Parcel.java revision 54b6cfa9a9e5b861a9930af873580d6dc20f773c
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.Log;
21import android.util.SparseArray;
22import android.util.SparseBooleanArray;
23
24import java.io.ByteArrayInputStream;
25import java.io.ByteArrayOutputStream;
26import java.io.FileDescriptor;
27import java.io.FileNotFoundException;
28import java.io.IOException;
29import java.io.ObjectInputStream;
30import java.io.ObjectOutputStream;
31import java.io.Serializable;
32import java.lang.reflect.Field;
33import java.util.ArrayList;
34import java.util.HashMap;
35import java.util.List;
36import java.util.Map;
37import java.util.Set;
38
39/**
40 * Container for a message (data and object references) that can
41 * be sent through an IBinder.  A Parcel can contain both flattened data
42 * that will be unflattened on the other side of the IPC (using the various
43 * methods here for writing specific types, or the general
44 * {@link Parcelable} interface), and references to live {@link IBinder}
45 * objects that will result in the other side receiving a proxy IBinder
46 * connected with the original IBinder in the Parcel.
47 *
48 * <p class="note">Parcel is <strong>not</strong> a general-purpose
49 * serialization mechanism.  This class (and the corresponding
50 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
51 * designed as a high-performance IPC transport.  As such, it is not
52 * appropriate to place any Parcel data in to persistent storage: changes
53 * in the underlying implementation of any of the data in the Parcel can
54 * render older data unreadable.</p>
55 *
56 * <p>The bulk of the Parcel API revolves around reading and writing data
57 * of various types.  There are six major classes of such functions available.</p>
58 *
59 * <h3>Primitives</h3>
60 *
61 * <p>The most basic data functions are for writing and reading primitive
62 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
63 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
64 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
65 * {@link #writeString}, {@link #readString}.  Most other
66 * data operations are built on top of these.  The given data is written and
67 * read using the endianess of the host CPU.</p>
68 *
69 * <h3>Primitive Arrays</h3>
70 *
71 * <p>There are a variety of methods for reading and writing raw arrays
72 * of primitive objects, which generally result in writing a 4-byte length
73 * followed by the primitive data items.  The methods for reading can either
74 * read the data into an existing array, or create and return a new array.
75 * These available types are:</p>
76 *
77 * <ul>
78 * <li> {@link #writeBooleanArray(boolean[])},
79 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
80 * <li> {@link #writeByteArray(byte[])},
81 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
82 * {@link #createByteArray()}
83 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
84 * {@link #createCharArray()}
85 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
86 * {@link #createDoubleArray()}
87 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
88 * {@link #createFloatArray()}
89 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
90 * {@link #createIntArray()}
91 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
92 * {@link #createLongArray()}
93 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
94 * {@link #createStringArray()}.
95 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
96 * {@link #readSparseBooleanArray()}.
97 * </ul>
98 *
99 * <h3>Parcelables</h3>
100 *
101 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
102 * low-level) protocol for objects to write and read themselves from Parcels.
103 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
104 * and {@link #readParcelable(ClassLoader)} or
105 * {@link #writeParcelableArray} and
106 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
107 * methods write both the class type and its data to the Parcel, allowing
108 * that class to be reconstructed from the appropriate class loader when
109 * later reading.</p>
110 *
111 * <p>There are also some methods that provide a more efficient way to work
112 * with Parcelables: {@link #writeTypedArray},
113 * {@link #writeTypedList(List)},
114 * {@link #readTypedArray} and {@link #readTypedList}.  These methods
115 * do not write the class information of the original object: instead, the
116 * caller of the read function must know what type to expect and pass in the
117 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
118 * properly construct the new object and read its data.  (To more efficient
119 * write and read a single Parceable object, you can directly call
120 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
121 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
122 * yourself.)</p>
123 *
124 * <h3>Bundles</h3>
125 *
126 * <p>A special type-safe container, called {@link Bundle}, is available
127 * for key/value maps of heterogeneous values.  This has many optimizations
128 * for improved performance when reading and writing data, and its type-safe
129 * API avoids difficult to debug type errors when finally marshalling the
130 * data contents into a Parcel.  The methods to use are
131 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
132 * {@link #readBundle(ClassLoader)}.
133 *
134 * <h3>Active Objects</h3>
135 *
136 * <p>An unusual feature of Parcel is the ability to read and write active
137 * objects.  For these objects the actual contents of the object is not
138 * written, rather a special token referencing the object is written.  When
139 * reading the object back from the Parcel, you do not get a new instance of
140 * the object, but rather a handle that operates on the exact same object that
141 * was originally written.  There are two forms of active objects available.</p>
142 *
143 * <p>{@link Binder} objects are a core facility of Android's general cross-process
144 * communication system.  The {@link IBinder} interface describes an abstract
145 * protocol with a Binder object.  Any such interface can be written in to
146 * a Parcel, and upon reading you will receive either the original object
147 * implementing that interface or a special proxy implementation
148 * that communicates calls back to the original object.  The methods to use are
149 * {@link #writeStrongBinder(IBinder)},
150 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
151 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
152 * {@link #createBinderArray()},
153 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
154 * {@link #createBinderArrayList()}.</p>
155 *
156 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
157 * can be written and {@link ParcelFileDescriptor} objects returned to operate
158 * on the original file descriptor.  The returned file descriptor is a dup
159 * of the original file descriptor: the object and fd is different, but
160 * operating on the same underlying file stream, with the same position, etc.
161 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
162 * {@link #readFileDescriptor()}.
163 *
164 * <h3>Untyped Containers</h3>
165 *
166 * <p>A final class of methods are for writing and reading standard Java
167 * containers of arbitrary types.  These all revolve around the
168 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
169 * which define the types of objects allowed.  The container methods are
170 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
171 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
172 * {@link #readArrayList(ClassLoader)},
173 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
174 * {@link #writeSparseArray(SparseArray)},
175 * {@link #readSparseArray(ClassLoader)}.
176 */
177public final class Parcel {
178    private static final boolean DEBUG_RECYCLE = false;
179
180    @SuppressWarnings({"UnusedDeclaration"})
181    private int mObject; // used by native code
182    @SuppressWarnings({"UnusedDeclaration"})
183    private int mOwnObject; // used by native code
184    private RuntimeException mStack;
185
186    private static final int POOL_SIZE = 6;
187    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
188    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
189
190    private static final int VAL_NULL = -1;
191    private static final int VAL_STRING = 0;
192    private static final int VAL_INTEGER = 1;
193    private static final int VAL_MAP = 2;
194    private static final int VAL_BUNDLE = 3;
195    private static final int VAL_PARCELABLE = 4;
196    private static final int VAL_SHORT = 5;
197    private static final int VAL_LONG = 6;
198    private static final int VAL_FLOAT = 7;
199    private static final int VAL_DOUBLE = 8;
200    private static final int VAL_BOOLEAN = 9;
201    private static final int VAL_CHARSEQUENCE = 10;
202    private static final int VAL_LIST  = 11;
203    private static final int VAL_SPARSEARRAY = 12;
204    private static final int VAL_BYTEARRAY = 13;
205    private static final int VAL_STRINGARRAY = 14;
206    private static final int VAL_IBINDER = 15;
207    private static final int VAL_PARCELABLEARRAY = 16;
208    private static final int VAL_OBJECTARRAY = 17;
209    private static final int VAL_INTARRAY = 18;
210    private static final int VAL_LONGARRAY = 19;
211    private static final int VAL_BYTE = 20;
212    private static final int VAL_SERIALIZABLE = 21;
213    private static final int VAL_SPARSEBOOLEANARRAY = 22;
214    private static final int VAL_BOOLEANARRAY = 23;
215
216    private static final int EX_SECURITY = -1;
217    private static final int EX_BAD_PARCELABLE = -2;
218    private static final int EX_ILLEGAL_ARGUMENT = -3;
219    private static final int EX_NULL_POINTER = -4;
220    private static final int EX_ILLEGAL_STATE = -5;
221
222    public final static Parcelable.Creator<String> STRING_CREATOR
223             = new Parcelable.Creator<String>() {
224        public String createFromParcel(Parcel source) {
225            return source.readString();
226        }
227        public String[] newArray(int size) {
228            return new String[size];
229        }
230    };
231
232    /**
233     * Retrieve a new Parcel object from the pool.
