Instructions.cpp revision a276c603b82a11b0bf0b59f0517a69e4b63adeab
1//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements all of the non-inline methods for the LLVM instruction
11// classes.
12//
13//===----------------------------------------------------------------------===//
14
15#include "LLVMContextImpl.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/Module.h"
21#include "llvm/Operator.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/CallSite.h"
25#include "llvm/Support/ConstantRange.h"
26#include "llvm/Support/MathExtras.h"
27
28using namespace llvm;
29
30//===----------------------------------------------------------------------===//
31//                            CallSite Class
32//===----------------------------------------------------------------------===//
33
34#define CALLSITE_DELEGATE_GETTER(METHOD) \
35  Instruction *II(getInstruction());     \
36  return isCall()                        \
37    ? cast<CallInst>(II)->METHOD         \
38    : cast<InvokeInst>(II)->METHOD
39
40#define CALLSITE_DELEGATE_SETTER(METHOD) \
41  Instruction *II(getInstruction());     \
42  if (isCall())                          \
43    cast<CallInst>(II)->METHOD;          \
44  else                                   \
45    cast<InvokeInst>(II)->METHOD
46
47CallSite::CallSite(Instruction *C) {
48  assert((isa<CallInst>(C) || isa<InvokeInst>(C)) && "Not a call!");
49  I.setPointer(C);
50  I.setInt(isa<CallInst>(C));
51}
52CallingConv::ID CallSite::getCallingConv() const {
53  CALLSITE_DELEGATE_GETTER(getCallingConv());
54}
55void CallSite::setCallingConv(CallingConv::ID CC) {
56  CALLSITE_DELEGATE_SETTER(setCallingConv(CC));
57}
58const AttrListPtr &CallSite::getAttributes() const {
59  CALLSITE_DELEGATE_GETTER(getAttributes());
60}
61void CallSite::setAttributes(const AttrListPtr &PAL) {
62  CALLSITE_DELEGATE_SETTER(setAttributes(PAL));
63}
64bool CallSite::paramHasAttr(uint16_t i, Attributes attr) const {
65  CALLSITE_DELEGATE_GETTER(paramHasAttr(i, attr));
66}
67uint16_t CallSite::getParamAlignment(uint16_t i) const {
68  CALLSITE_DELEGATE_GETTER(getParamAlignment(i));
69}
70bool CallSite::doesNotAccessMemory() const {
71  CALLSITE_DELEGATE_GETTER(doesNotAccessMemory());
72}
73void CallSite::setDoesNotAccessMemory(bool doesNotAccessMemory) {
74  CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory(doesNotAccessMemory));
75}
76bool CallSite::onlyReadsMemory() const {
77  CALLSITE_DELEGATE_GETTER(onlyReadsMemory());
78}
79void CallSite::setOnlyReadsMemory(bool onlyReadsMemory) {
80  CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory(onlyReadsMemory));
81}
82bool CallSite::doesNotReturn() const {
83 CALLSITE_DELEGATE_GETTER(doesNotReturn());
84}
85void CallSite::setDoesNotReturn(bool doesNotReturn) {
86  CALLSITE_DELEGATE_SETTER(setDoesNotReturn(doesNotReturn));
87}
88bool CallSite::doesNotThrow() const {
89  CALLSITE_DELEGATE_GETTER(doesNotThrow());
90}
91void CallSite::setDoesNotThrow(bool doesNotThrow) {
92  CALLSITE_DELEGATE_SETTER(setDoesNotThrow(doesNotThrow));
93}
94
95bool CallSite::hasArgument(const Value *Arg) const {
96  for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E; ++AI)
97    if (AI->get() == Arg)
98      return true;
99  return false;
100}
101
102#undef CALLSITE_DELEGATE_GETTER
103#undef CALLSITE_DELEGATE_SETTER
104
105//===----------------------------------------------------------------------===//
106//                            TerminatorInst Class
107//===----------------------------------------------------------------------===//
108
109// Out of line virtual method, so the vtable, etc has a home.
110TerminatorInst::~TerminatorInst() {
111}
112
113//===----------------------------------------------------------------------===//
114//                           UnaryInstruction Class
115//===----------------------------------------------------------------------===//
116
117// Out of line virtual method, so the vtable, etc has a home.
118UnaryInstruction::~UnaryInstruction() {
119}
120
121//===----------------------------------------------------------------------===//
122//                              SelectInst Class
123//===----------------------------------------------------------------------===//
124
125/// areInvalidOperands - Return a string if the specified operands are invalid
126/// for a select operation, otherwise return null.
127const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
128  if (Op1->getType() != Op2->getType())
129    return "both values to select must have same type";
130
131  if (const VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
132    // Vector select.
133    if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
134      return "vector select condition element type must be i1";
135    const VectorType *ET = dyn_cast<VectorType>(Op1->getType());
136    if (ET == 0)
137      return "selected values for vector select must be vectors";
138    if (ET->getNumElements() != VT->getNumElements())
139      return "vector select requires selected vectors to have "
140                   "the same vector length as select condition";
141  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
142    return "select condition must be i1 or <n x i1>";
143  }
144  return 0;
145}
146
147
148//===----------------------------------------------------------------------===//
149//                               PHINode Class
150//===----------------------------------------------------------------------===//
151
152PHINode::PHINode(const PHINode &PN)
153  : Instruction(PN.getType(), Instruction::PHI,
154                allocHungoffUses(PN.getNumOperands()), PN.getNumOperands()),
155    ReservedSpace(PN.getNumOperands()) {
156  Use *OL = OperandList;
157  for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
158    OL[i] = PN.getOperand(i);
159    OL[i+1] = PN.getOperand(i+1);
160  }
161  SubclassOptionalData = PN.SubclassOptionalData;
162}
163
164PHINode::~PHINode() {
165  if (OperandList)
166    dropHungoffUses(OperandList);
167}
168
169// removeIncomingValue - Remove an incoming value.  This is useful if a
170// predecessor basic block is deleted.
171Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
172  unsigned NumOps = getNumOperands();
173  Use *OL = OperandList;
174  assert(Idx*2 < NumOps && "BB not in PHI node!");
175  Value *Removed = OL[Idx*2];
176
177  // Move everything after this operand down.
178  //
179  // FIXME: we could just swap with the end of the list, then erase.  However,
180  // client might not expect this to happen.  The code as it is thrashes the
181  // use/def lists, which is kinda lame.
182  for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
183    OL[i-2] = OL[i];
184    OL[i-2+1] = OL[i+1];
185  }
186
187  // Nuke the last value.
188  OL[NumOps-2].set(0);
189  OL[NumOps-2+1].set(0);
190  NumOperands = NumOps-2;
191
192  // If the PHI node is dead, because it has zero entries, nuke it now.
193  if (NumOps == 2 && DeletePHIIfEmpty) {
194    // If anyone is using this PHI, make them use a dummy value instead...
195    replaceAllUsesWith(UndefValue::get(getType()));
196    eraseFromParent();
197  }
198  return Removed;
199}
200
201/// resizeOperands - resize operands - This adjusts the length of the operands
202/// list according to the following behavior:
203///   1. If NumOps == 0, grow the operand list in response to a push_back style
204///      of operation.  This grows the number of ops by 1.5 times.
205///   2. If NumOps > NumOperands, reserve space for NumOps operands.
206///   3. If NumOps == NumOperands, trim the reserved space.
207///
208void PHINode::resizeOperands(unsigned NumOps) {
209  unsigned e = getNumOperands();
210  if (NumOps == 0) {
211    NumOps = e*3/2;
212    if (NumOps < 4) NumOps = 4;      // 4 op PHI nodes are VERY common.
213  } else if (NumOps*2 > NumOperands) {
214    // No resize needed.
215    if (ReservedSpace >= NumOps) return;
216  } else if (NumOps == NumOperands) {
217    if (ReservedSpace == NumOps) return;
218  } else {
219    return;
220  }
221
222  ReservedSpace = NumOps;
223  Use *OldOps = OperandList;
224  Use *NewOps = allocHungoffUses(NumOps);
225  std::copy(OldOps, OldOps + e, NewOps);
226  OperandList = NewOps;
227  if (OldOps) Use::zap(OldOps, OldOps + e, true);
228}
229
230/// hasConstantValue - If the specified PHI node always merges together the same
231/// value, return the value, otherwise return null.
232///
233/// If the PHI has undef operands, but all the rest of the operands are
234/// some unique value, return that value if it can be proved that the
235/// value dominates the PHI. If DT is null, use a conservative check,
236/// otherwise use DT to test for dominance.
237///
238Value *PHINode::hasConstantValue(DominatorTree *DT) const {
239  // If the PHI node only has one incoming value, eliminate the PHI node.
240  if (getNumIncomingValues() == 1) {
241    if (getIncomingValue(0) != this)   // not  X = phi X
242      return getIncomingValue(0);
243    return UndefValue::get(getType());  // Self cycle is dead.
244  }
245
246  // Otherwise if all of the incoming values are the same for the PHI, replace
247  // the PHI node with the incoming value.
248  //
249  Value *InVal = 0;
250  bool HasUndefInput = false;
251  for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
252    if (isa<UndefValue>(getIncomingValue(i))) {
253      HasUndefInput = true;
254    } else if (getIncomingValue(i) != this) { // Not the PHI node itself...
255      if (InVal && getIncomingValue(i) != InVal)
256        return 0;  // Not the same, bail out.
257      InVal = getIncomingValue(i);
258    }
259
260  // The only case that could cause InVal to be null is if we have a PHI node
261  // that only has entries for itself.  In this case, there is no entry into the
262  // loop, so kill the PHI.
263  //
264  if (InVal == 0) InVal = UndefValue::get(getType());
265
266  // If we have a PHI node like phi(X, undef, X), where X is defined by some
267  // instruction, we cannot always return X as the result of the PHI node.  Only
268  // do this if X is not an instruction (thus it must dominate the PHI block),
269  // or if the client is prepared to deal with this possibility.
270  if (!HasUndefInput || !isa<Instruction>(InVal))
271    return InVal;
272
273  Instruction *IV = cast<Instruction>(InVal);
274  if (DT) {
275    // We have a DominatorTree. Do a precise test.
276    if (!DT->dominates(IV, this))
277      return 0;
278  } else {
279    // If it is in the entry block, it obviously dominates everything.
280    if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
281        isa<InvokeInst>(IV))
282      return 0;   // Cannot guarantee that InVal dominates this PHINode.
283  }
284
285  // All of the incoming values are the same, return the value now.
286  return InVal;
287}
288
289
290//===----------------------------------------------------------------------===//
291//                        CallInst Implementation
292//===----------------------------------------------------------------------===//
293
294CallInst::~CallInst() {
295}
296
297void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
298  assert(NumOperands == NumParams+1 && "NumOperands not set up?");
299  Use *OL = OperandList;
300  OL[0] = Func;
301
302  const FunctionType *FTy =
303    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
304  FTy = FTy;  // silence warning.
305
306  assert((NumParams == FTy->getNumParams() ||
307          (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
308         "Calling a function with bad signature!");
309  for (unsigned i = 0; i != NumParams; ++i) {
310    assert((i >= FTy->getNumParams() ||
311            FTy->getParamType(i) == Params[i]->getType()) &&
312           "Calling a function with a bad signature!");
313    OL[i+1] = Params[i];
314  }
315}
316
317void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
318  assert(NumOperands == 3 && "NumOperands not set up?");
319  Use *OL = OperandList;
320  OL[0] = Func;
321  OL[1] = Actual1;
322  OL[2] = Actual2;
323
324  const FunctionType *FTy =
325    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
326  FTy = FTy;  // silence warning.
327
328  assert((FTy->getNumParams() == 2 ||
329          (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
330         "Calling a function with bad signature");
331  assert((0 >= FTy->getNumParams() ||
332          FTy->getParamType(0) == Actual1->getType()) &&
333         "Calling a function with a bad signature!");
334  assert((1 >= FTy->getNumParams() ||
335          FTy->getParamType(1) == Actual2->getType()) &&
336         "Calling a function with a bad signature!");
337}
338
339void CallInst::init(Value *Func, Value *Actual) {
340  assert(NumOperands == 2 && "NumOperands not set up?");
341  Use *OL = OperandList;
342  OL[0] = Func;
343  OL[1] = Actual;
344
345  const FunctionType *FTy =
346    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
347  FTy = FTy;  // silence warning.
348
349  assert((FTy->getNumParams() == 1 ||
350          (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
351         "Calling a function with bad signature");
352  assert((0 == FTy->getNumParams() ||
353          FTy->getParamType(0) == Actual->getType()) &&
354         "Calling a function with a bad signature!");
355}
356
357void CallInst::init(Value *Func) {
358  assert(NumOperands == 1 && "NumOperands not set up?");
