1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                        Intel License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2000, Intel Corporation, all rights reserved.
14// Third party copyrights are property of their respective owners.
15//
16// Redistribution and use in source and binary forms, with or without modification,
17// are permitted provided that the following conditions are met:
18//
19//   * Redistribution's of source code must retain the above copyright notice,
20//     this list of conditions and the following disclaimer.
21//
22//   * Redistribution's in binary form must reproduce the above copyright notice,
23//     this list of conditions and the following disclaimer in the documentation
24//     and/or other materials provided with the distribution.
25//
26//   * The name of Intel Corporation may not be used to endorse or promote products
27//     derived from this software without specific prior written permission.
28//
29// This software is provided by the copyright holders and contributors "as is" and
30// any express or implied warranties, including, but not limited to, the implied
31// warranties of merchantability and fitness for a particular purpose are disclaimed.
32// In no event shall the Intel Corporation or contributors be liable for any direct,
33// indirect, incidental, special, exemplary, or consequential damages
34// (including, but not limited to, procurement of substitute goods or services;
35// loss of use, data, or profits; or business interruption) however caused
36// and on any theory of liability, whether in contract, strict liability,
37// or tort (including negligence or otherwise) arising in any way out of
38// the use of this software, even if advised of the possibility of such damage.
39//
40//M*/
41
42/* Haar features calculation */
43
44#include "_cv.h"
45#include <stdio.h>
46
47/* these settings affect the quality of detection: change with care */
48#define CV_ADJUST_FEATURES 1
49#define CV_ADJUST_WEIGHTS  0
50
51typedef int sumtype;
52typedef double sqsumtype;
53
54typedef struct CvHidHaarFeature
55{
56    struct
57    {
58        sumtype *p0, *p1, *p2, *p3;
59        float weight;
60    }
61    rect[CV_HAAR_FEATURE_MAX];
62}
63CvHidHaarFeature;
64
65
66typedef struct CvHidHaarTreeNode
67{
68    CvHidHaarFeature feature;
69    float threshold;
70    int left;
71    int right;
72}
73CvHidHaarTreeNode;
74
75
76typedef struct CvHidHaarClassifier
77{
78    int count;
79    //CvHaarFeature* orig_feature;
80    CvHidHaarTreeNode* node;
81    float* alpha;
82}
83CvHidHaarClassifier;
84
85
86typedef struct CvHidHaarStageClassifier
87{
88    int  count;
89    float threshold;
90    CvHidHaarClassifier* classifier;
91    int two_rects;
92
93    struct CvHidHaarStageClassifier* next;
94    struct CvHidHaarStageClassifier* child;
95    struct CvHidHaarStageClassifier* parent;
96}
97CvHidHaarStageClassifier;
98
99
100struct CvHidHaarClassifierCascade
101{
102    int  count;
103    int  is_stump_based;
104    int  has_tilted_features;
105    int  is_tree;
106    double inv_window_area;
107    CvMat sum, sqsum, tilted;
108    CvHidHaarStageClassifier* stage_classifier;
109    sqsumtype *pq0, *pq1, *pq2, *pq3;
110    sumtype *p0, *p1, *p2, *p3;
111
112    void** ipp_stages;
113};
114
115
116/* IPP functions for object detection */
117icvHaarClassifierInitAlloc_32f_t icvHaarClassifierInitAlloc_32f_p = 0;
118icvHaarClassifierFree_32f_t icvHaarClassifierFree_32f_p = 0;
119icvApplyHaarClassifier_32f_C1R_t icvApplyHaarClassifier_32f_C1R_p = 0;
120icvRectStdDev_32f_C1R_t icvRectStdDev_32f_C1R_p = 0;
121
122const int icv_object_win_border = 1;
123const float icv_stage_threshold_bias = 0.0001f;
124
125static CvHaarClassifierCascade*
126icvCreateHaarClassifierCascade( int stage_count )
127{
128    CvHaarClassifierCascade* cascade = 0;
129
130    CV_FUNCNAME( "icvCreateHaarClassifierCascade" );
131
132    __BEGIN__;
133
134    int block_size = sizeof(*cascade) + stage_count*sizeof(*cascade->stage_classifier);
135
136    if( stage_count <= 0 )
137        CV_ERROR( CV_StsOutOfRange, "Number of stages should be positive" );
138
139    CV_CALL( cascade = (CvHaarClassifierCascade*)cvAlloc( block_size ));
140    memset( cascade, 0, block_size );
141
142    cascade->stage_classifier = (CvHaarStageClassifier*)(cascade + 1);
143    cascade->flags = CV_HAAR_MAGIC_VAL;
144    cascade->count = stage_count;
145
146    __END__;
147
148    return cascade;
149}
150
151static void
152icvReleaseHidHaarClassifierCascade( CvHidHaarClassifierCascade** _cascade )
153{
154    if( _cascade && *_cascade )
155    {
156        CvHidHaarClassifierCascade* cascade = *_cascade;
157        if( cascade->ipp_stages && icvHaarClassifierFree_32f_p )
158        {
159            int i;
160            for( i = 0; i < cascade->count; i++ )
161            {
162                if( cascade->ipp_stages[i] )
163                    icvHaarClassifierFree_32f_p( cascade->ipp_stages[i] );
164            }
165        }
166        cvFree( &cascade->ipp_stages );
167        cvFree( _cascade );
168    }
169}
170
171/* create more efficient internal representation of haar classifier cascade */
172static CvHidHaarClassifierCascade*
173icvCreateHidHaarClassifierCascade( CvHaarClassifierCascade* cascade )
174{
175    CvRect* ipp_features = 0;
176    float *ipp_weights = 0, *ipp_thresholds = 0, *ipp_val1 = 0, *ipp_val2 = 0;
177    int* ipp_counts = 0;
178
179    CvHidHaarClassifierCascade* out = 0;
180
181    CV_FUNCNAME( "icvCreateHidHaarClassifierCascade" );
182
183    __BEGIN__;
184
185    int i, j, k, l;
186    int datasize;
187    int total_classifiers = 0;
188    int total_nodes = 0;
189    char errorstr[100];
190    CvHidHaarClassifier* haar_classifier_ptr;
191    CvHidHaarTreeNode* haar_node_ptr;
192    CvSize orig_window_size;
193    int has_tilted_features = 0;
194    int max_count = 0;
195
196    if( !CV_IS_HAAR_CLASSIFIER(cascade) )
197        CV_ERROR( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
198
199    if( cascade->hid_cascade )
200        CV_ERROR( CV_StsError, "hid_cascade has been already created" );
201
202    if( !cascade->stage_classifier )
203        CV_ERROR( CV_StsNullPtr, "" );
204
205    if( cascade->count <= 0 )
206        CV_ERROR( CV_StsOutOfRange, "Negative number of cascade stages" );
207
208    orig_window_size = cascade->orig_window_size;
209
210    /* check input structure correctness and calculate total memory size needed for
211       internal representation of the classifier cascade */
212    for( i = 0; i < cascade->count; i++ )
213    {
214        CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
215
216        if( !stage_classifier->classifier ||
217            stage_classifier->count <= 0 )
218        {
219            sprintf( errorstr, "header of the stage classifier #%d is invalid "
220                     "(has null pointers or non-positive classfier count)", i );
221            CV_ERROR( CV_StsError, errorstr );
222        }
223
224        max_count = MAX( max_count, stage_classifier->count );
225        total_classifiers += stage_classifier->count;
226
227        for( j = 0; j < stage_classifier->count; j++ )
228        {
229            CvHaarClassifier* classifier = stage_classifier->classifier + j;
230
231            total_nodes += classifier->count;
232            for( l = 0; l < classifier->count; l++ )
233            {
234                for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
235                {
236                    if( classifier->haar_feature[l].rect[k].r.width )
237                    {
238                        CvRect r = classifier->haar_feature[l].rect[k].r;
239                        int tilted = classifier->haar_feature[l].tilted;
240                        has_tilted_features |= tilted != 0;
241                        if( r.width < 0 || r.height < 0 || r.y < 0 ||
242                            r.x + r.width > orig_window_size.width
243                            ||
244                            (!tilted &&
245                            (r.x < 0 || r.y + r.height > orig_window_size.height))
246                            ||
247                            (tilted && (r.x - r.height < 0 ||
248                            r.y + r.width + r.height > orig_window_size.height)))
249                        {
250                            sprintf( errorstr, "rectangle #%d of the classifier #%d of "
251                                     "the stage classifier #%d is not inside "
252                                     "the reference (original) cascade window", k, j, i );
253                            CV_ERROR( CV_StsNullPtr, errorstr );
254                        }
255                    }
256                }
257            }
258        }
259    }
260
261    // this is an upper boundary for the whole hidden cascade size
262    datasize = sizeof(CvHidHaarClassifierCascade) +
263               sizeof(CvHidHaarStageClassifier)*cascade->count +
264               sizeof(CvHidHaarClassifier) * total_classifiers +
265               sizeof(CvHidHaarTreeNode) * total_nodes +
266               sizeof(void*)*(total_nodes + total_classifiers);
267
268    CV_CALL( out = (CvHidHaarClassifierCascade*)cvAlloc( datasize ));
269    memset( out, 0, sizeof(*out) );
270
271    /* init header */
272    out->count = cascade->count;
273    out->stage_classifier = (CvHidHaarStageClassifier*)(out + 1);
274    haar_classifier_ptr = (CvHidHaarClassifier*)(out->stage_classifier + cascade->count);
275    haar_node_ptr = (CvHidHaarTreeNode*)(haar_classifier_ptr + total_classifiers);
276
277    out->is_stump_based = 1;
278    out->has_tilted_features = has_tilted_features;
279    out->is_tree = 0;
280
281    /* initialize internal representation */
282    for( i = 0; i < cascade->count; i++ )
283    {
284        CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
285        CvHidHaarStageClassifier* hid_stage_classifier = out->stage_classifier + i;
286
287        hid_stage_classifier->count = stage_classifier->count;
288        hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;
289        hid_stage_classifier->classifier = haar_classifier_ptr;
290        hid_stage_classifier->two_rects = 1;
291        haar_classifier_ptr += stage_classifier->count;
292
293        hid_stage_classifier->parent = (stage_classifier->parent == -1)
294            ? NULL : out->stage_classifier + stage_classifier->parent;
295        hid_stage_classifier->next = (stage_classifier->next == -1)
296            ? NULL : out->stage_classifier + stage_classifier->next;
297        hid_stage_classifier->child = (stage_classifier->child == -1)
298            ? NULL : out->stage_classifier + stage_classifier->child;
299
300        out->is_tree |= hid_stage_classifier->next != NULL;
301
302        for( j = 0; j < stage_classifier->count; j++ )
303        {
304            CvHaarClassifier* classifier = stage_classifier->classifier + j;
305            CvHidHaarClassifier* hid_classifier = hid_stage_classifier->classifier + j;
306            int node_count = classifier->count;
307            float* alpha_ptr = (float*)(haar_node_ptr + node_count);
308
309            hid_classifier->count = node_count;
310            hid_classifier->node = haar_node_ptr;
311            hid_classifier->alpha = alpha_ptr;
312
313            for( l = 0; l < node_count; l++ )
314            {
315                CvHidHaarTreeNode* node = hid_classifier->node + l;
316                CvHaarFeature* feature = classifier->haar_feature + l;
317                memset( node, -1, sizeof(*node) );
318                node->threshold = classifier->threshold[l];
319                node->left = classifier->left[l];
320                node->right = classifier->right[l];
321
322                if( fabs(feature->rect[2].weight) < DBL_EPSILON ||
323                    feature->rect[2].r.width == 0 ||
324                    feature->rect[2].r.height == 0 )
325                    memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
326                else
327                    hid_stage_classifier->two_rects = 0;
328            }
329
330            memcpy( alpha_ptr, classifier->alpha, (node_count+1)*sizeof(alpha_ptr[0]));
331            haar_node_ptr =
332                (CvHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*));
333
334            out->is_stump_based &= node_count == 1;
335        }
336    }
337
338    {
339    int can_use_ipp = icvHaarClassifierInitAlloc_32f_p != 0 &&
