Parcel.java revision 703e5d3c7fbeb8ca0978045db01d40318f838612
1/*
2 * Copyright (C) 2006 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17package android.os;
18
19import android.text.TextUtils;
20import android.util.Log;
21import android.util.SparseArray;
22import android.util.SparseBooleanArray;
23
24import java.io.ByteArrayInputStream;
25import java.io.ByteArrayOutputStream;
26import java.io.FileDescriptor;
27import java.io.FileNotFoundException;
28import java.io.IOException;
29import java.io.ObjectInputStream;
30import java.io.ObjectOutputStream;
31import java.io.Serializable;
32import java.lang.reflect.Field;
33import java.util.ArrayList;
34import java.util.HashMap;
35import java.util.List;
36import java.util.Map;
37import java.util.Set;
38
39/**
40 * Container for a message (data and object references) that can
41 * be sent through an IBinder.  A Parcel can contain both flattened data
42 * that will be unflattened on the other side of the IPC (using the various
43 * methods here for writing specific types, or the general
44 * {@link Parcelable} interface), and references to live {@link IBinder}
45 * objects that will result in the other side receiving a proxy IBinder
46 * connected with the original IBinder in the Parcel.
47 *
48 * <p class="note">Parcel is <strong>not</strong> a general-purpose
49 * serialization mechanism.  This class (and the corresponding
50 * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
51 * designed as a high-performance IPC transport.  As such, it is not
52 * appropriate to place any Parcel data in to persistent storage: changes
53 * in the underlying implementation of any of the data in the Parcel can
54 * render older data unreadable.</p>
55 *
56 * <p>The bulk of the Parcel API revolves around reading and writing data
57 * of various types.  There are six major classes of such functions available.</p>
58 *
59 * <h3>Primitives</h3>
60 *
61 * <p>The most basic data functions are for writing and reading primitive
62 * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
63 * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
64 * {@link #readInt}, {@link #writeLong}, {@link #readLong},
65 * {@link #writeString}, {@link #readString}.  Most other
66 * data operations are built on top of these.  The given data is written and
67 * read using the endianess of the host CPU.</p>
68 *
69 * <h3>Primitive Arrays</h3>
70 *
71 * <p>There are a variety of methods for reading and writing raw arrays
72 * of primitive objects, which generally result in writing a 4-byte length
73 * followed by the primitive data items.  The methods for reading can either
74 * read the data into an existing array, or create and return a new array.
75 * These available types are:</p>
76 *
77 * <ul>
78 * <li> {@link #writeBooleanArray(boolean[])},
79 * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
80 * <li> {@link #writeByteArray(byte[])},
81 * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
82 * {@link #createByteArray()}
83 * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
84 * {@link #createCharArray()}
85 * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
86 * {@link #createDoubleArray()}
87 * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
88 * {@link #createFloatArray()}
89 * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
90 * {@link #createIntArray()}
91 * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
92 * {@link #createLongArray()}
93 * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
94 * {@link #createStringArray()}.
95 * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
96 * {@link #readSparseBooleanArray()}.
97 * </ul>
98 *
99 * <h3>Parcelables</h3>
100 *
101 * <p>The {@link Parcelable} protocol provides an extremely efficient (but
102 * low-level) protocol for objects to write and read themselves from Parcels.
103 * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
104 * and {@link #readParcelable(ClassLoader)} or
105 * {@link #writeParcelableArray} and
106 * {@link #readParcelableArray(ClassLoader)} to write or read.  These
107 * methods write both the class type and its data to the Parcel, allowing
108 * that class to be reconstructed from the appropriate class loader when
109 * later reading.</p>
110 *
111 * <p>There are also some methods that provide a more efficient way to work
112 * with Parcelables: {@link #writeTypedArray},
113 * {@link #writeTypedList(List)},
114 * {@link #readTypedArray} and {@link #readTypedList}.  These methods
115 * do not write the class information of the original object: instead, the
116 * caller of the read function must know what type to expect and pass in the
117 * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
118 * properly construct the new object and read its data.  (To more efficient
119 * write and read a single Parceable object, you can directly call
120 * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
121 * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
122 * yourself.)</p>
123 *
124 * <h3>Bundles</h3>
125 *
126 * <p>A special type-safe container, called {@link Bundle}, is available
127 * for key/value maps of heterogeneous values.  This has many optimizations
128 * for improved performance when reading and writing data, and its type-safe
129 * API avoids difficult to debug type errors when finally marshalling the
130 * data contents into a Parcel.  The methods to use are
131 * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
132 * {@link #readBundle(ClassLoader)}.
133 *
134 * <h3>Active Objects</h3>
135 *
136 * <p>An unusual feature of Parcel is the ability to read and write active
137 * objects.  For these objects the actual contents of the object is not
138 * written, rather a special token referencing the object is written.  When
139 * reading the object back from the Parcel, you do not get a new instance of
140 * the object, but rather a handle that operates on the exact same object that
141 * was originally written.  There are two forms of active objects available.</p>
142 *
143 * <p>{@link Binder} objects are a core facility of Android's general cross-process
144 * communication system.  The {@link IBinder} interface describes an abstract
145 * protocol with a Binder object.  Any such interface can be written in to
146 * a Parcel, and upon reading you will receive either the original object
147 * implementing that interface or a special proxy implementation
148 * that communicates calls back to the original object.  The methods to use are
149 * {@link #writeStrongBinder(IBinder)},
150 * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
151 * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
152 * {@link #createBinderArray()},
153 * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
154 * {@link #createBinderArrayList()}.</p>
155 *
156 * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
157 * can be written and {@link ParcelFileDescriptor} objects returned to operate
158 * on the original file descriptor.  The returned file descriptor is a dup
159 * of the original file descriptor: the object and fd is different, but
160 * operating on the same underlying file stream, with the same position, etc.
161 * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
162 * {@link #readFileDescriptor()}.
163 *
164 * <h3>Untyped Containers</h3>
165 *
166 * <p>A final class of methods are for writing and reading standard Java
167 * containers of arbitrary types.  These all revolve around the
168 * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
169 * which define the types of objects allowed.  The container methods are
170 * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
171 * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
172 * {@link #readArrayList(ClassLoader)},
173 * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
174 * {@link #writeSparseArray(SparseArray)},
175 * {@link #readSparseArray(ClassLoader)}.
176 */
177public final class Parcel {
178    private static final boolean DEBUG_RECYCLE = false;
179    private static final String TAG = "Parcel";
180
181    @SuppressWarnings({"UnusedDeclaration"})
182    private int mObject; // used by native code
183    @SuppressWarnings({"UnusedDeclaration"})
184    private int mOwnObject; // used by native code
185    private RuntimeException mStack;
186
187    private static final int POOL_SIZE = 6;
188    private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
189    private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
190
191    private static final int VAL_NULL = -1;
192    private static final int VAL_STRING = 0;
193    private static final int VAL_INTEGER = 1;
194    private static final int VAL_MAP = 2;
195    private static final int VAL_BUNDLE = 3;
196    private static final int VAL_PARCELABLE = 4;
197    private static final int VAL_SHORT = 5;
198    private static final int VAL_LONG = 6;
199    private static final int VAL_FLOAT = 7;
200    private static final int VAL_DOUBLE = 8;
201    private static final int VAL_BOOLEAN = 9;
202    private static final int VAL_CHARSEQUENCE = 10;
203    private static final int VAL_LIST  = 11;
204    private static final int VAL_SPARSEARRAY = 12;
205    private static final int VAL_BYTEARRAY = 13;
206    private static final int VAL_STRINGARRAY = 14;
207    private static final int VAL_IBINDER = 15;
208    private static final int VAL_PARCELABLEARRAY = 16;
209    private static final int VAL_OBJECTARRAY = 17;
210    private static final int VAL_INTARRAY = 18;
211    private static final int VAL_LONGARRAY = 19;
212    private static final int VAL_BYTE = 20;
213    private static final int VAL_SERIALIZABLE = 21;
214    private static final int VAL_SPARSEBOOLEANARRAY = 22;
215    private static final int VAL_BOOLEANARRAY = 23;
216    private static final int VAL_CHARSEQUENCEARRAY = 24;
217
218    // The initial int32 in a Binder call's reply Parcel header:
219    private static final int EX_SECURITY = -1;
220    private static final int EX_BAD_PARCELABLE = -2;
221    private static final int EX_ILLEGAL_ARGUMENT = -3;
222    private static final int EX_NULL_POINTER = -4;
223    private static final int EX_ILLEGAL_STATE = -5;
224    private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
225
226    public final static Parcelable.Creator<String> STRING_CREATOR
227             = new Parcelable.Creator<String>() {
228        public String createFromParcel(Parcel source) {
229            return source.readString();
230        }
231        public String[] newArray(int size) {
232            return new String[size];
233        }
234    };
235
236    /**
237     * Retrieve a new Parcel object from the pool.
