void free(void*)"
457  Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, NULL);
458  CallInst* Result = NULL;
459  Value *PtrCast = Source;
460  if (InsertBefore) {
461    if (Source->getType() != IntPtrTy)
462      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
463    Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
464  } else {
465    if (Source->getType() != IntPtrTy)
466      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
467    Result = CallInst::Create(FreeFunc, PtrCast, "");
468  }
469  Result->setTailCall();
470  if (Function *F = dyn_cast<Function>(FreeFunc))
471    Result->setCallingConv(F->getCallingConv());
472
473  return Result;
474}
475
476/// CreateFree - Generate the IR for a call to the builtin free function.
477Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
478  return createFree(Source, InsertBefore, NULL);
479}
480
481/// CreateFree - Generate the IR for a call to the builtin free function.
482/// Note: This function does not add the call to the basic block, that is the
483/// responsibility of the caller.
484Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
485  Instruction* FreeCall = createFree(Source, NULL, InsertAtEnd);
486  assert(FreeCall && "CreateFree did not create a CallInst");
487  return FreeCall;
488}
489
490//===----------------------------------------------------------------------===//
491//                        InvokeInst Implementation
492//===----------------------------------------------------------------------===//
493
494void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
495                      Value* const *Args, unsigned NumArgs) {
496  assert(NumOperands == 3+NumArgs && "NumOperands not set up?");
497  Op<-3>() = Fn;
498  Op<-2>() = IfNormal;
499  Op<-1>() = IfException;
500  const FunctionType *FTy =
501    cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
502  (void)FTy;  // silence warning.
503
504  assert(((NumArgs == FTy->getNumParams()) ||
505          (FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
506         "Invoking a function with bad signature");
507
508  Use *OL = OperandList;
509  for (unsigned i = 0, e = NumArgs; i != e; i++) {
510    assert((i >= FTy->getNumParams() ||
511            FTy->getParamType(i) == Args[i]->getType()) &&
512           "Invoking a function with a bad signature!");
513
514    OL[i] = Args[i];
515  }
516}
517
518InvokeInst::InvokeInst(const InvokeInst &II)
519  : TerminatorInst(II.getType(), Instruction::Invoke,
520                   OperandTraits<InvokeInst>::op_end(this)
521                   - II.getNumOperands(),
522                   II.getNumOperands()) {
523  setAttributes(II.getAttributes());
524  setCallingConv(II.getCallingConv());
525  Use *OL = OperandList, *InOL = II.OperandList;
526  for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
527    OL[i] = InOL[i];
528  SubclassOptionalData = II.SubclassOptionalData;
529}
530
531BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
532  return getSuccessor(idx);
533}
534unsigned InvokeInst::getNumSuccessorsV() const {
535  return getNumSuccessors();
536}
537void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
538  return setSuccessor(idx, B);
539}
540
541bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
542  if (AttributeList.paramHasAttr(i, attr))
543    return true;
544  if (const Function *F = getCalledFunction())
545    return F->paramHasAttr(i, attr);
546  return false;
547}
548
549void InvokeInst::addAttribute(unsigned i, Attributes attr) {
550  AttrListPtr PAL = getAttributes();
551  PAL = PAL.addAttr(i, attr);
552  setAttributes(PAL);
553}
554
555void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
556  AttrListPtr PAL = getAttributes();
557  PAL = PAL.removeAttr(i, attr);
558  setAttributes(PAL);
559}
560
561
562//===----------------------------------------------------------------------===//
563//                        ReturnInst Implementation
564//===----------------------------------------------------------------------===//
565
566ReturnInst::ReturnInst(const ReturnInst &RI)
567  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
568                   OperandTraits<ReturnInst>::op_end(this) -
569                     RI.getNumOperands(),
570                   RI.getNumOperands()) {
571  if (RI.getNumOperands())
572    Op<0>() = RI.Op<0>();
573  SubclassOptionalData = RI.SubclassOptionalData;
574}
575
576ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
577  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
578                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
579                   InsertBefore) {
580  if (retVal)
581    Op<0>() = retVal;
582}
583ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
584  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
585                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
586                   InsertAtEnd) {
587  if (retVal)
588    Op<0>() = retVal;
589}
590ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
591  : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
592                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
593}
594
595unsigned ReturnInst::getNumSuccessorsV() const {
596  return getNumSuccessors();
597}
598
599/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
600/// emit the vtable for the class in this translation unit.
601void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
602  llvm_unreachable("ReturnInst has no successors!");
603}
604
605BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
606  llvm_unreachable("ReturnInst has no successors!");
607  return 0;
608}
609
610ReturnInst::~ReturnInst() {
611}
612
613//===----------------------------------------------------------------------===//
614//                        UnwindInst Implementation
615//===----------------------------------------------------------------------===//
616
617UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
618  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
619                   0, 0, InsertBefore) {
620}
621UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
622  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
623                   0, 0, InsertAtEnd) {
624}
625
626
627unsigned UnwindInst::getNumSuccessorsV() const {
628  return getNumSuccessors();
629}
630
631void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
632  llvm_unreachable("UnwindInst has no successors!");
633}
634
635BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
636  llvm_unreachable("UnwindInst has no successors!");
637  return 0;
638}
639
640//===----------------------------------------------------------------------===//
641//                      UnreachableInst Implementation
642//===----------------------------------------------------------------------===//
643
644UnreachableInst::UnreachableInst(LLVMContext &Context,
645                                 Instruction *InsertBefore)
646  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
647                   0, 0, InsertBefore) {
648}
649UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
650  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
651                   0, 0, InsertAtEnd) {
652}
653
654unsigned UnreachableInst::getNumSuccessorsV() const {
655  return getNumSuccessors();
656}
657
658void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
659  llvm_unreachable("UnwindInst has no successors!");
660}
661
662BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
663  llvm_unreachable("UnwindInst has no successors!");
664  return 0;
665}
666
667//===----------------------------------------------------------------------===//
668//                        BranchInst Implementation
669//===----------------------------------------------------------------------===//
670
671void BranchInst::AssertOK() {
672  if (isConditional())
673    assert(getCondition()->getType()->isIntegerTy(1) &&
674           "May only branch on boolean predicates!");
675}
676
677BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
678  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
679                   OperandTraits<BranchInst>::op_end(this) - 1,
680                   1, InsertBefore) {
681  assert(IfTrue != 0 && "Branch destination may not be null!");
682  Op<-1>() = IfTrue;
683}
684BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
685                       Instruction *InsertBefore)
686  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
687                   OperandTraits<BranchInst>::op_end(this) - 3,
688                   3, InsertBefore) {
689  Op<-1>() = IfTrue;
690  Op<-2>() = IfFalse;
691  Op<-3>() = Cond;
692#ifndef NDEBUG
693  AssertOK();
694#endif
695}
696
697BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
698  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
699                   OperandTraits<BranchInst>::op_end(this) - 1,
700                   1, InsertAtEnd) {
701  assert(IfTrue != 0 && "Branch destination may not be null!");
702  Op<-1>() = IfTrue;
703}
704
705BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
706           BasicBlock *InsertAtEnd)
707  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
708                   OperandTraits<BranchInst>::op_end(this) - 3,
709                   3, InsertAtEnd) {
710  Op<-1>() = IfTrue;
711  Op<-2>() = IfFalse;
712  Op<-3>() = Cond;
713#ifndef NDEBUG
714  AssertOK();
715#endif
716}
717
718
719BranchInst::BranchInst(const BranchInst &BI) :
720  TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
721                 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
722                 BI.getNumOperands()) {
723  Op<-1>() = BI.Op<-1>();
724  if (BI.getNumOperands() != 1) {
725    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
726    Op<-3>() = BI.Op<-3>();
727    Op<-2>() = BI.Op<-2>();
728  }
729  SubclassOptionalData = BI.SubclassOptionalData;
730}
731
732BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
733  return getSuccessor(idx);
734}
735unsigned BranchInst::getNumSuccessorsV() const {
736  return getNumSuccessors();
737}
738void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
739  setSuccessor(idx, B);
740}
741
742
743//===----------------------------------------------------------------------===//
744//                        AllocaInst Implementation
745//===----------------------------------------------------------------------===//
746
747static Value *getAISize(LLVMContext &Context, Value *Amt) {
748  if (!Amt)
749    Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
750  else {
751    assert(!isa<BasicBlock>(Amt) &&
752           "Passed basic block into allocation size parameter! Use other ctor");
753    assert(Amt->getType()->isIntegerTy() &&
754           "Allocation array size is not an integer!");
755  }
756  return Amt;
757}
758
759AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
760                       const Twine &Name, Instruction *InsertBefore)
761  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
762                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
763  setAlignment(0);
764  assert(!Ty->isVoidTy() && "Cannot allocate void!");
765  setName(Name);
766}
767
768AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize,
769                       const Twine &Name, BasicBlock *InsertAtEnd)
770  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
771                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
772  setAlignment(0);
773  assert(!Ty->isVoidTy() && "Cannot allocate void!");
774  setName(Name);
775}
776
777AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
778                       Instruction *InsertBefore)
779  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
780                     getAISize(Ty->getContext(), 0), InsertBefore) {
781  setAlignment(0);
782  assert(!Ty->isVoidTy() && "Cannot allocate void!");
783  setName(Name);
784}
785
786AllocaInst::AllocaInst(const Type *Ty, const Twine &Name,
787                       BasicBlock *InsertAtEnd)
788  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
789                     getAISize(Ty->getContext(), 0), InsertAtEnd) {
790  setAlignment(0);
791  assert(!Ty->isVoidTy() && "Cannot allocate void!");
792  setName(Name);
793}
794
795AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
796                       const Twine &Name, Instruction *InsertBefore)
797  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
798                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
799  setAlignment(Align);
800  assert(!Ty->isVoidTy() && "Cannot allocate void!");
801  setName(Name);
802}
803
804AllocaInst::AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
805                       const Twine &Name, BasicBlock *InsertAtEnd)
806  : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
807                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
808  setAlignment(Align);
809  assert(!Ty->isVoidTy() && "Cannot allocate void!");
810  setName(Name);
811}
812
813// Out of line virtual method, so the vtable, etc has a home.
814AllocaInst::~AllocaInst() {
815}
816
817void AllocaInst::setAlignment(unsigned Align) {
818  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
819  assert(Align <= MaximumAlignment &&
820         "Alignment is greater than MaximumAlignment!");
821  setInstructionSubclassData(Log2_32(Align) + 1);
822  assert(getAlignment() == Align && "Alignment representation error!");
823}
824
825bool AllocaInst::isArrayAllocation() const {
826  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
827    return !CI->isOne();
828  return true;
829}
830
831const Type *AllocaInst::getAllocatedType() const {
832  return getType()->getElementType();
833}
834
835/// isStaticAlloca - Return true if this alloca is in the entry block of the
836/// function and is a constant size.  If so, the code generator will fold it
837/// into the prolog/epilog code, so it is basically free.
838bool AllocaInst::isStaticAlloca() const {
839  // Must be constant size.
840  if (!isa<ConstantInt>(getArraySize())) return false;
841
842  // Must be in the entry block.