234     */
235    public static Parcel obtain() {
236        final Parcel[] pool = sOwnedPool;
237        synchronized (pool) {
238            Parcel p;
239            for (int i=0; i<POOL_SIZE; i++) {
240                p = pool[i];
241                if (p != null) {
242                    pool[i] = null;
243                    if (DEBUG_RECYCLE) {
244                        p.mStack = new RuntimeException();
245                    }
246                    return p;
247                }
248            }
249        }
250        return new Parcel(0);
251    }
252
253    /**
254     * Put a Parcel object back into the pool.  You must not touch
255     * the object after this call.
256     */
257    public final void recycle() {
258        if (DEBUG_RECYCLE) mStack = null;
259        freeBuffer();
260        final Parcel[] pool = mOwnObject != 0 ? sOwnedPool : sHolderPool;
261        synchronized (pool) {
262            for (int i=0; i<POOL_SIZE; i++) {
263                if (pool[i] == null) {
264                    pool[i] = this;
265                    return;
266                }
267            }
268        }
269    }
270
271    /**
272     * Returns the total amount of data contained in the parcel.
273     */
274    public final native int dataSize();
275
276    /**
277     * Returns the amount of data remaining to be read from the
278     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
279     */
280    public final native int dataAvail();
281
282    /**
283     * Returns the current position in the parcel data.  Never
284     * more than {@link #dataSize}.
285     */
286    public final native int dataPosition();
287
288    /**
289     * Returns the total amount of space in the parcel.  This is always
290     * >= {@link #dataSize}.  The difference between it and dataSize() is the
291     * amount of room left until the parcel needs to re-allocate its
292     * data buffer.
293     */
294    public final native int dataCapacity();
295
296    /**
297     * Change the amount of data in the parcel.  Can be either smaller or
298     * larger than the current size.  If larger than the current capacity,
299     * more memory will be allocated.
300     *
301     * @param size The new number of bytes in the Parcel.
302     */
303    public final native void setDataSize(int size);
304
305    /**
306     * Move the current read/write position in the parcel.
307     * @param pos New offset in the parcel; must be between 0 and
308     * {@link #dataSize}.
309     */
310    public final native void setDataPosition(int pos);
311
312    /**
313     * Change the capacity (current available space) of the parcel.
314     *
315     * @param size The new capacity of the parcel, in bytes.  Can not be
316     * less than {@link #dataSize} -- that is, you can not drop existing data
317     * with this method.
318     */
319    public final native void setDataCapacity(int size);
320
321    /**
322     * Returns the raw bytes of the parcel.
323     *
324     * <p class="note">The data you retrieve here <strong>must not</strong>
325     * be placed in any kind of persistent storage (on local disk, across
326     * a network, etc).  For that, you should use standard serialization
327     * or another kind of general serialization mechanism.  The Parcel
328     * marshalled representation is highly optimized for local IPC, and as
329     * such does not attempt to maintain compatibility with data created
330     * in different versions of the platform.
331     */
332    public final native byte[] marshall();
333
334    /**
335     * Set the bytes in data to be the raw bytes of this Parcel.
336     */
337    public final native void unmarshall(byte[] data, int offest, int length);
338
339    public final native void appendFrom(Parcel parcel, int offset, int length);
340
341    /**
342     * Report whether the parcel contains any marshalled file descriptors.
343     */
344    public final native boolean hasFileDescriptors();
345
346    /**
347     * Store or read an IBinder interface token in the parcel at the current
348     * {@link #dataPosition}.  This is used to validate that the marshalled
349     * transaction is intended for the target interface.
350     */
351    public final native void writeInterfaceToken(String interfaceName);
352    public final native void enforceInterface(String interfaceName);
353
354    /**
355     * Write a byte array into the parcel at the current {#link #dataPosition},
356     * growing {@link #dataCapacity} if needed.
357     * @param b Bytes to place into the parcel.
358     */
359    public final void writeByteArray(byte[] b) {
360        writeByteArray(b, 0, (b != null) ? b.length : 0);
361    }
362
363    /**
364     * Write an byte array into the parcel at the current {#link #dataPosition},
365     * growing {@link #dataCapacity} if needed.
366     * @param b Bytes to place into the parcel.
367     * @param offset Index of first byte to be written.
368     * @param len Number of bytes to write.
369     */
370    public final void writeByteArray(byte[] b, int offset, int len) {
371        if (b == null) {
372            writeInt(-1);
373            return;
374        }
375        if (b.length < offset + len || len < 0 || offset < 0) {
376            throw new ArrayIndexOutOfBoundsException();
377        }
378        writeNative(b, offset, len);
379    }
380
381    private native void writeNative(byte[] b, int offset, int len);
382
383    /**
384     * Write an integer value into the parcel at the current dataPosition(),
385     * growing dataCapacity() if needed.
386     */
387    public final native void writeInt(int val);
388
389    /**
390     * Write a long integer value into the parcel at the current dataPosition(),
391     * growing dataCapacity() if needed.
392     */
393    public final native void writeLong(long val);
394
395    /**
396     * Write a floating point value into the parcel at the current
397     * dataPosition(), growing dataCapacity() if needed.
398     */
399    public final native void writeFloat(float val);
400
401    /**
402     * Write a double precision floating point value into the parcel at the
403     * current dataPosition(), growing dataCapacity() if needed.
404     */
405    public final native void writeDouble(double val);
406
407    /**
408     * Write a string value into the parcel at the current dataPosition(),
409     * growing dataCapacity() if needed.
410     */
411    public final native void writeString(String val);
412
413    /**
414     * Write an object into the parcel at the current dataPosition(),
415     * growing dataCapacity() if needed.
416     */
417    public final native void writeStrongBinder(IBinder val);
418
419    /**
420     * Write an object into the parcel at the current dataPosition(),
421     * growing dataCapacity() if needed.
422     */
423    public final void writeStrongInterface(IInterface val) {
424        writeStrongBinder(val == null ? null : val.asBinder());
425    }
426
427    /**
428     * Write a FileDescriptor into the parcel at the current dataPosition(),
429     * growing dataCapacity() if needed.
430     */
431    public final native void writeFileDescriptor(FileDescriptor val);
432
433    /**
434     * Write an byte value into the parcel at the current dataPosition(),
435     * growing dataCapacity() if needed.
436     */
437    public final void writeByte(byte val) {
438        writeInt(val);
439    }
440
441    /**
442     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
443     * at the current dataPosition(),
444     * growing dataCapacity() if needed.  The Map keys must be String objects.
445     * The Map values are written using {@link #writeValue} and must follow
446     * the specification there.
447     *
448     * <p>It is strongly recommended to use {@link #writeBundle} instead of
449     * this method, since the Bundle class provides a type-safe API that
450     * allows you to avoid mysterious type errors at the point of marshalling.
451     */
452    public final void writeMap(Map val) {
453        writeMapInternal((Map<String,Object>) val);
454    }
455
456    /**
457     * Flatten a Map into the parcel at the current dataPosition(),
458     * growing dataCapacity() if needed.  The Map keys must be String objects.
459     */
460    private void writeMapInternal(Map<String,Object> val) {
461        if (val == null) {
462            writeInt(-1);
463            return;
464        }
465        Set<Map.Entry<String,Object>> entries = val.entrySet();
466        writeInt(entries.size());
467        for (Map.Entry<String,Object> e : entries) {
468            writeValue(e.getKey());
469            writeValue(e.getValue());
470        }
471    }
472
473    /**
474     * Flatten a Bundle into the parcel at the current dataPosition(),
475     * growing dataCapacity() if needed.
