1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.Log;
21import android.util.SparseArray;
22import android.util.SparseBooleanArray;
23
24import java.io.ByteArrayInputStream;
25import java.io.ByteArrayOutputStream;
26import java.io.FileDescriptor;
27import java.io.FileNotFoundException;
28import java.io.IOException;
29import java.io.ObjectInputStream;
30import java.io.ObjectOutputStream;
31import java.io.Serializable;
32import java.lang.reflect.Field;
33import java.util.ArrayList;
34import java.util.Arrays;
35import java.util.HashMap;
36import java.util.List;
37import java.util.Map;
38import java.util.Set;
39
40/**
41 * Container for a message (data and object references) that can
42 * be sent through an IBinder.  A Parcel can contain both flattened data
43 * that will be unflattened on the other side of the IPC (using the various
44 * methods here for writing specific types, or the general
45 * {@link Parcelable} interface), and references to live {@link IBinder}
46 * objects that will result in the other side receiving a proxy IBinder
47 * connected with the original IBinder in the Parcel.
48 *
49 * <p class="note">Parcel is <strong>not</strong> a general-purpose
50 * serialization mechanism.  This class (and the corresponding
51 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
52 * designed as a high-performance IPC transport.  As such, it is not
53 * appropriate to place any Parcel data in to persistent storage: changes
54 * in the underlying implementation of any of the data in the Parcel can
55 * render older data unreadable.</p>
56 *
57 * <p>The bulk of the Parcel API revolves around reading and writing data
58 * of various types.  There are six major classes of such functions available.</p>
59 *
60 * <h3>Primitives</h3>
61 *
62 * <p>The most basic data functions are for writing and reading primitive
63 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
64 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
65 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
66 * {@link #writeString}, {@link #readString}.  Most other
67 * data operations are built on top of these.  The given data is written and
68 * read using the endianess of the host CPU.</p>
69 *
70 * <h3>Primitive Arrays</h3>
71 *
72 * <p>There are a variety of methods for reading and writing raw arrays
73 * of primitive objects, which generally result in writing a 4-byte length
74 * followed by the primitive data items.  The methods for reading can either
75 * read the data into an existing array, or create and return a new array.
76 * These available types are:</p>
77 *
78 * <ul>
79 * <li> {@link #writeBooleanArray(boolean[])},
80 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
81 * <li> {@link #writeByteArray(byte[])},
82 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
83 * {@link #createByteArray()}
84 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
85 * {@link #createCharArray()}
86 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
87 * {@link #createDoubleArray()}
88 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
89 * {@link #createFloatArray()}
90 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
91 * {@link #createIntArray()}
92 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
93 * {@link #createLongArray()}
94 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
95 * {@link #createStringArray()}.
96 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
97 * {@link #readSparseBooleanArray()}.
98 * </ul>
99 *
100 * <h3>Parcelables</h3>
101 *
102 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
103 * low-level) protocol for objects to write and read themselves from Parcels.
104 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
105 * and {@link #readParcelable(ClassLoader)} or
106 * {@link #writeParcelableArray} and
107 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
108 * methods write both the class type and its data to the Parcel, allowing
109 * that class to be reconstructed from the appropriate class loader when
110 * later reading.</p>
111 *
112 * <p>There are also some methods that provide a more efficient way to work
113 * with Parcelables: {@link #writeTypedArray},
114 * {@link #writeTypedList(List)},
115 * {@link #readTypedArray} and {@link #readTypedList}.  These methods
116 * do not write the class information of the original object: instead, the
117 * caller of the read function must know what type to expect and pass in the
118 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
119 * properly construct the new object and read its data.  (To more efficient
120 * write and read a single Parceable object, you can directly call
121 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
122 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
123 * yourself.)</p>
124 *
125 * <h3>Bundles</h3>
126 *
127 * <p>A special type-safe container, called {@link Bundle}, is available
128 * for key/value maps of heterogeneous values.  This has many optimizations
129 * for improved performance when reading and writing data, and its type-safe
130 * API avoids difficult to debug type errors when finally marshalling the
131 * data contents into a Parcel.  The methods to use are
132 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
133 * {@link #readBundle(ClassLoader)}.
134 *
135 * <h3>Active Objects</h3>
136 *
137 * <p>An unusual feature of Parcel is the ability to read and write active
138 * objects.  For these objects the actual contents of the object is not
139 * written, rather a special token referencing the object is written.  When
140 * reading the object back from the Parcel, you do not get a new instance of
141 * the object, but rather a handle that operates on the exact same object that
142 * was originally written.  There are two forms of active objects available.</p>
143 *
144 * <p>{@link Binder} objects are a core facility of Android's general cross-process
145 * communication system.  The {@link IBinder} interface describes an abstract
146 * protocol with a Binder object.  Any such interface can be written in to
147 * a Parcel, and upon reading you will receive either the original object
148 * implementing that interface or a special proxy implementation
149 * that communicates calls back to the original object.  The methods to use are
150 * {@link #writeStrongBinder(IBinder)},
151 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
152 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
153 * {@link #createBinderArray()},
154 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
155 * {@link #createBinderArrayList()}.</p>
156 *
157 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
158 * can be written and {@link ParcelFileDescriptor} objects returned to operate
159 * on the original file descriptor.  The returned file descriptor is a dup
160 * of the original file descriptor: the object and fd is different, but
161 * operating on the same underlying file stream, with the same position, etc.
162 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
163 * {@link #readFileDescriptor()}.
164 *
165 * <h3>Untyped Containers</h3>
166 *
167 * <p>A final class of methods are for writing and reading standard Java
168 * containers of arbitrary types.  These all revolve around the
169 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
170 * which define the types of objects allowed.  The container methods are
171 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
172 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
173 * {@link #readArrayList(ClassLoader)},
174 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
175 * {@link #writeSparseArray(SparseArray)},
176 * {@link #readSparseArray(ClassLoader)}.
177 */
178public final class Parcel {
179    private static final boolean DEBUG_RECYCLE = false;
180    private static final String TAG = "Parcel";
181
182    @SuppressWarnings({"UnusedDeclaration"})
183    private int mNativePtr; // used by native code
184
185    /**
186     * Flag indicating if {@link #mNativePtr} was allocated by this object,
187     * indicating that we're responsible for its lifecycle.
188     */
189    private boolean mOwnsNativeParcelObject;
190
191    private RuntimeException mStack;
192
193    private static final int POOL_SIZE = 6;
194    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
195    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
196
197    private static final int VAL_NULL = -1;
198    private static final int VAL_STRING = 0;
199    private static final int VAL_INTEGER = 1;
200    private static final int VAL_MAP = 2;
201    private static final int VAL_BUNDLE = 3;
202    private static final int VAL_PARCELABLE = 4;
203    private static final int VAL_SHORT = 5;
204    private static final int VAL_LONG = 6;
205    private static final int VAL_FLOAT = 7;
206    private static final int VAL_DOUBLE = 8;
207    private static final int VAL_BOOLEAN = 9;
208    private static final int VAL_CHARSEQUENCE = 10;
209    private static final int VAL_LIST  = 11;
210    private static final int VAL_SPARSEARRAY = 12;
211    private static final int VAL_BYTEARRAY = 13;
212    private static final int VAL_STRINGARRAY = 14;
213    private static final int VAL_IBINDER = 15;
214    private static final int VAL_PARCELABLEARRAY = 16;
215    private static final int VAL_OBJECTARRAY = 17;
216    private static final int VAL_INTARRAY = 18;
217    private static final int VAL_LONGARRAY = 19;
218    private static final int VAL_BYTE = 20;
219    private static final int VAL_SERIALIZABLE = 21;
220    private static final int VAL_SPARSEBOOLEANARRAY = 22;
221    private static final int VAL_BOOLEANARRAY = 23;
222    private static final int VAL_CHARSEQUENCEARRAY = 24;
223
224    // The initial int32 in a Binder call's reply Parcel header:
225    private static final int EX_SECURITY = -1;
226    private static final int EX_BAD_PARCELABLE = -2;
227    private static final int EX_ILLEGAL_ARGUMENT = -3;
228    private static final int EX_NULL_POINTER = -4;
229    private static final int EX_ILLEGAL_STATE = -5;
230    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
231
232    private static native int nativeDataSize(int nativePtr);
233    private static native int nativeDataAvail(int nativePtr);
234    private static native int nativeDataPosition(int nativePtr);
235    private static native int nativeDataCapacity(int nativePtr);
236    private static native void nativeSetDataSize(int nativePtr, int size);
237    private static native void nativeSetDataPosition(int nativePtr, int pos);
238    private static native void nativeSetDataCapacity(int nativePtr, int size);
239
240    private static native boolean nativePushAllowFds(int nativePtr, boolean allowFds);
241    private static native void nativeRestoreAllowFds(int nativePtr, boolean lastValue);
242
243    private static native void nativeWriteByteArray(int nativePtr, byte[] b, int offset, int len);
244    private static native void nativeWriteInt(int nativePtr, int val);
245    private static native void nativeWriteLong(int nativePtr, long val);
246    private static native void nativeWriteFloat(int nativePtr, float val);
247    private static native void nativeWriteDouble(int nativePtr, double val);
248    private static native void nativeWriteString(int nativePtr, String val);
249    private static native void nativeWriteStrongBinder(int nativePtr, IBinder val);
250    private static native void nativeWriteFileDescriptor(int nativePtr, FileDescriptor val);
251
252    private static native byte[] nativeCreateByteArray(int nativePtr);
253    private static native int nativeReadInt(int nativePtr);
254    private static native long nativeReadLong(int nativePtr);
255    private static native float nativeReadFloat(int nativePtr);
256    private static native double nativeReadDouble(int nativePtr);
257    private static native String nativeReadString(int nativePtr);
258    private static native IBinder nativeReadStrongBinder(int nativePtr);
259    private static native FileDescriptor nativeReadFileDescriptor(int nativePtr);
260
261    private static native int nativeCreate();
262    private static native void nativeFreeBuffer(int nativePtr);
263    private static native void nativeDestroy(int nativePtr);
264
265    private static native byte[] nativeMarshall(int nativePtr);
266    private static native void nativeUnmarshall(
267            int nativePtr, byte[] data, int offest, int length);
268    private static native void nativeAppendFrom(
269            int thisNativePtr, int otherNativePtr, int offset, int length);
270    private static native boolean nativeHasFileDescriptors(int nativePtr);
271    private static native void nativeWriteInterfaceToken(int nativePtr, String interfaceName);
272    private static native void nativeEnforceInterface(int nativePtr, String interfaceName);
273
274    public final static Parcelable.Creator<String> STRING_CREATOR
275             = new Parcelable.Creator<String>() {
276        public String createFromParcel(Parcel source) {
277            return source.readString();
278        }
279        public String[] newArray(int size) {
280            return new String[size];
281        }
282    };
283
284    /**
285     * Retrieve a new Parcel object from the pool.
