Parcel.java revision 08bbffb049c135c5dfd40d261118c90d1a6dc111
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.Log;
21import android.util.SparseArray;
22import android.util.SparseBooleanArray;
23
24import java.io.ByteArrayInputStream;
25import java.io.ByteArrayOutputStream;
26import java.io.FileDescriptor;
27import java.io.FileNotFoundException;
28import java.io.IOException;
29import java.io.ObjectInputStream;
30import java.io.ObjectOutputStream;
31import java.io.Serializable;
32import java.lang.reflect.Field;
33import java.util.ArrayList;
34import java.util.HashMap;
35import java.util.List;
36import java.util.Map;
37import java.util.Set;
38
39/**
40 * Container for a message (data and object references) that can
41 * be sent through an IBinder.  A Parcel can contain both flattened data
42 * that will be unflattened on the other side of the IPC (using the various
43 * methods here for writing specific types, or the general
44 * {@link Parcelable} interface), and references to live {@link IBinder}
45 * objects that will result in the other side receiving a proxy IBinder
46 * connected with the original IBinder in the Parcel.
47 *
48 * <p class="note">Parcel is <strong>not</strong> a general-purpose
49 * serialization mechanism.  This class (and the corresponding
50 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
51 * designed as a high-performance IPC transport.  As such, it is not
52 * appropriate to place any Parcel data in to persistent storage: changes
53 * in the underlying implementation of any of the data in the Parcel can
54 * render older data unreadable.</p>
55 *
56 * <p>The bulk of the Parcel API revolves around reading and writing data
57 * of various types.  There are six major classes of such functions available.</p>
58 *
59 * <h3>Primitives</h3>
60 *
61 * <p>The most basic data functions are for writing and reading primitive
62 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
63 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
64 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
65 * {@link #writeString}, {@link #readString}.  Most other
66 * data operations are built on top of these.  The given data is written and
67 * read using the endianess of the host CPU.</p>
68 *
69 * <h3>Primitive Arrays</h3>
70 *
71 * <p>There are a variety of methods for reading and writing raw arrays
72 * of primitive objects, which generally result in writing a 4-byte length
73 * followed by the primitive data items.  The methods for reading can either
74 * read the data into an existing array, or create and return a new array.
75 * These available types are:</p>
76 *
77 * <ul>
78 * <li> {@link #writeBooleanArray(boolean[])},
79 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
80 * <li> {@link #writeByteArray(byte[])},
81 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
82 * {@link #createByteArray()}
83 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
84 * {@link #createCharArray()}
85 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
86 * {@link #createDoubleArray()}
87 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
88 * {@link #createFloatArray()}
89 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
90 * {@link #createIntArray()}
91 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
92 * {@link #createLongArray()}
93 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
94 * {@link #createStringArray()}.
95 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
96 * {@link #readSparseBooleanArray()}.
97 * </ul>
98 *
99 * <h3>Parcelables</h3>
100 *
101 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
102 * low-level) protocol for objects to write and read themselves from Parcels.
103 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
104 * and {@link #readParcelable(ClassLoader)} or
105 * {@link #writeParcelableArray} and
106 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
107 * methods write both the class type and its data to the Parcel, allowing
108 * that class to be reconstructed from the appropriate class loader when
109 * later reading.</p>
110 *
111 * <p>There are also some methods that provide a more efficient way to work
112 * with Parcelables: {@link #writeTypedArray},
113 * {@link #writeTypedList(List)},
114 * {@link #readTypedArray} and {@link #readTypedList}.  These methods
115 * do not write the class information of the original object: instead, the
116 * caller of the read function must know what type to expect and pass in the
117 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
118 * properly construct the new object and read its data.  (To more efficient
119 * write and read a single Parceable object, you can directly call
120 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
121 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
122 * yourself.)</p>
123 *
124 * <h3>Bundles</h3>
125 *
126 * <p>A special type-safe container, called {@link Bundle}, is available
127 * for key/value maps of heterogeneous values.  This has many optimizations
128 * for improved performance when reading and writing data, and its type-safe
129 * API avoids difficult to debug type errors when finally marshalling the
130 * data contents into a Parcel.  The methods to use are
131 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
132 * {@link #readBundle(ClassLoader)}.
133 *
134 * <h3>Active Objects</h3>
135 *
136 * <p>An unusual feature of Parcel is the ability to read and write active
137 * objects.  For these objects the actual contents of the object is not
138 * written, rather a special token referencing the object is written.  When
139 * reading the object back from the Parcel, you do not get a new instance of
140 * the object, but rather a handle that operates on the exact same object that
141 * was originally written.  There are two forms of active objects available.</p>
142 *
143 * <p>{@link Binder} objects are a core facility of Android's general cross-process
144 * communication system.  The {@link IBinder} interface describes an abstract
145 * protocol with a Binder object.  Any such interface can be written in to
146 * a Parcel, and upon reading you will receive either the original object
147 * implementing that interface or a special proxy implementation
148 * that communicates calls back to the original object.  The methods to use are
149 * {@link #writeStrongBinder(IBinder)},
150 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
151 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
152 * {@link #createBinderArray()},
153 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
154 * {@link #createBinderArrayList()}.</p>
155 *
156 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
157 * can be written and {@link ParcelFileDescriptor} objects returned to operate
158 * on the original file descriptor.  The returned file descriptor is a dup
159 * of the original file descriptor: the object and fd is different, but
160 * operating on the same underlying file stream, with the same position, etc.
161 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
162 * {@link #readFileDescriptor()}.
163 *
164 * <h3>Untyped Containers</h3>
165 *
166 * <p>A final class of methods are for writing and reading standard Java
167 * containers of arbitrary types.  These all revolve around the
168 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
169 * which define the types of objects allowed.  The container methods are
170 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
171 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
172 * {@link #readArrayList(ClassLoader)},
173 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
174 * {@link #writeSparseArray(SparseArray)},
175 * {@link #readSparseArray(ClassLoader)}.
176 */
177public final class Parcel {
178    private static final boolean DEBUG_RECYCLE = false;
179
180    @SuppressWarnings({"UnusedDeclaration"})
181    private int mObject; // used by native code
182    @SuppressWarnings({"UnusedDeclaration"})
183    private int mOwnObject; // used by native code
184    private RuntimeException mStack;
185
186    private static final int POOL_SIZE = 6;
187    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
188    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
189
190    private static final int VAL_NULL = -1;
191    private static final int VAL_STRING = 0;
192    private static final int VAL_INTEGER = 1;
193    private static final int VAL_MAP = 2;
194    private static final int VAL_BUNDLE = 3;
195    private static final int VAL_PARCELABLE = 4;
196    private static final int VAL_SHORT = 5;
197    private static final int VAL_LONG = 6;
198    private static final int VAL_FLOAT = 7;
199    private static final int VAL_DOUBLE = 8;
200    private static final int VAL_BOOLEAN = 9;
201    private static final int VAL_CHARSEQUENCE = 10;
202    private static final int VAL_LIST  = 11;
203    private static final int VAL_SPARSEARRAY = 12;
204    private static final int VAL_BYTEARRAY = 13;
205    private static final int VAL_STRINGARRAY = 14;
206    private static final int VAL_IBINDER = 15;
207    private static final int VAL_PARCELABLEARRAY = 16;
208    private static final int VAL_OBJECTARRAY = 17;
209    private static final int VAL_INTARRAY = 18;
210    private static final int VAL_LONGARRAY = 19;
211    private static final int VAL_BYTE = 20;
212    private static final int VAL_SERIALIZABLE = 21;
213    private static final int VAL_SPARSEBOOLEANARRAY = 22;
214    private static final int VAL_BOOLEANARRAY = 23;
215    private static final int VAL_CHARSEQUENCEARRAY = 24;
216
217    private static final int EX_SECURITY = -1;
218    private static final int EX_BAD_PARCELABLE = -2;
219    private static final int EX_ILLEGAL_ARGUMENT = -3;
220    private static final int EX_NULL_POINTER = -4;
221    private static final int EX_ILLEGAL_STATE = -5;
222
223    public final static Parcelable.Creator<String> STRING_CREATOR
224             = new Parcelable.Creator<String>() {
225        public String createFromParcel(Parcel source) {
226            return source.readString();
227        }
228        public String[] newArray(int size) {
229            return new String[size];
230        }
231    };
232
233    /**
234     * Retrieve a new Parcel object from the pool.
