1// Protocol Buffers - Google's data interchange format
2// Copyright 2008 Google Inc.  All rights reserved.
3// http://code.google.com/p/protobuf/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// from google3/strings/strutil.cc
32
33#include <google/protobuf/stubs/strutil.h>
34#include <errno.h>
35#include <float.h>    // FLT_DIG and DBL_DIG
36#include <limits>
37#include <limits.h>
38#include <stdio.h>
39#include <iterator>
40
41#ifdef _WIN32
42// MSVC has only _snprintf, not snprintf.
43//
44// MinGW has both snprintf and _snprintf, but they appear to be different
45// functions.  The former is buggy.  When invoked like so:
46//   char buffer[32];
47//   snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
48// it prints "1.23000e+10".  This is plainly wrong:  %g should never print
49// trailing zeros after the decimal point.  For some reason this bug only
50// occurs with some input values, not all.  In any case, _snprintf does the
51// right thing, so we use it.
52#define snprintf _snprintf
53#endif
54
55namespace google {
56namespace protobuf {
57
58inline bool IsNaN(double value) {
59  // NaN is never equal to anything, even itself.
60  return value != value;
61}
62
63// These are defined as macros on some platforms.  #undef them so that we can
64// redefine them.
65#undef isxdigit
66#undef isprint
67
68// The definitions of these in ctype.h change based on locale.  Since our
69// string manipulation is all in relation to the protocol buffer and C++
70// languages, we always want to use the C locale.  So, we re-define these
71// exactly as we want them.
72inline bool isxdigit(char c) {
73  return ('0' <= c && c <= '9') ||
74         ('a' <= c && c <= 'f') ||
75         ('A' <= c && c <= 'F');
76}
77
78inline bool isprint(char c) {
79  return c >= 0x20 && c <= 0x7E;
80}
81
82// ----------------------------------------------------------------------
83// StripString
84//    Replaces any occurrence of the character 'remove' (or the characters
85//    in 'remove') with the character 'replacewith'.
86// ----------------------------------------------------------------------
87void StripString(string* s, const char* remove, char replacewith) {
88  const char * str_start = s->c_str();
89  const char * str = str_start;
90  for (str = strpbrk(str, remove);
91       str != NULL;
92       str = strpbrk(str + 1, remove)) {
93    (*s)[str - str_start] = replacewith;
94  }
95}
96
97// ----------------------------------------------------------------------
98// StringReplace()
99//    Replace the "old" pattern with the "new" pattern in a string,
100//    and append the result to "res".  If replace_all is false,
101//    it only replaces the first instance of "old."
102// ----------------------------------------------------------------------
103
104void StringReplace(const string& s, const string& oldsub,
105                   const string& newsub, bool replace_all,
106                   string* res) {
107  if (oldsub.empty()) {
108    res->append(s);  // if empty, append the given string.
109    return;
110  }
111
112  string::size_type start_pos = 0;
113  string::size_type pos;
114  do {
115    pos = s.find(oldsub, start_pos);
116    if (pos == string::npos) {
117      break;
118    }
119    res->append(s, start_pos, pos - start_pos);
120    res->append(newsub);
121    start_pos = pos + oldsub.size();  // start searching again after the "old"
122  } while (replace_all);
123  res->append(s, start_pos, s.length() - start_pos);
124}
125
126// ----------------------------------------------------------------------
127// StringReplace()
128//    Give me a string and two patterns "old" and "new", and I replace
129//    the first instance of "old" in the string with "new", if it
130//    exists.  If "global" is true; call this repeatedly until it
131//    fails.  RETURN a new string, regardless of whether the replacement
132//    happened or not.
133// ----------------------------------------------------------------------
134
135string StringReplace(const string& s, const string& oldsub,
136                     const string& newsub, bool replace_all) {
137  string ret;
138  StringReplace(s, oldsub, newsub, replace_all, &ret);
139  return ret;
140}
141
142// ----------------------------------------------------------------------
143// SplitStringUsing()
144//    Split a string using a character delimiter. Append the components
145//    to 'result'.
146//
147// Note: For multi-character delimiters, this routine will split on *ANY* of
148// the characters in the string, not the entire string as a single delimiter.
149// ----------------------------------------------------------------------
150template <typename ITR>
151static inline
152void SplitStringToIteratorUsing(const string& full,
153                                const char* delim,
154                                ITR& result) {
155  // Optimize the common case where delim is a single character.
156  if (delim[0] != '\0' && delim[1] == '\0') {
157    char c = delim[0];
158    const char* p = full.data();
159    const char* end = p + full.size();
160    while (p != end) {
161      if (*p == c) {
162        ++p;
163      } else {
164        const char* start = p;
165        while (++p != end && *p != c);
166        *result++ = string(start, p - start);
167      }
168    }
169    return;
170  }
171
172  string::size_type begin_index, end_index;
173  begin_index = full.find_first_not_of(delim);
174  while (begin_index != string::npos) {
175    end_index = full.find_first_of(delim, begin_index);
176    if (end_index == string::npos) {
177      *result++ = full.substr(begin_index);
178      return;
179    }
180    *result++ = full.substr(begin_index, (end_index - begin_index));
181    begin_index = full.find_first_not_of(delim, end_index);
182  }
183}
184
185void SplitStringUsing(const string& full,
186                      const char* delim,
187                      vector<string>* result) {
188  back_insert_iterator< vector<string> > it(*result);
189  SplitStringToIteratorUsing(full, delim, it);
190}
191
192// ----------------------------------------------------------------------
193// JoinStrings()
194//    This merges a vector of string components with delim inserted
195//    as separaters between components.