340        icvHaarClassifierFree_32f_p != 0 &&
341                      icvApplyHaarClassifier_32f_C1R_p != 0 &&
342                      icvRectStdDev_32f_C1R_p != 0 &&
343                      !out->has_tilted_features && !out->is_tree && out->is_stump_based;
344
345    if( can_use_ipp )
346    {
347        int ipp_datasize = cascade->count*sizeof(out->ipp_stages[0]);
348        float ipp_weight_scale=(float)(1./((orig_window_size.width-icv_object_win_border*2)*
349            (orig_window_size.height-icv_object_win_border*2)));
350
351        CV_CALL( out->ipp_stages = (void**)cvAlloc( ipp_datasize ));
352        memset( out->ipp_stages, 0, ipp_datasize );
353
354        CV_CALL( ipp_features = (CvRect*)cvAlloc( max_count*3*sizeof(ipp_features[0]) ));
355        CV_CALL( ipp_weights = (float*)cvAlloc( max_count*3*sizeof(ipp_weights[0]) ));
356        CV_CALL( ipp_thresholds = (float*)cvAlloc( max_count*sizeof(ipp_thresholds[0]) ));
357        CV_CALL( ipp_val1 = (float*)cvAlloc( max_count*sizeof(ipp_val1[0]) ));
358        CV_CALL( ipp_val2 = (float*)cvAlloc( max_count*sizeof(ipp_val2[0]) ));
359        CV_CALL( ipp_counts = (int*)cvAlloc( max_count*sizeof(ipp_counts[0]) ));
360
361        for( i = 0; i < cascade->count; i++ )
362        {
363            CvHaarStageClassifier* stage_classifier = cascade->stage_classifier + i;
364            for( j = 0, k = 0; j < stage_classifier->count; j++ )
365            {
366                CvHaarClassifier* classifier = stage_classifier->classifier + j;
367                int rect_count = 2 + (classifier->haar_feature->rect[2].r.width != 0);
368
369                ipp_thresholds[j] = classifier->threshold[0];
370                ipp_val1[j] = classifier->alpha[0];
371                ipp_val2[j] = classifier->alpha[1];
372                ipp_counts[j] = rect_count;
373
374                for( l = 0; l < rect_count; l++, k++ )
375                {
376                    ipp_features[k] = classifier->haar_feature->rect[l].r;
377                    //ipp_features[k].y = orig_window_size.height - ipp_features[k].y - ipp_features[k].height;
378                    ipp_weights[k] = classifier->haar_feature->rect[l].weight*ipp_weight_scale;
379                }
380            }
381
382            if( icvHaarClassifierInitAlloc_32f_p( &out->ipp_stages[i],
383                ipp_features, ipp_weights, ipp_thresholds,
384                ipp_val1, ipp_val2, ipp_counts, stage_classifier->count ) < 0 )
385                break;
386        }
387
388        if( i < cascade->count )
389        {
390            for( j = 0; j < i; j++ )
391                if( icvHaarClassifierFree_32f_p && out->ipp_stages[i] )
392                    icvHaarClassifierFree_32f_p( out->ipp_stages[i] );
393            cvFree( &out->ipp_stages );
394        }
395    }
396    }
397
398    cascade->hid_cascade = out;
399    assert( (char*)haar_node_ptr - (char*)out <= datasize );
400
401    __END__;
402
403    if( cvGetErrStatus() < 0 )
404        icvReleaseHidHaarClassifierCascade( &out );
405
406    cvFree( &ipp_features );
407    cvFree( &ipp_weights );
408    cvFree( &ipp_thresholds );
409    cvFree( &ipp_val1 );
410    cvFree( &ipp_val2 );
411    cvFree( &ipp_counts );
412
413    return out;
414}
415
416
417#define sum_elem_ptr(sum,row,col)  \
418    ((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype)))
419
420#define sqsum_elem_ptr(sqsum,row,col)  \
421    ((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype)))
422
423#define calc_sum(rect,offset) \
424    ((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
425
426
427CV_IMPL void
428cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
429                                     const CvArr* _sum,
430                                     const CvArr* _sqsum,
431                                     const CvArr* _tilted_sum,
432                                     double scale )
433{
434    CV_FUNCNAME("cvSetImagesForHaarClassifierCascade");
435
436    __BEGIN__;
437
438    CvMat sum_stub, *sum = (CvMat*)_sum;
439    CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum;
440    CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum;
441    CvHidHaarClassifierCascade* cascade;
442    int coi0 = 0, coi1 = 0;
443    int i;
444    CvRect equ_rect;
445    double weight_scale;
446
447    if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
448        CV_ERROR( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
449
450    if( scale <= 0 )
451        CV_ERROR( CV_StsOutOfRange, "Scale must be positive" );
452
453    CV_CALL( sum = cvGetMat( sum, &sum_stub, &coi0 ));
454    CV_CALL( sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 ));
455
456    if( coi0 || coi1 )
457        CV_ERROR( CV_BadCOI, "COI is not supported" );
458
459    if( !CV_ARE_SIZES_EQ( sum, sqsum ))
460        CV_ERROR( CV_StsUnmatchedSizes, "All integral images must have the same size" );
461
462    if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 ||
463        CV_MAT_TYPE(sum->type) != CV_32SC1 )
464        CV_ERROR( CV_StsUnsupportedFormat,
465        "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
466
467    if( !_cascade->hid_cascade )
468        CV_CALL( icvCreateHidHaarClassifierCascade(_cascade) );
469
470    cascade = _cascade->hid_cascade;
471
472    if( cascade->has_tilted_features )
473    {
474        CV_CALL( tilted = cvGetMat( tilted, &tilted_stub, &coi1 ));
475
476        if( CV_MAT_TYPE(tilted->type) != CV_32SC1 )
477            CV_ERROR( CV_StsUnsupportedFormat,
478            "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
479
480        if( sum->step != tilted->step )
481            CV_ERROR( CV_StsUnmatchedSizes,
482            "Sum and tilted_sum must have the same stride (step, widthStep)" );
483
484        if( !CV_ARE_SIZES_EQ( sum, tilted ))
485            CV_ERROR( CV_StsUnmatchedSizes, "All integral images must have the same size" );
486        cascade->tilted = *tilted;
487    }
488
489    _cascade->scale = scale;
490    _cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );
491    _cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );
492
493    cascade->sum = *sum;
494    cascade->sqsum = *sqsum;
495
496    equ_rect.x = equ_rect.y = cvRound(scale);
497    equ_rect.width = cvRound((_cascade->orig_window_size.width-2)*scale);
498    equ_rect.height = cvRound((_cascade->orig_window_size.height-2)*scale);
499    weight_scale = 1./(equ_rect.width*equ_rect.height);
500    cascade->inv_window_area = weight_scale;
501
502    cascade->p0 = sum_elem_ptr(*sum, equ_rect.y, equ_rect.x);
503    cascade->p1 = sum_elem_ptr(*sum, equ_rect.y, equ_rect.x + equ_rect.width );
504    cascade->p2 = sum_elem_ptr(*sum, equ_rect.y + equ_rect.height, equ_rect.x );
505    cascade->p3 = sum_elem_ptr(*sum, equ_rect.y + equ_rect.height,
506                                     equ_rect.x + equ_rect.width );
507
508    cascade->pq0 = sqsum_elem_ptr(*sqsum, equ_rect.y, equ_rect.x);
509    cascade->pq1 = sqsum_elem_ptr(*sqsum, equ_rect.y, equ_rect.x + equ_rect.width );
510    cascade->pq2 = sqsum_elem_ptr(*sqsum, equ_rect.y + equ_rect.height, equ_rect.x );
511    cascade->pq3 = sqsum_elem_ptr(*sqsum, equ_rect.y + equ_rect.height,
512                                          equ_rect.x + equ_rect.width );
513
514    /* init pointers in haar features according to real window size and
515       given image pointers */
516    {
517#ifdef _OPENMP
518    int max_threads = cvGetNumThreads();
519    #pragma omp parallel for num_threads(max_threads) schedule(dynamic)
520#endif // _OPENMP
521    for( i = 0; i < _cascade->count; i++ )
522    {
523        int j, k, l;
524        for( j = 0; j < cascade->stage_classifier[i].count; j++ )
525        {
526            for( l = 0; l < cascade->stage_classifier[i].classifier[j].count; l++ )
527            {
528                CvHaarFeature* feature =
529                    &_cascade->stage_classifier[i].classifier[j].haar_feature[l];
530                /* CvHidHaarClassifier* classifier =
531                    cascade->stage_classifier[i].classifier + j; */
532                CvHidHaarFeature* hidfeature =
533                    &cascade->stage_classifier[i].classifier[j].node[l].feature;
534                double sum0 = 0, area0 = 0;
535                CvRect r[3];
536#if CV_ADJUST_FEATURES
537                int base_w = -1, base_h = -1;
538                int new_base_w = 0, new_base_h = 0;
539                int kx, ky;
540                int flagx = 0, flagy = 0;
541                int x0 = 0, y0 = 0;
542#endif
543                int nr;
544
545                /* align blocks */
546                for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
547                {
548                    if( !hidfeature->rect[k].p0 )
549                        break;
550#if CV_ADJUST_FEATURES
551                    r[k] = feature->rect[k].r;
552                    base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) );
553                    base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) );
554                    base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) );
555                    base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) );
556#endif
557                }
558
559                nr = k;
560
561#if CV_ADJUST_FEATURES
562                base_w += 1;
563                base_h += 1;
564                kx = r[0].width / base_w;
565                ky = r[0].height / base_h;
566
567                if( kx <= 0 )
568                {
569                    flagx = 1;
570                    new_base_w = cvRound( r[0].width * scale ) / kx;
571                    x0 = cvRound( r[0].x * scale );
572                }
573
574                if( ky <= 0 )
575                {
576                    flagy = 1;
577                    new_base_h = cvRound( r[0].height * scale ) / ky;
578                    y0 = cvRound( r[0].y * scale );
579                }
580#endif
581
582                for( k = 0; k < nr; k++ )
583                {
584                    CvRect tr;
585                    double correction_ratio;
586
587#if CV_ADJUST_FEATURES
588                    if( flagx )
589                    {
590                        tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0;
591                        tr.width = r[k].width * new_base_w / base_w;
592                    }
593                    else
594#endif
595                    {
596                        tr.x = cvRound( r[k].x * scale );
597                        tr.width = cvRound( r[k].width * scale );
598                    }
599
600#if CV_ADJUST_FEATURES
601                    if( flagy )
602                    {
603                        tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0;
604                        tr.height = r[k].height * new_base_h / base_h;
605                    }
606                    else
607#endif
608                    {
609                        tr.y = cvRound( r[k].y * scale );
610                        tr.height = cvRound( r[k].height * scale );
611                    }
612
613#if CV_ADJUST_WEIGHTS
614                    {
615                    // RAINER START
616                    const float orig_feature_size =  (float)(feature->rect[k].r.width)*feature->rect[k].r.height;
617                    const float orig_norm_size = (float)(_cascade->orig_window_size.width)*(_cascade->orig_window_size.height);
618                    const float feature_size = float(tr.width*tr.height);
619                    //const float normSize    = float(equ_rect.width*equ_rect.height);
620                    float target_ratio = orig_feature_size / orig_norm_size;
621                    //float isRatio = featureSize / normSize;
622                    //correctionRatio = targetRatio / isRatio / normSize;
623                    correction_ratio = target_ratio / feature_size;
624                    // RAINER END
625                    }
626#else
627                    correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
628#endif
629
630                    if( !feature->tilted )
631                    {
632                        hidfeature->rect[k].p0 = sum_elem_ptr(*sum, tr.y, tr.x);
633                        hidfeature->rect[k].p1 = sum_elem_ptr(*sum, tr.y, tr.x + tr.width);
634                        hidfeature->rect[k].p2 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x);
635                        hidfeature->rect[k].p3 = sum_elem_ptr(*sum, tr.y + tr.height, tr.x + tr.width);
