Instructions.cpp revision dd4d45337b80ce73926e7a9ffc3b668da6d008f0
1//===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements all of the non-inline methods for the LLVM instruction
11// classes.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/BasicBlock.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/Instructions.h"
20#include "llvm/ParameterAttributes.h"
21#include "llvm/Support/CallSite.h"
22#include "llvm/Support/ConstantRange.h"
23#include "llvm/Support/MathExtras.h"
24using namespace llvm;
25
26//===----------------------------------------------------------------------===//
27//                            CallSite Class
28//===----------------------------------------------------------------------===//
29
30CallSite::CallSite(Instruction *C) {
31  assert((isa<CallInst>(C) || isa<InvokeInst>(C)) && "Not a call!");
32  I = C;
33}
34unsigned CallSite::getCallingConv() const {
35  if (CallInst *CI = dyn_cast<CallInst>(I))
36    return CI->getCallingConv();
37  else
38    return cast<InvokeInst>(I)->getCallingConv();
39}
40void CallSite::setCallingConv(unsigned CC) {
41  if (CallInst *CI = dyn_cast<CallInst>(I))
42    CI->setCallingConv(CC);
43  else
44    cast<InvokeInst>(I)->setCallingConv(CC);
45}
46const ParamAttrsList* CallSite::getParamAttrs() const {
47  if (CallInst *CI = dyn_cast<CallInst>(I))
48    return CI->getParamAttrs();
49  else
50    return cast<InvokeInst>(I)->getParamAttrs();
51}
52void CallSite::setParamAttrs(const ParamAttrsList *PAL) {
53  if (CallInst *CI = dyn_cast<CallInst>(I))
54    CI->setParamAttrs(PAL);
55  else
56    cast<InvokeInst>(I)->setParamAttrs(PAL);
57}
58bool CallSite::paramHasAttr(uint16_t i, ParameterAttributes attr) const {
59  if (CallInst *CI = dyn_cast<CallInst>(I))
60    return CI->paramHasAttr(i, attr);
61  else
62    return cast<InvokeInst>(I)->paramHasAttr(i, attr);
63}
64bool CallSite::doesNotAccessMemory() const {
65  if (CallInst *CI = dyn_cast<CallInst>(I))
66    return CI->doesNotAccessMemory();
67  else
68    return cast<InvokeInst>(I)->doesNotAccessMemory();
69}
70bool CallSite::onlyReadsMemory() const {
71  if (CallInst *CI = dyn_cast<CallInst>(I))
72    return CI->onlyReadsMemory();
73  else
74    return cast<InvokeInst>(I)->onlyReadsMemory();
75}
76bool CallSite::doesNotThrow() const {
77  if (CallInst *CI = dyn_cast<CallInst>(I))
78    return CI->doesNotThrow();
79  else
80    return cast<InvokeInst>(I)->doesNotThrow();
81}
82void CallSite::setDoesNotThrow(bool doesNotThrow) {
83  if (CallInst *CI = dyn_cast<CallInst>(I))
84    CI->setDoesNotThrow(doesNotThrow);
85  else
86    cast<InvokeInst>(I)->setDoesNotThrow(doesNotThrow);
87}
88
89//===----------------------------------------------------------------------===//
90//                            TerminatorInst Class
91//===----------------------------------------------------------------------===//
92
93// Out of line virtual method, so the vtable, etc has a home.
94TerminatorInst::~TerminatorInst() {
95}
96
97// Out of line virtual method, so the vtable, etc has a home.
98UnaryInstruction::~UnaryInstruction() {
99}
100
101
102//===----------------------------------------------------------------------===//
103//                               PHINode Class
104//===----------------------------------------------------------------------===//
105
106PHINode::PHINode(const PHINode &PN)
107  : Instruction(PN.getType(), Instruction::PHI,
108                new Use[PN.getNumOperands()], PN.getNumOperands()),
109    ReservedSpace(PN.getNumOperands()) {
110  Use *OL = OperandList;
111  for (unsigned i = 0, e = PN.getNumOperands(); i != e; i+=2) {
112    OL[i].init(PN.getOperand(i), this);
113    OL[i+1].init(PN.getOperand(i+1), this);
114  }
115}
116
117PHINode::~PHINode() {
118  delete [] OperandList;
119}
120
121// removeIncomingValue - Remove an incoming value.  This is useful if a
122// predecessor basic block is deleted.
123Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
124  unsigned NumOps = getNumOperands();
125  Use *OL = OperandList;
126  assert(Idx*2 < NumOps && "BB not in PHI node!");
127  Value *Removed = OL[Idx*2];
128
129  // Move everything after this operand down.
130  //
131  // FIXME: we could just swap with the end of the list, then erase.  However,
132  // client might not expect this to happen.  The code as it is thrashes the
133  // use/def lists, which is kinda lame.
134  for (unsigned i = (Idx+1)*2; i != NumOps; i += 2) {
135    OL[i-2] = OL[i];
136    OL[i-2+1] = OL[i+1];
137  }
138
139  // Nuke the last value.
140  OL[NumOps-2].set(0);
141  OL[NumOps-2+1].set(0);
142  NumOperands = NumOps-2;
143
144  // If the PHI node is dead, because it has zero entries, nuke it now.
145  if (NumOps == 2 && DeletePHIIfEmpty) {
146    // If anyone is using this PHI, make them use a dummy value instead...
147    replaceAllUsesWith(UndefValue::get(getType()));
148    eraseFromParent();
149  }
150  return Removed;
151}
152
153/// resizeOperands - resize operands - This adjusts the length of the operands
154/// list according to the following behavior:
155///   1. If NumOps == 0, grow the operand list in response to a push_back style
156///      of operation.  This grows the number of ops by 1.5 times.
157///   2. If NumOps > NumOperands, reserve space for NumOps operands.
158///   3. If NumOps == NumOperands, trim the reserved space.
159///
160void PHINode::resizeOperands(unsigned NumOps) {
161  if (NumOps == 0) {
162    NumOps = (getNumOperands())*3/2;
163    if (NumOps < 4) NumOps = 4;      // 4 op PHI nodes are VERY common.
164  } else if (NumOps*2 > NumOperands) {
165    // No resize needed.
166    if (ReservedSpace >= NumOps) return;
167  } else if (NumOps == NumOperands) {
168    if (ReservedSpace == NumOps) return;
169  } else {
170    return;
171  }
172
173  ReservedSpace = NumOps;
174  Use *NewOps = new Use[NumOps];
175  Use *OldOps = OperandList;
176  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
177      NewOps[i].init(OldOps[i], this);
178      OldOps[i].set(0);
179  }
180  delete [] OldOps;
181  OperandList = NewOps;
182}
183
184/// hasConstantValue - If the specified PHI node always merges together the same
185/// value, return the value, otherwise return null.
186///
187Value *PHINode::hasConstantValue(bool AllowNonDominatingInstruction) const {
188  // If the PHI node only has one incoming value, eliminate the PHI node...
189  if (getNumIncomingValues() == 1) {
190    if (getIncomingValue(0) != this)   // not  X = phi X
191      return getIncomingValue(0);
192    else
193      return UndefValue::get(getType());  // Self cycle is dead.
194  }
195
196  // Otherwise if all of the incoming values are the same for the PHI, replace
197  // the PHI node with the incoming value.
198  //
199  Value *InVal = 0;
200  bool HasUndefInput = false;
201  for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i)
202    if (isa<UndefValue>(getIncomingValue(i))) {
203      HasUndefInput = true;
204    } else if (getIncomingValue(i) != this) { // Not the PHI node itself...
205      if (InVal && getIncomingValue(i) != InVal)
206        return 0;  // Not the same, bail out.
207      else
208        InVal = getIncomingValue(i);
209    }
210
211  // The only case that could cause InVal to be null is if we have a PHI node
212  // that only has entries for itself.  In this case, there is no entry into the
213  // loop, so kill the PHI.
214  //
215  if (InVal == 0) InVal = UndefValue::get(getType());
216
217  // If we have a PHI node like phi(X, undef, X), where X is defined by some
218  // instruction, we cannot always return X as the result of the PHI node.  Only
219  // do this if X is not an instruction (thus it must dominate the PHI block),
220  // or if the client is prepared to deal with this possibility.
221  if (HasUndefInput && !AllowNonDominatingInstruction)
222    if (Instruction *IV = dyn_cast<Instruction>(InVal))
223      // If it's in the entry block, it dominates everything.
224      if (IV->getParent() != &IV->getParent()->getParent()->getEntryBlock() ||
225          isa<InvokeInst>(IV))
226        return 0;   // Cannot guarantee that InVal dominates this PHINode.
227
228  // All of the incoming values are the same, return the value now.
229  return InVal;
230}
231
232
233//===----------------------------------------------------------------------===//
234//                        CallInst Implementation
235//===----------------------------------------------------------------------===//
236
237CallInst::~CallInst() {
238  delete [] OperandList;
239  if (ParamAttrs)
240    ParamAttrs->dropRef();
241}
242
243void CallInst::init(Value *Func, Value* const *Params, unsigned NumParams) {
244  ParamAttrs = 0;
245  NumOperands = NumParams+1;
246  Use *OL = OperandList = new Use[NumParams+1];
247  OL[0].init(Func, this);
248
249  const FunctionType *FTy =
250    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
251  FTy = FTy;  // silence warning.
252
253  assert((NumParams == FTy->getNumParams() ||
254          (FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
255         "Calling a function with bad signature!");
256  for (unsigned i = 0; i != NumParams; ++i) {
257    assert((i >= FTy->getNumParams() ||
258            FTy->getParamType(i) == Params[i]->getType()) &&
259           "Calling a function with a bad signature!");
260    OL[i+1].init(Params[i], this);
261  }
262}
263
264void CallInst::init(Value *Func, Value *Actual1, Value *Actual2) {
265  ParamAttrs = 0;
266  NumOperands = 3;
267  Use *OL = OperandList = new Use[3];
268  OL[0].init(Func, this);
269  OL[1].init(Actual1, this);
270  OL[2].init(Actual2, this);
271
272  const FunctionType *FTy =
273    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
274  FTy = FTy;  // silence warning.
275
276  assert((FTy->getNumParams() == 2 ||
277          (FTy->isVarArg() && FTy->getNumParams() < 2)) &&
278         "Calling a function with bad signature");
279  assert((0 >= FTy->getNumParams() ||
280          FTy->getParamType(0) == Actual1->getType()) &&
281         "Calling a function with a bad signature!");
282  assert((1 >= FTy->getNumParams() ||
283          FTy->getParamType(1) == Actual2->getType()) &&
284         "Calling a function with a bad signature!");
285}
286
287void CallInst::init(Value *Func, Value *Actual) {
288  ParamAttrs = 0;
289  NumOperands = 2;
290  Use *OL = OperandList = new Use[2];
291  OL[0].init(Func, this);
292  OL[1].init(Actual, this);
293
294  const FunctionType *FTy =
295    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
296  FTy = FTy;  // silence warning.
297
298  assert((FTy->getNumParams() == 1 ||
299          (FTy->isVarArg() && FTy->getNumParams() == 0)) &&
300         "Calling a function with bad signature");
301  assert((0 == FTy->getNumParams() ||
302          FTy->getParamType(0) == Actual->getType()) &&
303         "Calling a function with a bad signature!");
304}
305
306void CallInst::init(Value *Func) {
307  ParamAttrs = 0;
308  NumOperands = 1;
309  Use *OL = OperandList = new Use[1];
310  OL[0].init(Func, this);
311
312  const FunctionType *FTy =
313    cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
314  FTy = FTy;  // silence warning.
315
316  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
317}
318
319CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
320                   Instruction *InsertBefore)
321  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
322                                   ->getElementType())->getReturnType(),
323                Instruction::Call, 0, 0, InsertBefore) {
324  init(Func, Actual);
325  setName(Name);
326}
327
328CallInst::CallInst(Value *Func, Value* Actual, const std::string &Name,
329                   BasicBlock  *InsertAtEnd)
330  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
331                                   ->getElementType())->getReturnType(),
332                Instruction::Call, 0, 0, InsertAtEnd) {
333  init(Func, Actual);
334  setName(Name);
335}
336CallInst::CallInst(Value *Func, const std::string &Name,
337                   Instruction *InsertBefore)
338  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
339                                   ->getElementType())->getReturnType(),
340                Instruction::Call, 0, 0, InsertBefore) {
341  init(Func);
342  setName(Name);
343}
344
345CallInst::CallInst(Value *Func, const std::string &Name,
346                   BasicBlock *InsertAtEnd)
347  : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
348                                   ->getElementType())->getReturnType(),
349                Instruction::Call, 0, 0, InsertAtEnd) {
350  init(Func);
351  setName(Name);
352}
353
354CallInst::CallInst(const CallInst &CI)
355  : Instruction(CI.getType(), Instruction::Call, new Use[CI.getNumOperands()],
356                CI.getNumOperands()),
357    ParamAttrs(0) {
358  setParamAttrs(CI.getParamAttrs());
359  SubclassData = CI.SubclassData;
360  Use *OL = OperandList;
361  Use *InOL = CI.OperandList;
362  for (unsigned i = 0, e = CI.getNumOperands(); i != e; ++i)
363    OL[i].init(InOL[i], this);
364}
365
366void CallInst::setParamAttrs(const ParamAttrsList *newAttrs) {
367  if (ParamAttrs == newAttrs)
368    return;
369
370  if (ParamAttrs)
371    ParamAttrs->dropRef();
372
373  if (newAttrs)
374    newAttrs->addRef();
375
376  ParamAttrs = newAttrs;
377}
378
379bool CallInst::paramHasAttr(uint16_t i, ParameterAttributes attr) const {
380  if (ParamAttrs && ParamAttrs->paramHasAttr(i, attr))
381    return true;
382  if (const Function *F = getCalledFunction())
383    return F->paramHasAttr(i, attr);
384  return false;
385}
386
387/// @brief Determine if the call does not access memory.