843  const BasicBlock *Parent = getParent();
844  return Parent == &Parent->getParent()->front();
845}
846
847//===----------------------------------------------------------------------===//
848//                           LoadInst Implementation
849//===----------------------------------------------------------------------===//
850
851void LoadInst::AssertOK() {
852  assert(getOperand(0)->getType()->isPointerTy() &&
853         "Ptr must have pointer type.");
854}
855
856LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
857  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
858                     Load, Ptr, InsertBef) {
859  setVolatile(false);
860  setAlignment(0);
861  AssertOK();
862  setName(Name);
863}
864
865LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
866  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
867                     Load, Ptr, InsertAE) {
868  setVolatile(false);
869  setAlignment(0);
870  AssertOK();
871  setName(Name);
872}
873
874LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
875                   Instruction *InsertBef)
876  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
877                     Load, Ptr, InsertBef) {
878  setVolatile(isVolatile);
879  setAlignment(0);
880  AssertOK();
881  setName(Name);
882}
883
884LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
885                   unsigned Align, Instruction *InsertBef)
886  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
887                     Load, Ptr, InsertBef) {
888  setVolatile(isVolatile);
889  setAlignment(Align);
890  AssertOK();
891  setName(Name);
892}
893
894LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
895                   unsigned Align, BasicBlock *InsertAE)
896  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
897                     Load, Ptr, InsertAE) {
898  setVolatile(isVolatile);
899  setAlignment(Align);
900  AssertOK();
901  setName(Name);
902}
903
904LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
905                   BasicBlock *InsertAE)
906  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
907                     Load, Ptr, InsertAE) {
908  setVolatile(isVolatile);
909  setAlignment(0);
910  AssertOK();
911  setName(Name);
912}
913
914
915
916LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
917  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
918                     Load, Ptr, InsertBef) {
919  setVolatile(false);
920  setAlignment(0);
921  AssertOK();
922  if (Name && Name[0]) setName(Name);
923}
924
925LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
926  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
927                     Load, Ptr, InsertAE) {
928  setVolatile(false);
929  setAlignment(0);
930  AssertOK();
931  if (Name && Name[0]) setName(Name);
932}
933
934LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
935                   Instruction *InsertBef)
936: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
937                   Load, Ptr, InsertBef) {
938  setVolatile(isVolatile);
939  setAlignment(0);
940  AssertOK();
941  if (Name && Name[0]) setName(Name);
942}
943
944LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
945                   BasicBlock *InsertAE)
946  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
947                     Load, Ptr, InsertAE) {
948  setVolatile(isVolatile);
949  setAlignment(0);
950  AssertOK();
951  if (Name && Name[0]) setName(Name);
952}
953
954void LoadInst::setAlignment(unsigned Align) {
955  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
956  assert(Align <= MaximumAlignment &&
957         "Alignment is greater than MaximumAlignment!");
958  setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
959                             ((Log2_32(Align)+1)<<1));
960  assert(getAlignment() == Align && "Alignment representation error!");
961}
962
963//===----------------------------------------------------------------------===//
964//                           StoreInst Implementation
965//===----------------------------------------------------------------------===//
966
967void StoreInst::AssertOK() {
968  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
969  assert(getOperand(1)->getType()->isPointerTy() &&
970         "Ptr must have pointer type!");
971  assert(getOperand(0)->getType() ==
972                 cast<PointerType>(getOperand(1)->getType())->getElementType()
973         && "Ptr must be a pointer to Val type!");
974}
975
976
977StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
978  : Instruction(Type::getVoidTy(val->getContext()), Store,
979                OperandTraits<StoreInst>::op_begin(this),
980                OperandTraits<StoreInst>::operands(this),
981                InsertBefore) {
982  Op<0>() = val;
983  Op<1>() = addr;
984  setVolatile(false);
985  setAlignment(0);
986  AssertOK();
987}
988
989StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
990  : Instruction(Type::getVoidTy(val->getContext()), Store,
991                OperandTraits<StoreInst>::op_begin(this),
992                OperandTraits<StoreInst>::operands(this),
993                InsertAtEnd) {
994  Op<0>() = val;
995  Op<1>() = addr;
996  setVolatile(false);
997  setAlignment(0);
998  AssertOK();
999}
1000
1001StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1002                     Instruction *InsertBefore)
1003  : Instruction(Type::getVoidTy(val->getContext()), Store,
1004                OperandTraits<StoreInst>::op_begin(this),
1005                OperandTraits<StoreInst>::operands(this),
1006                InsertBefore) {
1007  Op<0>() = val;
1008  Op<1>() = addr;
1009  setVolatile(isVolatile);
1010  setAlignment(0);
1011  AssertOK();
1012}
1013
1014StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1015                     unsigned Align, Instruction *InsertBefore)
1016  : Instruction(Type::getVoidTy(val->getContext()), Store,
1017                OperandTraits<StoreInst>::op_begin(this),
1018                OperandTraits<StoreInst>::operands(this),
1019                InsertBefore) {
1020  Op<0>() = val;
1021  Op<1>() = addr;
1022  setVolatile(isVolatile);
1023  setAlignment(Align);
1024  AssertOK();
1025}
1026
1027StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1028                     unsigned Align, BasicBlock *InsertAtEnd)
1029  : Instruction(Type::getVoidTy(val->getContext()), Store,
1030                OperandTraits<StoreInst>::op_begin(this),
1031                OperandTraits<StoreInst>::operands(this),
1032                InsertAtEnd) {
1033  Op<0>() = val;
1034  Op<1>() = addr;
1035  setVolatile(isVolatile);
1036  setAlignment(Align);
1037  AssertOK();
1038}
1039
1040StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1041                     BasicBlock *InsertAtEnd)
1042  : Instruction(Type::getVoidTy(val->getContext()), Store,
1043                OperandTraits<StoreInst>::op_begin(this),
1044                OperandTraits<StoreInst>::operands(this),
1045                InsertAtEnd) {
1046  Op<0>() = val;
1047  Op<1>() = addr;
1048  setVolatile(isVolatile);
1049  setAlignment(0);
1050  AssertOK();
1051}
1052
1053void StoreInst::setAlignment(unsigned Align) {
1054  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1055  assert(Align <= MaximumAlignment &&
1056         "Alignment is greater than MaximumAlignment!");
1057  setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
1058                             ((Log2_32(Align)+1) << 1));
1059  assert(getAlignment() == Align && "Alignment representation error!");
1060}
1061
1062//===----------------------------------------------------------------------===//
1063//                       GetElementPtrInst Implementation
1064//===----------------------------------------------------------------------===//
1065
1066static unsigned retrieveAddrSpace(const Value *Val) {
1067  return cast<PointerType>(Val->getType())->getAddressSpace();
1068}
1069
1070void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
1071                             const Twine &Name) {
1072  assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
1073  Use *OL = OperandList;
1074  OL[0] = Ptr;
1075
1076  for (unsigned i = 0; i != NumIdx; ++i)
1077    OL[i+1] = Idx[i];
1078
1079  setName(Name);
1080}
1081
1082void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) {
1083  assert(NumOperands == 2 && "NumOperands not initialized?");
1084  Use *OL = OperandList;
1085  OL[0] = Ptr;
1086  OL[1] = Idx;
1087
1088  setName(Name);
1089}
1090
1091GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1092  : Instruction(GEPI.getType(), GetElementPtr,
1093                OperandTraits<GetElementPtrInst>::op_end(this)
1094                - GEPI.getNumOperands(),
1095                GEPI.getNumOperands()) {
1096  Use *OL = OperandList;
1097  Use *GEPIOL = GEPI.OperandList;
1098  for (unsigned i = 0, E = NumOperands; i != E; ++i)
1099    OL[i] = GEPIOL[i];
1100  SubclassOptionalData = GEPI.SubclassOptionalData;
1101}
1102
1103GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1104                                     const Twine &Name, Instruction *InBe)
1105  : Instruction(PointerType::get(
1106      checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)),
1107                GetElementPtr,
1108                OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1109                2, InBe) {
1110  init(Ptr, Idx, Name);
1111}
1112
1113GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1114                                     const Twine &Name, BasicBlock *IAE)
1115  : Instruction(PointerType::get(
1116            checkType(getIndexedType(Ptr->getType(),Idx)),
1117                retrieveAddrSpace(Ptr)),
1118                GetElementPtr,
1119                OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1120                2, IAE) {
1121  init(Ptr, Idx, Name);
1122}
1123
1124/// getIndexedType - Returns the type of the element that would be accessed with
1125/// a gep instruction with the specified parameters.
1126///
1127/// The Idxs pointer should point to a continuous piece of memory containing the
1128/// indices, either as Value* or uint64_t.
1129///
1130/// A null type is returned if the indices are invalid for the specified
1131/// pointer type.
1132///
1133template <typename IndexTy>
1134static const Type* getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
1135                                          unsigned NumIdx) {
1136  const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1137  if (!PTy) return 0;   // Type isn't a pointer type!
1138  const Type *Agg = PTy->getElementType();
1139
1140  // Handle the special case of the empty set index set, which is always valid.
1141  if (NumIdx == 0)
1142    return Agg;
1143
1144  // If there is at least one index, the top level type must be sized, otherwise
1145  // it cannot be 'stepped over'.  We explicitly allow abstract types (those
1146  // that contain opaque types) under the assumption that it will be resolved to
1147  // a sane type later.
1148  if (!Agg->isSized() && !Agg->isAbstract())
1149    return 0;
1150
1151  unsigned CurIdx = 1;
1152  for (; CurIdx != NumIdx; ++CurIdx) {
1153    const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1154    if (!CT || CT->isPointerTy()) return 0;
1155    IndexTy Index = Idxs[CurIdx];
1156    if (!CT->indexValid(Index)) return 0;
1157    Agg = CT->getTypeAtIndex(Index);
1158
1159    // If the new type forwards to another type, then it is in the middle
1160    // of being refined to another type (and hence, may have dropped all
1161    // references to what it was using before).  So, use the new forwarded
1162    // type.
1163    if (const Type *Ty = Agg->getForwardedType())
1164      Agg = Ty;
1165  }
1166  return CurIdx == NumIdx ? Agg : 0;
1167}
1168
1169const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1170                                              Value* const *Idxs,
1171                                              unsigned NumIdx) {
1172  return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1173}
1174
1175const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1176                                              Constant* const *Idxs,
1177                                              unsigned NumIdx) {
1178  return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1179}
1180
1181const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1182                                              uint64_t const *Idxs,
1183                                              unsigned NumIdx) {
1184  return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1185}
1186
1187const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
1188  const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1189  if (!PTy) return 0;   // Type isn't a pointer type!
1190
1191  // Check the pointer index.
1192  if (!PTy->indexValid(Idx)) return 0;
1193
1194  return PTy->getElementType();
1195}
1196
1197
1198/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1199/// zeros.  If so, the result pointer and the first operand have the same
1200/// value, just potentially different types.
1201bool GetElementPtrInst::hasAllZeroIndices() const {
1202  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1203    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1204      if (!CI->isZero()) return false;
1205    } else {
1206      return false;
1207    }
1208  }
1209  return true;
1210}
1211
1212/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1213/// constant integers.  If so, the result pointer and the first operand have
1214/// a constant offset between them.
