1//--------------------------------------------------------------------*/
2//--- Massif: a heap profiling tool.                     ms_main.c ---*/
3//--------------------------------------------------------------------*/
4
5/*
6   This file is part of Massif, a Valgrind tool for profiling memory
7   usage of programs.
8
9   Copyright (C) 2003-2011 Nicholas Nethercote
10      njn@valgrind.org
11
12   This program is free software; you can redistribute it and/or
13   modify it under the terms of the GNU General Public License as
14   published by the Free Software Foundation; either version 2 of the
15   License, or (at your option) any later version.
16
17   This program is distributed in the hope that it will be useful, but
18   WITHOUT ANY WARRANTY; without even the implied warranty of
19   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20   General Public License for more details.
21
22   You should have received a copy of the GNU General Public License
23   along with this program; if not, write to the Free Software
24   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
25   02111-1307, USA.
26
27   The GNU General Public License is contained in the file COPYING.
28*/
29
30//---------------------------------------------------------------------------
31// XXX:
32//---------------------------------------------------------------------------
33// Todo -- nice, but less critical:
34// - do a graph-drawing test
35// - make file format more generic.  Obstacles:
36//   - unit prefixes are not generic
37//   - preset column widths for stats are not generic
38//   - preset column headers are not generic
39//   - "Massif arguments:" line is not generic
40// - do snapshots on client requests
41//   - (Michael Meeks): have an interactive way to request a dump
42//     (callgrind_control-style)
43//     - "profile now"
44//     - "show me the extra allocations since the last snapshot"
45//     - "start/stop logging" (eg. quickly skip boring bits)
46// - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
47//   Give each graph a title.  (try to do it generically!)
48// - allow truncation of long fnnames if the exact line number is
49//   identified?  [hmm, could make getting the name of alloc-fns more
50//   difficult] [could dump full names to file, truncate in ms_print]
51// - make --show-below-main=no work
52// - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
53//   don't work in a .valgrindrc file or in $VALGRIND_OPTS.
54//   m_commandline.c:add_args_from_string() needs to respect single quotes.
55// - With --stack=yes, want to add a stack trace for detailed snapshots so
56//   it's clear where/why the peak is occurring. (Mattieu Castet)  Also,
57//   possibly useful even with --stack=no? (Andi Yin)
58//
59// Performance:
60// - To run the benchmarks:
61//
62//     perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
63//     time valgrind --tool=massif --depth=100 konqueror
64//
65//   The other benchmarks don't do much allocation, and so give similar speeds
66//   to Nulgrind.
67//
68//   Timing results on 'nevermore' (njn's machine) as of r7013:
69//
70//     heap      0.53s  ma:12.4s (23.5x, -----)
71//     tinycc    0.46s  ma: 4.9s (10.7x, -----)
72//     many-xpts 0.08s  ma: 2.0s (25.0x, -----)
73//     konqueror 29.6s real  0:21.0s user
74//
75//   [Introduction of --time-unit=i as the default slowed things down by
76//   roughly 0--20%.]
77//
78// - get_XCon accounts for about 9% of konqueror startup time.  Try
79//   keeping XPt children sorted by 'ip' and use binary search in get_XCon.
80//   Requires factoring out binary search code from various places into a
81//   VG_(bsearch) function.
82//
83// Todo -- low priority:
84// - In each XPt, record both bytes and the number of allocations, and
85//   possibly the global number of allocations.
86// - (Andy Lin) Give a stack trace on detailed snapshots?
87// - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
88//   than a certain size!  Because: "linux's malloc allows to set a
89//   MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
90//   be handled directly by the kernel, and are guaranteed to be returned to
91//   the system when freed. So we needed to profile only blocks below this
92//   limit."
93//
94// File format working notes:
95
96#if 0
97desc: --heap-admin=foo
98cmd: date
99time_unit: ms
100#-----------
101snapshot=0
102#-----------
103time=0
104mem_heap_B=0
105mem_heap_admin_B=0
106mem_stacks_B=0
107heap_tree=empty
108#-----------
109snapshot=1
110#-----------
111time=353
112mem_heap_B=5
113mem_heap_admin_B=0
114mem_stacks_B=0
115heap_tree=detailed
116n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
117 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
118  n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
119   n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
120    n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
121     n1: 5 0x8049821: (within /bin/date)
122      n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
123
124
125n_events: n  time(ms)  total(B)    useful-heap(B)  admin-heap(B)  stacks(B)
126t_events: B
127n 0 0 0 0 0
128n 0 0 0 0 0
129t1: 5 <string...>
130 t1: 6 <string...>
131
132Ideas:
133- each snapshot specifies an x-axis value and one or more y-axis values.
134- can display the y-axis values separately if you like
135- can completely separate connection between snapshots and trees.
136
137Challenges:
138- how to specify and scale/abbreviate units on axes?
139- how to combine multiple values into the y-axis?
140
141--------------------------------------------------------------------------------Command:            date
142Massif arguments:   --heap-admin=foo
143ms_print arguments: massif.out
144--------------------------------------------------------------------------------
145    KB
1466.472^                                                       :#
147     |                                                       :#  ::  .    .
148     ...
149     |                                     ::@  :@    :@ :@:::#  ::  :    ::::
150   0 +-----------------------------------@---@---@-----@--@---#-------------->ms     0                                                                     713
151
152Number of snapshots: 50
153 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
154--------------------------------------------------------------------------------  n       time(ms)         total(B)   useful-heap(B) admin-heap(B)    stacks(B)
155--------------------------------------------------------------------------------  0              0                0                0             0            0
156  1            345                5                5             0            0
157  2            353                5                5             0            0
158100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
159->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
160#endif
161
162//---------------------------------------------------------------------------
163
164#include "pub_tool_basics.h"
165#include "pub_tool_vki.h"
166#include "pub_tool_aspacemgr.h"
167#include "pub_tool_debuginfo.h"
168#include "pub_tool_hashtable.h"
169#include "pub_tool_libcbase.h"
170#include "pub_tool_libcassert.h"
171#include "pub_tool_libcfile.h"
172#include "pub_tool_libcprint.h"
173#include "pub_tool_libcproc.h"
174#include "pub_tool_machine.h"
175#include "pub_tool_mallocfree.h"
176#include "pub_tool_options.h"
177#include "pub_tool_replacemalloc.h"
178#include "pub_tool_stacktrace.h"
179#include "pub_tool_threadstate.h"
180#include "pub_tool_tooliface.h"
181#include "pub_tool_xarray.h"
182#include "pub_tool_clientstate.h"
183#include "pub_tool_gdbserver.h"
184
185#include "valgrind.h"           // For {MALLOC,FREE}LIKE_BLOCK
186
187//------------------------------------------------------------*/
188//--- Overview of operation                                ---*/
189//------------------------------------------------------------*/
190
191// The size of the stacks and heap is tracked.  The heap is tracked in a lot
192// of detail, enough to tell how many bytes each line of code is responsible
193// for, more or less.  The main data structure is a tree representing the
194// call tree beneath all the allocation functions like malloc().
195// (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
196// the page level, and each page is treated much like a heap block.  We use
197// "heap" throughout below to cover this case because the concepts are all the
198// same.)
199//
200// "Snapshots" are recordings of the memory usage.  There are two basic
201// kinds:
202// - Normal:  these record the current time, total memory size, total heap
203//   size, heap admin size and stack size.
204// - Detailed: these record those things in a normal snapshot, plus a very
205//   detailed XTree (see below) indicating how the heap is structured.
206//
207// Snapshots are taken every so often.  There are two storage classes of
208// snapshots:
209// - Temporary:  Massif does a temporary snapshot every so often.  The idea
210//   is to always have a certain number of temporary snapshots around.  So
211//   we take them frequently to begin with, but decreasingly often as the
212//   program continues to run.  Also, we remove some old ones after a while.
213//   Overall it's a kind of exponential decay thing.  Most of these are
214//   normal snapshots, a small fraction are detailed snapshots.
215// - Permanent:  Massif takes a permanent (detailed) snapshot in some
216//   circumstances.  They are:
217//   - Peak snapshot:  When the memory usage peak is reached, it takes a
218//     snapshot.  It keeps this, unless the peak is subsequently exceeded,
219//     in which case it will overwrite the peak snapshot.
220//   - User-requested snapshots:  These are done in response to client
221//     requests.  They are always kept.
222
223// Used for printing things when clo_verbosity > 1.
224#define VERB(verb, format, args...) \
225   if (VG_(clo_verbosity) > verb) { \
226      VG_(dmsg)("Massif: " format, ##args); \
227   }
228
229// Used for printing stats when clo_stats == True.
230#define STATS(format, args...) \
231   if (VG_(clo_stats)) { \
232      VG_(dmsg)("Massif: " format, ##args); \
233   }
234
235//------------------------------------------------------------//
236//--- Statistics                                           ---//
237//------------------------------------------------------------//
238
239// Konqueror startup, to give an idea of the numbers involved with a biggish
240// program, with default depth:
241//
242//  depth=3                   depth=40
243//  - 310,000 allocations
244//  - 300,000 frees
245//  -  15,000 XPts            800,000 XPts
246//  -   1,800 top-XPts
247
248static UInt n_heap_allocs           = 0;
249static UInt n_heap_reallocs         = 0;
250static UInt n_heap_frees            = 0;
251static UInt n_ignored_heap_allocs   = 0;
252static UInt n_ignored_heap_frees    = 0;
253static UInt n_ignored_heap_reallocs = 0;
254static UInt n_stack_allocs          = 0;
255static UInt n_stack_frees           = 0;
256static UInt n_xpts                  = 0;
257static UInt n_xpt_init_expansions   = 0;
258static UInt n_xpt_later_expansions  = 0;
259static UInt n_sxpt_allocs           = 0;
260static UInt n_sxpt_frees            = 0;
261static UInt n_skipped_snapshots     = 0;
262static UInt n_real_snapshots        = 0;
263static UInt n_detailed_snapshots    = 0;
264static UInt n_peak_snapshots        = 0;
265static UInt n_cullings              = 0;
266static UInt n_XCon_redos            = 0;
267
268//------------------------------------------------------------//
269//--- Globals                                              ---//
270//------------------------------------------------------------//
271
272// Number of guest instructions executed so far.  Only used with
273// --time-unit=i.
274static Long guest_instrs_executed = 0;
275
276static SizeT heap_szB       = 0; // Live heap size
277static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
278static SizeT stacks_szB     = 0; // Live stacks size
279
280// This is the total size from the current peak snapshot, or 0 if no peak
281// snapshot has been taken yet.
282static SizeT peak_snapshot_total_szB = 0;
283
284// Incremented every time memory is allocated/deallocated, by the
285// allocated/deallocated amount;  includes heap, heap-admin and stack
286// memory.  An alternative to milliseconds as a unit of program "time".
287static ULong total_allocs_deallocs_szB = 0;
288
289// When running with --heap=yes --pages-as-heap=no, we don't start taking
290// snapshots until the first basic block is executed, rather than doing it in
291// ms_post_clo_init (which is the obvious spot), for two reasons.
292// - It lets us ignore stack events prior to that, because they're not
293//   really proper ones and just would screw things up.
294// - Because there's still some core initialisation to do, and so there
295//   would be an artificial time gap between the first and second snapshots.
296//
297// When running with --heap=yes --pages-as-heap=yes, snapshots start much
298// earlier due to new_mem_startup so this isn't relevant.
299//
300static Bool have_started_executing_code = False;
301
302//------------------------------------------------------------//
303//--- Alloc fns                                            ---//
304//------------------------------------------------------------//
305
306static XArray* alloc_fns;
307static XArray* ignore_fns;
308
309static void init_alloc_fns(void)
310{
311   // Create the list, and add the default elements.
312   alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
313                                       VG_(free), sizeof(Char*));
314   #define DO(x)  { Char* s = x; VG_(addToXA)(alloc_fns, &s); }
315
316   // Ordered roughly according to (presumed) frequency.
317   // Nb: The C++ "operator new*" ones are overloadable.  We include them
318   // always anyway, because even if they're overloaded, it would be a
319   // prodigiously stupid overloading that caused them to not allocate
320   // memory.