286     */
287    public static Parcel obtain() {
288        final Parcel[] pool = sOwnedPool;
289        synchronized (pool) {
290            Parcel p;
291            for (int i=0; i<POOL_SIZE; i++) {
292                p = pool[i];
293                if (p != null) {
294                    pool[i] = null;
295                    if (DEBUG_RECYCLE) {
296                        p.mStack = new RuntimeException();
297                    }
298                    return p;
299                }
300            }
301        }
302        return new Parcel(0);
303    }
304
305    /**
306     * Put a Parcel object back into the pool.  You must not touch
307     * the object after this call.
308     */
309    public final void recycle() {
310        if (DEBUG_RECYCLE) mStack = null;
311        freeBuffer();
312
313        final Parcel[] pool;
314        if (mOwnsNativeParcelObject) {
315            pool = sOwnedPool;
316        } else {
317            mNativePtr = 0;
318            pool = sHolderPool;
319        }
320
321        synchronized (pool) {
322            for (int i=0; i<POOL_SIZE; i++) {
323                if (pool[i] == null) {
324                    pool[i] = this;
325                    return;
326                }
327            }
328        }
329    }
330
331    /**
332     * Returns the total amount of data contained in the parcel.
333     */
334    public final int dataSize() {
335        return nativeDataSize(mNativePtr);
336    }
337
338    /**
339     * Returns the amount of data remaining to be read from the
340     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
341     */
342    public final int dataAvail() {
343        return nativeDataAvail(mNativePtr);
344    }
345
346    /**
347     * Returns the current position in the parcel data.  Never
348     * more than {@link #dataSize}.
349     */
350    public final int dataPosition() {
351        return nativeDataPosition(mNativePtr);
352    }
353
354    /**
355     * Returns the total amount of space in the parcel.  This is always
356     * >= {@link #dataSize}.  The difference between it and dataSize() is the
357     * amount of room left until the parcel needs to re-allocate its
358     * data buffer.
359     */
360    public final int dataCapacity() {
361        return nativeDataCapacity(mNativePtr);
362    }
363
364    /**
365     * Change the amount of data in the parcel.  Can be either smaller or
366     * larger than the current size.  If larger than the current capacity,
367     * more memory will be allocated.
368     *
369     * @param size The new number of bytes in the Parcel.
370     */
371    public final void setDataSize(int size) {
372        nativeSetDataSize(mNativePtr, size);
373    }
374
375    /**
376     * Move the current read/write position in the parcel.
377     * @param pos New offset in the parcel; must be between 0 and
378     * {@link #dataSize}.
379     */
380    public final void setDataPosition(int pos) {
381        nativeSetDataPosition(mNativePtr, pos);
382    }
383
384    /**
385     * Change the capacity (current available space) of the parcel.
386     *
387     * @param size The new capacity of the parcel, in bytes.  Can not be
388     * less than {@link #dataSize} -- that is, you can not drop existing data
389     * with this method.
390     */
391    public final void setDataCapacity(int size) {
392        nativeSetDataCapacity(mNativePtr, size);
393    }
394
395    /** @hide */
396    public final boolean pushAllowFds(boolean allowFds) {
397        return nativePushAllowFds(mNativePtr, allowFds);
398    }
399
400    /** @hide */
401    public final void restoreAllowFds(boolean lastValue) {
402        nativeRestoreAllowFds(mNativePtr, lastValue);
403    }
404
405    /**
406     * Returns the raw bytes of the parcel.
407     *
408     * <p class="note">The data you retrieve here <strong>must not</strong>
409     * be placed in any kind of persistent storage (on local disk, across
410     * a network, etc).  For that, you should use standard serialization
411     * or another kind of general serialization mechanism.  The Parcel
412     * marshalled representation is highly optimized for local IPC, and as
413     * such does not attempt to maintain compatibility with data created
414     * in different versions of the platform.
415     */
416    public final byte[] marshall() {
417        return nativeMarshall(mNativePtr);
418    }
419
420    /**
421     * Set the bytes in data to be the raw bytes of this Parcel.
422     */
423    public final void unmarshall(byte[] data, int offest, int length) {
424        nativeUnmarshall(mNativePtr, data, offest, length);
425    }
426
427    public final void appendFrom(Parcel parcel, int offset, int length) {
428        nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length);
429    }
430
431    /**
432     * Report whether the parcel contains any marshalled file descriptors.
433     */
434    public final boolean hasFileDescriptors() {
435        return nativeHasFileDescriptors(mNativePtr);
436    }
437
438    /**
439     * Store or read an IBinder interface token in the parcel at the current
440     * {@link #dataPosition}.  This is used to validate that the marshalled
441     * transaction is intended for the target interface.
442     */
443    public final void writeInterfaceToken(String interfaceName) {
444        nativeWriteInterfaceToken(mNativePtr, interfaceName);
445    }
446
447    public final void enforceInterface(String interfaceName) {
448        nativeEnforceInterface(mNativePtr, interfaceName);
449    }
450
451    /**
452     * Write a byte array into the parcel at the current {@link #dataPosition},
453     * growing {@link #dataCapacity} if needed.
454     * @param b Bytes to place into the parcel.
455     */
456    public final void writeByteArray(byte[] b) {
457        writeByteArray(b, 0, (b != null) ? b.length : 0);
458    }
459
460    /**
461     * Write a byte array into the parcel at the current {@link #dataPosition},
462     * growing {@link #dataCapacity} if needed.
463     * @param b Bytes to place into the parcel.
464     * @param offset Index of first byte to be written.
465     * @param len Number of bytes to write.
466     */
467    public final void writeByteArray(byte[] b, int offset, int len) {
468        if (b == null) {
469            writeInt(-1);
470            return;
471        }
472        Arrays.checkOffsetAndCount(b.length, offset, len);
473        nativeWriteByteArray(mNativePtr, b, offset, len);
474    }
475
476    /**
477     * Write an integer value into the parcel at the current dataPosition(),
478     * growing dataCapacity() if needed.
479     */
480    public final void writeInt(int val) {
481        nativeWriteInt(mNativePtr, val);
482    }
483
484    /**
485     * Write a long integer value into the parcel at the current dataPosition(),
486     * growing dataCapacity() if needed.
487     */
488    public final void writeLong(long val) {
489        nativeWriteLong(mNativePtr, val);
490    }
491
492    /**
493     * Write a floating point value into the parcel at the current
494     * dataPosition(), growing dataCapacity() if needed.
495     */
496    public final void writeFloat(float val) {
497        nativeWriteFloat(mNativePtr, val);
498    }
499
500    /**
501     * Write a double precision floating point value into the parcel at the
502     * current dataPosition(), growing dataCapacity() if needed.
503     */
504    public final void writeDouble(double val) {
505        nativeWriteDouble(mNativePtr, val);
506    }
507
508    /**
509     * Write a string value into the parcel at the current dataPosition(),
510     * growing dataCapacity() if needed.