238     */
239    public static Parcel obtain() {
240        final Parcel[] pool = sOwnedPool;
241        synchronized (pool) {
242            Parcel p;
243            for (int i=0; i<POOL_SIZE; i++) {
244                p = pool[i];
245                if (p != null) {
246                    pool[i] = null;
247                    if (DEBUG_RECYCLE) {
248                        p.mStack = new RuntimeException();
249                    }
250                    return p;
251                }
252            }
253        }
254        return new Parcel(0);
255    }
256
257    /**
258     * Put a Parcel object back into the pool.  You must not touch
259     * the object after this call.
260     */
261    public final void recycle() {
262        if (DEBUG_RECYCLE) mStack = null;
263        freeBuffer();
264        final Parcel[] pool = mOwnObject != 0 ? sOwnedPool : sHolderPool;
265        synchronized (pool) {
266            for (int i=0; i<POOL_SIZE; i++) {
267                if (pool[i] == null) {
268                    pool[i] = this;
269                    return;
270                }
271            }
272        }
273    }
274
275    /**
276     * Returns the total amount of data contained in the parcel.
277     */
278    public final native int dataSize();
279
280    /**
281     * Returns the amount of data remaining to be read from the
282     * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
283     */
284    public final native int dataAvail();
285
286    /**
287     * Returns the current position in the parcel data.  Never
288     * more than {@link #dataSize}.
289     */
290    public final native int dataPosition();
291
292    /**
293     * Returns the total amount of space in the parcel.  This is always
294     * >= {@link #dataSize}.  The difference between it and dataSize() is the
295     * amount of room left until the parcel needs to re-allocate its
296     * data buffer.
297     */
298    public final native int dataCapacity();
299
300    /**
301     * Change the amount of data in the parcel.  Can be either smaller or
302     * larger than the current size.  If larger than the current capacity,
303     * more memory will be allocated.
304     *
305     * @param size The new number of bytes in the Parcel.
306     */
307    public final native void setDataSize(int size);
308
309    /**
310     * Move the current read/write position in the parcel.
311     * @param pos New offset in the parcel; must be between 0 and
312     * {@link #dataSize}.
313     */
314    public final native void setDataPosition(int pos);
315
316    /**
317     * Change the capacity (current available space) of the parcel.
318     *
319     * @param size The new capacity of the parcel, in bytes.  Can not be
320     * less than {@link #dataSize} -- that is, you can not drop existing data
321     * with this method.
322     */
323    public final native void setDataCapacity(int size);
324
325    /**
326     * Returns the raw bytes of the parcel.
327     *
328     * <p class="note">The data you retrieve here <strong>must not</strong>
329     * be placed in any kind of persistent storage (on local disk, across
330     * a network, etc).  For that, you should use standard serialization
331     * or another kind of general serialization mechanism.  The Parcel
332     * marshalled representation is highly optimized for local IPC, and as
333     * such does not attempt to maintain compatibility with data created
334     * in different versions of the platform.
335     */
336    public final native byte[] marshall();
337
338    /**
339     * Set the bytes in data to be the raw bytes of this Parcel.
340     */
341    public final native void unmarshall(byte[] data, int offest, int length);
342
343    public final native void appendFrom(Parcel parcel, int offset, int length);
344
345    /**
346     * Report whether the parcel contains any marshalled file descriptors.
347     */
348    public final native boolean hasFileDescriptors();
349
350    /**
351     * Store or read an IBinder interface token in the parcel at the current
352     * {@link #dataPosition}.  This is used to validate that the marshalled
353     * transaction is intended for the target interface.
354     */
355    public final native void writeInterfaceToken(String interfaceName);
356    public final native void enforceInterface(String interfaceName);
357
358    /**
359     * Write a byte array into the parcel at the current {#link #dataPosition},
360     * growing {@link #dataCapacity} if needed.
361     * @param b Bytes to place into the parcel.
362     */
363    public final void writeByteArray(byte[] b) {
364        writeByteArray(b, 0, (b != null) ? b.length : 0);
365    }
366
367    /**
368     * Write an byte array into the parcel at the current {#link #dataPosition},
369     * growing {@link #dataCapacity} if needed.
370     * @param b Bytes to place into the parcel.
371     * @param offset Index of first byte to be written.
372     * @param len Number of bytes to write.
373     */
374    public final void writeByteArray(byte[] b, int offset, int len) {
375        if (b == null) {
376            writeInt(-1);
377            return;
378        }
379        if (b.length < offset + len || len < 0 || offset < 0) {
380            throw new ArrayIndexOutOfBoundsException();
381        }
382        writeNative(b, offset, len);
383    }
384
385    private native void writeNative(byte[] b, int offset, int len);
386
387    /**
388     * Write an integer value into the parcel at the current dataPosition(),
389     * growing dataCapacity() if needed.
390     */
391    public final native void writeInt(int val);
392
393    /**
394     * Write a long integer value into the parcel at the current dataPosition(),
395     * growing dataCapacity() if needed.
396     */
397    public final native void writeLong(long val);
398
399    /**
400     * Write a floating point value into the parcel at the current
401     * dataPosition(), growing dataCapacity() if needed.
402     */
403    public final native void writeFloat(float val);
404
405    /**
406     * Write a double precision floating point value into the parcel at the
407     * current dataPosition(), growing dataCapacity() if needed.
408     */
409    public final native void writeDouble(double val);
410
411    /**
412     * Write a string value into the parcel at the current dataPosition(),
413     * growing dataCapacity() if needed.
414     */
415    public final native void writeString(String val);
416
417    /**
418     * Write a CharSequence value into the parcel at the current dataPosition(),
419     * growing dataCapacity() if needed.
420     * @hide
421     */
422    public final void writeCharSequence(CharSequence val) {
423        TextUtils.writeToParcel(val, this, 0);
424    }
425
426    /**
427     * Write an object into the parcel at the current dataPosition(),
428     * growing dataCapacity() if needed.
429     */
430    public final native void writeStrongBinder(IBinder val);
431
432    /**
433     * Write an object into the parcel at the current dataPosition(),
434     * growing dataCapacity() if needed.
435     */
436    public final void writeStrongInterface(IInterface val) {
437        writeStrongBinder(val == null ? null : val.asBinder());
438    }
439
440    /**
441     * Write a FileDescriptor into the parcel at the current dataPosition(),
442     * growing dataCapacity() if needed.
443     */
444    public final native void writeFileDescriptor(FileDescriptor val);
445
446    /**
447     * Write an byte value into the parcel at the current dataPosition(),
448     * growing dataCapacity() if needed.
449     */
450    public final void writeByte(byte val) {
451        writeInt(val);
452    }
453
454    /**
455     * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
456     * at the current dataPosition(),
457     * growing dataCapacity() if needed.  The Map keys must be String objects.
458     * The Map values are written using {@link #writeValue} and must follow
459     * the specification there.
460     *
461     * <p>It is strongly recommended to use {@link #writeBundle} instead of
462     * this method, since the Bundle class provides a type-safe API that
463     * allows you to avoid mysterious type errors at the point of marshalling.
464     */
465    public final void writeMap(Map val) {
466        writeMapInternal((Map<String,Object>) val);
467    }
468
469    /**
470     * Flatten a Map into the parcel at the current dataPosition(),
471     * growing dataCapacity() if needed.  The Map keys must be String objects.
472     */
473    /* package */ void writeMapInternal(Map<String,Object> val) {
474        if (val == null) {
475            writeInt(-1);
476            return;
477        }
478        Set<Map.Entry<String,Object>> entries = val.entrySet();
479        writeInt(entries.size());
480        for (Map.Entry<String,Object> e : entries) {
481            writeValue(e.getKey());
482            writeValue(e.getValue());
483        }
484    }
485
486    /**
487     * Flatten a Bundle into the parcel at the current dataPosition(),
488     * growing dataCapacity() if needed.