235     */
236    public static Parcel obtain() {
237        final Parcel[] pool = sOwnedPool;
238        synchronized (pool) {
239            Parcel p;
240            for (int i=0; i<POOL_SIZE; i++) {
241                p = pool[i];
242                if (p != null) {
243                    pool[i] = null;
244                    if (DEBUG_RECYCLE) {
245                        p.mStack = new RuntimeException();
246                    }
247                    return p;
248                }
249            }
250        }
251        return new Parcel(0);
252    }
253
254    /**
255     * Put a Parcel object back into the pool.  You must not touch
256     * the object after this call.
257     */
258    public final void recycle() {
259        if (DEBUG_RECYCLE) mStack = null;
260        freeBuffer();
261        final Parcel[] pool = mOwnObject != 0 ? sOwnedPool : sHolderPool;
262        synchronized (pool) {
263            for (int i=0; i<POOL_SIZE; i++) {
264                if (pool[i] == null) {
265                    pool[i] = this;
266                    return;
267                }
268            }
269        }
270    }
271
272    /**
273     * Returns the total amount of data contained in the parcel.
274     */
275    public final native int dataSize();
276
277    /**
278     * Returns the amount of data remaining to be read from the
279     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
280     */
281    public final native int dataAvail();
282
283    /**
284     * Returns the current position in the parcel data.  Never
285     * more than {@link #dataSize}.
286     */
287    public final native int dataPosition();
288
289    /**
290     * Returns the total amount of space in the parcel.  This is always
291     * >= {@link #dataSize}.  The difference between it and dataSize() is the
292     * amount of room left until the parcel needs to re-allocate its
293     * data buffer.
294     */
295    public final native int dataCapacity();
296
297    /**
298     * Change the amount of data in the parcel.  Can be either smaller or
299     * larger than the current size.  If larger than the current capacity,
300     * more memory will be allocated.
301     *
302     * @param size The new number of bytes in the Parcel.
303     */
304    public final native void setDataSize(int size);
305
306    /**
307     * Move the current read/write position in the parcel.
308     * @param pos New offset in the parcel; must be between 0 and
309     * {@link #dataSize}.
310     */
311    public final native void setDataPosition(int pos);
312
313    /**
314     * Change the capacity (current available space) of the parcel.
315     *
316     * @param size The new capacity of the parcel, in bytes.  Can not be
317     * less than {@link #dataSize} -- that is, you can not drop existing data
318     * with this method.
319     */
320    public final native void setDataCapacity(int size);
321
322    /**
323     * Returns the raw bytes of the parcel.
324     *
325     * <p class="note">The data you retrieve here <strong>must not</strong>
326     * be placed in any kind of persistent storage (on local disk, across
327     * a network, etc).  For that, you should use standard serialization
328     * or another kind of general serialization mechanism.  The Parcel
329     * marshalled representation is highly optimized for local IPC, and as
330     * such does not attempt to maintain compatibility with data created
331     * in different versions of the platform.
332     */
333    public final native byte[] marshall();
334
335    /**
336     * Set the bytes in data to be the raw bytes of this Parcel.
337     */
338    public final native void unmarshall(byte[] data, int offest, int length);
339
340    public final native void appendFrom(Parcel parcel, int offset, int length);
341
342    /**
343     * Report whether the parcel contains any marshalled file descriptors.
344     */
345    public final native boolean hasFileDescriptors();
346
347    /**
348     * Store or read an IBinder interface token in the parcel at the current
349     * {@link #dataPosition}.  This is used to validate that the marshalled
350     * transaction is intended for the target interface.
351     */
352    public final native void writeInterfaceToken(String interfaceName);
353    public final native void enforceInterface(String interfaceName);
354
355    /**
356     * Write a byte array into the parcel at the current {#link #dataPosition},
357     * growing {@link #dataCapacity} if needed.
358     * @param b Bytes to place into the parcel.
359     */
360    public final void writeByteArray(byte[] b) {
361        writeByteArray(b, 0, (b != null) ? b.length : 0);
362    }
363
364    /**
365     * Write an byte array into the parcel at the current {#link #dataPosition},
366     * growing {@link #dataCapacity} if needed.
367     * @param b Bytes to place into the parcel.
368     * @param offset Index of first byte to be written.
369     * @param len Number of bytes to write.
370     */
371    public final void writeByteArray(byte[] b, int offset, int len) {
372        if (b == null) {
373            writeInt(-1);
374            return;
375        }
376        if (b.length < offset + len || len < 0 || offset < 0) {
377            throw new ArrayIndexOutOfBoundsException();
378        }
379        writeNative(b, offset, len);
380    }
381
382    private native void writeNative(byte[] b, int offset, int len);
383
384    /**
385     * Write an integer value into the parcel at the current dataPosition(),
386     * growing dataCapacity() if needed.
387     */
388    public final native void writeInt(int val);
389
390    /**
391     * Write a long integer value into the parcel at the current dataPosition(),
392     * growing dataCapacity() if needed.
393     */
394    public final native void writeLong(long val);
395
396    /**
397     * Write a floating point value into the parcel at the current
398     * dataPosition(), growing dataCapacity() if needed.
399     */
400    public final native void writeFloat(float val);
401
402    /**
403     * Write a double precision floating point value into the parcel at the
404     * current dataPosition(), growing dataCapacity() if needed.
405     */
406    public final native void writeDouble(double val);
407
408    /**
409     * Write a string value into the parcel at the current dataPosition(),
410     * growing dataCapacity() if needed.
411     */
412    public final native void writeString(String val);
413
414    /**
415     * Write a CharSequence value into the parcel at the current dataPosition(),
416     * growing dataCapacity() if needed.
417     * @hide
418     */
419    public final void writeCharSequence(CharSequence val) {
420        TextUtils.writeToParcel(val, this, 0);
421    }
422
423    /**
424     * Write an object into the parcel at the current dataPosition(),
425     * growing dataCapacity() if needed.
426     */
427    public final native void writeStrongBinder(IBinder val);
428
429    /**
430     * Write an object into the parcel at the current dataPosition(),
431     * growing dataCapacity() if needed.
432     */
433    public final void writeStrongInterface(IInterface val) {
434        writeStrongBinder(val == null ? null : val.asBinder());
435    }
436
437    /**
438     * Write a FileDescriptor into the parcel at the current dataPosition(),
439     * growing dataCapacity() if needed.
440     */
441    public final native void writeFileDescriptor(FileDescriptor val);
442
443    /**
444     * Write an byte value into the parcel at the current dataPosition(),
445     * growing dataCapacity() if needed.
446     */
447    public final void writeByte(byte val) {
448        writeInt(val);
449    }
450
451    /**
452     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
453     * at the current dataPosition(),
454     * growing dataCapacity() if needed.  The Map keys must be String objects.
455     * The Map values are written using {@link #writeValue} and must follow
456     * the specification there.
457     *
458     * <p>It is strongly recommended to use {@link #writeBundle} instead of
459     * this method, since the Bundle class provides a type-safe API that
460     * allows you to avoid mysterious type errors at the point of marshalling.
461     */
462    public final void writeMap(Map val) {
463        writeMapInternal((Map<String,Object>) val);
464    }
465
466    /**
467     * Flatten a Map into the parcel at the current dataPosition(),
468     * growing dataCapacity() if needed.  The Map keys must be String objects.
