InputDispatcher.h revision 4e91a180be46c0c7c3bf398d4df4cbe2404216b5
1/*
2 * Copyright (C) 2010 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef _UI_INPUT_DISPATCHER_H
18#define _UI_INPUT_DISPATCHER_H
19
20#include <ui/Input.h>
21#include <ui/InputTransport.h>
22#include <utils/KeyedVector.h>
23#include <utils/Vector.h>
24#include <utils/threads.h>
25#include <utils/Timers.h>
26#include <utils/RefBase.h>
27#include <utils/String8.h>
28#include <utils/Looper.h>
29#include <utils/Pool.h>
30#include <utils/BitSet.h>
31
32#include <stddef.h>
33#include <unistd.h>
34#include <limits.h>
35
36#include "InputWindow.h"
37#include "InputApplication.h"
38
39
40namespace android {
41
42/*
43 * Constants used to report the outcome of input event injection.
44 */
45enum {
46    /* (INTERNAL USE ONLY) Specifies that injection is pending and its outcome is unknown. */
47    INPUT_EVENT_INJECTION_PENDING = -1,
48
49    /* Injection succeeded. */
50    INPUT_EVENT_INJECTION_SUCCEEDED = 0,
51
52    /* Injection failed because the injector did not have permission to inject
53     * into the application with input focus. */
54    INPUT_EVENT_INJECTION_PERMISSION_DENIED = 1,
55
56    /* Injection failed because there were no available input targets. */
57    INPUT_EVENT_INJECTION_FAILED = 2,
58
59    /* Injection failed due to a timeout. */
60    INPUT_EVENT_INJECTION_TIMED_OUT = 3
61};
62
63/*
64 * Constants used to determine the input event injection synchronization mode.
65 */
66enum {
67    /* Injection is asynchronous and is assumed always to be successful. */
68    INPUT_EVENT_INJECTION_SYNC_NONE = 0,
69
70    /* Waits for previous events to be dispatched so that the input dispatcher can determine
71     * whether input event injection willbe permitted based on the current input focus.
72     * Does not wait for the input event to finish processing. */
73    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_RESULT = 1,
74
75    /* Waits for the input event to be completely processed. */
76    INPUT_EVENT_INJECTION_SYNC_WAIT_FOR_FINISHED = 2,
77};
78
79
80/*
81 * An input target specifies how an input event is to be dispatched to a particular window
82 * including the window's input channel, control flags, a timeout, and an X / Y offset to
83 * be added to input event coordinates to compensate for the absolute position of the
84 * window area.
85 */
86struct InputTarget {
87    enum {
88        /* This flag indicates that the event is being delivered to a foreground application. */
89        FLAG_FOREGROUND = 1 << 0,
90
91        /* This flag indicates that the target of a MotionEvent is partly or wholly
92         * obscured by another visible window above it.  The motion event should be
93         * delivered with flag AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED. */
94        FLAG_WINDOW_IS_OBSCURED = 1 << 1,
95
96        /* This flag indicates that a motion event is being split across multiple windows. */
97        FLAG_SPLIT = 1 << 2,
98
99        /* This flag indicates that the event should be sent as is.
100         * Should always be set unless the event is to be transmuted. */
101        FLAG_DISPATCH_AS_IS = 1 << 8,
102
103        /* This flag indicates that a MotionEvent with AMOTION_EVENT_ACTION_DOWN falls outside
104         * of the area of this target and so should instead be delivered as an
105         * AMOTION_EVENT_ACTION_OUTSIDE to this target. */
106        FLAG_DISPATCH_AS_OUTSIDE = 1 << 9,
107
108        /* This flag indicates that a hover sequence is starting in the given window.
109         * The event is transmuted into ACTION_HOVER_ENTER. */
110        FLAG_DISPATCH_AS_HOVER_ENTER = 1 << 10,
111
112        /* This flag indicates that a hover event happened outside of a window which handled
113         * previous hover events, signifying the end of the current hover sequence for that
114         * window.
115         * The event is transmuted into ACTION_HOVER_ENTER. */
116        FLAG_DISPATCH_AS_HOVER_EXIT = 1 << 11,
117
118        /* Mask for all dispatch modes. */
119        FLAG_DISPATCH_MASK = FLAG_DISPATCH_AS_IS
120                | FLAG_DISPATCH_AS_OUTSIDE
121                | FLAG_DISPATCH_AS_HOVER_ENTER
122                | FLAG_DISPATCH_AS_HOVER_EXIT,
123    };
124
125    // The input channel to be targeted.
126    sp<InputChannel> inputChannel;
127
128    // Flags for the input target.
129    int32_t flags;
130
131    // The x and y offset to add to a MotionEvent as it is delivered.
132    // (ignored for KeyEvents)
133    float xOffset, yOffset;
134
135    // The subset of pointer ids to include in motion events dispatched to this input target
136    // if FLAG_SPLIT is set.
137    BitSet32 pointerIds;
138};
139
140
141/*
142 * Input dispatcher policy interface.
143 *
144 * The input reader policy is used by the input reader to interact with the Window Manager
145 * and other system components.
146 *
147 * The actual implementation is partially supported by callbacks into the DVM
148 * via JNI.  This interface is also mocked in the unit tests.
149 */
150class InputDispatcherPolicyInterface : public virtual RefBase {
151protected:
152    InputDispatcherPolicyInterface() { }
153    virtual ~InputDispatcherPolicyInterface() { }
154
155public:
156    /* Notifies the system that a configuration change has occurred. */
157    virtual void notifyConfigurationChanged(nsecs_t when) = 0;
158
159    /* Notifies the system that an application is not responding.