489     */
490    public final void writeBundle(Bundle val) {
491        if (val == null) {
492            writeInt(-1);
493            return;
494        }
495
496        val.writeToParcel(this, 0);
497    }
498
499    /**
500     * Flatten a List into the parcel at the current dataPosition(), growing
501     * dataCapacity() if needed.  The List values are written using
502     * {@link #writeValue} and must follow the specification there.
503     */
504    public final void writeList(List val) {
505        if (val == null) {
506            writeInt(-1);
507            return;
508        }
509        int N = val.size();
510        int i=0;
511        writeInt(N);
512        while (i < N) {
513            writeValue(val.get(i));
514            i++;
515        }
516    }
517
518    /**
519     * Flatten an Object array into the parcel at the current dataPosition(),
520     * growing dataCapacity() if needed.  The array values are written using
521     * {@link #writeValue} and must follow the specification there.
522     */
523    public final void writeArray(Object[] val) {
524        if (val == null) {
525            writeInt(-1);
526            return;
527        }
528        int N = val.length;
529        int i=0;
530        writeInt(N);
531        while (i < N) {
532            writeValue(val[i]);
533            i++;
534        }
535    }
536
537    /**
538     * Flatten a generic SparseArray into the parcel at the current
539     * dataPosition(), growing dataCapacity() if needed.  The SparseArray
540     * values are written using {@link #writeValue} and must follow the
541     * specification there.
542     */
543    public final void writeSparseArray(SparseArray<Object> val) {
544        if (val == null) {
545            writeInt(-1);
546            return;
547        }
548        int N = val.size();
549        writeInt(N);
550        int i=0;
551        while (i < N) {
552            writeInt(val.keyAt(i));
553            writeValue(val.valueAt(i));
554            i++;
555        }
556    }
557
558    public final void writeSparseBooleanArray(SparseBooleanArray val) {
559        if (val == null) {
560            writeInt(-1);
561            return;
562        }
563        int N = val.size();
564        writeInt(N);
565        int i=0;
566        while (i < N) {
567            writeInt(val.keyAt(i));
568            writeByte((byte)(val.valueAt(i) ? 1 : 0));
569            i++;
570        }
571    }
572
573    public final void writeBooleanArray(boolean[] val) {
574        if (val != null) {
575            int N = val.length;
576            writeInt(N);
577            for (int i=0; i<N; i++) {
578                writeInt(val[i] ? 1 : 0);
579            }
580        } else {
581            writeInt(-1);
582        }
583    }
584
585    public final boolean[] createBooleanArray() {
586        int N = readInt();
587        // >>2 as a fast divide-by-4 works in the create*Array() functions
588        // because dataAvail() will never return a negative number.  4 is
589        // the size of a stored boolean in the stream.
590        if (N >= 0 && N <= (dataAvail() >> 2)) {
591            boolean[] val = new boolean[N];
592            for (int i=0; i<N; i++) {
593                val[i] = readInt() != 0;
594            }
595            return val;
596        } else {
597            return null;
598        }
599    }
600
601    public final void readBooleanArray(boolean[] val) {
602        int N = readInt();
603        if (N == val.length) {
604            for (int i=0; i<N; i++) {
605                val[i] = readInt() != 0;
606            }
607        } else {
608            throw new RuntimeException("bad array lengths");
609        }
610    }
611
612    public final void writeCharArray(char[] val) {
613        if (val != null) {
614            int N = val.length;
615            writeInt(N);
616            for (int i=0; i<N; i++) {
617                writeInt((int)val[i]);
618            }
619        } else {
620            writeInt(-1);
621        }
622    }
623
624    public final char[] createCharArray() {
625        int N = readInt();
626        if (N >= 0 && N <= (dataAvail() >> 2)) {
627            char[] val = new char[N];
628            for (int i=0; i<N; i++) {
629                val[i] = (char)readInt();
630            }
631            return val;
632        } else {
633            return null;
634        }
635    }
636
637    public final void readCharArray(char[] val) {
638        int N = readInt();
639        if (N == val.length) {
640            for (int i=0; i<N; i++) {
641                val[i] = (char)readInt();
642            }
643        } else {
644            throw new RuntimeException("bad array lengths");
645        }
646    }
647
648    public final void writeIntArray(int[] val) {
649        if (val != null) {
650            int N = val.length;
651            writeInt(N);
652            for (int i=0; i<N; i++) {
653                writeInt(val[i]);
654            }
655        } else {
656            writeInt(-1);
657        }
658    }
659
660    public final int[] createIntArray() {
661        int N = readInt();
662        if (N >= 0 && N <= (dataAvail() >> 2)) {
663            int[] val = new int[N];
664            for (int i=0; i<N; i++) {
665                val[i] = readInt();
666            }
667            return val;
668        } else {
669            return null;
670        }
671    }
672
673    public final void readIntArray(int[] val) {
674        int N = readInt();
675        if (N == val.length) {
676            for (int i=0; i<N; i++) {
677                val[i] = readInt();
678            }
679        } else {
680            throw new RuntimeException("bad array lengths");
681        }
682    }
683
684    public final void writeLongArray(long[] val) {
685        if (val != null) {
686            int N = val.length;
687            writeInt(N);
688            for (int i=0; i<N; i++) {
689                writeLong(val[i]);
690            }
691        } else {
692            writeInt(-1);
693        }
694    }
695
696    public final long[] createLongArray() {
697        int N = readInt();
698        // >>3 because stored longs are 64 bits
699        if (N >= 0 && N <= (dataAvail() >> 3)) {
700            long[] val = new long[N];
701            for (int i=0; i<N; i++) {
702                val[i] = readLong();
703            }
704            return val;
705        } else {
706            return null;
707        }
708    }
709
710    public final void readLongArray(long[] val) {
711        int N = readInt();
712        if (N == val.length) {
713            for (int i=0; i<N; i++) {
714                val[i] = readLong();
715            }
716        } else {
717            throw new RuntimeException("bad array lengths");
718        }
719    }
720
721    public final void writeFloatArray(float[] val) {
722        if (val != null) {
723            int N = val.length;
724            writeInt(N);
725            for (int i=0; i<N; i++) {
726                writeFloat(val[i]);
727            }
728        } else {
729            writeInt(-1);
730        }
731    }
732
733    public final float[] createFloatArray() {
734        int N = readInt();
735        // >>2 because stored floats are 4 bytes
736        if (N >= 0 && N <= (dataAvail() >> 2)) {
737            float[] val = new float[N];
738            for (int i=0; i<N; i++) {
739                val[i] = readFloat();
740            }
741            return val;
742        } else {
743            return null;
744        }
745    }
746
747    public final void readFloatArray(float[] val) {
748        int N = readInt();
749        if (N == val.length) {
750            for (int i=0; i<N; i++) {
751                val[i] = readFloat();
752            }
753        } else {
754            throw new RuntimeException("bad array lengths");
755        }
756    }
757
758    public final void writeDoubleArray(double[] val) {
759        if (val != null) {
760            int N = val.length;
761            writeInt(N);
762            for (int i=0; i<N; i++) {
763                writeDouble(val[i]);
764            }
765        } else {
766            writeInt(-1);
767        }
768    }
769
770    public final double[] createDoubleArray() {
771        int N = readInt();
772        // >>3 because stored doubles are 8 bytes
773        if (N >= 0 && N <= (dataAvail() >> 3)) {
774            double[] val = new double[N];
775            for (int i=0; i<N; i++) {
776                val[i] = readDouble();
777            }
778            return val;
779        } else {
780            return null;
781        }
782    }
783
784    public final void readDoubleArray(double[] val) {
785        int N = readInt();
786        if (N == val.length) {
787            for (int i=0; i<N; i++) {
788                val[i] = readDouble();
789            }
790        } else {
791            throw new RuntimeException("bad array lengths");
792        }
793    }
794
795    public final void writeStringArray(String[] val) {
796        if (val != null) {
797            int N = val.length;
798            writeInt(N);
799            for (int i=0; i<N; i++) {
800                writeString(val[i]);
801            }
802        } else {
803            writeInt(-1);
804        }
805    }
806
807    public final String[] createStringArray() {
808        int N = readInt();
809        if (N >= 0) {
810            String[] val = new String[N];
811            for (int i=0; i<N; i++) {
812                val[i] = readString();
813            }
814            return val;
815        } else {
816            return null;
817        }
818    }
819
820    public final void readStringArray(String[] val) {
821        int N = readInt();
822        if (N == val.length) {
823            for (int i=0; i<N; i++) {
824                val[i] = readString();
825            }
826        } else {
827            throw new RuntimeException("bad array lengths");
828        }
829    }
830
831    public final void writeBinderArray(IBinder[] val) {
832        if (val != null) {
833            int N = val.length;
834            writeInt(N);
835            for (int i=0; i<N; i++) {
836                writeStrongBinder(val[i]);
837            }
838        } else {
839            writeInt(-1);
840        }
841    }
842
843    /**
844     * @hide
845     */
846    public final void writeCharSequenceArray(CharSequence[] val) {
847        if (val != null) {
848            int N = val.length;
849            writeInt(N);
850            for (int i=0; i<N; i++) {
851                writeCharSequence(val[i]);
852            }
853        } else {
854            writeInt(-1);
855        }
856    }
857
858    public final IBinder[] createBinderArray() {
859        int N = readInt();
860        if (N >= 0) {
861            IBinder[] val = new IBinder[N];
862            for (int i=0; i<N; i++) {
863                val[i] = readStrongBinder();
864            }
865            return val;
866        } else {
867            return null;
868        }
869    }
870
871    public final void readBinderArray(IBinder[] val) {
872        int N = readInt();
873        if (N == val.length) {
874            for (int i=0; i<N; i++) {
875                val[i] = readStrongBinder();
876            }
877        } else {
878            throw new RuntimeException("bad array lengths");
879        }
880    }
881
882    /**
883     * Flatten a List containing a particular object type into the parcel, at
884     * the current dataPosition() and growing dataCapacity() if needed.  The
885     * type of the objects in the list must be one that implements Parcelable.