196//
197// ----------------------------------------------------------------------
198template <class ITERATOR>
199static void JoinStringsIterator(const ITERATOR& start,
200                                const ITERATOR& end,
201                                const char* delim,
202                                string* result) {
203  GOOGLE_CHECK(result != NULL);
204  result->clear();
205  int delim_length = strlen(delim);
206
207  // Precompute resulting length so we can reserve() memory in one shot.
208  int length = 0;
209  for (ITERATOR iter = start; iter != end; ++iter) {
210    if (iter != start) {
211      length += delim_length;
212    }
213    length += iter->size();
214  }
215  result->reserve(length);
216
217  // Now combine everything.
218  for (ITERATOR iter = start; iter != end; ++iter) {
219    if (iter != start) {
220      result->append(delim, delim_length);
221    }
222    result->append(iter->data(), iter->size());
223  }
224}
225
226void JoinStrings(const vector<string>& components,
227                 const char* delim,
228                 string * result) {
229  JoinStringsIterator(components.begin(), components.end(), delim, result);
230}
231
232// ----------------------------------------------------------------------
233// UnescapeCEscapeSequences()
234//    This does all the unescaping that C does: \ooo, \r, \n, etc
235//    Returns length of resulting string.
236//    The implementation of \x parses any positive number of hex digits,
237//    but it is an error if the value requires more than 8 bits, and the
238//    result is truncated to 8 bits.
239//
240//    The second call stores its errors in a supplied string vector.
241//    If the string vector pointer is NULL, it reports the errors with LOG().
242// ----------------------------------------------------------------------
243
244#define IS_OCTAL_DIGIT(c) (((c) >= '0') && ((c) <= '7'))
245
246inline int hex_digit_to_int(char c) {
247  /* Assume ASCII. */
248  assert('0' == 0x30 && 'A' == 0x41 && 'a' == 0x61);
249  assert(isxdigit(c));
250  int x = static_cast<unsigned char>(c);
251  if (x > '9') {
252    x += 9;
253  }
254  return x & 0xf;
255}
256
257// Protocol buffers doesn't ever care about errors, but I don't want to remove
258// the code.
259#define LOG_STRING(LEVEL, VECTOR) GOOGLE_LOG_IF(LEVEL, false)
260
261int UnescapeCEscapeSequences(const char* source, char* dest) {
262  return UnescapeCEscapeSequences(source, dest, NULL);
263}
264
265int UnescapeCEscapeSequences(const char* source, char* dest,
266                             vector<string> *errors) {
267  GOOGLE_DCHECK(errors == NULL) << "Error reporting not implemented.";
268
269  char* d = dest;
270  const char* p = source;
271
272  // Small optimization for case where source = dest and there's no escaping
273  while ( p == d && *p != '\0' && *p != '\\' )
274    p++, d++;
275
276  while (*p != '\0') {
277    if (*p != '\\') {
278      *d++ = *p++;
279    } else {
280      switch ( *++p ) {                    // skip past the '\\'
281        case '\0':
282          LOG_STRING(ERROR, errors) << "String cannot end with \\";
283          *d = '\0';
284          return d - dest;   // we're done with p
285        case 'a':  *d++ = '\a';  break;
286        case 'b':  *d++ = '\b';  break;
287        case 'f':  *d++ = '\f';  break;
288        case 'n':  *d++ = '\n';  break;
289        case 'r':  *d++ = '\r';  break;
290        case 't':  *d++ = '\t';  break;
291        case 'v':  *d++ = '\v';  break;
292        case '\\': *d++ = '\\';  break;
293        case '?':  *d++ = '\?';  break;    // \?  Who knew?
294        case '\'': *d++ = '\'';  break;
295        case '"':  *d++ = '\"';  break;
296        case '0': case '1': case '2': case '3':  // octal digit: 1 to 3 digits
297        case '4': case '5': case '6': case '7': {
298          char ch = *p - '0';
299          if ( IS_OCTAL_DIGIT(p[1]) )
300            ch = ch * 8 + *++p - '0';
301          if ( IS_OCTAL_DIGIT(p[1]) )      // safe (and easy) to do this twice
302            ch = ch * 8 + *++p - '0';      // now points at last digit
303          *d++ = ch;
304          break;
305        }
306        case 'x': case 'X': {
307          if (!isxdigit(p[1])) {
308            if (p[1] == '\0') {
309              LOG_STRING(ERROR, errors) << "String cannot end with \\x";
310            } else {
311              LOG_STRING(ERROR, errors) <<
312                "\\x cannot be followed by non-hex digit: \\" << *p << p[1];
313            }
314            break;
315          }
316          unsigned int ch = 0;
317          const char *hex_start = p;
318          while (isxdigit(p[1]))  // arbitrarily many hex digits
319            ch = (ch << 4) + hex_digit_to_int(*++p);
320          if (ch > 0xFF)
321            LOG_STRING(ERROR, errors) << "Value of " <<
322              "\\" << string(hex_start, p+1-hex_start) << " exceeds 8 bits";
323          *d++ = ch;
324          break;
325        }
326#if 0  // TODO(kenton):  Support \u and \U?  Requires runetochar().