469     */
470    /* package */ void writeMapInternal(Map<String,Object> val) {
471        if (val == null) {
472            writeInt(-1);
473            return;
474        }
475        Set<Map.Entry<String,Object>> entries = val.entrySet();
476        writeInt(entries.size());
477        for (Map.Entry<String,Object> e : entries) {
478            writeValue(e.getKey());
479            writeValue(e.getValue());
480        }
481    }
482
483    /**
484     * Flatten a Bundle into the parcel at the current dataPosition(),
485     * growing dataCapacity() if needed.
486     */
487    public final void writeBundle(Bundle val) {
488        if (val == null) {
489            writeInt(-1);
490            return;
491        }
492
493        val.writeToParcel(this, 0);
494    }
495
496    /**
497     * Flatten a List into the parcel at the current dataPosition(), growing
498     * dataCapacity() if needed.  The List values are written using
499     * {@link #writeValue} and must follow the specification there.
500     */
501    public final void writeList(List val) {
502        if (val == null) {
503            writeInt(-1);
504            return;
505        }
506        int N = val.size();
507        int i=0;
508        writeInt(N);
509        while (i < N) {
510            writeValue(val.get(i));
511            i++;
512        }
513    }
514
515    /**
516     * Flatten an Object array into the parcel at the current dataPosition(),
517     * growing dataCapacity() if needed.  The array values are written using
518     * {@link #writeValue} and must follow the specification there.
519     */
520    public final void writeArray(Object[] val) {
521        if (val == null) {
522            writeInt(-1);
523            return;
524        }
525        int N = val.length;
526        int i=0;
527        writeInt(N);
528        while (i < N) {
529            writeValue(val[i]);
530            i++;
531        }
532    }
533
534    /**
535     * Flatten a generic SparseArray into the parcel at the current
536     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
537     * values are written using {@link #writeValue} and must follow the
538     * specification there.
539     */
540    public final void writeSparseArray(SparseArray<Object> val) {
541        if (val == null) {
542            writeInt(-1);
543            return;
544        }
545        int N = val.size();
546        writeInt(N);
547        int i=0;
548        while (i < N) {
549            writeInt(val.keyAt(i));
550            writeValue(val.valueAt(i));
551            i++;
552        }
553    }
554
555    public final void writeSparseBooleanArray(SparseBooleanArray val) {
556        if (val == null) {
557            writeInt(-1);
558            return;
559        }
560        int N = val.size();
561        writeInt(N);
562        int i=0;
563        while (i < N) {
564            writeInt(val.keyAt(i));
565            writeByte((byte)(val.valueAt(i) ? 1 : 0));
566            i++;
567        }
568    }
569
570    public final void writeBooleanArray(boolean[] val) {
571        if (val != null) {
572            int N = val.length;
573            writeInt(N);
574            for (int i=0; i<N; i++) {
575                writeInt(val[i] ? 1 : 0);
576            }
577        } else {
578            writeInt(-1);
579        }
580    }
581
582    public final boolean[] createBooleanArray() {
583        int N = readInt();
584        // >>2 as a fast divide-by-4 works in the create*Array() functions
585        // because dataAvail() will never return a negative number.  4 is
586        // the size of a stored boolean in the stream.
587        if (N >= 0 && N <= (dataAvail() >> 2)) {
588            boolean[] val = new boolean[N];
589            for (int i=0; i<N; i++) {
590                val[i] = readInt() != 0;
591            }
592            return val;
593        } else {
594            return null;
595        }
596    }
597
598    public final void readBooleanArray(boolean[] val) {
599        int N = readInt();
600        if (N == val.length) {
601            for (int i=0; i<N; i++) {
602                val[i] = readInt() != 0;
603            }
604        } else {
605            throw new RuntimeException("bad array lengths");
606        }
607    }
608
609    public final void writeCharArray(char[] val) {
610        if (val != null) {
611            int N = val.length;
612            writeInt(N);
613            for (int i=0; i<N; i++) {
614                writeInt((int)val[i]);
615            }
616        } else {
617            writeInt(-1);
618        }
619    }
620
621    public final char[] createCharArray() {
622        int N = readInt();
623        if (N >= 0 && N <= (dataAvail() >> 2)) {
624            char[] val = new char[N];
625            for (int i=0; i<N; i++) {
626                val[i] = (char)readInt();
627            }
628            return val;
629        } else {
630            return null;
631        }
632    }
633
634    public final void readCharArray(char[] val) {
635        int N = readInt();
636        if (N == val.length) {
637            for (int i=0; i<N; i++) {
638                val[i] = (char)readInt();
639            }
640        } else {
641            throw new RuntimeException("bad array lengths");
642        }
643    }
644
645    public final void writeIntArray(int[] val) {
646        if (val != null) {
647            int N = val.length;
648            writeInt(N);
649            for (int i=0; i<N; i++) {
650                writeInt(val[i]);
651            }
652        } else {
653            writeInt(-1);
654        }
655    }
656
657    public final int[] createIntArray() {
658        int N = readInt();
659        if (N >= 0 && N <= (dataAvail() >> 2)) {
660            int[] val = new int[N];
661            for (int i=0; i<N; i++) {
662                val[i] = readInt();
663            }
664            return val;
665        } else {
666            return null;
667        }
668    }
669
670    public final void readIntArray(int[] val) {
671        int N = readInt();
672        if (N == val.length) {
673            for (int i=0; i<N; i++) {
674                val[i] = readInt();
675            }
676        } else {
677            throw new RuntimeException("bad array lengths");
678        }
679    }
680
681    public final void writeLongArray(long[] val) {
682        if (val != null) {
683            int N = val.length;
684            writeInt(N);
685            for (int i=0; i<N; i++) {
686                writeLong(val[i]);
687            }
688        } else {
689            writeInt(-1);
690        }
691    }
692
693    public final long[] createLongArray() {
694        int N = readInt();
695        // >>3 because stored longs are 64 bits
696        if (N >= 0 && N <= (dataAvail() >> 3)) {
697            long[] val = new long[N];
698            for (int i=0; i<N; i++) {
699                val[i] = readLong();
700            }
701            return val;
702        } else {
703            return null;
704        }
705    }
706
707    public final void readLongArray(long[] val) {
708        int N = readInt();
709        if (N == val.length) {
710            for (int i=0; i<N; i++) {
711                val[i] = readLong();
712            }
713        } else {
714            throw new RuntimeException("bad array lengths");
715        }
716    }
717
718    public final void writeFloatArray(float[] val) {
719        if (val != null) {
720            int N = val.length;
721            writeInt(N);
722            for (int i=0; i<N; i++) {
723                writeFloat(val[i]);
724            }
725        } else {
726            writeInt(-1);
727        }
728    }
729
730    public final float[] createFloatArray() {
731        int N = readInt();
732        // >>2 because stored floats are 4 bytes
733        if (N >= 0 && N <= (dataAvail() >> 2)) {
734            float[] val = new float[N];
735            for (int i=0; i<N; i++) {
736                val[i] = readFloat();
737            }
738            return val;
739        } else {
740            return null;
741        }
742    }
743
744    public final void readFloatArray(float[] val) {
745        int N = readInt();
746        if (N == val.length) {
747            for (int i=0; i<N; i++) {
748                val[i] = readFloat();
749            }
750        } else {
751            throw new RuntimeException("bad array lengths");
752        }
753    }
754
755    public final void writeDoubleArray(double[] val) {
756        if (val != null) {
757            int N = val.length;
758            writeInt(N);
759            for (int i=0; i<N; i++) {
760                writeDouble(val[i]);
761            }
762        } else {
763            writeInt(-1);
764        }
765    }
766