160     * Returns a new timeout to continue waiting, or 0 to abort dispatch. */
161    virtual nsecs_t notifyANR(const sp<InputApplicationHandle>& inputApplicationHandle,
162            const sp<InputWindowHandle>& inputWindowHandle) = 0;
163
164    /* Notifies the system that an input channel is unrecoverably broken. */
165    virtual void notifyInputChannelBroken(const sp<InputWindowHandle>& inputWindowHandle) = 0;
166
167    /* Gets the key repeat initial timeout or -1 if automatic key repeating is disabled. */
168    virtual nsecs_t getKeyRepeatTimeout() = 0;
169
170    /* Gets the key repeat inter-key delay. */
171    virtual nsecs_t getKeyRepeatDelay() = 0;
172
173    /* Gets the maximum suggested event delivery rate per second.
174     * This value is used to throttle motion event movement actions on a per-device
175     * basis.  It is not intended to be a hard limit.
176     */
177    virtual int32_t getMaxEventsPerSecond() = 0;
178
179    /* Filters an input event.
180     * Return true to dispatch the event unmodified, false to consume the event.
181     * A filter can also transform and inject events later by passing POLICY_FLAG_FILTERED
182     * to injectInputEvent.
183     */
184    virtual bool filterInputEvent(const InputEvent* inputEvent, uint32_t policyFlags) = 0;
185
186    /* Intercepts a key event immediately before queueing it.
187     * The policy can use this method as an opportunity to perform power management functions
188     * and early event preprocessing such as updating policy flags.
189     *
190     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
191     * should be dispatched to applications.
192     */
193    virtual void interceptKeyBeforeQueueing(const KeyEvent* keyEvent, uint32_t& policyFlags) = 0;
194
195    /* Intercepts a touch, trackball or other motion event before queueing it.
196     * The policy can use this method as an opportunity to perform power management functions
197     * and early event preprocessing such as updating policy flags.
198     *
199     * This method is expected to set the POLICY_FLAG_PASS_TO_USER policy flag if the event
200     * should be dispatched to applications.
201     */
202    virtual void interceptMotionBeforeQueueing(nsecs_t when, uint32_t& policyFlags) = 0;
203
204    /* Allows the policy a chance to intercept a key before dispatching. */
205    virtual bool interceptKeyBeforeDispatching(const sp<InputWindowHandle>& inputWindowHandle,
206            const KeyEvent* keyEvent, uint32_t policyFlags) = 0;
207
208    /* Allows the policy a chance to perform default processing for an unhandled key.
209     * Returns an alternate keycode to redispatch as a fallback, or 0 to give up. */
210    virtual bool dispatchUnhandledKey(const sp<InputWindowHandle>& inputWindowHandle,
211            const KeyEvent* keyEvent, uint32_t policyFlags, KeyEvent* outFallbackKeyEvent) = 0;
212
213    /* Notifies the policy about switch events.
214     */
215    virtual void notifySwitch(nsecs_t when,
216            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;
217
218    /* Poke user activity for an event dispatched to a window. */
219    virtual void pokeUserActivity(nsecs_t eventTime, int32_t eventType) = 0;
220
221    /* Checks whether a given application pid/uid has permission to inject input events
222     * into other applications.
223     *
224     * This method is special in that its implementation promises to be non-reentrant and
225     * is safe to call while holding other locks.  (Most other methods make no such guarantees!)
226     */
227    virtual bool checkInjectEventsPermissionNonReentrant(
228            int32_t injectorPid, int32_t injectorUid) = 0;
229};
230
231
232/* Notifies the system about input events generated by the input reader.
233 * The dispatcher is expected to be mostly asynchronous. */
234class InputDispatcherInterface : public virtual RefBase {
235protected:
236    InputDispatcherInterface() { }
237    virtual ~InputDispatcherInterface() { }
238
239public:
240    /* Dumps the state of the input dispatcher.
241     *
242     * This method may be called on any thread (usually by the input manager). */
243    virtual void dump(String8& dump) = 0;
244
245    /* Runs a single iteration of the dispatch loop.
246     * Nominally processes one queued event, a timeout, or a response from an input consumer.
247     *
248     * This method should only be called on the input dispatcher thread.
249     */
250    virtual void dispatchOnce() = 0;
251
252    /* Notifies the dispatcher about new events.
253     *
254     * These methods should only be called on the input reader thread.
255     */
256    virtual void notifyConfigurationChanged(nsecs_t eventTime) = 0;
257    virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source,
258            uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
259            int32_t scanCode, int32_t metaState, nsecs_t downTime) = 0;
260    virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source,
261            uint32_t policyFlags, int32_t action, int32_t flags,
262            int32_t metaState, int32_t edgeFlags,
263            uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
264            float xPrecision, float yPrecision, nsecs_t downTime) = 0;
265    virtual void notifySwitch(nsecs_t when,
266            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) = 0;
267
268    /* Injects an input event and optionally waits for sync.
269     * The synchronization mode determines whether the method blocks while waiting for
270     * input injection to proceed.
271     * Returns one of the INPUT_EVENT_INJECTION_XXX constants.
272     *
273     * This method may be called on any thread (usually by the input manager).
274     */
275    virtual int32_t injectInputEvent(const InputEvent* event,
276            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
277            uint32_t policyFlags) = 0;
278
279    /* Sets the list of input windows.
280     *
281     * This method may be called on any thread (usually by the input manager).