327        case 'u': {
328          // \uhhhh => convert 4 hex digits to UTF-8
329          char32 rune = 0;
330          const char *hex_start = p;
331          for (int i = 0; i < 4; ++i) {
332            if (isxdigit(p[1])) {  // Look one char ahead.
333              rune = (rune << 4) + hex_digit_to_int(*++p);  // Advance p.
334            } else {
335              LOG_STRING(ERROR, errors)
336                << "\\u must be followed by 4 hex digits: \\"
337                <<  string(hex_start, p+1-hex_start);
338              break;
339            }
340          }
341          d += runetochar(d, &rune);
342          break;
343        }
344        case 'U': {
345          // \Uhhhhhhhh => convert 8 hex digits to UTF-8
346          char32 rune = 0;
347          const char *hex_start = p;
348          for (int i = 0; i < 8; ++i) {
349            if (isxdigit(p[1])) {  // Look one char ahead.
350              // Don't change rune until we're sure this
351              // is within the Unicode limit, but do advance p.
352              char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
353              if (newrune > 0x10FFFF) {
354                LOG_STRING(ERROR, errors)
355                  << "Value of \\"
356                  << string(hex_start, p + 1 - hex_start)
357                  << " exceeds Unicode limit (0x10FFFF)";
358                break;
359              } else {
360                rune = newrune;
361              }
362            } else {
363              LOG_STRING(ERROR, errors)
364                << "\\U must be followed by 8 hex digits: \\"
365                <<  string(hex_start, p+1-hex_start);
366              break;
367            }
368          }
369          d += runetochar(d, &rune);
370          break;
371        }
372#endif
373        default:
374          LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p;
375      }
376      p++;                                 // read past letter we escaped
377    }
378  }
379  *d = '\0';
380  return d - dest;
381}
382
383// ----------------------------------------------------------------------
384// UnescapeCEscapeString()
385//    This does the same thing as UnescapeCEscapeSequences, but creates
386//    a new string. The caller does not need to worry about allocating
387//    a dest buffer. This should be used for non performance critical
388//    tasks such as printing debug messages. It is safe for src and dest
389//    to be the same.
390//
391//    The second call stores its errors in a supplied string vector.
392//    If the string vector pointer is NULL, it reports the errors with LOG().
393//
394//    In the first and second calls, the length of dest is returned. In the
395//    the third call, the new string is returned.
396// ----------------------------------------------------------------------
397int UnescapeCEscapeString(const string& src, string* dest) {
398  return UnescapeCEscapeString(src, dest, NULL);
399}
400
401int UnescapeCEscapeString(const string& src, string* dest,
402                          vector<string> *errors) {
403  scoped_array<char> unescaped(new char[src.size() + 1]);
404  int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), errors);
405  GOOGLE_CHECK(dest);
406  dest->assign(unescaped.get(), len);
407  return len;
408}
409
410string UnescapeCEscapeString(const string& src) {
411  scoped_array<char> unescaped(new char[src.size() + 1]);
412  int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), NULL);
413  return string(unescaped.get(), len);
414}
415
416// ----------------------------------------------------------------------
417// CEscapeString()
418// CHexEscapeString()
419//    Copies 'src' to 'dest', escaping dangerous characters using
420//    C-style escape sequences. This is very useful for preparing query
421//    flags. 'src' and 'dest' should not overlap. The 'Hex' version uses
422//    hexadecimal rather than octal sequences.
423//    Returns the number of bytes written to 'dest' (not including the \0)
424//    or -1 if there was insufficient space.
425//
426//    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
427// ----------------------------------------------------------------------
428int CEscapeInternal(const char* src, int src_len, char* dest,
429                    int dest_len, bool use_hex, bool utf8_safe) {
430  const char* src_end = src + src_len;
431  int used = 0;
432  bool last_hex_escape = false; // true if last output char was \xNN
433
434  for (; src < src_end; src++) {
435    if (dest_len - used < 2)   // Need space for two letter escape
436      return -1;
437
438    bool is_hex_escape = false;
439    switch (*src) {
440      case '\n': dest[used++] = '\\'; dest[used++] = 'n';  break;
441      case '\r': dest[used++] = '\\'; dest[used++] = 'r';  break;
442      case '\t': dest[used++] = '\\'; dest[used++] = 't';  break;
443      case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break;
444      case '\'': dest[used++] = '\\'; dest[used++] = '\''; break;
445      case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break;
446      default:
447        // Note that if we emit \xNN and the src character after that is a hex
448        // digit then that digit must be escaped too to prevent it being
449        // interpreted as part of the character code by C.