767    public final double[] createDoubleArray() {
768        int N = readInt();
769        // >>3 because stored doubles are 8 bytes
770        if (N >= 0 && N <= (dataAvail() >> 3)) {
771            double[] val = new double[N];
772            for (int i=0; i<N; i++) {
773                val[i] = readDouble();
774            }
775            return val;
776        } else {
777            return null;
778        }
779    }
780
781    public final void readDoubleArray(double[] val) {
782        int N = readInt();
783        if (N == val.length) {
784            for (int i=0; i<N; i++) {
785                val[i] = readDouble();
786            }
787        } else {
788            throw new RuntimeException("bad array lengths");
789        }
790    }
791
792    public final void writeStringArray(String[] val) {
793        if (val != null) {
794            int N = val.length;
795            writeInt(N);
796            for (int i=0; i<N; i++) {
797                writeString(val[i]);
798            }
799        } else {
800            writeInt(-1);
801        }
802    }
803
804    public final String[] createStringArray() {
805        int N = readInt();
806        if (N >= 0) {
807            String[] val = new String[N];
808            for (int i=0; i<N; i++) {
809                val[i] = readString();
810            }
811            return val;
812        } else {
813            return null;
814        }
815    }
816
817    public final void readStringArray(String[] val) {
818        int N = readInt();
819        if (N == val.length) {
820            for (int i=0; i<N; i++) {
821                val[i] = readString();
822            }
823        } else {
824            throw new RuntimeException("bad array lengths");
825        }
826    }
827
828    public final void writeBinderArray(IBinder[] val) {
829        if (val != null) {
830            int N = val.length;
831            writeInt(N);
832            for (int i=0; i<N; i++) {
833                writeStrongBinder(val[i]);
834            }
835        } else {
836            writeInt(-1);
837        }
838    }
839
840    /**
841     * @hide
842     */
843    public final void writeCharSequenceArray(CharSequence[] val) {
844        if (val != null) {
845            int N = val.length;
846            writeInt(N);
847            for (int i=0; i<N; i++) {
848                writeCharSequence(val[i]);
849            }
850        } else {
851            writeInt(-1);
852        }
853    }
854
855    public final IBinder[] createBinderArray() {
856        int N = readInt();
857        if (N >= 0) {
858            IBinder[] val = new IBinder[N];
859            for (int i=0; i<N; i++) {
860                val[i] = readStrongBinder();
861            }
862            return val;
863        } else {
864            return null;
865        }
866    }
867
868    public final void readBinderArray(IBinder[] val) {
869        int N = readInt();
870        if (N == val.length) {
871            for (int i=0; i<N; i++) {
872                val[i] = readStrongBinder();
873            }
874        } else {
875            throw new RuntimeException("bad array lengths");
876        }
877    }
878
879    /**
880     * Flatten a List containing a particular object type into the parcel, at
881     * the current dataPosition() and growing dataCapacity() if needed.  The
882     * type of the objects in the list must be one that implements Parcelable.
883     * Unlike the generic writeList() method, however, only the raw data of the
884     * objects is written and not their type, so you must use the corresponding
885     * readTypedList() to unmarshall them.
886     *
887     * @param val The list of objects to be written.
888     *
889     * @see #createTypedArrayList
890     * @see #readTypedList
891     * @see Parcelable
892     */
893    public final <T extends Parcelable> void writeTypedList(List<T> val) {
894        if (val == null) {
895            writeInt(-1);
896            return;
897        }
898        int N = val.size();
899        int i=0;
900        writeInt(N);
901        while (i < N) {
902            T item = val.get(i);
903            if (item != null) {
904                writeInt(1);
905                item.writeToParcel(this, 0);
906            } else {
907                writeInt(0);
908            }
909            i++;
910        }
911    }
912
913    /**
914     * Flatten a List containing String objects into the parcel, at
915     * the current dataPosition() and growing dataCapacity() if needed.  They
916     * can later be retrieved with {@link #createStringArrayList} or
917     * {@link #readStringList}.
918     *
919     * @param val The list of strings to be written.
920     *
921     * @see #createStringArrayList
922     * @see #readStringList
923     */
924    public final void writeStringList(List<String> val) {
925        if (val == null) {
926            writeInt(-1);
927            return;
928        }
929        int N = val.size();
930        int i=0;
931        writeInt(N);
932        while (i < N) {
933            writeString(val.get(i));
934            i++;
935        }
936    }
937
938    /**
939     * Flatten a List containing IBinder objects into the parcel, at
940     * the current dataPosition() and growing dataCapacity() if needed.  They
941     * can later be retrieved with {@link #createBinderArrayList} or
942     * {@link #readBinderList}.
943     *
944     * @param val The list of strings to be written.
945     *
946     * @see #createBinderArrayList
947     * @see #readBinderList
948     */
949    public final void writeBinderList(List<IBinder> val) {
950        if (val == null) {
951            writeInt(-1);
952            return;
953        }
954        int N = val.size();
955        int i=0;
956        writeInt(N);
957        while (i < N) {
958            writeStrongBinder(val.get(i));
959            i++;
960        }
961    }
962
963    /**
964     * Flatten a heterogeneous array containing a particular object type into
965     * the parcel, at
966     * the current dataPosition() and growing dataCapacity() if needed.  The
967     * type of the objects in the array must be one that implements Parcelable.
968     * Unlike the {@link #writeParcelableArray} method, however, only the
969     * raw data of the objects is written and not their type, so you must use
970     * {@link #readTypedArray} with the correct corresponding
971     * {@link Parcelable.Creator} implementation to unmarshall them.
972     *
973     * @param val The array of objects to be written.
974     * @param parcelableFlags Contextual flags as per
975     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
976     *
977     * @see #readTypedArray
978     * @see #writeParcelableArray
979     * @see Parcelable.Creator
980     */
981    public final <T extends Parcelable> void writeTypedArray(T[] val,
982            int parcelableFlags) {
983        if (val != null) {
984            int N = val.length;
985            writeInt(N);
986            for (int i=0; i<N; i++) {
987                T item = val[i];
988                if (item != null) {
989                    writeInt(1);
990                    item.writeToParcel(this, parcelableFlags);
991                } else {
992                    writeInt(0);
993                }
994            }
995        } else {
996            writeInt(-1);
997        }
998    }
999
1000    /**
1001     * Flatten a generic object in to a parcel.  The given Object value may
1002     * currently be one of the following types:
1003     *
1004     * <ul>
1005     * <li> null
1006     * <li> String
1007     * <li> Byte
1008     * <li> Short
1009     * <li> Integer
1010     * <li> Long
1011     * <li> Float
1012     * <li> Double
1013     * <li> Boolean
1014     * <li> String[]
1015     * <li> boolean[]
1016     * <li> byte[]
1017     * <li> int[]
1018     * <li> long[]
1019     * <li> Object[] (supporting objects of the same type defined here).
1020     * <li> {@link Bundle}
1021     * <li> Map (as supported by {@link #writeMap}).
1022     * <li> Any object that implements the {@link Parcelable} protocol.
1023     * <li> Parcelable[]
1024     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1025     * <li> List (as supported by {@link #writeList}).
1026     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray}).
1027     * <li> {@link IBinder}
1028     * <li> Any object that implements Serializable (but see
1029     *      {@link #writeSerializable} for caveats).  Note that all of the
1030     *      previous types have relatively efficient implementations for
1031     *      writing to a Parcel; having to rely on the generic serialization
1032     *      approach is much less efficient and should be avoided whenever
1033     *      possible.