321   //
322   // XXX: because we don't look at the first stack entry (unless it's a
323   // custom allocation) there's not much point to having all these alloc
324   // functions here -- they should never appear anywhere (I think?) other
325   // than the top stack entry.  The only exceptions are those that in
326   // vg_replace_malloc.c are partly or fully implemented in terms of another
327   // alloc function: realloc (which uses malloc);  valloc,
328   // malloc_zone_valloc, posix_memalign and memalign_common (which use
329   // memalign).
330   //
331   DO("malloc"                                              );
332   DO("__builtin_new"                                       );
333   DO("operator new(unsigned)"                              );
334   DO("operator new(unsigned long)"                         );
335   DO("__builtin_vec_new"                                   );
336   DO("operator new[](unsigned)"                            );
337   DO("operator new[](unsigned long)"                       );
338   DO("calloc"                                              );
339   DO("realloc"                                             );
340   DO("memalign"                                            );
341   DO("posix_memalign"                                      );
342   DO("valloc"                                              );
343   DO("operator new(unsigned, std::nothrow_t const&)"       );
344   DO("operator new[](unsigned, std::nothrow_t const&)"     );
345   DO("operator new(unsigned long, std::nothrow_t const&)"  );
346   DO("operator new[](unsigned long, std::nothrow_t const&)");
347#if defined(VGO_darwin)
348   DO("malloc_zone_malloc"                                  );
349   DO("malloc_zone_calloc"                                  );
350   DO("malloc_zone_realloc"                                 );
351   DO("malloc_zone_memalign"                                );
352   DO("malloc_zone_valloc"                                  );
353#endif
354}
355
356static void init_ignore_fns(void)
357{
358   // Create the (empty) list.
359   ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
360                                        VG_(free), sizeof(Char*));
361}
362
363// Determines if the named function is a member of the XArray.
364static Bool is_member_fn(XArray* fns, Char* fnname)
365{
366   Char** fn_ptr;
367   Int i;
368
369   // Nb: It's a linear search through the list, because we're comparing
370   // strings rather than pointers to strings.
371   // Nb: This gets called a lot.  It was an OSet, but they're quite slow to
372   // iterate through so it wasn't a good choice.
373   for (i = 0; i < VG_(sizeXA)(fns); i++) {
374      fn_ptr = VG_(indexXA)(fns, i);
375      if (VG_STREQ(fnname, *fn_ptr))
376         return True;
377   }
378   return False;
379}
380
381
382//------------------------------------------------------------//
383//--- Command line args                                    ---//
384//------------------------------------------------------------//
385
386#define MAX_DEPTH       200
387
388typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
389
390static Char* TimeUnit_to_string(TimeUnit time_unit)
391{
392   switch (time_unit) {
393   case TimeI:  return "i";
394   case TimeMS: return "ms";
395   case TimeB:  return "B";
396   default:     tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
397   }
398}
399
400static Bool   clo_heap            = True;
401   // clo_heap_admin is deliberately a word-sized type.  At one point it was
402   // a UInt, but this caused problems on 64-bit machines when it was
403   // multiplied by a small negative number and then promoted to a
404   // word-sized type -- it ended up with a value of 4.2 billion.  Sigh.
405static SSizeT clo_heap_admin      = 8;
406static Bool   clo_pages_as_heap   = False;
407static Bool   clo_stacks          = False;
408static Int    clo_depth           = 30;
409static double clo_threshold       = 1.0;  // percentage
410static double clo_peak_inaccuracy = 1.0;  // percentage
411static Int    clo_time_unit       = TimeI;
412static Int    clo_detailed_freq   = 10;
413static Int    clo_max_snapshots   = 100;
414static Char*  clo_massif_out_file = "massif.out.%p";
415
416static XArray* args_for_massif;
417
418static Bool ms_process_cmd_line_option(Char* arg)
419{
420   Char* tmp_str;
421
422   // Remember the arg for later use.
423   VG_(addToXA)(args_for_massif, &arg);
424
425        if VG_BOOL_CLO(arg, "--heap",           clo_heap)   {}
426   else if VG_BINT_CLO(arg, "--heap-admin",     clo_heap_admin, 0, 1024) {}
427
428   else if VG_BOOL_CLO(arg, "--stacks",         clo_stacks) {}
429
430   else if VG_BOOL_CLO(arg, "--pages-as-heap",  clo_pages_as_heap) {}
431
432   else if VG_BINT_CLO(arg, "--depth",          clo_depth, 1, MAX_DEPTH) {}
433
434   else if VG_STR_CLO(arg, "--alloc-fn",        tmp_str) {
435      VG_(addToXA)(alloc_fns, &tmp_str);
436   }
437   else if VG_STR_CLO(arg, "--ignore-fn",       tmp_str) {
438      VG_(addToXA)(ignore_fns, &tmp_str);
439   }
440
441   else if VG_DBL_CLO(arg, "--threshold",  clo_threshold) {
442      if (clo_threshold < 0 || clo_threshold > 100) {
443         VG_(fmsg_bad_option)(arg,
444            "--threshold must be between 0.0 and 100.0\n");
445      }
446   }
447
448   else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
449
450   else if VG_XACT_CLO(arg, "--time-unit=i",    clo_time_unit, TimeI)  {}
451   else if VG_XACT_CLO(arg, "--time-unit=ms",   clo_time_unit, TimeMS) {}
452   else if VG_XACT_CLO(arg, "--time-unit=B",    clo_time_unit, TimeB)  {}
453
454   else if VG_BINT_CLO(arg, "--detailed-freq",  clo_detailed_freq, 1, 1000000) {}
455
456   else if VG_BINT_CLO(arg, "--max-snapshots",  clo_max_snapshots, 10, 1000) {}
457
458   else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
459
460   else
461      return VG_(replacement_malloc_process_cmd_line_option)(arg);
462
463   return True;
464}
465
466static void ms_print_usage(void)
467{
468   VG_(printf)(
469"    --heap=no|yes             profile heap blocks [yes]\n"
470"    --heap-admin=<size>       average admin bytes per heap block;\n"
471"                               ignored if --heap=no [8]\n"
472"    --stacks=no|yes           profile stack(s) [no]\n"
473"    --pages-as-heap=no|yes    profile memory at the page level [no]\n"
474"    --depth=<number>          depth of contexts [30]\n"
475"    --alloc-fn=<name>         specify <name> as an alloc function [empty]\n"
476"    --ignore-fn=<name>        ignore heap allocations within <name> [empty]\n"
477"    --threshold=<m.n>         significance threshold, as a percentage [1.0]\n"
478"    --peak-inaccuracy=<m.n>   maximum peak inaccuracy, as a percentage [1.0]\n"
479"    --time-unit=i|ms|B        time unit: instructions executed, milliseconds\n"
480"                              or heap bytes alloc'd/dealloc'd [i]\n"
481"    --detailed-freq=<N>       every Nth snapshot should be detailed [10]\n"
482"    --max-snapshots=<N>       maximum number of snapshots recorded [100]\n"
483"    --massif-out-file=<file>  output file name [massif.out.%%p]\n"
484   );
485}
486
487static void ms_print_debug_usage(void)
488{
489   VG_(printf)(
490"    (none)\n"
491   );
492}
493
494
495//------------------------------------------------------------//
496//--- XPts, XTrees and XCons                               ---//
497//------------------------------------------------------------//
498
499// An XPt represents an "execution point", ie. a code address.  Each XPt is
500// part of a tree of XPts (an "execution tree", or "XTree").  The details of
501// the heap are represented by a single XTree.
502//
503// The root of the tree is 'alloc_xpt', which represents all allocation
504// functions, eg:
505// - malloc/calloc/realloc/memalign/new/new[];
506// - user-specified allocation functions (using --alloc-fn);
507// - custom allocation (MALLOCLIKE) points
508// It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because
509// it makes the code simpler.
510//
511// Any child of 'alloc_xpt' is called a "top-XPt".  The XPts at the bottom
512// of an XTree (leaf nodes) are "bottom-XPTs".
513//
514// Each path from a top-XPt to a bottom-XPt through an XTree gives an
515// execution context ("XCon"), ie. a stack trace.  (And sub-paths represent
516// stack sub-traces.)  The number of XCons in an XTree is equal to the
517// number of bottom-XPTs in that XTree.
518//
519//      alloc_xpt       XTrees are bi-directional.
520//        | ^
521//        v |
522//     > parent <       Example: if child1() calls parent() and child2()
523//    /    |     \      also calls parent(), and parent() calls malloc(),
524//   |    / \     |     the XTree will look like this.
525//   |   v   v    |
526//  child1   child2
527//
528// (Note that malformed stack traces can lead to difficulties.  See the
529// comment at the bottom of get_XCon.)
530//
531// XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short
532// for "saved".  When the XTree is duplicated for a snapshot, we duplicate
533// it as an SXTree, which is similar but omits some things it does not need,
534// and aggregates up insignificant nodes.  This is important as an SXTree is
535// typically much smaller than an XTree.
536
537// XXX: make XPt and SXPt extensible arrays, to avoid having to do two
538// allocations per Pt.
539
540typedef struct _XPt XPt;
541struct _XPt {
542   Addr  ip;              // code address
543
544   // Bottom-XPts: space for the precise context.
545   // Other XPts:  space of all the descendent bottom-XPts.
546   // Nb: this value goes up and down as the program executes.
547   SizeT szB;
548
549   XPt*  parent;           // pointer to parent XPt
550
551   // Children.
552   // n_children and max_children are 32-bit integers.  16-bit integers
553   // are too small -- a very big program might have more than 65536
554   // allocation points (ie. top-XPts) -- Konqueror starting up has 1800.
555   UInt  n_children;       // number of children
556   UInt  max_children;     // capacity of children array
557   XPt** children;         // pointers to children XPts
558};
559
560typedef
561   enum {
562      SigSXPt,
563      InsigSXPt
564   }
565   SXPtTag;
566
567typedef struct _SXPt SXPt;
568struct _SXPt {
569   SXPtTag tag;
570   SizeT szB;              // memory size for the node, be it Sig or Insig
571   union {
572      // An SXPt representing a single significant code location.  Much like
573      // an XPt, minus the fields that aren't necessary.
574      struct {
575         Addr   ip;
576         UInt   n_children;
577         SXPt** children;
578      }
579      Sig;
580
581      // An SXPt representing one or more code locations, all below the
582      // significance threshold.
583      struct {
584         Int   n_xpts;     // number of aggregated XPts
585      }
586      Insig;
587   };
588};
589
590// Fake XPt representing all allocation functions like malloc().  Acts as
591// parent node to all top-XPts.
592static XPt* alloc_xpt;
593
594// Cheap allocation for blocks that never need to be freed.  Saves about 10%
595// for Konqueror startup with --depth=40.
596static void* perm_malloc(SizeT n_bytes)
597{
598   static Addr hp     = 0;    // current heap pointer
599   static Addr hp_lim = 0;    // maximum usable byte in current block
600
601   #define SUPERBLOCK_SIZE  (1 << 20)         // 1 MB
602
603   if (hp + n_bytes > hp_lim) {
604      hp = (Addr)VG_(am_shadow_alloc)(SUPERBLOCK_SIZE);
605      if (0 == hp)
606         VG_(out_of_memory_NORETURN)( "massif:perm_malloc",
607                                      SUPERBLOCK_SIZE);
608      hp_lim = hp + SUPERBLOCK_SIZE - 1;
609   }
610
611   hp += n_bytes;
612
613   return (void*)(hp - n_bytes);
614}
615
616static XPt* new_XPt(Addr ip, XPt* parent)
617{
618   // XPts are never freed, so we can use perm_malloc to allocate them.
619   // Note that we cannot use perm_malloc for the 'children' array, because
620   // that needs to be resizable.
621   XPt* xpt    = perm_malloc(sizeof(XPt));
622   xpt->ip     = ip;
623   xpt->szB    = 0;
624   xpt->parent = parent;
625
626   // We don't initially allocate any space for children.  We let that
627   // happen on demand.  Many XPts (ie. all the bottom-XPts) don't have any
628   // children anyway.