511     */
512    public final void writeString(String val) {
513        nativeWriteString(mNativePtr, val);
514    }
515
516    /**
517     * Write a CharSequence value into the parcel at the current dataPosition(),
518     * growing dataCapacity() if needed.
519     * @hide
520     */
521    public final void writeCharSequence(CharSequence val) {
522        TextUtils.writeToParcel(val, this, 0);
523    }
524
525    /**
526     * Write an object into the parcel at the current dataPosition(),
527     * growing dataCapacity() if needed.
528     */
529    public final void writeStrongBinder(IBinder val) {
530        nativeWriteStrongBinder(mNativePtr, val);
531    }
532
533    /**
534     * Write an object into the parcel at the current dataPosition(),
535     * growing dataCapacity() if needed.
536     */
537    public final void writeStrongInterface(IInterface val) {
538        writeStrongBinder(val == null ? null : val.asBinder());
539    }
540
541    /**
542     * Write a FileDescriptor into the parcel at the current dataPosition(),
543     * growing dataCapacity() if needed.
544     *
545     * <p class="caution">The file descriptor will not be closed, which may
546     * result in file descriptor leaks when objects are returned from Binder
547     * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
548     * accepts contextual flags and will close the original file descriptor
549     * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
550     */
551    public final void writeFileDescriptor(FileDescriptor val) {
552        nativeWriteFileDescriptor(mNativePtr, val);
553    }
554
555    /**
556     * Write a byte value into the parcel at the current dataPosition(),
557     * growing dataCapacity() if needed.
558     */
559    public final void writeByte(byte val) {
560        writeInt(val);
561    }
562
563    /**
564     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
565     * at the current dataPosition(),
566     * growing dataCapacity() if needed.  The Map keys must be String objects.
567     * The Map values are written using {@link #writeValue} and must follow
568     * the specification there.
569     *
570     * <p>It is strongly recommended to use {@link #writeBundle} instead of
571     * this method, since the Bundle class provides a type-safe API that
572     * allows you to avoid mysterious type errors at the point of marshalling.
573     */
574    public final void writeMap(Map val) {
575        writeMapInternal((Map<String,Object>) val);
576    }
577
578    /**
579     * Flatten a Map into the parcel at the current dataPosition(),
580     * growing dataCapacity() if needed.  The Map keys must be String objects.
581     */
582    /* package */ void writeMapInternal(Map<String,Object> val) {
583        if (val == null) {
584            writeInt(-1);
585            return;
586        }
587        Set<Map.Entry<String,Object>> entries = val.entrySet();
588        writeInt(entries.size());
589        for (Map.Entry<String,Object> e : entries) {
590            writeValue(e.getKey());
591            writeValue(e.getValue());
592        }
593    }
594
595    /**
596     * Flatten a Bundle into the parcel at the current dataPosition(),
597     * growing dataCapacity() if needed.
598     */
599    public final void writeBundle(Bundle val) {
600        if (val == null) {
601            writeInt(-1);
602            return;
603        }
604
605        val.writeToParcel(this, 0);
606    }
607
608    /**
609     * Flatten a List into the parcel at the current dataPosition(), growing
610     * dataCapacity() if needed.  The List values are written using
611     * {@link #writeValue} and must follow the specification there.
612     */
613    public final void writeList(List val) {
614        if (val == null) {
615            writeInt(-1);
616            return;
617        }
618        int N = val.size();
619        int i=0;
620        writeInt(N);
621        while (i < N) {
622            writeValue(val.get(i));
623            i++;
624        }
625    }
626
627    /**
628     * Flatten an Object array into the parcel at the current dataPosition(),
629     * growing dataCapacity() if needed.  The array values are written using
630     * {@link #writeValue} and must follow the specification there.
631     */
632    public final void writeArray(Object[] val) {
633        if (val == null) {
634            writeInt(-1);
635            return;
636        }
637        int N = val.length;
638        int i=0;
639        writeInt(N);
640        while (i < N) {
641            writeValue(val[i]);
642            i++;
643        }
644    }
645
646    /**
647     * Flatten a generic SparseArray into the parcel at the current
648     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
649     * values are written using {@link #writeValue} and must follow the
650     * specification there.
651     */
652    public final void writeSparseArray(SparseArray<Object> val) {
653        if (val == null) {
654            writeInt(-1);
655            return;
656        }
657        int N = val.size();
658        writeInt(N);
659        int i=0;
660        while (i < N) {
661            writeInt(val.keyAt(i));
662            writeValue(val.valueAt(i));
663            i++;
664        }
665    }
666
667    public final void writeSparseBooleanArray(SparseBooleanArray val) {
668        if (val == null) {
669            writeInt(-1);
670            return;
671        }
672        int N = val.size();
673        writeInt(N);
674        int i=0;
675        while (i < N) {
676            writeInt(val.keyAt(i));
677            writeByte((byte)(val.valueAt(i) ? 1 : 0));
678            i++;
679        }
680    }
681
682    public final void writeBooleanArray(boolean[] val) {
683        if (val != null) {
684            int N = val.length;
685            writeInt(N);
686            for (int i=0; i<N; i++) {
687                writeInt(val[i] ? 1 : 0);
688            }
689        } else {
690            writeInt(-1);
691        }
692    }
693
694    public final boolean[] createBooleanArray() {
695        int N = readInt();
696        // >>2 as a fast divide-by-4 works in the create*Array() functions
697        // because dataAvail() will never return a negative number.  4 is
698        // the size of a stored boolean in the stream.
699        if (N >= 0 && N <= (dataAvail() >> 2)) {
700            boolean[] val = new boolean[N];
701            for (int i=0; i<N; i++) {
702                val[i] = readInt() != 0;
703            }
704            return val;
705        } else {
706            return null;
707        }
708    }
709
710    public final void readBooleanArray(boolean[] val) {
711        int N = readInt();
712        if (N == val.length) {
713            for (int i=0; i<N; i++) {
714                val[i] = readInt() != 0;
715            }
716        } else {
717            throw new RuntimeException("bad array lengths");
718        }
719    }
720
721    public final void writeCharArray(char[] val) {
722        if (val != null) {
723            int N = val.length;
724            writeInt(N);
725            for (int i=0; i<N; i++) {
726                writeInt((int)val[i]);
727            }
728        } else {
729            writeInt(-1);
730        }
731    }
732
733    public final char[] createCharArray() {
734        int N = readInt();
735        if (N >= 0 && N <= (dataAvail() >> 2)) {
736            char[] val = new char[N];
737            for (int i=0; i<N; i++) {
738                val[i] = (char)readInt();
739            }
740            return val;
741        } else {
742            return null;
743        }
744    }
745
746    public final void readCharArray(char[] val) {
747        int N = readInt();
748        if (N == val.length) {
749            for (int i=0; i<N; i++) {
750                val[i] = (char)readInt();
751            }
752        } else {
753            throw new RuntimeException("bad array lengths");
754        }
755    }
756
757    public final void writeIntArray(int[] val) {
758        if (val != null) {
759            int N = val.length;
760            writeInt(N);
761            for (int i=0; i<N; i++) {
762                writeInt(val[i]);
763            }
764        } else {
765            writeInt(-1);
766        }
767    }
768
769    public final int[] createIntArray() {
770        int N = readInt();
771        if (N >= 0 && N <= (dataAvail() >> 2)) {
772            int[] val = new int[N];
773            for (int i=0; i<N; i++) {
774                val[i] = readInt();
775            }
776            return val;
777        } else {
778            return null;
779        }
780    }
781
782    public final void readIntArray(int[] val) {
783        int N = readInt();
784        if (N == val.length) {
785            for (int i=0; i<N; i++) {
786                val[i] = readInt();
787            }
788        } else {
789            throw new RuntimeException("bad array lengths");
790        }
791    }
792
793    public final void writeLongArray(long[] val) {
794        if (val != null) {
795            int N = val.length;
796            writeInt(N);
797            for (int i=0; i<N; i++) {
798                writeLong(val[i]);
799            }
800        } else {
801            writeInt(-1);
802        }
803    }
804
805    public final long[] createLongArray() {
806        int N = readInt();
807        // >>3 because stored longs are 64 bits
808        if (N >= 0 && N <= (dataAvail() >> 3)) {
809            long[] val = new long[N];
810            for (int i=0; i<N; i++) {
811                val[i] = readLong();
812            }
813            return val;
814        } else {
815            return null;
816        }
817    }
818
819    public final void readLongArray(long[] val) {
820        int N = readInt();
821        if (N == val.length) {
822            for (int i=0; i<N; i++) {
823                val[i] = readLong();
824            }
825        } else {
826            throw new RuntimeException("bad array lengths");
827        }
828    }
829
830    public final void writeFloatArray(float[] val) {
831        if (val != null) {
832            int N = val.length;