1215bool GetElementPtrInst::hasAllConstantIndices() const {
1216  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1217    if (!isa<ConstantInt>(getOperand(i)))
1218      return false;
1219  }
1220  return true;
1221}
1222
1223void GetElementPtrInst::setIsInBounds(bool B) {
1224  cast<GEPOperator>(this)->setIsInBounds(B);
1225}
1226
1227bool GetElementPtrInst::isInBounds() const {
1228  return cast<GEPOperator>(this)->isInBounds();
1229}
1230
1231//===----------------------------------------------------------------------===//
1232//                           ExtractElementInst Implementation
1233//===----------------------------------------------------------------------===//
1234
1235ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1236                                       const Twine &Name,
1237                                       Instruction *InsertBef)
1238  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1239                ExtractElement,
1240                OperandTraits<ExtractElementInst>::op_begin(this),
1241                2, InsertBef) {
1242  assert(isValidOperands(Val, Index) &&
1243         "Invalid extractelement instruction operands!");
1244  Op<0>() = Val;
1245  Op<1>() = Index;
1246  setName(Name);
1247}
1248
1249ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1250                                       const Twine &Name,
1251                                       BasicBlock *InsertAE)
1252  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1253                ExtractElement,
1254                OperandTraits<ExtractElementInst>::op_begin(this),
1255                2, InsertAE) {
1256  assert(isValidOperands(Val, Index) &&
1257         "Invalid extractelement instruction operands!");
1258
1259  Op<0>() = Val;
1260  Op<1>() = Index;
1261  setName(Name);
1262}
1263
1264
1265bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1266  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy(32))
1267    return false;
1268  return true;
1269}
1270
1271
1272//===----------------------------------------------------------------------===//
1273//                           InsertElementInst Implementation
1274//===----------------------------------------------------------------------===//
1275
1276InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1277                                     const Twine &Name,
1278                                     Instruction *InsertBef)
1279  : Instruction(Vec->getType(), InsertElement,
1280                OperandTraits<InsertElementInst>::op_begin(this),
1281                3, InsertBef) {
1282  assert(isValidOperands(Vec, Elt, Index) &&
1283         "Invalid insertelement instruction operands!");
1284  Op<0>() = Vec;
1285  Op<1>() = Elt;
1286  Op<2>() = Index;
1287  setName(Name);
1288}
1289
1290InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1291                                     const Twine &Name,
1292                                     BasicBlock *InsertAE)
1293  : Instruction(Vec->getType(), InsertElement,
1294                OperandTraits<InsertElementInst>::op_begin(this),
1295                3, InsertAE) {
1296  assert(isValidOperands(Vec, Elt, Index) &&
1297         "Invalid insertelement instruction operands!");
1298
1299  Op<0>() = Vec;
1300  Op<1>() = Elt;
1301  Op<2>() = Index;
1302  setName(Name);
1303}
1304
1305bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1306                                        const Value *Index) {
1307  if (!Vec->getType()->isVectorTy())
1308    return false;   // First operand of insertelement must be vector type.
1309
1310  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1311    return false;// Second operand of insertelement must be vector element type.
1312
1313  if (!Index->getType()->isIntegerTy(32))
1314    return false;  // Third operand of insertelement must be i32.
1315  return true;
1316}
1317
1318
1319//===----------------------------------------------------------------------===//
1320//                      ShuffleVectorInst Implementation
1321//===----------------------------------------------------------------------===//
1322
1323ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1324                                     const Twine &Name,
1325                                     Instruction *InsertBefore)
1326: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1327                cast<VectorType>(Mask->getType())->getNumElements()),
1328              ShuffleVector,
1329              OperandTraits<ShuffleVectorInst>::op_begin(this),
1330              OperandTraits<ShuffleVectorInst>::operands(this),
1331              InsertBefore) {
1332  assert(isValidOperands(V1, V2, Mask) &&
1333         "Invalid shuffle vector instruction operands!");
1334  Op<0>() = V1;
1335  Op<1>() = V2;
1336  Op<2>() = Mask;
1337  setName(Name);
1338}
1339
1340ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1341                                     const Twine &Name,
1342                                     BasicBlock *InsertAtEnd)
1343: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1344                cast<VectorType>(Mask->getType())->getNumElements()),
1345              ShuffleVector,
1346              OperandTraits<ShuffleVectorInst>::op_begin(this),
1347              OperandTraits<ShuffleVectorInst>::operands(this),
1348              InsertAtEnd) {
1349  assert(isValidOperands(V1, V2, Mask) &&
1350         "Invalid shuffle vector instruction operands!");
1351
1352  Op<0>() = V1;
1353  Op<1>() = V2;
1354  Op<2>() = Mask;
1355  setName(Name);
1356}
1357
1358bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1359                                        const Value *Mask) {
1360  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1361    return false;
1362
1363  const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1364  if (MaskTy == 0 || !MaskTy->getElementType()->isIntegerTy(32))
1365    return false;
1366
1367  // Check to see if Mask is valid.
1368  if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1369    const VectorType *VTy = cast<VectorType>(V1->getType());
1370    for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
1371      if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
1372        if (CI->uge(VTy->getNumElements()*2))
1373          return false;
1374      } else if (!isa<UndefValue>(MV->getOperand(i))) {
1375        return false;
1376      }
1377    }
1378  }
1379  else if (!isa<UndefValue>(Mask) && !isa<ConstantAggregateZero>(Mask))
1380    return false;
1381
1382  return true;
1383}
1384
1385/// getMaskValue - Return the index from the shuffle mask for the specified
1386/// output result.  This is either -1 if the element is undef or a number less
1387/// than 2*numelements.
1388int ShuffleVectorInst::getMaskValue(unsigned i) const {
1389  const Constant *Mask = cast<Constant>(getOperand(2));
1390  if (isa<UndefValue>(Mask)) return -1;
1391  if (isa<ConstantAggregateZero>(Mask)) return 0;
1392  const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1393  assert(i < MaskCV->getNumOperands() && "Index out of range");
1394
1395  if (isa<UndefValue>(MaskCV->getOperand(i)))
1396    return -1;
1397  return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1398}
1399
1400//===----------------------------------------------------------------------===//
1401//                             InsertValueInst Class
1402//===----------------------------------------------------------------------===//
1403
1404void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
1405                           unsigned NumIdx, const Twine &Name) {
1406  assert(NumOperands == 2 && "NumOperands not initialized?");
1407  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idx, Idx + NumIdx) ==
1408         Val->getType() && "Inserted value must match indexed type!");
1409  Op<0>() = Agg;
1410  Op<1>() = Val;
1411
1412  Indices.append(Idx, Idx + NumIdx);
1413  setName(Name);
1414}
1415
1416void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
1417                           const Twine &Name) {
1418  assert(NumOperands == 2 && "NumOperands not initialized?");
1419  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idx) == Val->getType()
1420         && "Inserted value must match indexed type!");
1421  Op<0>() = Agg;
1422  Op<1>() = Val;
1423
1424  Indices.push_back(Idx);
1425  setName(Name);
1426}
1427
1428InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1429  : Instruction(IVI.getType(), InsertValue,
1430                OperandTraits<InsertValueInst>::op_begin(this), 2),
1431    Indices(IVI.Indices) {
1432  Op<0>() = IVI.getOperand(0);
1433  Op<1>() = IVI.getOperand(1);
1434  SubclassOptionalData = IVI.SubclassOptionalData;
1435}
1436
1437InsertValueInst::InsertValueInst(Value *Agg,
1438                                 Value *Val,
1439                                 unsigned Idx,
1440                                 const Twine &Name,
1441                                 Instruction *InsertBefore)
1442  : Instruction(Agg->getType(), InsertValue,
1443                OperandTraits<InsertValueInst>::op_begin(this),
1444                2, InsertBefore) {
1445  init(Agg, Val, Idx, Name);
1446}
1447
1448InsertValueInst::InsertValueInst(Value *Agg,
1449                                 Value *Val,
1450                                 unsigned Idx,
1451                                 const Twine &Name,
1452                                 BasicBlock *InsertAtEnd)
1453  : Instruction(Agg->getType(), InsertValue,
1454                OperandTraits<InsertValueInst>::op_begin(this),
1455                2, InsertAtEnd) {
1456  init(Agg, Val, Idx, Name);
1457}
1458
1459//===----------------------------------------------------------------------===//
1460//                             ExtractValueInst Class
1461//===----------------------------------------------------------------------===//
1462
1463void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
1464                            const Twine &Name) {
1465  assert(NumOperands == 1 && "NumOperands not initialized?");
1466
1467  Indices.append(Idx, Idx + NumIdx);
1468  setName(Name);
1469}
1470
1471void ExtractValueInst::init(unsigned Idx, const Twine &Name) {
1472  assert(NumOperands == 1 && "NumOperands not initialized?");
1473
1474  Indices.push_back(Idx);
1475  setName(Name);
1476}
1477
1478ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1479  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1480    Indices(EVI.Indices) {
1481  SubclassOptionalData = EVI.SubclassOptionalData;
1482}
1483
1484// getIndexedType - Returns the type of the element that would be extracted
1485// with an extractvalue instruction with the specified parameters.
1486//
1487// A null type is returned if the indices are invalid for the specified
1488// pointer type.
1489//
1490const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1491                                             const unsigned *Idxs,
1492                                             unsigned NumIdx) {
1493  for (unsigned CurIdx = 0; CurIdx != NumIdx; ++CurIdx) {
1494    unsigned Index = Idxs[CurIdx];
1495    // We can't use CompositeType::indexValid(Index) here.
1496    // indexValid() always returns true for arrays because getelementptr allows
1497    // out-of-bounds indices. Since we don't allow those for extractvalue and
1498    // insertvalue we need to check array indexing manually.
1499    // Since the only other types we can index into are struct types it's just
1500    // as easy to check those manually as well.
1501    if (const ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1502      if (Index >= AT->getNumElements())
1503        return 0;
1504    } else if (const StructType *ST = dyn_cast<StructType>(Agg)) {
1505      if (Index >= ST->getNumElements())
1506        return 0;
1507    } else {
1508      // Not a valid type to index into.
1509      return 0;
1510    }
1511
1512    Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1513
1514    // If the new type forwards to another type, then it is in the middle
1515    // of being refined to another type (and hence, may have dropped all
1516    // references to what it was using before).  So, use the new forwarded
1517    // type.
1518    if (const Type *Ty = Agg->getForwardedType())
1519      Agg = Ty;
1520  }
1521  return Agg;
1522}
1523
1524const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1525                                             unsigned Idx) {
1526  return getIndexedType(Agg, &Idx, 1);
1527}
1528
1529//===----------------------------------------------------------------------===//
1530//                             BinaryOperator Class
1531//===----------------------------------------------------------------------===//
1532
1533BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1534                               const Type *Ty, const Twine &Name,
1535                               Instruction *InsertBefore)
1536  : Instruction(Ty, iType,
1537                OperandTraits<BinaryOperator>::op_begin(this),
1538                OperandTraits<BinaryOperator>::operands(this),
1539                InsertBefore) {
1540  Op<0>() = S1;
1541  Op<1>() = S2;
1542  init(iType);
1543  setName(Name);
1544}
1545
1546BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1547                               const Type *Ty, const Twine &Name,
1548                               BasicBlock *InsertAtEnd)
1549  : Instruction(Ty, iType,
1550                OperandTraits<BinaryOperator>::op_begin(this),
1551                OperandTraits<BinaryOperator>::operands(this),
1552                InsertAtEnd) {
1553  Op<0>() = S1;
1554  Op<1>() = S2;
1555  init(iType);
1556  setName(Name);
1557}
1558
1559
1560void BinaryOperator::init(BinaryOps iType) {
1561  Value *LHS = getOperand(0), *RHS = getOperand(1);
1562  (void)LHS; (void)RHS; // Silence warnings.