1034     * </ul>
1035     */
1036    public final void writeValue(Object v) {
1037        if (v == null) {
1038            writeInt(VAL_NULL);
1039        } else if (v instanceof String) {
1040            writeInt(VAL_STRING);
1041            writeString((String) v);
1042        } else if (v instanceof Integer) {
1043            writeInt(VAL_INTEGER);
1044            writeInt((Integer) v);
1045        } else if (v instanceof Map) {
1046            writeInt(VAL_MAP);
1047            writeMap((Map) v);
1048        } else if (v instanceof Bundle) {
1049            // Must be before Parcelable
1050            writeInt(VAL_BUNDLE);
1051            writeBundle((Bundle) v);
1052        } else if (v instanceof Parcelable) {
1053            writeInt(VAL_PARCELABLE);
1054            writeParcelable((Parcelable) v, 0);
1055        } else if (v instanceof Short) {
1056            writeInt(VAL_SHORT);
1057            writeInt(((Short) v).intValue());
1058        } else if (v instanceof Long) {
1059            writeInt(VAL_LONG);
1060            writeLong((Long) v);
1061        } else if (v instanceof Float) {
1062            writeInt(VAL_FLOAT);
1063            writeFloat((Float) v);
1064        } else if (v instanceof Double) {
1065            writeInt(VAL_DOUBLE);
1066            writeDouble((Double) v);
1067        } else if (v instanceof Boolean) {
1068            writeInt(VAL_BOOLEAN);
1069            writeInt((Boolean) v ? 1 : 0);
1070        } else if (v instanceof CharSequence) {
1071            // Must be after String
1072            writeInt(VAL_CHARSEQUENCE);
1073            writeCharSequence((CharSequence) v);
1074        } else if (v instanceof List) {
1075            writeInt(VAL_LIST);
1076            writeList((List) v);
1077        } else if (v instanceof SparseArray) {
1078            writeInt(VAL_SPARSEARRAY);
1079            writeSparseArray((SparseArray) v);
1080        } else if (v instanceof boolean[]) {
1081            writeInt(VAL_BOOLEANARRAY);
1082            writeBooleanArray((boolean[]) v);
1083        } else if (v instanceof byte[]) {
1084            writeInt(VAL_BYTEARRAY);
1085            writeByteArray((byte[]) v);
1086        } else if (v instanceof String[]) {
1087            writeInt(VAL_STRINGARRAY);
1088            writeStringArray((String[]) v);
1089        } else if (v instanceof CharSequence[]) {
1090            // Must be after String[] and before Object[]
1091            writeInt(VAL_CHARSEQUENCEARRAY);
1092            writeCharSequenceArray((CharSequence[]) v);
1093        } else if (v instanceof IBinder) {
1094            writeInt(VAL_IBINDER);
1095            writeStrongBinder((IBinder) v);
1096        } else if (v instanceof Parcelable[]) {
1097            writeInt(VAL_PARCELABLEARRAY);
1098            writeParcelableArray((Parcelable[]) v, 0);
1099        } else if (v instanceof Object[]) {
1100            writeInt(VAL_OBJECTARRAY);
1101            writeArray((Object[]) v);
1102        } else if (v instanceof int[]) {
1103            writeInt(VAL_INTARRAY);
1104            writeIntArray((int[]) v);
1105        } else if (v instanceof long[]) {
1106            writeInt(VAL_LONGARRAY);
1107            writeLongArray((long[]) v);
1108        } else if (v instanceof Byte) {
1109            writeInt(VAL_BYTE);
1110            writeInt((Byte) v);
1111        } else if (v instanceof Serializable) {
1112            // Must be last
1113            writeInt(VAL_SERIALIZABLE);
1114            writeSerializable((Serializable) v);
1115        } else {
1116            throw new RuntimeException("Parcel: unable to marshal value " + v);
1117        }
1118    }
1119
1120    /**
1121     * Flatten the name of the class of the Parcelable and its contents
1122     * into the parcel.
1123     *
1124     * @param p The Parcelable object to be written.
1125     * @param parcelableFlags Contextual flags as per
1126     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1127     */
1128    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1129        if (p == null) {
1130            writeString(null);
1131            return;
1132        }
1133        String name = p.getClass().getName();
1134        writeString(name);
1135        p.writeToParcel(this, parcelableFlags);
1136    }
1137
1138    /**
1139     * Write a generic serializable object in to a Parcel.  It is strongly
1140     * recommended that this method be avoided, since the serialization
1141     * overhead is extremely large, and this approach will be much slower than
1142     * using the other approaches to writing data in to a Parcel.
1143     */
1144    public final void writeSerializable(Serializable s) {
1145        if (s == null) {
1146            writeString(null);
1147            return;
1148        }
1149        String name = s.getClass().getName();
1150        writeString(name);
1151
1152        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1153        try {
1154            ObjectOutputStream oos = new ObjectOutputStream(baos);
1155            oos.writeObject(s);
1156            oos.close();
1157
1158            writeByteArray(baos.toByteArray());
1159        } catch (IOException ioe) {
1160            throw new RuntimeException("Parcelable encountered " +
1161                "IOException writing serializable object (name = " + name +
1162                ")", ioe);
1163        }
1164    }
1165
1166    /**
1167     * Special function for writing an exception result at the header of
1168     * a parcel, to be used when returning an exception from a transaction.
1169     * Note that this currently only supports a few exception types; any other
1170     * exception will be re-thrown by this function as a RuntimeException
1171     * (to be caught by the system's last-resort exception handling when
1172     * dispatching a transaction).
1173     *
1174     * <p>The supported exception types are:
1175     * <ul>
1176     * <li>{@link BadParcelableException}
1177     * <li>{@link IllegalArgumentException}
1178     * <li>{@link IllegalStateException}
1179     * <li>{@link NullPointerException}
1180     * <li>{@link SecurityException}
1181     * </ul>
1182     *
1183     * @param e The Exception to be written.
1184     *
1185     * @see #writeNoException
1186     * @see #readException
1187     */
1188    public final void writeException(Exception e) {
1189        int code = 0;
1190        if (e instanceof SecurityException) {
1191            code = EX_SECURITY;
1192        } else if (e instanceof BadParcelableException) {
1193            code = EX_BAD_PARCELABLE;
1194        } else if (e instanceof IllegalArgumentException) {
1195            code = EX_ILLEGAL_ARGUMENT;
1196        } else if (e instanceof NullPointerException) {
1197            code = EX_NULL_POINTER;
1198        } else if (e instanceof IllegalStateException) {
1199            code = EX_ILLEGAL_STATE;
1200        }
1201        writeInt(code);
1202        if (code == 0) {
1203            if (e instanceof RuntimeException) {
1204                throw (RuntimeException) e;
1205            }
1206            throw new RuntimeException(e);
1207        }
1208        writeString(e.getMessage());
1209    }
1210
1211    /**
1212     * Special function for writing information at the front of the Parcel
1213     * indicating that no exception occurred.
1214     *
1215     * @see #writeException
1216     * @see #readException
1217     */
1218    public final void writeNoException() {
1219        writeInt(0);
1220    }
1221
1222    /**
1223     * Special function for reading an exception result from the header of
1224     * a parcel, to be used after receiving the result of a transaction.  This
1225     * will throw the exception for you if it had been written to the Parcel,
1226     * otherwise return and let you read the normal result data from the Parcel.
1227     *
1228     * @see #writeException
1229     * @see #writeNoException
1230     */
1231    public final void readException() {
1232        int code = readInt();
1233        if (code == 0) return;
1234        String msg = readString();
1235        readException(code, msg);
1236    }
1237
1238    /**
1239     * Use this function for customized exception handling.
1240     * customized method call this method for all unknown case
1241     * @param code exception code
1242     * @param msg exception message
1243     */
1244    public final void readException(int code, String msg) {
1245        switch (code) {
1246            case EX_SECURITY:
1247                throw new SecurityException(msg);
1248            case EX_BAD_PARCELABLE:
1249                throw new BadParcelableException(msg);
1250            case EX_ILLEGAL_ARGUMENT:
1251                throw new IllegalArgumentException(msg);
1252            case EX_NULL_POINTER:
1253                throw new NullPointerException(msg);
1254            case EX_ILLEGAL_STATE:
1255                throw new IllegalStateException(msg);
1256        }
1257        throw new RuntimeException("Unknown exception code: " + code
1258                + " msg " + msg);
1259    }
1260
1261    /**
1262     * Read an integer value from the parcel at the current dataPosition().
1263     */
1264    public final native int readInt();
1265
1266    /**
1267     * Read a long integer value from the parcel at the current dataPosition().
1268     */
1269    public final native long readLong();
1270
1271    /**
1272     * Read a floating point value from the parcel at the current
1273     * dataPosition().