636                    }
637                    else
638                    {
639                        hidfeature->rect[k].p2 = sum_elem_ptr(*tilted, tr.y + tr.width, tr.x + tr.width);
640                        hidfeature->rect[k].p3 = sum_elem_ptr(*tilted, tr.y + tr.width + tr.height,
641                                                              tr.x + tr.width - tr.height);
642                        hidfeature->rect[k].p0 = sum_elem_ptr(*tilted, tr.y, tr.x);
643                        hidfeature->rect[k].p1 = sum_elem_ptr(*tilted, tr.y + tr.height, tr.x - tr.height);
644                    }
645
646                    hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio);
647
648                    if( k == 0 )
649                        area0 = tr.width * tr.height;
650                    else
651                        sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
652                }
653
654                hidfeature->rect[0].weight = (float)(-sum0/area0);
655            } /* l */
656        } /* j */
657    }
658    }
659
660    __END__;
661}
662
663
664CV_INLINE
665double icvEvalHidHaarClassifier( CvHidHaarClassifier* classifier,
666                                 double variance_norm_factor,
667                                 size_t p_offset )
668{
669    int idx = 0;
670    do
671    {
672        CvHidHaarTreeNode* node = classifier->node + idx;
673        double t = node->threshold * variance_norm_factor;
674
675        double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
676        sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
677
678        if( node->feature.rect[2].p0 )
679            sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
680
681        idx = sum < t ? node->left : node->right;
682    }
683    while( idx > 0 );
684    return classifier->alpha[-idx];
685}
686
687
688CV_IMPL int
689cvRunHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
690                            CvPoint pt, int start_stage )
691{
692    int result = -1;
693    CV_FUNCNAME("cvRunHaarClassifierCascade");
694
695    __BEGIN__;
696
697    int p_offset, pq_offset;
698    int i, j;
699    double mean, variance_norm_factor;
700    CvHidHaarClassifierCascade* cascade;
701
702    if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
703        CV_ERROR( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid cascade pointer" );
704
705    cascade = _cascade->hid_cascade;
706    if( !cascade )
707        CV_ERROR( CV_StsNullPtr, "Hidden cascade has not been created.\n"
708            "Use cvSetImagesForHaarClassifierCascade" );
709
710    if( pt.x < 0 || pt.y < 0 ||
711        pt.x + _cascade->real_window_size.width >= cascade->sum.width-2 ||
712        pt.y + _cascade->real_window_size.height >= cascade->sum.height-2 )
713        EXIT;
714
715    p_offset = pt.y * (cascade->sum.step/sizeof(sumtype)) + pt.x;
716    pq_offset = pt.y * (cascade->sqsum.step/sizeof(sqsumtype)) + pt.x;
717    mean = calc_sum(*cascade,p_offset)*cascade->inv_window_area;
718    variance_norm_factor = cascade->pq0[pq_offset] - cascade->pq1[pq_offset] -
719                           cascade->pq2[pq_offset] + cascade->pq3[pq_offset];
720    variance_norm_factor = variance_norm_factor*cascade->inv_window_area - mean*mean;
721    if( variance_norm_factor >= 0. )
722        variance_norm_factor = sqrt(variance_norm_factor);
723    else
724        variance_norm_factor = 1.;
725
726    if( cascade->is_tree )
727    {
728        CvHidHaarStageClassifier* ptr;
729        assert( start_stage == 0 );
730
731        result = 1;
732        ptr = cascade->stage_classifier;
733
734        while( ptr )
735        {
736            double stage_sum = 0;
737
738            for( j = 0; j < ptr->count; j++ )
739            {
740                stage_sum += icvEvalHidHaarClassifier( ptr->classifier + j,
741                    variance_norm_factor, p_offset );
742            }
743
744            if( stage_sum >= ptr->threshold )
745            {
746                ptr = ptr->child;
747            }
748            else
749            {
750                while( ptr && ptr->next == NULL ) ptr = ptr->parent;
751                if( ptr == NULL )
752                {
753                    result = 0;
754                    EXIT;
755                }
756                ptr = ptr->next;
757            }
758        }
759    }
760    else if( cascade->is_stump_based )
761    {
762        for( i = start_stage; i < cascade->count; i++ )
763        {
764            double stage_sum = 0;
765
766            if( cascade->stage_classifier[i].two_rects )
767            {
768                for( j = 0; j < cascade->stage_classifier[i].count; j++ )
769                {
770                    CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
771                    CvHidHaarTreeNode* node = classifier->node;
772                    double sum, t = node->threshold*variance_norm_factor, a, b;
773
774                    sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
775                    sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
776
777                    a = classifier->alpha[0];
778                    b = classifier->alpha[1];
779                    stage_sum += sum < t ? a : b;
780                }
781            }
782            else
783            {
784                for( j = 0; j < cascade->stage_classifier[i].count; j++ )
785                {
786                    CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
787                    CvHidHaarTreeNode* node = classifier->node;
788                    double sum, t = node->threshold*variance_norm_factor, a, b;
789
790                    sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
791                    sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
792
793                    if( node->feature.rect[2].p0 )
794                        sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
795
796                    a = classifier->alpha[0];
797                    b = classifier->alpha[1];
798                    stage_sum += sum < t ? a : b;
799                }
800            }
801
802            if( stage_sum < cascade->stage_classifier[i].threshold )
803            {
804                result = -i;
805                EXIT;
806            }
807        }
808    }
809    else
810    {
811        for( i = start_stage; i < cascade->count; i++ )
812        {
813            double stage_sum = 0;
814
815            for( j = 0; j < cascade->stage_classifier[i].count; j++ )
816            {
817                stage_sum += icvEvalHidHaarClassifier(
818                    cascade->stage_classifier[i].classifier + j,
819                    variance_norm_factor, p_offset );
820            }
821
822            if( stage_sum < cascade->stage_classifier[i].threshold )
823            {
824                result = -i;
825                EXIT;
826            }
827        }
828    }
829
830    result = 1;
831
832    __END__;
833
834    return result;
835}
836
837
838static int is_equal( const void* _r1, const void* _r2, void* )
839{
840    const CvRect* r1 = (const CvRect*)_r1;
841    const CvRect* r2 = (const CvRect*)_r2;
842    int distance = cvRound(r1->width*0.2);
843
844    return r2->x <= r1->x + distance &&
845           r2->x >= r1->x - distance &&
846           r2->y <= r1->y + distance &&
847           r2->y >= r1->y - distance &&
848           r2->width <= cvRound( r1->width * 1.2 ) &&
849           cvRound( r2->width * 1.2 ) >= r1->width;
850}
851
852
853#define VERY_ROUGH_SEARCH 0
854
855CV_IMPL CvSeq*
856cvHaarDetectObjects( const CvArr* _img,
857                     CvHaarClassifierCascade* cascade,
858                     CvMemStorage* storage, double scale_factor,
859                     int min_neighbors, int flags, CvSize min_size )
860{
861    int split_stage = 2;
862
863    CvMat stub, *img = (CvMat*)_img;
864    CvMat *temp = 0, *sum = 0, *tilted = 0, *sqsum = 0, *norm_img = 0, *sumcanny = 0, *img_small = 0;
865    CvSeq* result_seq = 0;
866    CvMemStorage* temp_storage = 0;
867    CvAvgComp* comps = 0;
868    CvSeq* seq_thread[CV_MAX_THREADS] = {0};
869    int i, max_threads = 0;
870
871    CV_FUNCNAME( "cvHaarDetectObjects" );
872
873    __BEGIN__;
874
875    CvSeq *seq = 0, *seq2 = 0, *idx_seq = 0, *big_seq = 0;
876    CvAvgComp result_comp = {{0,0,0,0},0};
877    double factor;
878    int npass = 2, coi;
879    bool do_canny_pruning = (flags & CV_HAAR_DO_CANNY_PRUNING) != 0;
880    bool find_biggest_object = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
881    bool rough_search = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0;
882
883    if( !CV_IS_HAAR_CLASSIFIER(cascade) )
884        CV_ERROR( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
885
886    if( !storage )
887        CV_ERROR( CV_StsNullPtr, "Null storage pointer" );
888
889    CV_CALL( img = cvGetMat( img, &stub, &coi ));
890    if( coi )
891        CV_ERROR( CV_BadCOI, "COI is not supported" );
892
893    if( CV_MAT_DEPTH(img->type) != CV_8U )
894        CV_ERROR( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
895
896    if( find_biggest_object )
897        flags &= ~CV_HAAR_SCALE_IMAGE;
898
899    CV_CALL( temp = cvCreateMat( img->rows, img->cols, CV_8UC1 ));
900    CV_CALL( sum = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 ));
901    CV_CALL( sqsum = cvCreateMat( img->rows + 1, img->cols + 1, CV_64FC1 ));
902    CV_CALL( temp_storage = cvCreateChildMemStorage( storage ));
903
904    if( !cascade->hid_cascade )
905        CV_CALL( icvCreateHidHaarClassifierCascade(cascade) );
906
907    if( cascade->hid_cascade->has_tilted_features )
908        tilted = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );
909
910    seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvRect), temp_storage );
911    seq2 = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), temp_storage );
912    result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );
913
914    max_threads = cvGetNumThreads();
915    if( max_threads > 1 )
916        for( i = 0; i < max_threads; i++ )
917        {
918            CvMemStorage* temp_storage_thread;
919            CV_CALL( temp_storage_thread = cvCreateMemStorage(0));
920            CV_CALL( seq_thread[i] = cvCreateSeq( 0, sizeof(CvSeq),
921                sizeof(CvRect), temp_storage_thread ));
922        }
923    else
924        seq_thread[0] = seq;
925
926    if( CV_MAT_CN(img->type) > 1 )
927    {
928        cvCvtColor( img, temp, CV_BGR2GRAY );
929        img = temp;
930    }
931
932    if( flags & CV_HAAR_FIND_BIGGEST_OBJECT )
933        flags &= ~(CV_HAAR_SCALE_IMAGE|CV_HAAR_DO_CANNY_PRUNING);
934
935    if( flags & CV_HAAR_SCALE_IMAGE )
936    {
937        CvSize win_size0 = cascade->orig_window_size;
938        int use_ipp = cascade->hid_cascade->ipp_stages != 0 &&
939                    icvApplyHaarClassifier_32f_C1R_p != 0;
940
941        if( use_ipp )
942            CV_CALL( norm_img = cvCreateMat( img->rows, img->cols, CV_32FC1 ));
943        CV_CALL( img_small = cvCreateMat( img->rows + 1, img->cols + 1, CV_8UC1 ));
944
945        for( factor = 1; ; factor *= scale_factor )
946        {
947            int strip_count, strip_size;
948            int ystep = factor > 2. ? 1 : 2;
949            CvSize win_size = { cvRound(win_size0.width*factor),
950                                cvRound(win_size0.height*factor) };
951            CvSize sz = { cvRound( img->cols/factor ), cvRound( img->rows/factor ) };
952            CvSize sz1 = { sz.width - win_size0.width, sz.height - win_size0.height };
953            CvRect equ_rect = { icv_object_win_border, icv_object_win_border,
954                win_size0.width - icv_object_win_border*2,
955                win_size0.height - icv_object_win_border*2 };
956            CvMat img1, sum1, sqsum1, norm1, tilted1, mask1;
957            CvMat* _tilted = 0;
958
959            if( sz1.width <= 0 || sz1.height <= 0 )
960                break;
961            if( win_size.width < min_size.width || win_size.height < min_size.height )
962                continue;
963
964            img1 = cvMat( sz.height, sz.width, CV_8UC1, img_small->data.ptr );
965            sum1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, sum->data.ptr );
966            sqsum1 = cvMat( sz.height+1, sz.width+1, CV_64FC1, sqsum->data.ptr );
967            if( tilted )
968            {
969                tilted1 = cvMat( sz.height+1, sz.width+1, CV_32SC1, tilted->data.ptr );