450        if ((!utf8_safe || static_cast<uint8>(*src) < 0x80) &&
451            (!isprint(*src) ||
452             (last_hex_escape && isxdigit(*src)))) {
453          if (dest_len - used < 4) // need space for 4 letter escape
454            return -1;
455          sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"),
456                  static_cast<uint8>(*src));
457          is_hex_escape = use_hex;
458          used += 4;
459        } else {
460          dest[used++] = *src; break;
461        }
462    }
463    last_hex_escape = is_hex_escape;
464  }
465
466  if (dest_len - used < 1)   // make sure that there is room for \0
467    return -1;
468
469  dest[used] = '\0';   // doesn't count towards return value though
470  return used;
471}
472
473int CEscapeString(const char* src, int src_len, char* dest, int dest_len) {
474  return CEscapeInternal(src, src_len, dest, dest_len, false, false);
475}
476
477// ----------------------------------------------------------------------
478// CEscape()
479// CHexEscape()
480//    Copies 'src' to result, escaping dangerous characters using
481//    C-style escape sequences. This is very useful for preparing query
482//    flags. 'src' and 'dest' should not overlap. The 'Hex' version
483//    hexadecimal rather than octal sequences.
484//
485//    Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
486// ----------------------------------------------------------------------
487string CEscape(const string& src) {
488  const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
489  scoped_array<char> dest(new char[dest_length]);
490  const int len = CEscapeInternal(src.data(), src.size(),
491                                  dest.get(), dest_length, false, false);
492  GOOGLE_DCHECK_GE(len, 0);
493  return string(dest.get(), len);
494}
495
496namespace strings {
497
498string Utf8SafeCEscape(const string& src) {
499  const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
500  scoped_array<char> dest(new char[dest_length]);
501  const int len = CEscapeInternal(src.data(), src.size(),
502                                  dest.get(), dest_length, false, true);
503  GOOGLE_DCHECK_GE(len, 0);
504  return string(dest.get(), len);
505}
506
507string CHexEscape(const string& src) {
508  const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
509  scoped_array<char> dest(new char[dest_length]);
510  const int len = CEscapeInternal(src.data(), src.size(),
511                                  dest.get(), dest_length, true, false);
512  GOOGLE_DCHECK_GE(len, 0);
513  return string(dest.get(), len);
514}
515
516}  // namespace strings
517
518// ----------------------------------------------------------------------
519// strto32_adaptor()
520// strtou32_adaptor()
521//    Implementation of strto[u]l replacements that have identical
522//    overflow and underflow characteristics for both ILP-32 and LP-64
523//    platforms, including errno preservation in error-free calls.
524// ----------------------------------------------------------------------
525
526int32 strto32_adaptor(const char *nptr, char **endptr, int base) {
527  const int saved_errno = errno;
528  errno = 0;
529  const long result = strtol(nptr, endptr, base);
530  if (errno == ERANGE && result == LONG_MIN) {
531    return kint32min;
532  } else if (errno == ERANGE && result == LONG_MAX) {
533    return kint32max;
534  } else if (errno == 0 && result < kint32min) {
535    errno = ERANGE;
536    return kint32min;
537  } else if (errno == 0 && result > kint32max) {
538    errno = ERANGE;
539    return kint32max;
540  }
541  if (errno == 0)
542    errno = saved_errno;
543  return static_cast<int32>(result);
544}
545
546uint32 strtou32_adaptor(const char *nptr, char **endptr, int base) {
547  const int saved_errno = errno;
548  errno = 0;
549  const unsigned long result = strtoul(nptr, endptr, base);
550  if (errno == ERANGE && result == ULONG_MAX) {
551    return kuint32max;
552  } else if (errno == 0 && result > kuint32max) {
553    errno = ERANGE;
554    return kuint32max;
555  }
556  if (errno == 0)
557    errno = saved_errno;
558  return static_cast<uint32>(result);
559}
560
561// ----------------------------------------------------------------------
562// FastIntToBuffer()
563// FastInt64ToBuffer()
564// FastHexToBuffer()
565// FastHex64ToBuffer()
566// FastHex32ToBuffer()
567// ----------------------------------------------------------------------
568
569// Offset into buffer where FastInt64ToBuffer places the end of string
570// null character.  Also used by FastInt64ToBufferLeft.
571static const int kFastInt64ToBufferOffset = 21;
572
573char *FastInt64ToBuffer(int64 i, char* buffer) {
574  // We could collapse the positive and negative sections, but that
575  // would be slightly slower for positive numbers...
576  // 22 bytes is enough to store -2**64, -18446744073709551616.
577  char* p = buffer + kFastInt64ToBufferOffset;
578  *p-- = '\0';
579  if (i >= 0) {
580    do {
581      *p-- = '0' + i % 10;
582      i /= 10;
583    } while (i > 0);
584    return p + 1;
585  } else {
586    // On different platforms, % and / have different behaviors for
587    // negative numbers, so we need to jump through hoops to make sure
588    // we don't divide negative numbers.