388bool CallInst::doesNotAccessMemory() const {
389  return paramHasAttr(0, ParamAttr::ReadNone);
390}
391
392/// @brief Determine if the call does not access or only reads memory.
393bool CallInst::onlyReadsMemory() const {
394  return doesNotAccessMemory() || paramHasAttr(0, ParamAttr::ReadOnly);
395}
396
397/// @brief Determine if the call cannot return.
398bool CallInst::doesNotReturn() const {
399  return paramHasAttr(0, ParamAttr::NoReturn);
400}
401
402/// @brief Determine if the call cannot unwind.
403bool CallInst::doesNotThrow() const {
404  return paramHasAttr(0, ParamAttr::NoUnwind);
405}
406
407/// @brief Determine if the call returns a structure.
408bool CallInst::isStructReturn() const {
409  // Be friendly and also check the callee.
410  return paramHasAttr(1, ParamAttr::StructRet);
411}
412
413/// @brief Determine if any call argument is an aggregate passed by value.
414bool CallInst::hasByValArgument() const {
415  if (ParamAttrs && ParamAttrs->hasAttrSomewhere(ParamAttr::ByVal))
416    return true;
417  // Be consistent with other methods and check the callee too.
418  if (const Function *F = getCalledFunction())
419    if (const ParamAttrsList *PAL = F->getParamAttrs())
420      return PAL->hasAttrSomewhere(ParamAttr::ByVal);
421  return false;
422}
423
424void CallInst::setDoesNotThrow(bool doesNotThrow) {
425  const ParamAttrsList *PAL = getParamAttrs();
426  if (doesNotThrow)
427    PAL = ParamAttrsList::includeAttrs(PAL, 0, ParamAttr::NoUnwind);
428  else
429    PAL = ParamAttrsList::excludeAttrs(PAL, 0, ParamAttr::NoUnwind);
430  setParamAttrs(PAL);
431}
432
433
434//===----------------------------------------------------------------------===//
435//                        InvokeInst Implementation
436//===----------------------------------------------------------------------===//
437
438InvokeInst::~InvokeInst() {
439  delete [] OperandList;
440  if (ParamAttrs)
441    ParamAttrs->dropRef();
442}
443
444void InvokeInst::init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
445                      Value* const *Args, unsigned NumArgs) {
446  ParamAttrs = 0;
447  NumOperands = 3+NumArgs;
448  Use *OL = OperandList = new Use[3+NumArgs];
449  OL[0].init(Fn, this);
450  OL[1].init(IfNormal, this);
451  OL[2].init(IfException, this);
452  const FunctionType *FTy =
453    cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
454  FTy = FTy;  // silence warning.
455
456  assert(((NumArgs == FTy->getNumParams()) ||
457          (FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
458         "Calling a function with bad signature");
459
460  for (unsigned i = 0, e = NumArgs; i != e; i++) {
461    assert((i >= FTy->getNumParams() ||
462            FTy->getParamType(i) == Args[i]->getType()) &&
463           "Invoking a function with a bad signature!");
464
465    OL[i+3].init(Args[i], this);
466  }
467}
468
469InvokeInst::InvokeInst(const InvokeInst &II)
470  : TerminatorInst(II.getType(), Instruction::Invoke,
471                   new Use[II.getNumOperands()], II.getNumOperands()),
472    ParamAttrs(0) {
473  setParamAttrs(II.getParamAttrs());
474  SubclassData = II.SubclassData;
475  Use *OL = OperandList, *InOL = II.OperandList;
476  for (unsigned i = 0, e = II.getNumOperands(); i != e; ++i)
477    OL[i].init(InOL[i], this);
478}
479
480BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
481  return getSuccessor(idx);
482}
483unsigned InvokeInst::getNumSuccessorsV() const {
484  return getNumSuccessors();
485}
486void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
487  return setSuccessor(idx, B);
488}
489
490void InvokeInst::setParamAttrs(const ParamAttrsList *newAttrs) {
491  if (ParamAttrs == newAttrs)
492    return;
493
494  if (ParamAttrs)
495    ParamAttrs->dropRef();
496
497  if (newAttrs)
498    newAttrs->addRef();
499
500  ParamAttrs = newAttrs;
501}
502
503bool InvokeInst::paramHasAttr(uint16_t i, ParameterAttributes attr) const {
504  if (ParamAttrs && ParamAttrs->paramHasAttr(i, attr))
505    return true;
506  if (const Function *F = getCalledFunction())
507    return F->paramHasAttr(i, attr);
508  return false;
509}
510
511
512/// @brief Determine if the call does not access memory.
513bool InvokeInst::doesNotAccessMemory() const {
514  return paramHasAttr(0, ParamAttr::ReadNone);
515}
516
517/// @brief Determine if the call does not access or only reads memory.
518bool InvokeInst::onlyReadsMemory() const {
519  return doesNotAccessMemory() || paramHasAttr(0, ParamAttr::ReadOnly);
520}
521
522/// @brief Determine if the call cannot return.
523bool InvokeInst::doesNotReturn() const {
524  return paramHasAttr(0, ParamAttr::NoReturn);
525}
526
527/// @brief Determine if the call cannot unwind.
528bool InvokeInst::doesNotThrow() const {
529  return paramHasAttr(0, ParamAttr::NoUnwind);
530}
531
532void InvokeInst::setDoesNotThrow(bool doesNotThrow) {
533  const ParamAttrsList *PAL = getParamAttrs();
534  if (doesNotThrow)
535    PAL = ParamAttrsList::includeAttrs(PAL, 0, ParamAttr::NoUnwind);
536  else
537    PAL = ParamAttrsList::excludeAttrs(PAL, 0, ParamAttr::NoUnwind);
538  setParamAttrs(PAL);
539}
540
541/// @brief Determine if the call returns a structure.
542bool InvokeInst::isStructReturn() const {
543  // Be friendly and also check the callee.
544  return paramHasAttr(1, ParamAttr::StructRet);
545}
546
547
548//===----------------------------------------------------------------------===//
549//                        ReturnInst Implementation
550//===----------------------------------------------------------------------===//
551
552ReturnInst::ReturnInst(const ReturnInst &RI)
553  : TerminatorInst(Type::VoidTy, Instruction::Ret,
554                   &RetVal, RI.getNumOperands()) {
555  if (RI.getNumOperands())
556    RetVal.init(RI.RetVal, this);
557}
558
559ReturnInst::ReturnInst(Value *retVal, Instruction *InsertBefore)
560  : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertBefore) {
561  init(retVal);
562}
563ReturnInst::ReturnInst(Value *retVal, BasicBlock *InsertAtEnd)
564  : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertAtEnd) {
565  init(retVal);
566}
567ReturnInst::ReturnInst(BasicBlock *InsertAtEnd)
568  : TerminatorInst(Type::VoidTy, Instruction::Ret, &RetVal, 0, InsertAtEnd) {
569}
570
571
572
573void ReturnInst::init(Value *retVal) {
574  if (retVal && retVal->getType() != Type::VoidTy) {
575    assert(!isa<BasicBlock>(retVal) &&
576           "Cannot return basic block.  Probably using the incorrect ctor");
577    NumOperands = 1;
578    RetVal.init(retVal, this);
579  }
580}
581
582unsigned ReturnInst::getNumSuccessorsV() const {
583  return getNumSuccessors();
584}
585
586// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
587// emit the vtable for the class in this translation unit.
588void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
589  assert(0 && "ReturnInst has no successors!");
590}
591
592BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
593  assert(0 && "ReturnInst has no successors!");
594  abort();
595  return 0;
596}
597
598
599//===----------------------------------------------------------------------===//
600//                        UnwindInst Implementation
601//===----------------------------------------------------------------------===//
602
603UnwindInst::UnwindInst(Instruction *InsertBefore)
604  : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertBefore) {
605}
606UnwindInst::UnwindInst(BasicBlock *InsertAtEnd)
607  : TerminatorInst(Type::VoidTy, Instruction::Unwind, 0, 0, InsertAtEnd) {
608}
609
610
611unsigned UnwindInst::getNumSuccessorsV() const {
612  return getNumSuccessors();
613}
614
615void UnwindInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
616  assert(0 && "UnwindInst has no successors!");
617}
618
619BasicBlock *UnwindInst::getSuccessorV(unsigned idx) const {
620  assert(0 && "UnwindInst has no successors!");
621  abort();
622  return 0;
623}
624
625//===----------------------------------------------------------------------===//
626//                      UnreachableInst Implementation
627//===----------------------------------------------------------------------===//
628
629UnreachableInst::UnreachableInst(Instruction *InsertBefore)
630  : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertBefore) {
631}
632UnreachableInst::UnreachableInst(BasicBlock *InsertAtEnd)
633  : TerminatorInst(Type::VoidTy, Instruction::Unreachable, 0, 0, InsertAtEnd) {
634}
635
636unsigned UnreachableInst::getNumSuccessorsV() const {
637  return getNumSuccessors();
638}
639
640void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
641  assert(0 && "UnwindInst has no successors!");
642}
643
644BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
645  assert(0 && "UnwindInst has no successors!");
646  abort();
647  return 0;
648}
649
650//===----------------------------------------------------------------------===//
651//                        BranchInst Implementation
652//===----------------------------------------------------------------------===//
653
654void BranchInst::AssertOK() {
655  if (isConditional())
656    assert(getCondition()->getType() == Type::Int1Ty &&
657           "May only branch on boolean predicates!");
658}
659
660BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
661  : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 1, InsertBefore) {
662  assert(IfTrue != 0 && "Branch destination may not be null!");
663  Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
664}
665BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
666                       Instruction *InsertBefore)
667: TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 3, InsertBefore) {
668  Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
669  Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
670  Ops[2].init(Cond, this);
671#ifndef NDEBUG
672  AssertOK();
673#endif
674}
675
676BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
677  : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 1, InsertAtEnd) {
678  assert(IfTrue != 0 && "Branch destination may not be null!");
679  Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
680}
681
682BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
683           BasicBlock *InsertAtEnd)
684  : TerminatorInst(Type::VoidTy, Instruction::Br, Ops, 3, InsertAtEnd) {
685  Ops[0].init(reinterpret_cast<Value*>(IfTrue), this);
686  Ops[1].init(reinterpret_cast<Value*>(IfFalse), this);
687  Ops[2].init(Cond, this);
688#ifndef NDEBUG
689  AssertOK();
690#endif
691}
692
693
694BranchInst::BranchInst(const BranchInst &BI) :
695  TerminatorInst(Type::VoidTy, Instruction::Br, Ops, BI.getNumOperands()) {
696  OperandList[0].init(BI.getOperand(0), this);
697  if (BI.getNumOperands() != 1) {
698    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
699    OperandList[1].init(BI.getOperand(1), this);
700    OperandList[2].init(BI.getOperand(2), this);
701  }
702}
703
704BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
705  return getSuccessor(idx);
706}
707unsigned BranchInst::getNumSuccessorsV() const {
708  return getNumSuccessors();
709}
710void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
711  setSuccessor(idx, B);
712}
713
714
715//===----------------------------------------------------------------------===//
716//                        AllocationInst Implementation
717//===----------------------------------------------------------------------===//
718
719static Value *getAISize(Value *Amt) {
720  if (!Amt)
721    Amt = ConstantInt::get(Type::Int32Ty, 1);
722  else {
723    assert(!isa<BasicBlock>(Amt) &&
724           "Passed basic block into allocation size parameter! Use other ctor");
725    assert(Amt->getType() == Type::Int32Ty &&
726           "Malloc/Allocation array size is not a 32-bit integer!");
727  }
728  return Amt;
729}
730
731AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
732                               unsigned Align, const std::string &Name,
733                               Instruction *InsertBefore)
734  : UnaryInstruction(PointerType::getUnqual(Ty), iTy, getAISize(ArraySize),
735                     InsertBefore), Alignment(Align) {
736  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
737  assert(Ty != Type::VoidTy && "Cannot allocate void!");
738  setName(Name);
739}
740
741AllocationInst::AllocationInst(const Type *Ty, Value *ArraySize, unsigned iTy,
742                               unsigned Align, const std::string &Name,
743                               BasicBlock *InsertAtEnd)
744  : UnaryInstruction(PointerType::getUnqual(Ty), iTy, getAISize(ArraySize),
745                     InsertAtEnd), Alignment(Align) {
746  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
747  assert(Ty != Type::VoidTy && "Cannot allocate void!");
748  setName(Name);
749}
750
751// Out of line virtual method, so the vtable, etc has a home.