970                _tilted = &tilted1;
971            }
972            norm1 = cvMat( sz1.height, sz1.width, CV_32FC1, norm_img ? norm_img->data.ptr : 0 );
973            mask1 = cvMat( sz1.height, sz1.width, CV_8UC1, temp->data.ptr );
974
975            cvResize( img, &img1, CV_INTER_LINEAR );
976            cvIntegral( &img1, &sum1, &sqsum1, _tilted );
977
978            if( max_threads > 1 )
979            {
980                strip_count = MAX(MIN(sz1.height/ystep, max_threads*3), 1);
981                strip_size = (sz1.height + strip_count - 1)/strip_count;
982                strip_size = (strip_size / ystep)*ystep;
983            }
984            else
985            {
986                strip_count = 1;
987                strip_size = sz1.height;
988            }
989
990            if( !use_ipp )
991                cvSetImagesForHaarClassifierCascade( cascade, &sum1, &sqsum1, 0, 1. );
992            else
993            {
994                for( i = 0; i <= sz.height; i++ )
995                {
996                    const int* isum = (int*)(sum1.data.ptr + sum1.step*i);
997                    float* fsum = (float*)isum;
998                    const int FLT_DELTA = -(1 << 24);
999                    int j;
1000                    for( j = 0; j <= sz.width; j++ )
1001                        fsum[j] = (float)(isum[j] + FLT_DELTA);
1002                }
1003            }
1004
1005        #ifdef _OPENMP
1006            #pragma omp parallel for num_threads(max_threads) schedule(dynamic)
1007        #endif
1008            for( i = 0; i < strip_count; i++ )
1009            {
1010                int thread_id = cvGetThreadNum();
1011                int positive = 0;
1012                int y1 = i*strip_size, y2 = (i+1)*strip_size/* - ystep + 1*/;
1013                CvSize ssz;
1014                int x, y, j;
1015                if( i == strip_count - 1 || y2 > sz1.height )
1016                    y2 = sz1.height;
1017                ssz = cvSize(sz1.width, y2 - y1);
1018
1019                if( use_ipp )
1020                {
1021                    icvRectStdDev_32f_C1R_p(
1022                        (float*)(sum1.data.ptr + y1*sum1.step), sum1.step,
1023                        (double*)(sqsum1.data.ptr + y1*sqsum1.step), sqsum1.step,
1024                        (float*)(norm1.data.ptr + y1*norm1.step), norm1.step, ssz, equ_rect );
1025
1026                    positive = (ssz.width/ystep)*((ssz.height + ystep-1)/ystep);
1027                    memset( mask1.data.ptr + y1*mask1.step, ystep == 1, mask1.height*mask1.step);
1028
1029                    if( ystep > 1 )
1030                    {
1031                        for( y = y1, positive = 0; y < y2; y += ystep )
1032                            for( x = 0; x < ssz.width; x += ystep )
1033                                mask1.data.ptr[mask1.step*y + x] = (uchar)1;
1034                    }
1035
1036                    for( j = 0; j < cascade->count; j++ )
1037                    {
1038                        if( icvApplyHaarClassifier_32f_C1R_p(
1039                            (float*)(sum1.data.ptr + y1*sum1.step), sum1.step,
1040                            (float*)(norm1.data.ptr + y1*norm1.step), norm1.step,
1041                            mask1.data.ptr + y1*mask1.step, mask1.step, ssz, &positive,
1042                            cascade->hid_cascade->stage_classifier[j].threshold,
1043                            cascade->hid_cascade->ipp_stages[j]) < 0 )
1044                        {
1045                            positive = 0;
1046                            break;
1047                        }
1048                        if( positive <= 0 )
1049                            break;
1050                    }
1051                }
1052                else
1053                {
1054                    for( y = y1, positive = 0; y < y2; y += ystep )
1055                        for( x = 0; x < ssz.width; x += ystep )
1056                        {
1057                            mask1.data.ptr[mask1.step*y + x] =
1058                                cvRunHaarClassifierCascade( cascade, cvPoint(x,y), 0 ) > 0;
1059                            positive += mask1.data.ptr[mask1.step*y + x];
1060                        }
1061                }
1062
1063                if( positive > 0 )
1064                {
1065                    for( y = y1; y < y2; y += ystep )
1066                        for( x = 0; x < ssz.width; x += ystep )
1067                            if( mask1.data.ptr[mask1.step*y + x] != 0 )
1068                            {
1069                                CvRect obj_rect = { cvRound(x*factor), cvRound(y*factor),
1070                                                    win_size.width, win_size.height };
1071                                cvSeqPush( seq_thread[thread_id], &obj_rect );
1072                            }
1073                }
1074            }
1075
1076            // gather the results
1077            if( max_threads > 1 )
1078                for( i = 0; i < max_threads; i++ )
1079                {
1080                    CvSeq* s = seq_thread[i];
1081                    int j, total = s->total;
1082                    CvSeqBlock* b = s->first;
1083                    for( j = 0; j < total; j += b->count, b = b->next )
1084                        cvSeqPushMulti( seq, b->data, b->count );
1085                }
1086        }
1087    }
1088    else
1089    {
1090        int n_factors = 0;
1091        CvRect scan_roi_rect = {0,0,0,0};
1092        bool is_found = false, scan_roi = false;
1093
1094        cvIntegral( img, sum, sqsum, tilted );
1095
1096        if( do_canny_pruning )
1097        {
1098            sumcanny = cvCreateMat( img->rows + 1, img->cols + 1, CV_32SC1 );
1099            cvCanny( img, temp, 0, 50, 3 );
1100            cvIntegral( temp, sumcanny );
1101        }
1102
1103        if( (unsigned)split_stage >= (unsigned)cascade->count ||
1104            cascade->hid_cascade->is_tree )
1105        {
1106            split_stage = cascade->count;
1107            npass = 1;
1108        }
1109
1110        for( n_factors = 0, factor = 1;
1111             factor*cascade->orig_window_size.width < img->cols - 10 &&
1112             factor*cascade->orig_window_size.height < img->rows - 10;
1113             n_factors++, factor *= scale_factor )
1114            ;
1115
1116        if( find_biggest_object )
1117        {
1118            scale_factor = 1./scale_factor;
1119            factor *= scale_factor;
1120            big_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvRect), temp_storage );
1121        }
1122        else
1123            factor = 1;
1124
1125        for( ; n_factors-- > 0 && !is_found; factor *= scale_factor )
1126        {
1127            const double ystep = MAX( 2, factor );
1128            CvSize win_size = { cvRound( cascade->orig_window_size.width * factor ),
1129                                cvRound( cascade->orig_window_size.height * factor )};
1130            CvRect equ_rect = { 0, 0, 0, 0 };
1131            int *p0 = 0, *p1 = 0, *p2 = 0, *p3 = 0;
1132            int *pq0 = 0, *pq1 = 0, *pq2 = 0, *pq3 = 0;
1133            int pass, stage_offset = 0;
1134            int start_x = 0, start_y = 0;
1135            int end_x = cvRound((img->cols - win_size.width) / ystep);
1136            int end_y = cvRound((img->rows - win_size.height) / ystep);
1137
1138            if( win_size.width < min_size.width || win_size.height < min_size.height )
1139            {
1140                if( find_biggest_object )
1141                    break;
1142                continue;
1143            }
1144
1145            cvSetImagesForHaarClassifierCascade( cascade, sum, sqsum, tilted, factor );
1146            cvZero( temp );
1147
1148            if( do_canny_pruning )
1149            {
1150                equ_rect.x = cvRound(win_size.width*0.15);
1151                equ_rect.y = cvRound(win_size.height*0.15);
1152                equ_rect.width = cvRound(win_size.width*0.7);
1153                equ_rect.height = cvRound(win_size.height*0.7);
1154
1155                p0 = (int*)(sumcanny->data.ptr + equ_rect.y*sumcanny->step) + equ_rect.x;
1156                p1 = (int*)(sumcanny->data.ptr + equ_rect.y*sumcanny->step)
1157                            + equ_rect.x + equ_rect.width;
1158                p2 = (int*)(sumcanny->data.ptr + (equ_rect.y + equ_rect.height)*sumcanny->step) + equ_rect.x;
1159                p3 = (int*)(sumcanny->data.ptr + (equ_rect.y + equ_rect.height)*sumcanny->step)
1160                            + equ_rect.x + equ_rect.width;
1161
1162                pq0 = (int*)(sum->data.ptr + equ_rect.y*sum->step) + equ_rect.x;
1163                pq1 = (int*)(sum->data.ptr + equ_rect.y*sum->step)
1164                            + equ_rect.x + equ_rect.width;
1165                pq2 = (int*)(sum->data.ptr + (equ_rect.y + equ_rect.height)*sum->step) + equ_rect.x;
1166                pq3 = (int*)(sum->data.ptr + (equ_rect.y + equ_rect.height)*sum->step)
1167                            + equ_rect.x + equ_rect.width;
1168            }
1169
1170            if( scan_roi )
1171            {
1172                //adjust start_height and stop_height
1173                start_y = cvRound(scan_roi_rect.y / ystep);
1174                end_y = cvRound((scan_roi_rect.y + scan_roi_rect.height - win_size.height) / ystep);
1175
1176                start_x = cvRound(scan_roi_rect.x / ystep);
1177                end_x = cvRound((scan_roi_rect.x + scan_roi_rect.width - win_size.width) / ystep);
1178            }
1179
1180            cascade->hid_cascade->count = split_stage;
1181
1182            for( pass = 0; pass < npass; pass++ )
1183            {
1184            #ifdef _OPENMP
1185                #pragma omp parallel for num_threads(max_threads) schedule(dynamic)
1186            #endif
1187                for( int _iy = start_y; _iy < end_y; _iy++ )
1188                {
1189                    int thread_id = cvGetThreadNum();
1190                    int iy = cvRound(_iy*ystep);
1191                    int _ix, _xstep = 1;
1192                    uchar* mask_row = temp->data.ptr + temp->step * iy;
1193
1194                    for( _ix = start_x; _ix < end_x; _ix += _xstep )
1195                    {
1196                        int ix = cvRound(_ix*ystep); // it really should be ystep
1197
1198                        if( pass == 0 )
1199                        {
1200                            int result;
1201                            _xstep = 2;
1202
1203                            if( do_canny_pruning )
1204                            {
1205                                int offset;
1206                                int s, sq;
1207
1208                                offset = iy*(sum->step/sizeof(p0[0])) + ix;
1209                                s = p0[offset] - p1[offset] - p2[offset] + p3[offset];
1210                                sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset];
1211                                if( s < 100 || sq < 20 )
1212                                    continue;
1213                            }
1214
1215                            result = cvRunHaarClassifierCascade( cascade, cvPoint(ix,iy), 0 );
1216                            if( result > 0 )
1217                            {
1218                                if( pass < npass - 1 )
1219                                    mask_row[ix] = 1;
1220                                else
1221                                {
1222                                    CvRect rect = cvRect(ix,iy,win_size.width,win_size.height);
1223                                    cvSeqPush( seq_thread[thread_id], &rect );
1224                                }
1225                            }
1226                            if( result < 0 )
1227                                _xstep = 1;
1228                        }
1229                        else if( mask_row[ix] )
1230                        {
1231                            int result = cvRunHaarClassifierCascade( cascade, cvPoint(ix,iy),
1232                                                                     stage_offset );
1233                            if( result > 0 )
1234                            {
1235                                if( pass == npass - 1 )
1236                                {
1237                                    CvRect rect = cvRect(ix,iy,win_size.width,win_size.height);