629   xpt->n_children   = 0;
630   xpt->max_children = 0;
631   xpt->children     = NULL;
632
633   // Update statistics
634   n_xpts++;
635
636   return xpt;
637}
638
639static void add_child_xpt(XPt* parent, XPt* child)
640{
641   // Expand 'children' if necessary.
642   tl_assert(parent->n_children <= parent->max_children);
643   if (parent->n_children == parent->max_children) {
644      if (0 == parent->max_children) {
645         parent->max_children = 4;
646         parent->children = VG_(malloc)( "ms.main.acx.1",
647                                         parent->max_children * sizeof(XPt*) );
648         n_xpt_init_expansions++;
649      } else {
650         parent->max_children *= 2;    // Double size
651         parent->children = VG_(realloc)( "ms.main.acx.2",
652                                          parent->children,
653                                          parent->max_children * sizeof(XPt*) );
654         n_xpt_later_expansions++;
655      }
656   }
657
658   // Insert new child XPt in parent's children list.
659   parent->children[ parent->n_children++ ] = child;
660}
661
662// Reverse comparison for a reverse sort -- biggest to smallest.
663static Int SXPt_revcmp_szB(void* n1, void* n2)
664{
665   SXPt* sxpt1 = *(SXPt**)n1;
666   SXPt* sxpt2 = *(SXPt**)n2;
667   return ( sxpt1->szB < sxpt2->szB ?  1
668          : sxpt1->szB > sxpt2->szB ? -1
669          :                            0);
670}
671
672//------------------------------------------------------------//
673//--- XTree Operations                                     ---//
674//------------------------------------------------------------//
675
676// Duplicates an XTree as an SXTree.
677static SXPt* dup_XTree(XPt* xpt, SizeT total_szB)
678{
679   Int  i, n_sig_children, n_insig_children, n_child_sxpts;
680   SizeT sig_child_threshold_szB;
681   SXPt* sxpt;
682
683   // Number of XPt children  Action for SXPT
684   // ------------------      ---------------
685   // 0 sig, 0 insig          alloc 0 children
686   // N sig, 0 insig          alloc N children, dup all
687   // N sig, M insig          alloc N+1, dup first N, aggregate remaining M
688   // 0 sig, M insig          alloc 1, aggregate M
689
690   // Work out how big a child must be to be significant.  If the current
691   // total_szB is zero, then we set it to 1, which means everything will be
692   // judged insignificant -- this is sensible, as there's no point showing
693   // any detail for this case.  Unless they used --threshold=0, in which
694   // case we show them everything because that's what they asked for.
695   //
696   // Nb: We do this once now, rather than once per child, because if we do
697   // that the cost of all the divisions adds up to something significant.
698   if (0 == total_szB && 0 != clo_threshold) {
699      sig_child_threshold_szB = 1;
700   } else {
701      sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100);
702   }
703
704   // How many children are significant?  And do we need an aggregate SXPt?
705   n_sig_children = 0;
706   for (i = 0; i < xpt->n_children; i++) {
707      if (xpt->children[i]->szB >= sig_child_threshold_szB) {
708         n_sig_children++;
709      }
710   }
711   n_insig_children = xpt->n_children - n_sig_children;
712   n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 );
713
714   // Duplicate the XPt.
715   sxpt                 = VG_(malloc)("ms.main.dX.1", sizeof(SXPt));
716   n_sxpt_allocs++;
717   sxpt->tag            = SigSXPt;
718   sxpt->szB            = xpt->szB;
719   sxpt->Sig.ip         = xpt->ip;
720   sxpt->Sig.n_children = n_child_sxpts;
721
722   // Create the SXPt's children.
723   if (n_child_sxpts > 0) {
724      Int j;
725      SizeT sig_children_szB = 0, insig_children_szB = 0;
726      sxpt->Sig.children = VG_(malloc)("ms.main.dX.2",
727                                       n_child_sxpts * sizeof(SXPt*));
728
729      // Duplicate the significant children.  (Nb: sig_children_szB +
730      // insig_children_szB doesn't necessarily equal xpt->szB.)
731      j = 0;
732      for (i = 0; i < xpt->n_children; i++) {
733         if (xpt->children[i]->szB >= sig_child_threshold_szB) {
734            sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB);
735            sig_children_szB   += xpt->children[i]->szB;
736         } else {
737            insig_children_szB += xpt->children[i]->szB;
738         }
739      }
740
741      // Create the SXPt for the insignificant children, if any, and put it
742      // in the last child entry.
743      if (n_insig_children > 0) {
744         // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt
745         // doesn't involve a call to dup_XTree().
746         SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt));
747         n_sxpt_allocs++;
748         insig_sxpt->tag = InsigSXPt;
749         insig_sxpt->szB = insig_children_szB;
750         insig_sxpt->Insig.n_xpts = n_insig_children;
751         sxpt->Sig.children[n_sig_children] = insig_sxpt;
752      }
753   } else {
754      sxpt->Sig.children = NULL;
755   }
756
757   return sxpt;
758}
759
760static void free_SXTree(SXPt* sxpt)
761{
762   Int  i;
763   tl_assert(sxpt != NULL);
764
765   switch (sxpt->tag) {
766    case SigSXPt:
767      // Free all children SXPts, then the children array.
768      for (i = 0; i < sxpt->Sig.n_children; i++) {
769         free_SXTree(sxpt->Sig.children[i]);
770         sxpt->Sig.children[i] = NULL;
771      }
772      VG_(free)(sxpt->Sig.children);  sxpt->Sig.children = NULL;
773      break;
774
775    case InsigSXPt:
776      break;
777
778    default: tl_assert2(0, "free_SXTree: unknown SXPt tag");
779   }
780
781   // Free the SXPt itself.
782   VG_(free)(sxpt);     sxpt = NULL;
783   n_sxpt_frees++;
784}
785
786// Sanity checking:  we periodically check the heap XTree with
787// ms_expensive_sanity_check.
788static void sanity_check_XTree(XPt* xpt, XPt* parent)
789{
790   tl_assert(xpt != NULL);
791
792   // Check back-pointer.
793   tl_assert2(xpt->parent == parent,
794      "xpt->parent = %p, parent = %p\n", xpt->parent, parent);
795
796   // Check children counts look sane.
797   tl_assert(xpt->n_children <= xpt->max_children);
798
799   // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's
800   // children's sizes.  See comment at the bottom of get_XCon.
801}
802
803// Sanity checking:  we check SXTrees (which are in snapshots) after
804// snapshots are created, before they are deleted, and before they are
805// printed.
806static void sanity_check_SXTree(SXPt* sxpt)
807{
808   Int i;
809
810   tl_assert(sxpt != NULL);
811
812   // Check the sum of any children szBs equals the SXPt's szB.  Check the
813   // children at the same time.
814   switch (sxpt->tag) {
815    case SigSXPt: {
816      if (sxpt->Sig.n_children > 0) {
817         for (i = 0; i < sxpt->Sig.n_children; i++) {
818            sanity_check_SXTree(sxpt->Sig.children[i]);
819         }
820      }
821      break;
822    }
823    case InsigSXPt:
824      break;         // do nothing
825
826    default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag");
827   }
828}
829
830
831//------------------------------------------------------------//
832//--- XCon Operations                                      ---//
833//------------------------------------------------------------//
834
835// This is the limit on the number of removed alloc-fns that can be in a
836// single XCon.
837#define MAX_OVERESTIMATE   50
838#define MAX_IPS            (MAX_DEPTH + MAX_OVERESTIMATE)
839
840// This is used for various buffers which can hold function names/IP
841// description.  Some C++ names can get really long so 1024 isn't big
842// enough.
843#define BUF_LEN   2048
844
845// Determine if the given IP belongs to a function that should be ignored.
846static Bool fn_should_be_ignored(Addr ip)
847{
848   static Char buf[BUF_LEN];
849   return
850      ( VG_(get_fnname)(ip, buf, BUF_LEN) && is_member_fn(ignore_fns, buf)
851      ? True : False );
852}
853
854// Get the stack trace for an XCon, filtering out uninteresting entries:
855// alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
856//   Eg:       alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
857//   becomes:  a / b / main
858// Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
859// as an alloc-fn.  This is ok.
860static
861Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[])
862{
863   static Char buf[BUF_LEN];
864   Int n_ips, i, n_alloc_fns_removed;
865   Int overestimate;
866   Bool redo;
867
868   // We ask for a few more IPs than clo_depth suggests we need.  Then we
869   // remove every entry that is an alloc-fn.  Depending on the
870   // circumstances, we may need to redo it all, asking for more IPs.
871   // Details:
872   // - If the original stack trace is smaller than asked-for, redo=False
873   // - Else if after filtering we have >= clo_depth IPs,      redo=False
874   // - Else redo=True
875   // In other words, to redo, we'd have to get a stack trace as big as we
876   // asked for and remove more than 'overestimate' alloc-fns.
877
878   // Main loop.
879   redo = True;      // Assume this to begin with.
880   for (overestimate = 3; redo; overestimate += 6) {
881      // This should never happen -- would require MAX_OVERESTIMATE
882      // alloc-fns to be removed from the stack trace.
883      if (overestimate > MAX_OVERESTIMATE)
884         VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?");
885
886      // Ask for more IPs than clo_depth suggests we need.
887      n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate,
888                                   NULL/*array to dump SP values in*/,
889                                   NULL/*array to dump FP values in*/,
890                                   0/*first_ip_delta*/ );
891      tl_assert(n_ips > 0);
892
893      // If the original stack trace is smaller than asked-for, redo=False.
894      if (n_ips < clo_depth + overestimate) { redo = False; }
895
896      // Filter out alloc fns.  If requested, we automatically remove the
897      // first entry (which presumably will be something like malloc or
898      // __builtin_new that we're sure to filter out) without looking at it,
899      // because VG_(get_fnname) is expensive.
900      n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 );
901      for (i = n_alloc_fns_removed; i < n_ips; i++) {
902         if (VG_(get_fnname)(ips[i], buf, BUF_LEN)) {
903            if (is_member_fn(alloc_fns, buf)) {
904               n_alloc_fns_removed++;
905            } else {
906               break;
907            }
908         }
909      }
910      // Remove the alloc fns by shuffling the rest down over them.
911      n_ips -= n_alloc_fns_removed;
912      for (i = 0; i < n_ips; i++) {
913         ips[i] = ips[i + n_alloc_fns_removed];
914      }
915
916      // If after filtering we have >= clo_depth IPs, redo=False
917      if (n_ips >= clo_depth) {
918         redo = False;
919         n_ips = clo_depth;      // Ignore any IPs below --depth.
920      }
921
922      if (redo) {
923         n_XCon_redos++;
924      }
925   }
926   return n_ips;
927}
928
929// Gets an XCon and puts it in the tree.  Returns the XCon's bottom-XPt.
930// Unless the allocation should be ignored, in which case we return NULL.
931static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry )
932{
933   static Addr ips[MAX_IPS];
934   Int i;
935   XPt* xpt = alloc_xpt;
936
937   // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
938   Int n_ips = get_IPs(tid, exclude_first_entry, ips);
939
940   // Should we ignore this allocation?  (Nb: n_ips can be zero, eg. if
941   // 'main' is marked as an alloc-fn.)
942   if (n_ips > 0 && fn_should_be_ignored(ips[0])) {
943      return NULL;
944   }
945
946   // Now do the search/insertion of the XCon.
947   for (i = 0; i < n_ips; i++) {
948      Addr ip = ips[i];
949      Int ch;
950      // Look for IP in xpt's children.
951      // Linear search, ugh -- about 10% of time for konqueror startup tried
952      // caching last result, only hit about 4% for konqueror.
953      // Nb:  this search hits about 98% of the time for konqueror
954      for (ch = 0; True; ch++) {
955         if (ch == xpt->n_children) {
956            // IP not found in the children.
957            // Create and add new child XPt, then stop.
958            XPt* new_child_xpt = new_XPt(ip, xpt);
959            add_child_xpt(xpt, new_child_xpt);
960            xpt = new_child_xpt;
961            break;
962
963         } else if (ip == xpt->children[ch]->ip) {
964            // Found the IP in the children, stop.