282     */
283    virtual void setInputWindows(const Vector<InputWindow>& inputWindows) = 0;
284
285    /* Sets the focused application.
286     *
287     * This method may be called on any thread (usually by the input manager).
288     */
289    virtual void setFocusedApplication(const InputApplication* inputApplication) = 0;
290
291    /* Sets the input dispatching mode.
292     *
293     * This method may be called on any thread (usually by the input manager).
294     */
295    virtual void setInputDispatchMode(bool enabled, bool frozen) = 0;
296
297    /* Sets whether input event filtering is enabled.
298     * When enabled, incoming input events are sent to the policy's filterInputEvent
299     * method instead of being dispatched.  The filter is expected to use
300     * injectInputEvent to inject the events it would like to have dispatched.
301     * It should include POLICY_FLAG_FILTERED in the policy flags during injection.
302     */
303    virtual void setInputFilterEnabled(bool enabled) = 0;
304
305    /* Transfers touch focus from the window associated with one channel to the
306     * window associated with the other channel.
307     *
308     * Returns true on success.  False if the window did not actually have touch focus.
309     */
310    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
311            const sp<InputChannel>& toChannel) = 0;
312
313    /* Registers or unregister input channels that may be used as targets for input events.
314     * If monitor is true, the channel will receive a copy of all input events.
315     *
316     * These methods may be called on any thread (usually by the input manager).
317     */
318    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
319            const sp<InputWindowHandle>& inputWindowHandle, bool monitor) = 0;
320    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel) = 0;
321};
322
323/* Dispatches events to input targets.  Some functions of the input dispatcher, such as
324 * identifying input targets, are controlled by a separate policy object.
325 *
326 * IMPORTANT INVARIANT:
327 *     Because the policy can potentially block or cause re-entrance into the input dispatcher,
328 *     the input dispatcher never calls into the policy while holding its internal locks.
329 *     The implementation is also carefully designed to recover from scenarios such as an
330 *     input channel becoming unregistered while identifying input targets or processing timeouts.
331 *
332 *     Methods marked 'Locked' must be called with the lock acquired.
333 *
334 *     Methods marked 'LockedInterruptible' must be called with the lock acquired but
335 *     may during the course of their execution release the lock, call into the policy, and
336 *     then reacquire the lock.  The caller is responsible for recovering gracefully.
337 *
338 *     A 'LockedInterruptible' method may called a 'Locked' method, but NOT vice-versa.
339 */
340class InputDispatcher : public InputDispatcherInterface {
341protected:
342    virtual ~InputDispatcher();
343
344public:
345    explicit InputDispatcher(const sp<InputDispatcherPolicyInterface>& policy);
346
347    virtual void dump(String8& dump);
348
349    virtual void dispatchOnce();
350
351    virtual void notifyConfigurationChanged(nsecs_t eventTime);
352    virtual void notifyKey(nsecs_t eventTime, int32_t deviceId, uint32_t source,
353            uint32_t policyFlags, int32_t action, int32_t flags, int32_t keyCode,
354            int32_t scanCode, int32_t metaState, nsecs_t downTime);
355    virtual void notifyMotion(nsecs_t eventTime, int32_t deviceId, uint32_t source,
356            uint32_t policyFlags, int32_t action, int32_t flags,
357            int32_t metaState, int32_t edgeFlags,
358            uint32_t pointerCount, const int32_t* pointerIds, const PointerCoords* pointerCoords,
359            float xPrecision, float yPrecision, nsecs_t downTime);
360    virtual void notifySwitch(nsecs_t when,
361            int32_t switchCode, int32_t switchValue, uint32_t policyFlags) ;
362
363    virtual int32_t injectInputEvent(const InputEvent* event,
364            int32_t injectorPid, int32_t injectorUid, int32_t syncMode, int32_t timeoutMillis,
365            uint32_t policyFlags);
366
367    virtual void setInputWindows(const Vector<InputWindow>& inputWindows);
368    virtual void setFocusedApplication(const InputApplication* inputApplication);
369    virtual void setInputDispatchMode(bool enabled, bool frozen);
370    virtual void setInputFilterEnabled(bool enabled);
371
372    virtual bool transferTouchFocus(const sp<InputChannel>& fromChannel,
373            const sp<InputChannel>& toChannel);
374
375    virtual status_t registerInputChannel(const sp<InputChannel>& inputChannel,
376            const sp<InputWindowHandle>& inputWindowHandle, bool monitor);
377    virtual status_t unregisterInputChannel(const sp<InputChannel>& inputChannel);
378
379private:
380    template <typename T>
381    struct Link {
382        T* next;
383        T* prev;
384    };
385
386    struct InjectionState {
387        mutable int32_t refCount;
388
389        int32_t injectorPid;
390        int32_t injectorUid;
391        int32_t injectionResult;  // initially INPUT_EVENT_INJECTION_PENDING
392        bool injectionIsAsync; // set to true if injection is not waiting for the result
393        int32_t pendingForegroundDispatches; // the number of foreground dispatches in progress
394    };
395
396    struct EventEntry : Link<EventEntry> {
397        enum {
398            TYPE_SENTINEL,
399            TYPE_CONFIGURATION_CHANGED,
400            TYPE_KEY,
401            TYPE_MOTION
402        };
403
404        mutable int32_t refCount;
405        int32_t type;
406        nsecs_t eventTime;
407        uint32_t policyFlags;
408        InjectionState* injectionState;
409
410        bool dispatchInProgress; // initially false, set to true while dispatching
411
412        inline bool isInjected() const { return injectionState != NULL; }
413    };
414
415    struct ConfigurationChangedEntry : EventEntry {
416    };
417
418    struct KeyEntry : EventEntry {
419        int32_t deviceId;
420        uint32_t source;
421        int32_t action;
422        int32_t flags;
423        int32_t keyCode;
424        int32_t scanCode;
425        int32_t metaState;
426        int32_t repeatCount;
427        nsecs_t downTime;
428
429        bool syntheticRepeat; // set to true for synthetic key repeats
430
431        enum InterceptKeyResult {
432            INTERCEPT_KEY_RESULT_UNKNOWN,
433            INTERCEPT_KEY_RESULT_SKIP,
434            INTERCEPT_KEY_RESULT_CONTINUE,
435        };
436        InterceptKeyResult interceptKeyResult; // set based on the interception result
437    };
438
439    struct MotionSample {
440        MotionSample* next;
441
442        nsecs_t eventTime; // may be updated during coalescing
443        nsecs_t eventTimeBeforeCoalescing; // not updated during coalescing
444        PointerCoords pointerCoords[MAX_POINTERS];
445    };
446
447    struct MotionEntry : EventEntry {
448        int32_t deviceId;
449        uint32_t source;
450        int32_t action;
451        int32_t flags;
452        int32_t metaState;
453        int32_t edgeFlags;
454        float xPrecision;
455        float yPrecision;
456        nsecs_t downTime;
457        uint32_t pointerCount;
458        int32_t pointerIds[MAX_POINTERS];
459
460        // Linked list of motion samples associated with this motion event.