1238                                    cvSeqPush( seq_thread[thread_id], &rect );
1239                                }
1240                            }
1241                            else
1242                                mask_row[ix] = 0;
1243                        }
1244                    }
1245                }
1246                stage_offset = cascade->hid_cascade->count;
1247                cascade->hid_cascade->count = cascade->count;
1248            }
1249
1250            // gather the results
1251            if( max_threads > 1 )
1252	            for( i = 0; i < max_threads; i++ )
1253	            {
1254		            CvSeq* s = seq_thread[i];
1255                    int j, total = s->total;
1256                    CvSeqBlock* b = s->first;
1257                    for( j = 0; j < total; j += b->count, b = b->next )
1258                        cvSeqPushMulti( seq, b->data, b->count );
1259	            }
1260
1261            if( find_biggest_object )
1262            {
1263                CvSeq* bseq = min_neighbors > 0 ? big_seq : seq;
1264
1265                if( min_neighbors > 0 && !scan_roi )
1266                {
1267                    // group retrieved rectangles in order to filter out noise
1268                    int ncomp = cvSeqPartition( seq, 0, &idx_seq, is_equal, 0 );
1269                    CV_CALL( comps = (CvAvgComp*)cvAlloc( (ncomp+1)*sizeof(comps[0])));
1270                    memset( comps, 0, (ncomp+1)*sizeof(comps[0]));
1271
1272                #if VERY_ROUGH_SEARCH
1273                    if( rough_search )
1274                    {
1275                        for( i = 0; i < seq->total; i++ )
1276                        {
1277                            CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
1278                            int idx = *(int*)cvGetSeqElem( idx_seq, i );
1279                            assert( (unsigned)idx < (unsigned)ncomp );
1280
1281                            comps[idx].neighbors++;
1282                            comps[idx].rect.x += r1.x;
1283                            comps[idx].rect.y += r1.y;
1284                            comps[idx].rect.width += r1.width;
1285                            comps[idx].rect.height += r1.height;
1286                        }
1287
1288                        // calculate average bounding box
1289                        for( i = 0; i < ncomp; i++ )
1290                        {
1291                            int n = comps[i].neighbors;
1292                            if( n >= min_neighbors )
1293                            {
1294                                CvAvgComp comp;
1295                                comp.rect.x = (comps[i].rect.x*2 + n)/(2*n);
1296                                comp.rect.y = (comps[i].rect.y*2 + n)/(2*n);
1297                                comp.rect.width = (comps[i].rect.width*2 + n)/(2*n);
1298                                comp.rect.height = (comps[i].rect.height*2 + n)/(2*n);
1299                                comp.neighbors = n;
1300                                cvSeqPush( bseq, &comp );
1301                            }
1302                        }
1303                    }
1304                    else
1305                #endif
1306                    {
1307                        for( i = 0 ; i <= ncomp; i++ )
1308                            comps[i].rect.x = comps[i].rect.y = INT_MAX;
1309
1310                        // count number of neighbors
1311                        for( i = 0; i < seq->total; i++ )
1312                        {
1313                            CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
1314                            int idx = *(int*)cvGetSeqElem( idx_seq, i );
1315                            assert( (unsigned)idx < (unsigned)ncomp );
1316
1317                            comps[idx].neighbors++;
1318
1319                            // rect.width and rect.height will store coordinate of right-bottom corner
1320                            comps[idx].rect.x = MIN(comps[idx].rect.x, r1.x);
1321                            comps[idx].rect.y = MIN(comps[idx].rect.y, r1.y);
1322                            comps[idx].rect.width = MAX(comps[idx].rect.width, r1.x+r1.width-1);
1323                            comps[idx].rect.height = MAX(comps[idx].rect.height, r1.y+r1.height-1);
1324                        }
1325
1326                        // calculate enclosing box
1327                        for( i = 0; i < ncomp; i++ )
1328                        {
1329                            int n = comps[i].neighbors;
1330                            if( n >= min_neighbors )
1331                            {
1332                                CvAvgComp comp;
1333                                int t;
1334                                double min_scale = rough_search ? 0.6 : 0.4;
1335                                comp.rect.x = comps[i].rect.x;
1336                                comp.rect.y = comps[i].rect.y;
1337                                comp.rect.width = comps[i].rect.width - comps[i].rect.x + 1;
1338                                comp.rect.height = comps[i].rect.height - comps[i].rect.y + 1;
1339
1340                                // update min_size
1341                                t = cvRound( comp.rect.width*min_scale );
1342                                min_size.width = MAX( min_size.width, t );
1343
1344                                t = cvRound( comp.rect.height*min_scale );
1345                                min_size.height = MAX( min_size.height, t );
1346
1347                                //expand the box by 20% because we could miss some neighbours
1348                                //see 'is_equal' function
1349                            #if 1
1350                                int offset = cvRound(comp.rect.width * 0.2);
1351                                int right = MIN( img->cols-1, comp.rect.x+comp.rect.width-1 + offset );
1352                                int bottom = MIN( img->rows-1, comp.rect.y+comp.rect.height-1 + offset);
1353                                comp.rect.x = MAX( comp.rect.x - offset, 0 );
1354                                comp.rect.y = MAX( comp.rect.y - offset, 0 );
1355                                comp.rect.width = right - comp.rect.x + 1;
1356                                comp.rect.height = bottom - comp.rect.y + 1;
1357                            #endif
1358
1359                                comp.neighbors = n;
1360                                cvSeqPush( bseq, &comp );
1361                            }
1362                        }
1363                    }
1364
1365                    cvFree( &comps );
1366                }
1367
1368                // extract the biggest rect
1369                if( bseq->total > 0 )
1370                {
1371                    int max_area = 0;
1372                    for( i = 0; i < bseq->total; i++ )
1373                    {
1374                        CvAvgComp* comp = (CvAvgComp*)cvGetSeqElem( bseq, i );
1375                        int area = comp->rect.width * comp->rect.height;
1376                        if( max_area < area )
1377                        {
1378                            max_area = area;
1379                            result_comp.rect = comp->rect;
1380                            result_comp.neighbors = bseq == seq ? 1 : comp->neighbors;
1381                        }
1382                    }
1383
1384                    //Prepare information for further scanning inside the biggest rectangle
1385
1386                #if VERY_ROUGH_SEARCH
1387                    // change scan ranges to roi in case of required
1388                    if( !rough_search && !scan_roi )
1389                    {
1390                        scan_roi = true;
1391                        scan_roi_rect = result_comp.rect;
1392                        cvClearSeq(bseq);
1393                    }
1394                    else if( rough_search )
1395                        is_found = true;
1396                #else
1397                    if( !scan_roi )
1398                    {
1399                        scan_roi = true;
1400                        scan_roi_rect = result_comp.rect;
1401                        cvClearSeq(bseq);
1402                    }
1403                #endif
1404                }
1405            }
1406        }
1407    }
1408
1409    if( min_neighbors == 0 && !find_biggest_object )
1410    {
1411        for( i = 0; i < seq->total; i++ )
1412        {
1413            CvRect* rect = (CvRect*)cvGetSeqElem( seq, i );
1414            CvAvgComp comp;
1415            comp.rect = *rect;
1416            comp.neighbors = 1;
1417            cvSeqPush( result_seq, &comp );
1418        }
1419    }
1420
1421    if( min_neighbors != 0
1422#if VERY_ROUGH_SEARCH
1423        && (!find_biggest_object || !rough_search)
1424#endif
1425        )
1426    {
1427        // group retrieved rectangles in order to filter out noise
1428        int ncomp = cvSeqPartition( seq, 0, &idx_seq, is_equal, 0 );
1429        CV_CALL( comps = (CvAvgComp*)cvAlloc( (ncomp+1)*sizeof(comps[0])));
1430        memset( comps, 0, (ncomp+1)*sizeof(comps[0]));
1431
1432        // count number of neighbors
1433        for( i = 0; i < seq->total; i++ )
1434        {
1435            CvRect r1 = *(CvRect*)cvGetSeqElem( seq, i );
1436            int idx = *(int*)cvGetSeqElem( idx_seq, i );
1437            assert( (unsigned)idx < (unsigned)ncomp );
1438
1439            comps[idx].neighbors++;
1440
1441            comps[idx].rect.x += r1.x;
1442            comps[idx].rect.y += r1.y;
1443            comps[idx].rect.width += r1.width;
1444            comps[idx].rect.height += r1.height;
1445        }
1446
1447        // calculate average bounding box
1448        for( i = 0; i < ncomp; i++ )
1449        {
1450            int n = comps[i].neighbors;
1451            if( n >= min_neighbors )
1452            {
1453                CvAvgComp comp;
1454                comp.rect.x = (comps[i].rect.x*2 + n)/(2*n);
1455                comp.rect.y = (comps[i].rect.y*2 + n)/(2*n);
1456                comp.rect.width = (comps[i].rect.width*2 + n)/(2*n);
1457                comp.rect.height = (comps[i].rect.height*2 + n)/(2*n);
1458                comp.neighbors = comps[i].neighbors;
1459
1460                cvSeqPush( seq2, &comp );
1461            }
1462        }
1463
1464        if( !find_biggest_object )
1465        {
1466            // filter out small face rectangles inside large face rectangles
1467            for( i = 0; i < seq2->total; i++ )
1468            {
1469                CvAvgComp r1 = *(CvAvgComp*)cvGetSeqElem( seq2, i );
1470                int j, flag = 1;
1471
1472                for( j = 0; j < seq2->total; j++ )
1473                {
1474                    CvAvgComp r2 = *(CvAvgComp*)cvGetSeqElem( seq2, j );
1475                    int distance = cvRound( r2.rect.width * 0.2 );
1476
1477                    if( i != j &&
1478                        r1.rect.x >= r2.rect.x - distance &&
1479                        r1.rect.y >= r2.rect.y - distance &&
1480                        r1.rect.x + r1.rect.width <= r2.rect.x + r2.rect.width + distance &&
1481                        r1.rect.y + r1.rect.height <= r2.rect.y + r2.rect.height + distance &&
1482                        (r2.neighbors > MAX( 3, r1.neighbors ) || r1.neighbors < 3) )
1483                    {
1484                        flag = 0;
1485                        break;
1486                    }
1487                }
1488
1489                if( flag )
1490                    cvSeqPush( result_seq, &r1 );
1491            }
1492        }
1493        else
1494        {
1495            int max_area = 0;
1496            for( i = 0; i < seq2->total; i++ )
1497            {
1498                CvAvgComp* comp = (CvAvgComp*)cvGetSeqElem( seq2, i );
1499                int area = comp->rect.width * comp->rect.height;
1500                if( max_area < area )
1501                {
1502                    max_area = area;
1503                    result_comp = *comp;
1504                }
1505            }
1506        }
1507    }
1508
1509    if( find_biggest_object && result_comp.rect.width > 0 )
1510        cvSeqPush( result_seq, &result_comp );
1511
1512    __END__;
1513
1514    if( max_threads > 1 )
1515	    for( i = 0; i < max_threads; i++ )
1516	    {
1517		    if( seq_thread[i] )
1518                cvReleaseMemStorage( &seq_thread[i]->storage );
1519	    }
1520
1521    cvReleaseMemStorage( &temp_storage );