965            xpt = xpt->children[ch];
966            break;
967         }
968      }
969   }
970
971   // [Note: several comments refer to this comment.  Do not delete it
972   // without updating them.]
973   //
974   // A complication... If all stack traces were well-formed, then the
975   // returned xpt would always be a bottom-XPt.  As a consequence, an XPt's
976   // size would always be equal to the sum of its children's sizes, which
977   // is an excellent sanity check.
978   //
979   // Unfortunately, stack traces occasionally are malformed, ie. truncated.
980   // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a
981   // sub-trace of a/b/c/d.  So we can't assume this xpt is a bottom-XPt;
982   // nor can we do sanity check an XPt's size against its children's sizes.
983   // This is annoying, but must be dealt with.  (Older versions of Massif
984   // had this assertion in, and it was reported to fail by real users a
985   // couple of times.)  Even more annoyingly, I can't come up with a simple
986   // test case that exhibit such a malformed stack trace, so I can't
987   // regression test it.  Sigh.
988   //
989   // However, we can print a warning, so that if it happens (unexpectedly)
990   // in existing regression tests we'll know.  Also, it warns users that
991   // the output snapshots may not add up the way they might expect.
992   //
993   //tl_assert(0 == xpt->n_children); // Must be bottom-XPt
994   if (0 != xpt->n_children) {
995      static Int n_moans = 0;
996      if (n_moans < 3) {
997         VG_(umsg)(
998            "Warning: Malformed stack trace detected.  In Massif's output,\n");
999         VG_(umsg)(
1000            "         the size of an entry's child entries may not sum up\n");
1001         VG_(umsg)(
1002            "         to the entry's size as they normally do.\n");
1003         n_moans++;
1004         if (3 == n_moans)
1005            VG_(umsg)(
1006            "         (And Massif now won't warn about this again.)\n");
1007      }
1008   }
1009   return xpt;
1010}
1011
1012// Update 'szB' of every XPt in the XCon, by percolating upwards.
1013static void update_XCon(XPt* xpt, SSizeT space_delta)
1014{
1015   tl_assert(clo_heap);
1016   tl_assert(NULL != xpt);
1017
1018   if (0 == space_delta)
1019      return;
1020
1021   while (xpt != alloc_xpt) {
1022      if (space_delta < 0) tl_assert(xpt->szB >= -space_delta);
1023      xpt->szB += space_delta;
1024      xpt = xpt->parent;
1025   }
1026   if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta);
1027   alloc_xpt->szB += space_delta;
1028}
1029
1030
1031//------------------------------------------------------------//
1032//--- Snapshots                                            ---//
1033//------------------------------------------------------------//
1034
1035// Snapshots are done in a way so that we always have a reasonable number of
1036// them.  We start by taking them quickly.  Once we hit our limit, we cull
1037// some (eg. half), and start taking them more slowly.  Once we hit the
1038// limit again, we again cull and then take them even more slowly, and so
1039// on.
1040
1041// Time is measured either in i or ms or bytes, depending on the --time-unit
1042// option.  It's a Long because it can exceed 32-bits reasonably easily, and
1043// because we need to allow negative values to represent unset times.
1044typedef Long Time;
1045
1046#define UNUSED_SNAPSHOT_TIME  -333  // A conspicuous negative number.
1047
1048typedef
1049   enum {
1050      Normal = 77,
1051      Peak,
1052      Unused
1053   }
1054   SnapshotKind;
1055
1056typedef
1057   struct {
1058      SnapshotKind kind;
1059      Time  time;
1060      SizeT heap_szB;
1061      SizeT heap_extra_szB;// Heap slop + admin bytes.
1062      SizeT stacks_szB;
1063      SXPt* alloc_sxpt;    // Heap XTree root, if a detailed snapshot,
1064   }                       // otherwise NULL.
1065   Snapshot;
1066
1067static UInt      next_snapshot_i = 0;  // Index of where next snapshot will go.
1068static Snapshot* snapshots;            // Array of snapshots.
1069
1070static Bool is_snapshot_in_use(Snapshot* snapshot)
1071{
1072   if (Unused == snapshot->kind) {
1073      // If snapshot is unused, check all the fields are unset.
1074      tl_assert(snapshot->time           == UNUSED_SNAPSHOT_TIME);
1075      tl_assert(snapshot->heap_extra_szB == 0);
1076      tl_assert(snapshot->heap_szB       == 0);
1077      tl_assert(snapshot->stacks_szB     == 0);
1078      tl_assert(snapshot->alloc_sxpt     == NULL);
1079      return False;
1080   } else {
1081      tl_assert(snapshot->time           != UNUSED_SNAPSHOT_TIME);
1082      return True;
1083   }
1084}
1085
1086static Bool is_detailed_snapshot(Snapshot* snapshot)
1087{
1088   return (snapshot->alloc_sxpt ? True : False);
1089}
1090
1091static Bool is_uncullable_snapshot(Snapshot* snapshot)
1092{
1093   return &snapshots[0] == snapshot                   // First snapshot
1094       || &snapshots[next_snapshot_i-1] == snapshot   // Last snapshot
1095       || snapshot->kind == Peak;                     // Peak snapshot
1096}
1097
1098static void sanity_check_snapshot(Snapshot* snapshot)
1099{
1100   if (snapshot->alloc_sxpt) {
1101      sanity_check_SXTree(snapshot->alloc_sxpt);
1102   }
1103}
1104
1105// All the used entries should look used, all the unused ones should be clear.
1106static void sanity_check_snapshots_array(void)
1107{
1108   Int i;
1109   for (i = 0; i < next_snapshot_i; i++) {
1110      tl_assert( is_snapshot_in_use( & snapshots[i] ));
1111   }
1112   for (    ; i < clo_max_snapshots; i++) {
1113      tl_assert(!is_snapshot_in_use( & snapshots[i] ));
1114   }
1115}
1116
1117// This zeroes all the fields in the snapshot, but does not free the heap
1118// XTree if present.  It also does a sanity check unless asked not to;  we
1119// can't sanity check at startup when clearing the initial snapshots because
1120// they're full of junk.
1121static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
1122{
1123   if (do_sanity_check) sanity_check_snapshot(snapshot);
1124   snapshot->kind           = Unused;
1125   snapshot->time           = UNUSED_SNAPSHOT_TIME;
1126   snapshot->heap_extra_szB = 0;
1127   snapshot->heap_szB       = 0;
1128   snapshot->stacks_szB     = 0;
1129   snapshot->alloc_sxpt     = NULL;
1130}
1131
1132// This zeroes all the fields in the snapshot, and frees the heap XTree if
1133// present.
1134static void delete_snapshot(Snapshot* snapshot)
1135{
1136   // Nb: if there's an XTree, we free it after calling clear_snapshot,
1137   // because clear_snapshot does a sanity check which includes checking the
1138   // XTree.
1139   SXPt* tmp_sxpt = snapshot->alloc_sxpt;
1140   clear_snapshot(snapshot, /*do_sanity_check*/True);
1141   if (tmp_sxpt) {
1142      free_SXTree(tmp_sxpt);
1143   }
1144}
1145
1146static void VERB_snapshot(Int verbosity, Char* prefix, Int i)
1147{
1148   Snapshot* snapshot = &snapshots[i];
1149   Char* suffix;
1150   switch (snapshot->kind) {
1151   case Peak:   suffix = "p";                                            break;
1152   case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
1153   case Unused: suffix = "u";                                            break;
1154   default:
1155      tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
1156   }
1157   VERB(verbosity, "%s S%s%3d (t:%lld, hp:%ld, ex:%ld, st:%ld)\n",
1158      prefix, suffix, i,
1159      snapshot->time,
1160      snapshot->heap_szB,
1161      snapshot->heap_extra_szB,
1162      snapshot->stacks_szB
1163   );
1164}
1165
1166// Cull half the snapshots;  we choose those that represent the smallest
1167// time-spans, because that gives us the most even distribution of snapshots
1168// over time.  (It's possible to lose interesting spikes, however.)
1169//
1170// Algorithm for N snapshots:  We find the snapshot representing the smallest
1171// timeframe, and remove it.  We repeat this until (N/2) snapshots are gone.
1172// We have to do this one snapshot at a time, rather than finding the (N/2)
1173// smallest snapshots in one hit, because when a snapshot is removed, its
1174// neighbours immediately cover greater timespans.  So it's O(N^2), but N is
1175// small, and it's not done very often.
1176//
1177// Once we're done, we return the new smallest interval between snapshots.
1178// That becomes our minimum time interval.
1179static UInt cull_snapshots(void)
1180{
1181   Int  i, jp, j, jn, min_timespan_i;
1182   Int  n_deleted = 0;
1183   Time min_timespan;
1184
1185   n_cullings++;
1186
1187   // Sets j to the index of the first not-yet-removed snapshot at or after i
1188   #define FIND_SNAPSHOT(i, j) \
1189      for (j = i; \
1190           j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
1191           j++) { }
1192
1193   VERB(2, "Culling...\n");
1194
1195   // First we remove enough snapshots by clearing them in-place.  Once
1196   // that's done, we can slide the remaining ones down.
1197   for (i = 0; i < clo_max_snapshots/2; i++) {
1198      // Find the snapshot representing the smallest timespan.  The timespan
1199      // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
1200      // snapshot A and B.  We don't consider the first and last snapshots for
1201      // removal.
1202      Snapshot* min_snapshot;
1203      Int min_j;
1204
1205      // Initial triple: (prev, curr, next) == (jp, j, jn)
1206      // Initial min_timespan is the first one.
1207      jp = 0;
1208      FIND_SNAPSHOT(1,   j);
1209      FIND_SNAPSHOT(j+1, jn);
1210      min_timespan = 0x7fffffffffffffffLL;
1211      min_j        = -1;
1212      while (jn < clo_max_snapshots) {
1213         Time timespan = snapshots[jn].time - snapshots[jp].time;
1214         tl_assert(timespan >= 0);
1215         // Nb: We never cull the peak snapshot.
1216         if (Peak != snapshots[j].kind && timespan < min_timespan) {
1217            min_timespan = timespan;
1218            min_j        = j;
1219         }
1220         // Move on to next triple
1221         jp = j;
1222         j  = jn;
1223         FIND_SNAPSHOT(jn+1, jn);
1224      }
1225      // We've found the least important snapshot, now delete it.  First
1226      // print it if necessary.
1227      tl_assert(-1 != min_j);    // Check we found a minimum.
1228      min_snapshot = & snapshots[ min_j ];
1229      if (VG_(clo_verbosity) > 1) {
1230         Char buf[64];
1231         VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
1232         VERB_snapshot(2, buf, min_j);
1233      }
1234      delete_snapshot(min_snapshot);
1235      n_deleted++;
1236   }
1237
1238   // Slide down the remaining snapshots over the removed ones.  First set i
1239   // to point to the first empty slot, and j to the first full slot after
1240   // i.  Then slide everything down.
1241   for (i = 0;  is_snapshot_in_use( &snapshots[i] ); i++) { }
1242   for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
1243   for (  ; j < clo_max_snapshots; j++) {
1244      if (is_snapshot_in_use( &snapshots[j] )) {
1245         snapshots[i++] = snapshots[j];
1246         clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
1247      }
1248   }
1249   next_snapshot_i = i;
1250
1251   // Check snapshots array looks ok after changes.
1252   sanity_check_snapshots_array();
1253
1254   // Find the minimum timespan remaining;  that will be our new minimum
1255   // time interval.  Note that above we were finding timespans by measuring
1256   // two intervals around a snapshot that was under consideration for
1257   // deletion.  Here we only measure single intervals because all the
1258   // deletions have occurred.
1259   //
1260   // But we have to be careful -- some snapshots (eg. snapshot 0, and the
1261   // peak snapshot) are uncullable.  If two uncullable snapshots end up
1262   // next to each other, they'll never be culled (assuming the peak doesn't
1263   // change), and the time gap between them will not change.  However, the
1264   // time between the remaining cullable snapshots will grow ever larger.