589    if (i > -10) {
590      i = -i;
591      *p-- = '0' + i;
592      *p = '-';
593      return p;
594    } else {
595      // Make sure we aren't at MIN_INT, in which case we can't say i = -i
596      i = i + 10;
597      i = -i;
598      *p-- = '0' + i % 10;
599      // Undo what we did a moment ago
600      i = i / 10 + 1;
601      do {
602        *p-- = '0' + i % 10;
603        i /= 10;
604      } while (i > 0);
605      *p = '-';
606      return p;
607    }
608  }
609}
610
611// Offset into buffer where FastInt32ToBuffer places the end of string
612// null character.  Also used by FastInt32ToBufferLeft
613static const int kFastInt32ToBufferOffset = 11;
614
615// Yes, this is a duplicate of FastInt64ToBuffer.  But, we need this for the
616// compiler to generate 32 bit arithmetic instructions.  It's much faster, at
617// least with 32 bit binaries.
618char *FastInt32ToBuffer(int32 i, char* buffer) {
619  // We could collapse the positive and negative sections, but that
620  // would be slightly slower for positive numbers...
621  // 12 bytes is enough to store -2**32, -4294967296.
622  char* p = buffer + kFastInt32ToBufferOffset;
623  *p-- = '\0';
624  if (i >= 0) {
625    do {
626      *p-- = '0' + i % 10;
627      i /= 10;
628    } while (i > 0);
629    return p + 1;
630  } else {
631    // On different platforms, % and / have different behaviors for
632    // negative numbers, so we need to jump through hoops to make sure
633    // we don't divide negative numbers.
634    if (i > -10) {
635      i = -i;
636      *p-- = '0' + i;
637      *p = '-';
638      return p;
639    } else {
640      // Make sure we aren't at MIN_INT, in which case we can't say i = -i
641      i = i + 10;
642      i = -i;
643      *p-- = '0' + i % 10;
644      // Undo what we did a moment ago
645      i = i / 10 + 1;
646      do {
647        *p-- = '0' + i % 10;
648        i /= 10;
649      } while (i > 0);
650      *p = '-';
651      return p;
652    }
653  }
654}
655
656char *FastHexToBuffer(int i, char* buffer) {
657  GOOGLE_CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i;
658
659  static const char *hexdigits = "0123456789abcdef";
660  char *p = buffer + 21;
661  *p-- = '\0';
662  do {
663    *p-- = hexdigits[i & 15];   // mod by 16
664    i >>= 4;                    // divide by 16
665  } while (i > 0);
666  return p + 1;
667}
668
669char *InternalFastHexToBuffer(uint64 value, char* buffer, int num_byte) {
670  static const char *hexdigits = "0123456789abcdef";
671  buffer[num_byte] = '\0';
672  for (int i = num_byte - 1; i >= 0; i--) {
673    buffer[i] = hexdigits[uint32(value) & 0xf];
674    value >>= 4;
675  }
676  return buffer;
677}
678
679char *FastHex64ToBuffer(uint64 value, char* buffer) {
680  return InternalFastHexToBuffer(value, buffer, 16);
681}
682
683char *FastHex32ToBuffer(uint32 value, char* buffer) {
684  return InternalFastHexToBuffer(value, buffer, 8);
685}
686
687static inline char* PlaceNum(char* p, int num, char prev_sep) {
688   *p-- = '0' + num % 10;
689   *p-- = '0' + num / 10;
690   *p-- = prev_sep;
691   return p;
692}
693
694// ----------------------------------------------------------------------
695// FastInt32ToBufferLeft()
696// FastUInt32ToBufferLeft()
697// FastInt64ToBufferLeft()
698// FastUInt64ToBufferLeft()
699//
700// Like the Fast*ToBuffer() functions above, these are intended for speed.
701// Unlike the Fast*ToBuffer() functions, however, these functions write
702// their output to the beginning of the buffer (hence the name, as the
703// output is left-aligned).  The caller is responsible for ensuring that
704// the buffer has enough space to hold the output.
705//
706// Returns a pointer to the end of the string (i.e. the null character
707// terminating the string).
708// ----------------------------------------------------------------------
709
710static const char two_ASCII_digits[100][2] = {
711  {'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'},
712  {'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'},
713  {'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'},
714  {'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'},
715  {'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'},
716  {'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'},
717  {'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'},
718  {'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'},
719  {'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'},
720  {'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'},
721  {'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'},
722  {'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'},
723  {'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'},
724  {'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'},
725  {'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'},
726  {'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'},
727  {'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'},
728  {'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'},
729  {'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'},
730  {'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'}
731};
732
733char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
734  int digits;
735  const char *ASCII_digits = NULL;
736  // The idea of this implementation is to trim the number of divides to as few
737  // as possible by using multiplication and subtraction rather than mod (%),
738  // and by outputting two digits at a time rather than one.
739  // The huge-number case is first, in the hopes that the compiler will output
740  // that case in one branch-free block of code, and only output conditional
741  // branches into it from below.