359  Use *OL = OperandList;
360  OL[0] = Func;
361
362  const FunctionType *FTy =
363    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
364  FTy = FTy;  // silence warning.
365
366  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
367}
368
369CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
370                   Instruction *InsertBefore)
371  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
372                                   ->getElementType())->getReturnType(),
373                Instruction::Call,
374                OperandTraits<CallInst>::op_end(this) - 2,
375                2, InsertBefore) {
376  init(Func, Actual);
377  setName(Name);
378}
379
380CallInst::CallInst(Value *Func, Value* Actual, const Twine &Name,
381                   BasicBlock  *InsertAtEnd)
382  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
383                                   ->getElementType())->getReturnType(),
384                Instruction::Call,
385                OperandTraits<CallInst>::op_end(this) - 2,
386                2, InsertAtEnd) {
387  init(Func, Actual);
388  setName(Name);
389}
390CallInst::CallInst(Value *Func, const Twine &Name,
391                   Instruction *InsertBefore)
392  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
393                                   ->getElementType())->getReturnType(),
394                Instruction::Call,
395                OperandTraits<CallInst>::op_end(this) - 1,
396                1, InsertBefore) {
397  init(Func);
398  setName(Name);
399}
400
401CallInst::CallInst(Value *Func, const Twine &Name,
402                   BasicBlock *InsertAtEnd)
403  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
404                                   ->getElementType())->getReturnType(),
405                Instruction::Call,
406                OperandTraits<CallInst>::op_end(this) - 1,
407                1, InsertAtEnd) {
408  init(Func);
409  setName(Name);
410}
411
412CallInst::CallInst(const CallInst &CI)
413  : Instruction(CI.getType(), Instruction::Call,
414                OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
415                CI.getNumOperands()) {
416  setAttributes(CI.getAttributes());
417  SubclassData = CI.SubclassData;
418  Use *OL = OperandList;
419  Use *InOL = CI.OperandList;
420  for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
421    OL[i] = InOL[i];
422  SubclassOptionalData = CI.SubclassOptionalData;
423}
424
425void CallInst::addAttribute(unsigned i, Attributes attr) {
426  AttrListPtr PAL = getAttributes();
427  PAL = PAL.addAttr(i, attr);
428  setAttributes(PAL);
429}
430
431void CallInst::removeAttribute(unsigned i, Attributes attr) {
432  AttrListPtr PAL = getAttributes();
433  PAL = PAL.removeAttr(i, attr);
434  setAttributes(PAL);
435}
436
437bool CallInst::paramHasAttr(unsigned i, Attributes attr) const {
438  if (AttributeList.paramHasAttr(i, attr))
439    return true;
440  if (const Function *F = getCalledFunction())
441    return F->paramHasAttr(i, attr);
442  return false;
443}
444
445/// IsConstantOne - Return true only if val is constant int 1
446static bool IsConstantOne(Value *val) {
447  assert(val && "IsConstantOne does not work with NULL val");
448  return isa<ConstantInt>(val) && cast<ConstantInt>(val)->isOne();
449}
450
451static Value *checkArraySize(Value *Amt, const Type *IntPtrTy) {
452  if (!Amt)
453    Amt = ConstantInt::get(IntPtrTy, 1);
454  else {
455    assert(!isa<BasicBlock>(Amt) &&
456           "Passed basic block into malloc size parameter! Use other ctor");
457    assert(Amt->getType() == IntPtrTy &&
458           "Malloc array size is not an intptr!");
459  }
460  return Amt;
461}
462
463static Value *createMalloc(Instruction *InsertBefore, BasicBlock *InsertAtEnd,
464                           const Type *IntPtrTy, const Type *AllocTy,
465                           Value *ArraySize, Function* MallocF,
466                           const Twine &NameStr) {
467  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
468         "createMalloc needs either InsertBefore or InsertAtEnd");
469
470  // malloc(type) becomes:
471  //       bitcast (i8* malloc(typeSize)) to type*
472  // malloc(type, arraySize) becomes:
473  //       bitcast (i8 *malloc(typeSize*arraySize)) to type*
474  Value *AllocSize = ConstantExpr::getSizeOf(AllocTy);
475  AllocSize = ConstantExpr::getTruncOrBitCast(cast<Constant>(AllocSize),
476                                              IntPtrTy);
477  ArraySize = checkArraySize(ArraySize, IntPtrTy);
478
479  if (!IsConstantOne(ArraySize)) {
480    if (IsConstantOne(AllocSize)) {
481      AllocSize = ArraySize;         // Operand * 1 = Operand
482    } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
483      Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
484                                                     false /*ZExt*/);
485      // Malloc arg is constant product of type size and array size
486      AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
487    } else {
488      // Multiply type size by the array size...
489      if (InsertBefore)
490        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
491                                              "mallocsize", InsertBefore);
492      else
493        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
494                                              "mallocsize", InsertAtEnd);
495    }
496  }
497
498  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
499  // Create the call to Malloc.
500  BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
501  Module* M = BB->getParent()->getParent();
502  const Type *BPTy = Type::getInt8PtrTy(BB->getContext());
503  if (!MallocF)
504    // prototype malloc as "void *malloc(size_t)"
505    MallocF = cast<Function>(M->getOrInsertFunction("malloc", BPTy,
506                                                    IntPtrTy, NULL));
507  if (!MallocF->doesNotAlias(0)) MallocF->setDoesNotAlias(0);
508  const PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
509  CallInst *MCall = NULL;
510  Value    *Result = NULL;
511  if (InsertBefore) {
512    MCall = CallInst::Create(MallocF, AllocSize, "malloccall", InsertBefore);
513    Result = MCall;
514    if (Result->getType() != AllocPtrType)
515      // Create a cast instruction to convert to the right type...
516      Result = new BitCastInst(MCall, AllocPtrType, NameStr, InsertBefore);
517  } else {
518    MCall = CallInst::Create(MallocF, AllocSize, "malloccall");
519    Result = MCall;
520    if (Result->getType() != AllocPtrType) {
521      InsertAtEnd->getInstList().push_back(MCall);
522      // Create a cast instruction to convert to the right type...
523      Result = new BitCastInst(MCall, AllocPtrType, NameStr);
524    }
525  }
526  MCall->setTailCall();
527  assert(MCall->getType() != Type::getVoidTy(BB->getContext()) &&
528         "Malloc has void return type");
529
530  return Result;
531}
532
533/// CreateMalloc - Generate the IR for a call to malloc:
534/// 1. Compute the malloc call's argument as the specified type's size,
535///    possibly multiplied by the array size if the array size is not
536///    constant 1.
537/// 2. Call malloc with that argument.
538/// 3. Bitcast the result of the malloc call to the specified type.
539Value *CallInst::CreateMalloc(Instruction *InsertBefore, const Type *IntPtrTy,
540                              const Type *AllocTy, Value *ArraySize,
541                              const Twine &Name) {
542  return createMalloc(InsertBefore, NULL, IntPtrTy, AllocTy,
543                      ArraySize, NULL, Name);
544}
545
546/// CreateMalloc - Generate the IR for a call to malloc:
547/// 1. Compute the malloc call's argument as the specified type's size,
548///    possibly multiplied by the array size if the array size is not
549///    constant 1.
550/// 2. Call malloc with that argument.
551/// 3. Bitcast the result of the malloc call to the specified type.
552/// Note: This function does not add the bitcast to the basic block, that is the
553/// responsibility of the caller.
554Value *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, const Type *IntPtrTy,
555                              const Type *AllocTy, Value *ArraySize,
556                              Function* MallocF, const Twine &Name) {
557  return createMalloc(NULL, InsertAtEnd, IntPtrTy, AllocTy,
558                      ArraySize, MallocF, Name);
559}
560
561//===----------------------------------------------------------------------===//
562//                        InvokeInst Implementation
563//===----------------------------------------------------------------------===//
564
565void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
566                      Value* const *Args, unsigned NumArgs) {
567  assert(NumOperands == 3+NumArgs && "NumOperands not set up?");
568  Use *OL = OperandList;
569  OL[0] = Fn;
570  OL[1] = IfNormal;
571  OL[2] = IfException;
572  const FunctionType *FTy =
573    cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
574  FTy = FTy;  // silence warning.
575
576  assert(((NumArgs == FTy->getNumParams()) ||
577          (FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
578         "Calling a function with bad signature");
579
580  for (unsigned i = 0, e = NumArgs; i != e; i++) {
581    assert((i >= FTy->getNumParams() ||
582            FTy->getParamType(i) == Args[i]->getType()) &&
583           "Invoking a function with a bad signature!");
584
585    OL[i+3] = Args[i];
586  }
587}
588
589InvokeInst::InvokeInst(const InvokeInst &II)
590  : TerminatorInst(II.getType(), Instruction::Invoke,
591                   OperandTraits<InvokeInst>::op_end(this)
592                   - II.getNumOperands(),
593                   II.getNumOperands()) {
594  setAttributes(II.getAttributes());
595  SubclassData = II.SubclassData;
596  Use *OL = OperandList, *InOL = II.OperandList;
597  for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
598    OL[i] = InOL[i];
599  SubclassOptionalData = II.SubclassOptionalData;
600}
601
602BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
603  return getSuccessor(idx);
604}
605unsigned InvokeInst::getNumSuccessorsV() const {
606  return getNumSuccessors();
607}
608void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
609  return setSuccessor(idx, B);
610}
611
612bool InvokeInst::paramHasAttr(unsigned i, Attributes attr) const {
613  if (AttributeList.paramHasAttr(i, attr))
614    return true;
615  if (const Function *F = getCalledFunction())
616    return F->paramHasAttr(i, attr);
617  return false;
618}
619
620void InvokeInst::addAttribute(unsigned i, Attributes attr) {
621  AttrListPtr PAL = getAttributes();
622  PAL = PAL.addAttr(i, attr);
623  setAttributes(PAL);
624}
625
626void InvokeInst::removeAttribute(unsigned i, Attributes attr) {
627  AttrListPtr PAL = getAttributes();
628  PAL = PAL.removeAttr(i, attr);
629  setAttributes(PAL);
630}
631
632
633//===----------------------------------------------------------------------===//
634//                        ReturnInst Implementation
635//===----------------------------------------------------------------------===//
636
637ReturnInst::ReturnInst(const ReturnInst &RI)
638  : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
639                   OperandTraits<ReturnInst>::op_end(this) -
640                     RI.getNumOperands(),
641                   RI.getNumOperands()) {
642  if (RI.getNumOperands())
643    Op<0>() = RI.Op<0>();
644  SubclassOptionalData = RI.SubclassOptionalData;
645}
646
647ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
648  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
649                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
650                   InsertBefore) {
651  if (retVal)
652    Op<0>() = retVal;
653}
654ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
655  : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
656                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
657                   InsertAtEnd) {
658  if (retVal)
659    Op<0>() = retVal;
660}
661ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
662  : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
663                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
664}
665
666unsigned ReturnInst::getNumSuccessorsV() const {
667  return getNumSuccessors();
668}
669
670/// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
671/// emit the vtable for the class in this translation unit.
672void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
673  llvm_unreachable("ReturnInst has no successors!");
674}
675
676BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
677  llvm_unreachable("ReturnInst has no successors!");
678  return 0;
679}
680
681ReturnInst::~ReturnInst() {
682}
683
684//===----------------------------------------------------------------------===//
685//                        UnwindInst Implementation
686//===----------------------------------------------------------------------===//
687
688UnwindInst::UnwindInst(LLVMContext &Context, Instruction *InsertBefore)
689  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
690                   0, 0, InsertBefore) {
691}
692UnwindInst::UnwindInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
693  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unwind,
694                   0, 0, InsertAtEnd) {
695}
696
697
698unsigned UnwindInst::getNumSuccessorsV() const {
699  return getNumSuccessors();
700}
701
702void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
703  llvm_unreachable("UnwindInst has no successors!");
704}
705
706BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
707  llvm_unreachable("UnwindInst has no successors!");
708  return 0;
709}
710
711//===----------------------------------------------------------------------===//
712//                      UnreachableInst Implementation
713//===----------------------------------------------------------------------===//
714
715UnreachableInst::UnreachableInst(LLVMContext &Context,
716                                 Instruction *InsertBefore)
717  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
718                   0, 0, InsertBefore) {
719}
720UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
721  : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
722                   0, 0, InsertAtEnd) {
723}
724
725unsigned UnreachableInst::getNumSuccessorsV() const {
726  return getNumSuccessors();
727}
728
729void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
730  llvm_unreachable("UnwindInst has no successors!");
731}
732
733BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
734  llvm_unreachable("UnwindInst has no successors!");
735  return 0;
736}
737
738//===----------------------------------------------------------------------===//
739//                        BranchInst Implementation
740//===----------------------------------------------------------------------===//
741
742void BranchInst::AssertOK() {
743  if (isConditional())
744    assert(getCondition()->getType() == Type::getInt1Ty(getContext()) &&
745           "May only branch on boolean predicates!");
746}
747
748BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
749  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
750                   OperandTraits<BranchInst>::op_end(this) - 1,
751                   1, InsertBefore) {
752  assert(IfTrue != 0 && "Branch destination may not be null!");
753  Op<-1>() = IfTrue;
754}
755BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
756                       Instruction *InsertBefore)
757  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
758                   OperandTraits<BranchInst>::op_end(this) - 3,
759                   3, InsertBefore) {
760  Op<-1>() = IfTrue;
761  Op<-2>() = IfFalse;
762  Op<-3>() = Cond;
763#ifndef NDEBUG
764  AssertOK();
765#endif
766}
767
768BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
769  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
770                   OperandTraits<BranchInst>::op_end(this) - 1,
771                   1, InsertAtEnd) {
772  assert(IfTrue != 0 && "Branch destination may not be null!");
773  Op<-1>() = IfTrue;
774}
775
776BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
777           BasicBlock *InsertAtEnd)
778  : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
779                   OperandTraits<BranchInst>::op_end(this) - 3,
780                   3, InsertAtEnd) {
781  Op<-1>() = IfTrue;
782  Op<-2>() = IfFalse;
783  Op<-3>() = Cond;
784#ifndef NDEBUG
785  AssertOK();
786#endif
787}
788
789
790BranchInst::BranchInst(const BranchInst &BI) :
791  TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
792                 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
793                 BI.getNumOperands()) {
794  Op<-1>() = BI.Op<-1>();
795  if (BI.getNumOperands() != 1) {
796    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
797    Op<-3>() = BI.Op<-3>();
798    Op<-2>() = BI.Op<-2>();
799  }
800  SubclassOptionalData = BI.SubclassOptionalData;
801}
802
803
804Use* Use::getPrefix() {
805  PointerIntPair<Use**, 2, PrevPtrTag> &PotentialPrefix(this[-1].Prev);
806  if (PotentialPrefix.getOpaqueValue())
807    return 0;
808
809  return reinterpret_cast<Use*>((char*)&PotentialPrefix + 1);
810}
811
812BranchInst::~BranchInst() {
813  if (NumOperands == 1) {
814    if (Use *Prefix = OperandList->getPrefix()) {
815      Op<-1>() = 0;
816      //
817      // mark OperandList to have a special value for scrutiny
818      // by baseclass destructors and operator delete
819      OperandList = Prefix;
820    } else {
821      NumOperands = 3;
822      OperandList = op_begin();
823    }
824  }
825}
826
827
828BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
829  return getSuccessor(idx);
830}
831unsigned BranchInst::getNumSuccessorsV() const {
832  return getNumSuccessors();
833}
834void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
835  setSuccessor(idx, B);
836}
837
838
839//===----------------------------------------------------------------------===//
840//                        AllocationInst Implementation
841//===----------------------------------------------------------------------===//
842
843static Value *getAISize(LLVMContext &Context, Value *Amt) {
844  if (!Amt)
845    Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
846  else {
847    assert(!isa<BasicBlock>(Amt) &&
848           "Passed basic block into allocation size parameter! Use other ctor");
849    assert(Amt->getType() == Type::getInt32Ty(Context) &&
850           "Allocation array size is not a 32-bit integer!");
851  }
852  return Amt;
853}
854
855AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
856                               unsigned Align, const Twine &Name,
857                               Instruction *InsertBefore)
858  : UnaryInstruction(PointerType::getUnqual(Ty), iTy,
859                     getAISize(Ty->getContext(), ArraySize), InsertBefore) {
860  setAlignment(Align);
861  assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
862  setName(Name);
863}
864
865AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
866                               unsigned Align, const Twine &Name,
867                               BasicBlock *InsertAtEnd)
868  : UnaryInstruction(PointerType::getUnqual(Ty), iTy,
869                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd) {
870  setAlignment(Align);
871  assert(Ty != Type::getVoidTy(Ty->getContext()) && "Cannot allocate void!");
872  setName(Name);
873}
874
875// Out of line virtual method, so the vtable, etc has a home.