1563  assert(LHS->getType() == RHS->getType() &&
1564         "Binary operator operand types must match!");
1565#ifndef NDEBUG
1566  switch (iType) {
1567  case Add: case Sub:
1568  case Mul:
1569    assert(getType() == LHS->getType() &&
1570           "Arithmetic operation should return same type as operands!");
1571    assert(getType()->isIntOrIntVectorTy() &&
1572           "Tried to create an integer operation on a non-integer type!");
1573    break;
1574  case FAdd: case FSub:
1575  case FMul:
1576    assert(getType() == LHS->getType() &&
1577           "Arithmetic operation should return same type as operands!");
1578    assert(getType()->isFPOrFPVectorTy() &&
1579           "Tried to create a floating-point operation on a "
1580           "non-floating-point type!");
1581    break;
1582  case UDiv:
1583  case SDiv:
1584    assert(getType() == LHS->getType() &&
1585           "Arithmetic operation should return same type as operands!");
1586    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1587            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1588           "Incorrect operand type (not integer) for S/UDIV");
1589    break;
1590  case FDiv:
1591    assert(getType() == LHS->getType() &&
1592           "Arithmetic operation should return same type as operands!");
1593    assert(getType()->isFPOrFPVectorTy() &&
1594           "Incorrect operand type (not floating point) for FDIV");
1595    break;
1596  case URem:
1597  case SRem:
1598    assert(getType() == LHS->getType() &&
1599           "Arithmetic operation should return same type as operands!");
1600    assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1601            cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1602           "Incorrect operand type (not integer) for S/UREM");
1603    break;
1604  case FRem:
1605    assert(getType() == LHS->getType() &&
1606           "Arithmetic operation should return same type as operands!");
1607    assert(getType()->isFPOrFPVectorTy() &&
1608           "Incorrect operand type (not floating point) for FREM");
1609    break;
1610  case Shl:
1611  case LShr:
1612  case AShr:
1613    assert(getType() == LHS->getType() &&
1614           "Shift operation should return same type as operands!");
1615    assert((getType()->isIntegerTy() ||
1616            (getType()->isVectorTy() &&
1617             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1618           "Tried to create a shift operation on a non-integral type!");
1619    break;
1620  case And: case Or:
1621  case Xor:
1622    assert(getType() == LHS->getType() &&
1623           "Logical operation should return same type as operands!");
1624    assert((getType()->isIntegerTy() ||
1625            (getType()->isVectorTy() &&
1626             cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1627           "Tried to create a logical operation on a non-integral type!");
1628    break;
1629  default:
1630    break;
1631  }
1632#endif
1633}
1634
1635BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1636                                       const Twine &Name,
1637                                       Instruction *InsertBefore) {
1638  assert(S1->getType() == S2->getType() &&
1639         "Cannot create binary operator with two operands of differing type!");
1640  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1641}
1642
1643BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1644                                       const Twine &Name,
1645                                       BasicBlock *InsertAtEnd) {
1646  BinaryOperator *Res = Create(Op, S1, S2, Name);
1647  InsertAtEnd->getInstList().push_back(Res);
1648  return Res;
1649}
1650
1651BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1652                                          Instruction *InsertBefore) {
1653  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1654  return new BinaryOperator(Instruction::Sub,
1655                            zero, Op,
1656                            Op->getType(), Name, InsertBefore);
1657}
1658
1659BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1660                                          BasicBlock *InsertAtEnd) {
1661  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1662  return new BinaryOperator(Instruction::Sub,
1663                            zero, Op,
1664                            Op->getType(), Name, InsertAtEnd);
1665}
1666
1667BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1668                                             Instruction *InsertBefore) {
1669  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1670  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
1671}
1672
1673BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
1674                                             BasicBlock *InsertAtEnd) {
1675  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1676  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
1677}
1678
1679BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1680                                             Instruction *InsertBefore) {
1681  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1682  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
1683}
1684
1685BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
1686                                             BasicBlock *InsertAtEnd) {
1687  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1688  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
1689}
1690
1691BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1692                                           Instruction *InsertBefore) {
1693  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1694  return new BinaryOperator(Instruction::FSub,
1695                            zero, Op,
1696                            Op->getType(), Name, InsertBefore);
1697}
1698
1699BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1700                                           BasicBlock *InsertAtEnd) {
1701  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1702  return new BinaryOperator(Instruction::FSub,
1703                            zero, Op,
1704                            Op->getType(), Name, InsertAtEnd);
1705}
1706
1707BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1708                                          Instruction *InsertBefore) {
1709  Constant *C;
1710  if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1711    C = Constant::getAllOnesValue(PTy->getElementType());
1712    C = ConstantVector::get(
1713                              std::vector<Constant*>(PTy->getNumElements(), C));
1714  } else {
1715    C = Constant::getAllOnesValue(Op->getType());
1716  }
1717
1718  return new BinaryOperator(Instruction::Xor, Op, C,
1719                            Op->getType(), Name, InsertBefore);
1720}
1721
1722BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1723                                          BasicBlock *InsertAtEnd) {
1724  Constant *AllOnes;
1725  if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1726    // Create a vector of all ones values.
1727    Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
1728    AllOnes = ConstantVector::get(
1729                            std::vector<Constant*>(PTy->getNumElements(), Elt));
1730  } else {
1731    AllOnes = Constant::getAllOnesValue(Op->getType());
1732  }
1733
1734  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1735                            Op->getType(), Name, InsertAtEnd);
1736}
1737
1738
1739// isConstantAllOnes - Helper function for several functions below
1740static inline bool isConstantAllOnes(const Value *V) {
1741  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1742    return CI->isAllOnesValue();
1743  if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1744    return CV->isAllOnesValue();
1745  return false;
1746}
1747
1748bool BinaryOperator::isNeg(const Value *V) {
1749  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1750    if (Bop->getOpcode() == Instruction::Sub)
1751      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1752        return C->isNegativeZeroValue();
1753  return false;
1754}
1755
1756bool BinaryOperator::isFNeg(const Value *V) {
1757  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1758    if (Bop->getOpcode() == Instruction::FSub)
1759      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1760        return C->isNegativeZeroValue();
1761  return false;
1762}
1763
1764bool BinaryOperator::isNot(const Value *V) {
1765  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1766    return (Bop->getOpcode() == Instruction::Xor &&
1767            (isConstantAllOnes(Bop->getOperand(1)) ||
1768             isConstantAllOnes(Bop->getOperand(0))));
1769  return false;
1770}
1771
1772Value *BinaryOperator::getNegArgument(Value *BinOp) {
1773  return cast<BinaryOperator>(BinOp)->getOperand(1);
1774}
1775
1776const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1777  return getNegArgument(const_cast<Value*>(BinOp));
1778}
1779
1780Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1781  return cast<BinaryOperator>(BinOp)->getOperand(1);
1782}
1783
1784const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1785  return getFNegArgument(const_cast<Value*>(BinOp));
1786}
1787
1788Value *BinaryOperator::getNotArgument(Value *BinOp) {
1789  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1790  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1791  Value *Op0 = BO->getOperand(0);
1792  Value *Op1 = BO->getOperand(1);
1793  if (isConstantAllOnes(Op0)) return Op1;
1794
1795  assert(isConstantAllOnes(Op1));
1796  return Op0;
1797}
1798
1799const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1800  return getNotArgument(const_cast<Value*>(BinOp));
1801}
1802
1803
1804// swapOperands - Exchange the two operands to this instruction.  This
1805// instruction is safe to use on any binary instruction and does not
1806// modify the semantics of the instruction.  If the instruction is
1807// order dependent (SetLT f.e.) the opcode is changed.
1808//
1809bool BinaryOperator::swapOperands() {
1810  if (!isCommutative())
1811    return true; // Can't commute operands
1812  Op<0>().swap(Op<1>());
1813  return false;
1814}
1815
1816void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1817  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1818}
1819
1820void BinaryOperator::setHasNoSignedWrap(bool b) {
1821  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1822}
1823
1824void BinaryOperator::setIsExact(bool b) {
1825  cast<SDivOperator>(this)->setIsExact(b);
1826}
1827
1828bool BinaryOperator::hasNoUnsignedWrap() const {
1829  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1830}
1831
1832bool BinaryOperator::hasNoSignedWrap() const {
1833  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1834}
1835
1836bool BinaryOperator::isExact() const {
1837  return cast<SDivOperator>(this)->isExact();
1838}
1839
1840//===----------------------------------------------------------------------===//
1841//                                CastInst Class
1842//===----------------------------------------------------------------------===//
1843
1844// Just determine if this cast only deals with integral->integral conversion.
1845bool CastInst::isIntegerCast() const {
1846  switch (getOpcode()) {
1847    default: return false;
1848    case Instruction::ZExt:
1849    case Instruction::SExt:
1850    case Instruction::Trunc:
1851      return true;
1852    case Instruction::BitCast:
1853      return getOperand(0)->getType()->isIntegerTy() &&
1854        getType()->isIntegerTy();
1855  }
1856}
1857
1858bool CastInst::isLosslessCast() const {
1859  // Only BitCast can be lossless, exit fast if we're not BitCast
1860  if (getOpcode() != Instruction::BitCast)
1861    return false;
1862
1863  // Identity cast is always lossless
1864  const Type* SrcTy = getOperand(0)->getType();
1865  const Type* DstTy = getType();
1866  if (SrcTy == DstTy)
1867    return true;
1868
1869  // Pointer to pointer is always lossless.
1870  if (SrcTy->isPointerTy())
1871    return DstTy->isPointerTy();
1872  return false;  // Other types have no identity values
1873}
1874
1875/// This function determines if the CastInst does not require any bits to be
1876/// changed in order to effect the cast. Essentially, it identifies cases where
1877/// no code gen is necessary for the cast, hence the name no-op cast.  For
1878/// example, the following are all no-op casts:
1879/// # bitcast i32* %x to i8*
1880/// # bitcast <2 x i32> %x to <4 x i16>
1881/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
1882/// @brief Determine if the described cast is a no-op.
1883bool CastInst::isNoopCast(Instruction::CastOps Opcode,
1884                          const Type *SrcTy,
1885                          const Type *DestTy,
1886                          const Type *IntPtrTy) {
1887  switch (Opcode) {
1888    default:
1889      assert(!"Invalid CastOp");
1890    case Instruction::Trunc:
1891    case Instruction::ZExt:
1892    case Instruction::SExt:
1893    case Instruction::FPTrunc:
1894    case Instruction::FPExt:
1895    case Instruction::UIToFP:
1896    case Instruction::SIToFP:
1897    case Instruction::FPToUI:
1898    case Instruction::FPToSI:
1899      return false; // These always modify bits
1900    case Instruction::BitCast:
1901      return true;  // BitCast never modifies bits.
1902    case Instruction::PtrToInt:
1903      return IntPtrTy->getScalarSizeInBits() ==
1904             DestTy->getScalarSizeInBits();
1905    case Instruction::IntToPtr:
1906      return IntPtrTy->getScalarSizeInBits() ==
1907             SrcTy->getScalarSizeInBits();
1908  }
1909}
1910
1911/// @brief Determine if a cast is a no-op.
1912bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1913  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
1914}
1915
1916/// This function determines if a pair of casts can be eliminated and what
1917/// opcode should be used in the elimination. This assumes that there are two
1918/// instructions like this:
1919/// *  %F = firstOpcode SrcTy %x to MidTy
1920/// *  %S = secondOpcode MidTy %F to DstTy
1921/// The function returns a resultOpcode so these two casts can be replaced with:
1922/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
1923/// If no such cast is permited, the function returns 0.