1274     */
1275    public final native float readFloat();
1276
1277    /**
1278     * Read a double precision floating point value from the parcel at the
1279     * current dataPosition().
1280     */
1281    public final native double readDouble();
1282
1283    /**
1284     * Read a string value from the parcel at the current dataPosition().
1285     */
1286    public final native String readString();
1287
1288    /**
1289     * Read a CharSequence value from the parcel at the current dataPosition().
1290     * @hide
1291     */
1292    public final CharSequence readCharSequence() {
1293        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1294    }
1295
1296    /**
1297     * Read an object from the parcel at the current dataPosition().
1298     */
1299    public final native IBinder readStrongBinder();
1300
1301    /**
1302     * Read a FileDescriptor from the parcel at the current dataPosition().
1303     */
1304    public final ParcelFileDescriptor readFileDescriptor() {
1305        FileDescriptor fd = internalReadFileDescriptor();
1306        return fd != null ? new ParcelFileDescriptor(fd) : null;
1307    }
1308
1309    private native FileDescriptor internalReadFileDescriptor();
1310    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1311            int mode) throws FileNotFoundException;
1312    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1313            throws IOException;
1314
1315    /**
1316     * Read a byte value from the parcel at the current dataPosition().
1317     */
1318    public final byte readByte() {
1319        return (byte)(readInt() & 0xff);
1320    }
1321
1322    /**
1323     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1324     * been written with {@link #writeBundle}.  Read into an existing Map object
1325     * from the parcel at the current dataPosition().
1326     */
1327    public final void readMap(Map outVal, ClassLoader loader) {
1328        int N = readInt();
1329        readMapInternal(outVal, N, loader);
1330    }
1331
1332    /**
1333     * Read into an existing List object from the parcel at the current
1334     * dataPosition(), using the given class loader to load any enclosed
1335     * Parcelables.  If it is null, the default class loader is used.
1336     */
1337    public final void readList(List outVal, ClassLoader loader) {
1338        int N = readInt();
1339        readListInternal(outVal, N, loader);
1340    }
1341
1342    /**
1343     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1344     * been written with {@link #writeBundle}.  Read and return a new HashMap
1345     * object from the parcel at the current dataPosition(), using the given
1346     * class loader to load any enclosed Parcelables.  Returns null if
1347     * the previously written map object was null.
1348     */
1349    public final HashMap readHashMap(ClassLoader loader)
1350    {
1351        int N = readInt();
1352        if (N < 0) {
1353            return null;
1354        }
1355        HashMap m = new HashMap(N);
1356        readMapInternal(m, N, loader);
1357        return m;
1358    }
1359
1360    /**
1361     * Read and return a new Bundle object from the parcel at the current
1362     * dataPosition().  Returns null if the previously written Bundle object was
1363     * null.
1364     */
1365    public final Bundle readBundle() {
1366        return readBundle(null);
1367    }
1368
1369    /**
1370     * Read and return a new Bundle object from the parcel at the current
1371     * dataPosition(), using the given class loader to initialize the class
1372     * loader of the Bundle for later retrieval of Parcelable objects.
1373     * Returns null if the previously written Bundle object was null.
1374     */
1375    public final Bundle readBundle(ClassLoader loader) {
1376        int length = readInt();
1377        if (length < 0) {
1378            return null;
1379        }
1380
1381        final Bundle bundle = new Bundle(this, length);
1382        if (loader != null) {
1383            bundle.setClassLoader(loader);
1384        }
1385        return bundle;
1386    }
1387
1388    /**
1389     * Read and return a byte[] object from the parcel.
1390     */
1391    public final native byte[] createByteArray();
1392
1393    /**
1394     * Read a byte[] object from the parcel and copy it into the
1395     * given byte array.
1396     */
1397    public final void readByteArray(byte[] val) {
1398        // TODO: make this a native method to avoid the extra copy.
1399        byte[] ba = createByteArray();
1400        if (ba.length == val.length) {
1401           System.arraycopy(ba, 0, val, 0, ba.length);
1402        } else {
1403            throw new RuntimeException("bad array lengths");
1404        }
1405    }
1406
1407    /**
1408     * Read and return a String[] object from the parcel.
1409     * {@hide}
1410     */
1411    public final String[] readStringArray() {
1412        String[] array = null;
1413
1414        int length = readInt();
1415        if (length >= 0)
1416        {
1417            array = new String[length];
1418
1419            for (int i = 0 ; i < length ; i++)
1420            {
1421                array[i] = readString();
1422            }
1423        }
1424
1425        return array;
1426    }
1427
1428    /**
1429     * Read and return a CharSequence[] object from the parcel.
1430     * {@hide}
1431     */
1432    public final CharSequence[] readCharSequenceArray() {
1433        CharSequence[] array = null;
1434
1435        int length = readInt();
1436        if (length >= 0)
1437        {
1438            array = new CharSequence[length];
1439
1440            for (int i = 0 ; i < length ; i++)
1441            {
1442                array[i] = readCharSequence();
1443            }
1444        }
1445
1446        return array;
1447    }
1448
1449    /**
1450     * Read and return a new ArrayList object from the parcel at the current
1451     * dataPosition().  Returns null if the previously written list object was
1452     * null.  The given class loader will be used to load any enclosed
1453     * Parcelables.
1454     */
1455    public final ArrayList readArrayList(ClassLoader loader) {
1456        int N = readInt();
1457        if (N < 0) {
1458            return null;
1459        }
1460        ArrayList l = new ArrayList(N);
1461        readListInternal(l, N, loader);
1462        return l;
1463    }
1464
1465    /**
1466     * Read and return a new Object array from the parcel at the current
1467     * dataPosition().  Returns null if the previously written array was
1468     * null.  The given class loader will be used to load any enclosed
1469     * Parcelables.
1470     */
1471    public final Object[] readArray(ClassLoader loader) {
1472        int N = readInt();
1473        if (N < 0) {
1474            return null;
1475        }
1476        Object[] l = new Object[N];
1477        readArrayInternal(l, N, loader);
1478        return l;
1479    }
1480
1481    /**
1482     * Read and return a new SparseArray object from the parcel at the current
1483     * dataPosition().  Returns null if the previously written list object was
1484     * null.  The given class loader will be used to load any enclosed
1485     * Parcelables.
1486     */
1487    public final SparseArray readSparseArray(ClassLoader loader) {
1488        int N = readInt();
1489        if (N < 0) {
1490            return null;
1491        }
1492        SparseArray sa = new SparseArray(N);
1493        readSparseArrayInternal(sa, N, loader);
1494        return sa;
1495    }
1496
1497    /**
1498     * Read and return a new SparseBooleanArray object from the parcel at the current
1499     * dataPosition().  Returns null if the previously written list object was
1500     * null.
1501     */
1502    public final SparseBooleanArray readSparseBooleanArray() {
1503        int N = readInt();
1504        if (N < 0) {
1505            return null;
1506        }
1507        SparseBooleanArray sa = new SparseBooleanArray(N);
1508        readSparseBooleanArrayInternal(sa, N);
1509        return sa;
1510    }
1511
1512    /**
1513     * Read and return a new ArrayList containing a particular object type from
1514     * the parcel that was written with {@link #writeTypedList} at the
1515     * current dataPosition().  Returns null if the
1516     * previously written list object was null.  The list <em>must</em> have
1517     * previously been written via {@link #writeTypedList} with the same object
1518     * type.
1519     *
1520     * @return A newly created ArrayList containing objects with the same data
1521     *         as those that were previously written.
1522     *
1523     * @see #writeTypedList
1524     */
1525    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1526        int N = readInt();
1527        if (N < 0) {
1528            return null;
1529        }
1530        ArrayList<T> l = new ArrayList<T>(N);
1531        while (N > 0) {
1532            if (readInt() != 0) {
1533                l.add(c.createFromParcel(this));
1534            } else {
1535                l.add(null);
1536            }
1537            N--;
1538        }
1539        return l;
1540    }
1541
1542    /**
1543     * Read into the given List items containing a particular object type
1544     * that were written with {@link #writeTypedList} at the
1545     * current dataPosition().  The list <em>must</em> have
1546     * previously been written via {@link #writeTypedList} with the same object
1547     * type.