742  if (u >= 1000000000) {  // >= 1,000,000,000
743    digits = u / 100000000;  // 100,000,000
744    ASCII_digits = two_ASCII_digits[digits];
745    buffer[0] = ASCII_digits[0];
746    buffer[1] = ASCII_digits[1];
747    buffer += 2;
748sublt100_000_000:
749    u -= digits * 100000000;  // 100,000,000
750lt100_000_000:
751    digits = u / 1000000;  // 1,000,000
752    ASCII_digits = two_ASCII_digits[digits];
753    buffer[0] = ASCII_digits[0];
754    buffer[1] = ASCII_digits[1];
755    buffer += 2;
756sublt1_000_000:
757    u -= digits * 1000000;  // 1,000,000
758lt1_000_000:
759    digits = u / 10000;  // 10,000
760    ASCII_digits = two_ASCII_digits[digits];
761    buffer[0] = ASCII_digits[0];
762    buffer[1] = ASCII_digits[1];
763    buffer += 2;
764sublt10_000:
765    u -= digits * 10000;  // 10,000
766lt10_000:
767    digits = u / 100;
768    ASCII_digits = two_ASCII_digits[digits];
769    buffer[0] = ASCII_digits[0];
770    buffer[1] = ASCII_digits[1];
771    buffer += 2;
772sublt100:
773    u -= digits * 100;
774lt100:
775    digits = u;
776    ASCII_digits = two_ASCII_digits[digits];
777    buffer[0] = ASCII_digits[0];
778    buffer[1] = ASCII_digits[1];
779    buffer += 2;
780done:
781    *buffer = 0;
782    return buffer;
783  }
784
785  if (u < 100) {
786    digits = u;
787    if (u >= 10) goto lt100;
788    *buffer++ = '0' + digits;
789    goto done;
790  }
791  if (u  <  10000) {   // 10,000
792    if (u >= 1000) goto lt10_000;
793    digits = u / 100;
794    *buffer++ = '0' + digits;
795    goto sublt100;
796  }
797  if (u  <  1000000) {   // 1,000,000
798    if (u >= 100000) goto lt1_000_000;
799    digits = u / 10000;  //    10,000
800    *buffer++ = '0' + digits;
801    goto sublt10_000;
802  }
803  if (u  <  100000000) {   // 100,000,000
804    if (u >= 10000000) goto lt100_000_000;
805    digits = u / 1000000;  //   1,000,000
806    *buffer++ = '0' + digits;
807    goto sublt1_000_000;
808  }
809  // we already know that u < 1,000,000,000
810  digits = u / 100000000;   // 100,000,000
811  *buffer++ = '0' + digits;
812  goto sublt100_000_000;
813}
814
815char* FastInt32ToBufferLeft(int32 i, char* buffer) {
816  uint32 u = i;
817  if (i < 0) {
818    *buffer++ = '-';
819    u = -i;
820  }
821  return FastUInt32ToBufferLeft(u, buffer);
822}
823
824char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
825  int digits;
826  const char *ASCII_digits = NULL;
827
828  uint32 u = static_cast<uint32>(u64);
829  if (u == u64) return FastUInt32ToBufferLeft(u, buffer);
830
831  uint64 top_11_digits = u64 / 1000000000;
832  buffer = FastUInt64ToBufferLeft(top_11_digits, buffer);
833  u = u64 - (top_11_digits * 1000000000);
834
835  digits = u / 10000000;  // 10,000,000
836  GOOGLE_DCHECK_LT(digits, 100);
837  ASCII_digits = two_ASCII_digits[digits];
838  buffer[0] = ASCII_digits[0];
839  buffer[1] = ASCII_digits[1];
840  buffer += 2;
841  u -= digits * 10000000;  // 10,000,000
842  digits = u / 100000;  // 100,000
843  ASCII_digits = two_ASCII_digits[digits];
844  buffer[0] = ASCII_digits[0];
845  buffer[1] = ASCII_digits[1];
846  buffer += 2;
847  u -= digits * 100000;  // 100,000
848  digits = u / 1000;  // 1,000
849  ASCII_digits = two_ASCII_digits[digits];
850  buffer[0] = ASCII_digits[0];
851  buffer[1] = ASCII_digits[1];
852  buffer += 2;
853  u -= digits * 1000;  // 1,000
854  digits = u / 10;
855  ASCII_digits = two_ASCII_digits[digits];
856  buffer[0] = ASCII_digits[0];
857  buffer[1] = ASCII_digits[1];
858  buffer += 2;
859  u -= digits * 10;
860  digits = u;
861  *buffer++ = '0' + digits;
862  *buffer = 0;
863  return buffer;
864}
865
866char* FastInt64ToBufferLeft(int64 i, char* buffer) {
867  uint64 u = i;
868  if (i < 0) {
869    *buffer++ = '-';
870    u = -i;
871  }
872  return FastUInt64ToBufferLeft(u, buffer);
873}
874
875// ----------------------------------------------------------------------
876// SimpleItoa()
877//    Description: converts an integer to a string.
878//
879//    Return value: string
880// ----------------------------------------------------------------------
881
882string SimpleItoa(int i) {
883  char buffer[kFastToBufferSize];
884  return (sizeof(i) == 4) ?
885    FastInt32ToBuffer(i, buffer) :
886    FastInt64ToBuffer(i, buffer);
887}
888
889string SimpleItoa(unsigned int i) {
890  char buffer[kFastToBufferSize];
891  return string(buffer, (sizeof(i) == 4) ?
892    FastUInt32ToBufferLeft(i, buffer) :
893    FastUInt64ToBufferLeft(i, buffer));
894}
895
896string SimpleItoa(long i) {
897  char buffer[kFastToBufferSize];
898  return (sizeof(i) == 4) ?