1265   // This means that the min_timespan found will always be that between the
1266   // two uncullable snapshots, and it will be much smaller than it should
1267   // be.  To avoid this problem, when computing the minimum timespan, we
1268   // ignore any timespans between two uncullable snapshots.
1269   tl_assert(next_snapshot_i > 1);
1270   min_timespan = 0x7fffffffffffffffLL;
1271   min_timespan_i = -1;
1272   for (i = 1; i < next_snapshot_i; i++) {
1273      if (is_uncullable_snapshot(&snapshots[i]) &&
1274          is_uncullable_snapshot(&snapshots[i-1]))
1275      {
1276         VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
1277      } else {
1278         Time timespan = snapshots[i].time - snapshots[i-1].time;
1279         tl_assert(timespan >= 0);
1280         if (timespan < min_timespan) {
1281            min_timespan = timespan;
1282            min_timespan_i = i;
1283         }
1284      }
1285   }
1286   tl_assert(-1 != min_timespan_i);    // Check we found a minimum.
1287
1288   // Print remaining snapshots, if necessary.
1289   if (VG_(clo_verbosity) > 1) {
1290      VERB(2, "Finished culling (%3d of %3d deleted)\n",
1291         n_deleted, clo_max_snapshots);
1292      for (i = 0; i < next_snapshot_i; i++) {
1293         VERB_snapshot(2, "  post-cull", i);
1294      }
1295      VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
1296         min_timespan, min_timespan_i-1, min_timespan_i);
1297   }
1298
1299   return min_timespan;
1300}
1301
1302static Time get_time(void)
1303{
1304   // Get current time, in whatever time unit we're using.
1305   if (clo_time_unit == TimeI) {
1306      return guest_instrs_executed;
1307   } else if (clo_time_unit == TimeMS) {
1308      // Some stuff happens between the millisecond timer being initialised
1309      // to zero and us taking our first snapshot.  We determine that time
1310      // gap so we can subtract it from all subsequent times so that our
1311      // first snapshot is considered to be at t = 0ms.  Unfortunately, a
1312      // bunch of symbols get read after the first snapshot is taken but
1313      // before the second one (which is triggered by the first allocation),
1314      // so when the time-unit is 'ms' we always have a big gap between the
1315      // first two snapshots.  But at least users won't have to wonder why
1316      // the first snapshot isn't at t=0.
1317      static Bool is_first_get_time = True;
1318      static Time start_time_ms;
1319      if (is_first_get_time) {
1320         start_time_ms = VG_(read_millisecond_timer)();
1321         is_first_get_time = False;
1322         return 0;
1323      } else {
1324         return VG_(read_millisecond_timer)() - start_time_ms;
1325      }
1326   } else if (clo_time_unit == TimeB) {
1327      return total_allocs_deallocs_szB;
1328   } else {
1329      tl_assert2(0, "bad --time-unit value");
1330   }
1331}
1332
1333// Take a snapshot, and only that -- decisions on whether to take a
1334// snapshot, or what kind of snapshot, are made elsewhere.
1335// Nb: we call the arg "my_time" because "time" shadows a global declaration
1336// in /usr/include/time.h on Darwin.
1337static void
1338take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
1339              Bool is_detailed)
1340{
1341   tl_assert(!is_snapshot_in_use(snapshot));
1342   if (!clo_pages_as_heap) {
1343      tl_assert(have_started_executing_code);
1344   }
1345
1346   // Heap and heap admin.
1347   if (clo_heap) {
1348      snapshot->heap_szB = heap_szB;
1349      if (is_detailed) {
1350         SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1351         snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB);
1352         tl_assert(           alloc_xpt->szB == heap_szB);
1353         tl_assert(snapshot->alloc_sxpt->szB == heap_szB);
1354      }
1355      snapshot->heap_extra_szB = heap_extra_szB;
1356   }
1357
1358   // Stack(s).
1359   if (clo_stacks) {
1360      snapshot->stacks_szB = stacks_szB;
1361   }
1362
1363   // Rest of snapshot.
1364   snapshot->kind = kind;
1365   snapshot->time = my_time;
1366   sanity_check_snapshot(snapshot);
1367
1368   // Update stats.
1369   if (Peak == kind) n_peak_snapshots++;
1370   if (is_detailed)  n_detailed_snapshots++;
1371   n_real_snapshots++;
1372}
1373
1374
1375// Take a snapshot, if it's time, or if we've hit a peak.
1376static void
1377maybe_take_snapshot(SnapshotKind kind, Char* what)
1378{
1379   // 'min_time_interval' is the minimum time interval between snapshots.
1380   // If we try to take a snapshot and less than this much time has passed,
1381   // we don't take it.  It gets larger as the program runs longer.  It's
1382   // initialised to zero so that we begin by taking snapshots as quickly as
1383   // possible.
1384   static Time min_time_interval = 0;
1385   // Zero allows startup snapshot.
1386   static Time earliest_possible_time_of_next_snapshot = 0;
1387   static Int  n_snapshots_since_last_detailed         = 0;
1388   static Int  n_skipped_snapshots_since_last_snapshot = 0;
1389
1390   Snapshot* snapshot;
1391   Bool      is_detailed;
1392   // Nb: we call this variable "my_time" because "time" shadows a global
1393   // declaration in /usr/include/time.h on Darwin.
1394   Time      my_time = get_time();
1395
1396   switch (kind) {
1397    case Normal:
1398      // Only do a snapshot if it's time.
1399      if (my_time < earliest_possible_time_of_next_snapshot) {
1400         n_skipped_snapshots++;
1401         n_skipped_snapshots_since_last_snapshot++;
1402         return;
1403      }
1404      is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
1405      break;
1406
1407    case Peak: {
1408      // Because we're about to do a deallocation, we're coming down from a
1409      // local peak.  If it is (a) actually a global peak, and (b) a certain
1410      // amount bigger than the previous peak, then we take a peak snapshot.
1411      // By not taking a snapshot for every peak, we save a lot of effort --
1412      // because many peaks remain peak only for a short time.
1413      SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1414      SizeT excess_szB_for_new_peak =
1415         (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
1416      if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
1417         return;
1418      }
1419      is_detailed = True;
1420      break;
1421    }
1422
1423    default:
1424      tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1425   }
1426
1427   // Take the snapshot.
1428   snapshot = & snapshots[next_snapshot_i];
1429   take_snapshot(snapshot, kind, my_time, is_detailed);
1430
1431   // Record if it was detailed.
1432   if (is_detailed) {
1433      n_snapshots_since_last_detailed = 0;
1434   } else {
1435      n_snapshots_since_last_detailed++;
1436   }
1437
1438   // Update peak data, if it's a Peak snapshot.
1439   if (Peak == kind) {
1440      Int i, number_of_peaks_snapshots_found = 0;
1441
1442      // Sanity check the size, then update our recorded peak.
1443      SizeT snapshot_total_szB =
1444         snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
1445      tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
1446         "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
1447      peak_snapshot_total_szB = snapshot_total_szB;
1448
1449      // Find the old peak snapshot, if it exists, and mark it as normal.
1450      for (i = 0; i < next_snapshot_i; i++) {
1451         if (Peak == snapshots[i].kind) {
1452            snapshots[i].kind = Normal;
1453            number_of_peaks_snapshots_found++;
1454         }
1455      }
1456      tl_assert(number_of_peaks_snapshots_found <= 1);
1457   }
1458
1459   // Finish up verbosity and stats stuff.
1460   if (n_skipped_snapshots_since_last_snapshot > 0) {
1461      VERB(2, "  (skipped %d snapshot%s)\n",
1462         n_skipped_snapshots_since_last_snapshot,
1463         ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
1464   }
1465   VERB_snapshot(2, what, next_snapshot_i);
1466   n_skipped_snapshots_since_last_snapshot = 0;
1467
1468   // Cull the entries, if our snapshot table is full.
1469   next_snapshot_i++;
1470   if (clo_max_snapshots == next_snapshot_i) {
1471      min_time_interval = cull_snapshots();
1472   }
1473
1474   // Work out the earliest time when the next snapshot can happen.
1475   earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
1476}
1477
1478
1479//------------------------------------------------------------//
1480//--- Sanity checking                                      ---//
1481//------------------------------------------------------------//
1482
1483static Bool ms_cheap_sanity_check ( void )
1484{
1485   return True;   // Nothing useful we can cheaply check.
1486}
1487
1488static Bool ms_expensive_sanity_check ( void )
1489{
1490   sanity_check_XTree(alloc_xpt, /*parent*/NULL);
1491   sanity_check_snapshots_array();
1492   return True;
1493}
1494
1495
1496//------------------------------------------------------------//
1497//--- Heap management                                      ---//
1498//------------------------------------------------------------//
1499
1500// Metadata for heap blocks.  Each one contains a pointer to a bottom-XPt,
1501// which is a foothold into the XCon at which it was allocated.  From
1502// HP_Chunks, XPt 'space' fields are incremented (at allocation) and
1503// decremented (at deallocation).
1504//
1505// Nb: first two fields must match core's VgHashNode.
1506typedef
1507   struct _HP_Chunk {
1508      struct _HP_Chunk* next;
1509      Addr              data;       // Ptr to actual block
1510      SizeT             req_szB;    // Size requested
1511      SizeT             slop_szB;   // Extra bytes given above those requested
1512      XPt*              where;      // Where allocated; bottom-XPt
1513   }
1514   HP_Chunk;
1515
1516static VgHashTable malloc_list  = NULL;   // HP_Chunks
1517
1518static void update_alloc_stats(SSizeT szB_delta)
1519{
1520   // Update total_allocs_deallocs_szB.
1521   if (szB_delta < 0) szB_delta = -szB_delta;
1522   total_allocs_deallocs_szB += szB_delta;
1523}
1524
1525static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
1526{
1527   if (heap_szB_delta < 0)
1528      tl_assert(heap_szB >= -heap_szB_delta);
1529   if (heap_extra_szB_delta < 0)
1530      tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
1531
1532   heap_extra_szB += heap_extra_szB_delta;
1533   heap_szB       += heap_szB_delta;
1534
1535   update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
1536}
1537
1538static
1539void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
1540                    Bool exclude_first_entry, Bool maybe_snapshot )
1541{
1542   // Make new HP_Chunk node, add to malloc_list
1543   HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk));
1544   hc->req_szB  = req_szB;
1545   hc->slop_szB = slop_szB;
1546   hc->data     = (Addr)p;
1547   hc->where    = NULL;
1548   VG_(HT_add_node)(malloc_list, hc);
1549
1550   if (clo_heap) {
1551      VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
1552
1553      hc->where = get_XCon( tid, exclude_first_entry );
1554
1555      if (hc->where) {
1556         // Update statistics.
1557         n_heap_allocs++;
1558
1559         // Update heap stats.
1560         update_heap_stats(req_szB, clo_heap_admin + slop_szB);
1561
1562         // Update XTree.
1563         update_XCon(hc->where, req_szB);
1564
1565         // Maybe take a snapshot.
1566         if (maybe_snapshot) {
1567            maybe_take_snapshot(Normal, "  alloc");
1568         }
1569
1570      } else {
1571         // Ignored allocation.
1572         n_ignored_heap_allocs++;
1573
1574         VERB(3, "(ignored)\n");
1575      }
1576
1577      VERB(3, ">>>\n");
1578   }
1579
1580   return p;
1581}
1582
1583static __inline__
1584void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
1585                               Bool is_zeroed )
1586{
1587   SizeT actual_szB, slop_szB;
1588   void* p;
1589
1590   if ((SSizeT)req_szB < 0) return NULL;
1591
1592   // Allocate and zero if necessary.
1593   p = VG_(cli_malloc)( req_alignB, req_szB );
1594   if (!p) {
1595      return NULL;
1596   }
1597   if (is_zeroed) VG_(memset)(p, 0, req_szB);
1598   actual_szB = VG_(malloc_usable_size)(p);
1599   tl_assert(actual_szB >= req_szB);
1600   slop_szB = actual_szB - req_szB;
1601
1602   // Record block.