461        MotionSample firstSample;
462        MotionSample* lastSample;
463
464        uint32_t countSamples() const;
465
466        // Checks whether we can append samples, assuming the device id and source are the same.
467        bool canAppendSamples(int32_t action, uint32_t pointerCount,
468                const int32_t* pointerIds) const;
469    };
470
471    // Tracks the progress of dispatching a particular event to a particular connection.
472    struct DispatchEntry : Link<DispatchEntry> {
473        EventEntry* eventEntry; // the event to dispatch
474        int32_t targetFlags;
475        float xOffset;
476        float yOffset;
477
478        // True if dispatch has started.
479        bool inProgress;
480
481        // For motion events:
482        //   Pointer to the first motion sample to dispatch in this cycle.
483        //   Usually NULL to indicate that the list of motion samples begins at
484        //   MotionEntry::firstSample.  Otherwise, some samples were dispatched in a previous
485        //   cycle and this pointer indicates the location of the first remainining sample
486        //   to dispatch during the current cycle.
487        MotionSample* headMotionSample;
488        //   Pointer to a motion sample to dispatch in the next cycle if the dispatcher was
489        //   unable to send all motion samples during this cycle.  On the next cycle,
490        //   headMotionSample will be initialized to tailMotionSample and tailMotionSample
491        //   will be set to NULL.
492        MotionSample* tailMotionSample;
493
494        inline bool hasForegroundTarget() const {
495            return targetFlags & InputTarget::FLAG_FOREGROUND;
496        }
497
498        inline bool isSplit() const {
499            return targetFlags & InputTarget::FLAG_SPLIT;
500        }
501    };
502
503    // A command entry captures state and behavior for an action to be performed in the
504    // dispatch loop after the initial processing has taken place.  It is essentially
505    // a kind of continuation used to postpone sensitive policy interactions to a point
506    // in the dispatch loop where it is safe to release the lock (generally after finishing
507    // the critical parts of the dispatch cycle).
508    //
509    // The special thing about commands is that they can voluntarily release and reacquire
510    // the dispatcher lock at will.  Initially when the command starts running, the
511    // dispatcher lock is held.  However, if the command needs to call into the policy to
512    // do some work, it can release the lock, do the work, then reacquire the lock again
513    // before returning.
514    //
515    // This mechanism is a bit clunky but it helps to preserve the invariant that the dispatch
516    // never calls into the policy while holding its lock.
517    //
518    // Commands are implicitly 'LockedInterruptible'.
519    struct CommandEntry;
520    typedef void (InputDispatcher::*Command)(CommandEntry* commandEntry);
521
522    class Connection;
523    struct CommandEntry : Link<CommandEntry> {
524        CommandEntry();
525        ~CommandEntry();
526
527        Command command;
528
529        // parameters for the command (usage varies by command)
530        sp<Connection> connection;
531        nsecs_t eventTime;
532        KeyEntry* keyEntry;
533        sp<InputChannel> inputChannel;
534        sp<InputApplicationHandle> inputApplicationHandle;
535        sp<InputWindowHandle> inputWindowHandle;
536        int32_t userActivityEventType;
537        bool handled;
538    };
539
540    // Generic queue implementation.
