1/*
2 * Copyright (C) 2010, Google Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1.  Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2.  Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
15 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
16 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
17 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
18 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
22 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */
24
25#include "config.h"
26
27#if ENABLE(WEB_AUDIO)
28
29#include "AudioBufferSourceNode.h"
30
31#include "AudioContext.h"
32#include "AudioNodeOutput.h"
33#include <algorithm>
34#include <wtf/MathExtras.h>
35
36using namespace std;
37
38namespace WebCore {
39
40const double DefaultGrainDuration = 0.020; // 20ms
41
42PassRefPtr<AudioBufferSourceNode> AudioBufferSourceNode::create(AudioContext* context, double sampleRate)
43{
44    return adoptRef(new AudioBufferSourceNode(context, sampleRate));
45}
46
47AudioBufferSourceNode::AudioBufferSourceNode(AudioContext* context, double sampleRate)
48    : AudioSourceNode(context, sampleRate)
49    , m_buffer(0)
50    , m_isPlaying(false)
51    , m_isLooping(false)
52    , m_hasFinished(false)
53    , m_startTime(0.0)
54    , m_schedulingFrameDelay(0)
55    , m_readIndex(0)
56    , m_isGrain(false)
57    , m_grainOffset(0.0)
58    , m_grainDuration(DefaultGrainDuration)
59    , m_grainFrameCount(0)
60    , m_lastGain(1.0)
61    , m_pannerNode(0)
62{
63    setType(NodeTypeAudioBufferSource);
64
65    m_gain = AudioGain::create("gain", 1.0, 0.0, 1.0);
66    m_playbackRate = AudioParam::create("playbackRate", 1.0, 0.0, AudioResampler::MaxRate);
67
68    // Default to mono.  A call to setBuffer() will set the number of output channels to that of the buffer.
69    addOutput(adoptPtr(new AudioNodeOutput(this, 1)));
70
71    initialize();
72}
73
74AudioBufferSourceNode::~AudioBufferSourceNode()
75{
76    uninitialize();
77}
78
79void AudioBufferSourceNode::process(size_t framesToProcess)
80{
81    AudioBus* outputBus = output(0)->bus();
82
83    if (!isInitialized()) {
84        outputBus->zero();
85        return;
86    }
87
88    // The audio thread can't block on this lock, so we call tryLock() instead.
89    // Careful - this is a tryLock() and not an autolocker, so we must unlock() before every return.
90    if (m_processLock.tryLock()) {
91        // Check if it's time to start playing.
92        double sampleRate = this->sampleRate();
93        double pitchRate = totalPitchRate();
94        double quantumStartTime = context()->currentTime();
95        double quantumEndTime = quantumStartTime + framesToProcess / sampleRate;
96
97        if (!m_isPlaying || m_hasFinished || !buffer() || m_startTime >= quantumEndTime) {
98            // FIXME: can optimize here by propagating silent hint instead of forcing the whole chain to process silence.
99            outputBus->zero();
100            m_processLock.unlock();
101            return;
102        }
103
104        // Handle sample-accurate scheduling so that buffer playback will happen at a very precise time.
105        m_schedulingFrameDelay = 0;
106        if (m_startTime >= quantumStartTime) {
107            // m_schedulingFrameDelay is set here only the very first render quantum (because of above check: m_startTime >= quantumEndTime)
108            // So: quantumStartTime <= m_startTime < quantumEndTime
109            ASSERT(m_startTime < quantumEndTime);
110
111            double startTimeInQuantum = m_startTime - quantumStartTime;
112            double startFrameInQuantum = startTimeInQuantum * sampleRate;
113
114            // m_schedulingFrameDelay is used in provideInput(), so factor in the current playback pitch rate.
115            m_schedulingFrameDelay = static_cast<int>(pitchRate * startFrameInQuantum);
116        }
117
118        // FIXME: optimization opportunity:
119        // With a bit of work, it should be possible to avoid going through the resampler completely when the pitchRate == 1,
120        // especially if the pitchRate has never deviated from 1 in the past.
121
122        // Read the samples through the pitch resampler.  Our provideInput() method will be called by the resampler.
123        m_resampler.setRate(pitchRate);
124        m_resampler.process(this, outputBus, framesToProcess);
125
126        // Apply the gain (in-place) to the output bus.