1548     *
1549     * @return A newly created ArrayList containing objects with the same data
1550     *         as those that were previously written.
1551     *
1552     * @see #writeTypedList
1553     */
1554    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1555        int M = list.size();
1556        int N = readInt();
1557        int i = 0;
1558        for (; i < M && i < N; i++) {
1559            if (readInt() != 0) {
1560                list.set(i, c.createFromParcel(this));
1561            } else {
1562                list.set(i, null);
1563            }
1564        }
1565        for (; i<N; i++) {
1566            if (readInt() != 0) {
1567                list.add(c.createFromParcel(this));
1568            } else {
1569                list.add(null);
1570            }
1571        }
1572        for (; i<M; i++) {
1573            list.remove(N);
1574        }
1575    }
1576
1577    /**
1578     * Read and return a new ArrayList containing String objects from
1579     * the parcel that was written with {@link #writeStringList} at the
1580     * current dataPosition().  Returns null if the
1581     * previously written list object was null.
1582     *
1583     * @return A newly created ArrayList containing strings with the same data
1584     *         as those that were previously written.
1585     *
1586     * @see #writeStringList
1587     */
1588    public final ArrayList<String> createStringArrayList() {
1589        int N = readInt();
1590        if (N < 0) {
1591            return null;
1592        }
1593        ArrayList<String> l = new ArrayList<String>(N);
1594        while (N > 0) {
1595            l.add(readString());
1596            N--;
1597        }
1598        return l;
1599    }
1600
1601    /**
1602     * Read and return a new ArrayList containing IBinder objects from
1603     * the parcel that was written with {@link #writeBinderList} at the
1604     * current dataPosition().  Returns null if the
1605     * previously written list object was null.
1606     *
1607     * @return A newly created ArrayList containing strings with the same data
1608     *         as those that were previously written.
1609     *
1610     * @see #writeBinderList
1611     */
1612    public final ArrayList<IBinder> createBinderArrayList() {
1613        int N = readInt();
1614        if (N < 0) {
1615            return null;
1616        }
1617        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1618        while (N > 0) {
1619            l.add(readStrongBinder());
1620            N--;
1621        }
1622        return l;
1623    }
1624
1625    /**
1626     * Read into the given List items String objects that were written with
1627     * {@link #writeStringList} at the current dataPosition().
1628     *
1629     * @return A newly created ArrayList containing strings with the same data
1630     *         as those that were previously written.
1631     *
1632     * @see #writeStringList
1633     */
1634    public final void readStringList(List<String> list) {
1635        int M = list.size();
1636        int N = readInt();
1637        int i = 0;
1638        for (; i < M && i < N; i++) {
1639            list.set(i, readString());
1640        }
1641        for (; i<N; i++) {
1642            list.add(readString());
1643        }
1644        for (; i<M; i++) {
1645            list.remove(N);
1646        }
1647    }
1648
1649    /**
1650     * Read into the given List items IBinder objects that were written with
1651     * {@link #writeBinderList} at the current dataPosition().
1652     *
1653     * @return A newly created ArrayList containing strings with the same data
1654     *         as those that were previously written.
1655     *
1656     * @see #writeBinderList
1657     */
1658    public final void readBinderList(List<IBinder> list) {
1659        int M = list.size();
1660        int N = readInt();
1661        int i = 0;
1662        for (; i < M && i < N; i++) {
1663            list.set(i, readStrongBinder());
1664        }
1665        for (; i<N; i++) {
1666            list.add(readStrongBinder());
1667        }
1668        for (; i<M; i++) {
1669            list.remove(N);
1670        }
1671    }
1672
1673    /**
1674     * Read and return a new array containing a particular object type from
1675     * the parcel at the current dataPosition().  Returns null if the
1676     * previously written array was null.  The array <em>must</em> have
1677     * previously been written via {@link #writeTypedArray} with the same
1678     * object type.
1679     *
1680     * @return A newly created array containing objects with the same data
1681     *         as those that were previously written.
1682     *
1683     * @see #writeTypedArray
1684     */
1685    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
1686        int N = readInt();
1687        if (N < 0) {
1688            return null;
1689        }
1690        T[] l = c.newArray(N);
1691        for (int i=0; i<N; i++) {
1692            if (readInt() != 0) {
1693                l[i] = c.createFromParcel(this);
1694            }
1695        }
1696        return l;
1697    }
1698
1699    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
1700        int N = readInt();
1701        if (N == val.length) {
1702            for (int i=0; i<N; i++) {
1703                if (readInt() != 0) {
1704                    val[i] = c.createFromParcel(this);
1705                } else {
1706                    val[i] = null;
1707                }
1708            }
1709        } else {
1710            throw new RuntimeException("bad array lengths");
1711        }
1712    }
1713
1714    /**
1715     * @deprecated
1716     * @hide
1717     */
1718    @Deprecated
1719    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
1720        return createTypedArray(c);
1721    }
1722
1723    /**
1724     * Write a heterogeneous array of Parcelable objects into the Parcel.
1725     * Each object in the array is written along with its class name, so
1726     * that the correct class can later be instantiated.  As a result, this
1727     * has significantly more overhead than {@link #writeTypedArray}, but will
1728     * correctly handle an array containing more than one type of object.
1729     *
1730     * @param value The array of objects to be written.
1731     * @param parcelableFlags Contextual flags as per
1732     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1733     *
1734     * @see #writeTypedArray
1735     */
1736    public final <T extends Parcelable> void writeParcelableArray(T[] value,
1737            int parcelableFlags) {
1738        if (value != null) {
1739            int N = value.length;
1740            writeInt(N);
1741            for (int i=0; i<N; i++) {
1742                writeParcelable(value[i], parcelableFlags);
1743            }
1744        } else {
1745            writeInt(-1);
1746        }
1747    }
1748
1749    /**
1750     * Read a typed object from a parcel.  The given class loader will be
1751     * used to load any enclosed Parcelables.  If it is null, the default class
1752     * loader will be used.
1753     */
1754    public final Object readValue(ClassLoader loader) {
1755        int type = readInt();
1756
1757        switch (type) {
1758        case VAL_NULL:
1759            return null;
1760
1761        case VAL_STRING:
1762            return readString();
1763
1764        case VAL_INTEGER:
1765            return readInt();
1766
1767        case VAL_MAP:
1768            return readHashMap(loader);
1769
1770        case VAL_PARCELABLE:
1771            return readParcelable(loader);
1772
1773        case VAL_SHORT:
1774            return (short) readInt();
1775
1776        case VAL_LONG:
1777            return readLong();
1778
1779        case VAL_FLOAT:
1780            return readFloat();
1781
1782        case VAL_DOUBLE:
1783            return readDouble();
1784
1785        case VAL_BOOLEAN:
1786            return readInt() == 1;
1787
1788        case VAL_CHARSEQUENCE:
1789            return readCharSequence();
1790
1791        case VAL_LIST:
1792            return readArrayList(loader);
1793
1794        case VAL_BOOLEANARRAY:
1795            return createBooleanArray();
1796
1797        case VAL_BYTEARRAY:
1798            return createByteArray();
1799
1800        case VAL_STRINGARRAY:
1801            return readStringArray();
1802
1803        case VAL_CHARSEQUENCEARRAY:
1804            return readCharSequenceArray();
1805
1806        case VAL_IBINDER:
1807            return readStrongBinder();
1808
1809        case VAL_OBJECTARRAY:
1810            return readArray(loader);
1811
1812        case VAL_INTARRAY:
1813            return createIntArray();
1814
1815        case VAL_LONGARRAY:
1816            return createLongArray();
1817
1818        case VAL_BYTE:
1819            return readByte();
1820
1821        case VAL_SERIALIZABLE:
1822            return readSerializable();
1823
1824        case VAL_PARCELABLEARRAY:
1825            return readParcelableArray(loader);
1826
1827        case VAL_SPARSEARRAY:
1828            return readSparseArray(loader);
1829
1830        case VAL_SPARSEBOOLEANARRAY:
1831            return readSparseBooleanArray();
1832
1833        case VAL_BUNDLE:
1834            return readBundle(loader); // loading will be deferred
1835
1836        default:
1837            int off = dataPosition() - 4;
1838            throw new RuntimeException(
1839                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
1840        }
1841    }
1842
1843    /**
1844     * Read and return a new Parcelable from the parcel.  The given class loader
1845     * will be used to load any enclosed Parcelables.  If it is null, the default
1846     * class loader will be used.