886     * Unlike the generic writeList() method, however, only the raw data of the
887     * objects is written and not their type, so you must use the corresponding
888     * readTypedList() to unmarshall them.
889     *
890     * @param val The list of objects to be written.
891     *
892     * @see #createTypedArrayList
893     * @see #readTypedList
894     * @see Parcelable
895     */
896    public final <T extends Parcelable> void writeTypedList(List<T> val) {
897        if (val == null) {
898            writeInt(-1);
899            return;
900        }
901        int N = val.size();
902        int i=0;
903        writeInt(N);
904        while (i < N) {
905            T item = val.get(i);
906            if (item != null) {
907                writeInt(1);
908                item.writeToParcel(this, 0);
909            } else {
910                writeInt(0);
911            }
912            i++;
913        }
914    }
915
916    /**
917     * Flatten a List containing String objects into the parcel, at
918     * the current dataPosition() and growing dataCapacity() if needed.  They
919     * can later be retrieved with {@link #createStringArrayList} or
920     * {@link #readStringList}.
921     *
922     * @param val The list of strings to be written.
923     *
924     * @see #createStringArrayList
925     * @see #readStringList
926     */
927    public final void writeStringList(List<String> val) {
928        if (val == null) {
929            writeInt(-1);
930            return;
931        }
932        int N = val.size();
933        int i=0;
934        writeInt(N);
935        while (i < N) {
936            writeString(val.get(i));
937            i++;
938        }
939    }
940
941    /**
942     * Flatten a List containing IBinder objects into the parcel, at
943     * the current dataPosition() and growing dataCapacity() if needed.  They
944     * can later be retrieved with {@link #createBinderArrayList} or
945     * {@link #readBinderList}.
946     *
947     * @param val The list of strings to be written.
948     *
949     * @see #createBinderArrayList
950     * @see #readBinderList
951     */
952    public final void writeBinderList(List<IBinder> val) {
953        if (val == null) {
954            writeInt(-1);
955            return;
956        }
957        int N = val.size();
958        int i=0;
959        writeInt(N);
960        while (i < N) {
961            writeStrongBinder(val.get(i));
962            i++;
963        }
964    }
965
966    /**
967     * Flatten a heterogeneous array containing a particular object type into
968     * the parcel, at
969     * the current dataPosition() and growing dataCapacity() if needed.  The
970     * type of the objects in the array must be one that implements Parcelable.
971     * Unlike the {@link #writeParcelableArray} method, however, only the
972     * raw data of the objects is written and not their type, so you must use
973     * {@link #readTypedArray} with the correct corresponding
974     * {@link Parcelable.Creator} implementation to unmarshall them.
975     *
976     * @param val The array of objects to be written.
977     * @param parcelableFlags Contextual flags as per
978     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
979     *
980     * @see #readTypedArray
981     * @see #writeParcelableArray
982     * @see Parcelable.Creator
983     */
984    public final <T extends Parcelable> void writeTypedArray(T[] val,
985            int parcelableFlags) {
986        if (val != null) {
987            int N = val.length;
988            writeInt(N);
989            for (int i=0; i<N; i++) {
990                T item = val[i];
991                if (item != null) {
992                    writeInt(1);
993                    item.writeToParcel(this, parcelableFlags);
994                } else {
995                    writeInt(0);
996                }
997            }
998        } else {
999            writeInt(-1);
1000        }
1001    }
1002
1003    /**
1004     * Flatten a generic object in to a parcel.  The given Object value may
1005     * currently be one of the following types:
1006     *
1007     * <ul>
1008     * <li> null
1009     * <li> String
1010     * <li> Byte
1011     * <li> Short
1012     * <li> Integer
1013     * <li> Long
1014     * <li> Float
1015     * <li> Double
1016     * <li> Boolean
1017     * <li> String[]
1018     * <li> boolean[]
1019     * <li> byte[]
1020     * <li> int[]
1021     * <li> long[]
1022     * <li> Object[] (supporting objects of the same type defined here).
1023     * <li> {@link Bundle}
1024     * <li> Map (as supported by {@link #writeMap}).
1025     * <li> Any object that implements the {@link Parcelable} protocol.
1026     * <li> Parcelable[]
1027     * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1028     * <li> List (as supported by {@link #writeList}).
1029     * <li> {@link SparseArray} (as supported by {@link #writeSparseArray}).
1030     * <li> {@link IBinder}
1031     * <li> Any object that implements Serializable (but see
1032     *      {@link #writeSerializable} for caveats).  Note that all of the
1033     *      previous types have relatively efficient implementations for
1034     *      writing to a Parcel; having to rely on the generic serialization
1035     *      approach is much less efficient and should be avoided whenever
1036     *      possible.