833            writeInt(N);
834            for (int i=0; i<N; i++) {
835                writeFloat(val[i]);
836            }
837        } else {
838            writeInt(-1);
839        }
840    }
841
842    public final float[] createFloatArray() {
843        int N = readInt();
844        // >>2 because stored floats are 4 bytes
845        if (N >= 0 && N <= (dataAvail() >> 2)) {
846            float[] val = new float[N];
847            for (int i=0; i<N; i++) {
848                val[i] = readFloat();
849            }
850            return val;
851        } else {
852            return null;
853        }
854    }
855
856    public final void readFloatArray(float[] val) {
857        int N = readInt();
858        if (N == val.length) {
859            for (int i=0; i<N; i++) {
860                val[i] = readFloat();
861            }
862        } else {
863            throw new RuntimeException("bad array lengths");
864        }
865    }
866
867    public final void writeDoubleArray(double[] val) {
868        if (val != null) {
869            int N = val.length;
870            writeInt(N);
871            for (int i=0; i<N; i++) {
872                writeDouble(val[i]);
873            }
874        } else {
875            writeInt(-1);
876        }
877    }
878
879    public final double[] createDoubleArray() {
880        int N = readInt();
881        // >>3 because stored doubles are 8 bytes
882        if (N >= 0 && N <= (dataAvail() >> 3)) {
883            double[] val = new double[N];
884            for (int i=0; i<N; i++) {
885                val[i] = readDouble();
886            }
887            return val;
888        } else {
889            return null;
890        }
891    }
892
893    public final void readDoubleArray(double[] val) {
894        int N = readInt();
895        if (N == val.length) {
896            for (int i=0; i<N; i++) {
897                val[i] = readDouble();
898            }
899        } else {
900            throw new RuntimeException("bad array lengths");
901        }
902    }
903
904    public final void writeStringArray(String[] val) {
905        if (val != null) {
906            int N = val.length;
907            writeInt(N);
908            for (int i=0; i<N; i++) {
909                writeString(val[i]);
910            }
911        } else {
912            writeInt(-1);
913        }
914    }
915
916    public final String[] createStringArray() {
917        int N = readInt();
918        if (N >= 0) {
919            String[] val = new String[N];
920            for (int i=0; i<N; i++) {
921                val[i] = readString();
922            }
923            return val;
924        } else {
925            return null;
926        }
927    }
928
929    public final void readStringArray(String[] val) {
930        int N = readInt();
931        if (N == val.length) {
932            for (int i=0; i<N; i++) {
933                val[i] = readString();
934            }
935        } else {
936            throw new RuntimeException("bad array lengths");
937        }
938    }
939
940    public final void writeBinderArray(IBinder[] val) {
941        if (val != null) {
942            int N = val.length;
943            writeInt(N);
944            for (int i=0; i<N; i++) {
945                writeStrongBinder(val[i]);
946            }
947        } else {
948            writeInt(-1);
949        }
950    }
951
952    /**
953     * @hide
954     */
955    public final void writeCharSequenceArray(CharSequence[] val) {
956        if (val != null) {
957            int N = val.length;
958            writeInt(N);
959            for (int i=0; i<N; i++) {
960                writeCharSequence(val[i]);
961            }
962        } else {
963            writeInt(-1);
964        }
965    }
966
967    public final IBinder[] createBinderArray() {
968        int N = readInt();
969        if (N >= 0) {
970            IBinder[] val = new IBinder[N];
971            for (int i=0; i<N; i++) {
972                val[i] = readStrongBinder();
973            }
974            return val;
975        } else {
976            return null;
977        }
978    }
979
980    public final void readBinderArray(IBinder[] val) {
981        int N = readInt();
982        if (N == val.length) {
983            for (int i=0; i<N; i++) {
984                val[i] = readStrongBinder();
985            }
986        } else {
987            throw new RuntimeException("bad array lengths");
988        }
989    }
990
991    /**
992     * Flatten a List containing a particular object type into the parcel, at
993     * the current dataPosition() and growing dataCapacity() if needed.  The
994     * type of the objects in the list must be one that implements Parcelable.
995     * Unlike the generic writeList() method, however, only the raw data of the
996     * objects is written and not their type, so you must use the corresponding
997     * readTypedList() to unmarshall them.
998     *
999     * @param val The list of objects to be written.
1000     *
1001     * @see #createTypedArrayList
1002     * @see #readTypedList
1003     * @see Parcelable
1004     */
1005    public final <T extends Parcelable> void writeTypedList(List<T> val) {
1006        if (val == null) {
1007            writeInt(-1);
1008            return;
1009        }
1010        int N = val.size();
1011        int i=0;
1012        writeInt(N);
1013        while (i < N) {
1014            T item = val.get(i);
1015            if (item != null) {
1016                writeInt(1);
1017                item.writeToParcel(this, 0);
1018            } else {
1019                writeInt(0);
1020            }
1021            i++;
1022        }
1023    }
1024
1025    /**
1026     * Flatten a List containing String objects into the parcel, at
1027     * the current dataPosition() and growing dataCapacity() if needed.  They
1028     * can later be retrieved with {@link #createStringArrayList} or
1029     * {@link #readStringList}.
1030     *
1031     * @param val The list of strings to be written.
1032     *
1033     * @see #createStringArrayList
1034     * @see #readStringList
1035     */
1036    public final void writeStringList(List<String> val) {
1037        if (val == null) {
1038            writeInt(-1);
1039            return;
1040        }
1041        int N = val.size();
1042        int i=0;
1043        writeInt(N);
1044        while (i < N) {
1045            writeString(val.get(i));
1046            i++;
1047        }
1048    }
1049
1050    /**
1051     * Flatten a List containing IBinder objects into the parcel, at
1052     * the current dataPosition() and growing dataCapacity() if needed.  They
1053     * can later be retrieved with {@link #createBinderArrayList} or
1054     * {@link #readBinderList}.
1055     *
1056     * @param val The list of strings to be written.
1057     *
1058     * @see #createBinderArrayList
1059     * @see #readBinderList
1060     */
1061    public final void writeBinderList(List<IBinder> val) {
1062        if (val == null) {
1063            writeInt(-1);
1064            return;
1065        }
1066        int N = val.size();
1067        int i=0;
1068        writeInt(N);
1069        while (i < N) {
1070            writeStrongBinder(val.get(i));
1071            i++;
1072        }
1073    }
1074
1075    /**
1076     * Flatten a heterogeneous array containing a particular object type into
1077     * the parcel, at
1078     * the current dataPosition() and growing dataCapacity() if needed.  The
1079     * type of the objects in the array must be one that implements Parcelable.
1080     * Unlike the {@link #writeParcelableArray} method, however, only the
1081     * raw data of the objects is written and not their type, so you must use
1082     * {@link #readTypedArray} with the correct corresponding
1083     * {@link Parcelable.Creator} implementation to unmarshall them.
1084     *
1085     * @param val The array of objects to be written.
1086     * @param parcelableFlags Contextual flags as per
1087     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1088     *
1089     * @see #readTypedArray
1090     * @see #writeParcelableArray
1091     * @see Parcelable.Creator
1092     */
1093    public final <T extends Parcelable> void writeTypedArray(T[] val,
1094            int parcelableFlags) {
1095        if (val != null) {
1096            int N = val.length;
1097            writeInt(N);
1098            for (int i=0; i<N; i++) {
1099                T item = val[i];
1100                if (item != null) {
1101                    writeInt(1);
1102                    item.writeToParcel(this, parcelableFlags);
1103                } else {
1104                    writeInt(0);
1105                }
1106            }
1107        } else {
1108            writeInt(-1);
1109        }
1110    }
1111
1112    /**
1113     * Flatten a generic object in to a parcel.  The given Object value may
1114     * currently be one of the following types:
1115     *
1116     * <ul>
1117     * <li> null
1118     * <li> String
1119     * <li> Byte
1120     * <li> Short
1121     * <li> Integer
1122     * <li> Long
1123     * <li> Float
1124     * <li> Double
1125     * <li> Boolean
1126     * <li> String[]
1127     * <li> boolean[]
1128     * <li> byte[]
1129     * <li> int[]
1130     * <li> long[]
1131     * <li> Object[] (supporting objects of the same type defined here).
1132     * <li> {@link Bundle}
1133     * <li> Map (as supported by {@link #writeMap}).
1134     * <li> Any object that implements the {@link Parcelable} protocol.
1135     * <li> Parcelable[]
1136     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1137     * <li> List (as supported by {@link #writeList}).
1138     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1139     * <li> {@link IBinder}
1140     * <li> Any object that implements Serializable (but see
1141     *      {@link #writeSerializable} for caveats).  Note that all of the
1142     *      previous types have relatively efficient implementations for
1143     *      writing to a Parcel; having to rely on the generic serialization
1144     *      approach is much less efficient and should be avoided whenever
1145     *      possible.
