Value.cpp revision 5034dd318a9dfa0dc45a3ac01e58e60f2aa2498d
1//===-- Value.cpp - Implement the Value class -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Value, ValueHandle, and User classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "LLVMContextImpl.h"
15#include "llvm/Constant.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/InstrTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Operator.h"
21#include "llvm/Module.h"
22#include "llvm/ValueSymbolTable.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/GetElementPtrTypeIterator.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/LeakDetector.h"
28#include "llvm/Support/ManagedStatic.h"
29#include "llvm/Support/ValueHandle.h"
30#include "llvm/ADT/DenseMap.h"
31#include <algorithm>
32using namespace llvm;
33
34//===----------------------------------------------------------------------===//
35//                                Value Class
36//===----------------------------------------------------------------------===//
37
38static inline const Type *checkType(const Type *Ty) {
39  assert(Ty && "Value defined with a null type: Error!");
40  return Ty;
41}
42
43Value::Value(const Type *ty, unsigned scid)
44  : SubclassID(scid), HasValueHandle(0),
45    SubclassOptionalData(0), SubclassData(0), VTy(checkType(ty)),
46    UseList(0), Name(0) {
47  if (isa<CallInst>(this) || isa<InvokeInst>(this))
48    assert((VTy->isFirstClassType() || VTy->isVoidTy() ||
49            ty->isOpaqueTy() || VTy->isStructTy()) &&
50           "invalid CallInst  type!");
51  else if (!isa<Constant>(this) && !isa<BasicBlock>(this))
52    assert((VTy->isFirstClassType() || VTy->isVoidTy() ||
53            ty->isOpaqueTy()) &&
54           "Cannot create non-first-class values except for constants!");
55}
56
57Value::~Value() {
58  // Notify all ValueHandles (if present) that this value is going away.
59  if (HasValueHandle)
60    ValueHandleBase::ValueIsDeleted(this);
61
62#ifndef NDEBUG      // Only in -g mode...
63  // Check to make sure that there are no uses of this value that are still
64  // around when the value is destroyed.  If there are, then we have a dangling
65  // reference and something is wrong.  This code is here to print out what is
66  // still being referenced.  The value in question should be printed as
67  // a <badref>
68  //
69  if (!use_empty()) {
70    dbgs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n";
71    for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
72      dbgs() << "Use still stuck around after Def is destroyed:"
73           << **I << "\n";
74  }
75#endif
76  assert(use_empty() && "Uses remain when a value is destroyed!");
77
78  // If this value is named, destroy the name.  This should not be in a symtab
79  // at this point.
80  if (Name)
81    Name->Destroy();
82
83  // There should be no uses of this object anymore, remove it.
84  LeakDetector::removeGarbageObject(this);
85}
86
87/// hasNUses - Return true if this Value has exactly N users.
88///
89bool Value::hasNUses(unsigned N) const {
90  const_use_iterator UI = use_begin(), E = use_end();
91
92  for (; N; --N, ++UI)
93    if (UI == E) return false;  // Too few.
94  return UI == E;
95}
96
97/// hasNUsesOrMore - Return true if this value has N users or more.  This is
98/// logically equivalent to getNumUses() >= N.
99///
100bool Value::hasNUsesOrMore(unsigned N) const {
101  const_use_iterator UI = use_begin(), E = use_end();
102
103  for (; N; --N, ++UI)
104    if (UI == E) return false;  // Too few.
105
106  return true;
107}
108
109/// isUsedInBasicBlock - Return true if this value is used in the specified
110/// basic block.
111bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
112  for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) {
113    const Instruction *User = dyn_cast<Instruction>(*I);
114    if (User && User->getParent() == BB)
115      return true;
116  }
117  return false;
118}
119
120
121/// getNumUses - This method computes the number of uses of this Value.  This
122/// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
123/// values.
124unsigned Value::getNumUses() const {
125  return (unsigned)std::distance(use_begin(), use_end());
126}
127
128static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
129  ST = 0;
130  if (Instruction *I = dyn_cast<Instruction>(V)) {
131    if (BasicBlock *P = I->getParent())
132      if (Function *PP = P->getParent())
133        ST = &PP->getValueSymbolTable();
134  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
135    if (Function *P = BB->getParent())
136      ST = &P->getValueSymbolTable();
137  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
138    if (Module *P = GV->getParent())
139      ST = &P->getValueSymbolTable();
140  } else if (Argument *A = dyn_cast<Argument>(V)) {
141    if (Function *P = A->getParent())
142      ST = &P->getValueSymbolTable();
143  } else if (isa<MDString>(V))
144    return true;
145  else {
146    assert(isa<Constant>(V) && "Unknown value type!");
147    return true;  // no name is setable for this.