476     */
477    public final void writeBundle(Bundle val) {
478        if (val == null) {
479            writeInt(-1);
480            return;
481        }
482
483        if (val.mParcelledData != null) {
484            int length = val.mParcelledData.dataSize();
485            appendFrom(val.mParcelledData, 0, length);
486        } else {
487            writeInt(-1); // dummy, will hold length
488            int oldPos = dataPosition();
489            writeInt(0x4C444E42); // 'B' 'N' 'D' 'L'
490
491            writeMapInternal(val.mMap);
492            int newPos = dataPosition();
493
494            // Backpatch length
495            setDataPosition(oldPos - 4);
496            int length = newPos - oldPos;
497            writeInt(length);
498            setDataPosition(newPos);
499        }
500    }
501
502    /**
503     * Flatten a List into the parcel at the current dataPosition(), growing
504     * dataCapacity() if needed.  The List values are written using
505     * {@link #writeValue} and must follow the specification there.
506     */
507    public final void writeList(List val) {
508        if (val == null) {
509            writeInt(-1);
510            return;
511        }
512        int N = val.size();
513        int i=0;
514        writeInt(N);
515        while (i < N) {
516            writeValue(val.get(i));
517            i++;
518        }
519    }
520
521    /**
522     * Flatten an Object array into the parcel at the current dataPosition(),
523     * growing dataCapacity() if needed.  The array values are written using
524     * {@link #writeValue} and must follow the specification there.
525     */
526    public final void writeArray(Object[] val) {
527        if (val == null) {
528            writeInt(-1);
529            return;
530        }
531        int N = val.length;
532        int i=0;
533        writeInt(N);
534        while (i < N) {
535            writeValue(val[i]);
536            i++;
537        }
538    }
539
540    /**
541     * Flatten a generic SparseArray into the parcel at the current
542     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
543     * values are written using {@link #writeValue} and must follow the
544     * specification there.
545     */
546    public final void writeSparseArray(SparseArray<Object> val) {
547        if (val == null) {
548            writeInt(-1);
549            return;
550        }
551        int N = val.size();
552        writeInt(N);
553        int i=0;
554        while (i < N) {
555            writeInt(val.keyAt(i));
556            writeValue(val.valueAt(i));
557            i++;
558        }
559    }
560
561    public final void writeSparseBooleanArray(SparseBooleanArray val) {
562        if (val == null) {
563            writeInt(-1);
564            return;
565        }
566        int N = val.size();
567        writeInt(N);
568        int i=0;
569        while (i < N) {
570            writeInt(val.keyAt(i));
571            writeByte((byte)(val.valueAt(i) ? 1 : 0));
572            i++;
573        }
574    }
575
576    public final void writeBooleanArray(boolean[] val) {
577        if (val != null) {
578            int N = val.length;
579            writeInt(N);
580            for (int i=0; i<N; i++) {
581                writeInt(val[i] ? 1 : 0);
582            }
583        } else {
584            writeInt(-1);
585        }
586    }
587
588    public final boolean[] createBooleanArray() {
589        int N = readInt();
590        // >>2 as a fast divide-by-4 works in the create*Array() functions
591        // because dataAvail() will never return a negative number.  4 is
592        // the size of a stored boolean in the stream.
593        if (N >= 0 && N <= (dataAvail() >> 2)) {
594            boolean[] val = new boolean[N];
595            for (int i=0; i<N; i++) {
596                val[i] = readInt() != 0;
597            }
598            return val;
599        } else {
600            return null;
601        }
602    }
603
604    public final void readBooleanArray(boolean[] val) {
605        int N = readInt();
606        if (N == val.length) {
607            for (int i=0; i<N; i++) {
608                val[i] = readInt() != 0;
609            }
610        } else {
611            throw new RuntimeException("bad array lengths");
612        }
613    }
614
615    public final void writeCharArray(char[] val) {
616        if (val != null) {
617            int N = val.length;
618            writeInt(N);
619            for (int i=0; i<N; i++) {
620                writeInt((int)val[i]);
621            }
622        } else {
623            writeInt(-1);
624        }
625    }
626
627    public final char[] createCharArray() {
628        int N = readInt();
629        if (N >= 0 && N <= (dataAvail() >> 2)) {
630            char[] val = new char[N];
631            for (int i=0; i<N; i++) {
632                val[i] = (char)readInt();
633            }
634            return val;
635        } else {
636            return null;
637        }
638    }
639
640    public final void readCharArray(char[] val) {
641        int N = readInt();
642        if (N == val.length) {
643            for (int i=0; i<N; i++) {
644                val[i] = (char)readInt();
645            }
646        } else {
647            throw new RuntimeException("bad array lengths");
648        }
649    }
650
651    public final void writeIntArray(int[] val) {
652        if (val != null) {
653            int N = val.length;
654            writeInt(N);
655            for (int i=0; i<N; i++) {
656                writeInt(val[i]);
657            }
658        } else {
659            writeInt(-1);
660        }
661    }
662
663    public final int[] createIntArray() {
664        int N = readInt();
665        if (N >= 0 && N <= (dataAvail() >> 2)) {
666            int[] val = new int[N];
667            for (int i=0; i<N; i++) {
668                val[i] = readInt();
669            }
670            return val;
671        } else {
672            return null;
673        }
674    }
675
676    public final void readIntArray(int[] val) {
677        int N = readInt();
678        if (N == val.length) {
679            for (int i=0; i<N; i++) {
680                val[i] = readInt();
681            }
682        } else {
683            throw new RuntimeException("bad array lengths");
684        }
685    }
686
687    public final void writeLongArray(long[] val) {
688        if (val != null) {
689            int N = val.length;
690            writeInt(N);
691            for (int i=0; i<N; i++) {
692                writeLong(val[i]);
693            }
694        } else {
695            writeInt(-1);
696        }
697    }
698
699    public final long[] createLongArray() {
700        int N = readInt();
701        // >>3 because stored longs are 64 bits
702        if (N >= 0 && N <= (dataAvail() >> 3)) {
703            long[] val = new long[N];
704            for (int i=0; i<N; i++) {
705                val[i] = readLong();
706            }
707            return val;
708        } else {
709            return null;
710        }
711    }
712
713    public final void readLongArray(long[] val) {
714        int N = readInt();
715        if (N == val.length) {
716            for (int i=0; i<N; i++) {
717                val[i] = readLong();
718            }
719        } else {
720            throw new RuntimeException("bad array lengths");
721        }
722    }
723
724    public final void writeFloatArray(float[] val) {
725        if (val != null) {
726            int N = val.length;
727            writeInt(N);
728            for (int i=0; i<N; i++) {
729                writeFloat(val[i]);
730            }
731        } else {
732            writeInt(-1);
733        }
734    }
735
736    public final float[] createFloatArray() {
737        int N = readInt();
738        // >>2 because stored floats are 4 bytes
739        if (N >= 0 && N <= (dataAvail() >> 2)) {
740            float[] val = new float[N];
741            for (int i=0; i<N; i++) {
742                val[i] = readFloat();
743            }
744            return val;
745        } else {
746            return null;
747        }
748    }
749
750    public final void readFloatArray(float[] val) {
751        int N = readInt();
752        if (N == val.length) {
753            for (int i=0; i<N; i++) {
754                val[i] = readFloat();
755            }
756        } else {
757            throw new RuntimeException("bad array lengths");
758        }
759    }
760
761    public final void writeDoubleArray(double[] val) {
762        if (val != null) {
763            int N = val.length;
764            writeInt(N);
765            for (int i=0; i<N; i++) {
766                writeDouble(val[i]);
767            }
768        } else {
769            writeInt(-1);
770        }
771    }
772
773    public final double[] createDoubleArray() {
774        int N = readInt();
775        // >>3 because stored doubles are 8 bytes
776        if (N >= 0 && N <= (dataAvail() >> 3)) {
777            double[] val = new double[N];
778            for (int i=0; i<N; i++) {
779                val[i] = readDouble();
780            }
781            return val;
782        } else {
783            return null;
784        }
785    }
786
787    public final void readDoubleArray(double[] val) {
788        int N = readInt();
789        if (N == val.length) {
790            for (int i=0; i<N; i++) {
791                val[i] = readDouble();
792            }
793        } else {
794            throw new RuntimeException("bad array lengths");
795        }
796    }
797
798    public final void writeStringArray(String[] val) {
799        if (val != null) {
800            int N = val.length;
801            writeInt(N);
802            for (int i=0; i<N; i++) {
803                writeString(val[i]);
804            }
805        } else {
806            writeInt(-1);
807        }
808    }
809
810    public final String[] createStringArray() {
811        int N = readInt();
812        if (N >= 0) {
813            String[] val = new String[N];
814            for (int i=0; i<N; i++) {
815                val[i] = readString();
816            }
817            return val;
818        } else {
819            return null;
820        }
821    }
822
823    public final void readStringArray(String[] val) {
824        int N = readInt();
825        if (N == val.length) {
826            for (int i=0; i<N; i++) {
827                val[i] = readString();
828            }
829        } else {
830            throw new RuntimeException("bad array lengths");
831        }
832    }
833
834    public final void writeBinderArray(IBinder[] val) {
835        if (val != null) {
836            int N = val.length;
837            writeInt(N);
838            for (int i=0; i<N; i++) {
839                writeStrongBinder(val[i]);
840            }
841        } else {
842            writeInt(-1);
843        }
844    }
845
846    public final IBinder[] createBinderArray() {
847        int N = readInt();
848        if (N >= 0) {
849            IBinder[] val = new IBinder[N];
850            for (int i=0; i<N; i++) {
851                val[i] = readStrongBinder();
852            }
853            return val;
854        } else {
855            return null;
856        }
857    }
858
859    public final void readBinderArray(IBinder[] val) {
860        int N = readInt();
861        if (N == val.length) {
862            for (int i=0; i<N; i++) {
863                val[i] = readStrongBinder();
864            }
865        } else {
866            throw new RuntimeException("bad array lengths");
867        }
868    }
869
870    /**
871     * Flatten a List containing a particular object type into the parcel, at
872     * the current dataPosition() and growing dataCapacity() if needed.  The
873     * type of the objects in the list must be one that implements Parcelable.