1522    cvReleaseMat( &sum );
1523    cvReleaseMat( &sqsum );
1524    cvReleaseMat( &tilted );
1525    cvReleaseMat( &temp );
1526    cvReleaseMat( &sumcanny );
1527    cvReleaseMat( &norm_img );
1528    cvReleaseMat( &img_small );
1529    cvFree( &comps );
1530
1531    return result_seq;
1532}
1533
1534
1535static CvHaarClassifierCascade*
1536icvLoadCascadeCART( const char** input_cascade, int n, CvSize orig_window_size )
1537{
1538    int i;
1539    CvHaarClassifierCascade* cascade = icvCreateHaarClassifierCascade(n);
1540    cascade->orig_window_size = orig_window_size;
1541
1542    for( i = 0; i < n; i++ )
1543    {
1544        int j, count, l;
1545        float threshold = 0;
1546        const char* stage = input_cascade[i];
1547        int dl = 0;
1548
1549        /* tree links */
1550        int parent = -1;
1551        int next = -1;
1552
1553        sscanf( stage, "%d%n", &count, &dl );
1554        stage += dl;
1555
1556        assert( count > 0 );
1557        cascade->stage_classifier[i].count = count;
1558        cascade->stage_classifier[i].classifier =
1559            (CvHaarClassifier*)cvAlloc( count*sizeof(cascade->stage_classifier[i].classifier[0]));
1560
1561        for( j = 0; j < count; j++ )
1562        {
1563            CvHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
1564            int k, rects = 0;
1565            char str[100];
1566
1567            sscanf( stage, "%d%n", &classifier->count, &dl );
1568            stage += dl;
1569
1570            classifier->haar_feature = (CvHaarFeature*) cvAlloc(
1571                classifier->count * ( sizeof( *classifier->haar_feature ) +
1572                                      sizeof( *classifier->threshold ) +
1573                                      sizeof( *classifier->left ) +
1574                                      sizeof( *classifier->right ) ) +
1575                (classifier->count + 1) * sizeof( *classifier->alpha ) );
1576            classifier->threshold = (float*) (classifier->haar_feature+classifier->count);
1577            classifier->left = (int*) (classifier->threshold + classifier->count);
1578            classifier->right = (int*) (classifier->left + classifier->count);
1579            classifier->alpha = (float*) (classifier->right + classifier->count);
1580
1581            for( l = 0; l < classifier->count; l++ )
1582            {
1583                sscanf( stage, "%d%n", &rects, &dl );
1584                stage += dl;
1585
1586                assert( rects >= 2 && rects <= CV_HAAR_FEATURE_MAX );
1587
1588                for( k = 0; k < rects; k++ )
1589                {
1590                    CvRect r;
1591                    int band = 0;
1592                    sscanf( stage, "%d%d%d%d%d%f%n",
1593                            &r.x, &r.y, &r.width, &r.height, &band,
1594                            &(classifier->haar_feature[l].rect[k].weight), &dl );
1595                    stage += dl;
1596                    classifier->haar_feature[l].rect[k].r = r;
1597                }
1598                sscanf( stage, "%s%n", str, &dl );
1599                stage += dl;
1600
1601                classifier->haar_feature[l].tilted = strncmp( str, "tilted", 6 ) == 0;
1602
1603                for( k = rects; k < CV_HAAR_FEATURE_MAX; k++ )
1604                {
1605                    memset( classifier->haar_feature[l].rect + k, 0,
1606                            sizeof(classifier->haar_feature[l].rect[k]) );
1607                }
1608
1609                sscanf( stage, "%f%d%d%n", &(classifier->threshold[l]),
1610                                       &(classifier->left[l]),
1611                                       &(classifier->right[l]), &dl );
1612                stage += dl;
1613            }
1614            for( l = 0; l <= classifier->count; l++ )
1615            {
1616                sscanf( stage, "%f%n", &(classifier->alpha[l]), &dl );
1617                stage += dl;
1618            }
1619        }
1620
1621        sscanf( stage, "%f%n", &threshold, &dl );
1622        stage += dl;
1623
1624        cascade->stage_classifier[i].threshold = threshold;
1625
1626        /* load tree links */
1627        if( sscanf( stage, "%d%d%n", &parent, &next, &dl ) != 2 )
1628        {
1629            parent = i - 1;
1630            next = -1;
1631        }
1632        stage += dl;
1633
1634        cascade->stage_classifier[i].parent = parent;
1635        cascade->stage_classifier[i].next = next;
1636        cascade->stage_classifier[i].child = -1;
1637
1638        if( parent != -1 && cascade->stage_classifier[parent].child == -1 )
1639        {
1640            cascade->stage_classifier[parent].child = i;
1641        }
1642    }
1643
1644    return cascade;
1645}
1646
1647#ifndef _MAX_PATH
1648#define _MAX_PATH 1024
1649#endif
1650
1651CV_IMPL CvHaarClassifierCascade*
1652cvLoadHaarClassifierCascade( const char* directory, CvSize orig_window_size )
1653{
1654    const char** input_cascade = 0;
1655    CvHaarClassifierCascade *cascade = 0;
1656
1657    CV_FUNCNAME( "cvLoadHaarClassifierCascade" );
1658
1659    __BEGIN__;
1660
1661    int i, n;
1662    const char* slash;
1663    char name[_MAX_PATH];
1664    int size = 0;
1665    char* ptr = 0;
1666
1667    if( !directory )
1668        CV_ERROR( CV_StsNullPtr, "Null path is passed" );
1669
1670    n = (int)strlen(directory)-1;
1671    slash = directory[n] == '\\' || directory[n] == '/' ? "" : "/";
1672
1673    /* try to read the classifier from directory */
1674    for( n = 0; ; n++ )
1675    {
1676        sprintf( name, "%s%s%d/AdaBoostCARTHaarClassifier.txt", directory, slash, n );
1677        FILE* f = fopen( name, "rb" );
1678        if( !f )
1679            break;
1680        fseek( f, 0, SEEK_END );
1681        size += ftell( f ) + 1;
1682        fclose(f);
1683    }
1684
1685    if( n == 0 && slash[0] )
1686    {
1687        CV_CALL( cascade = (CvHaarClassifierCascade*)cvLoad( directory ));
1688        EXIT;
1689    }
1690    else if( n == 0 )
1691        CV_ERROR( CV_StsBadArg, "Invalid path" );
1692
1693    size += (n+1)*sizeof(char*);
1694    CV_CALL( input_cascade = (const char**)cvAlloc( size ));
1695    ptr = (char*)(input_cascade + n + 1);
1696
1697    for( i = 0; i < n; i++ )
1698    {
1699        sprintf( name, "%s/%d/AdaBoostCARTHaarClassifier.txt", directory, i );
1700        FILE* f = fopen( name, "rb" );
1701        if( !f )
1702            CV_ERROR( CV_StsError, "" );
1703        fseek( f, 0, SEEK_END );
1704        size = ftell( f );
1705        fseek( f, 0, SEEK_SET );
1706        fread( ptr, 1, size, f );
1707        fclose(f);
1708        input_cascade[i] = ptr;
1709        ptr += size;
1710        *ptr++ = '\0';
1711    }
1712
1713    input_cascade[n] = 0;
1714    cascade = icvLoadCascadeCART( input_cascade, n, orig_window_size );
1715
1716    __END__;
1717
1718    if( input_cascade )
1719        cvFree( &input_cascade );
1720
1721    if( cvGetErrStatus() < 0 )
1722        cvReleaseHaarClassifierCascade( &cascade );
1723
1724    return cascade;
1725}
1726
1727
1728CV_IMPL void
1729cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** _cascade )
1730{
1731    if( _cascade && *_cascade )
1732    {
1733        int i, j;
1734        CvHaarClassifierCascade* cascade = *_cascade;
1735
1736        for( i = 0; i < cascade->count; i++ )
1737        {
1738            for( j = 0; j < cascade->stage_classifier[i].count; j++ )
1739                cvFree( &cascade->stage_classifier[i].classifier[j].haar_feature );
1740            cvFree( &cascade->stage_classifier[i].classifier );
1741        }
1742        icvReleaseHidHaarClassifierCascade( &cascade->hid_cascade );
1743        cvFree( _cascade );
1744    }
1745}
1746
1747
1748/****************************************************************************************\
1749*                                  Persistence functions                                 *
1750\****************************************************************************************/
1751
1752/* field names */
1753
1754#define ICV_HAAR_SIZE_NAME            "size"
1755#define ICV_HAAR_STAGES_NAME          "stages"
1756#define ICV_HAAR_TREES_NAME             "trees"
1757#define ICV_HAAR_FEATURE_NAME             "feature"
1758#define ICV_HAAR_RECTS_NAME                 "rects"
1759#define ICV_HAAR_TILTED_NAME                "tilted"
1760#define ICV_HAAR_THRESHOLD_NAME           "threshold"
1761#define ICV_HAAR_LEFT_NODE_NAME           "left_node"
1762#define ICV_HAAR_LEFT_VAL_NAME            "left_val"
1763#define ICV_HAAR_RIGHT_NODE_NAME          "right_node"
1764#define ICV_HAAR_RIGHT_VAL_NAME           "right_val"
1765#define ICV_HAAR_STAGE_THRESHOLD_NAME   "stage_threshold"
1766#define ICV_HAAR_PARENT_NAME            "parent"
1767#define ICV_HAAR_NEXT_NAME              "next"
1768
1769static int
1770icvIsHaarClassifier( const void* struct_ptr )
1771{
1772    return CV_IS_HAAR_CLASSIFIER( struct_ptr );
1773}
1774
1775static void*
1776icvReadHaarClassifier( CvFileStorage* fs, CvFileNode* node )
1777{
1778    CvHaarClassifierCascade* cascade = NULL;
1779
1780    CV_FUNCNAME( "cvReadHaarClassifier" );
1781
1782    __BEGIN__;
1783
1784    char buf[256];
1785    CvFileNode* seq_fn = NULL; /* sequence */
1786    CvFileNode* fn = NULL;
1787    CvFileNode* stages_fn = NULL;
1788    CvSeqReader stages_reader;
1789    int n;
1790    int i, j, k, l;
1791    int parent, next;
1792
1793    CV_CALL( stages_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_STAGES_NAME ) );
1794    if( !stages_fn || !CV_NODE_IS_SEQ( stages_fn->tag) )
1795        CV_ERROR( CV_StsError, "Invalid stages node" );
1796
1797    n = stages_fn->data.seq->total;
1798    CV_CALL( cascade = icvCreateHaarClassifierCascade(n) );
1799
1800    /* read size */
1801    CV_CALL( seq_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_SIZE_NAME ) );
1802    if( !seq_fn || !CV_NODE_IS_SEQ( seq_fn->tag ) || seq_fn->data.seq->total != 2 )
1803        CV_ERROR( CV_StsError, "size node is not a valid sequence." );
1804    CV_CALL( fn = (CvFileNode*) cvGetSeqElem( seq_fn->data.seq, 0 ) );
1805    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 )
1806        CV_ERROR( CV_StsError, "Invalid size node: width must be positive integer" );
1807    cascade->orig_window_size.width = fn->data.i;
1808    CV_CALL( fn = (CvFileNode*) cvGetSeqElem( seq_fn->data.seq, 1 ) );
1809    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 )
1810        CV_ERROR( CV_StsError, "Invalid size node: height must be positive integer" );
1811    cascade->orig_window_size.height = fn->data.i;
1812
1813    CV_CALL( cvStartReadSeq( stages_fn->data.seq, &stages_reader ) );
1814    for( i = 0; i < n; ++i )
1815    {
1816        CvFileNode* stage_fn;
1817        CvFileNode* trees_fn;
1818        CvSeqReader trees_reader;
1819
1820        stage_fn = (CvFileNode*) stages_reader.ptr;
1821        if( !CV_NODE_IS_MAP( stage_fn->tag ) )
1822        {
1823            sprintf( buf, "Invalid stage %d", i );
1824            CV_ERROR( CV_StsError, buf );
1825        }
1826
1827        CV_CALL( trees_fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_TREES_NAME ) );
1828        if( !trees_fn || !CV_NODE_IS_SEQ( trees_fn->tag )
1829            || trees_fn->data.seq->total <= 0 )
1830        {
1831            sprintf( buf, "Trees node is not a valid sequence. (stage %d)", i );
1832            CV_ERROR( CV_StsError, buf );
1833        }
1834
1835        CV_CALL( cascade->stage_classifier[i].classifier =
1836            (CvHaarClassifier*) cvAlloc( trees_fn->data.seq->total
1837                * sizeof( cascade->stage_classifier[i].classifier[0] ) ) );
1838        for( j = 0; j < trees_fn->data.seq->total; ++j )
1839        {
1840            cascade->stage_classifier[i].classifier[j].haar_feature = NULL;
1841        }
1842        cascade->stage_classifier[i].count = trees_fn->data.seq->total;
1843
1844        CV_CALL( cvStartReadSeq( trees_fn->data.seq, &trees_reader ) );
1845        for( j = 0; j < trees_fn->data.seq->total; ++j )
1846        {
1847            CvFileNode* tree_fn;
1848            CvSeqReader tree_reader;
1849            CvHaarClassifier* classifier;
1850            int last_idx;
1851
1852            classifier = &cascade->stage_classifier[i].classifier[j];
1853            tree_fn = (CvFileNode*) trees_reader.ptr;
1854            if( !CV_NODE_IS_SEQ( tree_fn->tag ) || tree_fn->data.seq->total <= 0 )
1855            {
1856                sprintf( buf, "Tree node is not a valid sequence."