1924unsigned CastInst::isEliminableCastPair(
1925  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1926  const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1927{
1928  // Define the 144 possibilities for these two cast instructions. The values
1929  // in this matrix determine what to do in a given situation and select the
1930  // case in the switch below.  The rows correspond to firstOp, the columns
1931  // correspond to secondOp.  In looking at the table below, keep in  mind
1932  // the following cast properties:
1933  //
1934  //          Size Compare       Source               Destination
1935  // Operator  Src ? Size   Type       Sign         Type       Sign
1936  // -------- ------------ -------------------   ---------------------
1937  // TRUNC         >       Integer      Any        Integral     Any
1938  // ZEXT          <       Integral   Unsigned     Integer      Any
1939  // SEXT          <       Integral    Signed      Integer      Any
1940  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
1941  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
1942  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
1943  // SITOFP       n/a      Integral    Signed      FloatPt      n/a
1944  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
1945  // FPEXT         <       FloatPt      n/a        FloatPt      n/a
1946  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
1947  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
1948  // BITCAST       =       FirstClass   n/a       FirstClass    n/a
1949  //
1950  // NOTE: some transforms are safe, but we consider them to be non-profitable.
1951  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
1952  // into "fptoui double to i64", but this loses information about the range
1953  // of the produced value (we no longer know the top-part is all zeros).
1954  // Further this conversion is often much more expensive for typical hardware,
1955  // and causes issues when building libgcc.  We disallow fptosi+sext for the
1956  // same reason.
1957  const unsigned numCastOps =
1958    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
1959  static const uint8_t CastResults[numCastOps][numCastOps] = {
1960    // T        F  F  U  S  F  F  P  I  B   -+
1961    // R  Z  S  P  P  I  I  T  P  2  N  T    |
1962    // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
1963    // N  X  X  U  S  F  F  N  X  N  2  V    |
1964    // C  T  T  I  I  P  P  C  T  T  P  T   -+
1965    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
1966    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
1967    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
1968    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
1969    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
1970    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
1971    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
1972    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
1973    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
1974    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
1975    { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
1976    {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
1977  };
1978
1979  // If either of the casts are a bitcast from scalar to vector, disallow the
1980  // merging.
1981  if ((firstOp == Instruction::BitCast &&
1982       isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
1983      (secondOp == Instruction::BitCast &&
1984       isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
1985    return 0; // Disallowed
1986
1987  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
1988                            [secondOp-Instruction::CastOpsBegin];
1989  switch (ElimCase) {
1990    case 0:
1991      // categorically disallowed
1992      return 0;
1993    case 1:
1994      // allowed, use first cast's opcode
1995      return firstOp;
1996    case 2:
1997      // allowed, use second cast's opcode
1998      return secondOp;
1999    case 3:
2000      // no-op cast in second op implies firstOp as long as the DestTy
2001      // is integer and we are not converting between a vector and a
2002      // non vector type.
2003      if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2004        return firstOp;
2005      return 0;
2006    case 4:
2007      // no-op cast in second op implies firstOp as long as the DestTy
2008      // is floating point.
2009      if (DstTy->isFloatingPointTy())
2010        return firstOp;
2011      return 0;
2012    case 5:
2013      // no-op cast in first op implies secondOp as long as the SrcTy
2014      // is an integer.
2015      if (SrcTy->isIntegerTy())
2016        return secondOp;
2017      return 0;
2018    case 6:
2019      // no-op cast in first op implies secondOp as long as the SrcTy
2020      // is a floating point.
2021      if (SrcTy->isFloatingPointTy())
2022        return secondOp;
2023      return 0;
2024    case 7: {
2025      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2026      if (!IntPtrTy)
2027        return 0;
2028      unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2029      unsigned MidSize = MidTy->getScalarSizeInBits();
2030      if (MidSize >= PtrSize)
2031        return Instruction::BitCast;
2032      return 0;
2033    }
2034    case 8: {
2035      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2036      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2037      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2038      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2039      unsigned DstSize = DstTy->getScalarSizeInBits();
2040      if (SrcSize == DstSize)
2041        return Instruction::BitCast;
2042      else if (SrcSize < DstSize)
2043        return firstOp;
2044      return secondOp;
2045    }
2046    case 9: // zext, sext -> zext, because sext can't sign extend after zext
2047      return Instruction::ZExt;
2048    case 10:
2049      // fpext followed by ftrunc is allowed if the bit size returned to is
2050      // the same as the original, in which case its just a bitcast
2051      if (SrcTy == DstTy)
2052        return Instruction::BitCast;
2053      return 0; // If the types are not the same we can't eliminate it.
2054    case 11:
2055      // bitcast followed by ptrtoint is allowed as long as the bitcast
2056      // is a pointer to pointer cast.
2057      if (SrcTy->isPointerTy() && MidTy->isPointerTy())
2058        return secondOp;
2059      return 0;
2060    case 12:
2061      // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
2062      if (MidTy->isPointerTy() && DstTy->isPointerTy())
2063        return firstOp;
2064      return 0;
2065    case 13: {
2066      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2067      if (!IntPtrTy)
2068        return 0;
2069      unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2070      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2071      unsigned DstSize = DstTy->getScalarSizeInBits();
2072      if (SrcSize <= PtrSize && SrcSize == DstSize)
2073        return Instruction::BitCast;
2074      return 0;
2075    }
2076    case 99:
2077      // cast combination can't happen (error in input). This is for all cases
2078      // where the MidTy is not the same for the two cast instructions.
2079      assert(!"Invalid Cast Combination");
2080      return 0;
2081    default:
2082      assert(!"Error in CastResults table!!!");
2083      return 0;
2084  }
2085  return 0;
2086}
2087
2088CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2089  const Twine &Name, Instruction *InsertBefore) {
2090  // Construct and return the appropriate CastInst subclass
2091  switch (op) {
2092    case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
2093    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
2094    case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
2095    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
2096    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
2097    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
2098    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
2099    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
2100    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
2101    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2102    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2103    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
2104    default:
2105      assert(!"Invalid opcode provided");
2106  }
2107  return 0;
2108}
2109
2110CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2111  const Twine &Name, BasicBlock *InsertAtEnd) {
2112  // Construct and return the appropriate CastInst subclass
2113  switch (op) {
2114    case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
2115    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
2116    case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
2117    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
2118    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
2119    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
2120    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
2121    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
2122    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
2123    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2124    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2125    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
2126    default:
2127      assert(!"Invalid opcode provided");
2128  }
2129  return 0;
2130}
2131
2132CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2133                                        const Twine &Name,
2134                                        Instruction *InsertBefore) {
2135  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2136    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2137  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2138}
2139
2140CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2141                                        const Twine &Name,
2142                                        BasicBlock *InsertAtEnd) {
2143  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2144    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2145  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2146}
2147
2148CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2149                                        const Twine &Name,
2150                                        Instruction *InsertBefore) {
2151  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2152    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2153  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2154}
2155
2156CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2157                                        const Twine &Name,
2158                                        BasicBlock *InsertAtEnd) {
2159  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2160    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2161  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2162}
2163
2164CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2165                                         const Twine &Name,
2166                                         Instruction *InsertBefore) {
2167  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2168    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2169  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2170}
2171
2172CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2173                                         const Twine &Name,
2174                                         BasicBlock *InsertAtEnd) {
2175  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2176    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2177  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2178}
2179
2180CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2181                                      const Twine &Name,
2182                                      BasicBlock *InsertAtEnd) {
2183  assert(S->getType()->isPointerTy() && "Invalid cast");
2184  assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2185         "Invalid cast");
2186
2187  if (Ty->isIntegerTy())
2188    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2189  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2190}
2191
2192/// @brief Create a BitCast or a PtrToInt cast instruction
2193CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2194                                      const Twine &Name,
2195                                      Instruction *InsertBefore) {
2196  assert(S->getType()->isPointerTy() && "Invalid cast");
2197  assert((Ty->isIntegerTy() || Ty->isPointerTy()) &&
2198         "Invalid cast");
2199
2200  if (Ty->isIntegerTy())
2201    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2202  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2203}
2204
2205CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2206                                      bool isSigned, const Twine &Name,
2207                                      Instruction *InsertBefore) {
2208  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2209         "Invalid integer cast");
2210  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2211  unsigned DstBits = Ty->getScalarSizeInBits();
2212  Instruction::CastOps opcode =
2213    (SrcBits == DstBits ? Instruction::BitCast :
2214     (SrcBits > DstBits ? Instruction::Trunc :
2215      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2216  return Create(opcode, C, Ty, Name, InsertBefore);
2217}
2218
2219CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2220                                      bool isSigned, const Twine &Name,
2221                                      BasicBlock *InsertAtEnd) {
2222  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2223         "Invalid cast");
2224  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2225  unsigned DstBits = Ty->getScalarSizeInBits();
2226  Instruction::CastOps opcode =
2227    (SrcBits == DstBits ? Instruction::BitCast :
2228     (SrcBits > DstBits ? Instruction::Trunc :
2229      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2230  return Create(opcode, C, Ty, Name, InsertAtEnd);
2231}
2232
2233CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2234                                 const Twine &Name,
2235                                 Instruction *InsertBefore) {
2236  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2237         "Invalid cast");
2238  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2239  unsigned DstBits = Ty->getScalarSizeInBits();
2240  Instruction::CastOps opcode =
2241    (SrcBits == DstBits ? Instruction::BitCast :
2242     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2243  return Create(opcode, C, Ty, Name, InsertBefore);
2244}
2245
2246CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2247                                 const Twine &Name,
2248                                 BasicBlock *InsertAtEnd) {
2249  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2250         "Invalid cast");
2251  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2252  unsigned DstBits = Ty->getScalarSizeInBits();
2253  Instruction::CastOps opcode =
2254    (SrcBits == DstBits ? Instruction::BitCast :
2255     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2256  return Create(opcode, C, Ty, Name, InsertAtEnd);
2257}
2258
2259// Check whether it is valid to call getCastOpcode for these types.
2260// This routine must be kept in sync with getCastOpcode.
2261bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
2262  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2263    return false;
2264
2265  if (SrcTy == DestTy)
2266    return true;
2267
2268  // Get the bit sizes, we'll need these
2269  unsigned SrcBits = SrcTy->getScalarSizeInBits();   // 0 for ptr
2270  unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2271
2272  // Run through the possibilities ...
2273  if (DestTy->isIntegerTy()) {                   // Casting to integral
2274    if (SrcTy->isIntegerTy()) {                  // Casting from integral
2275        return true;
2276    } else if (SrcTy->isFloatingPointTy()) {     // Casting from floating pt
2277      return true;
2278    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2279                                               // Casting from vector
2280      return DestBits == PTy->getBitWidth();
2281    } else {                                   // Casting from something else
2282      return SrcTy->isPointerTy();
2283    }
2284  } else if (DestTy->isFloatingPointTy()) {      // Casting to floating pt
2285    if (SrcTy->isIntegerTy()) {                  // Casting from integral
2286      return true;
2287    } else if (SrcTy->isFloatingPointTy()) {     // Casting from floating pt
2288      return true;
2289    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2290                                               // Casting from vector
2291      return DestBits == PTy->getBitWidth();
2292    } else {                                   // Casting from something else
2293      return false;
2294    }
2295  } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2296                                                // Casting to vector
2297    if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2298                                                // Casting from vector
2299      return DestPTy->getBitWidth() == SrcPTy->getBitWidth();
2300    } else {                                    // Casting from something else
2301      return DestPTy->getBitWidth() == SrcBits;
2302    }
2303  } else if (DestTy->isPointerTy()) {        // Casting to pointer
2304    if (SrcTy->isPointerTy()) {              // Casting from pointer
2305      return true;
2306    } else if (SrcTy->isIntegerTy()) {            // Casting from integral
2307      return true;
2308    } else {                                    // Casting from something else
2309      return false;
2310    }
2311  } else if (DestTy->isX86_MMXTy()) {
2312    return SrcBits == 64;
2313  } else {                                      // Casting to something else
2314    return false;
2315  }
2316}
2317
2318// Provide a way to get a "cast" where the cast opcode is inferred from the
2319// types and size of the operand. This, basically, is a parallel of the
2320// logic in the castIsValid function below.  This axiom should hold:
2321//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2322// should not assert in castIsValid. In other words, this produces a "correct"
2323// casting opcode for the arguments passed to it.