1037     * </ul>
1038     */
1039    public final void writeValue(Object v) {
1040        if (v == null) {
1041            writeInt(VAL_NULL);
1042        } else if (v instanceof String) {
1043            writeInt(VAL_STRING);
1044            writeString((String) v);
1045        } else if (v instanceof Integer) {
1046            writeInt(VAL_INTEGER);
1047            writeInt((Integer) v);
1048        } else if (v instanceof Map) {
1049            writeInt(VAL_MAP);
1050            writeMap((Map) v);
1051        } else if (v instanceof Bundle) {
1052            // Must be before Parcelable
1053            writeInt(VAL_BUNDLE);
1054            writeBundle((Bundle) v);
1055        } else if (v instanceof Parcelable) {
1056            writeInt(VAL_PARCELABLE);
1057            writeParcelable((Parcelable) v, 0);
1058        } else if (v instanceof Short) {
1059            writeInt(VAL_SHORT);
1060            writeInt(((Short) v).intValue());
1061        } else if (v instanceof Long) {
1062            writeInt(VAL_LONG);
1063            writeLong((Long) v);
1064        } else if (v instanceof Float) {
1065            writeInt(VAL_FLOAT);
1066            writeFloat((Float) v);
1067        } else if (v instanceof Double) {
1068            writeInt(VAL_DOUBLE);
1069            writeDouble((Double) v);
1070        } else if (v instanceof Boolean) {
1071            writeInt(VAL_BOOLEAN);
1072            writeInt((Boolean) v ? 1 : 0);
1073        } else if (v instanceof CharSequence) {
1074            // Must be after String
1075            writeInt(VAL_CHARSEQUENCE);
1076            writeCharSequence((CharSequence) v);
1077        } else if (v instanceof List) {
1078            writeInt(VAL_LIST);
1079            writeList((List) v);
1080        } else if (v instanceof SparseArray) {
1081            writeInt(VAL_SPARSEARRAY);
1082            writeSparseArray((SparseArray) v);
1083        } else if (v instanceof boolean[]) {
1084            writeInt(VAL_BOOLEANARRAY);
1085            writeBooleanArray((boolean[]) v);
1086        } else if (v instanceof byte[]) {
1087            writeInt(VAL_BYTEARRAY);
1088            writeByteArray((byte[]) v);
1089        } else if (v instanceof String[]) {
1090            writeInt(VAL_STRINGARRAY);
1091            writeStringArray((String[]) v);
1092        } else if (v instanceof CharSequence[]) {
1093            // Must be after String[] and before Object[]
1094            writeInt(VAL_CHARSEQUENCEARRAY);
1095            writeCharSequenceArray((CharSequence[]) v);
1096        } else if (v instanceof IBinder) {
1097            writeInt(VAL_IBINDER);
1098            writeStrongBinder((IBinder) v);
1099        } else if (v instanceof Parcelable[]) {
1100            writeInt(VAL_PARCELABLEARRAY);
1101            writeParcelableArray((Parcelable[]) v, 0);
1102        } else if (v instanceof Object[]) {
1103            writeInt(VAL_OBJECTARRAY);
1104            writeArray((Object[]) v);
1105        } else if (v instanceof int[]) {
1106            writeInt(VAL_INTARRAY);
1107            writeIntArray((int[]) v);
1108        } else if (v instanceof long[]) {
1109            writeInt(VAL_LONGARRAY);
1110            writeLongArray((long[]) v);
1111        } else if (v instanceof Byte) {
1112            writeInt(VAL_BYTE);
1113            writeInt((Byte) v);
1114        } else if (v instanceof Serializable) {
1115            // Must be last
1116            writeInt(VAL_SERIALIZABLE);
1117            writeSerializable((Serializable) v);
1118        } else {
1119            throw new RuntimeException("Parcel: unable to marshal value " + v);
1120        }
1121    }
1122
1123    /**
1124     * Flatten the name of the class of the Parcelable and its contents
1125     * into the parcel.
1126     *
1127     * @param p The Parcelable object to be written.
1128     * @param parcelableFlags Contextual flags as per
1129     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1130     */
1131    public final void writeParcelable(Parcelable p, int parcelableFlags) {
1132        if (p == null) {
1133            writeString(null);
1134            return;
1135        }
1136        String name = p.getClass().getName();
1137        writeString(name);
1138        p.writeToParcel(this, parcelableFlags);
1139    }
1140
1141    /**
1142     * Write a generic serializable object in to a Parcel.  It is strongly
1143     * recommended that this method be avoided, since the serialization
1144     * overhead is extremely large, and this approach will be much slower than
1145     * using the other approaches to writing data in to a Parcel.
1146     */
1147    public final void writeSerializable(Serializable s) {
1148        if (s == null) {
1149            writeString(null);
1150            return;
1151        }
1152        String name = s.getClass().getName();
1153        writeString(name);
1154
1155        ByteArrayOutputStream baos = new ByteArrayOutputStream();
1156        try {
1157            ObjectOutputStream oos = new ObjectOutputStream(baos);
1158            oos.writeObject(s);
1159            oos.close();
1160
1161            writeByteArray(baos.toByteArray());
1162        } catch (IOException ioe) {
1163            throw new RuntimeException("Parcelable encountered " +
1164                "IOException writing serializable object (name = " + name +
1165                ")", ioe);
1166        }
1167    }
1168
1169    /**
1170     * Special function for writing an exception result at the header of
1171     * a parcel, to be used when returning an exception from a transaction.
1172     * Note that this currently only supports a few exception types; any other
1173     * exception will be re-thrown by this function as a RuntimeException
1174     * (to be caught by the system's last-resort exception handling when
1175     * dispatching a transaction).
1176     *
1177     * <p>The supported exception types are:
1178     * <ul>
1179     * <li>{@link BadParcelableException}
1180     * <li>{@link IllegalArgumentException}
1181     * <li>{@link IllegalStateException}
1182     * <li>{@link NullPointerException}
1183     * <li>{@link SecurityException}
1184     * </ul>
1185     *
1186     * @param e The Exception to be written.
1187     *
1188     * @see #writeNoException
1189     * @see #readException
1190     */
1191    public final void writeException(Exception e) {
1192        int code = 0;
1193        if (e instanceof SecurityException) {
1194            code = EX_SECURITY;
1195        } else if (e instanceof BadParcelableException) {
1196            code = EX_BAD_PARCELABLE;
1197        } else if (e instanceof IllegalArgumentException) {
1198            code = EX_ILLEGAL_ARGUMENT;
1199        } else if (e instanceof NullPointerException) {
1200            code = EX_NULL_POINTER;
1201        } else if (e instanceof IllegalStateException) {
1202            code = EX_ILLEGAL_STATE;
1203        }
1204        writeInt(code);
1205        StrictMode.clearGatheredViolations();
1206        if (code == 0) {
1207            if (e instanceof RuntimeException) {
1208                throw (RuntimeException) e;
1209            }
1210            throw new RuntimeException(e);
1211        }
1212        writeString(e.getMessage());
1213    }
1214
1215    /**
1216     * Special function for writing information at the front of the Parcel
1217     * indicating that no exception occurred.
1218     *
1219     * @see #writeException
1220     * @see #readException
1221     */
1222    public final void writeNoException() {
1223        // Despite the name of this function ("write no exception"),
1224        // it should instead be thought of as "write the RPC response
1225        // header", but because this function name is written out by
1226        // the AIDL compiler, we're not going to rename it.
1227        //
1228        // The response header, in the non-exception case (see also
1229        // writeException above, also called by the AIDL compiler), is
1230        // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1231        // StrictMode has gathered up violations that have occurred
1232        // during a Binder call, in which case we write out the number
1233        // of violations and their details, serialized, before the
1234        // actual RPC respons data.  The receiving end of this is
1235        // readException(), below.
1236        if (StrictMode.hasGatheredViolations()) {
1237            writeInt(EX_HAS_REPLY_HEADER);
1238            final int sizePosition = dataPosition();
1239            writeInt(0);  // total size of fat header, to be filled in later
1240            StrictMode.writeGatheredViolationsToParcel(this);
1241            final int payloadPosition = dataPosition();
1242            setDataPosition(sizePosition);
1243            writeInt(payloadPosition - sizePosition);  // header size
1244            setDataPosition(payloadPosition);
1245        } else {
1246            writeInt(0);
1247        }
1248    }
1249
1250    /**
1251     * Special function for reading an exception result from the header of
1252     * a parcel, to be used after receiving the result of a transaction.  This
1253     * will throw the exception for you if it had been written to the Parcel,
1254     * otherwise return and let you read the normal result data from the Parcel.
1255     *
1256     * @see #writeException
1257     * @see #writeNoException
1258     */
1259    public final void readException() {
1260        int code = readExceptionCode();
1261        if (code != 0) {
1262            String msg = readString();
1263            readException(code, msg);
1264        }
1265    }
1266
1267    /**
1268     * Parses the header of a Binder call's response Parcel and
1269     * returns the exception code.  Deals with lite or fat headers.
1270     * In the common successful case, this header is generally zero.
1271     * In less common cases, it's a small negative number and will be
1272     * followed by an error string.
1273     *
1274     * This exists purely for android.database.DatabaseUtils and
1275     * insulating it from having to handle fat headers as returned by
1276     * e.g. StrictMode-induced RPC responses.
1277     *
1278     * @hide
1279     */
1280    public final int readExceptionCode() {
1281        int code = readInt();
1282        if (code == EX_HAS_REPLY_HEADER) {
1283            int headerSize = readInt();
1284            if (headerSize == 0) {
1285                Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1286            } else {
1287                // Currently the only thing in the header is StrictMode stacks,
1288                // but discussions around event/RPC tracing suggest we might
1289                // put that here too.  If so, switch on sub-header tags here.
1290                // But for now, just parse out the StrictMode stuff.