541    template <typename T>
542    struct Queue {
543        T headSentinel;
544        T tailSentinel;
545
546        inline Queue() {
547            headSentinel.prev = NULL;
548            headSentinel.next = & tailSentinel;
549            tailSentinel.prev = & headSentinel;
550            tailSentinel.next = NULL;
551        }
552
553        inline bool isEmpty() const {
554            return headSentinel.next == & tailSentinel;
555        }
556
557        inline void enqueueAtTail(T* entry) {
558            T* last = tailSentinel.prev;
559            last->next = entry;
560            entry->prev = last;
561            entry->next = & tailSentinel;
562            tailSentinel.prev = entry;
563        }
564
565        inline void enqueueAtHead(T* entry) {
566            T* first = headSentinel.next;
567            headSentinel.next = entry;
568            entry->prev = & headSentinel;
569            entry->next = first;
570            first->prev = entry;
571        }
572
573        inline void dequeue(T* entry) {
574            entry->prev->next = entry->next;
575            entry->next->prev = entry->prev;
576        }
577
578        inline T* dequeueAtHead() {
579            T* first = headSentinel.next;
580            dequeue(first);
581            return first;
582        }
583
584        uint32_t count() const;
585    };
586
587    /* Allocates queue entries and performs reference counting as needed. */
588    class Allocator {
589    public:
590        Allocator();
591
592        InjectionState* obtainInjectionState(int32_t injectorPid, int32_t injectorUid);
593        ConfigurationChangedEntry* obtainConfigurationChangedEntry(nsecs_t eventTime);
594        KeyEntry* obtainKeyEntry(nsecs_t eventTime,
595                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
596                int32_t flags, int32_t keyCode, int32_t scanCode, int32_t metaState,
597                int32_t repeatCount, nsecs_t downTime);
598        MotionEntry* obtainMotionEntry(nsecs_t eventTime,
599                int32_t deviceId, uint32_t source, uint32_t policyFlags, int32_t action,
600                int32_t flags, int32_t metaState, int32_t edgeFlags,
601                float xPrecision, float yPrecision,
602                nsecs_t downTime, uint32_t pointerCount,
603                const int32_t* pointerIds, const PointerCoords* pointerCoords);
604        DispatchEntry* obtainDispatchEntry(EventEntry* eventEntry,
605                int32_t targetFlags, float xOffset, float yOffset);
606        CommandEntry* obtainCommandEntry(Command command);
607
608        void releaseInjectionState(InjectionState* injectionState);
609        void releaseEventEntry(EventEntry* entry);
610        void releaseConfigurationChangedEntry(ConfigurationChangedEntry* entry);
611        void releaseKeyEntry(KeyEntry* entry);
612        void releaseMotionEntry(MotionEntry* entry);
613        void freeMotionSample(MotionSample* sample);
614        void releaseDispatchEntry(DispatchEntry* entry);
615        void releaseCommandEntry(CommandEntry* entry);
616
617        void recycleKeyEntry(KeyEntry* entry);
618
619        void appendMotionSample(MotionEntry* motionEntry,
620                nsecs_t eventTime, const PointerCoords* pointerCoords);
621
622    private:
623        Pool<InjectionState> mInjectionStatePool;
624        Pool<ConfigurationChangedEntry> mConfigurationChangeEntryPool;
625        Pool<KeyEntry> mKeyEntryPool;
626        Pool<MotionEntry> mMotionEntryPool;
627        Pool<MotionSample> mMotionSamplePool;
628        Pool<DispatchEntry> mDispatchEntryPool;
629        Pool<CommandEntry> mCommandEntryPool;
630
631        void initializeEventEntry(EventEntry* entry, int32_t type, nsecs_t eventTime,
632                uint32_t policyFlags);
633        void releaseEventEntryInjectionState(EventEntry* entry);
634    };
635
636    /* Specifies which events are to be canceled and why. */
637    struct CancelationOptions {
638        enum Mode {
639            CANCEL_ALL_EVENTS = 0,
640            CANCEL_POINTER_EVENTS = 1,
641            CANCEL_NON_POINTER_EVENTS = 2,
642            CANCEL_FALLBACK_EVENTS = 3,
643        };
644
645        // The criterion to use to determine which events should be canceled.
646        Mode mode;
647
648        // Descriptive reason for the cancelation.
649        const char* reason;
650
651        // The specific keycode of the key event to cancel, or -1 to cancel any key event.
652        int32_t keyCode;
653
654        CancelationOptions(Mode mode, const char* reason) :
655                mode(mode), reason(reason), keyCode(-1) { }
656    };
657
658    /* Tracks dispatched key and motion event state so that cancelation events can be
659     * synthesized when events are dropped. */
660    class InputState {
661    public:
662        InputState();
663        ~InputState();
664
665        // Returns true if there is no state to be canceled.
666        bool isNeutral() const;
667
668        // Records tracking information for an event that has just been published.
669        void trackEvent(const EventEntry* entry, int32_t action);
670
671        // Records tracking information for a key event that has just been published.
672        void trackKey(const KeyEntry* entry, int32_t action);
673
674        // Records tracking information for a motion event that has just been published.
675        void trackMotion(const MotionEntry* entry, int32_t action);
676
677        // Synthesizes cancelation events for the current state and resets the tracked state.
678        void synthesizeCancelationEvents(nsecs_t currentTime, Allocator* allocator,
679                Vector<EventEntry*>& outEvents, const CancelationOptions& options);
680
681        // Clears the current state.
682        void clear();
683
684        // Copies pointer-related parts of the input state to another instance.
685        void copyPointerStateTo(InputState& other) const;
686
687        // Gets the fallback key associated with a keycode.
688        // Returns -1 if none.
689        // Returns AKEYCODE_UNKNOWN if we are only dispatching the unhandled key to the policy.
690        int32_t getFallbackKey(int32_t originalKeyCode);
691
692        // Sets the fallback key for a particular keycode.
693        void setFallbackKey(int32_t originalKeyCode, int32_t fallbackKeyCode);
694
695        // Removes the fallback key for a particular keycode.