1146     * </ul>
1147     *
1148     * <p class="caution">{@link Parcelable} objects are written with
1149     * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1150     * serializing objects containing {@link ParcelFileDescriptor}s,
1151     * this may result in file descriptor leaks when they are returned from
1152     * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1153     * should be used).</p>
1154     */
1155    public final void writeValue(Object v) {
1156        if (v == null) {
1157            writeInt(VAL_NULL);
1158        } else if (v instanceof String) {
1159            writeInt(VAL_STRING);
1160            writeString((String) v);
1161        } else if (v instanceof Integer) {
1162            writeInt(VAL_INTEGER);
1163            writeInt((Integer) v);
1164        } else if (v instanceof Map) {
1165            writeInt(VAL_MAP);
1166            writeMap((Map) v);
1167        } else if (v instanceof Bundle) {
1168            // Must be before Parcelable
1169            writeInt(VAL_BUNDLE);
1170            writeBundle((Bundle) v);
1171        } else if (v instanceof Parcelable) {
1172            writeInt(VAL_PARCELABLE);
1173            writeParcelable((Parcelable) v, 0);
1174        } else if (v instanceof Short) {
1175            writeInt(VAL_SHORT);
1176            writeInt(((Short) v).intValue());
1177        } else if (v instanceof Long) {
1178            writeInt(VAL_LONG);
1179            writeLong((Long) v);
1180        } else if (v instanceof Float) {
1181            writeInt(VAL_FLOAT);
1182            writeFloat((Float) v);
1183        } else if (v instanceof Double) {
1184            writeInt(VAL_DOUBLE);
1185            writeDouble((Double) v);
1186        } else if (v instanceof Boolean) {
1187            writeInt(VAL_BOOLEAN);
1188            writeInt((Boolean) v ? 1 : 0);
1189        } else if (v instanceof CharSequence) {
1190            // Must be after String
1191            writeInt(VAL_CHARSEQUENCE);
1192            writeCharSequence((CharSequence) v);
1193        } else if (v instanceof List) {
1194            writeInt(VAL_LIST);
1195            writeList((List) v);
1196        } else if (v instanceof SparseArray) {
1197            writeInt(VAL_SPARSEARRAY);
1198            writeSparseArray((SparseArray) v);
1199        } else if (v instanceof boolean[]) {
1200            writeInt(VAL_BOOLEANARRAY);
1201            writeBooleanArray((boolean[]) v);
1202        } else if (v instanceof byte[]) {
1203            writeInt(VAL_BYTEARRAY);
1204            writeByteArray((byte[]) v);
1205        } else if (v instanceof String[]) {
1206            writeInt(VAL_STRINGARRAY);
1207            writeStringArray((String[]) v);
1208        } else if (v instanceof CharSequence[]) {
1209            // Must be after String[] and before Object[]
1210            writeInt(VAL_CHARSEQUENCEARRAY);
1211            writeCharSequenceArray((CharSequence[]) v);
1212        } else if (v instanceof IBinder) {
1213            writeInt(VAL_IBINDER);
1214            writeStrongBinder((IBinder) v);
1215        } else if (v instanceof Parcelable[]) {
1216            writeInt(VAL_PARCELABLEARRAY);
1217            writeParcelableArray((Parcelable[]) v, 0);
1218        } else if (v instanceof Object[]) {
1219            writeInt(VAL_OBJECTARRAY);
1220            writeArray((Object[]) v);
1221        } else if (v instanceof int[]) {
1222            writeInt(VAL_INTARRAY);
1223            writeIntArray((int[]) v);
1224        } else if (v instanceof long[]) {
1225            writeInt(VAL_LONGARRAY);
1226            writeLongArray((long[]) v);
1227        } else if (v instanceof Byte) {
1228            writeInt(VAL_BYTE);
1229            writeInt((Byte) v);
1230        } else if (v instanceof Serializable) {
1231            // Must be last
1232            writeInt(VAL_SERIALIZABLE);
1233            writeSerializable((Serializable) v);
1234        } else {
1235            throw new RuntimeException("Parcel: unable to marshal value " + v);
1236        }
1237    }
1238
1239    /**
1240     * Flatten the name of the class of the Parcelable and its contents
1241     * into the parcel.
1242     *
1243     * @param p The Parcelable object to be written.
1244     * @param parcelableFlags Contextual flags as per
1245     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1246     */
1247    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1248        if (p == null) {
1249            writeString(null);
1250            return;
1251        }
1252        String name = p.getClass().getName();
1253        writeString(name);
1254        p.writeToParcel(this, parcelableFlags);
1255    }
1256
1257    /**
1258     * Write a generic serializable object in to a Parcel.  It is strongly
1259     * recommended that this method be avoided, since the serialization
1260     * overhead is extremely large, and this approach will be much slower than
1261     * using the other approaches to writing data in to a Parcel.
1262     */
1263    public final void writeSerializable(Serializable s) {
1264        if (s == null) {
1265            writeString(null);
1266            return;
1267        }
1268        String name = s.getClass().getName();
1269        writeString(name);
1270
1271        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1272        try {
1273            ObjectOutputStream oos = new ObjectOutputStream(baos);
1274            oos.writeObject(s);
1275            oos.close();
1276
1277            writeByteArray(baos.toByteArray());
1278        } catch (IOException ioe) {
1279            throw new RuntimeException("Parcelable encountered " +
1280                "IOException writing serializable object (name = " + name +
1281                ")", ioe);
1282        }
1283    }
1284
1285    /**
1286     * Special function for writing an exception result at the header of
1287     * a parcel, to be used when returning an exception from a transaction.
1288     * Note that this currently only supports a few exception types; any other
1289     * exception will be re-thrown by this function as a RuntimeException
1290     * (to be caught by the system's last-resort exception handling when
1291     * dispatching a transaction).
1292     *
1293     * <p>The supported exception types are:
1294     * <ul>
1295     * <li>{@link BadParcelableException}
1296     * <li>{@link IllegalArgumentException}
1297     * <li>{@link IllegalStateException}
1298     * <li>{@link NullPointerException}
1299     * <li>{@link SecurityException}
1300     * </ul>
1301     *
1302     * @param e The Exception to be written.
1303     *
1304     * @see #writeNoException
1305     * @see #readException
1306     */
1307    public final void writeException(Exception e) {
1308        int code = 0;
1309        if (e instanceof SecurityException) {
1310            code = EX_SECURITY;
1311        } else if (e instanceof BadParcelableException) {
1312            code = EX_BAD_PARCELABLE;
1313        } else if (e instanceof IllegalArgumentException) {
1314            code = EX_ILLEGAL_ARGUMENT;
1315        } else if (e instanceof NullPointerException) {
1316            code = EX_NULL_POINTER;
1317        } else if (e instanceof IllegalStateException) {
1318            code = EX_ILLEGAL_STATE;
1319        }
1320        writeInt(code);
1321        StrictMode.clearGatheredViolations();
1322        if (code == 0) {
1323            if (e instanceof RuntimeException) {
1324                throw (RuntimeException) e;
1325            }
1326            throw new RuntimeException(e);
1327        }
1328        writeString(e.getMessage());
1329    }
1330
1331    /**
1332     * Special function for writing information at the front of the Parcel
1333     * indicating that no exception occurred.
1334     *
1335     * @see #writeException
1336     * @see #readException
1337     */
1338    public final void writeNoException() {
1339        // Despite the name of this function ("write no exception"),
1340        // it should instead be thought of as "write the RPC response
1341        // header", but because this function name is written out by
1342        // the AIDL compiler, we're not going to rename it.
1343        //
1344        // The response header, in the non-exception case (see also
1345        // writeException above, also called by the AIDL compiler), is
1346        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1347        // StrictMode has gathered up violations that have occurred
1348        // during a Binder call, in which case we write out the number
1349        // of violations and their details, serialized, before the
1350        // actual RPC respons data.  The receiving end of this is
1351        // readException(), below.
1352        if (StrictMode.hasGatheredViolations()) {
1353            writeInt(EX_HAS_REPLY_HEADER);
1354            final int sizePosition = dataPosition();
1355            writeInt(0);  // total size of fat header, to be filled in later
1356            StrictMode.writeGatheredViolationsToParcel(this);
1357            final int payloadPosition = dataPosition();
1358            setDataPosition(sizePosition);
1359            writeInt(payloadPosition - sizePosition);  // header size
1360            setDataPosition(payloadPosition);
1361        } else {
1362            writeInt(0);
1363        }
1364    }
1365
1366    /**
1367     * Special function for reading an exception result from the header of
1368     * a parcel, to be used after receiving the result of a transaction.  This
1369     * will throw the exception for you if it had been written to the Parcel,
1370     * otherwise return and let you read the normal result data from the Parcel.
1371     *
1372     * @see #writeException
1373     * @see #writeNoException
1374     */
1375    public final void readException() {
1376        int code = readExceptionCode();
1377        if (code != 0) {
1378            String msg = readString();
1379            readException(code, msg);
1380        }
1381    }
1382
1383    /**
1384     * Parses the header of a Binder call's response Parcel and
1385     * returns the exception code.  Deals with lite or fat headers.