752AllocationInst::~AllocationInst() {
753}
754
755bool AllocationInst::isArrayAllocation() const {
756  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
757    return CI->getZExtValue() != 1;
758  return true;
759}
760
761const Type *AllocationInst::getAllocatedType() const {
762  return getType()->getElementType();
763}
764
765AllocaInst::AllocaInst(const AllocaInst &AI)
766  : AllocationInst(AI.getType()->getElementType(), (Value*)AI.getOperand(0),
767                   Instruction::Alloca, AI.getAlignment()) {
768}
769
770MallocInst::MallocInst(const MallocInst &MI)
771  : AllocationInst(MI.getType()->getElementType(), (Value*)MI.getOperand(0),
772                   Instruction::Malloc, MI.getAlignment()) {
773}
774
775//===----------------------------------------------------------------------===//
776//                             FreeInst Implementation
777//===----------------------------------------------------------------------===//
778
779void FreeInst::AssertOK() {
780  assert(isa<PointerType>(getOperand(0)->getType()) &&
781         "Can not free something of nonpointer type!");
782}
783
784FreeInst::FreeInst(Value *Ptr, Instruction *InsertBefore)
785  : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertBefore) {
786  AssertOK();
787}
788
789FreeInst::FreeInst(Value *Ptr, BasicBlock *InsertAtEnd)
790  : UnaryInstruction(Type::VoidTy, Free, Ptr, InsertAtEnd) {
791  AssertOK();
792}
793
794
795//===----------------------------------------------------------------------===//
796//                           LoadInst Implementation
797//===----------------------------------------------------------------------===//
798
799void LoadInst::AssertOK() {
800  assert(isa<PointerType>(getOperand(0)->getType()) &&
801         "Ptr must have pointer type.");
802}
803
804LoadInst::LoadInst(Value *Ptr, const std::string &Name, Instruction *InsertBef)
805  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
806                     Load, Ptr, InsertBef) {
807  setVolatile(false);
808  setAlignment(0);
809  AssertOK();
810  setName(Name);
811}
812
813LoadInst::LoadInst(Value *Ptr, const std::string &Name, BasicBlock *InsertAE)
814  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
815                     Load, Ptr, InsertAE) {
816  setVolatile(false);
817  setAlignment(0);
818  AssertOK();
819  setName(Name);
820}
821
822LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
823                   Instruction *InsertBef)
824  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
825                     Load, Ptr, InsertBef) {
826  setVolatile(isVolatile);
827  setAlignment(0);
828  AssertOK();
829  setName(Name);
830}
831
832LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
833                   unsigned Align, Instruction *InsertBef)
834  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
835                     Load, Ptr, InsertBef) {
836  setVolatile(isVolatile);
837  setAlignment(Align);
838  AssertOK();
839  setName(Name);
840}
841
842LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
843                   unsigned Align, BasicBlock *InsertAE)
844  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
845                     Load, Ptr, InsertAE) {
846  setVolatile(isVolatile);
847  setAlignment(Align);
848  AssertOK();
849  setName(Name);
850}
851
852LoadInst::LoadInst(Value *Ptr, const std::string &Name, bool isVolatile,
853                   BasicBlock *InsertAE)
854  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
855                     Load, Ptr, InsertAE) {
856  setVolatile(isVolatile);
857  setAlignment(0);
858  AssertOK();
859  setName(Name);
860}
861
862
863
864LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
865  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
866                     Load, Ptr, InsertBef) {
867  setVolatile(false);
868  setAlignment(0);
869  AssertOK();
870  if (Name && Name[0]) setName(Name);
871}
872
873LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
874  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
875                     Load, Ptr, InsertAE) {
876  setVolatile(false);
877  setAlignment(0);
878  AssertOK();
879  if (Name && Name[0]) setName(Name);
880}
881
882LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
883                   Instruction *InsertBef)
884: UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
885                   Load, Ptr, InsertBef) {
886  setVolatile(isVolatile);
887  setAlignment(0);
888  AssertOK();
889  if (Name && Name[0]) setName(Name);
890}
891
892LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
893                   BasicBlock *InsertAE)
894  : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
895                     Load, Ptr, InsertAE) {
896  setVolatile(isVolatile);
897  setAlignment(0);
898  AssertOK();
899  if (Name && Name[0]) setName(Name);
900}
901
902void LoadInst::setAlignment(unsigned Align) {
903  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
904  SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
905}
906
907//===----------------------------------------------------------------------===//
908//                           StoreInst Implementation
909//===----------------------------------------------------------------------===//
910
911void StoreInst::AssertOK() {
912  assert(isa<PointerType>(getOperand(1)->getType()) &&
913         "Ptr must have pointer type!");
914  assert(getOperand(0)->getType() ==
915                 cast<PointerType>(getOperand(1)->getType())->getElementType()
916         && "Ptr must be a pointer to Val type!");
917}
918
919
920StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
921  : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
922  Ops[0].init(val, this);
923  Ops[1].init(addr, this);
924  setVolatile(false);
925  setAlignment(0);
926  AssertOK();
927}
928
929StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
930  : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) {
931  Ops[0].init(val, this);
932  Ops[1].init(addr, this);
933  setVolatile(false);
934  setAlignment(0);
935  AssertOK();
936}
937
938StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
939                     Instruction *InsertBefore)
940  : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
941  Ops[0].init(val, this);
942  Ops[1].init(addr, this);
943  setVolatile(isVolatile);
944  setAlignment(0);
945  AssertOK();
946}
947
948StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
949                     unsigned Align, Instruction *InsertBefore)
950  : Instruction(Type::VoidTy, Store, Ops, 2, InsertBefore) {
951  Ops[0].init(val, this);
952  Ops[1].init(addr, this);
953  setVolatile(isVolatile);
954  setAlignment(Align);
955  AssertOK();
956}
957
958StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
959                     unsigned Align, BasicBlock *InsertAtEnd)
960  : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) {
961  Ops[0].init(val, this);
962  Ops[1].init(addr, this);
963  setVolatile(isVolatile);
964  setAlignment(Align);
965  AssertOK();
966}
967
968StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
969                     BasicBlock *InsertAtEnd)
970  : Instruction(Type::VoidTy, Store, Ops, 2, InsertAtEnd) {
971  Ops[0].init(val, this);
972  Ops[1].init(addr, this);
973  setVolatile(isVolatile);
974  setAlignment(0);
975  AssertOK();
976}
977
978void StoreInst::setAlignment(unsigned Align) {
979  assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
980  SubclassData = (SubclassData & 1) | ((Log2_32(Align)+1)<<1);
981}
982
983//===----------------------------------------------------------------------===//
984//                       GetElementPtrInst Implementation
985//===----------------------------------------------------------------------===//
986
987static unsigned retrieveAddrSpace(const Value *Val) {
988  return cast<PointerType>(Val->getType())->getAddressSpace();
989}
990
991void GetElementPtrInst::init(Value *Ptr, Value* const *Idx, unsigned NumIdx) {
992  NumOperands = 1+NumIdx;
993  Use *OL = OperandList = new Use[NumOperands];
994  OL[0].init(Ptr, this);
995
996  for (unsigned i = 0; i != NumIdx; ++i)
997    OL[i+1].init(Idx[i], this);
998}
999
1000void GetElementPtrInst::init(Value *Ptr, Value *Idx) {
1001  NumOperands = 2;
1002  Use *OL = OperandList = new Use[2];
1003  OL[0].init(Ptr, this);
1004  OL[1].init(Idx, this);
1005}
1006
1007GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1008                                     const std::string &Name, Instruction *InBe)
1009  : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx)),
1010                                 retrieveAddrSpace(Ptr)),
1011                GetElementPtr, 0, 0, InBe) {
1012  init(Ptr, Idx);
1013  setName(Name);
1014}
1015
1016GetElementPtrInst::GetElementPtrInst(Value *Ptr, Value *Idx,
1017                                     const std::string &Name, BasicBlock *IAE)
1018  : Instruction(PointerType::get(checkType(getIndexedType(Ptr->getType(),Idx)),
1019                                 retrieveAddrSpace(Ptr)),
1020                GetElementPtr, 0, 0, IAE) {
1021  init(Ptr, Idx);
1022  setName(Name);
1023}
1024
1025GetElementPtrInst::~GetElementPtrInst() {
1026  delete[] OperandList;
1027}
1028
1029// getIndexedType - Returns the type of the element that would be loaded with
1030// a load instruction with the specified parameters.
1031//
1032// A null type is returned if the indices are invalid for the specified
1033// pointer type.
1034//
1035const Type* GetElementPtrInst::getIndexedType(const Type *Ptr,
1036                                              Value* const *Idxs,
1037                                              unsigned NumIdx,
1038                                              bool AllowCompositeLeaf) {
1039  if (!isa<PointerType>(Ptr)) return 0;   // Type isn't a pointer type!
1040
1041  // Handle the special case of the empty set index set...
1042  if (NumIdx == 0) {
1043    if (AllowCompositeLeaf ||
1044        cast<PointerType>(Ptr)->getElementType()->isFirstClassType())
1045      return cast<PointerType>(Ptr)->getElementType();
1046    else
1047      return 0;
1048  }
1049
1050  unsigned CurIdx = 0;
1051  while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
1052    if (NumIdx == CurIdx) {
1053      if (AllowCompositeLeaf || CT->isFirstClassType()) return Ptr;
1054      return 0;   // Can't load a whole structure or array!?!?
1055    }
1056
1057    Value *Index = Idxs[CurIdx++];
1058    if (isa<PointerType>(CT) && CurIdx != 1)
1059      return 0;  // Can only index into pointer types at the first index!
1060    if (!CT->indexValid(Index)) return 0;
1061    Ptr = CT->getTypeAtIndex(Index);
1062
1063    // If the new type forwards to another type, then it is in the middle
1064    // of being refined to another type (and hence, may have dropped all
1065    // references to what it was using before).  So, use the new forwarded
1066    // type.
1067    if (const Type * Ty = Ptr->getForwardedType()) {
1068      Ptr = Ty;
1069    }
1070  }
1071  return CurIdx == NumIdx ? Ptr : 0;
1072}
1073
1074const Type* GetElementPtrInst::getIndexedType(const Type *Ptr, Value *Idx) {
1075  const PointerType *PTy = dyn_cast<PointerType>(Ptr);
1076  if (!PTy) return 0;   // Type isn't a pointer type!
1077
1078  // Check the pointer index.
1079  if (!PTy->indexValid(Idx)) return 0;
1080
1081  return PTy->getElementType();
1082}
1083
1084
1085/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1086/// zeros.  If so, the result pointer and the first operand have the same
1087/// value, just potentially different types.
1088bool GetElementPtrInst::hasAllZeroIndices() const {
1089  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1090    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1091      if (!CI->isZero()) return false;
1092    } else {
1093      return false;
1094    }
1095  }
1096  return true;
1097}
1098
1099/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1100/// constant integers.  If so, the result pointer and the first operand have
1101/// a constant offset between them.