696        void removeFallbackKey(int32_t originalKeyCode);
697
698        inline const KeyedVector<int32_t, int32_t>& getFallbackKeys() const {
699            return mFallbackKeys;
700        }
701
702    private:
703        struct KeyMemento {
704            int32_t deviceId;
705            uint32_t source;
706            int32_t keyCode;
707            int32_t scanCode;
708            int32_t flags;
709            nsecs_t downTime;
710        };
711
712        struct MotionMemento {
713            int32_t deviceId;
714            uint32_t source;
715            float xPrecision;
716            float yPrecision;
717            nsecs_t downTime;
718            uint32_t pointerCount;
719            int32_t pointerIds[MAX_POINTERS];
720            PointerCoords pointerCoords[MAX_POINTERS];
721            bool hovering;
722
723            void setPointers(const MotionEntry* entry);
724        };
725
726        Vector<KeyMemento> mKeyMementos;
727        Vector<MotionMemento> mMotionMementos;
728        KeyedVector<int32_t, int32_t> mFallbackKeys;
729
730        static bool shouldCancelKey(const KeyMemento& memento,
731                const CancelationOptions& options);
732        static bool shouldCancelMotion(const MotionMemento& memento,
733                const CancelationOptions& options);
734    };
735
736    /* Manages the dispatch state associated with a single input channel. */
737    class Connection : public RefBase {
738    protected:
739        virtual ~Connection();
740
741    public:
742        enum Status {
743            // Everything is peachy.
744            STATUS_NORMAL,
745            // An unrecoverable communication error has occurred.
746            STATUS_BROKEN,
747            // The input channel has been unregistered.
748            STATUS_ZOMBIE
749        };
750
751        Status status;
752        sp<InputChannel> inputChannel; // never null
753        sp<InputWindowHandle> inputWindowHandle; // may be null
754        InputPublisher inputPublisher;
755        InputState inputState;
756        Queue<DispatchEntry> outboundQueue;
757
758        nsecs_t lastEventTime; // the time when the event was originally captured
759        nsecs_t lastDispatchTime; // the time when the last event was dispatched
760
761        explicit Connection(const sp<InputChannel>& inputChannel,
762                const sp<InputWindowHandle>& inputWindowHandle);
763
764        inline const char* getInputChannelName() const { return inputChannel->getName().string(); }
765
766        const char* getStatusLabel() const;
767
768        // Finds a DispatchEntry in the outbound queue associated with the specified event.
769        // Returns NULL if not found.
770        DispatchEntry* findQueuedDispatchEntryForEvent(const EventEntry* eventEntry) const;
771
772        // Gets the time since the current event was originally obtained from the input driver.
773        inline double getEventLatencyMillis(nsecs_t currentTime) const {
774            return (currentTime - lastEventTime) / 1000000.0;
775        }
776
777        // Gets the time since the current event entered the outbound dispatch queue.
778        inline double getDispatchLatencyMillis(nsecs_t currentTime) const {
779            return (currentTime - lastDispatchTime) / 1000000.0;
780        }
781
782        status_t initialize();
783    };
784
785    enum DropReason {
786        DROP_REASON_NOT_DROPPED = 0,
787        DROP_REASON_POLICY = 1,
788        DROP_REASON_APP_SWITCH = 2,
789        DROP_REASON_DISABLED = 3,
790        DROP_REASON_BLOCKED = 4,
791        DROP_REASON_STALE = 5,
792    };
793
794    sp<InputDispatcherPolicyInterface> mPolicy;
795
796    Mutex mLock;
797
798    Allocator mAllocator;
799    sp<Looper> mLooper;
800
801    EventEntry* mPendingEvent;
802    Queue<EventEntry> mInboundQueue;
803    Queue<CommandEntry> mCommandQueue;
804
805    Vector<EventEntry*> mTempCancelationEvents;
806
807    void dispatchOnceInnerLocked(nsecs_t keyRepeatTimeout, nsecs_t keyRepeatDelay,
808            nsecs_t* nextWakeupTime);
809
810    // Batches a new sample onto a motion entry.
811    // Assumes that the we have already checked that we can append samples.
812    void batchMotionLocked(MotionEntry* entry, nsecs_t eventTime, int32_t metaState,
813            const PointerCoords* pointerCoords, const char* eventDescription);
814
815    // Enqueues an inbound event.  Returns true if mLooper->wake() should be called.
816    bool enqueueInboundEventLocked(EventEntry* entry);
817
818    // Cleans up input state when dropping an inbound event.
819    void dropInboundEventLocked(EventEntry* entry, DropReason dropReason);
820
821    // App switch latency optimization.
822    bool mAppSwitchSawKeyDown;
823    nsecs_t mAppSwitchDueTime;
824
825    static bool isAppSwitchKeyCode(int32_t keyCode);
826    bool isAppSwitchKeyEventLocked(KeyEntry* keyEntry);
827    bool isAppSwitchPendingLocked();
828    void resetPendingAppSwitchLocked(bool handled);
829
830    // Stale event latency optimization.
831    static bool isStaleEventLocked(nsecs_t currentTime, EventEntry* entry);
832
833    // Blocked event latency optimization.  Drops old events when the user intends
834    // to transfer focus to a new application.
835    EventEntry* mNextUnblockedEvent;
836
837    const InputWindow* findTouchedWindowAtLocked(int32_t x, int32_t y);
838
839    // All registered connections mapped by receive pipe file descriptor.
840    KeyedVector<int, sp<Connection> > mConnectionsByReceiveFd;
841
842    ssize_t getConnectionIndexLocked(const sp<InputChannel>& inputChannel);
843
844    // Active connections are connections that have a non-empty outbound queue.