148  }
149  return false;
150}
151
152StringRef Value::getName() const {
153  // Make sure the empty string is still a C string. For historical reasons,
154  // some clients want to call .data() on the result and expect it to be null
155  // terminated.
156  if (!Name) return StringRef("", 0);
157  return Name->getKey();
158}
159
160std::string Value::getNameStr() const {
161  return getName().str();
162}
163
164void Value::setName(const Twine &NewName) {
165  // Fast path for common IRBuilder case of setName("") when there is no name.
166  if (NewName.isTriviallyEmpty() && !hasName())
167    return;
168
169  SmallString<256> NameData;
170  StringRef NameRef = NewName.toStringRef(NameData);
171
172  // Name isn't changing?
173  if (getName() == NameRef)
174    return;
175
176  assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
177
178  // Get the symbol table to update for this object.
179  ValueSymbolTable *ST;
180  if (getSymTab(this, ST))
181    return;  // Cannot set a name on this value (e.g. constant).
182
183  if (!ST) { // No symbol table to update?  Just do the change.
184    if (NameRef.empty()) {
185      // Free the name for this value.
186      Name->Destroy();
187      Name = 0;
188      return;
189    }
190
191    if (Name)
192      Name->Destroy();
193
194    // NOTE: Could optimize for the case the name is shrinking to not deallocate
195    // then reallocated.
196
197    // Create the new name.
198    Name = ValueName::Create(NameRef.begin(), NameRef.end());
199    Name->setValue(this);
200    return;
201  }
202
203  // NOTE: Could optimize for the case the name is shrinking to not deallocate
204  // then reallocated.
205  if (hasName()) {
206    // Remove old name.
207    ST->removeValueName(Name);
208    Name->Destroy();
209    Name = 0;
210
211    if (NameRef.empty())
212      return;
213  }
214
215  // Name is changing to something new.
216  Name = ST->createValueName(NameRef, this);
217}
218
219
220/// takeName - transfer the name from V to this value, setting V's name to
221/// empty.  It is an error to call V->takeName(V).
222void Value::takeName(Value *V) {
223  ValueSymbolTable *ST = 0;
224  // If this value has a name, drop it.
225  if (hasName()) {
226    // Get the symtab this is in.
227    if (getSymTab(this, ST)) {
228      // We can't set a name on this value, but we need to clear V's name if
229      // it has one.
230      if (V->hasName()) V->setName("");
231      return;  // Cannot set a name on this value (e.g. constant).
232    }
233
234    // Remove old name.
235    if (ST)
236      ST->removeValueName(Name);
237    Name->Destroy();
238    Name = 0;
239  }
240
241  // Now we know that this has no name.
242
243  // If V has no name either, we're done.
244  if (!V->hasName()) return;
245
246  // Get this's symtab if we didn't before.
247  if (!ST) {
248    if (getSymTab(this, ST)) {
249      // Clear V's name.
250      V->setName("");
251      return;  // Cannot set a name on this value (e.g. constant).
252    }
253  }
254
255  // Get V's ST, this should always succed, because V has a name.
256  ValueSymbolTable *VST;
257  bool Failure = getSymTab(V, VST);
258  assert(!Failure && "V has a name, so it should have a ST!"); Failure=Failure;
259
260  // If these values are both in the same symtab, we can do this very fast.
261  // This works even if both values have no symtab yet.
262  if (ST == VST) {
263    // Take the name!
264    Name = V->Name;
265    V->Name = 0;
266    Name->setValue(this);
267    return;
268  }
269
270  // Otherwise, things are slightly more complex.  Remove V's name from VST and
271  // then reinsert it into ST.
272
273  if (VST)
274    VST->removeValueName(V->Name);
275  Name = V->Name;
276  V->Name = 0;
277  Name->setValue(this);
278
279  if (ST)
280    ST->reinsertValue(this);
281}
282
283
284// uncheckedReplaceAllUsesWith - This is exactly the same as replaceAllUsesWith,
285// except that it doesn't have all of the asserts.  The asserts fail because we
286// are half-way done resolving types, which causes some types to exist as two
287// different Type*'s at the same time.  This is a sledgehammer to work around
288// this problem.