2324// This routine must be kept in sync with isCastable.
2325Instruction::CastOps
2326CastInst::getCastOpcode(
2327  const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
2328  // Get the bit sizes, we'll need these
2329  const Type *SrcTy = Src->getType();
2330  unsigned SrcBits = SrcTy->getScalarSizeInBits();   // 0 for ptr
2331  unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2332
2333  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2334         "Only first class types are castable!");
2335
2336  // Run through the possibilities ...
2337  if (DestTy->isIntegerTy()) {                      // Casting to integral
2338    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2339      if (DestBits < SrcBits)
2340        return Trunc;                               // int -> smaller int
2341      else if (DestBits > SrcBits) {                // its an extension
2342        if (SrcIsSigned)
2343          return SExt;                              // signed -> SEXT
2344        else
2345          return ZExt;                              // unsigned -> ZEXT
2346      } else {
2347        return BitCast;                             // Same size, No-op cast
2348      }
2349    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2350      if (DestIsSigned)
2351        return FPToSI;                              // FP -> sint
2352      else
2353        return FPToUI;                              // FP -> uint
2354    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2355      assert(DestBits == PTy->getBitWidth() &&
2356               "Casting vector to integer of different width");
2357      PTy = NULL;
2358      return BitCast;                             // Same size, no-op cast
2359    } else {
2360      assert(SrcTy->isPointerTy() &&
2361             "Casting from a value that is not first-class type");
2362      return PtrToInt;                              // ptr -> int
2363    }
2364  } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
2365    if (SrcTy->isIntegerTy()) {                     // Casting from integral
2366      if (SrcIsSigned)
2367        return SIToFP;                              // sint -> FP
2368      else
2369        return UIToFP;                              // uint -> FP
2370    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
2371      if (DestBits < SrcBits) {
2372        return FPTrunc;                             // FP -> smaller FP
2373      } else if (DestBits > SrcBits) {
2374        return FPExt;                               // FP -> larger FP
2375      } else  {
2376        return BitCast;                             // same size, no-op cast
2377      }
2378    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2379      assert(DestBits == PTy->getBitWidth() &&
2380             "Casting vector to floating point of different width");
2381      PTy = NULL;
2382      return BitCast;                             // same size, no-op cast
2383    } else {
2384      llvm_unreachable("Casting pointer or non-first class to float");
2385    }
2386  } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2387    if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2388      assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
2389             "Casting vector to vector of different widths");
2390      SrcPTy = NULL;
2391      return BitCast;                             // vector -> vector
2392    } else if (DestPTy->getBitWidth() == SrcBits) {
2393      return BitCast;                               // float/int -> vector
2394    } else if (SrcTy->isX86_MMXTy()) {
2395      assert(DestPTy->getBitWidth()==64 &&
2396             "Casting X86_MMX to vector of wrong width");
2397      return BitCast;                             // MMX to 64-bit vector
2398    } else {
2399      assert(!"Illegal cast to vector (wrong type or size)");
2400    }
2401  } else if (DestTy->isPointerTy()) {
2402    if (SrcTy->isPointerTy()) {
2403      return BitCast;                               // ptr -> ptr
2404    } else if (SrcTy->isIntegerTy()) {
2405      return IntToPtr;                              // int -> ptr
2406    } else {
2407      assert(!"Casting pointer to other than pointer or int");
2408    }
2409  } else if (DestTy->isX86_MMXTy()) {
2410    if (isa<VectorType>(SrcTy)) {
2411      assert(cast<VectorType>(SrcTy)->getBitWidth() == 64 &&
2412             "Casting vector of wrong width to X86_MMX");
2413      return BitCast;                               // 64-bit vector to MMX
2414    } else {
2415      assert(!"Illegal cast to X86_MMX");
2416    }
2417  } else {
2418    assert(!"Casting to type that is not first-class");
2419  }
2420
2421  // If we fall through to here we probably hit an assertion cast above
2422  // and assertions are not turned on. Anything we return is an error, so
2423  // BitCast is as good a choice as any.
2424  return BitCast;
2425}
2426
2427//===----------------------------------------------------------------------===//
2428//                    CastInst SubClass Constructors
2429//===----------------------------------------------------------------------===//
2430
2431/// Check that the construction parameters for a CastInst are correct. This
2432/// could be broken out into the separate constructors but it is useful to have
2433/// it in one place and to eliminate the redundant code for getting the sizes
2434/// of the types involved.
2435bool
2436CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
2437
2438  // Check for type sanity on the arguments
2439  const Type *SrcTy = S->getType();
2440  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
2441      SrcTy->isAggregateType() || DstTy->isAggregateType())
2442    return false;
2443
2444  // Get the size of the types in bits, we'll need this later
2445  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2446  unsigned DstBitSize = DstTy->getScalarSizeInBits();
2447
2448  // Switch on the opcode provided
2449  switch (op) {
2450  default: return false; // This is an input error
2451  case Instruction::Trunc:
2452    return SrcTy->isIntOrIntVectorTy() &&
2453           DstTy->isIntOrIntVectorTy()&& SrcBitSize > DstBitSize;
2454  case Instruction::ZExt:
2455    return SrcTy->isIntOrIntVectorTy() &&
2456           DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize;
2457  case Instruction::SExt:
2458    return SrcTy->isIntOrIntVectorTy() &&
2459           DstTy->isIntOrIntVectorTy()&& SrcBitSize < DstBitSize;
2460  case Instruction::FPTrunc:
2461    return SrcTy->isFPOrFPVectorTy() &&
2462           DstTy->isFPOrFPVectorTy() &&
2463           SrcBitSize > DstBitSize;
2464  case Instruction::FPExt:
2465    return SrcTy->isFPOrFPVectorTy() &&
2466           DstTy->isFPOrFPVectorTy() &&
2467           SrcBitSize < DstBitSize;
2468  case Instruction::UIToFP:
2469  case Instruction::SIToFP:
2470    if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2471      if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2472        return SVTy->getElementType()->isIntOrIntVectorTy() &&
2473               DVTy->getElementType()->isFPOrFPVectorTy() &&
2474               SVTy->getNumElements() == DVTy->getNumElements();
2475      }
2476    }
2477    return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy();
2478  case Instruction::FPToUI:
2479  case Instruction::FPToSI:
2480    if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2481      if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2482        return SVTy->getElementType()->isFPOrFPVectorTy() &&
2483               DVTy->getElementType()->isIntOrIntVectorTy() &&
2484               SVTy->getNumElements() == DVTy->getNumElements();
2485      }
2486    }
2487    return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy();
2488  case Instruction::PtrToInt:
2489    return SrcTy->isPointerTy() && DstTy->isIntegerTy();
2490  case Instruction::IntToPtr:
2491    return SrcTy->isIntegerTy() && DstTy->isPointerTy();
2492  case Instruction::BitCast:
2493    // BitCast implies a no-op cast of type only. No bits change.
2494    // However, you can't cast pointers to anything but pointers.
2495    if (SrcTy->isPointerTy() != DstTy->isPointerTy())
2496      return false;
2497
2498    // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2499    // these cases, the cast is okay if the source and destination bit widths
2500    // are identical.