1386     * In the common successful case, this header is generally zero.
1387     * In less common cases, it's a small negative number and will be
1388     * followed by an error string.
1389     *
1390     * This exists purely for android.database.DatabaseUtils and
1391     * insulating it from having to handle fat headers as returned by
1392     * e.g. StrictMode-induced RPC responses.
1393     *
1394     * @hide
1395     */
1396    public final int readExceptionCode() {
1397        int code = readInt();
1398        if (code == EX_HAS_REPLY_HEADER) {
1399            int headerSize = readInt();
1400            if (headerSize == 0) {
1401                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1402            } else {
1403                // Currently the only thing in the header is StrictMode stacks,
1404                // but discussions around event/RPC tracing suggest we might
1405                // put that here too.  If so, switch on sub-header tags here.
1406                // But for now, just parse out the StrictMode stuff.
1407                StrictMode.readAndHandleBinderCallViolations(this);
1408            }
1409            // And fat response headers are currently only used when
1410            // there are no exceptions, so return no error:
1411            return 0;
1412        }
1413        return code;
1414    }
1415
1416    /**
1417     * Use this function for customized exception handling.
1418     * customized method call this method for all unknown case
1419     * @param code exception code
1420     * @param msg exception message
1421     */
1422    public final void readException(int code, String msg) {
1423        switch (code) {
1424            case EX_SECURITY:
1425                throw new SecurityException(msg);
1426            case EX_BAD_PARCELABLE:
1427                throw new BadParcelableException(msg);
1428            case EX_ILLEGAL_ARGUMENT:
1429                throw new IllegalArgumentException(msg);
1430            case EX_NULL_POINTER:
1431                throw new NullPointerException(msg);
1432            case EX_ILLEGAL_STATE:
1433                throw new IllegalStateException(msg);
1434        }
1435        throw new RuntimeException("Unknown exception code: " + code
1436                + " msg " + msg);
1437    }
1438
1439    /**
1440     * Read an integer value from the parcel at the current dataPosition().
1441     */
1442    public final int readInt() {
1443        return nativeReadInt(mNativePtr);
1444    }
1445
1446    /**
1447     * Read a long integer value from the parcel at the current dataPosition().
1448     */
1449    public final long readLong() {
1450        return nativeReadLong(mNativePtr);
1451    }
1452
1453    /**
1454     * Read a floating point value from the parcel at the current
1455     * dataPosition().
1456     */
1457    public final float readFloat() {
1458        return nativeReadFloat(mNativePtr);
1459    }
1460
1461    /**
1462     * Read a double precision floating point value from the parcel at the
1463     * current dataPosition().
1464     */
1465    public final double readDouble() {
1466        return nativeReadDouble(mNativePtr);
1467    }
1468
1469    /**
1470     * Read a string value from the parcel at the current dataPosition().
1471     */
1472    public final String readString() {
1473        return nativeReadString(mNativePtr);
1474    }
1475
1476    /**
1477     * Read a CharSequence value from the parcel at the current dataPosition().
1478     * @hide
1479     */
1480    public final CharSequence readCharSequence() {
1481        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1482    }
1483
1484    /**
1485     * Read an object from the parcel at the current dataPosition().
1486     */
1487    public final IBinder readStrongBinder() {
1488        return nativeReadStrongBinder(mNativePtr);
1489    }
1490
1491    /**
1492     * Read a FileDescriptor from the parcel at the current dataPosition().
1493     */
1494    public final ParcelFileDescriptor readFileDescriptor() {
1495        FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
1496        return fd != null ? new ParcelFileDescriptor(fd) : null;
1497    }
1498
1499    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1500            int mode) throws FileNotFoundException;
1501    /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
1502            throws IOException;
1503    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1504            throws IOException;
1505    /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
1506
1507    /**
1508     * Read a byte value from the parcel at the current dataPosition().
1509     */
1510    public final byte readByte() {
1511        return (byte)(readInt() & 0xff);
1512    }
1513
1514    /**
1515     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1516     * been written with {@link #writeBundle}.  Read into an existing Map object
1517     * from the parcel at the current dataPosition().
1518     */
1519    public final void readMap(Map outVal, ClassLoader loader) {
1520        int N = readInt();
1521        readMapInternal(outVal, N, loader);
1522    }
1523
1524    /**
1525     * Read into an existing List object from the parcel at the current
1526     * dataPosition(), using the given class loader to load any enclosed
1527     * Parcelables.  If it is null, the default class loader is used.
1528     */
1529    public final void readList(List outVal, ClassLoader loader) {
1530        int N = readInt();
1531        readListInternal(outVal, N, loader);
1532    }
1533
1534    /**
1535     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1536     * been written with {@link #writeBundle}.  Read and return a new HashMap
1537     * object from the parcel at the current dataPosition(), using the given
1538     * class loader to load any enclosed Parcelables.  Returns null if
1539     * the previously written map object was null.
1540     */
1541    public final HashMap readHashMap(ClassLoader loader)
1542    {
1543        int N = readInt();
1544        if (N < 0) {
1545            return null;
1546        }
1547        HashMap m = new HashMap(N);
1548        readMapInternal(m, N, loader);
1549        return m;
1550    }
1551
1552    /**
1553     * Read and return a new Bundle object from the parcel at the current
1554     * dataPosition().  Returns null if the previously written Bundle object was
1555     * null.
1556     */
1557    public final Bundle readBundle() {
1558        return readBundle(null);
1559    }
1560
1561    /**
1562     * Read and return a new Bundle object from the parcel at the current
1563     * dataPosition(), using the given class loader to initialize the class
1564     * loader of the Bundle for later retrieval of Parcelable objects.
1565     * Returns null if the previously written Bundle object was null.
1566     */
1567    public final Bundle readBundle(ClassLoader loader) {
1568        int length = readInt();
1569        if (length < 0) {
1570            return null;
1571        }
1572
1573        final Bundle bundle = new Bundle(this, length);
1574        if (loader != null) {
1575            bundle.setClassLoader(loader);
1576        }
1577        return bundle;
1578    }
1579
1580    /**
1581     * Read and return a byte[] object from the parcel.
1582     */
1583    public final byte[] createByteArray() {
1584        return nativeCreateByteArray(mNativePtr);
1585    }
1586
1587    /**
1588     * Read a byte[] object from the parcel and copy it into the
1589     * given byte array.
1590     */
1591    public final void readByteArray(byte[] val) {
1592        // TODO: make this a native method to avoid the extra copy.
1593        byte[] ba = createByteArray();
1594        if (ba.length == val.length) {
1595           System.arraycopy(ba, 0, val, 0, ba.length);
1596        } else {
1597            throw new RuntimeException("bad array lengths");
1598        }
1599    }
1600
1601    /**
1602     * Read and return a String[] object from the parcel.
1603     * {@hide}
1604     */
1605    public final String[] readStringArray() {
1606        String[] array = null;
1607
1608        int length = readInt();
1609        if (length >= 0)
1610        {
1611            array = new String[length];
1612
1613            for (int i = 0 ; i < length ; i++)
1614            {
1615                array[i] = readString();
1616            }
1617        }
1618
1619        return array;
1620    }
1621
1622    /**
1623     * Read and return a CharSequence[] object from the parcel.
1624     * {@hide}
1625     */
1626    public final CharSequence[] readCharSequenceArray() {
1627        CharSequence[] array = null;
1628
1629        int length = readInt();
1630        if (length >= 0)
1631        {
1632            array = new CharSequence[length];
1633
1634            for (int i = 0 ; i < length ; i++)
1635            {
1636                array[i] = readCharSequence();
1637            }
1638        }
1639
1640        return array;
1641    }
1642
1643    /**
1644     * Read and return a new ArrayList object from the parcel at the current
1645     * dataPosition().  Returns null if the previously written list object was
1646     * null.  The given class loader will be used to load any enclosed
1647     * Parcelables.
1648     */
1649    public final ArrayList readArrayList(ClassLoader loader) {
1650        int N = readInt();
1651        if (N < 0) {
1652            return null;
1653        }
1654        ArrayList l = new ArrayList(N);
1655        readListInternal(l, N, loader);
1656        return l;
1657    }
1658
1659    /**
1660     * Read and return a new Object array from the parcel at the current
1661     * dataPosition().  Returns null if the previously written array was
1662     * null.  The given class loader will be used to load any enclosed
1663     * Parcelables.
1664     */
1665    public final Object[] readArray(ClassLoader loader) {
1666        int N = readInt();
1667        if (N < 0) {
1668            return null;
1669        }
1670        Object[] l = new Object[N];
1671        readArrayInternal(l, N, loader);
1672        return l;
1673    }
1674
1675    /**
1676     * Read and return a new SparseArray object from the parcel at the current
1677     * dataPosition().  Returns null if the previously written list object was
1678     * null.  The given class loader will be used to load any enclosed
1679     * Parcelables.