876AllocationInst::~AllocationInst() {
877}
878
879void AllocationInst::setAlignment(unsigned Align) {
880  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
881  SubclassData = Log2_32(Align) + 1;
882  assert(getAlignment() == Align && "Alignment representation error!");
883}
884
885bool AllocationInst::isArrayAllocation() const {
886  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
887    return CI->getZExtValue() != 1;
888  return true;
889}
890
891const Type *AllocationInst::getAllocatedType() const {
892  return getType()->getElementType();
893}
894
895/// isStaticAlloca - Return true if this alloca is in the entry block of the
896/// function and is a constant size.  If so, the code generator will fold it
897/// into the prolog/epilog code, so it is basically free.
898bool AllocaInst::isStaticAlloca() const {
899  // Must be constant size.
900  if (!isa<ConstantInt>(getArraySize())) return false;
901
902  // Must be in the entry block.
903  const BasicBlock *Parent = getParent();
904  return Parent == &Parent->getParent()->front();
905}
906
907//===----------------------------------------------------------------------===//
908//                             FreeInst Implementation
909//===----------------------------------------------------------------------===//
910
911void FreeInst::AssertOK() {
912  assert(isa<PointerType>(getOperand(0)->getType()) &&
913         "Can not free something of nonpointer type!");
914}
915
916FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
917  : UnaryInstruction(Type::getVoidTy(Ptr->getContext()),
918                     Free, Ptr, InsertBefore) {
919  AssertOK();
920}
921
922FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
923  : UnaryInstruction(Type::getVoidTy(Ptr->getContext()),
924                     Free, Ptr, InsertAtEnd) {
925  AssertOK();
926}
927
928
929//===----------------------------------------------------------------------===//
930//                           LoadInst Implementation
931//===----------------------------------------------------------------------===//
932
933void LoadInst::AssertOK() {
934  assert(isa<PointerType>(getOperand(0)->getType()) &&
935         "Ptr must have pointer type.");
936}
937
938LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
939  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
940                     Load, Ptr, InsertBef) {
941  setVolatile(false);
942  setAlignment(0);
943  AssertOK();
944  setName(Name);
945}
946
947LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
948  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
949                     Load, Ptr, InsertAE) {
950  setVolatile(false);
951  setAlignment(0);
952  AssertOK();
953  setName(Name);
954}
955
956LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
957                   Instruction *InsertBef)
958  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
959                     Load, Ptr, InsertBef) {
960  setVolatile(isVolatile);
961  setAlignment(0);
962  AssertOK();
963  setName(Name);
964}
965
966LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
967                   unsigned Align, Instruction *InsertBef)
968  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
969                     Load, Ptr, InsertBef) {
970  setVolatile(isVolatile);
971  setAlignment(Align);
972  AssertOK();
973  setName(Name);
974}
975
976LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
977                   unsigned Align, BasicBlock *InsertAE)
978  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
979                     Load, Ptr, InsertAE) {
980  setVolatile(isVolatile);
981  setAlignment(Align);
982  AssertOK();
983  setName(Name);
984}
985
986LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
987                   BasicBlock *InsertAE)
988  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
989                     Load, Ptr, InsertAE) {
990  setVolatile(isVolatile);
991  setAlignment(0);
992  AssertOK();
993  setName(Name);
994}
995
996
997
998LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
999  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1000                     Load, Ptr, InsertBef) {
1001  setVolatile(false);
1002  setAlignment(0);
1003  AssertOK();
1004  if (Name && Name[0]) setName(Name);
1005}
1006
1007LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1008  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1009                     Load, Ptr, InsertAE) {
1010  setVolatile(false);
1011  setAlignment(0);
1012  AssertOK();
1013  if (Name && Name[0]) setName(Name);
1014}
1015
1016LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1017                   Instruction *InsertBef)
1018: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1019                   Load, Ptr, InsertBef) {
1020  setVolatile(isVolatile);
1021  setAlignment(0);
1022  AssertOK();
1023  if (Name && Name[0]) setName(Name);
1024}
1025
1026LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1027                   BasicBlock *InsertAE)
1028  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1029                     Load, Ptr, InsertAE) {
1030  setVolatile(isVolatile);
1031  setAlignment(0);
1032  AssertOK();
1033  if (Name && Name[0]) setName(Name);
1034}
1035
1036void LoadInst::setAlignment(unsigned Align) {
1037  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1038  SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
1039}
1040
1041//===----------------------------------------------------------------------===//
1042//                           StoreInst Implementation
1043//===----------------------------------------------------------------------===//
1044
1045void StoreInst::AssertOK() {
1046  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1047  assert(isa<PointerType>(getOperand(1)->getType()) &&
1048         "Ptr must have pointer type!");
1049  assert(getOperand(0)->getType() ==
1050                 cast<PointerType>(getOperand(1)->getType())->getElementType()
1051         && "Ptr must be a pointer to Val type!");
1052}
1053
1054
1055StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1056  : Instruction(Type::getVoidTy(val->getContext()), Store,
1057                OperandTraits<StoreInst>::op_begin(this),
1058                OperandTraits<StoreInst>::operands(this),
1059                InsertBefore) {
1060  Op<0>() = val;
1061  Op<1>() = addr;
1062  setVolatile(false);
1063  setAlignment(0);
1064  AssertOK();
1065}
1066
1067StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1068  : Instruction(Type::getVoidTy(val->getContext()), Store,
1069                OperandTraits<StoreInst>::op_begin(this),
1070                OperandTraits<StoreInst>::operands(this),
1071                InsertAtEnd) {
1072  Op<0>() = val;
1073  Op<1>() = addr;
1074  setVolatile(false);
1075  setAlignment(0);
1076  AssertOK();
1077}
1078
1079StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1080                     Instruction *InsertBefore)
1081  : Instruction(Type::getVoidTy(val->getContext()), Store,
1082                OperandTraits<StoreInst>::op_begin(this),
1083                OperandTraits<StoreInst>::operands(this),
1084                InsertBefore) {
1085  Op<0>() = val;
1086  Op<1>() = addr;
1087  setVolatile(isVolatile);
1088  setAlignment(0);
1089  AssertOK();
1090}
1091
1092StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1093                     unsigned Align, Instruction *InsertBefore)
1094  : Instruction(Type::getVoidTy(val->getContext()), Store,
1095                OperandTraits<StoreInst>::op_begin(this),
1096                OperandTraits<StoreInst>::operands(this),
1097                InsertBefore) {
1098  Op<0>() = val;
1099  Op<1>() = addr;
1100  setVolatile(isVolatile);
1101  setAlignment(Align);
1102  AssertOK();
1103}
1104
1105StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1106                     unsigned Align, BasicBlock *InsertAtEnd)
1107  : Instruction(Type::getVoidTy(val->getContext()), Store,
1108                OperandTraits<StoreInst>::op_begin(this),
1109                OperandTraits<StoreInst>::operands(this),
1110                InsertAtEnd) {
1111  Op<0>() = val;
1112  Op<1>() = addr;
1113  setVolatile(isVolatile);
1114  setAlignment(Align);
1115  AssertOK();
1116}
1117
1118StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1119                     BasicBlock *InsertAtEnd)
1120  : Instruction(Type::getVoidTy(val->getContext()), Store,
1121                OperandTraits<StoreInst>::op_begin(this),
1122                OperandTraits<StoreInst>::operands(this),
1123                InsertAtEnd) {
1124  Op<0>() = val;
1125  Op<1>() = addr;
1126  setVolatile(isVolatile);
1127  setAlignment(0);
1128  AssertOK();
1129}
1130
1131void StoreInst::setAlignment(unsigned Align) {
1132  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1133  SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
1134}
1135
1136//===----------------------------------------------------------------------===//
1137//                       GetElementPtrInst Implementation
1138//===----------------------------------------------------------------------===//
1139
1140static unsigned retrieveAddrSpace(const Value *Val) {
1141  return cast<PointerType>(Val->getType())->getAddressSpace();
1142}
1143
1144void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
1145                             const Twine &Name) {
1146  assert(NumOperands == 1+NumIdx && "NumOperands not initialized?");
1147  Use *OL = OperandList;
1148  OL[0] = Ptr;
1149
1150  for (unsigned i = 0; i != NumIdx; ++i)
1151    OL[i+1] = Idx[i];
1152
1153  setName(Name);
1154}
1155
1156void GetElementPtrInst::init(Value *Ptr, Value *Idx, const Twine &Name) {
1157  assert(NumOperands == 2 && "NumOperands not initialized?");
1158  Use *OL = OperandList;
1159  OL[0] = Ptr;
1160  OL[1] = Idx;
1161
1162  setName(Name);
1163}
1164
1165GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1166  : Instruction(GEPI.getType(), GetElementPtr,
1167                OperandTraits<GetElementPtrInst>::op_end(this)
1168                - GEPI.getNumOperands(),
1169                GEPI.getNumOperands()) {
1170  Use *OL = OperandList;
1171  Use *GEPIOL = GEPI.OperandList;
1172  for (unsigned i = 0, E = NumOperands; i != E; ++i)
1173    OL[i] = GEPIOL[i];
1174  SubclassOptionalData = GEPI.SubclassOptionalData;
1175}
1176
1177GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1178                                     const Twine &Name, Instruction *InBe)
1179  : Instruction(PointerType::get(
1180      checkType(getIndexedType(Ptr->getType(),Idx)), retrieveAddrSpace(Ptr)),
1181                GetElementPtr,
1182                OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1183                2, InBe) {
1184  init(Ptr, Idx, Name);
1185}
1186
1187GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1188                                     const Twine &Name, BasicBlock *IAE)
1189  : Instruction(PointerType::get(
1190            checkType(getIndexedType(Ptr->getType(),Idx)),
1191                retrieveAddrSpace(Ptr)),
1192                GetElementPtr,
1193                OperandTraits<GetElementPtrInst>::op_end(this) - 2,
1194                2, IAE) {
1195  init(Ptr, Idx, Name);
1196}
1197
1198/// getIndexedType - Returns the type of the element that would be accessed with
1199/// a gep instruction with the specified parameters.
1200///
1201/// The Idxs pointer should point to a continuous piece of memory containing the
1202/// indices, either as Value* or uint64_t.
1203///
1204/// A null type is returned if the indices are invalid for the specified
1205/// pointer type.
1206///
1207template <typename IndexTy>
1208static const Type* getIndexedTypeInternal(const Type *Ptr, IndexTy const *Idxs,
1209                                          unsigned NumIdx) {
1210  const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1211  if (!PTy) return 0;   // Type isn't a pointer type!
1212  const Type *Agg = PTy->getElementType();
1213
1214  // Handle the special case of the empty set index set, which is always valid.
1215  if (NumIdx == 0)
1216    return Agg;
1217
1218  // If there is at least one index, the top level type must be sized, otherwise
1219  // it cannot be 'stepped over'.  We explicitly allow abstract types (those
1220  // that contain opaque types) under the assumption that it will be resolved to
1221  // a sane type later.
1222  if (!Agg->isSized() && !Agg->isAbstract())
1223    return 0;
1224
1225  unsigned CurIdx = 1;
1226  for (; CurIdx != NumIdx; ++CurIdx) {
1227    const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1228    if (!CT || isa<PointerType>(CT)) return 0;
1229    IndexTy Index = Idxs[CurIdx];
1230    if (!CT->indexValid(Index)) return 0;
1231    Agg = CT->getTypeAtIndex(Index);
1232
1233    // If the new type forwards to another type, then it is in the middle
1234    // of being refined to another type (and hence, may have dropped all
1235    // references to what it was using before).  So, use the new forwarded
1236    // type.
1237    if (const Type *Ty = Agg->getForwardedType())
1238      Agg = Ty;
1239  }
1240  return CurIdx == NumIdx ? Agg : 0;
1241}
1242
1243const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1244                                              Value* const *Idxs,
1245                                              unsigned NumIdx) {
1246  return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1247}
1248
1249const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1250                                              uint64_t const *Idxs,
1251                                              unsigned NumIdx) {
1252  return getIndexedTypeInternal(Ptr, Idxs, NumIdx);
1253}
1254
1255const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
1256  const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1257  if (!PTy) return 0;   // Type isn't a pointer type!
1258
1259  // Check the pointer index.
1260  if (!PTy->indexValid(Idx)) return 0;
1261
1262  return PTy->getElementType();
1263}
1264
1265
1266/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1267/// zeros.  If so, the result pointer and the first operand have the same
1268/// value, just potentially different types.
1269bool GetElementPtrInst::hasAllZeroIndices() const {
1270  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1271    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1272      if (!CI->isZero()) return false;
1273    } else {
1274      return false;
1275    }
1276  }
1277  return true;
1278}
1279
1280/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1281/// constant integers.  If so, the result pointer and the first operand have
1282/// a constant offset between them.