2501    return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2502  }
2503}
2504
2505TruncInst::TruncInst(
2506  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2507) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2508  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2509}
2510
2511TruncInst::TruncInst(
2512  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2513) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2514  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2515}
2516
2517ZExtInst::ZExtInst(
2518  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2519)  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2520  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2521}
2522
2523ZExtInst::ZExtInst(
2524  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2525)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2526  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2527}
2528SExtInst::SExtInst(
2529  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2530) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2531  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2532}
2533
2534SExtInst::SExtInst(
2535  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2536)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2537  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2538}
2539
2540FPTruncInst::FPTruncInst(
2541  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2542) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2543  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2544}
2545
2546FPTruncInst::FPTruncInst(
2547  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2548) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2549  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2550}
2551
2552FPExtInst::FPExtInst(
2553  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2554) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2555  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2556}
2557
2558FPExtInst::FPExtInst(
2559  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2560) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2561  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2562}
2563
2564UIToFPInst::UIToFPInst(
2565  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2566) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2567  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2568}
2569
2570UIToFPInst::UIToFPInst(
2571  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2572) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2573  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2574}
2575
2576SIToFPInst::SIToFPInst(
2577  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2578) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2579  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2580}
2581
2582SIToFPInst::SIToFPInst(
2583  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2584) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2585  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2586}
2587
2588FPToUIInst::FPToUIInst(
2589  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2590) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2591  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2592}
2593
2594FPToUIInst::FPToUIInst(
2595  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2596) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2597  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2598}
2599
2600FPToSIInst::FPToSIInst(
2601  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2602) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2603  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2604}
2605
2606FPToSIInst::FPToSIInst(
2607  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2608) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2609  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2610}
2611
2612PtrToIntInst::PtrToIntInst(
2613  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2614) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2615  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2616}
2617
2618PtrToIntInst::PtrToIntInst(
2619  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2620) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2621  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2622}
2623
2624IntToPtrInst::IntToPtrInst(
2625  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2626) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2627  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2628}
2629
2630IntToPtrInst::IntToPtrInst(
2631  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2632) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2633  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2634}
2635
2636BitCastInst::BitCastInst(
2637  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2638) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2639  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2640}
2641
2642BitCastInst::BitCastInst(
2643  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2644) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2645  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2646}
2647
2648//===----------------------------------------------------------------------===//
2649//                               CmpInst Classes
2650//===----------------------------------------------------------------------===//
2651
2652void CmpInst::Anchor() const {}
2653
2654CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2655                 Value *LHS, Value *RHS, const Twine &Name,
2656                 Instruction *InsertBefore)
2657  : Instruction(ty, op,
2658                OperandTraits<CmpInst>::op_begin(this),
2659                OperandTraits<CmpInst>::operands(this),
2660                InsertBefore) {
2661    Op<0>() = LHS;
2662    Op<1>() = RHS;
2663  setPredicate((Predicate)predicate);
2664  setName(Name);
2665}
2666
2667CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2668                 Value *LHS, Value *RHS, const Twine &Name,
2669                 BasicBlock *InsertAtEnd)
2670  : Instruction(ty, op,
2671                OperandTraits<CmpInst>::op_begin(this),
2672                OperandTraits<CmpInst>::operands(this),
2673                InsertAtEnd) {
2674  Op<0>() = LHS;
2675  Op<1>() = RHS;
2676  setPredicate((Predicate)predicate);
2677  setName(Name);
2678}
2679
2680CmpInst *
2681CmpInst::Create(OtherOps Op, unsigned short predicate,
2682                Value *S1, Value *S2,
2683                const Twine &Name, Instruction *InsertBefore) {
2684  if (Op == Instruction::ICmp) {
2685    if (InsertBefore)
2686      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2687                          S1, S2, Name);
2688    else
2689      return new ICmpInst(CmpInst::Predicate(predicate),
2690                          S1, S2, Name);
2691  }
2692
2693  if (InsertBefore)
2694    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2695                        S1, S2, Name);
2696  else
2697    return new FCmpInst(CmpInst::Predicate(predicate),
2698                        S1, S2, Name);
2699}
2700
2701CmpInst *
2702CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2703                const Twine &Name, BasicBlock *InsertAtEnd) {
2704  if (Op == Instruction::ICmp) {
2705    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2706                        S1, S2, Name);
2707  }
2708  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2709                      S1, S2, Name);
2710}
2711
2712void CmpInst::swapOperands() {
2713  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2714    IC->swapOperands();
2715  else
2716    cast<FCmpInst>(this)->swapOperands();
2717}
2718
2719bool CmpInst::isCommutative() const {
2720  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2721    return IC->isCommutative();
2722  return cast<FCmpInst>(this)->isCommutative();
2723}
2724
2725bool CmpInst::isEquality() const {
2726  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
2727    return IC->isEquality();
2728  return cast<FCmpInst>(this)->isEquality();
2729}
2730
2731
2732CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2733  switch (pred) {
2734    default: assert(!"Unknown cmp predicate!");
2735    case ICMP_EQ: return ICMP_NE;
2736    case ICMP_NE: return ICMP_EQ;
2737    case ICMP_UGT: return ICMP_ULE;
2738    case ICMP_ULT: return ICMP_UGE;
2739    case ICMP_UGE: return ICMP_ULT;
2740    case ICMP_ULE: return ICMP_UGT;
2741    case ICMP_SGT: return ICMP_SLE;
2742    case ICMP_SLT: return ICMP_SGE;
2743    case ICMP_SGE: return ICMP_SLT;
2744    case ICMP_SLE: return ICMP_SGT;
2745
2746    case FCMP_OEQ: return FCMP_UNE;
2747    case FCMP_ONE: return FCMP_UEQ;
2748    case FCMP_OGT: return FCMP_ULE;
2749    case FCMP_OLT: return FCMP_UGE;
2750    case FCMP_OGE: return FCMP_ULT;
2751    case FCMP_OLE: return FCMP_UGT;
2752    case FCMP_UEQ: return FCMP_ONE;
2753    case FCMP_UNE: return FCMP_OEQ;
2754    case FCMP_UGT: return FCMP_OLE;
2755    case FCMP_ULT: return FCMP_OGE;
2756    case FCMP_UGE: return FCMP_OLT;
2757    case FCMP_ULE: return FCMP_OGT;
2758    case FCMP_ORD: return FCMP_UNO;
2759    case FCMP_UNO: return FCMP_ORD;
2760    case FCMP_TRUE: return FCMP_FALSE;
2761    case FCMP_FALSE: return FCMP_TRUE;
2762  }
2763}
2764
2765ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2766  switch (pred) {
2767    default: assert(! "Unknown icmp predicate!");
2768    case ICMP_EQ: case ICMP_NE:
2769    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2770       return pred;
2771    case ICMP_UGT: return ICMP_SGT;
2772    case ICMP_ULT: return ICMP_SLT;
2773    case ICMP_UGE: return ICMP_SGE;
2774    case ICMP_ULE: return ICMP_SLE;
2775  }
2776}
2777
2778ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2779  switch (pred) {
2780    default: assert(! "Unknown icmp predicate!");
2781    case ICMP_EQ: case ICMP_NE:
2782    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2783       return pred;
2784    case ICMP_SGT: return ICMP_UGT;
2785    case ICMP_SLT: return ICMP_ULT;
2786    case ICMP_SGE: return ICMP_UGE;
2787    case ICMP_SLE: return ICMP_ULE;
2788  }
2789}
2790
2791/// Initialize a set of values that all satisfy the condition with C.
2792///
2793ConstantRange
2794ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2795  APInt Lower(C);
2796  APInt Upper(C);
2797  uint32_t BitWidth = C.getBitWidth();
2798  switch (pred) {
2799  default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2800  case ICmpInst::ICMP_EQ: Upper++; break;
2801  case ICmpInst::ICMP_NE: Lower++; break;
2802  case ICmpInst::ICMP_ULT:
2803    Lower = APInt::getMinValue(BitWidth);
2804    // Check for an empty-set condition.
2805    if (Lower == Upper)
2806      return ConstantRange(BitWidth, /*isFullSet=*/false);
2807    break;
2808  case ICmpInst::ICMP_SLT:
2809    Lower = APInt::getSignedMinValue(BitWidth);
2810    // Check for an empty-set condition.
2811    if (Lower == Upper)
2812      return ConstantRange(BitWidth, /*isFullSet=*/false);
2813    break;
2814  case ICmpInst::ICMP_UGT:
2815    Lower++; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2816    // Check for an empty-set condition.
2817    if (Lower == Upper)
2818      return ConstantRange(BitWidth, /*isFullSet=*/false);
2819    break;
2820  case ICmpInst::ICMP_SGT:
2821    Lower++; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2822    // Check for an empty-set condition.
2823    if (Lower == Upper)
2824      return ConstantRange(BitWidth, /*isFullSet=*/false);
2825    break;
2826  case ICmpInst::ICMP_ULE:
2827    Lower = APInt::getMinValue(BitWidth); Upper++;
2828    // Check for a full-set condition.
2829    if (Lower == Upper)
2830      return ConstantRange(BitWidth, /*isFullSet=*/true);
2831    break;
2832  case ICmpInst::ICMP_SLE:
2833    Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2834    // Check for a full-set condition.
2835    if (Lower == Upper)
2836      return ConstantRange(BitWidth, /*isFullSet=*/true);
2837    break;
2838  case ICmpInst::ICMP_UGE:
2839    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2840    // Check for a full-set condition.
2841    if (Lower == Upper)
2842      return ConstantRange(BitWidth, /*isFullSet=*/true);
2843    break;
2844  case ICmpInst::ICMP_SGE:
2845    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2846    // Check for a full-set condition.
2847    if (Lower == Upper)
2848      return ConstantRange(BitWidth, /*isFullSet=*/true);
2849    break;
2850  }
2851  return ConstantRange(Lower, Upper);
2852}
2853
2854CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
2855  switch (pred) {
2856    default: assert(!"Unknown cmp predicate!");
2857    case ICMP_EQ: case ICMP_NE:
2858      return pred;
2859    case ICMP_SGT: return ICMP_SLT;
2860    case ICMP_SLT: return ICMP_SGT;
2861    case ICMP_SGE: return ICMP_SLE;
2862    case ICMP_SLE: return ICMP_SGE;
2863    case ICMP_UGT: return ICMP_ULT;
2864    case ICMP_ULT: return ICMP_UGT;
2865    case ICMP_UGE: return ICMP_ULE;
2866    case ICMP_ULE: return ICMP_UGE;
2867
2868    case FCMP_FALSE: case FCMP_TRUE:
2869    case FCMP_OEQ: case FCMP_ONE:
2870    case FCMP_UEQ: case FCMP_UNE:
2871    case FCMP_ORD: case FCMP_UNO:
2872      return pred;
2873    case FCMP_OGT: return FCMP_OLT;
2874    case FCMP_OLT: return FCMP_OGT;
2875    case FCMP_OGE: return FCMP_OLE;
2876    case FCMP_OLE: return FCMP_OGE;
2877    case FCMP_UGT: return FCMP_ULT;
2878    case FCMP_ULT: return FCMP_UGT;
2879    case FCMP_UGE: return FCMP_ULE;
2880    case FCMP_ULE: return FCMP_UGE;
2881  }
2882}
2883
2884bool CmpInst::isUnsigned(unsigned short predicate) {
2885  switch (predicate) {
2886    default: return false;
2887    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
2888    case ICmpInst::ICMP_UGE: return true;
2889  }
2890}
2891
2892bool CmpInst::isSigned(unsigned short predicate) {
2893  switch (predicate) {
2894    default: return false;
2895    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
2896    case ICmpInst::ICMP_SGE: return true;
2897  }
2898}
2899
2900bool CmpInst::isOrdered(unsigned short predicate) {
2901  switch (predicate) {
2902    default: return false;
2903    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
2904    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
2905    case FCmpInst::FCMP_ORD: return true;
2906  }
2907}
2908
2909bool CmpInst::isUnordered(unsigned short predicate) {
2910  switch (predicate) {
2911    default: return false;
2912    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
2913    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
2914    case FCmpInst::FCMP_UNO: return true;
2915  }
2916}
2917
2918bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
2919  switch(predicate) {
2920    default: return false;
2921    case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
2922    case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
2923  }
2924}
2925
2926bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
2927  switch(predicate) {
2928  case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
2929  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
2930  default: return false;
2931  }
2932}
2933
2934
2935//===----------------------------------------------------------------------===//
2936//                        SwitchInst Implementation
2937//===----------------------------------------------------------------------===//
2938
2939void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
2940  assert(Value && Default && NumReserved);
2941  ReservedSpace = NumReserved;
2942  NumOperands = 2;
2943  OperandList = allocHungoffUses(ReservedSpace);
2944
2945  OperandList[0] = Value;
2946  OperandList[1] = Default;
2947}
2948
2949/// SwitchInst ctor - Create a new switch instruction, specifying a value to
2950/// switch on and a default destination.  The number of additional cases can
2951/// be specified here to make memory allocation more efficient.  This
2952/// constructor can also autoinsert before another instruction.
2953SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2954                       Instruction *InsertBefore)
2955  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2956                   0, 0, InsertBefore) {
2957  init(Value, Default, 2+NumCases*2);
2958}
2959
2960/// SwitchInst ctor - Create a new switch instruction, specifying a value to
2961/// switch on and a default destination.  The number of additional cases can
2962/// be specified here to make memory allocation more efficient.  This
2963/// constructor also autoinserts at the end of the specified BasicBlock.
2964SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2965                       BasicBlock *InsertAtEnd)
2966  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2967                   0, 0, InsertAtEnd) {
2968  init(Value, Default, 2+NumCases*2);
2969}
2970
2971SwitchInst::SwitchInst(const SwitchInst &SI)
2972  : TerminatorInst(SI.getType(), Instruction::Switch, 0, 0) {
2973  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
2974  NumOperands = SI.getNumOperands();
2975  Use *OL = OperandList, *InOL = SI.OperandList;
2976  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
2977    OL[i] = InOL[i];
2978    OL[i+1] = InOL[i+1];
2979  }
2980  SubclassOptionalData = SI.SubclassOptionalData;
2981}
2982
2983SwitchInst::~SwitchInst() {
2984  dropHungoffUses();
2985}
2986
2987
2988/// addCase - Add an entry to the switch instruction...
2989///
2990void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
2991  unsigned OpNo = NumOperands;
2992  if (OpNo+2 > ReservedSpace)
2993    resizeOperands(0);  // Get more space!
2994  // Initialize some new operands.
2995  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
2996  NumOperands = OpNo+2;
2997  OperandList[OpNo] = OnVal;
2998  OperandList[OpNo+1] = Dest;
2999}
3000
3001/// removeCase - This method removes the specified successor from the switch
3002/// instruction.  Note that this cannot be used to remove the default
3003/// destination (successor #0).