874     * Unlike the generic writeList() method, however, only the raw data of the
875     * objects is written and not their type, so you must use the corresponding
876     * readTypedList() to unmarshall them.
877     *
878     * @param val The list of objects to be written.
879     *
880     * @see #createTypedArrayList
881     * @see #readTypedList
882     * @see Parcelable
883     */
884    public final <T extends Parcelable> void writeTypedList(List<T> val) {
885        if (val == null) {
886            writeInt(-1);
887            return;
888        }
889        int N = val.size();
890        int i=0;
891        writeInt(N);
892        while (i < N) {
893            T item = val.get(i);
894            if (item != null) {
895                writeInt(1);
896                item.writeToParcel(this, 0);
897            } else {
898                writeInt(0);
899            }
900            i++;
901        }
902    }
903
904    /**
905     * Flatten a List containing String objects into the parcel, at
906     * the current dataPosition() and growing dataCapacity() if needed.  They
907     * can later be retrieved with {@link #createStringArrayList} or
908     * {@link #readStringList}.
909     *
910     * @param val The list of strings to be written.
911     *
912     * @see #createStringArrayList
913     * @see #readStringList
914     */
915    public final void writeStringList(List<String> val) {
916        if (val == null) {
917            writeInt(-1);
918            return;
919        }
920        int N = val.size();
921        int i=0;
922        writeInt(N);
923        while (i < N) {
924            writeString(val.get(i));
925            i++;
926        }
927    }
928
929    /**
930     * Flatten a List containing IBinder objects into the parcel, at
931     * the current dataPosition() and growing dataCapacity() if needed.  They
932     * can later be retrieved with {@link #createBinderArrayList} or
933     * {@link #readBinderList}.
934     *
935     * @param val The list of strings to be written.
936     *
937     * @see #createBinderArrayList
938     * @see #readBinderList
939     */
940    public final void writeBinderList(List<IBinder> val) {
941        if (val == null) {
942            writeInt(-1);
943            return;
944        }
945        int N = val.size();
946        int i=0;
947        writeInt(N);
948        while (i < N) {
949            writeStrongBinder(val.get(i));
950            i++;
951        }
952    }
953
954    /**
955     * Flatten a heterogeneous array containing a particular object type into
956     * the parcel, at
957     * the current dataPosition() and growing dataCapacity() if needed.  The
958     * type of the objects in the array must be one that implements Parcelable.
959     * Unlike the {@link #writeParcelableArray} method, however, only the
960     * raw data of the objects is written and not their type, so you must use
961     * {@link #readTypedArray} with the correct corresponding
962     * {@link Parcelable.Creator} implementation to unmarshall them.
963     *
964     * @param val The array of objects to be written.
965     * @param parcelableFlags Contextual flags as per
966     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
967     *
968     * @see #readTypedArray
969     * @see #writeParcelableArray
970     * @see Parcelable.Creator
971     */
972    public final <T extends Parcelable> void writeTypedArray(T[] val,
973            int parcelableFlags) {
974        if (val != null) {
975            int N = val.length;
976            writeInt(N);
977            for (int i=0; i<N; i++) {
978                T item = val[i];
979                if (item != null) {
980                    writeInt(1);
981                    item.writeToParcel(this, parcelableFlags);
982                } else {
983                    writeInt(0);
984                }
985            }
986        } else {
987            writeInt(-1);
988        }
989    }
990
991    /**
992     * Flatten a generic object in to a parcel.  The given Object value may
993     * currently be one of the following types:
994     *
995     * <ul>
996     * <li> null
997     * <li> String
998     * <li> Byte
999     * <li> Short
1000     * <li> Integer
1001     * <li> Long
1002     * <li> Float
1003     * <li> Double
1004     * <li> Boolean
1005     * <li> String[]
1006     * <li> boolean[]
1007     * <li> byte[]
1008     * <li> int[]
1009     * <li> long[]
1010     * <li> Object[] (supporting objects of the same type defined here).
1011     * <li> {@link Bundle}
1012     * <li> Map (as supported by {@link #writeMap}).
1013     * <li> Any object that implements the {@link Parcelable} protocol.
1014     * <li> Parcelable[]
1015     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1016     * <li> List (as supported by {@link #writeList}).
1017     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray}).
1018     * <li> {@link IBinder}
1019     * <li> Any object that implements Serializable (but see
1020     *      {@link #writeSerializable} for caveats).  Note that all of the
1021     *      previous types have relatively efficient implementations for
1022     *      writing to a Parcel; having to rely on the generic serialization
1023     *      approach is much less efficient and should be avoided whenever
1024     *      possible.