899    FastInt32ToBuffer(i, buffer) :
900    FastInt64ToBuffer(i, buffer);
901}
902
903string SimpleItoa(unsigned long i) {
904  char buffer[kFastToBufferSize];
905  return string(buffer, (sizeof(i) == 4) ?
906    FastUInt32ToBufferLeft(i, buffer) :
907    FastUInt64ToBufferLeft(i, buffer));
908}
909
910string SimpleItoa(long long i) {
911  char buffer[kFastToBufferSize];
912  return (sizeof(i) == 4) ?
913    FastInt32ToBuffer(i, buffer) :
914    FastInt64ToBuffer(i, buffer);
915}
916
917string SimpleItoa(unsigned long long i) {
918  char buffer[kFastToBufferSize];
919  return string(buffer, (sizeof(i) == 4) ?
920    FastUInt32ToBufferLeft(i, buffer) :
921    FastUInt64ToBufferLeft(i, buffer));
922}
923
924// ----------------------------------------------------------------------
925// SimpleDtoa()
926// SimpleFtoa()
927// DoubleToBuffer()
928// FloatToBuffer()
929//    We want to print the value without losing precision, but we also do
930//    not want to print more digits than necessary.  This turns out to be
931//    trickier than it sounds.  Numbers like 0.2 cannot be represented
932//    exactly in binary.  If we print 0.2 with a very large precision,
933//    e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
934//    On the other hand, if we set the precision too low, we lose
935//    significant digits when printing numbers that actually need them.
936//    It turns out there is no precision value that does the right thing
937//    for all numbers.
938//
939//    Our strategy is to first try printing with a precision that is never
940//    over-precise, then parse the result with strtod() to see if it
941//    matches.  If not, we print again with a precision that will always
942//    give a precise result, but may use more digits than necessary.
943//
944//    An arguably better strategy would be to use the algorithm described
945//    in "How to Print Floating-Point Numbers Accurately" by Steele &
946//    White, e.g. as implemented by David M. Gay's dtoa().  It turns out,
947//    however, that the following implementation is about as fast as
948//    DMG's code.  Furthermore, DMG's code locks mutexes, which means it
949//    will not scale well on multi-core machines.  DMG's code is slightly
950//    more accurate (in that it will never use more digits than
951//    necessary), but this is probably irrelevant for most users.
952//
953//    Rob Pike and Ken Thompson also have an implementation of dtoa() in
954//    third_party/fmt/fltfmt.cc.  Their implementation is similar to this
955//    one in that it makes guesses and then uses strtod() to check them.
956//    Their implementation is faster because they use their own code to
957//    generate the digits in the first place rather than use snprintf(),
958//    thus avoiding format string parsing overhead.  However, this makes
959//    it considerably more complicated than the following implementation,
960//    and it is embedded in a larger library.  If speed turns out to be
961//    an issue, we could re-implement this in terms of their
962//    implementation.
963// ----------------------------------------------------------------------
964
965string SimpleDtoa(double value) {
966  char buffer[kDoubleToBufferSize];
967  return DoubleToBuffer(value, buffer);
968}
969
970string SimpleFtoa(float value) {
971  char buffer[kFloatToBufferSize];
972  return FloatToBuffer(value, buffer);
973}
974
975static inline bool IsValidFloatChar(char c) {
976  return ('0' <= c && c <= '9') ||
977         c == 'e' || c == 'E' ||
978         c == '+' || c == '-';
979}
980
981void DelocalizeRadix(char* buffer) {
982  // Fast check:  if the buffer has a normal decimal point, assume no
983  // translation is needed.
984  if (strchr(buffer, '.') != NULL) return;
985
986  // Find the first unknown character.
987  while (IsValidFloatChar(*buffer)) ++buffer;
988
989  if (*buffer == '\0') {
990    // No radix character found.
991    return;
992  }
993
994  // We are now pointing at the locale-specific radix character.  Replace it
995  // with '.'.
996  *buffer = '.';
997  ++buffer;
998
999  if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
1000    // It appears the radix was a multi-byte character.  We need to remove the
1001    // extra bytes.
1002    char* target = buffer;
1003    do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
1004    memmove(target, buffer, strlen(buffer) + 1);
1005  }
1006}
1007
1008char* DoubleToBuffer(double value, char* buffer) {
1009  // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
1010  // platforms these days.  Just in case some system exists where DBL_DIG
1011  // is significantly larger -- and risks overflowing our buffer -- we have
1012  // this assert.
1013  GOOGLE_COMPILE_ASSERT(DBL_DIG < 20, DBL_DIG_is_too_big);
1014
1015  if (value == numeric_limits<double>::infinity()) {
1016    strcpy(buffer, "inf");
1017    return buffer;
1018  } else if (value == -numeric_limits<double>::infinity()) {
1019    strcpy(buffer, "-inf");
1020    return buffer;
1021  } else if (IsNaN(value)) {
1022    strcpy(buffer, "nan");
1023    return buffer;
1024  }
1025
1026  int snprintf_result =
1027    snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);
1028
1029  // The snprintf should never overflow because the buffer is significantly
1030  // larger than the precision we asked for.