1291                StrictMode.readAndHandleBinderCallViolations(this);
1292            }
1293            // And fat response headers are currently only used when
1294            // there are no exceptions, so return no error:
1295            return 0;
1296        }
1297        return code;
1298    }
1299
1300    /**
1301     * Use this function for customized exception handling.
1302     * customized method call this method for all unknown case
1303     * @param code exception code
1304     * @param msg exception message
1305     */
1306    public final void readException(int code, String msg) {
1307        switch (code) {
1308            case EX_SECURITY:
1309                throw new SecurityException(msg);
1310            case EX_BAD_PARCELABLE:
1311                throw new BadParcelableException(msg);
1312            case EX_ILLEGAL_ARGUMENT:
1313                throw new IllegalArgumentException(msg);
1314            case EX_NULL_POINTER:
1315                throw new NullPointerException(msg);
1316            case EX_ILLEGAL_STATE:
1317                throw new IllegalStateException(msg);
1318        }
1319        throw new RuntimeException("Unknown exception code: " + code
1320                + " msg " + msg);
1321    }
1322
1323    /**
1324     * Read an integer value from the parcel at the current dataPosition().
1325     */
1326    public final native int readInt();
1327
1328    /**
1329     * Read a long integer value from the parcel at the current dataPosition().
1330     */
1331    public final native long readLong();
1332
1333    /**
1334     * Read a floating point value from the parcel at the current
1335     * dataPosition().
1336     */
1337    public final native float readFloat();
1338
1339    /**
1340     * Read a double precision floating point value from the parcel at the
1341     * current dataPosition().
1342     */
1343    public final native double readDouble();
1344
1345    /**
1346     * Read a string value from the parcel at the current dataPosition().
1347     */
1348    public final native String readString();
1349
1350    /**
1351     * Read a CharSequence value from the parcel at the current dataPosition().
1352     * @hide
1353     */
1354    public final CharSequence readCharSequence() {
1355        return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1356    }
1357
1358    /**
1359     * Read an object from the parcel at the current dataPosition().
1360     */
1361    public final native IBinder readStrongBinder();
1362
1363    /**
1364     * Read a FileDescriptor from the parcel at the current dataPosition().
1365     */
1366    public final ParcelFileDescriptor readFileDescriptor() {
1367        FileDescriptor fd = internalReadFileDescriptor();
1368        return fd != null ? new ParcelFileDescriptor(fd) : null;
1369    }
1370
1371    private native FileDescriptor internalReadFileDescriptor();
1372    /*package*/ static native FileDescriptor openFileDescriptor(String file,
1373            int mode) throws FileNotFoundException;
1374    /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1375            throws IOException;
1376
1377    /**
1378     * Read a byte value from the parcel at the current dataPosition().
1379     */
1380    public final byte readByte() {
1381        return (byte)(readInt() & 0xff);
1382    }
1383
1384    /**
1385     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1386     * been written with {@link #writeBundle}.  Read into an existing Map object
1387     * from the parcel at the current dataPosition().
1388     */
1389    public final void readMap(Map outVal, ClassLoader loader) {
1390        int N = readInt();
1391        readMapInternal(outVal, N, loader);
1392    }
1393
1394    /**
1395     * Read into an existing List object from the parcel at the current
1396     * dataPosition(), using the given class loader to load any enclosed
1397     * Parcelables.  If it is null, the default class loader is used.
1398     */
1399    public final void readList(List outVal, ClassLoader loader) {
1400        int N = readInt();
1401        readListInternal(outVal, N, loader);
1402    }
1403
1404    /**
1405     * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1406     * been written with {@link #writeBundle}.  Read and return a new HashMap
1407     * object from the parcel at the current dataPosition(), using the given
1408     * class loader to load any enclosed Parcelables.  Returns null if
1409     * the previously written map object was null.
1410     */
1411    public final HashMap readHashMap(ClassLoader loader)
1412    {
1413        int N = readInt();
1414        if (N < 0) {
1415            return null;
1416        }
1417        HashMap m = new HashMap(N);
1418        readMapInternal(m, N, loader);
1419        return m;
1420    }
1421
1422    /**
1423     * Read and return a new Bundle object from the parcel at the current
1424     * dataPosition().  Returns null if the previously written Bundle object was
1425     * null.
1426     */
1427    public final Bundle readBundle() {
1428        return readBundle(null);
1429    }
1430
1431    /**
1432     * Read and return a new Bundle object from the parcel at the current
1433     * dataPosition(), using the given class loader to initialize the class
1434     * loader of the Bundle for later retrieval of Parcelable objects.
1435     * Returns null if the previously written Bundle object was null.
1436     */
1437    public final Bundle readBundle(ClassLoader loader) {
1438        int length = readInt();
1439        if (length < 0) {
1440            return null;
1441        }
1442
1443        final Bundle bundle = new Bundle(this, length);
1444        if (loader != null) {
1445            bundle.setClassLoader(loader);
1446        }
1447        return bundle;
1448    }
1449
1450    /**
1451     * Read and return a byte[] object from the parcel.
1452     */
1453    public final native byte[] createByteArray();
1454
1455    /**
1456     * Read a byte[] object from the parcel and copy it into the
1457     * given byte array.
1458     */
1459    public final void readByteArray(byte[] val) {
1460        // TODO: make this a native method to avoid the extra copy.
1461        byte[] ba = createByteArray();
1462        if (ba.length == val.length) {
1463           System.arraycopy(ba, 0, val, 0, ba.length);
1464        } else {
1465            throw new RuntimeException("bad array lengths");
1466        }
1467    }
1468
1469    /**
1470     * Read and return a String[] object from the parcel.
1471     * {@hide}
1472     */
1473    public final String[] readStringArray() {
1474        String[] array = null;
1475
1476        int length = readInt();
1477        if (length >= 0)
1478        {
1479            array = new String[length];
1480
1481            for (int i = 0 ; i < length ; i++)
1482            {
1483                array[i] = readString();
1484            }
1485        }
1486
1487        return array;
1488    }
1489
1490    /**
1491     * Read and return a CharSequence[] object from the parcel.
1492     * {@hide}
1493     */
1494    public final CharSequence[] readCharSequenceArray() {
1495        CharSequence[] array = null;
1496
1497        int length = readInt();
1498        if (length >= 0)
1499        {
1500            array = new CharSequence[length];
1501
1502            for (int i = 0 ; i < length ; i++)
1503            {
1504                array[i] = readCharSequence();
1505            }
1506        }
1507
1508        return array;
1509    }
1510
1511    /**
1512     * Read and return a new ArrayList object from the parcel at the current
1513     * dataPosition().  Returns null if the previously written list object was
1514     * null.  The given class loader will be used to load any enclosed
1515     * Parcelables.
1516     */
1517    public final ArrayList readArrayList(ClassLoader loader) {
1518        int N = readInt();
1519        if (N < 0) {
1520            return null;
1521        }
1522        ArrayList l = new ArrayList(N);
1523        readListInternal(l, N, loader);
1524        return l;
1525    }
1526
1527    /**
1528     * Read and return a new Object array from the parcel at the current
1529     * dataPosition().  Returns null if the previously written array was
1530     * null.  The given class loader will be used to load any enclosed
1531     * Parcelables.
1532     */
1533    public final Object[] readArray(ClassLoader loader) {
1534        int N = readInt();
1535        if (N < 0) {
1536            return null;
1537        }
1538        Object[] l = new Object[N];
1539        readArrayInternal(l, N, loader);
1540        return l;
1541    }
1542
1543    /**
1544     * Read and return a new SparseArray object from the parcel at the current
1545     * dataPosition().  Returns null if the previously written list object was
1546     * null.  The given class loader will be used to load any enclosed
1547     * Parcelables.
1548     */
1549    public final SparseArray readSparseArray(ClassLoader loader) {
1550        int N = readInt();
1551        if (N < 0) {
1552            return null;
1553        }
1554        SparseArray sa = new SparseArray(N);
1555        readSparseArrayInternal(sa, N, loader);
1556        return sa;
1557    }
1558
1559    /**
1560     * Read and return a new SparseBooleanArray object from the parcel at the current
1561     * dataPosition().  Returns null if the previously written list object was
1562     * null.