1025     * </ul>
1026     */
1027    public final void writeValue(Object v) {
1028        if (v == null) {
1029            writeInt(VAL_NULL);
1030        } else if (v instanceof String) {
1031            writeInt(VAL_STRING);
1032            writeString((String) v);
1033        } else if (v instanceof Integer) {
1034            writeInt(VAL_INTEGER);
1035            writeInt((Integer) v);
1036        } else if (v instanceof Map) {
1037            writeInt(VAL_MAP);
1038            writeMap((Map) v);
1039        } else if (v instanceof Bundle) {
1040            // Must be before Parcelable
1041            writeInt(VAL_BUNDLE);
1042            writeBundle((Bundle) v);
1043        } else if (v instanceof Parcelable) {
1044            writeInt(VAL_PARCELABLE);
1045            writeParcelable((Parcelable) v, 0);
1046        } else if (v instanceof Short) {
1047            writeInt(VAL_SHORT);
1048            writeInt(((Short) v).intValue());
1049        } else if (v instanceof Long) {
1050            writeInt(VAL_LONG);
1051            writeLong((Long) v);
1052        } else if (v instanceof Float) {
1053            writeInt(VAL_FLOAT);
1054            writeFloat((Float) v);
1055        } else if (v instanceof Double) {
1056            writeInt(VAL_DOUBLE);
1057            writeDouble((Double) v);
1058        } else if (v instanceof Boolean) {
1059            writeInt(VAL_BOOLEAN);
1060            writeInt((Boolean) v ? 1 : 0);
1061        } else if (v instanceof CharSequence) {
1062            // Must be after String
1063            writeInt(VAL_CHARSEQUENCE);
1064            TextUtils.writeToParcel((CharSequence) v, this, 0);
1065        } else if (v instanceof List) {
1066            writeInt(VAL_LIST);
1067            writeList((List) v);
1068        } else if (v instanceof SparseArray) {
1069            writeInt(VAL_SPARSEARRAY);
1070            writeSparseArray((SparseArray) v);
1071        } else if (v instanceof boolean[]) {
1072            writeInt(VAL_BOOLEANARRAY);
1073            writeBooleanArray((boolean[]) v);
1074        } else if (v instanceof byte[]) {
1075            writeInt(VAL_BYTEARRAY);
1076            writeByteArray((byte[]) v);
1077        } else if (v instanceof String[]) {
1078            writeInt(VAL_STRINGARRAY);
1079            writeStringArray((String[]) v);
1080        } else if (v instanceof IBinder) {
1081            writeInt(VAL_IBINDER);
1082            writeStrongBinder((IBinder) v);
1083        } else if (v instanceof Parcelable[]) {
1084            writeInt(VAL_PARCELABLEARRAY);
1085            writeParcelableArray((Parcelable[]) v, 0);
1086        } else if (v instanceof Object[]) {
1087            writeInt(VAL_OBJECTARRAY);
1088            writeArray((Object[]) v);
1089        } else if (v instanceof int[]) {
1090            writeInt(VAL_INTARRAY);
1091            writeIntArray((int[]) v);
1092        } else if (v instanceof long[]) {
1093            writeInt(VAL_LONGARRAY);
1094            writeLongArray((long[]) v);
1095        } else if (v instanceof Byte) {
1096            writeInt(VAL_BYTE);
1097            writeInt((Byte) v);
1098        } else if (v instanceof Serializable) {
1099            // Must be last
1100            writeInt(VAL_SERIALIZABLE);
1101            writeSerializable((Serializable) v);
1102        } else {
1103            throw new RuntimeException("Parcel: unable to marshal value " + v);
1104        }
1105    }
1106
1107    /**
1108     * Flatten the name of the class of the Parcelable and its contents
1109     * into the parcel.
1110     *
1111     * @param p The Parcelable object to be written.
1112     * @param parcelableFlags Contextual flags as per
1113     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1114     */
1115    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1116        if (p == null) {
1117            writeString(null);
1118            return;
1119        }
1120        String name = p.getClass().getName();
1121        writeString(name);
1122        p.writeToParcel(this, parcelableFlags);
1123    }
1124
1125    /**
1126     * Write a generic serializable object in to a Parcel.  It is strongly
1127     * recommended that this method be avoided, since the serialization
1128     * overhead is extremely large, and this approach will be much slower than
1129     * using the other approaches to writing data in to a Parcel.
1130     */
1131    public final void writeSerializable(Serializable s) {
1132        if (s == null) {
1133            writeString(null);
1134            return;
1135        }
1136        String name = s.getClass().getName();
1137        writeString(name);
1138
1139        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1140        try {
1141            ObjectOutputStream oos = new ObjectOutputStream(baos);
1142            oos.writeObject(s);
1143            oos.close();
1144
1145            writeByteArray(baos.toByteArray());
1146        } catch (IOException ioe) {
1147            throw new RuntimeException("Parcelable encountered " +
1148                "IOException writing serializable object (name = " + name +
1149                ")", ioe);
1150        }
1151    }
1152
1153    /**
1154     * Special function for writing an exception result at the header of
1155     * a parcel, to be used when returning an exception from a transaction.
1156     * Note that this currently only supports a few exception types; any other
1157     * exception will be re-thrown by this function as a RuntimeException
1158     * (to be caught by the system's last-resort exception handling when
1159     * dispatching a transaction).
1160     *
1161     * <p>The supported exception types are:
1162     * <ul>
1163     * <li>{@link BadParcelableException}
1164     * <li>{@link IllegalArgumentException}
1165     * <li>{@link IllegalStateException}
1166     * <li>{@link NullPointerException}
1167     * <li>{@link SecurityException}
1168     * </ul>
1169     *
1170     * @param e The Exception to be written.
1171     *
1172     * @see #writeNoException
1173     * @see #readException
1174     */
1175    public final void writeException(Exception e) {
1176        int code = 0;
1177        if (e instanceof SecurityException) {
1178            code = EX_SECURITY;
1179        } else if (e instanceof BadParcelableException) {
1180            code = EX_BAD_PARCELABLE;
1181        } else if (e instanceof IllegalArgumentException) {
1182            code = EX_ILLEGAL_ARGUMENT;
1183        } else if (e instanceof NullPointerException) {
1184            code = EX_NULL_POINTER;
1185        } else if (e instanceof IllegalStateException) {
1186            code = EX_ILLEGAL_STATE;
1187        }
1188        writeInt(code);
1189        if (code == 0) {
1190            if (e instanceof RuntimeException) {
1191                throw (RuntimeException) e;
1192            }
1193            throw new RuntimeException(e);
1194        }
1195        writeString(e.getMessage());
1196    }
1197
1198    /**
1199     * Special function for writing information at the front of the Parcel
1200     * indicating that no exception occurred.
1201     *
1202     * @see #writeException
1203     * @see #readException
1204     */
1205    public final void writeNoException() {
1206        writeInt(0);
1207    }
1208
1209    /**
1210     * Special function for reading an exception result from the header of
1211     * a parcel, to be used after receiving the result of a transaction.  This
1212     * will throw the exception for you if it had been written to the Parcel,
1213     * otherwise return and let you read the normal result data from the Parcel.
1214     *
1215     * @see #writeException
1216     * @see #writeNoException
1217     */
1218    public final void readException() {
1219        int code = readInt();
1220        if (code == 0) return;
1221        String msg = readString();
1222        readException(code, msg);
1223    }
1224
1225    /**
1226     * Use this function for customized exception handling.
1227     * customized method call this method for all unknown case
1228     * @param code exception code
1229     * @param msg exception message
1230     */
1231    public final void readException(int code, String msg) {
1232        switch (code) {
1233            case EX_SECURITY:
1234                throw new SecurityException(msg);
1235            case EX_BAD_PARCELABLE:
1236                throw new BadParcelableException(msg);
1237            case EX_ILLEGAL_ARGUMENT:
1238                throw new IllegalArgumentException(msg);
1239            case EX_NULL_POINTER:
1240                throw new NullPointerException(msg);
1241            case EX_ILLEGAL_STATE:
1242                throw new IllegalStateException(msg);
1243        }
1244        throw new RuntimeException("Unknown exception code: " + code
1245                + " msg " + msg);
1246    }
1247
1248    /**
1249     * Read an integer value from the parcel at the current dataPosition().
1250     */
1251    public final native int readInt();
1252
1253    /**
1254     * Read a long integer value from the parcel at the current dataPosition().
1255     */
1256    public final native long readLong();
1257
1258    /**
1259     * Read a floating point value from the parcel at the current
1260     * dataPosition().
1261     */
1262    public final native float readFloat();
1263
1264    /**
1265     * Read a double precision floating point value from the parcel at the
1266     * current dataPosition().
1267     */
1268    public final native double readDouble();
1269
1270    /**
1271     * Read a string value from the parcel at the current dataPosition().
1272     */
1273    public final native String readString();
1274
1275    /**
1276     * Read an object from the parcel at the current dataPosition().
1277     */
1278    public final native IBinder readStrongBinder();
1279
1280    /**
1281     * Read a FileDescriptor from the parcel at the current dataPosition().