127        double totalGain = gain()->value() * m_buffer->gain();
128        outputBus->copyWithGainFrom(*outputBus, &m_lastGain, totalGain);
129
130        m_processLock.unlock();
131    } else {
132        // Too bad - the tryLock() failed.  We must be in the middle of changing buffers and were already outputting silence anyway.
133        outputBus->zero();
134    }
135}
136
137// The resampler calls us back here to get the input samples from our buffer.
138void AudioBufferSourceNode::provideInput(AudioBus* bus, size_t numberOfFrames)
139{
140    ASSERT(context()->isAudioThread());
141
142    // Basic sanity checking
143    ASSERT(bus);
144    ASSERT(buffer());
145    if (!bus || !buffer())
146        return;
147
148    unsigned numberOfChannels = this->numberOfChannels();
149    unsigned busNumberOfChannels = bus->numberOfChannels();
150
151    // FIXME: we can add support for sources with more than two channels, but this is not a common case.
152    bool channelCountGood = numberOfChannels == busNumberOfChannels && (numberOfChannels == 1 || numberOfChannels == 2);
153    ASSERT(channelCountGood);
154    if (!channelCountGood)
155        return;
156
157    // Get the destination pointers.
158    float* destinationL = bus->channel(0)->data();
159    ASSERT(destinationL);
160    if (!destinationL)
161        return;
162    float* destinationR = (numberOfChannels < 2) ? 0 : bus->channel(1)->data();
163
164    size_t bufferLength = buffer()->length();
165    double bufferSampleRate = buffer()->sampleRate();
166
167    // Calculate the start and end frames in our buffer that we want to play.
168    // If m_isGrain is true, then we will be playing a portion of the total buffer.
169    unsigned startFrame = m_isGrain ? static_cast<unsigned>(m_grainOffset * bufferSampleRate) : 0;
170    unsigned endFrame = m_isGrain ? static_cast<unsigned>(startFrame + m_grainDuration * bufferSampleRate) : bufferLength;
171
172    // This is a HACK to allow for HRTF tail-time - avoids glitch at end.
173    // FIXME: implement tailTime for each AudioNode for a more general solution to this problem.
174    if (m_isGrain)
175        endFrame += 512;
176
177    // Do some sanity checking.
178    if (startFrame >= bufferLength)
179        startFrame = !bufferLength ? 0 : bufferLength - 1;
180    if (endFrame > bufferLength)
181        endFrame = bufferLength;
182    if (m_readIndex >= endFrame)
183        m_readIndex = startFrame; // reset to start
184
185    int framesToProcess = numberOfFrames;
186
187    // Handle sample-accurate scheduling so that we play the buffer at a very precise time.
188    // m_schedulingFrameDelay will only be non-zero the very first time that provideInput() is called, which corresponds
189    // with the very start of the buffer playback.
190    if (m_schedulingFrameDelay > 0) {
191        ASSERT(m_schedulingFrameDelay <= framesToProcess);
192        if (m_schedulingFrameDelay <= framesToProcess) {
193            // Generate silence for the initial portion of the destination.
194            memset(destinationL, 0, sizeof(float) * m_schedulingFrameDelay);
195            destinationL += m_schedulingFrameDelay;
196            if (destinationR) {
197                memset(destinationR, 0, sizeof(float) * m_schedulingFrameDelay);
198                destinationR += m_schedulingFrameDelay;
199            }
200
201            // Since we just generated silence for the initial portion, we have fewer frames to provide.
202            framesToProcess -= m_schedulingFrameDelay;
203        }
204    }
205
206    // We have to generate a certain number of output sample-frames, but we need to handle the case where we wrap around
207    // from the end of the buffer to the start if playing back with looping and also the case where we simply reach the
208    // end of the sample data, but haven't yet rendered numberOfFrames worth of output.
209    while (framesToProcess > 0) {
210        ASSERT(m_readIndex <= endFrame);
211        if (m_readIndex > endFrame)
212            return;
213
214        // Figure out how many frames we can process this time.
215        int framesAvailable = endFrame - m_readIndex;
216        int framesThisTime = min(framesToProcess, framesAvailable);
217
218        // Create the destination bus for the part of the destination we're processing this time.