1102bool GetElementPtrInst::hasAllConstantIndices() const {
1103  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1104    if (!isa<ConstantInt>(getOperand(i)))
1105      return false;
1106  }
1107  return true;
1108}
1109
1110
1111//===----------------------------------------------------------------------===//
1112//                           ExtractElementInst Implementation
1113//===----------------------------------------------------------------------===//
1114
1115ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1116                                       const std::string &Name,
1117                                       Instruction *InsertBef)
1118  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1119                ExtractElement, Ops, 2, InsertBef) {
1120  assert(isValidOperands(Val, Index) &&
1121         "Invalid extractelement instruction operands!");
1122  Ops[0].init(Val, this);
1123  Ops[1].init(Index, this);
1124  setName(Name);
1125}
1126
1127ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
1128                                       const std::string &Name,
1129                                       Instruction *InsertBef)
1130  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1131                ExtractElement, Ops, 2, InsertBef) {
1132  Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1133  assert(isValidOperands(Val, Index) &&
1134         "Invalid extractelement instruction operands!");
1135  Ops[0].init(Val, this);
1136  Ops[1].init(Index, this);
1137  setName(Name);
1138}
1139
1140
1141ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1142                                       const std::string &Name,
1143                                       BasicBlock *InsertAE)
1144  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1145                ExtractElement, Ops, 2, InsertAE) {
1146  assert(isValidOperands(Val, Index) &&
1147         "Invalid extractelement instruction operands!");
1148
1149  Ops[0].init(Val, this);
1150  Ops[1].init(Index, this);
1151  setName(Name);
1152}
1153
1154ExtractElementInst::ExtractElementInst(Value *Val, unsigned IndexV,
1155                                       const std::string &Name,
1156                                       BasicBlock *InsertAE)
1157  : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1158                ExtractElement, Ops, 2, InsertAE) {
1159  Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1160  assert(isValidOperands(Val, Index) &&
1161         "Invalid extractelement instruction operands!");
1162
1163  Ops[0].init(Val, this);
1164  Ops[1].init(Index, this);
1165  setName(Name);
1166}
1167
1168
1169bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1170  if (!isa<VectorType>(Val->getType()) || Index->getType() != Type::Int32Ty)
1171    return false;
1172  return true;
1173}
1174
1175
1176//===----------------------------------------------------------------------===//
1177//                           InsertElementInst Implementation
1178//===----------------------------------------------------------------------===//
1179
1180InsertElementInst::InsertElementInst(const InsertElementInst &IE)
1181    : Instruction(IE.getType(), InsertElement, Ops, 3) {
1182  Ops[0].init(IE.Ops[0], this);
1183  Ops[1].init(IE.Ops[1], this);
1184  Ops[2].init(IE.Ops[2], this);
1185}
1186InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1187                                     const std::string &Name,
1188                                     Instruction *InsertBef)
1189  : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertBef) {
1190  assert(isValidOperands(Vec, Elt, Index) &&
1191         "Invalid insertelement instruction operands!");
1192  Ops[0].init(Vec, this);
1193  Ops[1].init(Elt, this);
1194  Ops[2].init(Index, this);
1195  setName(Name);
1196}
1197
1198InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
1199                                     const std::string &Name,
1200                                     Instruction *InsertBef)
1201  : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertBef) {
1202  Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1203  assert(isValidOperands(Vec, Elt, Index) &&
1204         "Invalid insertelement instruction operands!");
1205  Ops[0].init(Vec, this);
1206  Ops[1].init(Elt, this);
1207  Ops[2].init(Index, this);
1208  setName(Name);
1209}
1210
1211
1212InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1213                                     const std::string &Name,
1214                                     BasicBlock *InsertAE)
1215  : Instruction(Vec->getType(), InsertElement, Ops, 3, InsertAE) {
1216  assert(isValidOperands(Vec, Elt, Index) &&
1217         "Invalid insertelement instruction operands!");
1218
1219  Ops[0].init(Vec, this);
1220  Ops[1].init(Elt, this);
1221  Ops[2].init(Index, this);
1222  setName(Name);
1223}
1224
1225InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, unsigned IndexV,
1226                                     const std::string &Name,
1227                                     BasicBlock *InsertAE)
1228: Instruction(Vec->getType(), InsertElement, Ops, 3, InsertAE) {
1229  Constant *Index = ConstantInt::get(Type::Int32Ty, IndexV);
1230  assert(isValidOperands(Vec, Elt, Index) &&
1231         "Invalid insertelement instruction operands!");
1232
1233  Ops[0].init(Vec, this);
1234  Ops[1].init(Elt, this);
1235  Ops[2].init(Index, this);
1236  setName(Name);
1237}
1238
1239bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1240                                        const Value *Index) {
1241  if (!isa<VectorType>(Vec->getType()))
1242    return false;   // First operand of insertelement must be vector type.
1243
1244  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1245    return false;// Second operand of insertelement must be vector element type.
1246
1247  if (Index->getType() != Type::Int32Ty)
1248    return false;  // Third operand of insertelement must be uint.
1249  return true;
1250}
1251
1252
1253//===----------------------------------------------------------------------===//
1254//                      ShuffleVectorInst Implementation
1255//===----------------------------------------------------------------------===//
1256
1257ShuffleVectorInst::ShuffleVectorInst(const ShuffleVectorInst &SV)
1258    : Instruction(SV.getType(), ShuffleVector, Ops, 3) {
1259  Ops[0].init(SV.Ops[0], this);
1260  Ops[1].init(SV.Ops[1], this);
1261  Ops[2].init(SV.Ops[2], this);
1262}
1263
1264ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1265                                     const std::string &Name,
1266                                     Instruction *InsertBefore)
1267  : Instruction(V1->getType(), ShuffleVector, Ops, 3, InsertBefore) {
1268  assert(isValidOperands(V1, V2, Mask) &&
1269         "Invalid shuffle vector instruction operands!");
1270  Ops[0].init(V1, this);
1271  Ops[1].init(V2, this);
1272  Ops[2].init(Mask, this);
1273  setName(Name);
1274}
1275
1276ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1277                                     const std::string &Name,
1278                                     BasicBlock *InsertAtEnd)
1279  : Instruction(V1->getType(), ShuffleVector, Ops, 3, InsertAtEnd) {
1280  assert(isValidOperands(V1, V2, Mask) &&
1281         "Invalid shuffle vector instruction operands!");
1282
1283  Ops[0].init(V1, this);
1284  Ops[1].init(V2, this);
1285  Ops[2].init(Mask, this);
1286  setName(Name);
1287}
1288
1289bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1290                                        const Value *Mask) {
1291  if (!isa<VectorType>(V1->getType())) return false;
1292  if (V1->getType() != V2->getType()) return false;
1293  if (!isa<VectorType>(Mask->getType()) ||
1294         cast<VectorType>(Mask->getType())->getElementType() != Type::Int32Ty ||
1295         cast<VectorType>(Mask->getType())->getNumElements() !=
1296         cast<VectorType>(V1->getType())->getNumElements())
1297    return false;
1298  return true;
1299}
1300
1301
1302//===----------------------------------------------------------------------===//
1303//                             BinaryOperator Class
1304//===----------------------------------------------------------------------===//
1305
1306BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1307                               const Type *Ty, const std::string &Name,
1308                               Instruction *InsertBefore)
1309  : Instruction(Ty, iType, Ops, 2, InsertBefore) {
1310  Ops[0].init(S1, this);
1311  Ops[1].init(S2, this);
1312  init(iType);
1313  setName(Name);
1314}
1315
1316BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1317                               const Type *Ty, const std::string &Name,
1318                               BasicBlock *InsertAtEnd)
1319  : Instruction(Ty, iType, Ops, 2, InsertAtEnd) {
1320  Ops[0].init(S1, this);
1321  Ops[1].init(S2, this);
1322  init(iType);
1323  setName(Name);
1324}
1325
1326
1327void BinaryOperator::init(BinaryOps iType) {
1328  Value *LHS = getOperand(0), *RHS = getOperand(1);
1329  LHS = LHS; RHS = RHS; // Silence warnings.
1330  assert(LHS->getType() == RHS->getType() &&
1331         "Binary operator operand types must match!");
1332#ifndef NDEBUG
1333  switch (iType) {
1334  case Add: case Sub:
1335  case Mul:
1336    assert(getType() == LHS->getType() &&
1337           "Arithmetic operation should return same type as operands!");
1338    assert((getType()->isInteger() || getType()->isFloatingPoint() ||
1339            isa<VectorType>(getType())) &&
1340          "Tried to create an arithmetic operation on a non-arithmetic type!");
1341    break;
1342  case UDiv:
1343  case SDiv:
1344    assert(getType() == LHS->getType() &&
1345           "Arithmetic operation should return same type as operands!");
1346    assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1347            cast<VectorType>(getType())->getElementType()->isInteger())) &&
1348           "Incorrect operand type (not integer) for S/UDIV");
1349    break;
1350  case FDiv:
1351    assert(getType() == LHS->getType() &&
1352           "Arithmetic operation should return same type as operands!");
1353    assert((getType()->isFloatingPoint() || (isa<VectorType>(getType()) &&
1354            cast<VectorType>(getType())->getElementType()->isFloatingPoint()))
1355            && "Incorrect operand type (not floating point) for FDIV");
1356    break;
1357  case URem:
1358  case SRem:
1359    assert(getType() == LHS->getType() &&
1360           "Arithmetic operation should return same type as operands!");
1361    assert((getType()->isInteger() || (isa<VectorType>(getType()) &&
1362            cast<VectorType>(getType())->getElementType()->isInteger())) &&
1363           "Incorrect operand type (not integer) for S/UREM");
1364    break;
1365  case FRem:
1366    assert(getType() == LHS->getType() &&
1367           "Arithmetic operation should return same type as operands!");
1368    assert((getType()->isFloatingPoint() || (isa<VectorType>(getType()) &&
1369            cast<VectorType>(getType())->getElementType()->isFloatingPoint()))
1370            && "Incorrect operand type (not floating point) for FREM");
1371    break;
1372  case Shl:
1373  case LShr:
1374  case AShr:
1375    assert(getType() == LHS->getType() &&
1376           "Shift operation should return same type as operands!");
1377    assert(getType()->isInteger() &&
1378           "Shift operation requires integer operands");
1379    break;
1380  case And: case Or:
1381  case Xor:
1382    assert(getType() == LHS->getType() &&
1383           "Logical operation should return same type as operands!");
1384    assert((getType()->isInteger() ||
1385            (isa<VectorType>(getType()) &&
1386             cast<VectorType>(getType())->getElementType()->isInteger())) &&
1387           "Tried to create a logical operation on a non-integral type!");
1388    break;
1389  default:
1390    break;
1391  }
1392#endif
1393}
1394
1395BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
1396                                       const std::string &Name,
1397                                       Instruction *InsertBefore) {
1398  assert(S1->getType() == S2->getType() &&
1399         "Cannot create binary operator with two operands of differing type!");
1400  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
1401}
1402
1403BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
1404                                       const std::string &Name,
1405                                       BasicBlock *InsertAtEnd) {
1406  BinaryOperator *Res = create(Op, S1, S2, Name);
1407  InsertAtEnd->getInstList().push_back(Res);
1408  return Res;
1409}
1410
1411BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
1412                                          Instruction *InsertBefore) {
1413  Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
1414  return new BinaryOperator(Instruction::Sub,
1415                            zero, Op,
1416                            Op->getType(), Name, InsertBefore);
1417}
1418
1419BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
1420                                          BasicBlock *InsertAtEnd) {
1421  Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
1422  return new BinaryOperator(Instruction::Sub,
1423                            zero, Op,
1424                            Op->getType(), Name, InsertAtEnd);
1425}
1426
1427BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
1428                                          Instruction *InsertBefore) {
1429  Constant *C;
1430  if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1431    C = ConstantInt::getAllOnesValue(PTy->getElementType());
1432    C = ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), C));
1433  } else {
1434    C = ConstantInt::getAllOnesValue(Op->getType());
1435  }
1436
1437  return new BinaryOperator(Instruction::Xor, Op, C,
1438                            Op->getType(), Name, InsertBefore);
1439}
1440
1441BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
1442                                          BasicBlock *InsertAtEnd) {
1443  Constant *AllOnes;
1444  if (const VectorType *PTy = dyn_cast<VectorType>(Op->getType())) {
1445    // Create a vector of all ones values.
1446    Constant *Elt = ConstantInt::getAllOnesValue(PTy->getElementType());
1447    AllOnes =
1448      ConstantVector::get(std::vector<Constant*>(PTy->getNumElements(), Elt));
1449  } else {
1450    AllOnes = ConstantInt::getAllOnesValue(Op->getType());
1451  }
1452
1453  return new BinaryOperator(Instruction::Xor, Op, AllOnes,
1454                            Op->getType(), Name, InsertAtEnd);
1455}
1456
1457
1458// isConstantAllOnes - Helper function for several functions below
1459static inline bool isConstantAllOnes(const Value *V) {
1460  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
1461    return CI->isAllOnesValue();
1462  if (const ConstantVector *CV = dyn_cast<ConstantVector>(V))
1463    return CV->isAllOnesValue();
1464  return false;
1465}
1466
1467bool BinaryOperator::isNeg(const Value *V) {
1468  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1469    if (Bop->getOpcode() == Instruction::Sub)
1470      return Bop->getOperand(0) ==
1471             ConstantExpr::getZeroValueForNegationExpr(Bop->getType());
1472  return false;
1473}
1474
1475bool BinaryOperator::isNot(const Value *V) {
1476  if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
1477    return (Bop->getOpcode() == Instruction::Xor &&
1478            (isConstantAllOnes(Bop->getOperand(1)) ||
1479             isConstantAllOnes(Bop->getOperand(0))));
1480  return false;
1481}
1482
1483Value *BinaryOperator::getNegArgument(Value *BinOp) {
1484  assert(isNeg(BinOp) && "getNegArgument from non-'neg' instruction!");
1485  return cast<BinaryOperator>(BinOp)->getOperand(1);
1486}
1487
1488const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
1489  return getNegArgument(const_cast<Value*>(BinOp));
1490}
1491
1492Value *BinaryOperator::getNotArgument(Value *BinOp) {
1493  assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
1494  BinaryOperator *BO = cast<BinaryOperator>(BinOp);
1495  Value *Op0 = BO->getOperand(0);
1496  Value *Op1 = BO->getOperand(1);
1497  if (isConstantAllOnes(Op0)) return Op1;
1498
1499  assert(isConstantAllOnes(Op1));
1500  return Op0;
1501}
1502
1503const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
1504  return getNotArgument(const_cast<Value*>(BinOp));
1505}
1506
1507
1508// swapOperands - Exchange the two operands to this instruction.  This
1509// instruction is safe to use on any binary instruction and does not
1510// modify the semantics of the instruction.  If the instruction is
1511// order dependent (SetLT f.e.) the opcode is changed.