845    // We don't use a ref-counted pointer here because we explicitly abort connections
846    // during unregistration which causes the connection's outbound queue to be cleared
847    // and the connection itself to be deactivated.
848    Vector<Connection*> mActiveConnections;
849
850    // Input channels that will receive a copy of all input events.
851    Vector<sp<InputChannel> > mMonitoringChannels;
852
853    // Event injection and synchronization.
854    Condition mInjectionResultAvailableCondition;
855    bool hasInjectionPermission(int32_t injectorPid, int32_t injectorUid);
856    void setInjectionResultLocked(EventEntry* entry, int32_t injectionResult);
857
858    Condition mInjectionSyncFinishedCondition;
859    void incrementPendingForegroundDispatchesLocked(EventEntry* entry);
860    void decrementPendingForegroundDispatchesLocked(EventEntry* entry);
861
862    // Throttling state.
863    struct ThrottleState {
864        nsecs_t minTimeBetweenEvents;
865
866        nsecs_t lastEventTime;
867        int32_t lastDeviceId;
868        uint32_t lastSource;
869
870        uint32_t originalSampleCount; // only collected during debugging
871    } mThrottleState;
872
873    // Key repeat tracking.
874    struct KeyRepeatState {
875        KeyEntry* lastKeyEntry; // or null if no repeat
876        nsecs_t nextRepeatTime;
877    } mKeyRepeatState;
878
879    void resetKeyRepeatLocked();
880    KeyEntry* synthesizeKeyRepeatLocked(nsecs_t currentTime, nsecs_t keyRepeatTimeout);
881
882    // Deferred command processing.
883    bool runCommandsLockedInterruptible();
884    CommandEntry* postCommandLocked(Command command);
885
886    // Inbound event processing.
887    void drainInboundQueueLocked();
888    void releasePendingEventLocked();
889    void releaseInboundEventLocked(EventEntry* entry);
890
891    // Dispatch state.
892    bool mDispatchEnabled;
893    bool mDispatchFrozen;
894    bool mInputFilterEnabled;
895
896    Vector<InputWindow> mWindows;
897
898    const InputWindow* getWindowLocked(const sp<InputChannel>& inputChannel);
899
900    // Focus tracking for keys, trackball, etc.
901    const InputWindow* mFocusedWindow;
902
903    // Focus tracking for touch.
904    struct TouchedWindow {
905        const InputWindow* window;
906        int32_t targetFlags;
907        BitSet32 pointerIds;        // zero unless target flag FLAG_SPLIT is set
908        sp<InputChannel> channel;
909    };
910    struct TouchState {
911        bool down;
912        bool split;
913        int32_t deviceId; // id of the device that is currently down, others are rejected
914        uint32_t source;  // source of the device that is current down, others are rejected
915        Vector<TouchedWindow> windows;
916
917        TouchState();
918        ~TouchState();
919        void reset();
920        void copyFrom(const TouchState& other);
921        void addOrUpdateWindow(const InputWindow* window, int32_t targetFlags, BitSet32 pointerIds);
922        void filterNonAsIsTouchWindows();
923        const InputWindow* getFirstForegroundWindow();
924    };
925
926    TouchState mTouchState;
927    TouchState mTempTouchState;
928
929    // Focused application.
930    InputApplication* mFocusedApplication;
931    InputApplication mFocusedApplicationStorage; // preallocated storage for mFocusedApplication
932    void releaseFocusedApplicationLocked();
933
934    // Dispatch inbound events.
935    bool dispatchConfigurationChangedLocked(
936            nsecs_t currentTime, ConfigurationChangedEntry* entry);
937    bool dispatchKeyLocked(
938            nsecs_t currentTime, KeyEntry* entry, nsecs_t keyRepeatTimeout,
939            DropReason* dropReason, nsecs_t* nextWakeupTime);
940    bool dispatchMotionLocked(
941            nsecs_t currentTime, MotionEntry* entry,
942            DropReason* dropReason, nsecs_t* nextWakeupTime);
943    void dispatchEventToCurrentInputTargetsLocked(
944            nsecs_t currentTime, EventEntry* entry, bool resumeWithAppendedMotionSample);
945
946    void logOutboundKeyDetailsLocked(const char* prefix, const KeyEntry* entry);
947    void logOutboundMotionDetailsLocked(const char* prefix, const MotionEntry* entry);
948
949    // The input targets that were most recently identified for dispatch.
950    bool mCurrentInputTargetsValid; // false while targets are being recomputed
951    Vector<InputTarget> mCurrentInputTargets;
952
953    enum InputTargetWaitCause {
954        INPUT_TARGET_WAIT_CAUSE_NONE,
955        INPUT_TARGET_WAIT_CAUSE_SYSTEM_NOT_READY,
956        INPUT_TARGET_WAIT_CAUSE_APPLICATION_NOT_READY,
957    };
958
959    InputTargetWaitCause mInputTargetWaitCause;
960    nsecs_t mInputTargetWaitStartTime;
961    nsecs_t mInputTargetWaitTimeoutTime;
962    bool mInputTargetWaitTimeoutExpired;
963    sp<InputApplicationHandle> mInputTargetWaitApplication;
964
965    // Contains the last window which received a hover event.
966    const InputWindow* mLastHoverWindow;
967
968    // Finding targets for input events.