1031  GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
1032
1033  // We need to make parsed_value volatile in order to force the compiler to
1034  // write it out to the stack.  Otherwise, it may keep the value in a
1035  // register, and if it does that, it may keep it as a long double instead
1036  // of a double.  This long double may have extra bits that make it compare
1037  // unequal to "value" even though it would be exactly equal if it were
1038  // truncated to a double.
1039  volatile double parsed_value = strtod(buffer, NULL);
1040  if (parsed_value != value) {
1041    int snprintf_result =
1042      snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);
1043
1044    // Should never overflow; see above.
1045    GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
1046  }
1047
1048  DelocalizeRadix(buffer);
1049  return buffer;
1050}
1051
1052bool safe_strtof(const char* str, float* value) {
1053  char* endptr;
1054  errno = 0;  // errno only gets set on errors
1055#if defined(_WIN32) || defined (__hpux)  // has no strtof()
1056  *value = strtod(str, &endptr);
1057#else
1058  *value = strtof(str, &endptr);
1059#endif
1060  return *str != 0 && *endptr == 0 && errno == 0;
1061}
1062
1063char* FloatToBuffer(float value, char* buffer) {
1064  // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
1065  // platforms these days.  Just in case some system exists where FLT_DIG
1066  // is significantly larger -- and risks overflowing our buffer -- we have
1067  // this assert.
1068  GOOGLE_COMPILE_ASSERT(FLT_DIG < 10, FLT_DIG_is_too_big);
1069
1070  if (value == numeric_limits<double>::infinity()) {
1071    strcpy(buffer, "inf");
1072    return buffer;
1073  } else if (value == -numeric_limits<double>::infinity()) {
1074    strcpy(buffer, "-inf");
1075    return buffer;
1076  } else if (IsNaN(value)) {
1077    strcpy(buffer, "nan");
1078    return buffer;
1079  }
1080
1081  int snprintf_result =
1082    snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);
1083
1084  // The snprintf should never overflow because the buffer is significantly
1085  // larger than the precision we asked for.
1086  GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
1087
1088  float parsed_value;
1089  if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
1090    int snprintf_result =
1091      snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+2, value);
1092
1093    // Should never overflow; see above.
1094    GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
1095  }
1096
1097  DelocalizeRadix(buffer);
1098  return buffer;
1099}
1100
1101// ----------------------------------------------------------------------
1102// NoLocaleStrtod()
1103//   This code will make you cry.
1104// ----------------------------------------------------------------------
1105
1106// Returns a string identical to *input except that the character pointed to
1107// by radix_pos (which should be '.') is replaced with the locale-specific
1108// radix character.
1109string LocalizeRadix(const char* input, const char* radix_pos) {
1110  // Determine the locale-specific radix character by calling sprintf() to
1111  // print the number 1.5, then stripping off the digits.  As far as I can
1112  // tell, this is the only portable, thread-safe way to get the C library
1113  // to divuldge the locale's radix character.  No, localeconv() is NOT
1114  // thread-safe.
1115  char temp[16];
1116  int size = sprintf(temp, "%.1f", 1.5);
1117  GOOGLE_CHECK_EQ(temp[0], '1');
1118  GOOGLE_CHECK_EQ(temp[size-1], '5');
1119  GOOGLE_CHECK_LE(size, 6);
1120
1121  // Now replace the '.' in the input with it.
1122  string result;
1123  result.reserve(strlen(input) + size - 3);
1124  result.append(input, radix_pos);
1125  result.append(temp + 1, size - 2);
1126  result.append(radix_pos + 1);
1127  return result;
1128}
1129
1130double NoLocaleStrtod(const char* text, char** original_endptr) {
1131  // We cannot simply set the locale to "C" temporarily with setlocale()
1132  // as this is not thread-safe.  Instead, we try to parse in the current
1133  // locale first.  If parsing stops at a '.' character, then this is a
1134  // pretty good hint that we're actually in some other locale in which
1135  // '.' is not the radix character.
1136
1137  char* temp_endptr;
1138  double result = strtod(text, &temp_endptr);
1139  if (original_endptr != NULL) *original_endptr = temp_endptr;
1140  if (*temp_endptr != '.') return result;
1141
1142  // Parsing halted on a '.'.  Perhaps we're in a different locale?  Let's
1143  // try to replace the '.' with a locale-specific radix character and
1144  // try again.
1145  string localized = LocalizeRadix(text, temp_endptr);
1146  const char* localized_cstr = localized.c_str();
1147  char* localized_endptr;
1148  result = strtod(localized_cstr, &localized_endptr);
1149  if ((localized_endptr - localized_cstr) >
1150      (temp_endptr - text)) {
1151    // This attempt got further, so replacing the decimal must have helped.
1152    // Update original_endptr to point at the right location.
1153    if (original_endptr != NULL) {
1154      // size_diff is non-zero if the localized radix has multiple bytes.
1155      int size_diff = localized.size() - strlen(text);
1156      // const_cast is necessary to match the strtod() interface.
1157      *original_endptr = const_cast<char*>(
1158        text + (localized_endptr - localized_cstr - size_diff));
1159    }
1160  }
1161
1162  return result;
1163}
1164
1165}  // namespace protobuf
1166}  // namespace google
1167