1512//
1513bool BinaryOperator::swapOperands() {
1514  if (!isCommutative())
1515    return true; // Can't commute operands
1516  std::swap(Ops[0], Ops[1]);
1517  return false;
1518}
1519
1520//===----------------------------------------------------------------------===//
1521//                                CastInst Class
1522//===----------------------------------------------------------------------===//
1523
1524// Just determine if this cast only deals with integral->integral conversion.
1525bool CastInst::isIntegerCast() const {
1526  switch (getOpcode()) {
1527    default: return false;
1528    case Instruction::ZExt:
1529    case Instruction::SExt:
1530    case Instruction::Trunc:
1531      return true;
1532    case Instruction::BitCast:
1533      return getOperand(0)->getType()->isInteger() && getType()->isInteger();
1534  }
1535}
1536
1537bool CastInst::isLosslessCast() const {
1538  // Only BitCast can be lossless, exit fast if we're not BitCast
1539  if (getOpcode() != Instruction::BitCast)
1540    return false;
1541
1542  // Identity cast is always lossless
1543  const Type* SrcTy = getOperand(0)->getType();
1544  const Type* DstTy = getType();
1545  if (SrcTy == DstTy)
1546    return true;
1547
1548  // Pointer to pointer is always lossless.
1549  if (isa<PointerType>(SrcTy))
1550    return isa<PointerType>(DstTy);
1551  return false;  // Other types have no identity values
1552}
1553
1554/// This function determines if the CastInst does not require any bits to be
1555/// changed in order to effect the cast. Essentially, it identifies cases where
1556/// no code gen is necessary for the cast, hence the name no-op cast.  For
1557/// example, the following are all no-op casts:
1558/// # bitcast uint %X, int
1559/// # bitcast uint* %x, sbyte*
1560/// # bitcast vector< 2 x int > %x, vector< 4 x short>
1561/// # ptrtoint uint* %x, uint     ; on 32-bit plaforms only
1562/// @brief Determine if a cast is a no-op.
1563bool CastInst::isNoopCast(const Type *IntPtrTy) const {
1564  switch (getOpcode()) {
1565    default:
1566      assert(!"Invalid CastOp");
1567    case Instruction::Trunc:
1568    case Instruction::ZExt:
1569    case Instruction::SExt:
1570    case Instruction::FPTrunc:
1571    case Instruction::FPExt:
1572    case Instruction::UIToFP:
1573    case Instruction::SIToFP:
1574    case Instruction::FPToUI:
1575    case Instruction::FPToSI:
1576      return false; // These always modify bits
1577    case Instruction::BitCast:
1578      return true;  // BitCast never modifies bits.
1579    case Instruction::PtrToInt:
1580      return IntPtrTy->getPrimitiveSizeInBits() ==
1581            getType()->getPrimitiveSizeInBits();
1582    case Instruction::IntToPtr:
1583      return IntPtrTy->getPrimitiveSizeInBits() ==
1584             getOperand(0)->getType()->getPrimitiveSizeInBits();
1585  }
1586}
1587
1588/// This function determines if a pair of casts can be eliminated and what
1589/// opcode should be used in the elimination. This assumes that there are two
1590/// instructions like this:
1591/// *  %F = firstOpcode SrcTy %x to MidTy
1592/// *  %S = secondOpcode MidTy %F to DstTy
1593/// The function returns a resultOpcode so these two casts can be replaced with:
1594/// *  %Replacement = resultOpcode %SrcTy %x to DstTy
1595/// If no such cast is permited, the function returns 0.
1596unsigned CastInst::isEliminableCastPair(
1597  Instruction::CastOps firstOp, Instruction::CastOps secondOp,
1598  const Type *SrcTy, const Type *MidTy, const Type *DstTy, const Type *IntPtrTy)
1599{
1600  // Define the 144 possibilities for these two cast instructions. The values
1601  // in this matrix determine what to do in a given situation and select the
1602  // case in the switch below.  The rows correspond to firstOp, the columns
1603  // correspond to secondOp.  In looking at the table below, keep in  mind
1604  // the following cast properties:
1605  //
1606  //          Size Compare       Source               Destination
1607  // Operator  Src ? Size   Type       Sign         Type       Sign
1608  // -------- ------------ -------------------   ---------------------
1609  // TRUNC         >       Integer      Any        Integral     Any
1610  // ZEXT          <       Integral   Unsigned     Integer      Any
1611  // SEXT          <       Integral    Signed      Integer      Any
1612  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
1613  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
1614  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
1615  // SITOFP       n/a      Integral    Signed      FloatPt      n/a
1616  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
1617  // FPEXT         <       FloatPt      n/a        FloatPt      n/a
1618  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
1619  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
1620  // BITCONVERT    =       FirstClass   n/a       FirstClass    n/a
1621  //
1622  // NOTE: some transforms are safe, but we consider them to be non-profitable.
1623  // For example, we could merge "fptoui double to uint" + "zext uint to ulong",
1624  // into "fptoui double to ulong", but this loses information about the range
1625  // of the produced value (we no longer know the top-part is all zeros).
1626  // Further this conversion is often much more expensive for typical hardware,
1627  // and causes issues when building libgcc.  We disallow fptosi+sext for the
1628  // same reason.
1629  const unsigned numCastOps =
1630    Instruction::CastOpsEnd - Instruction::CastOpsBegin;
1631  static const uint8_t CastResults[numCastOps][numCastOps] = {
1632    // T        F  F  U  S  F  F  P  I  B   -+
1633    // R  Z  S  P  P  I  I  T  P  2  N  T    |
1634    // U  E  E  2  2  2  2  R  E  I  T  C    +- secondOp
1635    // N  X  X  U  S  F  F  N  X  N  2  V    |
1636    // C  T  T  I  I  P  P  C  T  T  P  T   -+
1637    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // Trunc      -+
1638    {  8, 1, 9,99,99, 2, 0,99,99,99, 2, 3 }, // ZExt        |
1639    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3 }, // SExt        |
1640    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToUI      |
1641    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3 }, // FPToSI      |
1642    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // UIToFP      +- firstOp
1643    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4 }, // SIToFP      |
1644    { 99,99,99, 0, 0,99,99, 1, 0,99,99, 4 }, // FPTrunc     |
1645    { 99,99,99, 2, 2,99,99,10, 2,99,99, 4 }, // FPExt       |
1646    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3 }, // PtrToInt    |
1647    { 99,99,99,99,99,99,99,99,99,13,99,12 }, // IntToPtr    |
1648    {  5, 5, 5, 6, 6, 5, 5, 6, 6,11, 5, 1 }, // BitCast    -+
1649  };
1650
1651  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
1652                            [secondOp-Instruction::CastOpsBegin];
1653  switch (ElimCase) {
1654    case 0:
1655      // categorically disallowed
1656      return 0;
1657    case 1:
1658      // allowed, use first cast's opcode
1659      return firstOp;
1660    case 2:
1661      // allowed, use second cast's opcode
1662      return secondOp;
1663    case 3:
1664      // no-op cast in second op implies firstOp as long as the DestTy
1665      // is integer
1666      if (DstTy->isInteger())
1667        return firstOp;
1668      return 0;
1669    case 4:
1670      // no-op cast in second op implies firstOp as long as the DestTy
1671      // is floating point
1672      if (DstTy->isFloatingPoint())
1673        return firstOp;
1674      return 0;
1675    case 5:
1676      // no-op cast in first op implies secondOp as long as the SrcTy
1677      // is an integer
1678      if (SrcTy->isInteger())
1679        return secondOp;
1680      return 0;
1681    case 6:
1682      // no-op cast in first op implies secondOp as long as the SrcTy
1683      // is a floating point
1684      if (SrcTy->isFloatingPoint())
1685        return secondOp;
1686      return 0;
1687    case 7: {
1688      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size
1689      unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
1690      unsigned MidSize = MidTy->getPrimitiveSizeInBits();
1691      if (MidSize >= PtrSize)
1692        return Instruction::BitCast;
1693      return 0;
1694    }
1695    case 8: {
1696      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
1697      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
1698      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
1699      unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1700      unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1701      if (SrcSize == DstSize)
1702        return Instruction::BitCast;
1703      else if (SrcSize < DstSize)
1704        return firstOp;
1705      return secondOp;
1706    }
1707    case 9: // zext, sext -> zext, because sext can't sign extend after zext
1708      return Instruction::ZExt;
1709    case 10:
1710      // fpext followed by ftrunc is allowed if the bit size returned to is
1711      // the same as the original, in which case its just a bitcast
1712      if (SrcTy == DstTy)
1713        return Instruction::BitCast;
1714      return 0; // If the types are not the same we can't eliminate it.
1715    case 11:
1716      // bitcast followed by ptrtoint is allowed as long as the bitcast
1717      // is a pointer to pointer cast.
1718      if (isa<PointerType>(SrcTy) && isa<PointerType>(MidTy))
1719        return secondOp;
1720      return 0;
1721    case 12:
1722      // inttoptr, bitcast -> intptr  if bitcast is a ptr to ptr cast
1723      if (isa<PointerType>(MidTy) && isa<PointerType>(DstTy))
1724        return firstOp;
1725      return 0;
1726    case 13: {
1727      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
1728      unsigned PtrSize = IntPtrTy->getPrimitiveSizeInBits();
1729      unsigned SrcSize = SrcTy->getPrimitiveSizeInBits();
1730      unsigned DstSize = DstTy->getPrimitiveSizeInBits();
1731      if (SrcSize <= PtrSize && SrcSize == DstSize)
1732        return Instruction::BitCast;
1733      return 0;
1734    }
1735    case 99:
1736      // cast combination can't happen (error in input). This is for all cases
1737      // where the MidTy is not the same for the two cast instructions.