1282     */
1283    public final ParcelFileDescriptor readFileDescriptor() {
1284        FileDescriptor fd = internalReadFileDescriptor();
1285        return fd != null ? new ParcelFileDescriptor(fd) : null;
1286    }
1287
1288    private native FileDescriptor internalReadFileDescriptor();
1289    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1290            int mode) throws FileNotFoundException;
1291    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1292            throws IOException;
1293
1294    /**
1295     * Read a byte value from the parcel at the current dataPosition().
1296     */
1297    public final byte readByte() {
1298        return (byte)(readInt() & 0xff);
1299    }
1300
1301    /**
1302     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1303     * been written with {@link #writeBundle}.  Read into an existing Map object
1304     * from the parcel at the current dataPosition().
1305     */
1306    public final void readMap(Map outVal, ClassLoader loader) {
1307        int N = readInt();
1308        readMapInternal(outVal, N, loader);
1309    }
1310
1311    /**
1312     * Read into an existing List object from the parcel at the current
1313     * dataPosition(), using the given class loader to load any enclosed
1314     * Parcelables.  If it is null, the default class loader is used.
1315     */
1316    public final void readList(List outVal, ClassLoader loader) {
1317        int N = readInt();
1318        readListInternal(outVal, N, loader);
1319    }
1320
1321    /**
1322     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1323     * been written with {@link #writeBundle}.  Read and return a new HashMap
1324     * object from the parcel at the current dataPosition(), using the given
1325     * class loader to load any enclosed Parcelables.  Returns null if
1326     * the previously written map object was null.
1327     */
1328    public final HashMap readHashMap(ClassLoader loader)
1329    {
1330        int N = readInt();
1331        if (N < 0) {
1332            return null;
1333        }
1334        HashMap m = new HashMap(N);
1335        readMapInternal(m, N, loader);
1336        return m;
1337    }
1338
1339    /**
1340     * Read and return a new Bundle object from the parcel at the current
1341     * dataPosition().  Returns null if the previously written Bundle object was
1342     * null.
1343     */
1344    public final Bundle readBundle() {
1345        return readBundle(null);
1346    }
1347
1348    /**
1349     * Read and return a new Bundle object from the parcel at the current
1350     * dataPosition(), using the given class loader to initialize the class
1351     * loader of the Bundle for later retrieval of Parcelable objects.
1352     * Returns null if the previously written Bundle object was null.
1353     */
1354    public final Bundle readBundle(ClassLoader loader) {
1355        int offset = dataPosition();
1356        int length = readInt();
1357        if (length < 0) {
1358            return null;
1359        }
1360        int magic = readInt();
1361        if (magic != 0x4C444E42) {
1362            //noinspection ThrowableInstanceNeverThrown
1363            String st = Log.getStackTraceString(new RuntimeException());
1364            Log.e("Bundle", "readBundle: bad magic number");
1365            Log.e("Bundle", "readBundle: trace = " + st);
1366        }
1367
1368        // Advance within this Parcel
1369        setDataPosition(offset + length + 4);
1370
1371        Parcel p = new Parcel(0);
1372        p.setDataPosition(0);
1373        p.appendFrom(this, offset, length + 4);
1374        p.setDataPosition(0);
1375        final Bundle bundle = new Bundle(p);
1376        if (loader != null) {
1377            bundle.setClassLoader(loader);
1378        }
1379        return bundle;
1380    }
1381
1382    /**
1383     * Read and return a new Bundle object from the parcel at the current
1384     * dataPosition().  Returns null if the previously written Bundle object was
1385     * null.  The returned bundle will have its contents fully unpacked using
1386     * the given ClassLoader.
1387     */
1388    /* package */ Bundle readBundleUnpacked(ClassLoader loader) {
1389        int length = readInt();
1390        if (length == -1) {
1391            return null;
1392        }
1393        int magic = readInt();
1394        if (magic != 0x4C444E42) {
1395            //noinspection ThrowableInstanceNeverThrown
1396            String st = Log.getStackTraceString(new RuntimeException());
1397            Log.e("Bundle", "readBundleUnpacked: bad magic number");
1398            Log.e("Bundle", "readBundleUnpacked: trace = " + st);
1399        }
1400        Bundle m = new Bundle(loader);
1401        int N = readInt();
1402        if (N < 0) {
1403            return null;
1404        }
1405        readMapInternal(m.mMap, N, loader);
1406        return m;
1407    }
1408
1409    /**
1410     * Read and return a byte[] object from the parcel.
1411     */
1412    public final native byte[] createByteArray();
1413
1414    /**
1415     * Read a byte[] object from the parcel and copy it into the
1416     * given byte array.
1417     */
1418    public final void readByteArray(byte[] val) {
1419        // TODO: make this a native method to avoid the extra copy.
1420        byte[] ba = createByteArray();
1421        if (ba.length == val.length) {
1422           System.arraycopy(ba, 0, val, 0, ba.length);
1423        } else {
1424            throw new RuntimeException("bad array lengths");
1425        }
1426    }
1427
1428    /**
1429     * Read and return a String[] object from the parcel.
1430     * {@hide}
1431     */
1432    public final String[] readStringArray() {
1433        String[] array = null;
1434
1435        int length = readInt();
1436        if (length >= 0)
1437        {
1438            array = new String[length];
1439
1440            for (int i = 0 ; i < length ; i++)
1441            {
1442                array[i] = readString();
1443            }
1444        }
1445
1446        return array;
1447    }
1448
1449    /**
1450     * Read and return a new ArrayList object from the parcel at the current
1451     * dataPosition().  Returns null if the previously written list object was
1452     * null.  The given class loader will be used to load any enclosed
1453     * Parcelables.
1454     */
1455    public final ArrayList readArrayList(ClassLoader loader) {
1456        int N = readInt();
1457        if (N < 0) {
1458            return null;
1459        }
1460        ArrayList l = new ArrayList(N);
1461        readListInternal(l, N, loader);
1462        return l;
1463    }
1464
1465    /**
1466     * Read and return a new Object array from the parcel at the current
1467     * dataPosition().  Returns null if the previously written array was
1468     * null.  The given class loader will be used to load any enclosed
1469     * Parcelables.
1470     */
1471    public final Object[] readArray(ClassLoader loader) {
1472        int N = readInt();
1473        if (N < 0) {
1474            return null;
1475        }
1476        Object[] l = new Object[N];
1477        readArrayInternal(l, N, loader);
1478        return l;
1479    }
1480
1481    /**
1482     * Read and return a new SparseArray object from the parcel at the current
1483     * dataPosition().  Returns null if the previously written list object was
1484     * null.  The given class loader will be used to load any enclosed
1485     * Parcelables.
1486     */
1487    public final SparseArray readSparseArray(ClassLoader loader) {
1488        int N = readInt();
1489        if (N < 0) {
1490            return null;
1491        }
1492        SparseArray sa = new SparseArray(N);
1493        readSparseArrayInternal(sa, N, loader);
1494        return sa;
1495    }
1496
1497    /**
1498     * Read and return a new SparseBooleanArray object from the parcel at the current
1499     * dataPosition().  Returns null if the previously written list object was
1500     * null.
1501     */
1502    public final SparseBooleanArray readSparseBooleanArray() {
1503        int N = readInt();
1504        if (N < 0) {
1505            return null;
1506        }
1507        SparseBooleanArray sa = new SparseBooleanArray(N);
1508        readSparseBooleanArrayInternal(sa, N);
1509        return sa;
1510    }
1511
1512    /**
1513     * Read and return a new ArrayList containing a particular object type from
1514     * the parcel that was written with {@link #writeTypedList} at the
1515     * current dataPosition().  Returns null if the
1516     * previously written list object was null.  The list <em>must</em> have
1517     * previously been written via {@link #writeTypedList} with the same object
1518     * type.
1519     *
1520     * @return A newly created ArrayList containing objects with the same data
1521     *         as those that were previously written.