1603   record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
1604                /*maybe_snapshot*/True);
1605
1606   return p;
1607}
1608
1609static __inline__
1610void unrecord_block ( void* p, Bool maybe_snapshot )
1611{
1612   // Remove HP_Chunk from malloc_list
1613   HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
1614   if (NULL == hc) {
1615      return;   // must have been a bogus free()
1616   }
1617
1618   if (clo_heap) {
1619      VERB(3, "<<< unrecord_block\n");
1620
1621      if (hc->where) {
1622         // Update statistics.
1623         n_heap_frees++;
1624
1625         // Maybe take a peak snapshot, since it's a deallocation.
1626         if (maybe_snapshot) {
1627            maybe_take_snapshot(Peak, "de-PEAK");
1628         }
1629
1630         // Update heap stats.
1631         update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
1632
1633         // Update XTree.
1634         update_XCon(hc->where, -hc->req_szB);
1635
1636         // Maybe take a snapshot.
1637         if (maybe_snapshot) {
1638            maybe_take_snapshot(Normal, "dealloc");
1639         }
1640
1641      } else {
1642         n_ignored_heap_frees++;
1643
1644         VERB(3, "(ignored)\n");
1645      }
1646
1647      VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
1648   }
1649
1650   // Actually free the chunk, and the heap block (if necessary)
1651   VG_(free)( hc );  hc = NULL;
1652}
1653
1654// Nb: --ignore-fn is tricky for realloc.  If the block's original alloc was
1655// ignored, but the realloc is not requested to be ignored, and we are
1656// shrinking the block, then we have to ignore the realloc -- otherwise we
1657// could end up with negative heap sizes.  This isn't a danger if we are
1658// growing such a block, but for consistency (it also simplifies things) we
1659// ignore such reallocs as well.
1660static __inline__
1661void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
1662{
1663   HP_Chunk* hc;
1664   void*     p_new;
1665   SizeT     old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
1666   XPt      *old_where, *new_where;
1667   Bool      is_ignored = False;
1668
1669   // Remove the old block
1670   hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
1671   if (hc == NULL) {
1672      return NULL;   // must have been a bogus realloc()
1673   }
1674
1675   old_req_szB  = hc->req_szB;
1676   old_slop_szB = hc->slop_szB;
1677
1678   tl_assert(!clo_pages_as_heap);  // Shouldn't be here if --pages-as-heap=yes.
1679   if (clo_heap) {
1680      VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
1681
1682      if (hc->where) {
1683         // Update statistics.
1684         n_heap_reallocs++;
1685
1686         // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1687         if (new_req_szB < old_req_szB) {
1688            maybe_take_snapshot(Peak, "re-PEAK");
1689         }
1690      } else {
1691         // The original malloc was ignored, so we have to ignore the
1692         // realloc as well.
1693         is_ignored = True;
1694      }
1695   }
1696
1697   // Actually do the allocation, if necessary.
1698   if (new_req_szB <= old_req_szB + old_slop_szB) {
1699      // New size is smaller or same;  block not moved.
1700      p_new = p_old;
1701      new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
1702
1703   } else {
1704      // New size is bigger;  make new block, copy shared contents, free old.
1705      p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
1706      if (!p_new) {
1707         // Nb: if realloc fails, NULL is returned but the old block is not
1708         // touched.  What an awful function.
1709         return NULL;
1710      }
1711      VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB);
1712      VG_(cli_free)(p_old);
1713      new_actual_szB = VG_(malloc_usable_size)(p_new);
1714      tl_assert(new_actual_szB >= new_req_szB);
1715      new_slop_szB = new_actual_szB - new_req_szB;
1716   }
1717
1718   if (p_new) {
1719      // Update HP_Chunk.
1720      hc->data     = (Addr)p_new;
1721      hc->req_szB  = new_req_szB;
1722      hc->slop_szB = new_slop_szB;
1723      old_where    = hc->where;
1724      hc->where    = NULL;
1725
1726      // Update XTree.
1727      if (clo_heap) {
1728         new_where = get_XCon( tid, /*exclude_first_entry*/True);
1729         if (!is_ignored && new_where) {
1730            hc->where = new_where;
1731            update_XCon(old_where, -old_req_szB);
1732            update_XCon(new_where,  new_req_szB);
1733         } else {
1734            // The realloc itself is ignored.
1735            is_ignored = True;
1736
1737            // Update statistics.
1738            n_ignored_heap_reallocs++;
1739         }
1740      }
1741   }
1742
1743   // Now insert the new hc (with a possibly new 'data' field) into
1744   // malloc_list.  If this realloc() did not increase the memory size, we
1745   // will have removed and then re-added hc unnecessarily.  But that's ok
1746   // because shrinking a block with realloc() is (presumably) much rarer
1747   // than growing it, and this way simplifies the growing case.
1748   VG_(HT_add_node)(malloc_list, hc);
1749
1750   if (clo_heap) {
1751      if (!is_ignored) {
1752         // Update heap stats.
1753         update_heap_stats(new_req_szB - old_req_szB,
1754                          new_slop_szB - old_slop_szB);
1755
1756         // Maybe take a snapshot.
1757         maybe_take_snapshot(Normal, "realloc");
1758      } else {
1759
1760         VERB(3, "(ignored)\n");
1761      }
1762
1763      VERB(3, ">>> (%ld, %ld)\n",
1764         new_req_szB - old_req_szB, new_slop_szB - old_slop_szB);
1765   }
1766
1767   return p_new;
1768}
1769
1770
1771//------------------------------------------------------------//
1772//--- malloc() et al replacement wrappers                  ---//
1773//------------------------------------------------------------//
1774
1775static void* ms_malloc ( ThreadId tid, SizeT szB )
1776{
1777   return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1778}
1779
1780static void* ms___builtin_new ( ThreadId tid, SizeT szB )
1781{
1782   return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1783}
1784
1785static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
1786{
1787   return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1788}
1789
1790static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
1791{
1792   return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
1793}
1794
1795static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
1796{
1797   return alloc_and_record_block( tid, szB, alignB, False );
1798}
1799
1800static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
1801{
1802   unrecord_block(p, /*maybe_snapshot*/True);
1803   VG_(cli_free)(p);
1804}
1805
1806static void ms___builtin_delete ( ThreadId tid, void* p )
1807{
1808   unrecord_block(p, /*maybe_snapshot*/True);
1809   VG_(cli_free)(p);
1810}
1811
1812static void ms___builtin_vec_delete ( ThreadId tid, void* p )
1813{
1814   unrecord_block(p, /*maybe_snapshot*/True);
1815   VG_(cli_free)(p);
1816}
1817
1818static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
1819{
1820   return realloc_block(tid, p_old, new_szB);
1821}
1822
1823static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
1824{
1825   HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
1826
1827   return ( hc ? hc->req_szB + hc->slop_szB : 0 );
1828}
1829
1830//------------------------------------------------------------//
1831//--- Page handling                                        ---//
1832//------------------------------------------------------------//
1833
1834static
1835void ms_record_page_mem ( Addr a, SizeT len )
1836{
1837   ThreadId tid = VG_(get_running_tid)();
1838   Addr end;
1839   tl_assert(VG_IS_PAGE_ALIGNED(len));
1840   tl_assert(len >= VKI_PAGE_SIZE);
1841   // Record the first N-1 pages as blocks, but don't do any snapshots.
1842   for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1843      record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1844                    /*exclude_first_entry*/False, /*maybe_snapshot*/False );
1845   }
1846   // Record the last page as a block, and maybe do a snapshot afterwards.
1847   record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1848                 /*exclude_first_entry*/False, /*maybe_snapshot*/True );
1849}
1850
1851static
1852void ms_unrecord_page_mem( Addr a, SizeT len )
1853{
1854   Addr end;
1855   tl_assert(VG_IS_PAGE_ALIGNED(len));
1856   tl_assert(len >= VKI_PAGE_SIZE);
1857   for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1858      unrecord_block((void*)a, /*maybe_snapshot*/False);
1859   }
1860   unrecord_block((void*)a, /*maybe_snapshot*/True);
1861}
1862
1863//------------------------------------------------------------//
1864
1865static
1866void ms_new_mem_mmap ( Addr a, SizeT len,
1867                       Bool rr, Bool ww, Bool xx, ULong di_handle )
1868{
1869   tl_assert(VG_IS_PAGE_ALIGNED(len));
1870   ms_record_page_mem(a, len);
1871}
1872
1873static
1874void ms_new_mem_startup( Addr a, SizeT len,
1875                         Bool rr, Bool ww, Bool xx, ULong di_handle )
1876{
1877   // startup maps are always be page-sized, except the trampoline page is
1878   // marked by the core as only being the size of the trampoline itself,
1879   // which is something like 57 bytes.  Round it up to page size.
1880   len = VG_PGROUNDUP(len);
1881   ms_record_page_mem(a, len);
1882}
1883
1884static
1885void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
1886{
1887   tl_assert(VG_IS_PAGE_ALIGNED(len));
1888   ms_record_page_mem(a, len);
1889}
1890
1891static
1892void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
1893{
1894   tl_assert(VG_IS_PAGE_ALIGNED(len));
1895   ms_unrecord_page_mem(from, len);
1896   ms_record_page_mem(to, len);
1897}
1898
1899static
1900void ms_die_mem_munmap( Addr a, SizeT len )
1901{
1902   tl_assert(VG_IS_PAGE_ALIGNED(len));
1903   ms_unrecord_page_mem(a, len);
1904}
1905
1906static
1907void ms_die_mem_brk( Addr a, SizeT len )
1908{
1909   tl_assert(VG_IS_PAGE_ALIGNED(len));
1910   ms_unrecord_page_mem(a, len);
1911}
1912
1913//------------------------------------------------------------//
1914//--- Stacks                                               ---//
1915//------------------------------------------------------------//
1916
1917// We really want the inlining to occur...
1918#define INLINE    inline __attribute__((always_inline))
1919
1920static void update_stack_stats(SSizeT stack_szB_delta)
1921{
1922   if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
1923   stacks_szB += stack_szB_delta;
1924
1925   update_alloc_stats(stack_szB_delta);
1926}
1927
1928static INLINE void new_mem_stack_2(SizeT len, Char* what)
1929{
1930   if (have_started_executing_code) {
1931      VERB(3, "<<< new_mem_stack (%ld)\n", len);
1932      n_stack_allocs++;
1933      update_stack_stats(len);
1934      maybe_take_snapshot(Normal, what);
1935      VERB(3, ">>>\n");
1936   }
1937}
1938
1939static INLINE void die_mem_stack_2(SizeT len, Char* what)
1940{
1941   if (have_started_executing_code) {
1942      VERB(3, "<<< die_mem_stack (%ld)\n", -len);
1943      n_stack_frees++;
1944      maybe_take_snapshot(Peak,   "stkPEAK");
1945      update_stack_stats(-len);
1946      maybe_take_snapshot(Normal, what);
1947      VERB(3, ">>>\n");
1948   }
1949}
1950
1951static void new_mem_stack(Addr a, SizeT len)
1952{
1953   new_mem_stack_2(len, "stk-new");
1954}
1955
1956static void die_mem_stack(Addr a, SizeT len)
1957{
1958   die_mem_stack_2(len, "stk-die");
1959}
1960
1961static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
1962{
1963   new_mem_stack_2(len, "sig-new");
1964}
1965
1966static void die_mem_stack_signal(Addr a, SizeT len)
1967{
1968   die_mem_stack_2(len, "sig-die");
1969}
1970
1971
1972//------------------------------------------------------------//
1973//--- Client Requests                                      ---//
1974//------------------------------------------------------------//
1975
1976static void print_monitor_help ( void )
1977{
1978   VG_(gdb_printf) ("\n");
1979   VG_(gdb_printf) ("massif monitor commands:\n");
1980   VG_(gdb_printf) ("  snapshot [<filename>]\n");
1981   VG_(gdb_printf) ("  detailed_snapshot [<filename>]\n");
1982   VG_(gdb_printf) ("       takes a snapshot (or a detailed snapshot)\n");
1983   VG_(gdb_printf) ("       and saves it in <filename>\n");
1984   VG_(gdb_printf) ("             default <filename> is massif.vgdb.out\n");
1985   VG_(gdb_printf) ("\n");
1986}
1987
1988
1989/* Forward declaration.