1563     */
1564    public final SparseBooleanArray readSparseBooleanArray() {
1565        int N = readInt();
1566        if (N < 0) {
1567            return null;
1568        }
1569        SparseBooleanArray sa = new SparseBooleanArray(N);
1570        readSparseBooleanArrayInternal(sa, N);
1571        return sa;
1572    }
1573
1574    /**
1575     * Read and return a new ArrayList containing a particular object type from
1576     * the parcel that was written with {@link #writeTypedList} at the
1577     * current dataPosition().  Returns null if the
1578     * previously written list object was null.  The list <em>must</em> have
1579     * previously been written via {@link #writeTypedList} with the same object
1580     * type.
1581     *
1582     * @return A newly created ArrayList containing objects with the same data
1583     *         as those that were previously written.
1584     *
1585     * @see #writeTypedList
1586     */
1587    public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1588        int N = readInt();
1589        if (N < 0) {
1590            return null;
1591        }
1592        ArrayList<T> l = new ArrayList<T>(N);
1593        while (N > 0) {
1594            if (readInt() != 0) {
1595                l.add(c.createFromParcel(this));
1596            } else {
1597                l.add(null);
1598            }
1599            N--;
1600        }
1601        return l;
1602    }
1603
1604    /**
1605     * Read into the given List items containing a particular object type
1606     * that were written with {@link #writeTypedList} at the
1607     * current dataPosition().  The list <em>must</em> have
1608     * previously been written via {@link #writeTypedList} with the same object
1609     * type.
1610     *
1611     * @return A newly created ArrayList containing objects with the same data
1612     *         as those that were previously written.
1613     *
1614     * @see #writeTypedList
1615     */
1616    public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1617        int M = list.size();
1618        int N = readInt();
1619        int i = 0;
1620        for (; i < M && i < N; i++) {
1621            if (readInt() != 0) {
1622                list.set(i, c.createFromParcel(this));
1623            } else {
1624                list.set(i, null);
1625            }
1626        }
1627        for (; i<N; i++) {
1628            if (readInt() != 0) {
1629                list.add(c.createFromParcel(this));
1630            } else {
1631                list.add(null);
1632            }
1633        }
1634        for (; i<M; i++) {
1635            list.remove(N);
1636        }
1637    }
1638
1639    /**
1640     * Read and return a new ArrayList containing String objects from
1641     * the parcel that was written with {@link #writeStringList} at the
1642     * current dataPosition().  Returns null if the
1643     * previously written list object was null.
1644     *
1645     * @return A newly created ArrayList containing strings with the same data
1646     *         as those that were previously written.
1647     *
1648     * @see #writeStringList
1649     */
1650    public final ArrayList<String> createStringArrayList() {
1651        int N = readInt();
1652        if (N < 0) {
1653            return null;
1654        }
1655        ArrayList<String> l = new ArrayList<String>(N);
1656        while (N > 0) {
1657            l.add(readString());
1658            N--;
1659        }
1660        return l;
1661    }
1662
1663    /**
1664     * Read and return a new ArrayList containing IBinder objects from
1665     * the parcel that was written with {@link #writeBinderList} at the
1666     * current dataPosition().  Returns null if the
1667     * previously written list object was null.
1668     *
1669     * @return A newly created ArrayList containing strings with the same data
1670     *         as those that were previously written.
1671     *
1672     * @see #writeBinderList
1673     */
1674    public final ArrayList<IBinder> createBinderArrayList() {
1675        int N = readInt();
1676        if (N < 0) {
1677            return null;
1678        }
1679        ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1680        while (N > 0) {
1681            l.add(readStrongBinder());
1682            N--;
1683        }
1684        return l;
1685    }
1686
1687    /**
1688     * Read into the given List items String objects that were written with
1689     * {@link #writeStringList} at the current dataPosition().
1690     *
1691     * @return A newly created ArrayList containing strings with the same data
1692     *         as those that were previously written.
1693     *
1694     * @see #writeStringList
1695     */
1696    public final void readStringList(List<String> list) {
1697        int M = list.size();
1698        int N = readInt();
1699        int i = 0;
1700        for (; i < M && i < N; i++) {
1701            list.set(i, readString());
1702        }
1703        for (; i<N; i++) {
1704            list.add(readString());
1705        }
1706        for (; i<M; i++) {
1707            list.remove(N);
1708        }
1709    }
1710
1711    /**
1712     * Read into the given List items IBinder objects that were written with
1713     * {@link #writeBinderList} at the current dataPosition().
1714     *
1715     * @return A newly created ArrayList containing strings with the same data
1716     *         as those that were previously written.
1717     *
1718     * @see #writeBinderList
1719     */
1720    public final void readBinderList(List<IBinder> list) {
1721        int M = list.size();
1722        int N = readInt();
1723        int i = 0;
1724        for (; i < M && i < N; i++) {
1725            list.set(i, readStrongBinder());
1726        }
1727        for (; i<N; i++) {
1728            list.add(readStrongBinder());
1729        }
1730        for (; i<M; i++) {
1731            list.remove(N);
1732        }
1733    }
1734
1735    /**
1736     * Read and return a new array containing a particular object type from
1737     * the parcel at the current dataPosition().  Returns null if the
1738     * previously written array was null.  The array <em>must</em> have
1739     * previously been written via {@link #writeTypedArray} with the same
1740     * object type.
1741     *
1742     * @return A newly created array containing objects with the same data
1743     *         as those that were previously written.
1744     *
1745     * @see #writeTypedArray
1746     */
1747    public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
1748        int N = readInt();
1749        if (N < 0) {
1750            return null;
1751        }
1752        T[] l = c.newArray(N);
1753        for (int i=0; i<N; i++) {
1754            if (readInt() != 0) {
1755                l[i] = c.createFromParcel(this);
1756            }
1757        }
1758        return l;
1759    }
1760
1761    public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
1762        int N = readInt();
1763        if (N == val.length) {
1764            for (int i=0; i<N; i++) {
1765                if (readInt() != 0) {
1766                    val[i] = c.createFromParcel(this);
1767                } else {
1768                    val[i] = null;
1769                }
1770            }
1771        } else {
1772            throw new RuntimeException("bad array lengths");
1773        }
1774    }
1775
1776    /**
1777     * @deprecated
1778     * @hide
1779     */
1780    @Deprecated
1781    public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
1782        return createTypedArray(c);
1783    }
1784
1785    /**
1786     * Write a heterogeneous array of Parcelable objects into the Parcel.
1787     * Each object in the array is written along with its class name, so
1788     * that the correct class can later be instantiated.  As a result, this
1789     * has significantly more overhead than {@link #writeTypedArray}, but will
1790     * correctly handle an array containing more than one type of object.
1791     *
1792     * @param value The array of objects to be written.
1793     * @param parcelableFlags Contextual flags as per
1794     * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1795     *
1796     * @see #writeTypedArray
1797     */
1798    public final <T extends Parcelable> void writeParcelableArray(T[] value,
1799            int parcelableFlags) {
1800        if (value != null) {
1801            int N = value.length;
1802            writeInt(N);
1803            for (int i=0; i<N; i++) {
1804                writeParcelable(value[i], parcelableFlags);
1805            }
1806        } else {
1807            writeInt(-1);
1808        }
1809    }
1810
1811    /**
1812     * Read a typed object from a parcel.  The given class loader will be
1813     * used to load any enclosed Parcelables.  If it is null, the default class
1814     * loader will be used.