1680     */
1681    public final SparseArray readSparseArray(ClassLoader loader) {
1682        int N = readInt();
1683        if (N < 0) {
1684            return null;
1685        }
1686        SparseArray sa = new SparseArray(N);
1687        readSparseArrayInternal(sa, N, loader);
1688        return sa;
1689    }
1690
1691    /**
1692     * Read and return a new SparseBooleanArray object from the parcel at the current
1693     * dataPosition().  Returns null if the previously written list object was
1694     * null.
1695     */
1696    public final SparseBooleanArray readSparseBooleanArray() {
1697        int N = readInt();
1698        if (N < 0) {
1699            return null;
1700        }
1701        SparseBooleanArray sa = new SparseBooleanArray(N);
1702        readSparseBooleanArrayInternal(sa, N);
1703        return sa;
1704    }
1705
1706    /**
1707     * Read and return a new ArrayList containing a particular object type from
1708     * the parcel that was written with {@link #writeTypedList} at the
1709     * current dataPosition().  Returns null if the
1710     * previously written list object was null.  The list <em>must</em> have
1711     * previously been written via {@link #writeTypedList} with the same object
1712     * type.
1713     *
1714     * @return A newly created ArrayList containing objects with the same data
1715     *         as those that were previously written.
1716     *
1717     * @see #writeTypedList
1718     */
1719    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1720        int N = readInt();
1721        if (N < 0) {
1722            return null;
1723        }
1724        ArrayList<T> l = new ArrayList<T>(N);
1725        while (N > 0) {
1726            if (readInt() != 0) {
1727                l.add(c.createFromParcel(this));
1728            } else {
1729                l.add(null);
1730            }
1731            N--;
1732        }
1733        return l;
1734    }
1735
1736    /**
1737     * Read into the given List items containing a particular object type
1738     * that were written with {@link #writeTypedList} at the
1739     * current dataPosition().  The list <em>must</em> have
1740     * previously been written via {@link #writeTypedList} with the same object
1741     * type.
1742     *
1743     * @return A newly created ArrayList containing objects with the same data
1744     *         as those that were previously written.
1745     *
1746     * @see #writeTypedList
1747     */
1748    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1749        int M = list.size();
1750        int N = readInt();
1751        int i = 0;
1752        for (; i < M && i < N; i++) {
1753            if (readInt() != 0) {
1754                list.set(i, c.createFromParcel(this));
1755            } else {
1756                list.set(i, null);
1757            }
1758        }
1759        for (; i<N; i++) {
1760            if (readInt() != 0) {
1761                list.add(c.createFromParcel(this));
1762            } else {
1763                list.add(null);
1764            }
1765        }
1766        for (; i<M; i++) {
1767            list.remove(N);
1768        }
1769    }
1770
1771    /**
1772     * Read and return a new ArrayList containing String objects from
1773     * the parcel that was written with {@link #writeStringList} at the
1774     * current dataPosition().  Returns null if the
1775     * previously written list object was null.
1776     *
1777     * @return A newly created ArrayList containing strings with the same data
1778     *         as those that were previously written.
1779     *
1780     * @see #writeStringList
1781     */
1782    public final ArrayList<String> createStringArrayList() {
1783        int N = readInt();
1784        if (N < 0) {
1785            return null;
1786        }
1787        ArrayList<String> l = new ArrayList<String>(N);
1788        while (N > 0) {
1789            l.add(readString());
1790            N--;
1791        }
1792        return l;
1793    }
1794
1795    /**
1796     * Read and return a new ArrayList containing IBinder objects from
1797     * the parcel that was written with {@link #writeBinderList} at the
1798     * current dataPosition().  Returns null if the
1799     * previously written list object was null.
1800     *
1801     * @return A newly created ArrayList containing strings with the same data
1802     *         as those that were previously written.
1803     *
1804     * @see #writeBinderList
1805     */
1806    public final ArrayList<IBinder> createBinderArrayList() {
1807        int N = readInt();
1808        if (N < 0) {
1809            return null;
1810        }
1811        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1812        while (N > 0) {
1813            l.add(readStrongBinder());
1814            N--;
1815        }
1816        return l;
1817    }
1818
1819    /**
1820     * Read into the given List items String objects that were written with
1821     * {@link #writeStringList} at the current dataPosition().
1822     *
1823     * @return A newly created ArrayList containing strings with the same data
1824     *         as those that were previously written.
1825     *
1826     * @see #writeStringList
1827     */
1828    public final void readStringList(List<String> list) {
1829        int M = list.size();
1830        int N = readInt();
1831        int i = 0;
1832        for (; i < M && i < N; i++) {
1833            list.set(i, readString());
1834        }
1835        for (; i<N; i++) {
1836            list.add(readString());
1837        }
1838        for (; i<M; i++) {
1839            list.remove(N);
1840        }
1841    }
1842
1843    /**
1844     * Read into the given List items IBinder objects that were written with
1845     * {@link #writeBinderList} at the current dataPosition().
1846     *
1847     * @return A newly created ArrayList containing strings with the same data
1848     *         as those that were previously written.
1849     *
1850     * @see #writeBinderList
1851     */
1852    public final void readBinderList(List<IBinder> list) {
1853        int M = list.size();
1854        int N = readInt();
1855        int i = 0;
1856        for (; i < M && i < N; i++) {
1857            list.set(i, readStrongBinder());
1858        }
1859        for (; i<N; i++) {
1860            list.add(readStrongBinder());
1861        }
1862        for (; i<M; i++) {
1863            list.remove(N);
1864        }
1865    }
1866
1867    /**
1868     * Read and return a new array containing a particular object type from
1869     * the parcel at the current dataPosition().  Returns null if the
1870     * previously written array was null.  The array <em>must</em> have
1871     * previously been written via {@link #writeTypedArray} with the same
1872     * object type.
1873     *
1874     * @return A newly created array containing objects with the same data
1875     *         as those that were previously written.
1876     *
1877     * @see #writeTypedArray
1878     */
1879    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
1880        int N = readInt();
1881        if (N < 0) {
1882            return null;
1883        }
1884        T[] l = c.newArray(N);
1885        for (int i=0; i<N; i++) {
1886            if (readInt() != 0) {
1887                l[i] = c.createFromParcel(this);
1888            }
1889        }
1890        return l;
1891    }
1892
1893    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
1894        int N = readInt();
1895        if (N == val.length) {
1896            for (int i=0; i<N; i++) {
1897                if (readInt() != 0) {
1898                    val[i] = c.createFromParcel(this);
1899                } else {
1900                    val[i] = null;
1901                }
1902            }
1903        } else {
1904            throw new RuntimeException("bad array lengths");
1905        }
1906    }
1907
1908    /**
1909     * @deprecated
1910     * @hide
1911     */
1912    @Deprecated
1913    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
1914        return createTypedArray(c);
1915    }
1916
1917    /**
1918     * Write a heterogeneous array of Parcelable objects into the Parcel.
1919     * Each object in the array is written along with its class name, so
1920     * that the correct class can later be instantiated.  As a result, this
1921     * has significantly more overhead than {@link #writeTypedArray}, but will
1922     * correctly handle an array containing more than one type of object.
1923     *
1924     * @param value The array of objects to be written.
1925     * @param parcelableFlags Contextual flags as per
1926     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1927     *
1928     * @see #writeTypedArray
1929     */
1930    public final <T extends Parcelable> void writeParcelableArray(T[] value,
1931            int parcelableFlags) {
1932        if (value != null) {
1933            int N = value.length;
1934            writeInt(N);
1935            for (int i=0; i<N; i++) {
1936                writeParcelable(value[i], parcelableFlags);
1937            }
1938        } else {
1939            writeInt(-1);
1940        }
1941    }
1942
1943    /**
1944     * Read a typed object from a parcel.  The given class loader will be
1945     * used to load any enclosed Parcelables.  If it is null, the default class
1946     * loader will be used.