1990   return True if request recognised, False otherwise */
1991static Bool handle_gdb_monitor_command (ThreadId tid, Char *req);
1992static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
1993{
1994   switch (argv[0]) {
1995   case VG_USERREQ__MALLOCLIKE_BLOCK: {
1996      void* p   = (void*)argv[1];
1997      SizeT szB =        argv[2];
1998      record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
1999                    /*maybe_snapshot*/True );
2000      *ret = 0;
2001      return True;
2002   }
2003   case VG_USERREQ__RESIZEINPLACE_BLOCK: {
2004      void* p        = (void*)argv[1];
2005      SizeT newSizeB =       argv[3];
2006
2007      unrecord_block(p, /*maybe_snapshot*/True);
2008      record_block(tid, p, newSizeB, /*slop_szB*/0,
2009                   /*exclude_first_entry*/False, /*maybe_snapshot*/True);
2010      return True;
2011   }
2012   case VG_USERREQ__FREELIKE_BLOCK: {
2013      void* p = (void*)argv[1];
2014      unrecord_block(p, /*maybe_snapshot*/True);
2015      *ret = 0;
2016      return True;
2017   }
2018   case VG_USERREQ__GDB_MONITOR_COMMAND: {
2019     Bool handled = handle_gdb_monitor_command (tid, (Char*)argv[1]);
2020     if (handled)
2021       *ret = 1;
2022     else
2023       *ret = 0;
2024     return handled;
2025   }
2026
2027   default:
2028      *ret = 0;
2029      return False;
2030   }
2031}
2032
2033//------------------------------------------------------------//
2034//--- Instrumentation                                      ---//
2035//------------------------------------------------------------//
2036
2037static void add_counter_update(IRSB* sbOut, Int n)
2038{
2039   #if defined(VG_BIGENDIAN)
2040   # define END Iend_BE
2041   #elif defined(VG_LITTLEENDIAN)
2042   # define END Iend_LE
2043   #else
2044   # error "Unknown endianness"
2045   #endif
2046   // Add code to increment 'guest_instrs_executed' by 'n', like this:
2047   //   WrTmp(t1, Load64(&guest_instrs_executed))
2048   //   WrTmp(t2, Add64(RdTmp(t1), Const(n)))
2049   //   Store(&guest_instrs_executed, t2)
2050   IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
2051   IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
2052   IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
2053
2054   IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
2055   IRStmt* st2 =
2056      IRStmt_WrTmp(t2,
2057                   IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
2058                                           IRExpr_Const(IRConst_U64(n))));
2059   IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
2060
2061   addStmtToIRSB( sbOut, st1 );
2062   addStmtToIRSB( sbOut, st2 );
2063   addStmtToIRSB( sbOut, st3 );
2064}
2065
2066static IRSB* ms_instrument2( IRSB* sbIn )
2067{
2068   Int   i, n = 0;
2069   IRSB* sbOut;
2070
2071   // We increment the instruction count in two places:
2072   // - just before any Ist_Exit statements;
2073   // - just before the IRSB's end.
2074   // In the former case, we zero 'n' and then continue instrumenting.
2075
2076   sbOut = deepCopyIRSBExceptStmts(sbIn);
2077
2078   for (i = 0; i < sbIn->stmts_used; i++) {
2079      IRStmt* st = sbIn->stmts[i];
2080
2081      if (!st || st->tag == Ist_NoOp) continue;
2082
2083      if (st->tag == Ist_IMark) {
2084         n++;
2085      } else if (st->tag == Ist_Exit) {
2086         if (n > 0) {
2087            // Add an increment before the Exit statement, then reset 'n'.
2088            add_counter_update(sbOut, n);
2089            n = 0;
2090         }
2091      }
2092      addStmtToIRSB( sbOut, st );
2093   }
2094
2095   if (n > 0) {
2096      // Add an increment before the SB end.
2097      add_counter_update(sbOut, n);
2098   }
2099   return sbOut;
2100}
2101
2102static
2103IRSB* ms_instrument ( VgCallbackClosure* closure,
2104                      IRSB* sbIn,
2105                      VexGuestLayout* layout,
2106                      VexGuestExtents* vge,
2107                      IRType gWordTy, IRType hWordTy )
2108{
2109   if (! have_started_executing_code) {
2110      // Do an initial sample to guarantee that we have at least one.
2111      // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
2112      // 'maybe_take_snapshot's internal static variables are initialised.
2113      have_started_executing_code = True;
2114      maybe_take_snapshot(Normal, "startup");
2115   }
2116
2117   if      (clo_time_unit == TimeI)  { return ms_instrument2(sbIn); }
2118   else if (clo_time_unit == TimeMS) { return sbIn; }
2119   else if (clo_time_unit == TimeB)  { return sbIn; }
2120   else                              { tl_assert2(0, "bad --time-unit value"); }
2121}
2122
2123
2124//------------------------------------------------------------//
2125//--- Writing snapshots                                    ---//
2126//------------------------------------------------------------//
2127
2128Char FP_buf[BUF_LEN];
2129
2130// XXX: implement f{,n}printf in m_libcprint.c eventually, and use it here.
2131// Then change Cachegrind to use it too.
2132#define FP(format, args...) ({ \
2133   VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \
2134   FP_buf[BUF_LEN-1] = '\0';  /* Make sure the string is terminated. */ \
2135   VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \
2136})
2137
2138// Nb: uses a static buffer, each call trashes the last string returned.
2139static Char* make_perc(double x)
2140{
2141   static Char mbuf[32];
2142
2143   VG_(percentify)((ULong)(x * 100), 10000, 2, 6, mbuf);
2144   // XXX: this is bogus if the denominator was zero -- resulting string is
2145   // something like "0 --%")
2146   if (' ' == mbuf[0]) mbuf[0] = '0';
2147   return mbuf;
2148}
2149
2150static void pp_snapshot_SXPt(Int fd, SXPt* sxpt, Int depth, Char* depth_str,
2151                            Int depth_str_len,
2152                            SizeT snapshot_heap_szB, SizeT snapshot_total_szB)
2153{
2154   Int   i, j, n_insig_children_sxpts;
2155   SXPt* child = NULL;
2156
2157   // Used for printing function names.  Is made static to keep it out
2158   // of the stack frame -- this function is recursive.  Obviously this
2159   // now means its contents are trashed across the recursive call.
2160   static Char ip_desc_array[BUF_LEN];
2161   Char* ip_desc = ip_desc_array;
2162
2163   switch (sxpt->tag) {
2164    case SigSXPt:
2165      // Print the SXPt itself.
2166      if (0 == depth) {
2167         if (clo_heap) {
2168            ip_desc =
2169               ( clo_pages_as_heap
2170               ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
2171               : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."
2172               );
2173         } else {
2174            // XXX: --alloc-fns?
2175         }
2176      } else {
2177         // If it's main-or-below-main, we (if appropriate) ignore everything
2178         // below it by pretending it has no children.
2179         if ( ! VG_(clo_show_below_main) ) {
2180            Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip);
2181            if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) {
2182               sxpt->Sig.n_children = 0;
2183            }
2184         }
2185
2186         // We need the -1 to get the line number right, But I'm not sure why.
2187         ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, ip_desc, BUF_LEN);
2188      }
2189
2190      // Do the non-ip_desc part first...
2191      FP("%sn%d: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB);
2192
2193      // For ip_descs beginning with "0xABCD...:" addresses, we first
2194      // measure the length of the "0xabcd: " address at the start of the
2195      // ip_desc.
2196      j = 0;
2197      if ('0' == ip_desc[0] && 'x' == ip_desc[1]) {
2198         j = 2;
2199         while (True) {
2200            if (ip_desc[j]) {
2201               if (':' == ip_desc[j]) break;
2202               j++;
2203            } else {
2204               tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc);
2205            }
2206         }
2207      }
2208      // Nb: We treat this specially (ie. we don't use FP) so that if the
2209      // ip_desc is too long (eg. due to a long C++ function name), it'll
2210      // get truncated, but the '\n' is still there so its a valid file.
2211      // (At one point we were truncating without adding the '\n', which
2212      // caused bug #155929.)
2213      //
2214      // Also, we account for the length of the address in ip_desc when
2215      // truncating.  (The longest address we could have is 18 chars:  "0x"
2216      // plus 16 address digits.)  This ensures that the truncated function
2217      // name always has the same length, which makes truncation
2218      // deterministic and thus makes testing easier.
2219      tl_assert(j <= 18);
2220      VG_(snprintf)(FP_buf, BUF_LEN, "%s\n", ip_desc);
2221      FP_buf[BUF_LEN-18+j-5] = '.';    // "..." at the end make the
2222      FP_buf[BUF_LEN-18+j-4] = '.';    //   truncation more obvious.
2223      FP_buf[BUF_LEN-18+j-3] = '.';
2224      FP_buf[BUF_LEN-18+j-2] = '\n';   // The last char is '\n'.
2225      FP_buf[BUF_LEN-18+j-1] = '\0';   // The string is terminated.
2226      VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf));
2227
2228      // Indent.
2229      tl_assert(depth+1 < depth_str_len-1);    // -1 for end NUL char
2230      depth_str[depth+0] = ' ';
2231      depth_str[depth+1] = '\0';
2232
2233      // Sort SXPt's children by szB (reverse order:  biggest to smallest).
2234      // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for
2235      // two reasons.  First, if we do it during dup_XTree, it can get
2236      // expensive (eg. 15% of execution time for konqueror
2237      // startup/shutdown).  Second, this way we get the Insig SXPt (if one
2238      // is present) in its sorted position, not at the end.
2239      VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*),
2240                 SXPt_revcmp_szB);
2241
2242      // Print the SXPt's children.  They should already be in sorted order.
2243      n_insig_children_sxpts = 0;
2244      for (i = 0; i < sxpt->Sig.n_children; i++) {
2245         child = sxpt->Sig.children[i];
2246
2247         if (InsigSXPt == child->tag)
2248            n_insig_children_sxpts++;
2249
2250         // Ok, print the child.  NB: contents of ip_desc_array will be
2251         // trashed by this recursive call.  Doesn't matter currently,
2252         // but worth noting.
2253         pp_snapshot_SXPt(fd, child, depth+1, depth_str, depth_str_len,
2254            snapshot_heap_szB, snapshot_total_szB);
2255      }
2256
2257      // Unindent.
2258      depth_str[depth+0] = '\0';
2259      depth_str[depth+1] = '\0';
2260
2261      // There should be 0 or 1 Insig children SXPts.
2262      tl_assert(n_insig_children_sxpts <= 1);
2263      break;
2264
2265    case InsigSXPt: {
2266      Char* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" );
2267      FP("%sn0: %lu in %d place%s below massif's threshold (%s)\n",
2268         depth_str, sxpt->szB, sxpt->Insig.n_xpts, s,
2269         make_perc(clo_threshold));
2270      break;
2271    }
2272
2273    default:
2274      tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag");
2275   }
2276}
2277
2278static void pp_snapshot(Int fd, Snapshot* snapshot, Int snapshot_n)
2279{
2280   sanity_check_snapshot(snapshot);
2281
2282   FP("#-----------\n");
2283   FP("snapshot=%d\n", snapshot_n);
2284   FP("#-----------\n");
2285   FP("time=%lld\n",            snapshot->time);
2286   FP("mem_heap_B=%lu\n",       snapshot->heap_szB);
2287   FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB);
2288   FP("mem_stacks_B=%lu\n",     snapshot->stacks_szB);
2289
2290   if (is_detailed_snapshot(snapshot)) {
2291      // Detailed snapshot -- print heap tree.
2292      Int   depth_str_len = clo_depth + 3;
2293      Char* depth_str = VG_(malloc)("ms.main.pps.1",
2294                                    sizeof(Char) * depth_str_len);
2295      SizeT snapshot_total_szB =
2296         snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
2297      depth_str[0] = '\0';   // Initialise depth_str to "".