1283bool GetElementPtrInst::hasAllConstantIndices() const {
1284  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1285    if (!isa<ConstantInt>(getOperand(i)))
1286      return false;
1287  }
1288  return true;
1289}
1290
1291void GetElementPtrInst::setIsInBounds(bool B) {
1292  cast<GEPOperator>(this)->setIsInBounds(B);
1293}
1294
1295bool GetElementPtrInst::isInBounds() const {
1296  return cast<GEPOperator>(this)->isInBounds();
1297}
1298
1299//===----------------------------------------------------------------------===//
1300//                           ExtractElementInst Implementation
1301//===----------------------------------------------------------------------===//
1302
1303ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1304                                       const Twine &Name,
1305                                       Instruction *InsertBef)
1306  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1307                ExtractElement,
1308                OperandTraits<ExtractElementInst>::op_begin(this),
1309                2, InsertBef) {
1310  assert(isValidOperands(Val, Index) &&
1311         "Invalid extractelement instruction operands!");
1312  Op<0>() = Val;
1313  Op<1>() = Index;
1314  setName(Name);
1315}
1316
1317ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1318                                       const Twine &Name,
1319                                       BasicBlock *InsertAE)
1320  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1321                ExtractElement,
1322                OperandTraits<ExtractElementInst>::op_begin(this),
1323                2, InsertAE) {
1324  assert(isValidOperands(Val, Index) &&
1325         "Invalid extractelement instruction operands!");
1326
1327  Op<0>() = Val;
1328  Op<1>() = Index;
1329  setName(Name);
1330}
1331
1332
1333bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1334  if (!isa<VectorType>(Val->getType()) ||
1335      Index->getType() != Type::getInt32Ty(Val->getContext()))
1336    return false;
1337  return true;
1338}
1339
1340
1341//===----------------------------------------------------------------------===//
1342//                           InsertElementInst Implementation
1343//===----------------------------------------------------------------------===//
1344
1345InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1346                                     const Twine &Name,
1347                                     Instruction *InsertBef)
1348  : Instruction(Vec->getType(), InsertElement,
1349                OperandTraits<InsertElementInst>::op_begin(this),
1350                3, InsertBef) {
1351  assert(isValidOperands(Vec, Elt, Index) &&
1352         "Invalid insertelement instruction operands!");
1353  Op<0>() = Vec;
1354  Op<1>() = Elt;
1355  Op<2>() = Index;
1356  setName(Name);
1357}
1358
1359InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1360                                     const Twine &Name,
1361                                     BasicBlock *InsertAE)
1362  : Instruction(Vec->getType(), InsertElement,
1363                OperandTraits<InsertElementInst>::op_begin(this),
1364                3, InsertAE) {
1365  assert(isValidOperands(Vec, Elt, Index) &&
1366         "Invalid insertelement instruction operands!");
1367
1368  Op<0>() = Vec;
1369  Op<1>() = Elt;
1370  Op<2>() = Index;
1371  setName(Name);
1372}
1373
1374bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1375                                        const Value *Index) {
1376  if (!isa<VectorType>(Vec->getType()))
1377    return false;   // First operand of insertelement must be vector type.
1378
1379  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1380    return false;// Second operand of insertelement must be vector element type.
1381
1382  if (Index->getType() != Type::getInt32Ty(Vec->getContext()))
1383    return false;  // Third operand of insertelement must be i32.
1384  return true;
1385}
1386
1387
1388//===----------------------------------------------------------------------===//
1389//                      ShuffleVectorInst Implementation
1390//===----------------------------------------------------------------------===//
1391
1392ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1393                                     const Twine &Name,
1394                                     Instruction *InsertBefore)
1395: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1396                cast<VectorType>(Mask->getType())->getNumElements()),
1397              ShuffleVector,
1398              OperandTraits<ShuffleVectorInst>::op_begin(this),
1399              OperandTraits<ShuffleVectorInst>::operands(this),
1400              InsertBefore) {
1401  assert(isValidOperands(V1, V2, Mask) &&
1402         "Invalid shuffle vector instruction operands!");
1403  Op<0>() = V1;
1404  Op<1>() = V2;
1405  Op<2>() = Mask;
1406  setName(Name);
1407}
1408
1409ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1410                                     const Twine &Name,
1411                                     BasicBlock *InsertAtEnd)
1412: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1413                cast<VectorType>(Mask->getType())->getNumElements()),
1414              ShuffleVector,
1415              OperandTraits<ShuffleVectorInst>::op_begin(this),
1416              OperandTraits<ShuffleVectorInst>::operands(this),
1417              InsertAtEnd) {
1418  assert(isValidOperands(V1, V2, Mask) &&
1419         "Invalid shuffle vector instruction operands!");
1420
1421  Op<0>() = V1;
1422  Op<1>() = V2;
1423  Op<2>() = Mask;
1424  setName(Name);
1425}
1426
1427bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1428                                        const Value *Mask) {
1429  if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
1430    return false;
1431
1432  const VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1433  if (!isa<Constant>(Mask) || MaskTy == 0 ||
1434      MaskTy->getElementType() != Type::getInt32Ty(V1->getContext()))
1435    return false;
1436  return true;
1437}
1438
1439/// getMaskValue - Return the index from the shuffle mask for the specified
1440/// output result.  This is either -1 if the element is undef or a number less
1441/// than 2*numelements.
1442int ShuffleVectorInst::getMaskValue(unsigned i) const {
1443  const Constant *Mask = cast<Constant>(getOperand(2));
1444  if (isa<UndefValue>(Mask)) return -1;
1445  if (isa<ConstantAggregateZero>(Mask)) return 0;
1446  const ConstantVector *MaskCV = cast<ConstantVector>(Mask);
1447  assert(i < MaskCV->getNumOperands() && "Index out of range");
1448
1449  if (isa<UndefValue>(MaskCV->getOperand(i)))
1450    return -1;
1451  return cast<ConstantInt>(MaskCV->getOperand(i))->getZExtValue();
1452}
1453
1454//===----------------------------------------------------------------------===//
1455//                             InsertValueInst Class
1456//===----------------------------------------------------------------------===//
1457
1458void InsertValueInst::init(Value *Agg, Value *Val, const unsigned *Idx,
1459                           unsigned NumIdx, const Twine &Name) {
1460  assert(NumOperands == 2 && "NumOperands not initialized?");
1461  Op<0>() = Agg;
1462  Op<1>() = Val;
1463
1464  Indices.insert(Indices.end(), Idx, Idx + NumIdx);
1465  setName(Name);
1466}
1467
1468void InsertValueInst::init(Value *Agg, Value *Val, unsigned Idx,
1469                           const Twine &Name) {
1470  assert(NumOperands == 2 && "NumOperands not initialized?");
1471  Op<0>() = Agg;
1472  Op<1>() = Val;
1473
1474  Indices.push_back(Idx);
1475  setName(Name);
1476}
1477
1478InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1479  : Instruction(IVI.getType(), InsertValue,
1480                OperandTraits<InsertValueInst>::op_begin(this), 2),
1481    Indices(IVI.Indices) {
1482  Op<0>() = IVI.getOperand(0);
1483  Op<1>() = IVI.getOperand(1);
1484  SubclassOptionalData = IVI.SubclassOptionalData;
1485}
1486
1487InsertValueInst::InsertValueInst(Value *Agg,
1488                                 Value *Val,
1489                                 unsigned Idx,
1490                                 const Twine &Name,
1491                                 Instruction *InsertBefore)
1492  : Instruction(Agg->getType(), InsertValue,
1493                OperandTraits<InsertValueInst>::op_begin(this),
1494                2, InsertBefore) {
1495  init(Agg, Val, Idx, Name);
1496}
1497
1498InsertValueInst::InsertValueInst(Value *Agg,
1499                                 Value *Val,
1500                                 unsigned Idx,
1501                                 const Twine &Name,
1502                                 BasicBlock *InsertAtEnd)
1503  : Instruction(Agg->getType(), InsertValue,
1504                OperandTraits<InsertValueInst>::op_begin(this),
1505                2, InsertAtEnd) {
1506  init(Agg, Val, Idx, Name);
1507}
1508
1509//===----------------------------------------------------------------------===//
1510//                             ExtractValueInst Class
1511//===----------------------------------------------------------------------===//
1512
1513void ExtractValueInst::init(const unsigned *Idx, unsigned NumIdx,
1514                            const Twine &Name) {
1515  assert(NumOperands == 1 && "NumOperands not initialized?");
1516
1517  Indices.insert(Indices.end(), Idx, Idx + NumIdx);
1518  setName(Name);
1519}
1520
1521void ExtractValueInst::init(unsigned Idx, const Twine &Name) {
1522  assert(NumOperands == 1 && "NumOperands not initialized?");
1523
1524  Indices.push_back(Idx);
1525  setName(Name);
1526}
1527
1528ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1529  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1530    Indices(EVI.Indices) {
1531  SubclassOptionalData = EVI.SubclassOptionalData;
1532}
1533
1534// getIndexedType - Returns the type of the element that would be extracted
1535// with an extractvalue instruction with the specified parameters.
1536//
1537// A null type is returned if the indices are invalid for the specified
1538// pointer type.
1539//
1540const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1541                                             const unsigned *Idxs,
1542                                             unsigned NumIdx) {
1543  unsigned CurIdx = 0;
1544  for (; CurIdx != NumIdx; ++CurIdx) {
1545    const CompositeType *CT = dyn_cast<CompositeType>(Agg);
1546    if (!CT || isa<PointerType>(CT) || isa<VectorType>(CT)) return 0;
1547    unsigned Index = Idxs[CurIdx];
1548    if (!CT->indexValid(Index)) return 0;
1549    Agg = CT->getTypeAtIndex(Index);
1550
1551    // If the new type forwards to another type, then it is in the middle
1552    // of being refined to another type (and hence, may have dropped all
1553    // references to what it was using before).  So, use the new forwarded
1554    // type.
1555    if (const Type *Ty = Agg->getForwardedType())
1556      Agg = Ty;
1557  }
1558  return CurIdx == NumIdx ? Agg : 0;
1559}
1560
1561const Type* ExtractValueInst::getIndexedType(const Type *Agg,
1562                                             unsigned Idx) {
1563  return getIndexedType(Agg, &Idx, 1);
1564}
1565
1566//===----------------------------------------------------------------------===//
1567//                             BinaryOperator Class
1568//===----------------------------------------------------------------------===//
1569
1570/// AdjustIType - Map Add, Sub, and Mul to FAdd, FSub, and FMul when the
1571/// type is floating-point, to help provide compatibility with an older API.
1572///
1573static BinaryOperator::BinaryOps AdjustIType(BinaryOperator::BinaryOps iType,
1574                                             const Type *Ty) {
1575  // API compatibility: Adjust integer opcodes to floating-point opcodes.
1576  if (Ty->isFPOrFPVector()) {
1577    if (iType == BinaryOperator::Add) iType = BinaryOperator::FAdd;
1578    else if (iType == BinaryOperator::Sub) iType = BinaryOperator::FSub;
1579    else if (iType == BinaryOperator::Mul) iType = BinaryOperator::FMul;
1580  }
1581  return iType;
1582}
1583
1584BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1585                               const Type *Ty, const Twine &Name,
1586                               Instruction *InsertBefore)
1587  : Instruction(Ty, AdjustIType(iType, Ty),
1588                OperandTraits<BinaryOperator>::op_begin(this),
1589                OperandTraits<BinaryOperator>::operands(this),
1590                InsertBefore) {
1591  Op<0>() = S1;
1592  Op<1>() = S2;
1593  init(AdjustIType(iType, Ty));
1594  setName(Name);
1595}
1596
1597BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1598                               const Type *Ty, const Twine &Name,
1599                               BasicBlock *InsertAtEnd)
1600  : Instruction(Ty, AdjustIType(iType, Ty),
1601                OperandTraits<BinaryOperator>::op_begin(this),
1602                OperandTraits<BinaryOperator>::operands(this),
1603                InsertAtEnd) {
1604  Op<0>() = S1;
1605  Op<1>() = S2;
1606  init(AdjustIType(iType, Ty));
1607  setName(Name);