1738      assert(!"Invalid Cast Combination");
1739      return 0;
1740    default:
1741      assert(!"Error in CastResults table!!!");
1742      return 0;
1743  }
1744  return 0;
1745}
1746
1747CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty,
1748  const std::string &Name, Instruction *InsertBefore) {
1749  // Construct and return the appropriate CastInst subclass
1750  switch (op) {
1751    case Trunc:    return new TruncInst    (S, Ty, Name, InsertBefore);
1752    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertBefore);
1753    case SExt:     return new SExtInst     (S, Ty, Name, InsertBefore);
1754    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertBefore);
1755    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertBefore);
1756    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertBefore);
1757    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertBefore);
1758    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertBefore);
1759    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertBefore);
1760    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
1761    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
1762    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertBefore);
1763    default:
1764      assert(!"Invalid opcode provided");
1765  }
1766  return 0;
1767}
1768
1769CastInst *CastInst::create(Instruction::CastOps op, Value *S, const Type *Ty,
1770  const std::string &Name, BasicBlock *InsertAtEnd) {
1771  // Construct and return the appropriate CastInst subclass
1772  switch (op) {
1773    case Trunc:    return new TruncInst    (S, Ty, Name, InsertAtEnd);
1774    case ZExt:     return new ZExtInst     (S, Ty, Name, InsertAtEnd);
1775    case SExt:     return new SExtInst     (S, Ty, Name, InsertAtEnd);
1776    case FPTrunc:  return new FPTruncInst  (S, Ty, Name, InsertAtEnd);
1777    case FPExt:    return new FPExtInst    (S, Ty, Name, InsertAtEnd);
1778    case UIToFP:   return new UIToFPInst   (S, Ty, Name, InsertAtEnd);
1779    case SIToFP:   return new SIToFPInst   (S, Ty, Name, InsertAtEnd);
1780    case FPToUI:   return new FPToUIInst   (S, Ty, Name, InsertAtEnd);
1781    case FPToSI:   return new FPToSIInst   (S, Ty, Name, InsertAtEnd);
1782    case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
1783    case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
1784    case BitCast:  return new BitCastInst  (S, Ty, Name, InsertAtEnd);
1785    default:
1786      assert(!"Invalid opcode provided");
1787  }
1788  return 0;
1789}
1790
1791CastInst *CastInst::createZExtOrBitCast(Value *S, const Type *Ty,
1792                                        const std::string &Name,
1793                                        Instruction *InsertBefore) {
1794  if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1795    return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
1796  return create(Instruction::ZExt, S, Ty, Name, InsertBefore);
1797}
1798
1799CastInst *CastInst::createZExtOrBitCast(Value *S, const Type *Ty,
1800                                        const std::string &Name,
1801                                        BasicBlock *InsertAtEnd) {
1802  if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1803    return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
1804  return create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
1805}
1806
1807CastInst *CastInst::createSExtOrBitCast(Value *S, const Type *Ty,
1808                                        const std::string &Name,
1809                                        Instruction *InsertBefore) {
1810  if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1811    return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
1812  return create(Instruction::SExt, S, Ty, Name, InsertBefore);
1813}
1814
1815CastInst *CastInst::createSExtOrBitCast(Value *S, const Type *Ty,
1816                                        const std::string &Name,
1817                                        BasicBlock *InsertAtEnd) {
1818  if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1819    return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
1820  return create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
1821}
1822
1823CastInst *CastInst::createTruncOrBitCast(Value *S, const Type *Ty,
1824                                         const std::string &Name,
1825                                         Instruction *InsertBefore) {
1826  if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1827    return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
1828  return create(Instruction::Trunc, S, Ty, Name, InsertBefore);
1829}
1830
1831CastInst *CastInst::createTruncOrBitCast(Value *S, const Type *Ty,
1832                                         const std::string &Name,
1833                                         BasicBlock *InsertAtEnd) {
1834  if (S->getType()->getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits())
1835    return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
1836  return create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
1837}
1838
1839CastInst *CastInst::createPointerCast(Value *S, const Type *Ty,
1840                                      const std::string &Name,
1841                                      BasicBlock *InsertAtEnd) {
1842  assert(isa<PointerType>(S->getType()) && "Invalid cast");
1843  assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
1844         "Invalid cast");
1845
1846  if (Ty->isInteger())
1847    return create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
1848  return create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
1849}
1850
1851/// @brief Create a BitCast or a PtrToInt cast instruction
1852CastInst *CastInst::createPointerCast(Value *S, const Type *Ty,
1853                                      const std::string &Name,
1854                                      Instruction *InsertBefore) {
1855  assert(isa<PointerType>(S->getType()) && "Invalid cast");
1856  assert((Ty->isInteger() || isa<PointerType>(Ty)) &&
1857         "Invalid cast");
1858
1859  if (Ty->isInteger())
1860    return create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
1861  return create(Instruction::BitCast, S, Ty, Name, InsertBefore);
1862}
1863
1864CastInst *CastInst::createIntegerCast(Value *C, const Type *Ty,
1865                                      bool isSigned, const std::string &Name,
1866                                      Instruction *InsertBefore) {
1867  assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
1868  unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1869  unsigned DstBits = Ty->getPrimitiveSizeInBits();
1870  Instruction::CastOps opcode =
1871    (SrcBits == DstBits ? Instruction::BitCast :
1872     (SrcBits > DstBits ? Instruction::Trunc :
1873      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1874  return create(opcode, C, Ty, Name, InsertBefore);
1875}
1876
1877CastInst *CastInst::createIntegerCast(Value *C, const Type *Ty,
1878                                      bool isSigned, const std::string &Name,
1879                                      BasicBlock *InsertAtEnd) {
1880  assert(C->getType()->isInteger() && Ty->isInteger() && "Invalid cast");
1881  unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1882  unsigned DstBits = Ty->getPrimitiveSizeInBits();
1883  Instruction::CastOps opcode =
1884    (SrcBits == DstBits ? Instruction::BitCast :
1885     (SrcBits > DstBits ? Instruction::Trunc :
1886      (isSigned ? Instruction::SExt : Instruction::ZExt)));
1887  return create(opcode, C, Ty, Name, InsertAtEnd);
1888}
1889
1890CastInst *CastInst::createFPCast(Value *C, const Type *Ty,
1891                                 const std::string &Name,
1892                                 Instruction *InsertBefore) {
1893  assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
1894         "Invalid cast");
1895  unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1896  unsigned DstBits = Ty->getPrimitiveSizeInBits();
1897  Instruction::CastOps opcode =
1898    (SrcBits == DstBits ? Instruction::BitCast :
1899     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
1900  return create(opcode, C, Ty, Name, InsertBefore);
1901}
1902
1903CastInst *CastInst::createFPCast(Value *C, const Type *Ty,
1904                                 const std::string &Name,
1905                                 BasicBlock *InsertAtEnd) {
1906  assert(C->getType()->isFloatingPoint() && Ty->isFloatingPoint() &&
1907         "Invalid cast");
1908  unsigned SrcBits = C->getType()->getPrimitiveSizeInBits();
1909  unsigned DstBits = Ty->getPrimitiveSizeInBits();
1910  Instruction::CastOps opcode =
1911    (SrcBits == DstBits ? Instruction::BitCast :
1912     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
1913  return create(opcode, C, Ty, Name, InsertAtEnd);
1914}
1915
1916// Check whether it is valid to call getCastOpcode for these types.
1917// This routine must be kept in sync with getCastOpcode.
1918bool CastInst::isCastable(const Type *SrcTy, const Type *DestTy) {
1919  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
1920    return false;
1921
1922  if (SrcTy == DestTy)
1923    return true;
1924
1925  // Get the bit sizes, we'll need these
1926  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr/vector
1927  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr/vector
1928
1929  // Run through the possibilities ...
1930  if (DestTy->isInteger()) {                      // Casting to integral
1931    if (SrcTy->isInteger()) {                     // Casting from integral
1932        return true;
1933    } else if (SrcTy->isFloatingPoint()) {        // Casting from floating pt
1934      return true;
1935    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
1936                                                  // Casting from vector
1937      return DestBits == PTy->getBitWidth();
1938    } else {                                      // Casting from something else
1939      return isa<PointerType>(SrcTy);
1940    }
1941  } else if (DestTy->isFloatingPoint()) {         // Casting to floating pt
1942    if (SrcTy->isInteger()) {                     // Casting from integral
1943      return true;
1944    } else if (SrcTy->isFloatingPoint()) {        // Casting from floating pt
1945      return true;
1946    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
1947                                                  // Casting from vector
1948      return DestBits == PTy->getBitWidth();
1949    } else {                                      // Casting from something else
1950      return false;
1951    }
1952  } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
1953                                                   // Casting to vector
1954    if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
1955                                                   // Casting from vector
1956      return DestPTy->getBitWidth() == SrcPTy->getBitWidth();
1957    } else {                                       // Casting from something else
1958      return DestPTy->getBitWidth() == SrcBits;
1959    }
1960  } else if (isa<PointerType>(DestTy)) {           // Casting to pointer
1961    if (isa<PointerType>(SrcTy)) {                 // Casting from pointer
1962      return true;
1963    } else if (SrcTy->isInteger()) {               // Casting from integral
1964      return true;
1965    } else {                                       // Casting from something else
1966      return false;
1967    }
1968  } else {                                         // Casting to something else
1969    return false;
1970  }
1971}
1972
1973// Provide a way to get a "cast" where the cast opcode is inferred from the
1974// types and size of the operand. This, basically, is a parallel of the
1975// logic in the castIsValid function below.  This axiom should hold:
1976//   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
1977// should not assert in castIsValid. In other words, this produces a "correct"
1978// casting opcode for the arguments passed to it.
1979// This routine must be kept in sync with isCastable.
1980Instruction::CastOps
1981CastInst::getCastOpcode(
1982  const Value *Src, bool SrcIsSigned, const Type *DestTy, bool DestIsSigned) {
1983  // Get the bit sizes, we'll need these
1984  const Type *SrcTy = Src->getType();
1985  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr/vector
1986  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr/vector
1987
1988  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
1989         "Only first class types are castable!");
1990
1991  // Run through the possibilities ...
1992  if (DestTy->isInteger()) {                       // Casting to integral
1993    if (SrcTy->isInteger()) {                      // Casting from integral
1994      if (DestBits < SrcBits)
1995        return Trunc;                               // int -> smaller int
1996      else if (DestBits > SrcBits) {                // its an extension
1997        if (SrcIsSigned)
1998          return SExt;                              // signed -> SEXT
1999        else
2000          return ZExt;                              // unsigned -> ZEXT
2001      } else {
2002        return BitCast;                             // Same size, No-op cast
2003      }
2004    } else if (SrcTy->isFloatingPoint()) {          // Casting from floating pt
2005      if (DestIsSigned)
2006        return FPToSI;                              // FP -> sint
2007      else
2008        return FPToUI;                              // FP -> uint
2009    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2010      assert(DestBits == PTy->getBitWidth() &&
2011               "Casting vector to integer of different width");
2012      return BitCast;                             // Same size, no-op cast
2013    } else {
2014      assert(isa<PointerType>(SrcTy) &&
2015             "Casting from a value that is not first-class type");
2016      return PtrToInt;                              // ptr -> int
2017    }
2018  } else if (DestTy->isFloatingPoint()) {           // Casting to floating pt
2019    if (SrcTy->isInteger()) {                      // Casting from integral
2020      if (SrcIsSigned)
2021        return SIToFP;                              // sint -> FP
2022      else
2023        return UIToFP;                              // uint -> FP
2024    } else if (SrcTy->isFloatingPoint()) {          // Casting from floating pt
2025      if (DestBits < SrcBits) {
2026        return FPTrunc;                             // FP -> smaller FP
2027      } else if (DestBits > SrcBits) {
2028        return FPExt;                               // FP -> larger FP
2029      } else  {
2030        return BitCast;                             // same size, no-op cast
2031      }
2032    } else if (const VectorType *PTy = dyn_cast<VectorType>(SrcTy)) {
2033      assert(DestBits == PTy->getBitWidth() &&
2034             "Casting vector to floating point of different width");
2035        return BitCast;                             // same size, no-op cast
2036    } else {
2037      assert(0 && "Casting pointer or non-first class to float");
2038    }
2039  } else if (const VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
2040    if (const VectorType *SrcPTy = dyn_cast<VectorType>(SrcTy)) {
2041      assert(DestPTy->getBitWidth() == SrcPTy->getBitWidth() &&
2042             "Casting vector to vector of different widths");
2043      return BitCast;                             // vector -> vector
2044    } else if (DestPTy->getBitWidth() == SrcBits) {
2045      return BitCast;                               // float/int -> vector
2046    } else {
2047      assert(!"Illegal cast to vector (wrong type or size)");
2048    }
2049  } else if (isa<PointerType>(DestTy)) {
2050    if (isa<PointerType>(SrcTy)) {
2051      return BitCast;                               // ptr -> ptr
2052    } else if (SrcTy->isInteger()) {
2053      return IntToPtr;                              // int -> ptr
2054    } else {
2055      assert(!"Casting pointer to other than pointer or int");
2056    }
2057  } else {
2058    assert(!"Casting to type that is not first-class");
2059  }
2060
2061  // If we fall through to here we probably hit an assertion cast above
2062  // and assertions are not turned on. Anything we return is an error, so
2063  // BitCast is as good a choice as any.
2064  return BitCast;
2065}
2066
2067//===----------------------------------------------------------------------===//
2068//                    CastInst SubClass Constructors
2069//===----------------------------------------------------------------------===//
2070
2071/// Check that the construction parameters for a CastInst are correct. This
2072/// could be broken out into the separate constructors but it is useful to have
2073/// it in one place and to eliminate the redundant code for getting the sizes
2074/// of the types involved.
2075bool
2076CastInst::castIsValid(Instruction::CastOps op, Value *S, const Type *DstTy) {
2077
2078  // Check for type sanity on the arguments
2079  const Type *SrcTy = S->getType();
2080  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType())
2081    return false;
2082
2083  // Get the size of the types in bits, we'll need this later
2084  unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
2085  unsigned DstBitSize = DstTy->getPrimitiveSizeInBits();
2086
2087  // Switch on the opcode provided
2088  switch (op) {
2089  default: return false; // This is an input error
2090  case Instruction::Trunc:
2091    return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize > DstBitSize;
2092  case Instruction::ZExt:
2093    return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize < DstBitSize;
2094  case Instruction::SExt:
2095    return SrcTy->isInteger() && DstTy->isInteger()&& SrcBitSize < DstBitSize;
2096  case Instruction::FPTrunc:
2097    return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() &&
2098      SrcBitSize > DstBitSize;
2099  case Instruction::FPExt:
2100    return SrcTy->isFloatingPoint() && DstTy->isFloatingPoint() &&
2101      SrcBitSize < DstBitSize;
2102  case Instruction::UIToFP:
2103  case Instruction::SIToFP:
2104    if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2105      if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2106        return SVTy->getElementType()->isInteger() &&
2107               DVTy->getElementType()->isFloatingPoint() &&
2108               SVTy->getNumElements() == DVTy->getNumElements();
2109      }
2110    }
2111    return SrcTy->isInteger() && DstTy->isFloatingPoint();
2112  case Instruction::FPToUI:
2113  case Instruction::FPToSI:
2114    if (const VectorType *SVTy = dyn_cast<VectorType>(SrcTy)) {
2115      if (const VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
2116        return SVTy->getElementType()->isFloatingPoint() &&
2117               DVTy->getElementType()->isInteger() &&
2118               SVTy->getNumElements() == DVTy->getNumElements();
2119      }
2120    }
2121    return SrcTy->isFloatingPoint() && DstTy->isInteger();
2122  case Instruction::PtrToInt:
2123    return isa<PointerType>(SrcTy) && DstTy->isInteger();
2124  case Instruction::IntToPtr:
2125    return SrcTy->isInteger() && isa<PointerType>(DstTy);
2126  case Instruction::BitCast:
2127    // BitCast implies a no-op cast of type only. No bits change.