969    void resetTargetsLocked();
970    void commitTargetsLocked();
971    int32_t handleTargetsNotReadyLocked(nsecs_t currentTime, const EventEntry* entry,
972            const InputApplication* application, const InputWindow* window,
973            nsecs_t* nextWakeupTime);
974    void resumeAfterTargetsNotReadyTimeoutLocked(nsecs_t newTimeout,
975            const sp<InputChannel>& inputChannel);
976    nsecs_t getTimeSpentWaitingForApplicationLocked(nsecs_t currentTime);
977    void resetANRTimeoutsLocked();
978
979    int32_t findFocusedWindowTargetsLocked(nsecs_t currentTime, const EventEntry* entry,
980            nsecs_t* nextWakeupTime);
981    int32_t findTouchedWindowTargetsLocked(nsecs_t currentTime, const MotionEntry* entry,
982            nsecs_t* nextWakeupTime, bool* outConflictingPointerActions,
983            const MotionSample** outSplitBatchAfterSample);
984
985    void addWindowTargetLocked(const InputWindow* window, int32_t targetFlags,
986            BitSet32 pointerIds);
987    void addMonitoringTargetsLocked();
988    void pokeUserActivityLocked(const EventEntry* eventEntry);
989    bool checkInjectionPermission(const InputWindow* window, const InjectionState* injectionState);
990    bool isWindowObscuredAtPointLocked(const InputWindow* window, int32_t x, int32_t y) const;
991    bool isWindowFinishedWithPreviousInputLocked(const InputWindow* window);
992    String8 getApplicationWindowLabelLocked(const InputApplication* application,
993            const InputWindow* window);
994
995    // Manage the dispatch cycle for a single connection.
996    // These methods are deliberately not Interruptible because doing all of the work
997    // with the mutex held makes it easier to ensure that connection invariants are maintained.
998    // If needed, the methods post commands to run later once the critical bits are done.
999    void prepareDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
1000            EventEntry* eventEntry, const InputTarget* inputTarget,
1001            bool resumeWithAppendedMotionSample);
1002    void enqueueDispatchEntryLocked(const sp<Connection>& connection,
1003            EventEntry* eventEntry, const InputTarget* inputTarget,
1004            bool resumeWithAppendedMotionSample, int32_t dispatchMode);
1005    void startDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
1006    void finishDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection,
1007            bool handled);
1008    void startNextDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
1009    void abortBrokenDispatchCycleLocked(nsecs_t currentTime, const sp<Connection>& connection);
1010    void drainOutboundQueueLocked(Connection* connection);
1011    static int handleReceiveCallback(int receiveFd, int events, void* data);
1012
1013    void synthesizeCancelationEventsForAllConnectionsLocked(
1014            const CancelationOptions& options);
1015    void synthesizeCancelationEventsForInputChannelLocked(const sp<InputChannel>& channel,
1016            const CancelationOptions& options);
1017    void synthesizeCancelationEventsForConnectionLocked(const sp<Connection>& connection,
1018            const CancelationOptions& options);
1019
1020    // Splitting motion events across windows.
1021    MotionEntry* splitMotionEvent(const MotionEntry* originalMotionEntry, BitSet32 pointerIds);
1022
1023    // Reset and drop everything the dispatcher is doing.
1024    void resetAndDropEverythingLocked(const char* reason);
1025
1026    // Dump state.
1027    void dumpDispatchStateLocked(String8& dump);
1028    void logDispatchStateLocked();
1029
1030    // Add or remove a connection to the mActiveConnections vector.
1031    void activateConnectionLocked(Connection* connection);
1032    void deactivateConnectionLocked(Connection* connection);
1033
1034    // Interesting events that we might like to log or tell the framework about.
1035    void onDispatchCycleStartedLocked(
1036            nsecs_t currentTime, const sp<Connection>& connection);
1037    void onDispatchCycleFinishedLocked(
1038            nsecs_t currentTime, const sp<Connection>& connection, bool handled);
1039    void onDispatchCycleBrokenLocked(
1040            nsecs_t currentTime, const sp<Connection>& connection);
1041    void onANRLocked(
1042            nsecs_t currentTime, const InputApplication* application, const InputWindow* window,
1043            nsecs_t eventTime, nsecs_t waitStartTime);
1044
1045    // Outbound policy interactions.
1046    void doNotifyConfigurationChangedInterruptible(CommandEntry* commandEntry);
1047    void doNotifyInputChannelBrokenLockedInterruptible(CommandEntry* commandEntry);
1048    void doNotifyANRLockedInterruptible(CommandEntry* commandEntry);
1049    void doInterceptKeyBeforeDispatchingLockedInterruptible(CommandEntry* commandEntry);
1050    void doDispatchCycleFinishedLockedInterruptible(CommandEntry* commandEntry);
1051    void doPokeUserActivityLockedInterruptible(CommandEntry* commandEntry);
1052    void initializeKeyEvent(KeyEvent* event, const KeyEntry* entry);
1053
1054    // Statistics gathering.
1055    void updateDispatchStatisticsLocked(nsecs_t currentTime, const EventEntry* entry,
1056            int32_t injectionResult, nsecs_t timeSpentWaitingForApplication);
1057};
1058
1059/* Enqueues and dispatches input events, endlessly. */
1060class InputDispatcherThread : public Thread {
1061public:
1062    explicit InputDispatcherThread(const sp<InputDispatcherInterface>& dispatcher);
1063    ~InputDispatcherThread();
1064
1065private:
1066    virtual bool threadLoop();
1067
1068    sp<InputDispatcherInterface> mDispatcher;
1069};
1070
1071} // namespace android
1072
1073#endif // _UI_INPUT_DISPATCHER_H
1074