219        AudioBus currentDestinationBus(busNumberOfChannels, framesThisTime, false);
220        currentDestinationBus.setChannelMemory(0, destinationL, framesThisTime);
221        if (busNumberOfChannels > 1)
222            currentDestinationBus.setChannelMemory(1, destinationR, framesThisTime);
223
224        // Generate output from the buffer.
225        readFromBuffer(&currentDestinationBus, framesThisTime);
226
227        // Update the destination pointers.
228        destinationL += framesThisTime;
229        if (busNumberOfChannels > 1)
230            destinationR += framesThisTime;
231
232        framesToProcess -= framesThisTime;
233
234        // Handle the case where we reach the end of the part of the sample data we're supposed to play for the buffer.
235        if (m_readIndex >= endFrame) {
236            m_readIndex = startFrame;
237            m_grainFrameCount = 0;
238
239            if (!looping()) {
240                // If we're not looping, then stop playing when we get to the end.
241                m_isPlaying = false;
242
243                if (framesToProcess > 0) {
244                    // We're not looping and we've reached the end of the sample data, but we still need to provide more output,
245                    // so generate silence for the remaining.
246                    memset(destinationL, 0, sizeof(float) * framesToProcess);
247
248                    if (destinationR)
249                        memset(destinationR, 0, sizeof(float) * framesToProcess);
250                }
251
252                if (!m_hasFinished) {
253                    // Let the context dereference this AudioNode.
254                    context()->notifyNodeFinishedProcessing(this);
255                    m_hasFinished = true;
256                }
257                return;
258            }
259        }
260    }
261}
262
263void AudioBufferSourceNode::readFromBuffer(AudioBus* destinationBus, size_t framesToProcess)
264{
265    bool isBusGood = destinationBus && destinationBus->length() == framesToProcess && destinationBus->numberOfChannels() == numberOfChannels();
266    ASSERT(isBusGood);
267    if (!isBusGood)
268        return;
269
270    unsigned numberOfChannels = this->numberOfChannels();
271    // FIXME: we can add support for sources with more than two channels, but this is not a common case.
272    bool channelCountGood = numberOfChannels == 1 || numberOfChannels == 2;
273    ASSERT(channelCountGood);
274    if (!channelCountGood)
275        return;
276
277    // Get pointers to the start of the sample buffer.
278    float* sourceL = m_buffer->getChannelData(0)->data();
279    float* sourceR = m_buffer->numberOfChannels() == 2 ? m_buffer->getChannelData(1)->data() : 0;
280
281    // Sanity check buffer access.
282    bool isSourceGood = sourceL && (numberOfChannels == 1 || sourceR) && m_readIndex + framesToProcess <= m_buffer->length();
283    ASSERT(isSourceGood);
284    if (!isSourceGood)
285        return;
286
287    // Offset the pointers to the current read position in the sample buffer.
288    sourceL += m_readIndex;
289    sourceR += m_readIndex;
290
291    // Get pointers to the destination.
292    float* destinationL = destinationBus->channel(0)->data();
293    float* destinationR = numberOfChannels == 2 ? destinationBus->channel(1)->data() : 0;
294    bool isDestinationGood = destinationL && (numberOfChannels == 1 || destinationR);
295    ASSERT(isDestinationGood);
296    if (!isDestinationGood)
297        return;
298
299    if (m_isGrain)
300        readFromBufferWithGrainEnvelope(sourceL, sourceR, destinationL, destinationR, framesToProcess);
301    else {
302        // Simply copy the data from the source buffer to the destination.
303        memcpy(destinationL, sourceL, sizeof(float) * framesToProcess);
304        if (numberOfChannels == 2)
305            memcpy(destinationR, sourceR, sizeof(float) * framesToProcess);
306    }
307
308    // Advance the buffer's read index.
309    m_readIndex += framesToProcess;
310}
311
312void AudioBufferSourceNode::readFromBufferWithGrainEnvelope(float* sourceL, float* sourceR, float* destinationL, float* destinationR, size_t framesToProcess)
313{
314    ASSERT(sourceL && destinationL);
315    if (!sourceL || !destinationL)
316        return;
317
318    int grainFrameLength = static_cast<int>(m_grainDuration * m_buffer->sampleRate());
319    bool isStereo = sourceR && destinationR;
320
321    int n = framesToProcess;
322    while (n--) {
323        // Apply the grain envelope.