1608}
1609
1610
1611void BinaryOperator::init(BinaryOps iType) {
1612  Value *LHS = getOperand(0), *RHS = getOperand(1);
1613  LHS = LHS; RHS = RHS; // Silence warnings.
1614  assert(LHS->getType() == RHS->getType() &&
1615         "Binary operator operand types must match!");
1616#ifndef NDEBUG
1617  switch (iType) {
1618  case Add: case Sub:
1619  case Mul:
1620    assert(getType() == LHS->getType() &&
1621           "Arithmetic operation should return same type as operands!");
1622    assert(getType()->isIntOrIntVector() &&
1623           "Tried to create an integer operation on a non-integer type!");
1624    break;
1625  case FAdd: case FSub:
1626  case FMul:
1627    assert(getType() == LHS->getType() &&
1628           "Arithmetic operation should return same type as operands!");
1629    assert(getType()->isFPOrFPVector() &&
1630           "Tried to create a floating-point operation on a "
1631           "non-floating-point type!");
1632    break;
1633  case UDiv:
1634  case SDiv:
1635    assert(getType() == LHS->getType() &&
1636           "Arithmetic operation should return same type as operands!");
1637    assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1638            cast<VectorType>(getType())->getElementType()->isInteger())) &&
1639           "Incorrect operand type (not integer) for S/UDIV");
1640    break;
1641  case FDiv:
1642    assert(getType() == LHS->getType() &&
1643           "Arithmetic operation should return same type as operands!");
1644    assert(getType()->isFPOrFPVector() &&
1645           "Incorrect operand type (not floating point) for FDIV");
1646    break;
1647  case URem:
1648  case SRem:
1649    assert(getType() == LHS->getType() &&
1650           "Arithmetic operation should return same type as operands!");
1651    assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1652            cast<VectorType>(getType())->getElementType()->isInteger())) &&
1653           "Incorrect operand type (not integer) for S/UREM");
1654    break;
1655  case FRem:
1656    assert(getType() == LHS->getType() &&
1657           "Arithmetic operation should return same type as operands!");
1658    assert(getType()->isFPOrFPVector() &&
1659           "Incorrect operand type (not floating point) for FREM");
1660    break;
1661  case Shl:
1662  case LShr:
1663  case AShr:
1664    assert(getType() == LHS->getType() &&
1665           "Shift operation should return same type as operands!");
1666    assert((getType()->isInteger() ||
1667            (isa<VectorType>(getType()) &&
1668             cast<VectorType>(getType())->getElementType()->isInteger())) &&
1669           "Tried to create a shift operation on a non-integral type!");
1670    break;
1671  case And: case Or:
1672  case Xor:
1673    assert(getType() == LHS->getType() &&
1674           "Logical operation should return same type as operands!");
1675    assert((getType()->isInteger() ||
1676            (isa<VectorType>(getType()) &&
1677             cast<VectorType>(getType())->getElementType()->isInteger())) &&
1678           "Tried to create a logical operation on a non-integral type!");
1679    break;
1680  default:
1681    break;
1682  }
1683#endif
1684}
1685
1686BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1687                                       const Twine &Name,
1688                                       Instruction *InsertBefore) {
1689  assert(S1->getType() == S2->getType() &&
1690         "Cannot create binary operator with two operands of differing type!");
1691  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1692}
1693
1694BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
1695                                       const Twine &Name,
1696                                       BasicBlock *InsertAtEnd) {
1697  BinaryOperator *Res = Create(Op, S1, S2, Name);
1698  InsertAtEnd->getInstList().push_back(Res);
1699  return Res;
1700}
1701
1702BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1703                                          Instruction *InsertBefore) {
1704  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1705  return new BinaryOperator(Instruction::Sub,
1706                            zero, Op,
1707                            Op->getType(), Name, InsertBefore);
1708}
1709
1710BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
1711                                          BasicBlock *InsertAtEnd) {
1712  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1713  return new BinaryOperator(Instruction::Sub,
1714                            zero, Op,
1715                            Op->getType(), Name, InsertAtEnd);
1716}
1717
1718BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1719                                           Instruction *InsertBefore) {
1720  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1721  return new BinaryOperator(Instruction::FSub,
1722                            zero, Op,
1723                            Op->getType(), Name, InsertBefore);
1724}
1725
1726BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
1727                                           BasicBlock *InsertAtEnd) {
1728  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
1729  return new BinaryOperator(Instruction::FSub,
1730                            zero, Op,
1731                            Op->getType(), Name, InsertAtEnd);
1732}
1733
1734BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1735                                          Instruction *InsertBefore) {
1736  Constant *C;
1737  if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1738    C = Constant::getAllOnesValue(PTy->getElementType());
1739    C = ConstantVector::get(
1740                              std::vector<Constant*>(PTy->getNumElements(), C));
1741  } else {
1742    C = Constant::getAllOnesValue(Op->getType());
1743  }
1744
1745  return new BinaryOperator(Instruction::Xor, Op, C,
1746                            Op->getType(), Name, InsertBefore);
1747}
1748
1749BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
1750                                          BasicBlock *InsertAtEnd) {
1751  Constant *AllOnes;
1752  if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1753    // Create a vector of all ones values.
1754    Constant *Elt = Constant::getAllOnesValue(PTy->getElementType());
1755    AllOnes = ConstantVector::get(
1756                            std::vector<Constant*>(PTy->getNumElements(), Elt));
1757  } else {
1758    AllOnes = Constant::getAllOnesValue(Op->getType());
1759  }
1760
1761  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1762                            Op->getType(), Name, InsertAtEnd);
1763}
1764
1765
1766// isConstantAllOnes - Helper function for several functions below
1767static inline bool isConstantAllOnes(const Value *V) {
1768  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1769    return CI->isAllOnesValue();
1770  if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1771    return CV->isAllOnesValue();
1772  return false;
1773}
1774
1775bool BinaryOperator::isNeg(const Value *V) {
1776  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1777    if (Bop->getOpcode() == Instruction::Sub)
1778      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1779        return C->isNegativeZeroValue();
1780  return false;
1781}
1782
1783bool BinaryOperator::isFNeg(const Value *V) {
1784  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1785    if (Bop->getOpcode() == Instruction::FSub)
1786      if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
1787        return C->isNegativeZeroValue();
1788  return false;
1789}
1790
1791bool BinaryOperator::isNot(const Value *V) {
1792  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1793    return (Bop->getOpcode() == Instruction::Xor &&
1794            (isConstantAllOnes(Bop->getOperand(1)) ||
1795             isConstantAllOnes(Bop->getOperand(0))));
1796  return false;
1797}
1798
1799Value *BinaryOperator::getNegArgument(Value *BinOp) {
1800  return cast<BinaryOperator>(BinOp)->getOperand(1);
1801}
1802
1803const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1804  return getNegArgument(const_cast<Value*>(BinOp));
1805}
1806
1807Value *BinaryOperator::getFNegArgument(Value *BinOp) {
1808  return cast<BinaryOperator>(BinOp)->getOperand(1);
1809}
1810
1811const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
1812  return getFNegArgument(const_cast<Value*>(BinOp));
1813}
1814
1815Value *BinaryOperator::getNotArgument(Value *BinOp) {
1816  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1817  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1818  Value *Op0 = BO->getOperand(0);
1819  Value *Op1 = BO->getOperand(1);
1820  if (isConstantAllOnes(Op0)) return Op1;
1821
1822  assert(isConstantAllOnes(Op1));
1823  return Op0;
1824}
1825
1826const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1827  return getNotArgument(const_cast<Value*>(BinOp));
1828}
1829
1830
1831// swapOperands - Exchange the two operands to this instruction.  This
1832// instruction is safe to use on any binary instruction and does not
1833// modify the semantics of the instruction.  If the instruction is
1834// order dependent (SetLT f.e.) the opcode is changed.
1835//
1836bool BinaryOperator::swapOperands() {
1837  if (!isCommutative())
1838    return true; // Can't commute operands
1839  Op<0>().swap(Op<1>());
1840  return false;
1841}
1842
1843void BinaryOperator::setHasNoUnsignedWrap(bool b) {
1844  cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
1845}
1846
1847void BinaryOperator::setHasNoSignedWrap(bool b) {
1848  cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
1849}
1850
1851void BinaryOperator::setIsExact(bool b) {
1852  cast<SDivOperator>(this)->setIsExact(b);
1853}
1854
1855bool BinaryOperator::hasNoUnsignedWrap() const {
1856  return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
1857}
1858
1859bool BinaryOperator::hasNoSignedWrap() const {
1860  return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
1861}
1862
1863bool BinaryOperator::isExact() const {
1864  return cast<SDivOperator>(this)->isExact();
1865}
1866
1867//===----------------------------------------------------------------------===//
1868//                                CastInst Class
1869//===----------------------------------------------------------------------===//
1870
1871// Just determine if this cast only deals with integral->integral conversion.
1872bool CastInst::isIntegerCast() const {
1873  switch (getOpcode()) {
1874    default: return false;
1875    case Instruction::ZExt:
1876    case Instruction::SExt:
1877    case Instruction::Trunc:
1878      return true;
1879    case Instruction::BitCast:
1880      return getOperand(0)->getType()->isInteger() && getType()->isInteger();
1881  }
1882}
1883
1884bool CastInst::isLosslessCast() const {
1885  // Only BitCast can be lossless, exit fast if we're not BitCast
1886  if (getOpcode() != Instruction::BitCast)
1887    return false;
1888
1889  // Identity cast is always lossless
1890  const Type* SrcTy = getOperand(0)->getType();
1891  const Type* DstTy = getType();
1892  if (SrcTy == DstTy)
1893    return true;
1894
1895  // Pointer to pointer is always lossless.
1896  if (isa<PointerType>(SrcTy))
1897    return isa<PointerType>(DstTy);
1898  return false;  // Other types have no identity values
1899}
1900
1901/// This function determines if the CastInst does not require any bits to be
1902/// changed in order to effect the cast. Essentially, it identifies cases where
1903/// no code gen is necessary for the cast, hence the name no-op cast.  For
1904/// example, the following are all no-op casts:
1905/// # bitcast i32* %x to i8*
1906/// # bitcast <2 x i32> %x to <4 x i16>
1907/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
1908/// @brief Determine if a cast is a no-op.
1909bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1910  switch (getOpcode()) {
1911    default:
1912      assert(!"Invalid CastOp");
1913    case Instruction::Trunc:
1914    case Instruction::ZExt:
1915    case Instruction::SExt:
1916    case Instruction::FPTrunc:
1917    case Instruction::FPExt:
1918    case Instruction::UIToFP:
1919    case Instruction::SIToFP:
1920    case Instruction::FPToUI:
1921    case Instruction::FPToSI:
1922      return false; // These always modify bits
1923    case Instruction::BitCast:
1924      return true;  // BitCast never modifies bits.
1925    case Instruction::PtrToInt:
1926      return IntPtrTy->getScalarSizeInBits() ==
1927             getType()->getScalarSizeInBits();
1928    case Instruction::IntToPtr:
1929      return IntPtrTy->getScalarSizeInBits() ==
1930             getOperand(0)->getType()->getScalarSizeInBits();
1931  }
1932}
1933
1934/// This function determines if a pair of casts can be eliminated and what
1935/// opcode should be used in the elimination. This assumes that there are two
1936/// instructions like this:
1937/// *  %F = firstOpcode SrcTy %x to MidTy
1938/// *  %S = secondOpcode MidTy %F to DstTy
1939/// The function returns a resultOpcode so these two casts can be replaced with:
1940/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
1941/// If no such cast is permited, the function returns 0.
1942unsigned CastInst::isEliminableCastPair(
1943  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1944  const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1945{
1946  // Define the 144 possibilities for these two cast instructions. The values
1947  // in this matrix determine what to do in a given situation and select the
1948  // case in the switch below.  The rows correspond to firstOp, the columns
1949  // correspond to secondOp.  In looking at the table below, keep in  mind
1950  // the following cast properties:
1951  //
1952  //          Size Compare       Source               Destination
1953  // Operator  Src ? Size   Type       Sign         Type       Sign
1954  // -------- ------------ -------------------   ---------------------
1955  // TRUNC         >       Integer      Any        Integral     Any
1956  // ZEXT          <       Integral   Unsigned     Integer      Any
1957  // SEXT          <       Integral    Signed      Integer      Any
1958  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
1959  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
1960  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
1961  // SITOFP       n/a      Integral    Signed      FloatPt      n/a
1962  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
1963  // FPEXT         <       FloatPt      n/a        FloatPt      n/a
1964  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
1965  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
1966  // BITCONVERT    =       FirstClass   n/a       FirstClass    n/a
1967  //
1968  // NOTE: some transforms are safe, but we consider them to be non-profitable.
1969  // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
1970  // into "fptoui double to i64", but this loses information about the range
1971  // of the produced value (we no longer know the top-part is all zeros).
1972  // Further this conversion is often much more expensive for typical hardware,
1973  // and causes issues when building libgcc.  We disallow fptosi+sext for the
1974  // same reason.
1975  const unsigned numCastOps =
1976    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
1977  static const uint8_t CastResults[numCastOps][numCastOps] = {
1978    // T        F  F  U  S  F  F  P  I  B   -+
1979    // R  Z  S  P  P  I  I  T  P  2  N  T    |
1980    // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
1981    // N  X  X  U  S  F  F  N  X  N  2  V    |
1982    // C  T  T  I  I  P  P  C  T  T  P  T   -+
1983    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
1984    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
1985    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
1986    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
1987    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
1988    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
1989    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
1990    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
1991    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
1992    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
1993    { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
1994    {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
1995  };
1996
1997  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
1998                            [secondOp-Instruction::CastOpsBegin];
1999  switch (ElimCase) {
2000    case 0:
2001      // categorically disallowed
2002      return 0;
2003    case 1:
2004      // allowed, use first cast's opcode
2005      return firstOp;
2006    case 2:
2007      // allowed, use second cast's opcode
2008      return secondOp;
2009    case 3:
2010      // no-op cast in second op implies firstOp as long as the DestTy
2011      // is integer
2012      if (DstTy->isInteger())
2013        return firstOp;
2014      return 0;
2015    case 4:
2016      // no-op cast in second op implies firstOp as long as the DestTy
2017      // is floating point
2018      if (DstTy->isFloatingPoint())
2019        return firstOp;
2020      return 0;
2021    case 5:
2022      // no-op cast in first op implies secondOp as long as the SrcTy
2023      // is an integer
2024      if (SrcTy->isInteger())
2025        return secondOp;
2026      return 0;
2027    case 6:
2028      // no-op cast in first op implies secondOp as long as the SrcTy
2029      // is a floating point
2030      if (SrcTy->isFloatingPoint())
2031        return secondOp;
2032      return 0;
2033    case 7: {
2034      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
2035      if (!IntPtrTy)
2036        return 0;
2037      unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2038      unsigned MidSize = MidTy->getScalarSizeInBits();
2039      if (MidSize >= PtrSize)
2040        return Instruction::BitCast;
2041      return 0;
2042    }
2043    case 8: {
2044      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
2045      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
2046      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
2047      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2048      unsigned DstSize = DstTy->getScalarSizeInBits();
2049      if (SrcSize == DstSize)
2050        return Instruction::BitCast;
2051      else if (SrcSize < DstSize)
2052        return firstOp;
2053      return secondOp;
2054    }
2055    case 9: // zext, sext -> zext, because sext can't sign extend after zext
2056      return Instruction::ZExt;
2057    case 10:
2058      // fpext followed by ftrunc is allowed if the bit size returned to is
2059      // the same as the original, in which case its just a bitcast
2060      if (SrcTy == DstTy)
2061        return Instruction::BitCast;
2062      return 0; // If the types are not the same we can't eliminate it.
2063    case 11:
2064      // bitcast followed by ptrtoint is allowed as long as the bitcast
2065      // is a pointer to pointer cast.
2066      if (isa<PointerType>(SrcTy) && isa<PointerType>(MidTy))
2067        return secondOp;
2068      return 0;
2069    case 12:
2070      // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
2071      if (isa<PointerType>(MidTy) && isa<PointerType>(DstTy))
2072        return firstOp;
2073      return 0;
2074    case 13: {
2075      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2076      if (!IntPtrTy)
2077        return 0;
2078      unsigned PtrSize = IntPtrTy->getScalarSizeInBits();
2079      unsigned SrcSize = SrcTy->getScalarSizeInBits();
2080      unsigned DstSize = DstTy->getScalarSizeInBits();
2081      if (SrcSize <= PtrSize && SrcSize == DstSize)
2082        return Instruction::BitCast;
2083      return 0;
2084    }
2085    case 99:
2086      // cast combination can't happen (error in input). This is for all cases
2087      // where the MidTy is not the same for the two cast instructions.