3004///
3005void SwitchInst::removeCase(unsigned idx) {
3006  assert(idx != 0 && "Cannot remove the default case!");
3007  assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
3008
3009  unsigned NumOps = getNumOperands();
3010  Use *OL = OperandList;
3011
3012  // Move everything after this operand down.
3013  //
3014  // FIXME: we could just swap with the end of the list, then erase.  However,
3015  // client might not expect this to happen.  The code as it is thrashes the
3016  // use/def lists, which is kinda lame.
3017  for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
3018    OL[i-2] = OL[i];
3019    OL[i-2+1] = OL[i+1];
3020  }
3021
3022  // Nuke the last value.
3023  OL[NumOps-2].set(0);
3024  OL[NumOps-2+1].set(0);
3025  NumOperands = NumOps-2;
3026}
3027
3028/// resizeOperands - resize operands - This adjusts the length of the operands
3029/// list according to the following behavior:
3030///   1. If NumOps == 0, grow the operand list in response to a push_back style
3031///      of operation.  This grows the number of ops by 3 times.
3032///   2. If NumOps > NumOperands, reserve space for NumOps operands.
3033///   3. If NumOps == NumOperands, trim the reserved space.
3034///
3035void SwitchInst::resizeOperands(unsigned NumOps) {
3036  unsigned e = getNumOperands();
3037  if (NumOps == 0) {
3038    NumOps = e*3;
3039  } else if (NumOps*2 > NumOperands) {
3040    // No resize needed.
3041    if (ReservedSpace >= NumOps) return;
3042  } else if (NumOps == NumOperands) {
3043    if (ReservedSpace == NumOps) return;
3044  } else {
3045    return;
3046  }
3047
3048  ReservedSpace = NumOps;
3049  Use *NewOps = allocHungoffUses(NumOps);
3050  Use *OldOps = OperandList;
3051  for (unsigned i = 0; i != e; ++i) {
3052      NewOps[i] = OldOps[i];
3053  }
3054  OperandList = NewOps;
3055  Use::zap(OldOps, OldOps + e, true);
3056}
3057
3058
3059BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3060  return getSuccessor(idx);
3061}
3062unsigned SwitchInst::getNumSuccessorsV() const {
3063  return getNumSuccessors();
3064}
3065void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3066  setSuccessor(idx, B);
3067}
3068
3069//===----------------------------------------------------------------------===//
3070//                        IndirectBrInst Implementation
3071//===----------------------------------------------------------------------===//
3072
3073void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3074  assert(Address && Address->getType()->isPointerTy() &&
3075         "Address of indirectbr must be a pointer");
3076  ReservedSpace = 1+NumDests;
3077  NumOperands = 1;
3078  OperandList = allocHungoffUses(ReservedSpace);
3079
3080  OperandList[0] = Address;
3081}
3082
3083
3084/// resizeOperands - resize operands - This adjusts the length of the operands
3085/// list according to the following behavior:
3086///   1. If NumOps == 0, grow the operand list in response to a push_back style
3087///      of operation.  This grows the number of ops by 2 times.
3088///   2. If NumOps > NumOperands, reserve space for NumOps operands.
3089///   3. If NumOps == NumOperands, trim the reserved space.
3090///
3091void IndirectBrInst::resizeOperands(unsigned NumOps) {
3092  unsigned e = getNumOperands();
3093  if (NumOps == 0) {
3094    NumOps = e*2;
3095  } else if (NumOps*2 > NumOperands) {
3096    // No resize needed.
3097    if (ReservedSpace >= NumOps) return;
3098  } else if (NumOps == NumOperands) {
3099    if (ReservedSpace == NumOps) return;
3100  } else {
3101    return;
3102  }
3103
3104  ReservedSpace = NumOps;
3105  Use *NewOps = allocHungoffUses(NumOps);
3106  Use *OldOps = OperandList;
3107  for (unsigned i = 0; i != e; ++i)
3108    NewOps[i] = OldOps[i];
3109  OperandList = NewOps;
3110  Use::zap(OldOps, OldOps + e, true);
3111}
3112
3113IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3114                               Instruction *InsertBefore)
3115: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3116                 0, 0, InsertBefore) {
3117  init(Address, NumCases);
3118}
3119
3120IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3121                               BasicBlock *InsertAtEnd)
3122: TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3123                 0, 0, InsertAtEnd) {
3124  init(Address, NumCases);
3125}
3126
3127IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3128  : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3129                   allocHungoffUses(IBI.getNumOperands()),
3130                   IBI.getNumOperands()) {
3131  Use *OL = OperandList, *InOL = IBI.OperandList;
3132  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3133    OL[i] = InOL[i];
3134  SubclassOptionalData = IBI.SubclassOptionalData;
3135}
3136
3137IndirectBrInst::~IndirectBrInst() {
3138  dropHungoffUses();
3139}
3140
3141/// addDestination - Add a destination.
3142///
3143void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3144  unsigned OpNo = NumOperands;
3145  if (OpNo+1 > ReservedSpace)
3146    resizeOperands(0);  // Get more space!
3147  // Initialize some new operands.
3148  assert(OpNo < ReservedSpace && "Growing didn't work!");
3149  NumOperands = OpNo+1;
3150  OperandList[OpNo] = DestBB;
3151}
3152
3153/// removeDestination - This method removes the specified successor from the
3154/// indirectbr instruction.
3155void IndirectBrInst::removeDestination(unsigned idx) {
3156  assert(idx < getNumOperands()-1 && "Successor index out of range!");
3157
3158  unsigned NumOps = getNumOperands();
3159  Use *OL = OperandList;
3160
3161  // Replace this value with the last one.
3162  OL[idx+1] = OL[NumOps-1];
3163
3164  // Nuke the last value.
3165  OL[NumOps-1].set(0);
3166  NumOperands = NumOps-1;
3167}
3168
3169BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3170  return getSuccessor(idx);
3171}
3172unsigned IndirectBrInst::getNumSuccessorsV() const {
3173  return getNumSuccessors();
3174}
3175void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3176  setSuccessor(idx, B);
3177}
3178
3179//===----------------------------------------------------------------------===//
3180//                           clone_impl() implementations
3181//===----------------------------------------------------------------------===//
3182
3183// Define these methods here so vtables don't get emitted into every translation
3184// unit that uses these classes.
3185
3186GetElementPtrInst *GetElementPtrInst::clone_impl() const {
3187  return new (getNumOperands()) GetElementPtrInst(*this);
3188}
3189
3190BinaryOperator *BinaryOperator::clone_impl() const {
3191  return Create(getOpcode(), Op<0>(), Op<1>());
3192}
3193
3194FCmpInst* FCmpInst::clone_impl() const {
3195  return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3196}
3197
3198ICmpInst* ICmpInst::clone_impl() const {
3199  return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3200}
3201
3202ExtractValueInst *ExtractValueInst::clone_impl() const {
3203  return new ExtractValueInst(*this);
3204}
3205
3206InsertValueInst *InsertValueInst::clone_impl() const {
3207  return new InsertValueInst(*this);
3208}
3209
3210AllocaInst *AllocaInst::clone_impl() const {
3211  return new AllocaInst(getAllocatedType(),
3212                        (Value*)getOperand(0),
3213                        getAlignment());
3214}
3215
3216LoadInst *LoadInst::clone_impl() const {
3217  return new LoadInst(getOperand(0),
3218                      Twine(), isVolatile(),
3219                      getAlignment());
3220}
3221
3222StoreInst *StoreInst::clone_impl() const {
3223  return new StoreInst(getOperand(0), getOperand(1),
3224                       isVolatile(), getAlignment());
3225}
3226
3227TruncInst *TruncInst::clone_impl() const {
3228  return new TruncInst(getOperand(0), getType());
3229}
3230
3231ZExtInst *ZExtInst::clone_impl() const {
3232  return new ZExtInst(getOperand(0), getType());
3233}
3234
3235SExtInst *SExtInst::clone_impl() const {
3236  return new SExtInst(getOperand(0), getType());
3237}
3238
3239FPTruncInst *FPTruncInst::clone_impl() const {
3240  return new FPTruncInst(getOperand(0), getType());
3241}
3242
3243FPExtInst *FPExtInst::clone_impl() const {
3244  return new FPExtInst(getOperand(0), getType());
3245}
3246
3247UIToFPInst *UIToFPInst::clone_impl() const {
3248  return new UIToFPInst(getOperand(0), getType());
3249}
3250
3251SIToFPInst *SIToFPInst::clone_impl() const {
3252  return new SIToFPInst(getOperand(0), getType());
3253}
3254
3255FPToUIInst *FPToUIInst::clone_impl() const {
3256  return new FPToUIInst(getOperand(0), getType());
3257}
3258
3259FPToSIInst *FPToSIInst::clone_impl() const {
3260  return new FPToSIInst(getOperand(0), getType());
3261}
3262
3263PtrToIntInst *PtrToIntInst::clone_impl() const {
3264  return new PtrToIntInst(getOperand(0), getType());
3265}
3266
3267IntToPtrInst *IntToPtrInst::clone_impl() const {
3268  return new IntToPtrInst(getOperand(0), getType());
3269}
3270
3271BitCastInst *BitCastInst::clone_impl() const {
3272  return new BitCastInst(getOperand(0), getType());
3273}
3274
3275CallInst *CallInst::clone_impl() const {
3276  return  new(getNumOperands()) CallInst(*this);
3277}
3278
3279SelectInst *SelectInst::clone_impl() const {
3280  return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3281}
3282
3283VAArgInst *VAArgInst::clone_impl() const {
3284  return new VAArgInst(getOperand(0), getType());
3285}
3286
3287ExtractElementInst *ExtractElementInst::clone_impl() const {
3288  return ExtractElementInst::Create(getOperand(0), getOperand(1));
3289}
3290
3291InsertElementInst *InsertElementInst::clone_impl() const {
3292  return InsertElementInst::Create(getOperand(0),
3293                                   getOperand(1),
3294                                   getOperand(2));
3295}
3296
3297ShuffleVectorInst *ShuffleVectorInst::clone_impl() const {
3298  return new ShuffleVectorInst(getOperand(0),
3299                           getOperand(1),
3300                           getOperand(2));
3301}
3302
3303PHINode *PHINode::clone_impl() const {
3304  return new PHINode(*this);
3305}
3306
3307ReturnInst *ReturnInst::clone_impl() const {
3308  return new(getNumOperands()) ReturnInst(*this);
3309}
3310
3311BranchInst *BranchInst::clone_impl() const {
3312  return new(getNumOperands()) BranchInst(*this);
3313}
3314
3315SwitchInst *SwitchInst::clone_impl() const {
3316  return new SwitchInst(*this);
3317}
3318
3319IndirectBrInst *IndirectBrInst::clone_impl() const {
3320  return new IndirectBrInst(*this);
3321}
3322
3323
3324InvokeInst *InvokeInst::clone_impl() const {
3325  return new(getNumOperands()) InvokeInst(*this);
3326}
3327
3328UnwindInst *UnwindInst::clone_impl() const {
3329  LLVMContext &Context = getContext();
3330  return new UnwindInst(Context);
3331}
3332
3333UnreachableInst *UnreachableInst::clone_impl() const {
3334  LLVMContext &Context = getContext();
3335  return new UnreachableInst(Context);
3336}
3337