289//
290void Value::uncheckedReplaceAllUsesWith(Value *New) {
291  // Notify all ValueHandles (if present) that this value is going away.
292  if (HasValueHandle)
293    ValueHandleBase::ValueIsRAUWd(this, New);
294
295  while (!use_empty()) {
296    Use &U = *UseList;
297    // Must handle Constants specially, we cannot call replaceUsesOfWith on a
298    // constant because they are uniqued.
299    if (Constant *C = dyn_cast<Constant>(U.getUser())) {
300      if (!isa<GlobalValue>(C)) {
301        C->replaceUsesOfWithOnConstant(this, New, &U);
302        continue;
303      }
304    }
305
306    U.set(New);
307  }
308}
309
310void Value::replaceAllUsesWith(Value *New) {
311  assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
312  assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
313  assert(New->getType() == getType() &&
314         "replaceAllUses of value with new value of different type!");
315
316  uncheckedReplaceAllUsesWith(New);
317}
318
319Value *Value::stripPointerCasts() {
320  if (!getType()->isPointerTy())
321    return this;
322
323  // Even though we don't look through PHI nodes, we could be called on an
324  // instruction in an unreachable block, which may be on a cycle.
325  SmallPtrSet<Value *, 4> Visited;
326
327  Value *V = this;
328  Visited.insert(V);
329  do {
330    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
331      if (!GEP->hasAllZeroIndices())
332        return V;
333      V = GEP->getPointerOperand();
334    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
335      V = cast<Operator>(V)->getOperand(0);
336    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
337      if (GA->mayBeOverridden())
338        return V;
339      V = GA->getAliasee();
340    } else {
341      return V;
342    }
343    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
344  } while (Visited.insert(V));
345
346  return V;
347}
348
349/// isDereferenceablePointer - Test if this value is always a pointer to
350/// allocated and suitably aligned memory for a simple load or store.
351bool Value::isDereferenceablePointer() const {
352  // Note that it is not safe to speculate into a malloc'd region because
353  // malloc may return null.
354  // It's also not always safe to follow a bitcast, for example:
355  //   bitcast i8* (alloca i8) to i32*
356  // would result in a 4-byte load from a 1-byte alloca. Some cases could
357  // be handled using TargetData to check sizes and alignments though.
358
359  // These are obviously ok.
360  if (isa<AllocaInst>(this)) return true;
361
362  // Global variables which can't collapse to null are ok.
363  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(this))
364    return !GV->hasExternalWeakLinkage();
365
366  // For GEPs, determine if the indexing lands within the allocated object.
367  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(this)) {
368    // Conservatively require that the base pointer be fully dereferenceable.
369    if (!GEP->getOperand(0)->isDereferenceablePointer())
370      return false;
371    // Check the indices.
372    gep_type_iterator GTI = gep_type_begin(GEP);
373    for (User::const_op_iterator I = GEP->op_begin()+1,
374         E = GEP->op_end(); I != E; ++I) {
375      Value *Index = *I;
376      const Type *Ty = *GTI++;
377      // Struct indices can't be out of bounds.
378      if (isa<StructType>(Ty))
379        continue;
380      ConstantInt *CI = dyn_cast<ConstantInt>(Index);
381      if (!CI)
382        return false;
383      // Zero is always ok.
384      if (CI->isZero())
385        continue;
386      // Check to see that it's within the bounds of an array.
387      const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
388      if (!ATy)
389        return false;
390      if (CI->getValue().getActiveBits() > 64)
391        return false;
392      if (CI->getZExtValue() >= ATy->getNumElements())
393        return false;
394    }
395    // Indices check out; this is dereferenceable.
396    return true;
397  }
398
399  // If we don't know, assume the worst.
400  return false;
401}
402
403/// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
404/// return the value in the PHI node corresponding to PredBB.  If not, return
405/// ourself.  This is useful if you want to know the value something has in a
406/// predecessor block.
407Value *Value::DoPHITranslation(const BasicBlock *CurBB,
408                               const BasicBlock *PredBB) {
409  PHINode *PN = dyn_cast<PHINode>(this);
410  if (PN && PN->getParent() == CurBB)
411    return PN->getIncomingValueForBlock(PredBB);
412  return this;
413}
414
415LLVMContext &Value::getContext() const { return VTy->getContext(); }
416
417//===----------------------------------------------------------------------===//
418//                             ValueHandleBase Class
419//===----------------------------------------------------------------------===//
420
421/// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
422/// List is known to point into the existing use list.