2088      assert(!"Invalid Cast Combination");
2089      return 0;
2090    default:
2091      assert(!"Error in CastResults table!!!");
2092      return 0;
2093  }
2094  return 0;
2095}
2096
2097CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2098  const Twine &Name, Instruction *InsertBefore) {
2099  // Construct and return the appropriate CastInst subclass
2100  switch (op) {
2101    case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
2102    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
2103    case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
2104    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
2105    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
2106    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
2107    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
2108    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
2109    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
2110    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2111    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2112    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
2113    default:
2114      assert(!"Invalid opcode provided");
2115  }
2116  return 0;
2117}
2118
2119CastInst *CastInst::Create(Instruction::CastOps op, Value *S, const Type *Ty,
2120  const Twine &Name, BasicBlock *InsertAtEnd) {
2121  // Construct and return the appropriate CastInst subclass
2122  switch (op) {
2123    case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
2124    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
2125    case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
2126    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
2127    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
2128    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
2129    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
2130    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
2131    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
2132    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2133    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2134    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
2135    default:
2136      assert(!"Invalid opcode provided");
2137  }
2138  return 0;
2139}
2140
2141CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2142                                        const Twine &Name,
2143                                        Instruction *InsertBefore) {
2144  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2145    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2146  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2147}
2148
2149CastInst *CastInst::CreateZExtOrBitCast(Value *S, const Type *Ty,
2150                                        const Twine &Name,
2151                                        BasicBlock *InsertAtEnd) {
2152  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2153    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2154  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2155}
2156
2157CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2158                                        const Twine &Name,
2159                                        Instruction *InsertBefore) {
2160  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2161    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2162  return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2163}
2164
2165CastInst *CastInst::CreateSExtOrBitCast(Value *S, const Type *Ty,
2166                                        const Twine &Name,
2167                                        BasicBlock *InsertAtEnd) {
2168  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2169    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2170  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2171}
2172
2173CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2174                                         const Twine &Name,
2175                                         Instruction *InsertBefore) {
2176  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2177    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2178  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2179}
2180
2181CastInst *CastInst::CreateTruncOrBitCast(Value *S, const Type *Ty,
2182                                         const Twine &Name,
2183                                         BasicBlock *InsertAtEnd) {
2184  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2185    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2186  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2187}
2188
2189CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2190                                      const Twine &Name,
2191                                      BasicBlock *InsertAtEnd) {
2192  assert(isa<PointerType>(S->getType()) && "Invalid cast");
2193  assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
2194         "Invalid cast");
2195
2196  if (Ty->isInteger())
2197    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2198  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2199}
2200
2201/// @brief Create a BitCast or a PtrToInt cast instruction
2202CastInst *CastInst::CreatePointerCast(Value *S, const Type *Ty,
2203                                      const Twine &Name,
2204                                      Instruction *InsertBefore) {
2205  assert(isa<PointerType>(S->getType()) && "Invalid cast");
2206  assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
2207         "Invalid cast");
2208
2209  if (Ty->isInteger())
2210    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2211  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2212}
2213
2214CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2215                                      bool isSigned, const Twine &Name,
2216                                      Instruction *InsertBefore) {
2217  assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
2218  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2219  unsigned DstBits = Ty->getScalarSizeInBits();
2220  Instruction::CastOps opcode =
2221    (SrcBits == DstBits ? Instruction::BitCast :
2222     (SrcBits > DstBits ? Instruction::Trunc :
2223      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2224  return Create(opcode, C, Ty, Name, InsertBefore);
2225}
2226
2227CastInst *CastInst::CreateIntegerCast(Value *C, const Type *Ty,
2228                                      bool isSigned, const Twine &Name,
2229                                      BasicBlock *InsertAtEnd) {
2230  assert(C->getType()->isIntOrIntVector() && Ty->isIntOrIntVector() &&
2231         "Invalid cast");
2232  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2233  unsigned DstBits = Ty->getScalarSizeInBits();
2234  Instruction::CastOps opcode =
2235    (SrcBits == DstBits ? Instruction::BitCast :
2236     (SrcBits > DstBits ? Instruction::Trunc :
2237      (isSigned ? Instruction::SExt : Instruction::ZExt)));
2238  return Create(opcode, C, Ty, Name, InsertAtEnd);
2239}
2240
2241CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2242                                 const Twine &Name,
2243                                 Instruction *InsertBefore) {
2244  assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
2245         "Invalid cast");
2246  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2247  unsigned DstBits = Ty->getScalarSizeInBits();
2248  Instruction::CastOps opcode =
2249    (SrcBits == DstBits ? Instruction::BitCast :
2250     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2251  return Create(opcode, C, Ty, Name, InsertBefore);
2252}
2253
2254CastInst *CastInst::CreateFPCast(Value *C, const Type *Ty,
2255                                 const Twine &Name,
2256                                 BasicBlock *InsertAtEnd) {
2257  assert(C->getType()->isFPOrFPVector() && Ty->isFPOrFPVector() &&
2258         "Invalid cast");
2259  unsigned SrcBits = C->getType()->getScalarSizeInBits();
2260  unsigned DstBits = Ty->getScalarSizeInBits();
2261  Instruction::CastOps opcode =
2262    (SrcBits == DstBits ? Instruction::BitCast :
2263     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2264  return Create(opcode, C, Ty, Name, InsertAtEnd);
2265}
2266
2267// Check whether it is valid to call getCastOpcode for these types.
2268// This routine must be kept in sync with getCastOpcode.
2269bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
2270  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2271    return false;
2272
2273  if (SrcTy == DestTy)
2274    return true;
2275
2276  // Get the bit sizes, we'll need these
2277  unsigned SrcBits = SrcTy->getScalarSizeInBits();   // 0 for ptr
2278  unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2279
2280  // Run through the possibilities ...
2281  if (DestTy->isInteger()) {                   // Casting to integral
2282    if (SrcTy->isInteger()) {                  // Casting from integral
2283        return true;
2284    } else if (SrcTy->isFloatingPoint()) {     // Casting from floating pt
2285      return true;
2286    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2287                                               // Casting from vector
2288      return DestBits == PTy->getBitWidth();
2289    } else {                                   // Casting from something else
2290      return isa<PointerType>(SrcTy);
2291    }
2292  } else if (DestTy->isFloatingPoint()) {      // Casting to floating pt
2293    if (SrcTy->isInteger()) {                  // Casting from integral
2294      return true;
2295    } else if (SrcTy->isFloatingPoint()) {     // Casting from floating pt
2296      return true;
2297    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2298                                               // Casting from vector
2299      return DestBits == PTy->getBitWidth();
2300    } else {                                   // Casting from something else
2301      return false;
2302    }
2303  } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2304                                                // Casting to vector
2305    if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2306                                                // Casting from vector
2307      return DestPTy->getBitWidth() == SrcPTy->getBitWidth();
2308    } else {                                    // Casting from something else
2309      return DestPTy->getBitWidth() == SrcBits;
2310    }
2311  } else if (isa<PointerType>(DestTy)) {        // Casting to pointer
2312    if (isa<PointerType>(SrcTy)) {              // Casting from pointer
2313      return true;
2314    } else if (SrcTy->isInteger()) {            // Casting from integral
2315      return true;
2316    } else {                                    // Casting from something else
2317      return false;
2318    }
2319  } else {                                      // Casting to something else
2320    return false;
2321  }
2322}
2323
2324// Provide a way to get a "cast" where the cast opcode is inferred from the
2325// types and size of the operand. This, basically, is a parallel of the
2326// logic in the castIsValid function below.  This axiom should hold:
2327//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2328// should not assert in castIsValid. In other words, this produces a "correct"
2329// casting opcode for the arguments passed to it.
2330// This routine must be kept in sync with isCastable.
2331Instruction::CastOps
2332CastInst::getCastOpcode(
2333  const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
2334  // Get the bit sizes, we'll need these
2335  const Type *SrcTy = Src->getType();
2336  unsigned SrcBits = SrcTy->getScalarSizeInBits();   // 0 for ptr
2337  unsigned DestBits = DestTy->getScalarSizeInBits(); // 0 for ptr
2338
2339  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2340         "Only first class types are castable!");
2341
2342  // Run through the possibilities ...
2343  if (DestTy->isInteger()) {                       // Casting to integral
2344    if (SrcTy->isInteger()) {                      // Casting from integral
2345      if (DestBits < SrcBits)
2346        return Trunc;                               // int -> smaller int
2347      else if (DestBits > SrcBits) {                // its an extension
2348        if (SrcIsSigned)
2349          return SExt;                              // signed -> SEXT
2350        else
2351          return ZExt;                              // unsigned -> ZEXT
2352      } else {
2353        return BitCast;                             // Same size, No-op cast
2354      }
2355    } else if (SrcTy->isFloatingPoint()) {          // Casting from floating pt
2356      if (DestIsSigned)
2357        return FPToSI;                              // FP -> sint
2358      else
2359        return FPToUI;                              // FP -> uint
2360    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2361      assert(DestBits == PTy->getBitWidth() &&
2362               "Casting vector to integer of different width");
2363      PTy = NULL;
2364      return BitCast;                             // Same size, no-op cast
2365    } else {
2366      assert(isa<PointerType>(SrcTy) &&
2367             "Casting from a value that is not first-class type");
2368      return PtrToInt;                              // ptr -> int
2369    }
2370  } else if (DestTy->isFloatingPoint()) {           // Casting to floating pt
2371    if (SrcTy->isInteger()) {                      // Casting from integral
2372      if (SrcIsSigned)
2373        return SIToFP;                              // sint -> FP
2374      else
2375        return UIToFP;                              // uint -> FP
2376    } else if (SrcTy->isFloatingPoint()) {          // Casting from floating pt
2377      if (DestBits < SrcBits) {
2378        return FPTrunc;                             // FP -> smaller FP
2379      } else if (DestBits > SrcBits) {
2380        return FPExt;                               // FP -> larger FP
2381      } else  {
2382        return BitCast;                             // same size, no-op cast
2383      }
2384    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2385      assert(DestBits == PTy->getBitWidth() &&
2386             "Casting vector to floating point of different width");
2387      PTy = NULL;
2388      return BitCast;                             // same size, no-op cast
2389    } else {
2390      llvm_unreachable("Casting pointer or non-first class to float");
2391    }
2392  } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2393    if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2394      assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
2395             "Casting vector to vector of different widths");
2396      SrcPTy = NULL;
2397      return BitCast;                             // vector -> vector
2398    } else if (DestPTy->getBitWidth() == SrcBits) {
2399      return BitCast;                               // float/int -> vector
2400    } else {
2401      assert(!"Illegal cast to vector (wrong type or size)");
2402    }
2403  } else if (isa<PointerType>(DestTy)) {
2404    if (isa<PointerType>(SrcTy)) {
2405      return BitCast;                               // ptr -> ptr
2406    } else if (SrcTy->isInteger()) {
2407      return IntToPtr;                              // int -> ptr
2408    } else {
2409      assert(!"Casting pointer to other than pointer or int");
2410    }
2411  } else {
2412    assert(!"Casting to type that is not first-class");
2413  }
2414
2415  // If we fall through to here we probably hit an assertion cast above
2416  // and assertions are not turned on. Anything we return is an error, so
2417  // BitCast is as good a choice as any.
2418  return BitCast;
2419}
2420
2421//===----------------------------------------------------------------------===//
2422//                    CastInst SubClass Constructors
2423//===----------------------------------------------------------------------===//
2424
2425/// Check that the construction parameters for a CastInst are correct. This
2426/// could be broken out into the separate constructors but it is useful to have
2427/// it in one place and to eliminate the redundant code for getting the sizes
2428/// of the types involved.
2429bool
2430CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
2431
2432  // Check for type sanity on the arguments
2433  const Type *SrcTy = S->getType();
2434  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType())
2435    return false;
2436
2437  // Get the size of the types in bits, we'll need this later
2438  unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2439  unsigned DstBitSize = DstTy->getScalarSizeInBits();
2440
2441  // Switch on the opcode provided
2442  switch (op) {
2443  default: return false; // This is an input error
2444  case Instruction::Trunc:
2445    return SrcTy->isIntOrIntVector() &&
2446           DstTy->isIntOrIntVector()&& SrcBitSize > DstBitSize;
2447  case Instruction::ZExt:
2448    return SrcTy->isIntOrIntVector() &&
2449           DstTy->isIntOrIntVector()&& SrcBitSize < DstBitSize;
2450  case Instruction::SExt:
2451    return SrcTy->isIntOrIntVector() &&
2452           DstTy->isIntOrIntVector()&& SrcBitSize < DstBitSize;
2453  case Instruction::FPTrunc:
2454    return SrcTy->isFPOrFPVector() &&
2455           DstTy->isFPOrFPVector() &&
2456           SrcBitSize > DstBitSize;
2457  case Instruction::FPExt:
2458    return SrcTy->isFPOrFPVector() &&
2459           DstTy->isFPOrFPVector() &&
2460           SrcBitSize < DstBitSize;
2461  case Instruction::UIToFP:
2462  case Instruction::SIToFP:
2463    if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2464      if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2465        return SVTy->getElementType()->isIntOrIntVector() &&
2466               DVTy->getElementType()->isFPOrFPVector() &&
2467               SVTy->getNumElements() == DVTy->getNumElements();
2468      }
2469    }
2470    return SrcTy->isIntOrIntVector() && DstTy->isFPOrFPVector();
2471  case Instruction::FPToUI:
2472  case Instruction::FPToSI:
2473    if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2474      if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2475        return SVTy->getElementType()->isFPOrFPVector() &&
2476               DVTy->getElementType()->isIntOrIntVector() &&
2477               SVTy->getNumElements() == DVTy->getNumElements();
2478      }
2479    }
2480    return SrcTy->isFPOrFPVector() && DstTy->isIntOrIntVector();
2481  case Instruction::PtrToInt:
2482    return isa<PointerType>(SrcTy) && DstTy->isInteger();
2483  case Instruction::IntToPtr:
2484    return SrcTy->isInteger() && isa<PointerType>(DstTy);
2485  case Instruction::BitCast:
2486    // BitCast implies a no-op cast of type only. No bits change.
2487    // However, you can't cast pointers to anything but pointers.