1847     * @param loader A ClassLoader from which to instantiate the Parcelable
1848     * object, or null for the default class loader.
1849     * @return Returns the newly created Parcelable, or null if a null
1850     * object has been written.
1851     * @throws BadParcelableException Throws BadParcelableException if there
1852     * was an error trying to instantiate the Parcelable.
1853     */
1854    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
1855        String name = readString();
1856        if (name == null) {
1857            return null;
1858        }
1859        Parcelable.Creator<T> creator;
1860        synchronized (mCreators) {
1861            HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
1862            if (map == null) {
1863                map = new HashMap<String,Parcelable.Creator>();
1864                mCreators.put(loader, map);
1865            }
1866            creator = map.get(name);
1867            if (creator == null) {
1868                try {
1869                    Class c = loader == null ?
1870                        Class.forName(name) : Class.forName(name, true, loader);
1871                    Field f = c.getField("CREATOR");
1872                    creator = (Parcelable.Creator)f.get(null);
1873                }
1874                catch (IllegalAccessException e) {
1875                    Log.e("Parcel", "Class not found when unmarshalling: "
1876                                        + name + ", e: " + e);
1877                    throw new BadParcelableException(
1878                            "IllegalAccessException when unmarshalling: " + name);
1879                }
1880                catch (ClassNotFoundException e) {
1881                    Log.e("Parcel", "Class not found when unmarshalling: "
1882                                        + name + ", e: " + e);
1883                    throw new BadParcelableException(
1884                            "ClassNotFoundException when unmarshalling: " + name);
1885                }
1886                catch (ClassCastException e) {
1887                    throw new BadParcelableException("Parcelable protocol requires a "
1888                                        + "Parcelable.Creator object called "
1889                                        + " CREATOR on class " + name);
1890                }
1891                catch (NoSuchFieldException e) {
1892                    throw new BadParcelableException("Parcelable protocol requires a "
1893                                        + "Parcelable.Creator object called "
1894                                        + " CREATOR on class " + name);
1895                }
1896                if (creator == null) {
1897                    throw new BadParcelableException("Parcelable protocol requires a "
1898                                        + "Parcelable.Creator object called "
1899                                        + " CREATOR on class " + name);
1900                }
1901
1902                map.put(name, creator);
1903            }
1904        }
1905
1906        return creator.createFromParcel(this);
1907    }
1908
1909    /**
1910     * Read and return a new Parcelable array from the parcel.
1911     * The given class loader will be used to load any enclosed
1912     * Parcelables.
1913     * @return the Parcelable array, or null if the array is null
1914     */
1915    public final Parcelable[] readParcelableArray(ClassLoader loader) {
1916        int N = readInt();
1917        if (N < 0) {
1918            return null;
1919        }
1920        Parcelable[] p = new Parcelable[N];
1921        for (int i = 0; i < N; i++) {
1922            p[i] = (Parcelable) readParcelable(loader);
1923        }
1924        return p;
1925    }
1926
1927    /**
1928     * Read and return a new Serializable object from the parcel.
1929     * @return the Serializable object, or null if the Serializable name
1930     * wasn't found in the parcel.
1931     */
1932    public final Serializable readSerializable() {
1933        String name = readString();
1934        if (name == null) {
1935            // For some reason we were unable to read the name of the Serializable (either there
1936            // is nothing left in the Parcel to read, or the next value wasn't a String), so
1937            // return null, which indicates that the name wasn't found in the parcel.
1938            return null;
1939        }
1940
1941        byte[] serializedData = createByteArray();
1942        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
1943        try {
1944            ObjectInputStream ois = new ObjectInputStream(bais);
1945            return (Serializable) ois.readObject();
1946        } catch (IOException ioe) {
1947            throw new RuntimeException("Parcelable encountered " +
1948                "IOException reading a Serializable object (name = " + name +
1949                ")", ioe);
1950        } catch (ClassNotFoundException cnfe) {
1951            throw new RuntimeException("Parcelable encountered" +
1952                "ClassNotFoundException reading a Serializable object (name = "
1953                + name + ")", cnfe);
1954        }
1955    }
1956
1957    // Cache of previously looked up CREATOR.createFromParcel() methods for
1958    // particular classes.  Keys are the names of the classes, values are
1959    // Method objects.
1960    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
1961        mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
1962
1963    static protected final Parcel obtain(int obj) {
1964        final Parcel[] pool = sHolderPool;
1965        synchronized (pool) {
1966            Parcel p;
1967            for (int i=0; i<POOL_SIZE; i++) {
1968                p = pool[i];
1969                if (p != null) {
1970                    pool[i] = null;
1971                    if (DEBUG_RECYCLE) {
1972                        p.mStack = new RuntimeException();
1973                    }
1974                    p.init(obj);
1975                    return p;
1976                }
1977            }
1978        }
1979        return new Parcel(obj);
1980    }
1981
1982    private Parcel(int obj) {
1983        if (DEBUG_RECYCLE) {
1984            mStack = new RuntimeException();
1985        }
1986        //Log.i("Parcel", "Initializing obj=0x" + Integer.toHexString(obj), mStack);
1987        init(obj);
1988    }
1989
1990    @Override
1991    protected void finalize() throws Throwable {
1992        if (DEBUG_RECYCLE) {
1993            if (mStack != null) {
1994                Log.w("Parcel", "Client did not call Parcel.recycle()", mStack);
1995            }
1996        }
1997        destroy();
1998    }
1999
2000    private native void freeBuffer();
2001    private native void init(int obj);
2002    private native void destroy();
2003
2004    /* package */ void readMapInternal(Map outVal, int N,
2005        ClassLoader loader) {
2006        while (N > 0) {
2007            Object key = readValue(loader);
2008            Object value = readValue(loader);
2009            outVal.put(key, value);
2010            N--;
2011        }
2012    }
2013
2014    private void readListInternal(List outVal, int N,
2015        ClassLoader loader) {
2016        while (N > 0) {
2017            Object value = readValue(loader);
2018            //Log.d("Parcel", "Unmarshalling value=" + value);
2019            outVal.add(value);
2020            N--;
2021        }
2022    }
2023
2024    private void readArrayInternal(Object[] outVal, int N,
2025        ClassLoader loader) {
2026        for (int i = 0; i < N; i++) {
2027            Object value = readValue(loader);
2028            //Log.d("Parcel", "Unmarshalling value=" + value);
2029            outVal[i] = value;
2030        }
2031    }
2032
2033    private void readSparseArrayInternal(SparseArray outVal, int N,
2034        ClassLoader loader) {
2035        while (N > 0) {
2036            int key = readInt();
2037            Object value = readValue(loader);
2038            //Log.i("Parcel", "Unmarshalling key=" + key + " value=" + value);
2039            outVal.append(key, value);
2040            N--;
2041        }
2042    }
2043
2044
2045    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2046        while (N > 0) {
2047            int key = readInt();
2048            boolean value = this.readByte() == 1;
2049            //Log.i("Parcel", "Unmarshalling key=" + key + " value=" + value);
2050            outVal.append(key, value);
2051            N--;
2052        }
2053    }
2054}
2055