2298
2299      FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" ));
2300      pp_snapshot_SXPt(fd, snapshot->alloc_sxpt, 0, depth_str,
2301                       depth_str_len, snapshot->heap_szB,
2302                       snapshot_total_szB);
2303
2304      VG_(free)(depth_str);
2305
2306   } else {
2307      FP("heap_tree=empty\n");
2308   }
2309}
2310
2311static void write_snapshots_to_file(Char* massif_out_file,
2312                                    Snapshot snapshots_array[],
2313                                    Int nr_elements)
2314{
2315   Int i, fd;
2316   SysRes sres;
2317
2318   sres = VG_(open)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
2319                                     VKI_S_IRUSR|VKI_S_IWUSR);
2320   if (sr_isError(sres)) {
2321      // If the file can't be opened for whatever reason (conflict
2322      // between multiple cachegrinded processes?), give up now.
2323      VG_(umsg)("error: can't open output file '%s'\n", massif_out_file );
2324      VG_(umsg)("       ... so profiling results will be missing.\n");
2325      return;
2326   } else {
2327      fd = sr_Res(sres);
2328   }
2329
2330   // Print massif-specific options that were used.
2331   // XXX: is it worth having a "desc:" line?  Could just call it "options:"
2332   // -- this file format isn't as generic as Cachegrind's, so the
2333   // implied genericity of "desc:" is bogus.
2334   FP("desc:");
2335   for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) {
2336      Char* arg = *(Char**)VG_(indexXA)(args_for_massif, i);
2337      FP(" %s", arg);
2338   }
2339   if (0 == i) FP(" (none)");
2340   FP("\n");
2341
2342   // Print "cmd:" line.
2343   FP("cmd: ");
2344   if (VG_(args_the_exename)) {
2345      FP("%s", VG_(args_the_exename));
2346      for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) {
2347         HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i );
2348         if (arg)
2349            FP(" %s", arg);
2350      }
2351   } else {
2352      FP(" ???");
2353   }
2354   FP("\n");
2355
2356   FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit));
2357
2358   for (i = 0; i < nr_elements; i++) {
2359      Snapshot* snapshot = & snapshots_array[i];
2360      pp_snapshot(fd, snapshot, i);     // Detailed snapshot!
2361   }
2362   VG_(close) (fd);
2363}
2364
2365static void write_snapshots_array_to_file(void)
2366{
2367   // Setup output filename.  Nb: it's important to do this now, ie. as late
2368   // as possible.  If we do it at start-up and the program forks and the
2369   // output file format string contains a %p (pid) specifier, both the
2370   // parent and child will incorrectly write to the same file;  this
2371   // happened in 3.3.0.
2372   Char* massif_out_file =
2373      VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
2374   write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i);
2375   VG_(free)(massif_out_file);
2376}
2377
2378static void handle_snapshot_monitor_command (Char *filename, Bool detailed)
2379{
2380   Snapshot snapshot;
2381
2382   clear_snapshot(&snapshot, /* do_sanity_check */ False);
2383   take_snapshot(&snapshot, Normal, get_time(), detailed);
2384   write_snapshots_to_file ((filename == NULL) ? (Char*) "massif.vgdb.out" : filename,
2385                            &snapshot,
2386                            1);
2387   delete_snapshot(&snapshot);
2388}
2389
2390static Bool handle_gdb_monitor_command (ThreadId tid, Char *req)
2391{
2392   Char* wcmd;
2393   Char s[VG_(strlen(req))]; /* copy for strtok_r */
2394   Char *ssaveptr;
2395
2396   VG_(strcpy) (s, req);
2397
2398   wcmd = VG_(strtok_r) (s, " ", &ssaveptr);
2399   switch (VG_(keyword_id) ("help snapshot detailed_snapshot",
2400                            wcmd, kwd_report_duplicated_matches)) {
2401   case -2: /* multiple matches */
2402      return True;
2403   case -1: /* not found */
2404      return False;
2405   case  0: /* help */
2406      print_monitor_help();
2407      return True;
2408   case  1: { /* snapshot */
2409      Char* filename;
2410      filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2411      handle_snapshot_monitor_command (filename, False /* detailed */);
2412      return True;
2413   }
2414   case  2: { /* detailed_snapshot */
2415      Char* filename;
2416      filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2417      handle_snapshot_monitor_command (filename, True /* detailed */);
2418      return True;
2419   }
2420   default:
2421      tl_assert(0);
2422      return False;
2423   }
2424}
2425
2426//------------------------------------------------------------//
2427//--- Finalisation                                         ---//
2428//------------------------------------------------------------//
2429
2430static void ms_fini(Int exit_status)
2431{
2432   // Output.
2433   write_snapshots_array_to_file();
2434
2435   // Stats
2436   tl_assert(n_xpts > 0);  // always have alloc_xpt
2437   STATS("heap allocs:           %u\n", n_heap_allocs);
2438   STATS("heap reallocs:         %u\n", n_heap_reallocs);
2439   STATS("heap frees:            %u\n", n_heap_frees);
2440   STATS("ignored heap allocs:   %u\n", n_ignored_heap_allocs);
2441   STATS("ignored heap frees:    %u\n", n_ignored_heap_frees);
2442   STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
2443   STATS("stack allocs:          %u\n", n_stack_allocs);
2444   STATS("stack frees:           %u\n", n_stack_frees);
2445   STATS("XPts:                  %u\n", n_xpts);
2446   STATS("top-XPts:              %u (%d%%)\n",
2447      alloc_xpt->n_children,
2448      ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0));
2449   STATS("XPt init expansions:   %u\n", n_xpt_init_expansions);
2450   STATS("XPt later expansions:  %u\n", n_xpt_later_expansions);
2451   STATS("SXPt allocs:           %u\n", n_sxpt_allocs);
2452   STATS("SXPt frees:            %u\n", n_sxpt_frees);
2453   STATS("skipped snapshots:     %u\n", n_skipped_snapshots);
2454   STATS("real snapshots:        %u\n", n_real_snapshots);
2455   STATS("detailed snapshots:    %u\n", n_detailed_snapshots);
2456   STATS("peak snapshots:        %u\n", n_peak_snapshots);
2457   STATS("cullings:              %u\n", n_cullings);
2458   STATS("XCon redos:            %u\n", n_XCon_redos);
2459}
2460
2461
2462//------------------------------------------------------------//
2463//--- Initialisation                                       ---//
2464//------------------------------------------------------------//
2465
2466static void ms_post_clo_init(void)
2467{
2468   Int i;
2469   Char* LD_PRELOAD_val;
2470   Char* s;
2471   Char* s2;
2472
2473   // Check options.
2474   if (clo_pages_as_heap) {
2475      if (clo_stacks) {
2476         VG_(fmsg_bad_option)(
2477            "--pages-as-heap=yes together with --stacks=yes", "");
2478      }
2479   }
2480   if (!clo_heap) {
2481      clo_pages_as_heap = False;
2482   }
2483
2484   // If --pages-as-heap=yes we don't want malloc replacement to occur.  So we
2485   // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
2486   // platform-equivalent).  We replace it entirely with spaces because then
2487   // the linker doesn't complain (it does complain if we just change the name
2488   // to a bogus file).  This is a bit of a hack, but LD_PRELOAD is setup well
2489   // before tool initialisation, so this seems the best way to do it.
2490   if (clo_pages_as_heap) {
2491      clo_heap_admin = 0;     // No heap admin on pages.
2492
2493      LD_PRELOAD_val = VG_(getenv)( (Char*)VG_(LD_PRELOAD_var_name) );
2494      tl_assert(LD_PRELOAD_val);
2495
2496      // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
2497      s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
2498      tl_assert(s2);
2499
2500      // Now find the vgpreload_massif-$PLATFORM entry.
2501      s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
2502      tl_assert(s2);
2503
2504      // Blank out everything to the previous ':', which must be there because
2505      // of the preceding vgpreload_core-$PLATFORM entry.
2506      for (s = s2; *s != ':'; s--) {
2507         *s = ' ';
2508      }
2509
2510      // Blank out everything to the end of the entry, which will be '\0' if
2511      // LD_PRELOAD was empty before Valgrind started, or ':' otherwise.
2512      for (s = s2; *s != ':' && *s != '\0'; s++) {
2513         *s = ' ';
2514      }
2515   }
2516
2517   // Print alloc-fns and ignore-fns, if necessary.
2518   if (VG_(clo_verbosity) > 1) {
2519      VERB(1, "alloc-fns:\n");
2520      for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
2521         Char** fn_ptr = VG_(indexXA)(alloc_fns, i);
2522         VERB(1, "  %s\n", *fn_ptr);
2523      }
2524
2525      VERB(1, "ignore-fns:\n");
2526      if (0 == VG_(sizeXA)(ignore_fns)) {
2527         VERB(1, "  <empty>\n");
2528      }
2529      for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
2530         Char** fn_ptr = VG_(indexXA)(ignore_fns, i);
2531         VERB(1, "  %d: %s\n", i, *fn_ptr);
2532      }
2533   }
2534
2535   // Events to track.
2536   if (clo_stacks) {
2537      VG_(track_new_mem_stack)        ( new_mem_stack        );
2538      VG_(track_die_mem_stack)        ( die_mem_stack        );
2539      VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
2540      VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
2541   }
2542
2543   if (clo_pages_as_heap) {
2544      VG_(track_new_mem_startup) ( ms_new_mem_startup );
2545      VG_(track_new_mem_brk)     ( ms_new_mem_brk     );
2546      VG_(track_new_mem_mmap)    ( ms_new_mem_mmap    );
2547
2548      VG_(track_copy_mem_remap)  ( ms_copy_mem_remap  );
2549
2550      VG_(track_die_mem_brk)     ( ms_die_mem_brk     );
2551      VG_(track_die_mem_munmap)  ( ms_die_mem_munmap  );
2552   }
2553
2554   // Initialise snapshot array, and sanity-check it.
2555   snapshots = VG_(malloc)("ms.main.mpoci.1",
2556                           sizeof(Snapshot) * clo_max_snapshots);
2557   // We don't want to do snapshot sanity checks here, because they're
2558   // currently uninitialised.
2559   for (i = 0; i < clo_max_snapshots; i++) {
2560      clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
2561   }
2562   sanity_check_snapshots_array();
2563}
2564
2565static void ms_pre_clo_init(void)
2566{
2567   VG_(details_name)            ("Massif");
2568   VG_(details_version)         (NULL);
2569   VG_(details_description)     ("a heap profiler");
2570   VG_(details_copyright_author)(
2571      "Copyright (C) 2003-2011, and GNU GPL'd, by Nicholas Nethercote");
2572   VG_(details_bug_reports_to)  (VG_BUGS_TO);
2573
2574   VG_(details_avg_translation_sizeB) ( 330 );
2575
2576   // Basic functions.
2577   VG_(basic_tool_funcs)          (ms_post_clo_init,
2578                                   ms_instrument,
2579                                   ms_fini);
2580
2581   // Needs.
2582   VG_(needs_libc_freeres)();
2583   VG_(needs_command_line_options)(ms_process_cmd_line_option,
2584                                   ms_print_usage,
2585                                   ms_print_debug_usage);
2586   VG_(needs_client_requests)     (ms_handle_client_request);
2587   VG_(needs_sanity_checks)       (ms_cheap_sanity_check,
2588                                   ms_expensive_sanity_check);
2589   VG_(needs_malloc_replacement)  (ms_malloc,
2590                                   ms___builtin_new,
2591                                   ms___builtin_vec_new,
2592                                   ms_memalign,
2593                                   ms_calloc,
2594                                   ms_free,
2595                                   ms___builtin_delete,
2596                                   ms___builtin_vec_delete,
2597                                   ms_realloc,
2598                                   ms_malloc_usable_size,
2599                                   0 );
2600
2601   // HP_Chunks.
2602   malloc_list = VG_(HT_construct)( "Massif's malloc list" );
2603
2604   // Dummy node at top of the context structure.
2605   alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL);
2606
2607   // Initialise alloc_fns and ignore_fns.
2608   init_alloc_fns();
2609   init_ignore_fns();
2610
2611   // Initialise args_for_massif.
2612   args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
2613                                VG_(free), sizeof(HChar*));
2614}
2615
2616VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
2617
2618//--------------------------------------------------------------------//
2619//--- end                                                          ---//
2620//--------------------------------------------------------------------//
2621