1522     *
1523     * @see #writeTypedList
1524     */
1525    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1526        int N = readInt();
1527        if (N < 0) {
1528            return null;
1529        }
1530        ArrayList<T> l = new ArrayList<T>(N);
1531        while (N > 0) {
1532            if (readInt() != 0) {
1533                l.add(c.createFromParcel(this));
1534            } else {
1535                l.add(null);
1536            }
1537            N--;
1538        }
1539        return l;
1540    }
1541
1542    /**
1543     * Read into the given List items containing a particular object type
1544     * that were written with {@link #writeTypedList} at the
1545     * current dataPosition().  The list <em>must</em> have
1546     * previously been written via {@link #writeTypedList} with the same object
1547     * type.
1548     *
1549     * @return A newly created ArrayList containing objects with the same data
1550     *         as those that were previously written.
1551     *
1552     * @see #writeTypedList
1553     */
1554    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1555        int M = list.size();
1556        int N = readInt();
1557        int i = 0;
1558        for (; i < M && i < N; i++) {
1559            if (readInt() != 0) {
1560                list.set(i, c.createFromParcel(this));
1561            } else {
1562                list.set(i, null);
1563            }
1564        }
1565        for (; i<N; i++) {
1566            if (readInt() != 0) {
1567                list.add(c.createFromParcel(this));
1568            } else {
1569                list.add(null);
1570            }
1571        }
1572        for (; i<M; i++) {
1573            list.remove(N);
1574        }
1575    }
1576
1577    /**
1578     * Read and return a new ArrayList containing String objects from
1579     * the parcel that was written with {@link #writeStringList} at the
1580     * current dataPosition().  Returns null if the
1581     * previously written list object was null.
1582     *
1583     * @return A newly created ArrayList containing strings with the same data
1584     *         as those that were previously written.
1585     *
1586     * @see #writeStringList
1587     */
1588    public final ArrayList<String> createStringArrayList() {
1589        int N = readInt();
1590        if (N < 0) {
1591            return null;
1592        }
1593        ArrayList<String> l = new ArrayList<String>(N);
1594        while (N > 0) {
1595            l.add(readString());
1596            N--;
1597        }
1598        return l;
1599    }
1600
1601    /**
1602     * Read and return a new ArrayList containing IBinder objects from
1603     * the parcel that was written with {@link #writeBinderList} at the
1604     * current dataPosition().  Returns null if the
1605     * previously written list object was null.
1606     *
1607     * @return A newly created ArrayList containing strings with the same data
1608     *         as those that were previously written.
1609     *
1610     * @see #writeBinderList
1611     */
1612    public final ArrayList<IBinder> createBinderArrayList() {
1613        int N = readInt();
1614        if (N < 0) {
1615            return null;
1616        }
1617        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1618        while (N > 0) {
1619            l.add(readStrongBinder());
1620            N--;
1621        }
1622        return l;
1623    }
1624
1625    /**
1626     * Read into the given List items String objects that were written with
1627     * {@link #writeStringList} at the current dataPosition().
1628     *
1629     * @return A newly created ArrayList containing strings with the same data
1630     *         as those that were previously written.
1631     *
1632     * @see #writeStringList
1633     */
1634    public final void readStringList(List<String> list) {
1635        int M = list.size();
1636        int N = readInt();
1637        int i = 0;
1638        for (; i < M && i < N; i++) {
1639            list.set(i, readString());
1640        }
1641        for (; i<N; i++) {
1642            list.add(readString());
1643        }
1644        for (; i<M; i++) {
1645            list.remove(N);
1646        }
1647    }
1648
1649    /**
1650     * Read into the given List items IBinder objects that were written with
1651     * {@link #writeBinderList} at the current dataPosition().
1652     *
1653     * @return A newly created ArrayList containing strings with the same data
1654     *         as those that were previously written.
1655     *
1656     * @see #writeBinderList
1657     */
1658    public final void readBinderList(List<IBinder> list) {
1659        int M = list.size();
1660        int N = readInt();
1661        int i = 0;
1662        for (; i < M && i < N; i++) {
1663            list.set(i, readStrongBinder());
1664        }
1665        for (; i<N; i++) {
1666            list.add(readStrongBinder());
1667        }
1668        for (; i<M; i++) {
1669            list.remove(N);
1670        }
1671    }
1672
1673    /**
1674     * Read and return a new array containing a particular object type from
1675     * the parcel at the current dataPosition().  Returns null if the
1676     * previously written array was null.  The array <em>must</em> have
1677     * previously been written via {@link #writeTypedArray} with the same
1678     * object type.
1679     *
1680     * @return A newly created array containing objects with the same data
1681     *         as those that were previously written.
1682     *
1683     * @see #writeTypedArray
1684     */
1685    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
1686        int N = readInt();
1687        if (N < 0) {
1688            return null;
1689        }
1690        T[] l = c.newArray(N);
1691        for (int i=0; i<N; i++) {
1692            if (readInt() != 0) {
1693                l[i] = c.createFromParcel(this);
1694            }
1695        }
1696        return l;
1697    }
1698
1699    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
1700        int N = readInt();
1701        if (N == val.length) {
1702            for (int i=0; i<N; i++) {
1703                if (readInt() != 0) {
1704                    val[i] = c.createFromParcel(this);
1705                } else {
1706                    val[i] = null;
1707                }
1708            }
1709        } else {
1710            throw new RuntimeException("bad array lengths");
1711        }
1712    }
1713
1714    /**
1715     * @deprecated
1716     * @hide
1717     */
1718    @Deprecated
1719    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
1720        return createTypedArray(c);
1721    }
1722
1723    /**
1724     * Write a heterogeneous array of Parcelable objects into the Parcel.
1725     * Each object in the array is written along with its class name, so
1726     * that the correct class can later be instantiated.  As a result, this
1727     * has significantly more overhead than {@link #writeTypedArray}, but will
1728     * correctly handle an array containing more than one type of object.
1729     *
1730     * @param value The array of objects to be written.
1731     * @param parcelableFlags Contextual flags as per
1732     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1733     *
1734     * @see #writeTypedArray
1735     */
1736    public final <T extends Parcelable> void writeParcelableArray(T[] value,
1737            int parcelableFlags) {
1738        if (value != null) {
1739            int N = value.length;
1740            writeInt(N);
1741            for (int i=0; i<N; i++) {
1742                writeParcelable(value[i], parcelableFlags);
1743            }
1744        } else {
1745            writeInt(-1);
1746        }
1747    }
1748
1749    /**
1750     * Read a typed object from a parcel.  The given class loader will be
1751     * used to load any enclosed Parcelables.  If it is null, the default class
1752     * loader will be used.
1753     */
1754    public final Object readValue(ClassLoader loader) {
1755        int type = readInt();
1756
1757        switch (type) {
1758        case VAL_NULL:
1759            return null;
1760
1761        case VAL_STRING:
1762            return readString();
1763
1764        case VAL_INTEGER:
1765            return readInt();
1766
1767        case VAL_MAP:
1768            return readHashMap(loader);
1769
1770        case VAL_PARCELABLE:
1771            return readParcelable(loader);
1772
1773        case VAL_SHORT:
1774            return (short) readInt();
1775
1776        case VAL_LONG:
1777            return readLong();
1778
1779        case VAL_FLOAT:
1780            return readFloat();
1781
1782        case VAL_DOUBLE:
1783            return readDouble();
1784
1785        case VAL_BOOLEAN:
1786            return readInt() == 1;
1787
1788        case VAL_CHARSEQUENCE:
1789            return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1790
1791        case VAL_LIST:
1792            return readArrayList(loader);
1793
1794        case VAL_BOOLEANARRAY:
1795            return createBooleanArray();
1796
1797        case VAL_BYTEARRAY:
1798            return createByteArray();
1799
1800        case VAL_STRINGARRAY:
1801            return readStringArray();
1802
1803        case VAL_IBINDER:
1804            return readStrongBinder();
1805
1806        case VAL_OBJECTARRAY:
1807            return readArray(loader);
1808
1809        case VAL_INTARRAY:
1810            return createIntArray();
1811
1812        case VAL_LONGARRAY:
1813            return createLongArray();
1814
1815        case VAL_BYTE:
1816            return readByte();
1817
1818        case VAL_SERIALIZABLE:
1819            return readSerializable();
1820
1821        case VAL_PARCELABLEARRAY:
1822            return readParcelableArray(loader);
1823
1824        case VAL_SPARSEARRAY:
1825            return readSparseArray(loader);
1826
1827        case VAL_SPARSEBOOLEANARRAY:
1828            return readSparseBooleanArray();
1829
1830        case VAL_BUNDLE:
1831            return readBundle(loader); // loading will be deferred
1832
1833        default:
1834            int off = dataPosition() - 4;
1835            throw new RuntimeException(
1836                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
1837        }
1838    }
1839
1840    /**
1841     * Read and return a new Parcelable from the parcel.  The given class loader
1842     * will be used to load any enclosed Parcelables.  If it is null, the default
1843     * class loader will be used.