1857                         " (stage %d, tree %d)", i, j );
1858                CV_ERROR( CV_StsError, buf );
1859            }
1860
1861            classifier->count = tree_fn->data.seq->total;
1862            CV_CALL( classifier->haar_feature = (CvHaarFeature*) cvAlloc(
1863                classifier->count * ( sizeof( *classifier->haar_feature ) +
1864                                      sizeof( *classifier->threshold ) +
1865                                      sizeof( *classifier->left ) +
1866                                      sizeof( *classifier->right ) ) +
1867                (classifier->count + 1) * sizeof( *classifier->alpha ) ) );
1868            classifier->threshold = (float*) (classifier->haar_feature+classifier->count);
1869            classifier->left = (int*) (classifier->threshold + classifier->count);
1870            classifier->right = (int*) (classifier->left + classifier->count);
1871            classifier->alpha = (float*) (classifier->right + classifier->count);
1872
1873            CV_CALL( cvStartReadSeq( tree_fn->data.seq, &tree_reader ) );
1874            for( k = 0, last_idx = 0; k < tree_fn->data.seq->total; ++k )
1875            {
1876                CvFileNode* node_fn;
1877                CvFileNode* feature_fn;
1878                CvFileNode* rects_fn;
1879                CvSeqReader rects_reader;
1880
1881                node_fn = (CvFileNode*) tree_reader.ptr;
1882                if( !CV_NODE_IS_MAP( node_fn->tag ) )
1883                {
1884                    sprintf( buf, "Tree node %d is not a valid map. (stage %d, tree %d)",
1885                             k, i, j );
1886                    CV_ERROR( CV_StsError, buf );
1887                }
1888                CV_CALL( feature_fn = cvGetFileNodeByName( fs, node_fn,
1889                    ICV_HAAR_FEATURE_NAME ) );
1890                if( !feature_fn || !CV_NODE_IS_MAP( feature_fn->tag ) )
1891                {
1892                    sprintf( buf, "Feature node is not a valid map. "
1893                             "(stage %d, tree %d, node %d)", i, j, k );
1894                    CV_ERROR( CV_StsError, buf );
1895                }
1896                CV_CALL( rects_fn = cvGetFileNodeByName( fs, feature_fn,
1897                    ICV_HAAR_RECTS_NAME ) );
1898                if( !rects_fn || !CV_NODE_IS_SEQ( rects_fn->tag )
1899                    || rects_fn->data.seq->total < 1
1900                    || rects_fn->data.seq->total > CV_HAAR_FEATURE_MAX )
1901                {
1902                    sprintf( buf, "Rects node is not a valid sequence. "
1903                             "(stage %d, tree %d, node %d)", i, j, k );
1904                    CV_ERROR( CV_StsError, buf );
1905                }
1906                CV_CALL( cvStartReadSeq( rects_fn->data.seq, &rects_reader ) );
1907                for( l = 0; l < rects_fn->data.seq->total; ++l )
1908                {
1909                    CvFileNode* rect_fn;
1910                    CvRect r;
1911
1912                    rect_fn = (CvFileNode*) rects_reader.ptr;
1913                    if( !CV_NODE_IS_SEQ( rect_fn->tag ) || rect_fn->data.seq->total != 5 )
1914                    {
1915                        sprintf( buf, "Rect %d is not a valid sequence. "
1916                                 "(stage %d, tree %d, node %d)", l, i, j, k );
1917                        CV_ERROR( CV_StsError, buf );
1918                    }
1919
1920                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 0 );
1921                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 )
1922                    {
1923                        sprintf( buf, "x coordinate must be non-negative integer. "
1924                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
1925                        CV_ERROR( CV_StsError, buf );
1926                    }
1927                    r.x = fn->data.i;
1928                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 1 );
1929                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 )
1930                    {
1931                        sprintf( buf, "y coordinate must be non-negative integer. "
1932                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
1933                        CV_ERROR( CV_StsError, buf );
1934                    }
1935                    r.y = fn->data.i;
1936                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 2 );
1937                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0
1938                        || r.x + fn->data.i > cascade->orig_window_size.width )
1939                    {
1940                        sprintf( buf, "width must be positive integer and "
1941                                 "(x + width) must not exceed window width. "
1942                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
1943                        CV_ERROR( CV_StsError, buf );
1944                    }
1945                    r.width = fn->data.i;
1946                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 3 );
1947                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0
1948                        || r.y + fn->data.i > cascade->orig_window_size.height )
1949                    {
1950                        sprintf( buf, "height must be positive integer and "
1951                                 "(y + height) must not exceed window height. "
1952                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
1953                        CV_ERROR( CV_StsError, buf );
1954                    }
1955                    r.height = fn->data.i;
1956                    fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 4 );
1957                    if( !CV_NODE_IS_REAL( fn->tag ) )
1958                    {
1959                        sprintf( buf, "weight must be real number. "
1960                                 "(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
1961                        CV_ERROR( CV_StsError, buf );
1962                    }
1963
1964                    classifier->haar_feature[k].rect[l].weight = (float) fn->data.f;
1965                    classifier->haar_feature[k].rect[l].r = r;
1966
1967                    CV_NEXT_SEQ_ELEM( sizeof( *rect_fn ), rects_reader );
1968                } /* for each rect */
1969                for( l = rects_fn->data.seq->total; l < CV_HAAR_FEATURE_MAX; ++l )
1970                {
1971                    classifier->haar_feature[k].rect[l].weight = 0;
1972                    classifier->haar_feature[k].rect[l].r = cvRect( 0, 0, 0, 0 );
1973                }
1974
1975                CV_CALL( fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_TILTED_NAME));
1976                if( !fn || !CV_NODE_IS_INT( fn->tag ) )
1977                {
1978                    sprintf( buf, "tilted must be 0 or 1. "
1979                             "(stage %d, tree %d, node %d)", i, j, k );
1980                    CV_ERROR( CV_StsError, buf );
1981                }
1982                classifier->haar_feature[k].tilted = ( fn->data.i != 0 );
1983                CV_CALL( fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_THRESHOLD_NAME));
1984                if( !fn || !CV_NODE_IS_REAL( fn->tag ) )
1985                {
1986                    sprintf( buf, "threshold must be real number. "
1987                             "(stage %d, tree %d, node %d)", i, j, k );
1988                    CV_ERROR( CV_StsError, buf );
1989                }
1990                classifier->threshold[k] = (float) fn->data.f;
1991                CV_CALL( fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_NODE_NAME));
1992                if( fn )
1993                {
1994                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k
1995                        || fn->data.i >= tree_fn->data.seq->total )
1996                    {
1997                        sprintf( buf, "left node must be valid node number. "
1998                                 "(stage %d, tree %d, node %d)", i, j, k );
1999                        CV_ERROR( CV_StsError, buf );
2000                    }
2001                    /* left node */
2002                    classifier->left[k] = fn->data.i;
2003                }
2004                else
2005                {
2006                    CV_CALL( fn = cvGetFileNodeByName( fs, node_fn,
2007                        ICV_HAAR_LEFT_VAL_NAME ) );
2008                    if( !fn )
2009                    {
2010                        sprintf( buf, "left node or left value must be specified. "
2011                                 "(stage %d, tree %d, node %d)", i, j, k );
2012                        CV_ERROR( CV_StsError, buf );
2013                    }
2014                    if( !CV_NODE_IS_REAL( fn->tag ) )
2015                    {
2016                        sprintf( buf, "left value must be real number. "
2017                                 "(stage %d, tree %d, node %d)", i, j, k );
2018                        CV_ERROR( CV_StsError, buf );
2019                    }
2020                    /* left value */
2021                    if( last_idx >= classifier->count + 1 )
2022                    {
2023                        sprintf( buf, "Tree structure is broken: too many values. "
2024                                 "(stage %d, tree %d, node %d)", i, j, k );
2025                        CV_ERROR( CV_StsError, buf );
2026                    }
2027                    classifier->left[k] = -last_idx;
2028                    classifier->alpha[last_idx++] = (float) fn->data.f;
2029                }
2030                CV_CALL( fn = cvGetFileNodeByName( fs, node_fn,ICV_HAAR_RIGHT_NODE_NAME));
2031                if( fn )
2032                {
2033                    if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k
2034                        || fn->data.i >= tree_fn->data.seq->total )
2035                    {
2036                        sprintf( buf, "right node must be valid node number. "
2037                                 "(stage %d, tree %d, node %d)", i, j, k );
2038                        CV_ERROR( CV_StsError, buf );
2039                    }
2040                    /* right node */
2041                    classifier->right[k] = fn->data.i;
2042                }
2043                else
2044                {
2045                    CV_CALL( fn = cvGetFileNodeByName( fs, node_fn,
2046                        ICV_HAAR_RIGHT_VAL_NAME ) );
2047                    if( !fn )
2048                    {
2049                        sprintf( buf, "right node or right value must be specified. "
2050                                 "(stage %d, tree %d, node %d)", i, j, k );
2051                        CV_ERROR( CV_StsError, buf );
2052                    }
2053                    if( !CV_NODE_IS_REAL( fn->tag ) )
2054                    {
2055                        sprintf( buf, "right value must be real number. "
2056                                 "(stage %d, tree %d, node %d)", i, j, k );
2057                        CV_ERROR( CV_StsError, buf );
2058                    }
2059                    /* right value */
2060                    if( last_idx >= classifier->count + 1 )
2061                    {
2062                        sprintf( buf, "Tree structure is broken: too many values. "