2488    if (isa<PointerType>(SrcTy) != isa<PointerType>(DstTy))
2489      return false;
2490
2491    // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2492    // these cases, the cast is okay if the source and destination bit widths
2493    // are identical.
2494    return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
2495  }
2496}
2497
2498TruncInst::TruncInst(
2499  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2500) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2501  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2502}
2503
2504TruncInst::TruncInst(
2505  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2506) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2507  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2508}
2509
2510ZExtInst::ZExtInst(
2511  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2512)  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2513  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2514}
2515
2516ZExtInst::ZExtInst(
2517  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2518)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2519  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2520}
2521SExtInst::SExtInst(
2522  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2523) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2524  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2525}
2526
2527SExtInst::SExtInst(
2528  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2529)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2530  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2531}
2532
2533FPTruncInst::FPTruncInst(
2534  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2535) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2536  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2537}
2538
2539FPTruncInst::FPTruncInst(
2540  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2541) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2542  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2543}
2544
2545FPExtInst::FPExtInst(
2546  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2547) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2548  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2549}
2550
2551FPExtInst::FPExtInst(
2552  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2553) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2554  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2555}
2556
2557UIToFPInst::UIToFPInst(
2558  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2559) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2560  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2561}
2562
2563UIToFPInst::UIToFPInst(
2564  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2565) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2566  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2567}
2568
2569SIToFPInst::SIToFPInst(
2570  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2571) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2572  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2573}
2574
2575SIToFPInst::SIToFPInst(
2576  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2577) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2578  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2579}
2580
2581FPToUIInst::FPToUIInst(
2582  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2583) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2584  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2585}
2586
2587FPToUIInst::FPToUIInst(
2588  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2589) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2590  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2591}
2592
2593FPToSIInst::FPToSIInst(
2594  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2595) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2596  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2597}
2598
2599FPToSIInst::FPToSIInst(
2600  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2601) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2602  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2603}
2604
2605PtrToIntInst::PtrToIntInst(
2606  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2607) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2608  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2609}
2610
2611PtrToIntInst::PtrToIntInst(
2612  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2613) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2614  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2615}
2616
2617IntToPtrInst::IntToPtrInst(
2618  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2619) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2620  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2621}
2622
2623IntToPtrInst::IntToPtrInst(
2624  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2625) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2626  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2627}
2628
2629BitCastInst::BitCastInst(
2630  Value *S, const Type *Ty, const Twine &Name, Instruction *InsertBefore
2631) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2632  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2633}
2634
2635BitCastInst::BitCastInst(
2636  Value *S, const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
2637) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2638  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2639}
2640
2641//===----------------------------------------------------------------------===//
2642//                               CmpInst Classes
2643//===----------------------------------------------------------------------===//
2644
2645CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2646                 Value *LHS, Value *RHS, const Twine &Name,
2647                 Instruction *InsertBefore)
2648  : Instruction(ty, op,
2649                OperandTraits<CmpInst>::op_begin(this),
2650                OperandTraits<CmpInst>::operands(this),
2651                InsertBefore) {
2652    Op<0>() = LHS;
2653    Op<1>() = RHS;
2654  SubclassData = predicate;
2655  setName(Name);
2656}
2657
2658CmpInst::CmpInst(const Type *ty, OtherOps op, unsigned short predicate,
2659                 Value *LHS, Value *RHS, const Twine &Name,
2660                 BasicBlock *InsertAtEnd)
2661  : Instruction(ty, op,
2662                OperandTraits<CmpInst>::op_begin(this),
2663                OperandTraits<CmpInst>::operands(this),
2664                InsertAtEnd) {
2665  Op<0>() = LHS;
2666  Op<1>() = RHS;
2667  SubclassData = predicate;
2668  setName(Name);
2669}
2670
2671CmpInst *
2672CmpInst::Create(OtherOps Op, unsigned short predicate,
2673                Value *S1, Value *S2,
2674                const Twine &Name, Instruction *InsertBefore) {
2675  if (Op == Instruction::ICmp) {
2676    if (InsertBefore)
2677      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
2678                          S1, S2, Name);
2679    else
2680      return new ICmpInst(CmpInst::Predicate(predicate),
2681                          S1, S2, Name);
2682  }
2683
2684  if (InsertBefore)
2685    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
2686                        S1, S2, Name);
2687  else
2688    return new FCmpInst(CmpInst::Predicate(predicate),
2689                        S1, S2, Name);
2690}
2691
2692CmpInst *
2693CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2694                const Twine &Name, BasicBlock *InsertAtEnd) {
2695  if (Op == Instruction::ICmp) {
2696    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2697                        S1, S2, Name);
2698  }
2699  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
2700                      S1, S2, Name);
2701}
2702
2703void CmpInst::swapOperands() {
2704  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2705    IC->swapOperands();
2706  else
2707    cast<FCmpInst>(this)->swapOperands();
2708}
2709
2710bool CmpInst::isCommutative() {
2711  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2712    return IC->isCommutative();
2713  return cast<FCmpInst>(this)->isCommutative();
2714}
2715
2716bool CmpInst::isEquality() {
2717  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2718    return IC->isEquality();
2719  return cast<FCmpInst>(this)->isEquality();
2720}
2721
2722
2723CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
2724  switch (pred) {
2725    default: assert(!"Unknown cmp predicate!");
2726    case ICMP_EQ: return ICMP_NE;
2727    case ICMP_NE: return ICMP_EQ;
2728    case ICMP_UGT: return ICMP_ULE;
2729    case ICMP_ULT: return ICMP_UGE;
2730    case ICMP_UGE: return ICMP_ULT;
2731    case ICMP_ULE: return ICMP_UGT;
2732    case ICMP_SGT: return ICMP_SLE;
2733    case ICMP_SLT: return ICMP_SGE;
2734    case ICMP_SGE: return ICMP_SLT;
2735    case ICMP_SLE: return ICMP_SGT;
2736
2737    case FCMP_OEQ: return FCMP_UNE;
2738    case FCMP_ONE: return FCMP_UEQ;
2739    case FCMP_OGT: return FCMP_ULE;
2740    case FCMP_OLT: return FCMP_UGE;
2741    case FCMP_OGE: return FCMP_ULT;
2742    case FCMP_OLE: return FCMP_UGT;
2743    case FCMP_UEQ: return FCMP_ONE;
2744    case FCMP_UNE: return FCMP_OEQ;
2745    case FCMP_UGT: return FCMP_OLE;
2746    case FCMP_ULT: return FCMP_OGE;
2747    case FCMP_UGE: return FCMP_OLT;
2748    case FCMP_ULE: return FCMP_OGT;
2749    case FCMP_ORD: return FCMP_UNO;
2750    case FCMP_UNO: return FCMP_ORD;
2751    case FCMP_TRUE: return FCMP_FALSE;
2752    case FCMP_FALSE: return FCMP_TRUE;
2753  }
2754}
2755
2756ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2757  switch (pred) {
2758    default: assert(! "Unknown icmp predicate!");
2759    case ICMP_EQ: case ICMP_NE:
2760    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2761       return pred;
2762    case ICMP_UGT: return ICMP_SGT;
2763    case ICMP_ULT: return ICMP_SLT;
2764    case ICMP_UGE: return ICMP_SGE;
2765    case ICMP_ULE: return ICMP_SLE;
2766  }
2767}
2768
2769ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2770  switch (pred) {
2771    default: assert(! "Unknown icmp predicate!");
2772    case ICMP_EQ: case ICMP_NE:
2773    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2774       return pred;
2775    case ICMP_SGT: return ICMP_UGT;
2776    case ICMP_SLT: return ICMP_ULT;
2777    case ICMP_SGE: return ICMP_UGE;
2778    case ICMP_SLE: return ICMP_ULE;
2779  }
2780}
2781
2782bool ICmpInst::isSignedPredicate(Predicate pred) {
2783  switch (pred) {
2784    default: assert(! "Unknown icmp predicate!");
2785    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2786      return true;
2787    case ICMP_EQ:  case ICMP_NE: case ICMP_UGT: case ICMP_ULT:
2788    case ICMP_UGE: case ICMP_ULE:
2789      return false;
2790  }
2791}
2792
2793/// Initialize a set of values that all satisfy the condition with C.
2794///
2795ConstantRange
2796ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2797  APInt Lower(C);
2798  APInt Upper(C);
2799  uint32_t BitWidth = C.getBitWidth();
2800  switch (pred) {
2801  default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
2802  case ICmpInst::ICMP_EQ: Upper++; break;
2803  case ICmpInst::ICMP_NE: Lower++; break;
2804  case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); break;
2805  case ICmpInst::ICMP_SLT: Lower = APInt::getSignedMinValue(BitWidth); break;
2806  case ICmpInst::ICMP_UGT:
2807    Lower++; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2808    break;
2809  case ICmpInst::ICMP_SGT:
2810    Lower++; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2811    break;
2812  case ICmpInst::ICMP_ULE:
2813    Lower = APInt::getMinValue(BitWidth); Upper++;
2814    break;
2815  case ICmpInst::ICMP_SLE:
2816    Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2817    break;
2818  case ICmpInst::ICMP_UGE:
2819    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2820    break;
2821  case ICmpInst::ICMP_SGE:
2822    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2823    break;
2824  }
2825  return ConstantRange(Lower, Upper);
2826}
2827
2828CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
2829  switch (pred) {
2830    default: assert(!"Unknown cmp predicate!");
2831    case ICMP_EQ: case ICMP_NE:
2832      return pred;
2833    case ICMP_SGT: return ICMP_SLT;
2834    case ICMP_SLT: return ICMP_SGT;
2835    case ICMP_SGE: return ICMP_SLE;
2836    case ICMP_SLE: return ICMP_SGE;
2837    case ICMP_UGT: return ICMP_ULT;
2838    case ICMP_ULT: return ICMP_UGT;
2839    case ICMP_UGE: return ICMP_ULE;
2840    case ICMP_ULE: return ICMP_UGE;
2841
2842    case FCMP_FALSE: case FCMP_TRUE:
2843    case FCMP_OEQ: case FCMP_ONE:
2844    case FCMP_UEQ: case FCMP_UNE:
2845    case FCMP_ORD: case FCMP_UNO:
2846      return pred;
2847    case FCMP_OGT: return FCMP_OLT;
2848    case FCMP_OLT: return FCMP_OGT;
2849    case FCMP_OGE: return FCMP_OLE;
2850    case FCMP_OLE: return FCMP_OGE;
2851    case FCMP_UGT: return FCMP_ULT;
2852    case FCMP_ULT: return FCMP_UGT;
2853    case FCMP_UGE: return FCMP_ULE;
2854    case FCMP_ULE: return FCMP_UGE;
2855  }
2856}
2857
2858bool CmpInst::isUnsigned(unsigned short predicate) {
2859  switch (predicate) {
2860    default: return false;
2861    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
2862    case ICmpInst::ICMP_UGE: return true;
2863  }
2864}
2865
2866bool CmpInst::isSigned(unsigned short predicate){
2867  switch (predicate) {
2868    default: return false;
2869    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
2870    case ICmpInst::ICMP_SGE: return true;
2871  }
2872}
2873
2874bool CmpInst::isOrdered(unsigned short predicate) {
2875  switch (predicate) {
2876    default: return false;
2877    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
2878    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
2879    case FCmpInst::FCMP_ORD: return true;
2880  }
2881}
2882
2883bool CmpInst::isUnordered(unsigned short predicate) {
2884  switch (predicate) {
2885    default: return false;
2886    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
2887    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
2888    case FCmpInst::FCMP_UNO: return true;
2889  }
2890}
2891
2892//===----------------------------------------------------------------------===//
2893//                        SwitchInst Implementation
2894//===----------------------------------------------------------------------===//
2895
2896void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
2897  assert(Value && Default);
2898  ReservedSpace = 2+NumCases*2;
2899  NumOperands = 2;
2900  OperandList = allocHungoffUses(ReservedSpace);
2901
2902  OperandList[0] = Value;
2903  OperandList[1] = Default;
2904}
2905
2906/// SwitchInst ctor - Create a new switch instruction, specifying a value to
2907/// switch on and a default destination.  The number of additional cases can
2908/// be specified here to make memory allocation more efficient.  This
2909/// constructor can also autoinsert before another instruction.
2910SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2911                       Instruction *InsertBefore)
2912  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2913                   0, 0, InsertBefore) {
2914  init(Value, Default, NumCases);
2915}
2916
2917/// SwitchInst ctor - Create a new switch instruction, specifying a value to
2918/// switch on and a default destination.  The number of additional cases can
2919/// be specified here to make memory allocation more efficient.  This
2920/// constructor also autoinserts at the end of the specified BasicBlock.
2921SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2922                       BasicBlock *InsertAtEnd)
2923  : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
2924                   0, 0, InsertAtEnd) {
2925  init(Value, Default, NumCases);
2926}
2927
2928SwitchInst::SwitchInst(const SwitchInst &SI)
2929  : TerminatorInst(Type::getVoidTy(SI.getContext()), Instruction::Switch,
2930                   allocHungoffUses(SI.getNumOperands()), SI.getNumOperands()) {
2931  Use *OL = OperandList, *InOL = SI.OperandList;
2932  for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
2933    OL[i] = InOL[i];
2934    OL[i+1] = InOL[i+1];
2935  }
2936  SubclassOptionalData = SI.SubclassOptionalData;
2937}
2938
2939SwitchInst::~SwitchInst() {
2940  dropHungoffUses(OperandList);
2941}
2942
2943
2944/// addCase - Add an entry to the switch instruction...
2945///
2946void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
2947  unsigned OpNo = NumOperands;
2948  if (OpNo+2 > ReservedSpace)
2949    resizeOperands(0);  // Get more space!
2950  // Initialize some new operands.
2951  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
2952  NumOperands = OpNo+2;
2953  OperandList[OpNo] = OnVal;
2954  OperandList[OpNo+1] = Dest;
2955}
2956
2957/// removeCase - This method removes the specified successor from the switch
2958/// instruction.  Note that this cannot be used to remove the default
2959/// destination (successor #0).
2960///
2961void SwitchInst::removeCase(unsigned idx) {
2962  assert(idx != 0 && "Cannot remove the default case!");
2963  assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
2964
2965  unsigned NumOps = getNumOperands();
2966  Use *OL = OperandList;
2967
2968  // Move everything after this operand down.