324        float x = static_cast<float>(m_grainFrameCount) / static_cast<float>(grainFrameLength);
325        m_grainFrameCount++;
326
327        x = min(1.0f, x);
328        float grainEnvelope = sinf(piFloat * x);
329
330        *destinationL++ = grainEnvelope * *sourceL++;
331
332        if (isStereo)
333            *destinationR++ = grainEnvelope * *sourceR++;
334    }
335}
336
337void AudioBufferSourceNode::reset()
338{
339    m_resampler.reset();
340    m_readIndex = 0;
341    m_grainFrameCount = 0;
342    m_lastGain = gain()->value();
343}
344
345void AudioBufferSourceNode::setBuffer(AudioBuffer* buffer)
346{
347    ASSERT(isMainThread());
348
349    // The context must be locked since changing the buffer can re-configure the number of channels that are output.
350    AudioContext::AutoLocker contextLocker(context());
351
352    // This synchronizes with process().
353    MutexLocker processLocker(m_processLock);
354
355    if (buffer) {
356        // Do any necesssary re-configuration to the buffer's number of channels.
357        unsigned numberOfChannels = buffer->numberOfChannels();
358        m_resampler.configureChannels(numberOfChannels);
359        output(0)->setNumberOfChannels(numberOfChannels);
360    }
361
362    m_readIndex = 0;
363    m_buffer = buffer;
364}
365
366unsigned AudioBufferSourceNode::numberOfChannels()
367{
368    return output(0)->numberOfChannels();
369}
370
371void AudioBufferSourceNode::noteOn(double when)
372{
373    ASSERT(isMainThread());
374    if (m_isPlaying)
375        return;
376
377    m_isGrain = false;
378    m_startTime = when;
379    m_readIndex = 0;
380    m_isPlaying = true;
381}
382
383void AudioBufferSourceNode::noteGrainOn(double when, double grainOffset, double grainDuration)
384{
385    ASSERT(isMainThread());
386    if (m_isPlaying)
387        return;
388
389    if (!buffer())
390        return;
391
392    // Do sanity checking of grain parameters versus buffer size.
393    double bufferDuration = buffer()->duration();
394
395    if (grainDuration > bufferDuration)
396        return; // FIXME: maybe should throw exception - consider in specification.
397
398    double maxGrainOffset = bufferDuration - grainDuration;
399    maxGrainOffset = max(0.0, maxGrainOffset);
400
401    grainOffset = max(0.0, grainOffset);
402    grainOffset = min(maxGrainOffset, grainOffset);
403    m_grainOffset = grainOffset;
404
405    m_grainDuration = grainDuration;
406    m_grainFrameCount = 0;
407
408    m_isGrain = true;
409    m_startTime = when;
410    m_readIndex = static_cast<int>(m_grainOffset * buffer()->sampleRate());
411    m_isPlaying = true;
412}
413
414void AudioBufferSourceNode::noteOff(double)
415{
416    ASSERT(isMainThread());
417    if (!m_isPlaying)
418        return;
419
420    // FIXME: the "when" argument to this method is ignored.
421    m_isPlaying = false;
422    m_readIndex = 0;
423}
424
425double AudioBufferSourceNode::totalPitchRate()
426{
427    double dopplerRate = 1.0;
428    if (m_pannerNode.get())
429        dopplerRate = m_pannerNode->dopplerRate();
430
431    // Incorporate buffer's sample-rate versus AudioContext's sample-rate.
432    // Normally it's not an issue because buffers are loaded at the AudioContext's sample-rate, but we can handle it in any case.
433    double sampleRateFactor = 1.0;
434    if (buffer())
435        sampleRateFactor = buffer()->sampleRate() / sampleRate();
436
437    double basePitchRate = playbackRate()->value();
438
439    double totalRate = dopplerRate * sampleRateFactor * basePitchRate;
440
441    // Sanity check the total rate.  It's very important that the resampler not get any bad rate values.
442    totalRate = max(0.0, totalRate);
443    totalRate = min(AudioResampler::MaxRate, totalRate);
444
445    bool isTotalRateValid = !isnan(totalRate) && !isinf(totalRate);
446    ASSERT(isTotalRateValid);
447    if (!isTotalRateValid)
448        totalRate = 1.0;
449
450    return totalRate;
451}
452
453} // namespace WebCore
454
455#endif // ENABLE(WEB_AUDIO)
456