2128    // However, you can't cast pointers to anything but pointers.
2129    if (isa<PointerType>(SrcTy) != isa<PointerType>(DstTy))
2130      return false;
2131
2132    // Now we know we're not dealing with a pointer/non-pointer mismatch. In all
2133    // these cases, the cast is okay if the source and destination bit widths
2134    // are identical.
2135    return SrcBitSize == DstBitSize;
2136  }
2137}
2138
2139TruncInst::TruncInst(
2140  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2141) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
2142  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2143}
2144
2145TruncInst::TruncInst(
2146  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2147) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
2148  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
2149}
2150
2151ZExtInst::ZExtInst(
2152  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2153)  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
2154  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2155}
2156
2157ZExtInst::ZExtInst(
2158  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2159)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
2160  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
2161}
2162SExtInst::SExtInst(
2163  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2164) : CastInst(Ty, SExt, S, Name, InsertBefore) {
2165  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2166}
2167
2168SExtInst::SExtInst(
2169  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2170)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
2171  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
2172}
2173
2174FPTruncInst::FPTruncInst(
2175  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2176) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
2177  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2178}
2179
2180FPTruncInst::FPTruncInst(
2181  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2182) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
2183  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
2184}
2185
2186FPExtInst::FPExtInst(
2187  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2188) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
2189  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2190}
2191
2192FPExtInst::FPExtInst(
2193  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2194) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
2195  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
2196}
2197
2198UIToFPInst::UIToFPInst(
2199  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2200) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
2201  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2202}
2203
2204UIToFPInst::UIToFPInst(
2205  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2206) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
2207  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
2208}
2209
2210SIToFPInst::SIToFPInst(
2211  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2212) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
2213  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2214}
2215
2216SIToFPInst::SIToFPInst(
2217  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2218) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
2219  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
2220}
2221
2222FPToUIInst::FPToUIInst(
2223  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2224) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
2225  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2226}
2227
2228FPToUIInst::FPToUIInst(
2229  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2230) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
2231  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
2232}
2233
2234FPToSIInst::FPToSIInst(
2235  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2236) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
2237  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2238}
2239
2240FPToSIInst::FPToSIInst(
2241  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2242) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
2243  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
2244}
2245
2246PtrToIntInst::PtrToIntInst(
2247  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2248) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
2249  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2250}
2251
2252PtrToIntInst::PtrToIntInst(
2253  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2254) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
2255  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
2256}
2257
2258IntToPtrInst::IntToPtrInst(
2259  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2260) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
2261  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2262}
2263
2264IntToPtrInst::IntToPtrInst(
2265  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2266) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
2267  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
2268}
2269
2270BitCastInst::BitCastInst(
2271  Value *S, const Type *Ty, const std::string &Name, Instruction *InsertBefore
2272) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
2273  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2274}
2275
2276BitCastInst::BitCastInst(
2277  Value *S, const Type *Ty, const std::string &Name, BasicBlock *InsertAtEnd
2278) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
2279  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
2280}
2281
2282//===----------------------------------------------------------------------===//
2283//                               CmpInst Classes
2284//===----------------------------------------------------------------------===//
2285
2286CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
2287                 const std::string &Name, Instruction *InsertBefore)
2288  : Instruction(Type::Int1Ty, op, Ops, 2, InsertBefore) {
2289    Ops[0].init(LHS, this);
2290    Ops[1].init(RHS, this);
2291  SubclassData = predicate;
2292  setName(Name);
2293  if (op == Instruction::ICmp) {
2294    assert(predicate >= ICmpInst::FIRST_ICMP_PREDICATE &&
2295           predicate <= ICmpInst::LAST_ICMP_PREDICATE &&
2296           "Invalid ICmp predicate value");
2297    const Type* Op0Ty = getOperand(0)->getType();
2298    const Type* Op1Ty = getOperand(1)->getType();
2299    assert(Op0Ty == Op1Ty &&
2300           "Both operands to ICmp instruction are not of the same type!");
2301    // Check that the operands are the right type
2302    assert((Op0Ty->isInteger() || isa<PointerType>(Op0Ty)) &&
2303           "Invalid operand types for ICmp instruction");
2304    return;
2305  }
2306  assert(op == Instruction::FCmp && "Invalid CmpInst opcode");
2307  assert(predicate <= FCmpInst::LAST_FCMP_PREDICATE &&
2308         "Invalid FCmp predicate value");
2309  const Type* Op0Ty = getOperand(0)->getType();
2310  const Type* Op1Ty = getOperand(1)->getType();
2311  assert(Op0Ty == Op1Ty &&
2312         "Both operands to FCmp instruction are not of the same type!");
2313  // Check that the operands are the right type
2314  assert(Op0Ty->isFloatingPoint() &&
2315         "Invalid operand types for FCmp instruction");
2316}
2317
2318CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
2319                 const std::string &Name, BasicBlock *InsertAtEnd)
2320  : Instruction(Type::Int1Ty, op, Ops, 2, InsertAtEnd) {
2321  Ops[0].init(LHS, this);
2322  Ops[1].init(RHS, this);
2323  SubclassData = predicate;
2324  setName(Name);
2325  if (op == Instruction::ICmp) {
2326    assert(predicate >= ICmpInst::FIRST_ICMP_PREDICATE &&
2327           predicate <= ICmpInst::LAST_ICMP_PREDICATE &&
2328           "Invalid ICmp predicate value");
2329
2330    const Type* Op0Ty = getOperand(0)->getType();
2331    const Type* Op1Ty = getOperand(1)->getType();
2332    assert(Op0Ty == Op1Ty &&
2333          "Both operands to ICmp instruction are not of the same type!");
2334    // Check that the operands are the right type
2335    assert((Op0Ty->isInteger() || isa<PointerType>(Op0Ty)) &&
2336           "Invalid operand types for ICmp instruction");
2337    return;
2338  }
2339  assert(op == Instruction::FCmp && "Invalid CmpInst opcode");
2340  assert(predicate <= FCmpInst::LAST_FCMP_PREDICATE &&
2341         "Invalid FCmp predicate value");
2342  const Type* Op0Ty = getOperand(0)->getType();
2343  const Type* Op1Ty = getOperand(1)->getType();
2344  assert(Op0Ty == Op1Ty &&
2345          "Both operands to FCmp instruction are not of the same type!");
2346  // Check that the operands are the right type
2347  assert(Op0Ty->isFloatingPoint() &&
2348        "Invalid operand types for FCmp instruction");
2349}
2350
2351CmpInst *
2352CmpInst::create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2353                const std::string &Name, Instruction *InsertBefore) {
2354  if (Op == Instruction::ICmp) {
2355    return new ICmpInst(ICmpInst::Predicate(predicate), S1, S2, Name,
2356                        InsertBefore);
2357  }
2358  return new FCmpInst(FCmpInst::Predicate(predicate), S1, S2, Name,
2359                      InsertBefore);
2360}
2361
2362CmpInst *
2363CmpInst::create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
2364                const std::string &Name, BasicBlock *InsertAtEnd) {
2365  if (Op == Instruction::ICmp) {
2366    return new ICmpInst(ICmpInst::Predicate(predicate), S1, S2, Name,
2367                        InsertAtEnd);
2368  }
2369  return new FCmpInst(FCmpInst::Predicate(predicate), S1, S2, Name,
2370                      InsertAtEnd);
2371}
2372
2373void CmpInst::swapOperands() {
2374  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2375    IC->swapOperands();
2376  else
2377    cast<FCmpInst>(this)->swapOperands();
2378}
2379
2380bool CmpInst::isCommutative() {
2381  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2382    return IC->isCommutative();
2383  return cast<FCmpInst>(this)->isCommutative();
2384}
2385
2386bool CmpInst::isEquality() {
2387  if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
2388    return IC->isEquality();
2389  return cast<FCmpInst>(this)->isEquality();
2390}
2391
2392
2393ICmpInst::Predicate ICmpInst::getInversePredicate(Predicate pred) {
2394  switch (pred) {
2395    default:
2396      assert(!"Unknown icmp predicate!");
2397    case ICMP_EQ: return ICMP_NE;
2398    case ICMP_NE: return ICMP_EQ;
2399    case ICMP_UGT: return ICMP_ULE;
2400    case ICMP_ULT: return ICMP_UGE;
2401    case ICMP_UGE: return ICMP_ULT;
2402    case ICMP_ULE: return ICMP_UGT;
2403    case ICMP_SGT: return ICMP_SLE;
2404    case ICMP_SLT: return ICMP_SGE;
2405    case ICMP_SGE: return ICMP_SLT;
2406    case ICMP_SLE: return ICMP_SGT;
2407  }
2408}
2409
2410ICmpInst::Predicate ICmpInst::getSwappedPredicate(Predicate pred) {
2411  switch (pred) {
2412    default: assert(! "Unknown icmp predicate!");
2413    case ICMP_EQ: case ICMP_NE:
2414      return pred;
2415    case ICMP_SGT: return ICMP_SLT;
2416    case ICMP_SLT: return ICMP_SGT;
2417    case ICMP_SGE: return ICMP_SLE;
2418    case ICMP_SLE: return ICMP_SGE;
2419    case ICMP_UGT: return ICMP_ULT;
2420    case ICMP_ULT: return ICMP_UGT;
2421    case ICMP_UGE: return ICMP_ULE;
2422    case ICMP_ULE: return ICMP_UGE;
2423  }
2424}
2425
2426ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
2427  switch (pred) {
2428    default: assert(! "Unknown icmp predicate!");
2429    case ICMP_EQ: case ICMP_NE:
2430    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2431       return pred;
2432    case ICMP_UGT: return ICMP_SGT;
2433    case ICMP_ULT: return ICMP_SLT;
2434    case ICMP_UGE: return ICMP_SGE;
2435    case ICMP_ULE: return ICMP_SLE;
2436  }
2437}
2438
2439ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
2440  switch (pred) {
2441    default: assert(! "Unknown icmp predicate!");
2442    case ICMP_EQ: case ICMP_NE:
2443    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
2444       return pred;
2445    case ICMP_SGT: return ICMP_UGT;
2446    case ICMP_SLT: return ICMP_ULT;
2447    case ICMP_SGE: return ICMP_UGE;
2448    case ICMP_SLE: return ICMP_ULE;
2449  }
2450}
2451
2452bool ICmpInst::isSignedPredicate(Predicate pred) {
2453  switch (pred) {
2454    default: assert(! "Unknown icmp predicate!");
2455    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
2456      return true;
2457    case ICMP_EQ:  case ICMP_NE: case ICMP_UGT: case ICMP_ULT:
2458    case ICMP_UGE: case ICMP_ULE:
2459      return false;
2460  }
2461}
2462
2463/// Initialize a set of values that all satisfy the condition with C.