2969  //
2970  // FIXME: we could just swap with the end of the list, then erase.  However,
2971  // client might not expect this to happen.  The code as it is thrashes the
2972  // use/def lists, which is kinda lame.
2973  for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
2974    OL[i-2] = OL[i];
2975    OL[i-2+1] = OL[i+1];
2976  }
2977
2978  // Nuke the last value.
2979  OL[NumOps-2].set(0);
2980  OL[NumOps-2+1].set(0);
2981  NumOperands = NumOps-2;
2982}
2983
2984/// resizeOperands - resize operands - This adjusts the length of the operands
2985/// list according to the following behavior:
2986///   1. If NumOps == 0, grow the operand list in response to a push_back style
2987///      of operation.  This grows the number of ops by 3 times.
2988///   2. If NumOps > NumOperands, reserve space for NumOps operands.
2989///   3. If NumOps == NumOperands, trim the reserved space.
2990///
2991void SwitchInst::resizeOperands(unsigned NumOps) {
2992  unsigned e = getNumOperands();
2993  if (NumOps == 0) {
2994    NumOps = e*3;
2995  } else if (NumOps*2 > NumOperands) {
2996    // No resize needed.
2997    if (ReservedSpace >= NumOps) return;
2998  } else if (NumOps == NumOperands) {
2999    if (ReservedSpace == NumOps) return;
3000  } else {
3001    return;
3002  }
3003
3004  ReservedSpace = NumOps;
3005  Use *NewOps = allocHungoffUses(NumOps);
3006  Use *OldOps = OperandList;
3007  for (unsigned i = 0; i != e; ++i) {
3008      NewOps[i] = OldOps[i];
3009  }
3010  OperandList = NewOps;
3011  if (OldOps) Use::zap(OldOps, OldOps + e, true);
3012}
3013
3014
3015BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3016  return getSuccessor(idx);
3017}
3018unsigned SwitchInst::getNumSuccessorsV() const {
3019  return getNumSuccessors();
3020}
3021void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3022  setSuccessor(idx, B);
3023}
3024
3025// Define these methods here so vtables don't get emitted into every translation
3026// unit that uses these classes.
3027
3028GetElementPtrInst *GetElementPtrInst::clone() const {
3029  GetElementPtrInst *New = new(getNumOperands()) GetElementPtrInst(*this);
3030  New->SubclassOptionalData = SubclassOptionalData;
3031  if (hasMetadata()) {
3032    LLVMContext &Context = getContext();
3033    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3034  }
3035  return New;
3036}
3037
3038BinaryOperator *BinaryOperator::clone() const {
3039  BinaryOperator *New = Create(getOpcode(), Op<0>(), Op<1>());
3040  New->SubclassOptionalData = SubclassOptionalData;
3041  if (hasMetadata()) {
3042    LLVMContext &Context = getContext();
3043    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3044  }
3045  return New;
3046}
3047
3048FCmpInst* FCmpInst::clone() const {
3049  FCmpInst *New = new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3050  New->SubclassOptionalData = SubclassOptionalData;
3051  if (hasMetadata()) {
3052    LLVMContext &Context = getContext();
3053    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3054  }
3055  return New;
3056}
3057ICmpInst* ICmpInst::clone() const {
3058  ICmpInst *New = new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3059  New->SubclassOptionalData = SubclassOptionalData;
3060  if (hasMetadata()) {
3061    LLVMContext &Context = getContext();
3062    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3063  }
3064  return New;
3065}
3066
3067ExtractValueInst *ExtractValueInst::clone() const {
3068  ExtractValueInst *New = new ExtractValueInst(*this);
3069  New->SubclassOptionalData = SubclassOptionalData;
3070  if (hasMetadata()) {
3071    LLVMContext &Context = getContext();
3072    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3073  }
3074  return New;
3075}
3076InsertValueInst *InsertValueInst::clone() const {
3077  InsertValueInst *New = new InsertValueInst(*this);
3078  New->SubclassOptionalData = SubclassOptionalData;
3079  if (hasMetadata()) {
3080    LLVMContext &Context = getContext();
3081    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3082  }
3083  return New;
3084}
3085
3086AllocaInst *AllocaInst::clone() const {
3087  AllocaInst *New = new AllocaInst(getAllocatedType(),
3088                                   (Value*)getOperand(0),
3089                                   getAlignment());
3090  New->SubclassOptionalData = SubclassOptionalData;
3091  if (hasMetadata()) {
3092    LLVMContext &Context = getContext();
3093    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3094  }
3095  return New;
3096}
3097
3098FreeInst *FreeInst::clone() const {
3099  FreeInst *New = new FreeInst(getOperand(0));
3100  New->SubclassOptionalData = SubclassOptionalData;
3101  if (hasMetadata()) {
3102    LLVMContext &Context = getContext();
3103    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3104  }
3105  return New;
3106}
3107
3108LoadInst *LoadInst::clone() const {
3109  LoadInst *New = new LoadInst(getOperand(0),
3110                               Twine(), isVolatile(),
3111                               getAlignment());
3112  New->SubclassOptionalData = SubclassOptionalData;
3113  if (hasMetadata()) {
3114    LLVMContext &Context = getContext();
3115    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3116  }
3117  return New;
3118}
3119
3120StoreInst *StoreInst::clone() const {
3121  StoreInst *New = new StoreInst(getOperand(0), getOperand(1),
3122                                 isVolatile(), getAlignment());
3123  New->SubclassOptionalData = SubclassOptionalData;
3124  if (hasMetadata()) {
3125    LLVMContext &Context = getContext();
3126    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3127  }
3128  return New;
3129}
3130
3131TruncInst *TruncInst::clone() const {
3132  TruncInst *New = new TruncInst(getOperand(0), getType());
3133  New->SubclassOptionalData = SubclassOptionalData;
3134  if (hasMetadata()) {
3135    LLVMContext &Context = getContext();
3136    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3137  }
3138  return New;
3139}
3140
3141ZExtInst *ZExtInst::clone() const {
3142  ZExtInst *New = new ZExtInst(getOperand(0), getType());
3143  New->SubclassOptionalData = SubclassOptionalData;
3144  if (hasMetadata()) {
3145    LLVMContext &Context = getContext();
3146    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3147  }
3148  return New;
3149}
3150
3151SExtInst *SExtInst::clone() const {
3152  SExtInst *New = new SExtInst(getOperand(0), getType());
3153  New->SubclassOptionalData = SubclassOptionalData;
3154  if (hasMetadata()) {
3155    LLVMContext &Context = getContext();
3156    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3157  }
3158  return New;
3159}
3160
3161FPTruncInst *FPTruncInst::clone() const {
3162  FPTruncInst *New = new FPTruncInst(getOperand(0), getType());
3163  New->SubclassOptionalData = SubclassOptionalData;
3164  if (hasMetadata()) {
3165    LLVMContext &Context = getContext();
3166    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3167  }
3168  return New;
3169}
3170
3171FPExtInst *FPExtInst::clone() const {
3172  FPExtInst *New = new FPExtInst(getOperand(0), getType());
3173  New->SubclassOptionalData = SubclassOptionalData;
3174  if (hasMetadata()) {
3175    LLVMContext &Context = getContext();
3176    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3177  }
3178  return New;
3179}
3180
3181UIToFPInst *UIToFPInst::clone() const {
3182  UIToFPInst *New = new UIToFPInst(getOperand(0), getType());
3183  New->SubclassOptionalData = SubclassOptionalData;
3184  if (hasMetadata()) {
3185    LLVMContext &Context = getContext();
3186    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3187  }
3188  return New;
3189}
3190
3191SIToFPInst *SIToFPInst::clone() const {
3192  SIToFPInst *New = new SIToFPInst(getOperand(0), getType());
3193  New->SubclassOptionalData = SubclassOptionalData;
3194  if (hasMetadata()) {
3195    LLVMContext &Context = getContext();
3196    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3197  }
3198  return New;
3199}
3200
3201FPToUIInst *FPToUIInst::clone() const {
3202  FPToUIInst *New = new FPToUIInst(getOperand(0), getType());
3203  New->SubclassOptionalData = SubclassOptionalData;
3204  if (hasMetadata()) {
3205    LLVMContext &Context = getContext();
3206    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3207  }
3208  return New;
3209}
3210
3211FPToSIInst *FPToSIInst::clone() const {
3212  FPToSIInst *New = new FPToSIInst(getOperand(0), getType());
3213  New->SubclassOptionalData = SubclassOptionalData;
3214  if (hasMetadata()) {
3215    LLVMContext &Context = getContext();
3216    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3217  }
3218  return New;
3219}
3220
3221PtrToIntInst *PtrToIntInst::clone() const {
3222  PtrToIntInst *New = new PtrToIntInst(getOperand(0), getType());
3223  New->SubclassOptionalData = SubclassOptionalData;
3224  if (hasMetadata()) {
3225    LLVMContext &Context = getContext();
3226    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3227  }
3228  return New;
3229}
3230
3231IntToPtrInst *IntToPtrInst::clone() const {
3232  IntToPtrInst *New = new IntToPtrInst(getOperand(0), getType());
3233  New->SubclassOptionalData = SubclassOptionalData;
3234  if (hasMetadata()) {
3235    LLVMContext &Context = getContext();
3236    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3237  }
3238  return New;
3239}
3240
3241BitCastInst *BitCastInst::clone() const {
3242  BitCastInst *New = new BitCastInst(getOperand(0), getType());
3243  New->SubclassOptionalData = SubclassOptionalData;
3244  if (hasMetadata()) {
3245    LLVMContext &Context = getContext();
3246    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3247  }
3248  return New;
3249}
3250
3251CallInst *CallInst::clone() const {
3252  CallInst *New = new(getNumOperands()) CallInst(*this);
3253  New->SubclassOptionalData = SubclassOptionalData;
3254  if (hasMetadata()) {
3255    LLVMContext &Context = getContext();
3256    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3257  }
3258  return New;
3259}
3260
3261SelectInst *SelectInst::clone() const {
3262  SelectInst *New = SelectInst::Create(getOperand(0),
3263                                       getOperand(1),
3264                                       getOperand(2));
3265  New->SubclassOptionalData = SubclassOptionalData;
3266  if (hasMetadata()) {
3267    LLVMContext &Context = getContext();
3268    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3269  }
3270  return New;
3271}
3272
3273VAArgInst *VAArgInst::clone() const {
3274  VAArgInst *New = new VAArgInst(getOperand(0), getType());
3275  New->SubclassOptionalData = SubclassOptionalData;
3276  if (hasMetadata()) {
3277    LLVMContext &Context = getContext();
3278    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3279  }
3280  return New;
3281}
3282
3283ExtractElementInst *ExtractElementInst::clone() const {
3284  ExtractElementInst *New = ExtractElementInst::Create(getOperand(0),
3285                                                       getOperand(1));
3286  New->SubclassOptionalData = SubclassOptionalData;
3287  if (hasMetadata()) {
3288    LLVMContext &Context = getContext();
3289    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3290  }
3291  return New;
3292}
3293
3294InsertElementInst *InsertElementInst::clone() const {
3295  InsertElementInst *New = InsertElementInst::Create(getOperand(0),
3296                                                     getOperand(1),
3297                                                     getOperand(2));
3298  New->SubclassOptionalData = SubclassOptionalData;
3299  if (hasMetadata()) {
3300    LLVMContext &Context = getContext();
3301    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3302  }
3303  return New;
3304}
3305
3306ShuffleVectorInst *ShuffleVectorInst::clone() const {
3307  ShuffleVectorInst *New = new ShuffleVectorInst(getOperand(0),
3308                                                 getOperand(1),
3309                                                 getOperand(2));
3310  New->SubclassOptionalData = SubclassOptionalData;
3311  if (hasMetadata()) {
3312    LLVMContext &Context = getContext();
3313    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3314  }
3315  return New;
3316}
3317
3318PHINode *PHINode::clone() const {
3319  PHINode *New = new PHINode(*this);
3320  New->SubclassOptionalData = SubclassOptionalData;
3321  if (hasMetadata()) {
3322    LLVMContext &Context = getContext();
3323    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3324  }
3325  return New;
3326}
3327
3328ReturnInst *ReturnInst::clone() const {
3329  ReturnInst *New = new(getNumOperands()) ReturnInst(*this);
3330  New->SubclassOptionalData = SubclassOptionalData;
3331  if (hasMetadata()) {
3332    LLVMContext &Context = getContext();
3333    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3334  }
3335  return New;
3336}
3337
3338BranchInst *BranchInst::clone() const {
3339  unsigned Ops(getNumOperands());
3340  BranchInst *New = new(Ops, Ops == 1) BranchInst(*this);
3341  New->SubclassOptionalData = SubclassOptionalData;
3342  if (hasMetadata()) {
3343    LLVMContext &Context = getContext();
3344    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3345  }
3346  return New;
3347}
3348
3349SwitchInst *SwitchInst::clone() const {
3350  SwitchInst *New = new SwitchInst(*this);
3351  New->SubclassOptionalData = SubclassOptionalData;
3352  if (hasMetadata()) {
3353    LLVMContext &Context = getContext();
3354    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3355  }
3356  return New;
3357}
3358
3359InvokeInst *InvokeInst::clone() const {
3360  InvokeInst *New = new(getNumOperands()) InvokeInst(*this);
3361  New->SubclassOptionalData = SubclassOptionalData;
3362  if (hasMetadata()) {
3363    LLVMContext &Context = getContext();
3364    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3365  }
3366  return New;
3367}
3368
3369UnwindInst *UnwindInst::clone() const {
3370  LLVMContext &Context = getContext();
3371  UnwindInst *New = new UnwindInst(Context);
3372  New->SubclassOptionalData = SubclassOptionalData;
3373  if (hasMetadata())
3374    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3375  return New;
3376}
3377
3378UnreachableInst *UnreachableInst::clone() const {
3379  LLVMContext &Context = getContext();
3380  UnreachableInst *New = new UnreachableInst(Context);
3381  New->SubclassOptionalData = SubclassOptionalData;
3382  if (hasMetadata())
3383    Context.pImpl->TheMetadata.ValueIsCloned(this, New);
3384  return New;
3385}
3386