1844     * @param loader A ClassLoader from which to instantiate the Parcelable
1845     * object, or null for the default class loader.
1846     * @return Returns the newly created Parcelable, or null if a null
1847     * object has been written.
1848     * @throws BadParcelableException Throws BadParcelableException if there
1849     * was an error trying to instantiate the Parcelable.
1850     */
1851    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
1852        String name = readString();
1853        if (name == null) {
1854            return null;
1855        }
1856        Parcelable.Creator<T> creator;
1857        synchronized (mCreators) {
1858            HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
1859            if (map == null) {
1860                map = new HashMap<String,Parcelable.Creator>();
1861                mCreators.put(loader, map);
1862            }
1863            creator = map.get(name);
1864            if (creator == null) {
1865                try {
1866                    Class c = loader == null ?
1867                        Class.forName(name) : Class.forName(name, true, loader);
1868                    Field f = c.getField("CREATOR");
1869                    creator = (Parcelable.Creator)f.get(null);
1870                }
1871                catch (IllegalAccessException e) {
1872                    Log.e("Parcel", "Class not found when unmarshalling: "
1873                                        + name + ", e: " + e);
1874                    throw new BadParcelableException(
1875                            "IllegalAccessException when unmarshalling: " + name);
1876                }
1877                catch (ClassNotFoundException e) {
1878                    Log.e("Parcel", "Class not found when unmarshalling: "
1879                                        + name + ", e: " + e);
1880                    throw new BadParcelableException(
1881                            "ClassNotFoundException when unmarshalling: " + name);
1882                }
1883                catch (ClassCastException e) {
1884                    throw new BadParcelableException("Parcelable protocol requires a "
1885                                        + "Parcelable.Creator object called "
1886                                        + " CREATOR on class " + name);
1887                }
1888                catch (NoSuchFieldException e) {
1889                    throw new BadParcelableException("Parcelable protocol requires a "
1890                                        + "Parcelable.Creator object called "
1891                                        + " CREATOR on class " + name);
1892                }
1893                if (creator == null) {
1894                    throw new BadParcelableException("Parcelable protocol requires a "
1895                                        + "Parcelable.Creator object called "
1896                                        + " CREATOR on class " + name);
1897                }
1898
1899                map.put(name, creator);
1900            }
1901        }
1902
1903        return creator.createFromParcel(this);
1904    }
1905
1906    /**
1907     * Read and return a new Parcelable array from the parcel.
1908     * The given class loader will be used to load any enclosed
1909     * Parcelables.
1910     * @return the Parcelable array, or null if the array is null
1911     */
1912    public final Parcelable[] readParcelableArray(ClassLoader loader) {
1913        int N = readInt();
1914        if (N < 0) {
1915            return null;
1916        }
1917        Parcelable[] p = new Parcelable[N];
1918        for (int i = 0; i < N; i++) {
1919            p[i] = (Parcelable) readParcelable(loader);
1920        }
1921        return p;
1922    }
1923
1924    /**
1925     * Read and return a new Serializable object from the parcel.
1926     * @return the Serializable object, or null if the Serializable name
1927     * wasn't found in the parcel.
1928     */
1929    public final Serializable readSerializable() {
1930        String name = readString();
1931        if (name == null) {
1932            // For some reason we were unable to read the name of the Serializable (either there
1933            // is nothing left in the Parcel to read, or the next value wasn't a String), so
1934            // return null, which indicates that the name wasn't found in the parcel.
1935            return null;
1936        }
1937
1938        byte[] serializedData = createByteArray();
1939        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
1940        try {
1941            ObjectInputStream ois = new ObjectInputStream(bais);
1942            return (Serializable) ois.readObject();
1943        } catch (IOException ioe) {
1944            throw new RuntimeException("Parcelable encountered " +
1945                "IOException reading a Serializable object (name = " + name +
1946                ")", ioe);
1947        } catch (ClassNotFoundException cnfe) {
1948            throw new RuntimeException("Parcelable encountered" +
1949                "ClassNotFoundException reading a Serializable object (name = "
1950                + name + ")", cnfe);
1951        }
1952    }
1953
1954    // Cache of previously looked up CREATOR.createFromParcel() methods for
1955    // particular classes.  Keys are the names of the classes, values are
1956    // Method objects.
1957    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
1958        mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
1959
1960    static protected final Parcel obtain(int obj) {
1961        final Parcel[] pool = sHolderPool;
1962        synchronized (pool) {
1963            Parcel p;
1964            for (int i=0; i<POOL_SIZE; i++) {
1965                p = pool[i];
1966                if (p != null) {
1967                    pool[i] = null;
1968                    if (DEBUG_RECYCLE) {
1969                        p.mStack = new RuntimeException();
1970                    }
1971                    p.init(obj);
1972                    return p;
1973                }
1974            }
1975        }
1976        return new Parcel(obj);
1977    }
1978
1979    private Parcel(int obj) {
1980        if (DEBUG_RECYCLE) {
1981            mStack = new RuntimeException();
1982        }
1983        //Log.i("Parcel", "Initializing obj=0x" + Integer.toHexString(obj), mStack);
1984        init(obj);
1985    }
1986
1987    @Override
1988    protected void finalize() throws Throwable {
1989        if (DEBUG_RECYCLE) {
1990            if (mStack != null) {
1991                Log.w("Parcel", "Client did not call Parcel.recycle()", mStack);
1992            }
1993        }
1994        destroy();
1995    }
1996
1997    private native void freeBuffer();
1998    private native void init(int obj);
1999    private native void destroy();
2000
2001    private void readMapInternal(Map outVal, int N,
2002        ClassLoader loader) {
2003        while (N > 0) {
2004            Object key = readValue(loader);
2005            Object value = readValue(loader);
2006            outVal.put(key, value);
2007            N--;
2008        }
2009    }
2010
2011    private void readListInternal(List outVal, int N,
2012        ClassLoader loader) {
2013        while (N > 0) {
2014            Object value = readValue(loader);
2015            //Log.d("Parcel", "Unmarshalling value=" + value);
2016            outVal.add(value);
2017            N--;
2018        }
2019    }
2020
2021    private void readArrayInternal(Object[] outVal, int N,
2022        ClassLoader loader) {
2023        for (int i = 0; i < N; i++) {
2024            Object value = readValue(loader);
2025            //Log.d("Parcel", "Unmarshalling value=" + value);
2026            outVal[i] = value;
2027        }
2028    }
2029
2030    private void readSparseArrayInternal(SparseArray outVal, int N,
2031        ClassLoader loader) {
2032        while (N > 0) {
2033            int key = readInt();
2034            Object value = readValue(loader);
2035            //Log.i("Parcel", "Unmarshalling key=" + key + " value=" + value);
2036            outVal.append(key, value);
2037            N--;
2038        }
2039    }
2040
2041
2042    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2043        while (N > 0) {
2044            int key = readInt();
2045            boolean value = this.readByte() == 1;
2046            //Log.i("Parcel", "Unmarshalling key=" + key + " value=" + value);
2047            outVal.append(key, value);
2048            N--;
2049        }
2050    }
2051}
2052