423void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
424  assert(List && "Handle list is null?");
425
426  // Splice ourselves into the list.
427  Next = *List;
428  *List = this;
429  setPrevPtr(List);
430  if (Next) {
431    Next->setPrevPtr(&Next);
432    assert(VP == Next->VP && "Added to wrong list?");
433  }
434}
435
436void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
437  assert(List && "Must insert after existing node");
438
439  Next = List->Next;
440  setPrevPtr(&List->Next);
441  List->Next = this;
442  if (Next)
443    Next->setPrevPtr(&Next);
444}
445
446/// AddToUseList - Add this ValueHandle to the use list for VP.
447void ValueHandleBase::AddToUseList() {
448  assert(VP && "Null pointer doesn't have a use list!");
449
450  LLVMContextImpl *pImpl = VP->getContext().pImpl;
451
452  if (VP->HasValueHandle) {
453    // If this value already has a ValueHandle, then it must be in the
454    // ValueHandles map already.
455    ValueHandleBase *&Entry = pImpl->ValueHandles[VP];
456    assert(Entry != 0 && "Value doesn't have any handles?");
457    AddToExistingUseList(&Entry);
458    return;
459  }
460
461  // Ok, it doesn't have any handles yet, so we must insert it into the
462  // DenseMap.  However, doing this insertion could cause the DenseMap to
463  // reallocate itself, which would invalidate all of the PrevP pointers that
464  // point into the old table.  Handle this by checking for reallocation and
465  // updating the stale pointers only if needed.
466  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
467  const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
468
469  ValueHandleBase *&Entry = Handles[VP];
470  assert(Entry == 0 && "Value really did already have handles?");
471  AddToExistingUseList(&Entry);
472  VP->HasValueHandle = true;
473
474  // If reallocation didn't happen or if this was the first insertion, don't
475  // walk the table.
476  if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
477      Handles.size() == 1) {
478    return;
479  }
480
481  // Okay, reallocation did happen.  Fix the Prev Pointers.
482  for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
483       E = Handles.end(); I != E; ++I) {
484    assert(I->second && I->first == I->second->VP && "List invariant broken!");
485    I->second->setPrevPtr(&I->second);
486  }
487}
488
489/// RemoveFromUseList - Remove this ValueHandle from its current use list.
490void ValueHandleBase::RemoveFromUseList() {
491  assert(VP && VP->HasValueHandle && "Pointer doesn't have a use list!");
492
493  // Unlink this from its use list.
494  ValueHandleBase **PrevPtr = getPrevPtr();
495  assert(*PrevPtr == this && "List invariant broken");
496
497  *PrevPtr = Next;
498  if (Next) {
499    assert(Next->getPrevPtr() == &Next && "List invariant broken");
500    Next->setPrevPtr(PrevPtr);
501    return;
502  }
503
504  // If the Next pointer was null, then it is possible that this was the last
505  // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
506  // map.
507  LLVMContextImpl *pImpl = VP->getContext().pImpl;
508  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
509  if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
510    Handles.erase(VP);
511    VP->HasValueHandle = false;
512  }
513}
514
515
516void ValueHandleBase::ValueIsDeleted(Value *V) {
517  assert(V->HasValueHandle && "Should only be called if ValueHandles present");
518
519  // Get the linked list base, which is guaranteed to exist since the
520  // HasValueHandle flag is set.
521  LLVMContextImpl *pImpl = V->getContext().pImpl;
522  ValueHandleBase *Entry = pImpl->ValueHandles[V];
523  assert(Entry && "Value bit set but no entries exist");
524
525  // We use a local ValueHandleBase as an iterator so that ValueHandles can add
526  // and remove themselves from the list without breaking our iteration.  This
527  // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
528  // Note that we deliberately do not the support the case when dropping a value
529  // handle results in a new value handle being permanently added to the list
530  // (as might occur in theory for CallbackVH's): the new value handle will not
531  // be processed and the checking code will mete out righteous punishment if
532  // the handle is still present once we have finished processing all the other
533  // value handles (it is fine to momentarily add then remove a value handle).