1947     */
1948    public final Object readValue(ClassLoader loader) {
1949        int type = readInt();
1950
1951        switch (type) {
1952        case VAL_NULL:
1953            return null;
1954
1955        case VAL_STRING:
1956            return readString();
1957
1958        case VAL_INTEGER:
1959            return readInt();
1960
1961        case VAL_MAP:
1962            return readHashMap(loader);
1963
1964        case VAL_PARCELABLE:
1965            return readParcelable(loader);
1966
1967        case VAL_SHORT:
1968            return (short) readInt();
1969
1970        case VAL_LONG:
1971            return readLong();
1972
1973        case VAL_FLOAT:
1974            return readFloat();
1975
1976        case VAL_DOUBLE:
1977            return readDouble();
1978
1979        case VAL_BOOLEAN:
1980            return readInt() == 1;
1981
1982        case VAL_CHARSEQUENCE:
1983            return readCharSequence();
1984
1985        case VAL_LIST:
1986            return readArrayList(loader);
1987
1988        case VAL_BOOLEANARRAY:
1989            return createBooleanArray();
1990
1991        case VAL_BYTEARRAY:
1992            return createByteArray();
1993
1994        case VAL_STRINGARRAY:
1995            return readStringArray();
1996
1997        case VAL_CHARSEQUENCEARRAY:
1998            return readCharSequenceArray();
1999
2000        case VAL_IBINDER:
2001            return readStrongBinder();
2002
2003        case VAL_OBJECTARRAY:
2004            return readArray(loader);
2005
2006        case VAL_INTARRAY:
2007            return createIntArray();
2008
2009        case VAL_LONGARRAY:
2010            return createLongArray();
2011
2012        case VAL_BYTE:
2013            return readByte();
2014
2015        case VAL_SERIALIZABLE:
2016            return readSerializable();
2017
2018        case VAL_PARCELABLEARRAY:
2019            return readParcelableArray(loader);
2020
2021        case VAL_SPARSEARRAY:
2022            return readSparseArray(loader);
2023
2024        case VAL_SPARSEBOOLEANARRAY:
2025            return readSparseBooleanArray();
2026
2027        case VAL_BUNDLE:
2028            return readBundle(loader); // loading will be deferred
2029
2030        default:
2031            int off = dataPosition() - 4;
2032            throw new RuntimeException(
2033                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2034        }
2035    }
2036
2037    /**
2038     * Read and return a new Parcelable from the parcel.  The given class loader
2039     * will be used to load any enclosed Parcelables.  If it is null, the default
2040     * class loader will be used.
2041     * @param loader A ClassLoader from which to instantiate the Parcelable
2042     * object, or null for the default class loader.
2043     * @return Returns the newly created Parcelable, or null if a null
2044     * object has been written.
2045     * @throws BadParcelableException Throws BadParcelableException if there
2046     * was an error trying to instantiate the Parcelable.
2047     */
2048    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2049        String name = readString();
2050        if (name == null) {
2051            return null;
2052        }
2053        Parcelable.Creator<T> creator;
2054        synchronized (mCreators) {
2055            HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
2056            if (map == null) {
2057                map = new HashMap<String,Parcelable.Creator>();
2058                mCreators.put(loader, map);
2059            }
2060            creator = map.get(name);
2061            if (creator == null) {
2062                try {
2063                    Class c = loader == null ?
2064                        Class.forName(name) : Class.forName(name, true, loader);
2065                    Field f = c.getField("CREATOR");
2066                    creator = (Parcelable.Creator)f.get(null);
2067                }
2068                catch (IllegalAccessException e) {
2069                    Log.e(TAG, "Class not found when unmarshalling: "
2070                                        + name + ", e: " + e);
2071                    throw new BadParcelableException(
2072                            "IllegalAccessException when unmarshalling: " + name);
2073                }
2074                catch (ClassNotFoundException e) {
2075                    Log.e(TAG, "Class not found when unmarshalling: "
2076                                        + name + ", e: " + e);
2077                    throw new BadParcelableException(
2078                            "ClassNotFoundException when unmarshalling: " + name);
2079                }
2080                catch (ClassCastException e) {
2081                    throw new BadParcelableException("Parcelable protocol requires a "
2082                                        + "Parcelable.Creator object called "
2083                                        + " CREATOR on class " + name);
2084                }
2085                catch (NoSuchFieldException e) {
2086                    throw new BadParcelableException("Parcelable protocol requires a "
2087                                        + "Parcelable.Creator object called "
2088                                        + " CREATOR on class " + name);
2089                }
2090                if (creator == null) {
2091                    throw new BadParcelableException("Parcelable protocol requires a "
2092                                        + "Parcelable.Creator object called "
2093                                        + " CREATOR on class " + name);
2094                }
2095
2096                map.put(name, creator);
2097            }
2098        }
2099
2100        if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2101            return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
2102        }
2103        return creator.createFromParcel(this);
2104    }
2105
2106    /**
2107     * Read and return a new Parcelable array from the parcel.
2108     * The given class loader will be used to load any enclosed
2109     * Parcelables.
2110     * @return the Parcelable array, or null if the array is null
2111     */
2112    public final Parcelable[] readParcelableArray(ClassLoader loader) {
2113        int N = readInt();
2114        if (N < 0) {
2115            return null;
2116        }
2117        Parcelable[] p = new Parcelable[N];
2118        for (int i = 0; i < N; i++) {
2119            p[i] = (Parcelable) readParcelable(loader);
2120        }
2121        return p;
2122    }
2123
2124    /**
2125     * Read and return a new Serializable object from the parcel.
2126     * @return the Serializable object, or null if the Serializable name
2127     * wasn't found in the parcel.
2128     */
2129    public final Serializable readSerializable() {
2130        String name = readString();
2131        if (name == null) {
2132            // For some reason we were unable to read the name of the Serializable (either there
2133            // is nothing left in the Parcel to read, or the next value wasn't a String), so
2134            // return null, which indicates that the name wasn't found in the parcel.
2135            return null;
2136        }
2137
2138        byte[] serializedData = createByteArray();
2139        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2140        try {
2141            ObjectInputStream ois = new ObjectInputStream(bais);
2142            return (Serializable) ois.readObject();
2143        } catch (IOException ioe) {
2144            throw new RuntimeException("Parcelable encountered " +
2145                "IOException reading a Serializable object (name = " + name +
2146                ")", ioe);
2147        } catch (ClassNotFoundException cnfe) {
2148            throw new RuntimeException("Parcelable encountered" +
2149                "ClassNotFoundException reading a Serializable object (name = "
2150                + name + ")", cnfe);
2151        }
2152    }
2153
2154    // Cache of previously looked up CREATOR.createFromParcel() methods for
2155    // particular classes.  Keys are the names of the classes, values are
2156    // Method objects.
2157    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
2158        mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
2159
2160    static protected final Parcel obtain(int obj) {
2161        final Parcel[] pool = sHolderPool;
2162        synchronized (pool) {
2163            Parcel p;
2164            for (int i=0; i<POOL_SIZE; i++) {
2165                p = pool[i];
2166                if (p != null) {
2167                    pool[i] = null;
2168                    if (DEBUG_RECYCLE) {
2169                        p.mStack = new RuntimeException();
2170                    }
2171                    p.init(obj);
2172                    return p;
2173                }
2174            }
2175        }
2176        return new Parcel(obj);
2177    }
2178
2179    private Parcel(int nativePtr) {
2180        if (DEBUG_RECYCLE) {
2181            mStack = new RuntimeException();
2182        }
2183        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2184        init(nativePtr);
2185    }
2186
2187    private void init(int nativePtr) {
2188        if (nativePtr != 0) {
2189            mNativePtr = nativePtr;
2190            mOwnsNativeParcelObject = false;
2191        } else {
2192            mNativePtr = nativeCreate();
2193            mOwnsNativeParcelObject = true;
2194        }
2195    }
2196
2197    private void freeBuffer() {
2198        if (mOwnsNativeParcelObject) {
2199            nativeFreeBuffer(mNativePtr);
2200        }
2201    }
2202
2203    private void destroy() {
2204        if (mNativePtr != 0) {
2205            if (mOwnsNativeParcelObject) {
2206                nativeDestroy(mNativePtr);
2207            }
2208            mNativePtr = 0;
2209        }
2210    }
2211
2212    @Override
2213    protected void finalize() throws Throwable {
2214        if (DEBUG_RECYCLE) {
2215            if (mStack != null) {
2216                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2217            }
2218        }
2219        destroy();
2220    }
2221
2222    /* package */ void readMapInternal(Map outVal, int N,
2223        ClassLoader loader) {
2224        while (N > 0) {
2225            Object key = readValue(loader);
2226            Object value = readValue(loader);
2227            outVal.put(key, value);
2228            N--;
2229        }
2230    }
2231
2232    private void readListInternal(List outVal, int N,
2233        ClassLoader loader) {
2234        while (N > 0) {
2235            Object value = readValue(loader);
2236            //Log.d(TAG, "Unmarshalling value=" + value);
2237            outVal.add(value);
2238            N--;
2239        }
2240    }
2241
2242    private void readArrayInternal(Object[] outVal, int N,
2243        ClassLoader loader) {
2244        for (int i = 0; i < N; i++) {
2245            Object value = readValue(loader);
2246            //Log.d(TAG, "Unmarshalling value=" + value);
2247            outVal[i] = value;
2248        }
2249    }
2250
2251    private void readSparseArrayInternal(SparseArray outVal, int N,
2252        ClassLoader loader) {
2253        while (N > 0) {
2254            int key = readInt();
2255            Object value = readValue(loader);
2256            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2257            outVal.append(key, value);
2258            N--;
2259        }
2260    }
2261
2262
2263    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2264        while (N > 0) {
2265            int key = readInt();
2266            boolean value = this.readByte() == 1;
2267            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2268            outVal.append(key, value);
2269            N--;
2270        }
2271    }
2272}
2273