2464///
2465ConstantRange
2466ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
2467  APInt Lower(C);
2468  APInt Upper(C);
2469  uint32_t BitWidth = C.getBitWidth();
2470  switch (pred) {
2471  default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
2472  case ICmpInst::ICMP_EQ: Upper++; break;
2473  case ICmpInst::ICMP_NE: Lower++; break;
2474  case ICmpInst::ICMP_ULT: Lower = APInt::getMinValue(BitWidth); break;
2475  case ICmpInst::ICMP_SLT: Lower = APInt::getSignedMinValue(BitWidth); break;
2476  case ICmpInst::ICMP_UGT:
2477    Lower++; Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2478    break;
2479  case ICmpInst::ICMP_SGT:
2480    Lower++; Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2481    break;
2482  case ICmpInst::ICMP_ULE:
2483    Lower = APInt::getMinValue(BitWidth); Upper++;
2484    break;
2485  case ICmpInst::ICMP_SLE:
2486    Lower = APInt::getSignedMinValue(BitWidth); Upper++;
2487    break;
2488  case ICmpInst::ICMP_UGE:
2489    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
2490    break;
2491  case ICmpInst::ICMP_SGE:
2492    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
2493    break;
2494  }
2495  return ConstantRange(Lower, Upper);
2496}
2497
2498FCmpInst::Predicate FCmpInst::getInversePredicate(Predicate pred) {
2499  switch (pred) {
2500    default:
2501      assert(!"Unknown icmp predicate!");
2502    case FCMP_OEQ: return FCMP_UNE;
2503    case FCMP_ONE: return FCMP_UEQ;
2504    case FCMP_OGT: return FCMP_ULE;
2505    case FCMP_OLT: return FCMP_UGE;
2506    case FCMP_OGE: return FCMP_ULT;
2507    case FCMP_OLE: return FCMP_UGT;
2508    case FCMP_UEQ: return FCMP_ONE;
2509    case FCMP_UNE: return FCMP_OEQ;
2510    case FCMP_UGT: return FCMP_OLE;
2511    case FCMP_ULT: return FCMP_OGE;
2512    case FCMP_UGE: return FCMP_OLT;
2513    case FCMP_ULE: return FCMP_OGT;
2514    case FCMP_ORD: return FCMP_UNO;
2515    case FCMP_UNO: return FCMP_ORD;
2516    case FCMP_TRUE: return FCMP_FALSE;
2517    case FCMP_FALSE: return FCMP_TRUE;
2518  }
2519}
2520
2521FCmpInst::Predicate FCmpInst::getSwappedPredicate(Predicate pred) {
2522  switch (pred) {
2523    default: assert(!"Unknown fcmp predicate!");
2524    case FCMP_FALSE: case FCMP_TRUE:
2525    case FCMP_OEQ: case FCMP_ONE:
2526    case FCMP_UEQ: case FCMP_UNE:
2527    case FCMP_ORD: case FCMP_UNO:
2528      return pred;
2529    case FCMP_OGT: return FCMP_OLT;
2530    case FCMP_OLT: return FCMP_OGT;
2531    case FCMP_OGE: return FCMP_OLE;
2532    case FCMP_OLE: return FCMP_OGE;
2533    case FCMP_UGT: return FCMP_ULT;
2534    case FCMP_ULT: return FCMP_UGT;
2535    case FCMP_UGE: return FCMP_ULE;
2536    case FCMP_ULE: return FCMP_UGE;
2537  }
2538}
2539
2540bool CmpInst::isUnsigned(unsigned short predicate) {
2541  switch (predicate) {
2542    default: return false;
2543    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
2544    case ICmpInst::ICMP_UGE: return true;
2545  }
2546}
2547
2548bool CmpInst::isSigned(unsigned short predicate){
2549  switch (predicate) {
2550    default: return false;
2551    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
2552    case ICmpInst::ICMP_SGE: return true;
2553  }
2554}
2555
2556bool CmpInst::isOrdered(unsigned short predicate) {
2557  switch (predicate) {
2558    default: return false;
2559    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
2560    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
2561    case FCmpInst::FCMP_ORD: return true;
2562  }
2563}
2564
2565bool CmpInst::isUnordered(unsigned short predicate) {
2566  switch (predicate) {
2567    default: return false;
2568    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
2569    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
2570    case FCmpInst::FCMP_UNO: return true;
2571  }
2572}
2573
2574//===----------------------------------------------------------------------===//
2575//                        SwitchInst Implementation
2576//===----------------------------------------------------------------------===//
2577
2578void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumCases) {
2579  assert(Value && Default);
2580  ReservedSpace = 2+NumCases*2;
2581  NumOperands = 2;
2582  OperandList = new Use[ReservedSpace];
2583
2584  OperandList[0].init(Value, this);
2585  OperandList[1].init(Default, this);
2586}
2587
2588/// SwitchInst ctor - Create a new switch instruction, specifying a value to
2589/// switch on and a default destination.  The number of additional cases can
2590/// be specified here to make memory allocation more efficient.  This
2591/// constructor can also autoinsert before another instruction.
2592SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2593                       Instruction *InsertBefore)
2594  : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertBefore) {
2595  init(Value, Default, NumCases);
2596}
2597
2598/// SwitchInst ctor - Create a new switch instruction, specifying a value to
2599/// switch on and a default destination.  The number of additional cases can
2600/// be specified here to make memory allocation more efficient.  This
2601/// constructor also autoinserts at the end of the specified BasicBlock.
2602SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2603                       BasicBlock *InsertAtEnd)
2604  : TerminatorInst(Type::VoidTy, Instruction::Switch, 0, 0, InsertAtEnd) {
2605  init(Value, Default, NumCases);
2606}
2607
2608SwitchInst::SwitchInst(const SwitchInst &SI)
2609  : TerminatorInst(Type::VoidTy, Instruction::Switch,
2610                   new Use[SI.getNumOperands()], SI.getNumOperands()) {
2611  Use *OL = OperandList, *InOL = SI.OperandList;
2612  for (unsigned i = 0, E = SI.getNumOperands(); i != E; i+=2) {
2613    OL[i].init(InOL[i], this);
2614    OL[i+1].init(InOL[i+1], this);
2615  }
2616}
2617
2618SwitchInst::~SwitchInst() {
2619  delete [] OperandList;
2620}
2621
2622
2623/// addCase - Add an entry to the switch instruction...
2624///
2625void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
2626  unsigned OpNo = NumOperands;
2627  if (OpNo+2 > ReservedSpace)
2628    resizeOperands(0);  // Get more space!
2629  // Initialize some new operands.
2630  assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
2631  NumOperands = OpNo+2;
2632  OperandList[OpNo].init(OnVal, this);
2633  OperandList[OpNo+1].init(Dest, this);
2634}
2635
2636/// removeCase - This method removes the specified successor from the switch
2637/// instruction.  Note that this cannot be used to remove the default
2638/// destination (successor #0).
2639///
2640void SwitchInst::removeCase(unsigned idx) {
2641  assert(idx != 0 && "Cannot remove the default case!");
2642  assert(idx*2 < getNumOperands() && "Successor index out of range!!!");
2643
2644  unsigned NumOps = getNumOperands();
2645  Use *OL = OperandList;
2646
2647  // Move everything after this operand down.
2648  //
2649  // FIXME: we could just swap with the end of the list, then erase.  However,
2650  // client might not expect this to happen.  The code as it is thrashes the
2651  // use/def lists, which is kinda lame.
2652  for (unsigned i = (idx+1)*2; i != NumOps; i += 2) {
2653    OL[i-2] = OL[i];
2654    OL[i-2+1] = OL[i+1];
2655  }
2656
2657  // Nuke the last value.
2658  OL[NumOps-2].set(0);
2659  OL[NumOps-2+1].set(0);
2660  NumOperands = NumOps-2;
2661}
2662
2663/// resizeOperands - resize operands - This adjusts the length of the operands
2664/// list according to the following behavior:
2665///   1. If NumOps == 0, grow the operand list in response to a push_back style
2666///      of operation.  This grows the number of ops by 1.5 times.
2667///   2. If NumOps > NumOperands, reserve space for NumOps operands.
2668///   3. If NumOps == NumOperands, trim the reserved space.
2669///
2670void SwitchInst::resizeOperands(unsigned NumOps) {
2671  if (NumOps == 0) {
2672    NumOps = getNumOperands()/2*6;
2673  } else if (NumOps*2 > NumOperands) {
2674    // No resize needed.
2675    if (ReservedSpace >= NumOps) return;
2676  } else if (NumOps == NumOperands) {
2677    if (ReservedSpace == NumOps) return;
2678  } else {
2679    return;
2680  }
2681
2682  ReservedSpace = NumOps;
2683  Use *NewOps = new Use[NumOps];
2684  Use *OldOps = OperandList;
2685  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2686      NewOps[i].init(OldOps[i], this);
2687      OldOps[i].set(0);
2688  }
2689  delete [] OldOps;
2690  OperandList = NewOps;
2691}
2692
2693
2694BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
2695  return getSuccessor(idx);
2696}
2697unsigned SwitchInst::getNumSuccessorsV() const {
2698  return getNumSuccessors();
2699}
2700void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
2701  setSuccessor(idx, B);
2702}
2703
2704//===----------------------------------------------------------------------===//
2705//                           GetResultInst Implementation
2706//===----------------------------------------------------------------------===//
2707
2708GetResultInst::GetResultInst(Value *Aggregate, unsigned Index,
2709                             const std::string &Name,
2710                             Instruction *InsertBef)
2711  : Instruction(cast<StructType>(Aggregate->getType())->getElementType(Index),
2712                GetResult, &Aggr, 1, InsertBef) {
2713  assert(isValidOperands(Aggregate, Index) && "Invalid GetResultInst operands!");
2714  Aggr.init(Aggregate, this);
2715  Idx = Index;
2716  setName(Name);
2717}
2718
2719bool GetResultInst::isValidOperands(const Value *Aggregate, unsigned Index) {
2720  if (!Aggregate)
2721    return false;
2722
2723  if (const StructType *STy = dyn_cast<StructType>(Aggregate->getType())) {
2724    unsigned NumElements = STy->getNumElements();
2725    if (Index >= NumElements)
2726      return false;
2727
2728    // getresult aggregate value's element types are restricted to
2729    // avoid nested aggregates.
2730    for (unsigned i = 0; i < NumElements; ++i)
2731      if (!STy->getElementType(i)->isFirstClassType())
2732        return false;
2733
2734    // Otherwise, Aggregate is valid.
2735    return true;
2736  }
2737  return false;
2738}
2739
2740
2741// Define these methods here so vtables don't get emitted into every translation
2742// unit that uses these classes.
2743
2744GetElementPtrInst *GetElementPtrInst::clone() const {
2745  return new GetElementPtrInst(*this);
2746}
2747
2748BinaryOperator *BinaryOperator::clone() const {
2749  return create(getOpcode(), Ops[0], Ops[1]);
2750}
2751
2752FCmpInst* FCmpInst::clone() const {
2753  return new FCmpInst(getPredicate(), Ops[0], Ops[1]);
2754}
2755ICmpInst* ICmpInst::clone() const {
2756  return new ICmpInst(getPredicate(), Ops[0], Ops[1]);
2757}
2758
2759MallocInst *MallocInst::clone()   const { return new MallocInst(*this); }
2760AllocaInst *AllocaInst::clone()   const { return new AllocaInst(*this); }
2761FreeInst   *FreeInst::clone()     const { return new FreeInst(getOperand(0)); }
2762LoadInst   *LoadInst::clone()     const { return new LoadInst(*this); }
2763StoreInst  *StoreInst::clone()    const { return new StoreInst(*this); }
2764CastInst   *TruncInst::clone()    const { return new TruncInst(*this); }
2765CastInst   *ZExtInst::clone()     const { return new ZExtInst(*this); }
2766CastInst   *SExtInst::clone()     const { return new SExtInst(*this); }
2767CastInst   *FPTruncInst::clone()  const { return new FPTruncInst(*this); }
2768CastInst   *FPExtInst::clone()    const { return new FPExtInst(*this); }
2769CastInst   *UIToFPInst::clone()   const { return new UIToFPInst(*this); }
2770CastInst   *SIToFPInst::clone()   const { return new SIToFPInst(*this); }
2771CastInst   *FPToUIInst::clone()   const { return new FPToUIInst(*this); }
2772CastInst   *FPToSIInst::clone()   const { return new FPToSIInst(*this); }
2773CastInst   *PtrToIntInst::clone() const { return new PtrToIntInst(*this); }
2774CastInst   *IntToPtrInst::clone() const { return new IntToPtrInst(*this); }
2775CastInst   *BitCastInst::clone()  const { return new BitCastInst(*this); }
2776CallInst   *CallInst::clone()     const { return new CallInst(*this); }
2777SelectInst *SelectInst::clone()   const { return new SelectInst(*this); }
2778VAArgInst  *VAArgInst::clone()    const { return new VAArgInst(*this); }
2779
2780ExtractElementInst *ExtractElementInst::clone() const {
2781  return new ExtractElementInst(*this);
2782}
2783InsertElementInst *InsertElementInst::clone() const {
2784  return new InsertElementInst(*this);
2785}
2786ShuffleVectorInst *ShuffleVectorInst::clone() const {
2787  return new ShuffleVectorInst(*this);
2788}
2789PHINode    *PHINode::clone()    const { return new PHINode(*this); }
2790ReturnInst *ReturnInst::clone() const { return new ReturnInst(*this); }
2791BranchInst *BranchInst::clone() const { return new BranchInst(*this); }
2792SwitchInst *SwitchInst::clone() const { return new SwitchInst(*this); }
2793InvokeInst *InvokeInst::clone() const { return new InvokeInst(*this); }
2794UnwindInst *UnwindInst::clone() const { return new UnwindInst(); }
2795UnreachableInst *UnreachableInst::clone() const { return new UnreachableInst();}
2796GetResultInst *GetResultInst::clone() const { return new GetResultInst(*this); }
2797