1815     */
1816    public final Object readValue(ClassLoader loader) {
1817        int type = readInt();
1818
1819        switch (type) {
1820        case VAL_NULL:
1821            return null;
1822
1823        case VAL_STRING:
1824            return readString();
1825
1826        case VAL_INTEGER:
1827            return readInt();
1828
1829        case VAL_MAP:
1830            return readHashMap(loader);
1831
1832        case VAL_PARCELABLE:
1833            return readParcelable(loader);
1834
1835        case VAL_SHORT:
1836            return (short) readInt();
1837
1838        case VAL_LONG:
1839            return readLong();
1840
1841        case VAL_FLOAT:
1842            return readFloat();
1843
1844        case VAL_DOUBLE:
1845            return readDouble();
1846
1847        case VAL_BOOLEAN:
1848            return readInt() == 1;
1849
1850        case VAL_CHARSEQUENCE:
1851            return readCharSequence();
1852
1853        case VAL_LIST:
1854            return readArrayList(loader);
1855
1856        case VAL_BOOLEANARRAY:
1857            return createBooleanArray();
1858
1859        case VAL_BYTEARRAY:
1860            return createByteArray();
1861
1862        case VAL_STRINGARRAY:
1863            return readStringArray();
1864
1865        case VAL_CHARSEQUENCEARRAY:
1866            return readCharSequenceArray();
1867
1868        case VAL_IBINDER:
1869            return readStrongBinder();
1870
1871        case VAL_OBJECTARRAY:
1872            return readArray(loader);
1873
1874        case VAL_INTARRAY:
1875            return createIntArray();
1876
1877        case VAL_LONGARRAY:
1878            return createLongArray();
1879
1880        case VAL_BYTE:
1881            return readByte();
1882
1883        case VAL_SERIALIZABLE:
1884            return readSerializable();
1885
1886        case VAL_PARCELABLEARRAY:
1887            return readParcelableArray(loader);
1888
1889        case VAL_SPARSEARRAY:
1890            return readSparseArray(loader);
1891
1892        case VAL_SPARSEBOOLEANARRAY:
1893            return readSparseBooleanArray();
1894
1895        case VAL_BUNDLE:
1896            return readBundle(loader); // loading will be deferred
1897
1898        default:
1899            int off = dataPosition() - 4;
1900            throw new RuntimeException(
1901                "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
1902        }
1903    }
1904
1905    /**
1906     * Read and return a new Parcelable from the parcel.  The given class loader
1907     * will be used to load any enclosed Parcelables.  If it is null, the default
1908     * class loader will be used.
1909     * @param loader A ClassLoader from which to instantiate the Parcelable
1910     * object, or null for the default class loader.
1911     * @return Returns the newly created Parcelable, or null if a null
1912     * object has been written.
1913     * @throws BadParcelableException Throws BadParcelableException if there
1914     * was an error trying to instantiate the Parcelable.
1915     */
1916    public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
1917        String name = readString();
1918        if (name == null) {
1919            return null;
1920        }
1921        Parcelable.Creator<T> creator;
1922        synchronized (mCreators) {
1923            HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
1924            if (map == null) {
1925                map = new HashMap<String,Parcelable.Creator>();
1926                mCreators.put(loader, map);
1927            }
1928            creator = map.get(name);
1929            if (creator == null) {
1930                try {
1931                    Class c = loader == null ?
1932                        Class.forName(name) : Class.forName(name, true, loader);
1933                    Field f = c.getField("CREATOR");
1934                    creator = (Parcelable.Creator)f.get(null);
1935                }
1936                catch (IllegalAccessException e) {
1937                    Log.e(TAG, "Class not found when unmarshalling: "
1938                                        + name + ", e: " + e);
1939                    throw new BadParcelableException(
1940                            "IllegalAccessException when unmarshalling: " + name);
1941                }
1942                catch (ClassNotFoundException e) {
1943                    Log.e(TAG, "Class not found when unmarshalling: "
1944                                        + name + ", e: " + e);
1945                    throw new BadParcelableException(
1946                            "ClassNotFoundException when unmarshalling: " + name);
1947                }
1948                catch (ClassCastException e) {
1949                    throw new BadParcelableException("Parcelable protocol requires a "
1950                                        + "Parcelable.Creator object called "
1951                                        + " CREATOR on class " + name);
1952                }
1953                catch (NoSuchFieldException e) {
1954                    throw new BadParcelableException("Parcelable protocol requires a "
1955                                        + "Parcelable.Creator object called "
1956                                        + " CREATOR on class " + name);
1957                }
1958                if (creator == null) {
1959                    throw new BadParcelableException("Parcelable protocol requires a "
1960                                        + "Parcelable.Creator object called "
1961                                        + " CREATOR on class " + name);
1962                }
1963
1964                map.put(name, creator);
1965            }
1966        }
1967
1968        return creator.createFromParcel(this);
1969    }
1970
1971    /**
1972     * Read and return a new Parcelable array from the parcel.
1973     * The given class loader will be used to load any enclosed
1974     * Parcelables.
1975     * @return the Parcelable array, or null if the array is null
1976     */
1977    public final Parcelable[] readParcelableArray(ClassLoader loader) {
1978        int N = readInt();
1979        if (N < 0) {
1980            return null;
1981        }
1982        Parcelable[] p = new Parcelable[N];
1983        for (int i = 0; i < N; i++) {
1984            p[i] = (Parcelable) readParcelable(loader);
1985        }
1986        return p;
1987    }
1988
1989    /**
1990     * Read and return a new Serializable object from the parcel.
1991     * @return the Serializable object, or null if the Serializable name
1992     * wasn't found in the parcel.
1993     */
1994    public final Serializable readSerializable() {
1995        String name = readString();
1996        if (name == null) {
1997            // For some reason we were unable to read the name of the Serializable (either there
1998            // is nothing left in the Parcel to read, or the next value wasn't a String), so
1999            // return null, which indicates that the name wasn't found in the parcel.
2000            return null;
2001        }
2002
2003        byte[] serializedData = createByteArray();
2004        ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2005        try {
2006            ObjectInputStream ois = new ObjectInputStream(bais);
2007            return (Serializable) ois.readObject();
2008        } catch (IOException ioe) {
2009            throw new RuntimeException("Parcelable encountered " +
2010                "IOException reading a Serializable object (name = " + name +
2011                ")", ioe);
2012        } catch (ClassNotFoundException cnfe) {
2013            throw new RuntimeException("Parcelable encountered" +
2014                "ClassNotFoundException reading a Serializable object (name = "
2015                + name + ")", cnfe);
2016        }
2017    }
2018
2019    // Cache of previously looked up CREATOR.createFromParcel() methods for
2020    // particular classes.  Keys are the names of the classes, values are
2021    // Method objects.
2022    private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
2023        mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
2024
2025    static protected final Parcel obtain(int obj) {
2026        final Parcel[] pool = sHolderPool;
2027        synchronized (pool) {
2028            Parcel p;
2029            for (int i=0; i<POOL_SIZE; i++) {
2030                p = pool[i];
2031                if (p != null) {
2032                    pool[i] = null;
2033                    if (DEBUG_RECYCLE) {
2034                        p.mStack = new RuntimeException();
2035                    }
2036                    p.init(obj);
2037                    return p;
2038                }
2039            }
2040        }
2041        return new Parcel(obj);
2042    }
2043
2044    private Parcel(int obj) {
2045        if (DEBUG_RECYCLE) {
2046            mStack = new RuntimeException();
2047        }
2048        //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2049        init(obj);
2050    }
2051
2052    @Override
2053    protected void finalize() throws Throwable {
2054        if (DEBUG_RECYCLE) {
2055            if (mStack != null) {
2056                Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2057            }
2058        }
2059        destroy();
2060    }
2061
2062    private native void freeBuffer();
2063    private native void init(int obj);
2064    private native void destroy();
2065
2066    /* package */ void readMapInternal(Map outVal, int N,
2067        ClassLoader loader) {
2068        while (N > 0) {
2069            Object key = readValue(loader);
2070            Object value = readValue(loader);
2071            outVal.put(key, value);
2072            N--;
2073        }
2074    }
2075
2076    private void readListInternal(List outVal, int N,
2077        ClassLoader loader) {
2078        while (N > 0) {
2079            Object value = readValue(loader);
2080            //Log.d(TAG, "Unmarshalling value=" + value);
2081            outVal.add(value);
2082            N--;
2083        }
2084    }
2085
2086    private void readArrayInternal(Object[] outVal, int N,
2087        ClassLoader loader) {
2088        for (int i = 0; i < N; i++) {
2089            Object value = readValue(loader);
2090            //Log.d(TAG, "Unmarshalling value=" + value);
2091            outVal[i] = value;
2092        }
2093    }
2094
2095    private void readSparseArrayInternal(SparseArray outVal, int N,
2096        ClassLoader loader) {
2097        while (N > 0) {
2098            int key = readInt();
2099            Object value = readValue(loader);
2100            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2101            outVal.append(key, value);
2102            N--;
2103        }
2104    }
2105
2106
2107    private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2108        while (N > 0) {
2109            int key = readInt();
2110            boolean value = this.readByte() == 1;
2111            //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2112            outVal.append(key, value);
2113            N--;
2114        }
2115    }
2116}
2117