534  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
535    Iterator.RemoveFromUseList();
536    Iterator.AddToExistingUseListAfter(Entry);
537    assert(Entry->Next == &Iterator && "Loop invariant broken.");
538
539    switch (Entry->getKind()) {
540    case Assert:
541      break;
542    case Tracking:
543      // Mark that this value has been deleted by setting it to an invalid Value
544      // pointer.
545      Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
546      break;
547    case Weak:
548      // Weak just goes to null, which will unlink it from the list.
549      Entry->operator=(0);
550      break;
551    case Callback:
552      // Forward to the subclass's implementation.
553      static_cast<CallbackVH*>(Entry)->deleted();
554      break;
555    }
556  }
557
558  // All callbacks, weak references, and assertingVHs should be dropped by now.
559  if (V->HasValueHandle) {
560#ifndef NDEBUG      // Only in +Asserts mode...
561    dbgs() << "While deleting: " << *V->getType() << " %" << V->getNameStr()
562           << "\n";
563    if (pImpl->ValueHandles[V]->getKind() == Assert)
564      llvm_unreachable("An asserting value handle still pointed to this"
565                       " value!");
566
567#endif
568    llvm_unreachable("All references to V were not removed?");
569  }
570}
571
572
573void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
574  assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
575  assert(Old != New && "Changing value into itself!");
576
577  // Get the linked list base, which is guaranteed to exist since the
578  // HasValueHandle flag is set.
579  LLVMContextImpl *pImpl = Old->getContext().pImpl;
580  ValueHandleBase *Entry = pImpl->ValueHandles[Old];
581
582  assert(Entry && "Value bit set but no entries exist");
583
584  // We use a local ValueHandleBase as an iterator so that
585  // ValueHandles can add and remove themselves from the list without
586  // breaking our iteration.  This is not really an AssertingVH; we
587  // just have to give ValueHandleBase some kind.
588  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
589    Iterator.RemoveFromUseList();
590    Iterator.AddToExistingUseListAfter(Entry);
591    assert(Entry->Next == &Iterator && "Loop invariant broken.");
592
593    switch (Entry->getKind()) {
594    case Assert:
595      // Asserting handle does not follow RAUW implicitly.
596      break;
597    case Tracking:
598      // Tracking goes to new value like a WeakVH. Note that this may make it
599      // something incompatible with its templated type. We don't want to have a
600      // virtual (or inline) interface to handle this though, so instead we make
601      // the TrackingVH accessors guarantee that a client never sees this value.
602
603      // FALLTHROUGH
604    case Weak:
605      // Weak goes to the new value, which will unlink it from Old's list.
606      Entry->operator=(New);
607      break;
608    case Callback:
609      // Forward to the subclass's implementation.
610      static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
611      break;
612    }
613  }
614
615#ifndef NDEBUG
616  // If any new tracking or weak value handles were added while processing the
617  // list, then complain about it now.
618  if (Old->HasValueHandle)
619    for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
620      switch (Entry->getKind()) {
621      case Tracking:
622      case Weak:
623        dbgs() << "After RAUW from " << *Old->getType() << " %"
624          << Old->getNameStr() << " to " << *New->getType() << " %"
625          << New->getNameStr() << "\n";
626        llvm_unreachable("A tracking or weak value handle still pointed to the"
627                         " old value!\n");
628      default:
629        break;
630      }
631#endif
632}
633
634/// ~CallbackVH. Empty, but defined here to avoid emitting the vtable
635/// more than once.
636CallbackVH::~CallbackVH() {}
637
638
639//===----------------------------------------------------------------------===//
640//                                 User Class
641//===----------------------------------------------------------------------===//
642
643// replaceUsesOfWith - Replaces all references to the "From" definition with
644// references to the "To" definition.
645//
646void User::replaceUsesOfWith(Value *From, Value *To) {
647  if (From == To) return;   // Duh what?
648
649  assert((!isa<Constant>(this) || isa<GlobalValue>(this)) &&
650         "Cannot call User::replaceUsesOfWith on a constant!");
651
652  for (unsigned i = 0, E = getNumOperands(); i != E; ++i)
653    if (getOperand(i) == From) {  // Is This operand is pointing to oldval?
654      // The side effects of this setOperand call include linking to
655      // "To", adding "this" to the uses list of To, and
656      // most importantly, removing "this" from the use list of "From".
657      setOperand(i, To); // Fix it now...
658    }
659}
660