2063                                 "(stage %d, tree %d, node %d)", i, j, k );
2064                        CV_ERROR( CV_StsError, buf );
2065                    }
2066                    classifier->right[k] = -last_idx;
2067                    classifier->alpha[last_idx++] = (float) fn->data.f;
2068                }
2069
2070                CV_NEXT_SEQ_ELEM( sizeof( *node_fn ), tree_reader );
2071            } /* for each node */
2072            if( last_idx != classifier->count + 1 )
2073            {
2074                sprintf( buf, "Tree structure is broken: too few values. "
2075                         "(stage %d, tree %d)", i, j );
2076                CV_ERROR( CV_StsError, buf );
2077            }
2078
2079            CV_NEXT_SEQ_ELEM( sizeof( *tree_fn ), trees_reader );
2080        } /* for each tree */
2081
2082        CV_CALL( fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_STAGE_THRESHOLD_NAME));
2083        if( !fn || !CV_NODE_IS_REAL( fn->tag ) )
2084        {
2085            sprintf( buf, "stage threshold must be real number. (stage %d)", i );
2086            CV_ERROR( CV_StsError, buf );
2087        }
2088        cascade->stage_classifier[i].threshold = (float) fn->data.f;
2089
2090        parent = i - 1;
2091        next = -1;
2092
2093        CV_CALL( fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_PARENT_NAME ) );
2094        if( !fn || !CV_NODE_IS_INT( fn->tag )
2095            || fn->data.i < -1 || fn->data.i >= cascade->count )
2096        {
2097            sprintf( buf, "parent must be integer number. (stage %d)", i );
2098            CV_ERROR( CV_StsError, buf );
2099        }
2100        parent = fn->data.i;
2101        CV_CALL( fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_NEXT_NAME ) );
2102        if( !fn || !CV_NODE_IS_INT( fn->tag )
2103            || fn->data.i < -1 || fn->data.i >= cascade->count )
2104        {
2105            sprintf( buf, "next must be integer number. (stage %d)", i );
2106            CV_ERROR( CV_StsError, buf );
2107        }
2108        next = fn->data.i;
2109
2110        cascade->stage_classifier[i].parent = parent;
2111        cascade->stage_classifier[i].next = next;
2112        cascade->stage_classifier[i].child = -1;
2113
2114        if( parent != -1 && cascade->stage_classifier[parent].child == -1 )
2115        {
2116            cascade->stage_classifier[parent].child = i;
2117        }
2118
2119        CV_NEXT_SEQ_ELEM( sizeof( *stage_fn ), stages_reader );
2120    } /* for each stage */
2121
2122    __END__;
2123
2124    if( cvGetErrStatus() < 0 )
2125    {
2126        cvReleaseHaarClassifierCascade( &cascade );
2127        cascade = NULL;
2128    }
2129
2130    return cascade;
2131}
2132
2133static void
2134icvWriteHaarClassifier( CvFileStorage* fs, const char* name, const void* struct_ptr,
2135                        CvAttrList attributes )
2136{
2137    CV_FUNCNAME( "cvWriteHaarClassifier" );
2138
2139    __BEGIN__;
2140
2141    int i, j, k, l;
2142    char buf[256];
2143    const CvHaarClassifierCascade* cascade = (const CvHaarClassifierCascade*) struct_ptr;
2144
2145    /* TODO: parameters check */
2146
2147    CV_CALL( cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HAAR, attributes ) );
2148
2149    CV_CALL( cvStartWriteStruct( fs, ICV_HAAR_SIZE_NAME, CV_NODE_SEQ | CV_NODE_FLOW ) );
2150    CV_CALL( cvWriteInt( fs, NULL, cascade->orig_window_size.width ) );
2151    CV_CALL( cvWriteInt( fs, NULL, cascade->orig_window_size.height ) );
2152    CV_CALL( cvEndWriteStruct( fs ) ); /* size */
2153
2154    CV_CALL( cvStartWriteStruct( fs, ICV_HAAR_STAGES_NAME, CV_NODE_SEQ ) );
2155    for( i = 0; i < cascade->count; ++i )
2156    {
2157        CV_CALL( cvStartWriteStruct( fs, NULL, CV_NODE_MAP ) );
2158        sprintf( buf, "stage %d", i );
2159        CV_CALL( cvWriteComment( fs, buf, 1 ) );
2160
2161        CV_CALL( cvStartWriteStruct( fs, ICV_HAAR_TREES_NAME, CV_NODE_SEQ ) );
2162
2163        for( j = 0; j < cascade->stage_classifier[i].count; ++j )
2164        {
2165            CvHaarClassifier* tree = &cascade->stage_classifier[i].classifier[j];
2166
2167            CV_CALL( cvStartWriteStruct( fs, NULL, CV_NODE_SEQ ) );
2168            sprintf( buf, "tree %d", j );
2169            CV_CALL( cvWriteComment( fs, buf, 1 ) );
2170
2171            for( k = 0; k < tree->count; ++k )
2172            {
2173                CvHaarFeature* feature = &tree->haar_feature[k];
2174
2175                CV_CALL( cvStartWriteStruct( fs, NULL, CV_NODE_MAP ) );
2176                if( k )
2177                {
2178                    sprintf( buf, "node %d", k );
2179                }
2180                else
2181                {
2182                    sprintf( buf, "root node" );
2183                }
2184                CV_CALL( cvWriteComment( fs, buf, 1 ) );
2185
2186                CV_CALL( cvStartWriteStruct( fs, ICV_HAAR_FEATURE_NAME, CV_NODE_MAP ) );
2187
2188                CV_CALL( cvStartWriteStruct( fs, ICV_HAAR_RECTS_NAME, CV_NODE_SEQ ) );
2189                for( l = 0; l < CV_HAAR_FEATURE_MAX && feature->rect[l].r.width != 0; ++l )
2190                {
2191                    CV_CALL( cvStartWriteStruct( fs, NULL, CV_NODE_SEQ | CV_NODE_FLOW ) );
2192                    CV_CALL( cvWriteInt(  fs, NULL, feature->rect[l].r.x ) );
2193                    CV_CALL( cvWriteInt(  fs, NULL, feature->rect[l].r.y ) );
2194                    CV_CALL( cvWriteInt(  fs, NULL, feature->rect[l].r.width ) );
2195                    CV_CALL( cvWriteInt(  fs, NULL, feature->rect[l].r.height ) );
2196                    CV_CALL( cvWriteReal( fs, NULL, feature->rect[l].weight ) );
2197                    CV_CALL( cvEndWriteStruct( fs ) ); /* rect */
2198                }
2199                CV_CALL( cvEndWriteStruct( fs ) ); /* rects */
2200                CV_CALL( cvWriteInt( fs, ICV_HAAR_TILTED_NAME, feature->tilted ) );
2201                CV_CALL( cvEndWriteStruct( fs ) ); /* feature */
2202
2203                CV_CALL( cvWriteReal( fs, ICV_HAAR_THRESHOLD_NAME, tree->threshold[k]) );
2204
2205                if( tree->left[k] > 0 )
2206                {
2207                    CV_CALL( cvWriteInt( fs, ICV_HAAR_LEFT_NODE_NAME, tree->left[k] ) );
2208                }
2209                else
2210                {
2211                    CV_CALL( cvWriteReal( fs, ICV_HAAR_LEFT_VAL_NAME,
2212                        tree->alpha[-tree->left[k]] ) );
2213                }
2214
2215                if( tree->right[k] > 0 )
2216                {
2217                    CV_CALL( cvWriteInt( fs, ICV_HAAR_RIGHT_NODE_NAME, tree->right[k] ) );
2218                }
2219                else
2220                {
2221                    CV_CALL( cvWriteReal( fs, ICV_HAAR_RIGHT_VAL_NAME,
2222                        tree->alpha[-tree->right[k]] ) );
2223                }
2224
2225                CV_CALL( cvEndWriteStruct( fs ) ); /* split */
2226            }
2227
2228            CV_CALL( cvEndWriteStruct( fs ) ); /* tree */
2229        }
2230
2231        CV_CALL( cvEndWriteStruct( fs ) ); /* trees */
2232
2233        CV_CALL( cvWriteReal( fs, ICV_HAAR_STAGE_THRESHOLD_NAME,
2234                              cascade->stage_classifier[i].threshold) );
2235
2236        CV_CALL( cvWriteInt( fs, ICV_HAAR_PARENT_NAME,
2237                              cascade->stage_classifier[i].parent ) );
2238        CV_CALL( cvWriteInt( fs, ICV_HAAR_NEXT_NAME,
2239                              cascade->stage_classifier[i].next ) );
2240
2241        CV_CALL( cvEndWriteStruct( fs ) ); /* stage */
2242    } /* for each stage */
2243
2244    CV_CALL( cvEndWriteStruct( fs ) ); /* stages */
2245    CV_CALL( cvEndWriteStruct( fs ) ); /* root */
2246
2247    __END__;
2248}
2249
2250static void*
2251icvCloneHaarClassifier( const void* struct_ptr )
2252{
2253    CvHaarClassifierCascade* cascade = NULL;
2254
2255    CV_FUNCNAME( "cvCloneHaarClassifier" );
2256
2257    __BEGIN__;
2258
2259    int i, j, k, n;
2260    const CvHaarClassifierCascade* cascade_src =
2261        (const CvHaarClassifierCascade*) struct_ptr;
2262
2263    n = cascade_src->count;
2264    CV_CALL( cascade = icvCreateHaarClassifierCascade(n) );
2265    cascade->orig_window_size = cascade_src->orig_window_size;
2266
2267    for( i = 0; i < n; ++i )
2268    {
2269        cascade->stage_classifier[i].parent = cascade_src->stage_classifier[i].parent;
2270        cascade->stage_classifier[i].next = cascade_src->stage_classifier[i].next;
2271        cascade->stage_classifier[i].child = cascade_src->stage_classifier[i].child;
2272        cascade->stage_classifier[i].threshold = cascade_src->stage_classifier[i].threshold;
2273
2274        cascade->stage_classifier[i].count = 0;
2275        CV_CALL( cascade->stage_classifier[i].classifier =
2276            (CvHaarClassifier*) cvAlloc( cascade_src->stage_classifier[i].count
2277                * sizeof( cascade->stage_classifier[i].classifier[0] ) ) );
2278
2279        cascade->stage_classifier[i].count = cascade_src->stage_classifier[i].count;
2280
2281        for( j = 0; j < cascade->stage_classifier[i].count; ++j )
2282        {
2283            cascade->stage_classifier[i].classifier[j].haar_feature = NULL;
2284        }
2285
2286        for( j = 0; j < cascade->stage_classifier[i].count; ++j )
2287        {
2288            const CvHaarClassifier* classifier_src =
2289                &cascade_src->stage_classifier[i].classifier[j];
2290            CvHaarClassifier* classifier =
2291                &cascade->stage_classifier[i].classifier[j];
2292
2293            classifier->count = classifier_src->count;
2294            CV_CALL( classifier->haar_feature = (CvHaarFeature*) cvAlloc(
2295                classifier->count * ( sizeof( *classifier->haar_feature ) +
2296                                      sizeof( *classifier->threshold ) +
2297                                      sizeof( *classifier->left ) +
2298                                      sizeof( *classifier->right ) ) +
2299                (classifier->count + 1) * sizeof( *classifier->alpha ) ) );
2300            classifier->threshold = (float*) (classifier->haar_feature+classifier->count);
2301            classifier->left = (int*) (classifier->threshold + classifier->count);
2302            classifier->right = (int*) (classifier->left + classifier->count);
2303            classifier->alpha = (float*) (classifier->right + classifier->count);
2304            for( k = 0; k < classifier->count; ++k )
2305            {
2306                classifier->haar_feature[k] = classifier_src->haar_feature[k];
2307                classifier->threshold[k] = classifier_src->threshold[k];
2308                classifier->left[k] = classifier_src->left[k];
2309                classifier->right[k] = classifier_src->right[k];
2310                classifier->alpha[k] = classifier_src->alpha[k];
2311            }
2312            classifier->alpha[classifier->count] =
2313                classifier_src->alpha[classifier->count];
2314        }
2315    }
2316
2317    __END__;
2318
2319    return cascade;
2320}
2321
2322
2323CvType haar_type( CV_TYPE_NAME_HAAR, icvIsHaarClassifier,
2324                  (CvReleaseFunc)cvReleaseHaarClassifierCascade,
2325                  icvReadHaarClassifier, icvWriteHaarClassifier,
2326                  icvCloneHaarClassifier );
2327
2328/* End of file. */
2329